Oracle Spatial 11g

Dr. Siva Ravada
Oracle Spatial 11g Features

• 3D Support
• Spatial Web Services
• Java API
• GeoRaster
• Network Data Model
• Workspace Manager
3D Support
3-D Spatial

- Address growing number of 3-d applications
- GIS
 - City Planning
 - Property rights
- City Modeling (City GML)
- Business Intelligence
 - Real estate
 - Advertising
- VR, Medical Applications
3-D Support in Oracle Spatial

- 3D Types for points/lines/polygons/solids
- Specialized types for large volumes of 3D point data
 - Represent scenes as a set of 3-d points obtained using laser scanners etc. (point clouds)
 - surface representation using TINs
- 3D Coordinate System Support
SDO_GEOMETRY for 3D Data

- Points
- Lines
- Simple Surfaces
 - All points of a surface lie in a 3D plane
 - A 3 point 3D polygon is the simplest surface
 - A simple surface can have any polygonal shape
- Composite surfaces
 - has one or more connected simple surfaces
 - It can be closed or open
 - The simple surfaces in a composite surface can not cross each other
 - surface of a cube is an example of a composite surface
 - Cube has six simple surfaces
 - Each simple surface is a 3D square
SDO_GEOMETRY for 3D Data

- **Simple Solids**
 - Solids are composed of closed surfaces
 - It has to have one outer surface and one or more interior surfaces
 - Cube is an example of a simple solid
 - A pyramid is another example of a simple solid

- **Composite Solids**
 - Consists of n simple solids as a connected solid
 - Can be represented as a simple solid with a composite surface
 - Topologically there is an equivalent simple solid, but the composite solid representation is easier
 - Example: A building composed of rooms
SDO_GEOMETRY for 3-D Data

- Support for multi-points, multi-lines, multi-surfaces, multi-solids
 - Multi-surface is different from composite surface
 - Multi-solid is different from composite solid
- No arcs supported
- No parametric surfaces supported
- Follows GML3.1.1, ISO 19107 Specifications
3D SDO_GEOGRAPHY: GTYPE, ETYPE combinations

<table>
<thead>
<tr>
<th>Name</th>
<th>GTYPE</th>
<th>ETYPE</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>3001</td>
<td>1</td>
<td>1 (1 point)</td>
</tr>
<tr>
<td>Linestring</td>
<td>3002</td>
<td>2</td>
<td>1 (straight line)</td>
</tr>
<tr>
<td>Planar Polygonal Surface</td>
<td>3003</td>
<td>1003 (outer) or 2003 (inner)</td>
<td>1 (straight lines)</td>
</tr>
<tr>
<td>Composite Surface</td>
<td>3003</td>
<td>1006</td>
<td>N: number of planar-polygon surfaces that follow.</td>
</tr>
</tbody>
</table>
Composite Surface

SDO_GEOMETRY:
3003 – 3-dimensional surface,
SRID,
NULL,
SDO_ELEM_INFO_ARRAY
(1 – starting offset,
1006 – composite surface
2 – 2 elements for this comp,
1,1003,3 – first element rectangle
7, 1003, 3 – second rectangle
),
SDO_ORDINATE_ARRAY(
2,0,2, 4,2,2, 2,0,2, 4,0,4)
3d SDO_GEOMETRY: Gtypes, Etypes for Solids

Normals for a solid always point outward: vertices specified accordingly

<table>
<thead>
<tr>
<th>Name</th>
<th>GTYPE</th>
<th>ETYPE</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>3008</td>
<td>1007 (no 2007)</td>
<td>1 Followed by: 1 outer surface and N inner surfaces</td>
</tr>
<tr>
<td>Solid Box</td>
<td>3008</td>
<td>1007 (no 2007)</td>
<td>3: Axis aligned box Specified by the min x,y,z and max x,y,z</td>
</tr>
<tr>
<td>Composite Solid</td>
<td>3008</td>
<td>1008</td>
<td>N: number of ‘composing’ solid elements followed by descriptions of each. Composite solid defines a single volume.</td>
</tr>
</tbody>
</table>
Solid Box Example

