Oracle Spatial User Conference

May 19, 2011
Ronald Reagan Building and International Trade Center
Washington, DC USA
Using Oracle Spatial

for

Cloud-Based

Point Cloud Data Management
Todd Rothermel
VP, Operations, Incubation

Tim Howerton
Software Developer
Point Cloud Overview

Data Collection

- Methods: LiDAR, Sonar, and GPR
- Styles: Aerial, Static, Mobile, and Bathymetric
Point Cloud Positives

- Quickly acquire “as-built” (existing) conditions for a project
- Point cloud used in 3D modeling and geospatial software
Point Cloud Negatives

- Typical point cloud data files (LAS, XYZ, POD, PTS) are multiple gigabytes in size
- Transfer and distribution cause significant delays
Positives from Negatives

- Oracle 11g Spatial and Amazon EC2 Cloud
 - Efficient, secure storage and delivery to designers and construction contractors
Enter TrueViz PULSE™

• Combines extensive 3-D design expertise with unique tools and workflows
• Acquires, optimizes, extracts and leverages LiDAR point cloud data
• Utilizes point cloud data from design through construction
Enter TrueViz PULSE™ Data Manager

- Point cloud data management system
- Users quickly locate and extract specific areas of interest, including cross sections and polygons
- Oracle 11g database
- Amazon EC2 Linux instance
- Silverlight mapping interface
Oracle Spatial in the cloud

• 11gR2 database on Oracle Enterprise Linux
 • DB created on Amazon EC2 instance
 • Setup using image provided by Oracle
 • RMAN configured for S3 data file backup

• EBS volumes attached to server as storage devices
 • Raw devices used as data files for Tablespace(s)
 • On-demand storage as new LiDAR data is collected
Oracle Spatial SDO_PC

- Point Clouds stored using SDO_PC package
 - Loaded into database using LibLAS las2oci
 - Points converted directly from .las files to SDO_PC blocks
 - Significant reduction in load time
Oracle Spatial SDO_PC

- User-defined areas extracted using SDO_PC_PKG.CLIP_PC
 - Blocks are inserted into queuing table
 - Points extracted using SDO_PC_PKG.TO_GEOMETRY
 - LiDAR attributes stored on point dimensions 4-11
- Points are written to a variety of formats
 - .las, .pod, .txt
- Filtering by classification
 - Ground, vegetation, water, buildings, etc.
Client Access to Point Clouds

- Web access through WCF services, ODP.NET
 - Bing Maps Silverlight application displays all point cloud collect locations
 - Admin interface manages and monitors cloud storage through EC2 .NET API
 - Points extracted and streamed to a variety of clients, such as MicroStation, iPad, and Android
Leveraging Oracle Spatial

HNTB next steps…

• Oracle MapViewer and GeoRaster
• Rasterize point cloud data to display densities (currently mapping minimum bounding rectangles)
Conclusion

- Increased use of LiDAR has led to significant data storage and delivery challenges
- HNTB was forced to look beyond traditional storage methods
- Oracle’s SDO_PC package used in the Amazon cloud provides us with the combination of speed, scaling and flexibility we need to leverage LiDAR