SDO_GEOMETRY:
3008 – 3-dimensional solid,
SRID,
NULL,
SDO_ELEM_INFO_ARRAY
(1 – starting offset,
1007 – solid element
3 – Axis-aligned box,
),
SDO_ORDINATE_ARRAY(2
,0
,2
, -- first end point
4
,2
,4 – second endpoint)
Solid As a Closed Surface

SDO_GEOMETRY:
3008 – 3-dimensional solid, SRID, NULL,

SDO_ELEM_INFO_ARRAY
(1 – starting offset,
1007 – solid element
1 – BREP solid,
1, 1006, 6
– 1 exterior surface w 6 faces ...),

SDO_ORDINATE_ARRAY
(ordinate specification for each face – next slide)

- (2,0,2)
- (4,2,4)
Solid Example

Orientation of faces for exterior surface:
-- Such that normal points outward the solid
-- Example:
 Face (abcd): ordinates for a,b,d, c (ccw)
 Face (efgh): ordinates for e,h,g,f (cw)

-- Likewise:
 Face (cdef): ordinates for c,d,e,f (ccw)
 Face (bdeh): ordinates for b,h,e,d (ccw)
 Face (abgh): ordinates for a,g,h,b (cw)
 Face (acfg): ordinates for a,c,f,g (cw)
Solid with a Hole Example

Orientation of faces for interior surface:
-- Reverse as that of the exterior surface
-- Such that normal points outward the solid (I.e., into the hole/void)
-- Example:
 Face (aHbHcHdH):
 ordinates for aH,cH,dh, bH (cw)
-- No face of the interior hole touches to a face of the exterior in more than 2 points.

Interior Hole: (aH,bh,…hH)
3D SDO_GEOMETRY: Collections

<table>
<thead>
<tr>
<th>Name</th>
<th>GTYPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Point</td>
<td>3005</td>
<td>N disjoint points</td>
</tr>
<tr>
<td>Multi-linestring</td>
<td>3006</td>
<td>N linestrings</td>
</tr>
<tr>
<td>Multi-surface</td>
<td>3007</td>
<td>N disjoint surfaces (may touch at points)</td>
</tr>
<tr>
<td>Multi-solid</td>
<td>3008</td>
<td>N disjoint solids (may share a point, edge)</td>
</tr>
<tr>
<td>Collection</td>
<td>3004</td>
<td>Disjoint set of points, lines, surfaces, and/or solids (heterogenous collection)</td>
</tr>
</tbody>
</table>
Operations on 3D SDO_GEOMETRY

• Spatial Indexing: 3D R-trees
• SQL Operator support
 • SDO_FILTER, SDO_ANYINTERACT,
 SDO_WITHIN_DISTANCE, SDO_NN only
• PL/SQL Functions
 • VALIDATE_GEOMETRY
 • VALIDATE_LAYER
 • SDO_DISTANCE,
 • SDO_GEOM.ANYINTERACT
 • SDO_AREA, SDO_VOLUME
 • SDO_CS.TRANSFORM
J3D_Geometry: Java Interface

• Extends JGeometry class
• Supported Methods:
 • Validate(tolerance): Returns true or false
 • Distance(J3D_geometry): Returns distance
 • Anyinteract(J3D_Geometry): Returns true or false
 • Length(): returns the length of a line geometry
 • Area(): returns area for a surface geometry
 • Volume(): returns volume of a solid geometry
Specialized Types for High Density 3D Point Data

• Large volumes of point data acquired by sensors
 • LIDAR
 • Sensors used to collect data inside buildings
• Millions of points used to model a scene
• SDO_GEOMETRY is not suitable for such data
• POINT_CLOUD data type introduced to efficiently manage this type of point data
• Surface models can be generated from these point clouds
SDO_POINT_CLOUD in Oracle

Features:
- Partition into multiple blocks for granularity of access
- Each “sdo_point_cloud” column is associated with “only 1” block table (of SDO_PC_BLK type).

TABLE of SDO_PC_BLK type

<table>
<thead>
<tr>
<th>Objid</th>
<th>Blkid</th>
<th>PC_BLK_EXTENT: SDO_GEOMETRY</th>
<th>Pts: LOB</th>
<th>Max_res, Min_res, Attrs...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Operations

Point Data → CREATE PC Block → Spatial Operators → PC_BLK_TABLE → CLIP_PC
Visibility Query

- Farther objects in lower resolution
- Nearer objects in higher resolution
Query specifies one or more
 \(<\text{query solid} , [\text{min_res}, \text{max_res}]>\)
SDO_POINTCLOUD

• Operations
 • Creation of a point cloud using a set of points
 • Spatial query with <frustum window, interval range>
 • Read point cloud block as an SDO_GEOMETRY
• System data management
 • Blk_table automatically cleaned up
 • When an sdo_point_cloud (row) is deleted from base_table
 • When base_table (or column) is dropped
 • When base_table is truncated
TIN: Triangulated Irregular Network

- What is a TIN?
 - Vector-based topological data model used to represent terrain/surface
 - Contains a network of irregularly spaced triangles
 - 3D surface representation derived from irregularly spaced points
 - Each sample point has an x, y coordinate and a z value or surface value

<table>
<thead>
<tr>
<th>Node No</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
SDO_TIN in Oracle

TABLE of SDO_TIN_BLK

<table>
<thead>
<tr>
<th>SDO_PC.BLK</th>
<th>Triangles: LOB</th>
<th>Res level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objid</td>
<td>Blkid</td>
<td>Blk_extent, Pts..</td>
</tr>
</tbody>
</table>

Features:
- Partition into multiple blocks for granularity of access
- Can store up to 4 Billion*2 Billion points
- Each "sdo_tin" column is associated with “only 1” block table (of SDO_TIN_BLK type)
Operations

Point Data (table/point cloud) → CREATE TIN → CLIP_TIN

Spatial Operators

TIN_BLK_TABLE
SDO_TIN

- Create TINs for millions of points
- Operations
 - Creation of a TIN using a set of points
 - Spatial query with <frustum window, interval range>
 - Read a TIN block as an SDO_GEOMETRY
 - Blk_table *automatically* cleaned up
 - When an sdo_point_cloud (row) is deleted from base_table
 - When base_table (or column) is dropped
 - When base_table is truncated
Creating TINs

- **CREATE_TIN**
 - Initialized tin object
 - Input *table* or *view* of points
 - An optional output “pts” table (with addlt. <ptn_id, pt_id> columns) to store the points in a clustered fashion
 - Typically an IOT pre-created by the user
 - Useful to query based on non-spatial attributes of data
 - An optional output “triangles” table to store the triangles in a clustered fashion
 - Users can add/associate triangle-specific information
 - Typically an IOT pre-created by the user
3D Coordinate System Functions

Same use as 2D Coordinate Systems:

A reference system for spatial operations

- Associate a coordinate system with 3D data
 - SDO_GEOMETRY
- Support transformations from one to another coordinate system
- Compute distances, and other spatial relationships between two objects within the same coordinate system
3D Coordinate Systems

Following EPSG types are being supported:

- **Vertical Coordinate Systems** (w.r.t to sea-level etc.): essentially 1-d coordinate system
- **Geocentric**: 3-d cartesian
- **Geographic-2d**: 2-d ellipsoidal
- **Geographic-3d**: 3-d ellipsoidal
- **Compound Coordinate System**
Spatial Web Services
Web Services

A Web Service is application or business logic that is accessible using standard Internet protocols.

Web Services represent black-box functionality that can be used and reused without regard to how the service is implemented.
Spatial Web Services: When & How

• Model 1: Spatial is primary focus of web service
 • Perform operations on spatial data
 • Incorporate real time information, personalization, and presence
 • Result may be spatial (e.g. a map, data in specified exchange format)
 • Often it’s a report, or next step in a business process
 • Example: Return driving directions between two addresses
Spatial Web Services: When & How

- Model 2: Business web service with a spatial component
 - Perform business search, query or workflow function
 - Spatial is not the primary focus of the service
 - Incorporate operational, financial, real time information
 - Result likely to be a report, or next step in a business process
 - May be spatial (e.g. a map, data in specified exchange format)
 - Example: Compute the sum of all sales within a particular sales region
Common spatial web services

• Locator Services
 • Address finder (geocoding/reverse geocoding)
 • Route finder (driving directions)

• Mapping Services
 • Display base map
 • Overlay theme on base map

• Query Services
 • Find POI within user specified distance
 • Find closest POI to user specified location
Web Services use cases

database

Web Service Provider
Web Services **use cases**

- Database
- Web Service Provider
- OpenGIS Web Map Service
- Browser based, no local data
Web Services use cases

- OpenGIS Web Map Service
 - Browser based, no local data
- OpenGIS Web Feature Service
 - Desktop, local user data only
Web Services use cases

OpenGIS Web Map Service
Browser based, no local data

OpenGIS Web Feature Service
Desktop, local user data only

OpenGIS Transactional Web Feature Service
Server based consumers
Consolidation Value Proposition

Integrated and Assured Information Sharing

- Single source of truth
- High Performance
- Strong security
- Centralized geoprocessing
- Centralized maintenance
- Enhanced business and operational intelligence
- Creation of a Web centric, spatially enabled, real time enterprise
A OGC standard (and ISO 19142) – current version 1.1

A WFS is a Web interface that allows one to publish and deploy geographic feature data locally or across the Internet.

2 types of services: standard WFS and Transactional WFS (WFS-T)

WFS-T operations include the ability to insert, delete, update, get and query features on spatial and non-spatial constraints
Features of a WFS

• Access/search/update/delete geo-spatial feature instances based on spatial/non-spatial search criteria using a standard interface over the web
• Access/Update in a secure way with proper authentication and authorization
• Manage feature privileges at a instance level
• Real-time transfer of feature instances in a platform/programming language independent way
Oracle Spatial WFS

- Use SOAP/XML over HTTP for Request/Response
- Oracle Spatial for Feature instance Storage/Retrieval
- Implement GML filter specification for feature search
- Use LDAP for authentication, Oracle Label-based security for instance-level privilege mgmt and WSS/SSL for secure transfer of feature data
- Implement token-based locking of feature instances to support WFS locking protocol
- Implement feature cache in middle-tier to reduce volume of spatial data transfer from DB to middle-tier, and make WFS request processing more efficient.
Publishing Feature Types

• Support publishing of feature types from database data sources (tables, views)
 • Complex Type columns
 • Nested Table/VARRAY columns
 • XMLType Columns

• Support publishing feature types from external data sources (external XSDs)
Publish Feature Types

- Relational datasource (e.g. table)
 - PLSQL API to publish the content of a table with Spatial Column to a feature type which is a subtype of gml:_Feature
 - Columns Map to Feature Type Tags
 - Column Types Map to Tag Types in XML
 - User-defined object map to ComplexTypes in XML
 - Type naming in chosen by default

- XSD Document based datasource
 - Java API to register feature type XSDs and feature type metadata
 - Register spatial paths on which spatial index will be built
 - Register non-spatial paths on which XDB index will be built
 - Feature Type Registration XSD, captures all feature type metadata parameters
WFS Operations

• Basic
 • Get Capabilities – get the metadata about the types / operations a feature server supports
 • DescribeFeature - get the structural information about a feature type
 • GetFeature – query different parts of feature instances

• Transactional operations
 • GetFeatureWithLock – get a set of features, and lock some/all of them for a certain period of time.
 • LockFeature – lock a set of feature instances
 • Transaction
 • Insert new feature instances
 • Update existing feature instances based on filter criteria
 • Delete existing feature instances based on filter criteria
Architecture

WFS Clients

WFS Request (SOAP/XML) WFS Response (SOAP/XML)

Authentication+Secure transport [LDAP, WSS/SSL]

OC4J
Or any
J2EE
Container

WFS Processor (Web Service)

Input Processor Feature Cache Manager

Response Generator DB Handler

JDBC

Feature Metadata/Lock Metadata

Feature Instances [OLS]
Caching

- Provide main-memory storage of spatial objects
- Helps reduce frequent transfer of spatial object from database to memory
- In-memory locks for update cache entries consistently
Locking

- DB Locking
- Lock duration in minutes and spans db transaction boundary
- Token-based locking semantics
- Unlock rows when lock expires
- Define triggers on feature tables/views to make sure that the user in the current session has shown a non-expired lock token, which was obtained previously for updating/deleting the concerned rows
- Locking logic will be enforced uniformly for Java or PLSQL interfaces
Lock Feature Response

- WFS_LockFeatureResponseType
 - wfs:LockId
 - wfs:FeaturesLocked
 - wfs:FeaturesNotLocked
WFS Transaction

- wfs:Transaction
 - 0..infiniti
 - wfs:Insert
 - wfs:Update
 - wfs:Delete
 - wfs:Native
 - wfs:LockId
WFS Use Cases

- Type Consumers
 - Get Server Capabilities
 - Describe Feature Type
 - GetFeatures (with proper filter)
 - GetFeatureWithLock
 - LockFeature
 - Transaction
 - Insert/Update/Delete

- Type Supplier
 - Publish Types
 - Define type access control privileges
Feature Type Example

```xml
<complexType name="ROADL_1M_Type">
<complexContent>
<extension base="gml:AbstractFeatureType">
<sequence>
   <element name="NAME" type="string" nillable="false"/>
   <element name="PATH" type="gml:LineStringPropertyType" nillable="false"/>
   <element name="SURFACE_TYPE" nillable="true" minOccurs="0">
      <simpleType>
         <restriction base="string">
            <maxLength value="30"/>
         </restriction>
      </simpleType>
   </element>
   <element name="NLANES" nillable="true" minOccurs="0">
      <simpleType>
         <restriction base="integer">
            <totalDigits value="2"/>
         </restriction>
      </simpleType>
   </element>
</sequence>
</extension>
</complexContent>
</complexType>
```
Feature Instance Example

```xml
<gml:featureMember>
    <ROADL_1M fid="ROADS_1M.100">
        <NAME>HYW 401</NAME>
        <PATH>
            <gml:LineString srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
                <gml:coordinates decimal="." cs="," ts=" ">
                    -59.478340,-52.226578
                    -59.484871,-52.223564
                    -59.488991,-52.198524
                    -59.485958,-52.169559
                    -59.480400,-52.152615
                    -59.465576,-52.141491
                    -59.462002,-52.136417
                    -59.447968,-52.127190
                    -59.422928,-52.120701
                    -59.411915,-52.117844
                    -59.397972,-52.116440
                    -59.371311,-52.121300
                </gml:coordinates>
            </gml:LineString>
        </PATH>
        <SURFACE_TYPE>ASPHALT</SURFACE_TYPE>
        <NLANES>12</NLANES>
    </ROADL_1M>
</gml:featureMember>
```
Get Feature Request

```xml
<?xml version="1.0" ?>
<GetFeature
version="1.0.0"
service="WFS"
handle="Example Query"
xmlns="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:gml="http://www.opengis.net/gml"
xmlns:myns="http://www.someserver.com/myns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.0.0/WFS-basic.xsd">
  <Query typeName="myns:ROADS_1M">
    <ogc:PropertyName>myns:PATH</ogc:PropertyName>
    <ogc:PropertyName>myns:SURFACETYPE</ogc:PropertyName>
    <ogc:PropertyName>myns:NLANES</ogc:PropertyName>
    <ogc:Filter>
      <ogc:Within>
        <ogc:PropertyName>myns:PATH</ogc:PropertyName>
        <gml:Box>
          <gml:coordinates>50,40 100,60</gml:coordinates>
        </gml:Box>
      </ogc:Within>
    </ogc:Filter>
  </Query>
</GetFeature>
```
Get Feature Response

<?xml version="1.0" ?>
<wfs:FeatureCollection
xmlns="http://www.someserver.com/myns"
xmIns:wfs="http://www.opengis.net/wfs"
xmIns:gml="http://www.opengis.net/gml"
xmIns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs ../wfs/1.0.0/WFS-basic.xsd
http://www.someserver.com/myns ROADSRAILS.xsd">
 <gml:boundedBy>
 <gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coordinates>0,0 180,360</gml:coordinates>
 </gml:Box>
 </gml:boundedBy>
 <gml:featureMember>
 <ROADS_1M fid="ROADS_1M.100">
 <PATH>
 <gml:LineString gid="1"
 srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coordinates>10,10 10,11 10,12 10,13</gml:coordinates>
 </gml:LineString>
 </PATH>
 <SURFACE_TYPE>ASPHALT</SURFACE_TYPE>
 <NLANES>4</NLANES>
 </ROADS_1M>
 </gml:featureMember>
</wfs:FeatureCollection>
<wfs:Insert handle="ComplexInsert">
 <ROADL_1M>
 <NAME>Highway 401</NAME>
 <PATH>
 <gml:LineString gid="e3"
 srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
 <gml:coordinates>...</gml:coordinates>
 </gml:LineString>
 </PATH>
 <SURFACE_TYPE>Asphalt</SURFACE_TYPE>
 <NLANES>12</NLANES>
 </ROADL_1M>
</wfs:Insert>
Web Services Security
Security

• Identification - Who are you?
• Authentication - How do I know it is you?
• Authorization - Are you allowed?
• Integrity - Is the data tampered?
• Confidentiality - Did anyone else read it?
• Auditing - Can you show what happened?
• Non-Repudiation - Can you prove it happened?
Share the Security Platform

Catalog
OpenLS
WFS
...

SpatialWS

XML
XML
XML
XML

OGC compliant
SOAP
WSS, VPD
Proxy Auth / App user mgm
Spatial WS Functionality

- Pluggable component handles
 - XML request / response
- Component can ignore
 - SOAP envelope
 - Will comply w/ OGC
 - User name & pwd/certificate
 - Encryption & signatures
- User authorization
 - Managed by DB including VPD
 - When needed: J2EE security model
- Connection mgm
 - Proxy authentication
 - App user mgmt
 - Multi-user login
Propagation Of Identity

- Client
 - JAX-RPC
 - Username
 - Password
- SOAP header
 - WSS
- Oracle JAZN/LDAP/XML
- SpatialWS
 - Proxy Auth
 - App User mgm
 - (Group of users)
- DB connection
 - Grant
 - VPD
Spatial Web Services Security

- Data Access Authorization in DB
 - VPD
 - Oracle Label Security
- User authentication in mid-tier
- Similar approach is used for handling versioning with Workspace Manager
- Issues with Cache
Caching And VPD Basic Solution

- Verify visibility in the DB
 Select \texttt{id} from … where …
- Lookup record in cache
Java API
Java API

- 2D Simplify
- Projection to Local Tangent Plane for Geodetic data
 - And its inverse operation
- Arc Densification
- Affine Transformations
 - Shift, rotate, translate, scale
- Element Extractor
- 2D Buffer
- GML3 Geometry Support
 - From GML3 Geometry: GML3g.java
 - To GML3 Geometry: GML3.java
 - These classes will be part of sdoutl.jar
 - PL/SQL interfaces to support GML3 conversion
J3D_Geometry: Java API

- Extends JGeometry class
- Supported Methods:
 - `Validate(tolerance)`: Returns true or false
 - `Distance(J3D_geometry)`: Returns distance
 - `Anyinteract(J3D_Geometry)`: Returns true or false
 - `Length()`: returns length for 3D line
 - `Area()`: returns area for a surface geometry
 - `Volume()`: returns volume of a solid geometry
- `Iterator` class to access elements of a J3D_Geometry
 - Optional “extract_level”
 - `nextElement()`: returns the next element of the input J3D_Geometry (as a J3D_Geometry) or null at the end
GeoRaster
System Manageability Enhancements

• Automated creation and enhanced monitoring and management of GeoRaster DML triggers to improve usability and ensure data integrity
• Enhanced internal database mechanism to monitor DDL events and activities on GeoRaster sysdata table to improve manageability, data safety, reliability, robustness, and usability
• New SDO_GEOR_ADMIN package providing tools to automate and ease GeoRaster database upgrade and migration
• Supports Oracle Workspace Manager for raster versioning and Label Security for row-level data security
New Metadata and Raster Support

- Supports a generic functional fitting georeferencing model
 - georeference un-rectified or raw airborne photos and satellite images
 - supports up to a power of 5 and 3-D model coordinates
 - It includes special models such as DLT and RPC
- Supports bitmap masks for any GeoRaster objects and their individual bands/layers
 - masks are stored inside the GeoRaster objects
 - Pyramids can be generated for masks as well.
Bitmap Mask Example
New Metadata and Raster Support

- Supports multiple NODATA Values and multiple NODATA Value Ranges for any GeoRaster objects and their individual bands/layers
- Supports empty raster blocks
 - support for special sparse data type
 - saves storage space of large mosaic (virtually no disk space is needed for these blocks)
 - improved raster processing performance
 - Pyramids can contain empty raster blocks
New Functions

- Union/merging of multiple GeoRaster objects or multiple layers
- Partial update/edit of raster data inside a GeoRaster object
- GeoRaster template functions to ease third-party software integration so that the developers don’t need to directly deal with database BLOB and XMLType
- Statistic analysis and histogram generation
- PL/SQL API enhanced to support the new georeferencing models, bitmap masks, NODATA types and empty raster blocks
New Functions

• Supports sub-cell or sub-pixel addressing (floating row and column numbers) in the GeoRaster cell space
 • It was only internally supported in 10g
• Supports random raster blocking sizes
 • which don’t have to be a power of 2 anymore
 • It’s more flexible and helps save storage space.
• Enhanced mosaic
 • Allows gaps, overlaps and missing raster tiles.
 • Gaps and missing tiles are stored as empty raster blocks (no disk space needed) as appropriate.
Sample Mosaic With Empty Raster Blocks

Object Size = 2.15 GB
Space Used = 0.34 GB
Space Saved = 1.81 GB
Storage Ratio = 16.14%
New Functions - Tools

• Loading and exporting more formats
 • GeoTIFF file format. Supports its geometadata, including EPSG coordinate systems
 • JPEG 2000 file format (limited. command-line only)
 • Digital Globe RPC text file format

• GeoRaster Viewer is enhanced to display
 • Masks and related operations
 • Coordinates from new georeferencing models.
 • Empty raster blocks, etc
Two approaches to Network Analysis

- Load-On-Demand Analysis
 - Handle network analysis on very large networks
- In-Memory Analysis
 - New modeling and analysis features for in-memory approach
NDM: Load On Demand Analysis

- Provide a scalable solution to network analysis
 - Handle large partitioned networks
- Provide a flexible solution to network modeling and analysis
 - Support network constraints
 - Support user defined data
 - Support dynamic changes
- Use the same NDM data models in database
 - Same NDM network data model
 - Partitioning data (partition table + partition blobs)
- LOD APIs are different from NDM in-memory APIs
 - LOD does not pre-load the whole network
 - It only loads the parts that are needed during analysis
NDM LOD Architecture

- Dynamic Data Set (per request or for all requests)
 - LOD Analysis Modules
 - Partition Cache
 - Partition Adapter
- NDM LOD Clients
 - LOD Client
 - LOD Client
 - LOD Client
- Java
 - XML
- Network Data Model
 - Partition Tables

NDM LOD Clients
NDM LOD Analysis Engine
NDM Network Data Models
LOD Partition Data

ORACLE
NDM LOD Network Partitions

- Network partitions are the basic units in NDM LOD
- NDM provides a spatial partitioning utility to help partition spatial networks
- The partition result is stored in the specified partition table
 - To further speed up network partition loading, NDM converts relational partitions into partition blobs and store them in the partition blob table
- Partition size is defined by users (max. no of nodes)
- Support partition by link_level (link priorities)
- User can partition their own networks (NODE_ID, PARTITION_ID)

Partition Table
Network Tables ➔ Partition Table ➔ Generate Blobs ➔ Partition Blob Table
NDM LOD Dynamic Data Set

- Network Partitions contain mainly static network data
- What if we would like to change some network element attributes such as state or cost? (roads under construction or traffic delays)
 - Need to take dynamic changes of the underlying network into account
- These changes might be only valid for a single query
 - What-if scenarios
 - Using a dynamic data set adding/removing/overwriting these elements in network partitions
 - The size of the dynamic data set is usually small
 - The set can be pre-fetched before analysis if needed
NDM LOD Analysis Engine

• LOD Analysis Java API supports the following
 • Shortest Path
 • Nearest (Reaching) Neighbors
 • Within (Reaching) Cost
 • Reachable and Reaching Nodes
 • Hierarchical shortest path

• Analysis is based on connection information only
 • Spatial information can be stored as a user defined data

• Network Constraints are supported in the above analysis functions
• Users implement user constraints on top of analysis information passed to them
New Features for In-Memory Approach

• User defined data
• Duration modeling (on nodes and links, duration column)
 • Duration as an accumulated attribute (like cost)
• Sub-network support using SQL-like filters
 • Speed up network loading and analysis
• Path arithmetic support
 • Path addition, subtraction, intersection, and comparison based on connectivity
• New analysis functions
 • Partial link support on paths (sub-path), trace-out
• Workspace manager support
 • Transform networks between different work spaces
Routing Engine

- Driving directions in different languages
 - German, French, Spanish, Italian
- Generation of turn-specific geometries is supported
 - Helps in adding turn specific YP data to the LBS application
- Route as a set of Edges
 - The computed route can be returned as a set of edges which can be used in further analysis
- Works with TeleAtlas and NAVTEQ data sets
Workspace Manager
Valid Time Enhancements

• Provide Valid Time (VT) wm_period datatype optionally as two scalar types

```
EXECUTE DBMS_WM.SetSystemParameter
('USE_SCALAR_TYPES_FOR_VALIDTIME', 'ON');
```

• Allow initial VT ValidFrom and ValidTill dates to be specified when a table is version-enabled

```
EXECUTE DBMS_WM.EnableVersioning ('employee', 'NONE', FALSE, TRUE, 'UNLIMITED', WMSYS.WM_PERIOD(TO_DATE ('01-01-2006', 'MM-DD-YYYY'), DBMS_WM.UNTIL_CHANGED));
```

• Allow editing of the VT time range for a feature in a parent table of a Referential Integrity Constraint
History Enhancements

• Provide a unique key for every VT & history row

 EXECUTE DBMS_WM.SetSystemParameter
 ('ADD_UNIQUE_COLUMN_TO_HISTORY_VIEW', 'ON');

• Track which workspace creates/retires a history row

 EXECUTE DBMS_WM.SetSystemParameter
 ('KEEP_REMOVED_WORKSPACES_INFO', 'ON');

• New views ALL_REMOVED_WORKSPACES and USER_REMOVED_WORKSPACES
Other Workspace Enhancements

- Oracle Spatial Georaster long transaction editing support
- Merge version-enabled tables involved in a Referential Integrity Constraint together as a set

```sql
EXECUTE DBMS_WM.MergeTable ('NEWWORKSPACE', 'user3.table1, user3. table2', 'last_name = "Smith"');
```

- Workspace ID Column Added to Views
Performance Enhancements

- Row level locking for Merge operations to improve concurrency (shared lock on parent workspace)

  ```sql
  EXECUTE DBMS_WM.SetSystemParameter ('ROW_LEVEL_LOCKING', 'ON');
  ```

- Optionally compresses the parent workspace savepoints for RemoveWorkspace

  ```sql
  EXECUTE DBMS_WM.SetSystemParameter ('COMPRESS_PARENT_AFTER_REMOVE', 'ON');
  ```

- Constrain memory used for Merge operations

  ```sql
  EXECUTE DBMS_WM.SetSystemParameter ('TARGET_PGA_MEMORY', '8388608');
  ```
Performance Enhancements

User-specified hints for workspace operations

AddUserDefinedHint

This example specifies a full table scan on the TABLE1 table and any associated Workspace Manager infrastructure tables when a SQL statement specifies hint ID 1101 with the SCOTT.TABLE1 table.

EXECUTE DBMS_WM.AddUserDefinedHint (1101, 'scott.table1', 'full (t1)');

RemoveUserDefinedHint

This example removes, for the SCOTT.TABLE1 table, the user-defined hint from SQL statements associated with the hint with the hint ID 1101, and causes the default hint to be used.

EXECUTE DBMS_WM.RemoveUserDefinedHint (1101, 'scott.table1');
Security & Database Support

- Version-enable a table on which an Oracle Label Security policy is defined
- Allow online Alter Table physical space mgt.
- Support the [NOT] NULL constraint option
- ALTERVERSIONETABLE alter_option supports rebuilding an index

EXECUTE DBMS_WM.ALTERVERSIONEDTABLE ('scott.my_table', 'REBUILD_INDEX', 'index_owner=scott, index_name=my_index, noreverse');