May 21, 2014
Walter E. Washington Convention Center
Washington, DC USA
Innovation in Spatial Data Processing

Hans Viehmann
Product Manager EMEA
The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Program Agenda

- Introduction
- Spatial Business Processes
- Topology Data Model
- LiDAR Data Management
- 3D Modeling
Introduction
Spatial Data Integration

Requirements

- Sharing of spatial data across the enterprise
- Increased automation
- Leveraging investment in SOA technologies
 - Reuse of existing components
 - Compliance with IT standards
- Using open standards to protect investment
Integration Architecture

User Engagement
- Business Process Management
- Content Management
- Business Intelligence

Identity Management
- Service Integration
- Data Integration

Development Tools
- Cloud Application Foundation & Database
- Enterprise Management

Web
Social
Mobile
Integration Architecture

- Oracle SOA Suite
- BPEL Process Manager
- GML support
- OGC Web services

Tools

Service Integration

Cloud Application Foundation & Database

Identity Management

Content Management

Data Integration

Business Intelligence

Business Process Management

User Engagement

Social

Mobile
Using SOA for geospatial data

Benefits

- Enabling loose coupling
 - Simplified maintenance, easier upgrade, ...
- Availability of geospatial data in canonical objects
 - Shared across many systems
- Higher level of productivity
 - Reuse of objects, services and (sub-)processes
 - Graphical modeling on open interfaces
- End-to-end visibility into transactions and workflows
- Simplified operations
 - Integrated architecture, including policy-based security
Ordnance Survey (GB) – GDMS
Logical Architecture

Overview OS production architecture

Monitoring and Reporting

Change Intelligence and Planning Management
- Mgt Clients
- Application
- CI and Planning DB

Data Update Management
- Update Clients
- Application
- Maintenance Database

Product Management
- Product Updates
- Application
- Product Databases

Change Intelligence

Job Information

Product Supply
Workspace Manager

Support for long transactions

- Enables Web and application-based collaboration on database-backed projects
- Provides shareable workspaces within the database to version data
- Individual transactions are durable, but only visible inside workspace
- Example application: managing parcels in a housing development project
Ordnance Survey (GB) - GDMS

OVERVIEW
- Centrally managed, authoritative database
- Incorporates 5 corporate national datasets
- Supports national data capture and maintenance
- Contains in excess of 500 million features

CHALLENGES / OPPORTUNITIES
- Need to integrate disparate data sets
- Need to extract 32 million features and submit 313,000 changed features per day
- Need to support multiple users in the same geographic area
- Automated data validation to achieve product ready database

ORACLE SOLUTIONS
- Oracle Spatial Database, Partitioning, RAC, Dataguard
- Oracle Workspace Manager
- Oracle Application Server & Weblogic
- Oracle BPEL & Worklist Application
- Oracle Enterprise Service Bus
- Oracle Identity Management

RESULTS
- Consolidation of raster, vector, network data in 5.3TB sized central repository
- Single source database for product derivation
- Seamless working – removal of tile based restrictions
- Resilient production environment achieving 99.5% availability
Program Agenda

- Introduction
- Spatial Business Processes
- Topology Data Model
- LiDAR Data Management
- 3D Modeling
Topology Data Model

Why use explicit topology?

- Spatial analysis determines relationships between objects
 - Containment, intersection, contact, ...
- This process is expensive:
 - Requires complex geometry calculations
 - Issues with precision, tolerance, ...
- Another approach is to persistently store those relationships
 - Searches can then use those relationships using classical relational queries
- Relationships are based on common reference set
 - Topology primitives: nodes, edges, faces
Topology Data Model

Explicit storage of topological relationship

Geometry Storage

Topology Storage

15 | Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Topography Data Model

Benefits of explicit topology

- No redundant storage of data
 - Shared edges between objects stored only once
 - Features from different tables can share edges, such as roads and land parcels, so hierarchies of features are also supported

- Data consistency
 - No “registration” issues between geometries
 - Moving a boundary between objects is done once

- Topological relationships are quickly and easily determined
Province of Bolzano, Italy

newGIS

- Objectives
 - Create an open, integrated infrastructure for various applications
 - Based on GML and OGC Web Services
 - Combine spatial data with various attribute data sets
 - Separate application from data management
 - Hosted as a service
 - Support various GIS and CAD clients (commercial and open source)
 - Maintain high-quality data, consistent at any time
 - Enforce data quality on the server side using rules and topology
Province of Bolzano, Italy

newGIS

Challenges: Topology

Rules
- within one layer,
- within one topological structure,
- within different topological structures.

- exactly or depending on tolerances?
- warranted by data model or by fat client?
Program Agenda

- Introduction
- Spatial Business Processes
- Topology Data Model
- LiDAR Data Management
- 3D Modeling
LiDAR Data Management

Why use LiDAR

- Fast and efficient way to accurately determine 3D structures using Laser scanning techniques
 - Static terrestrial
 - Mobile terrestrial
 - Aerial
- Sampling rate up to 1,000,000 laser pulses/sec
 - Measuring either multi-returns or full waveform
- Frequently combined with other sensors
 - eg. red, green, blue for colouring
3D data modeling based on LiDAR

Data Processing Workflow

- Raw data collection
 - Massive amounts of data
 - \((x,y,z)\) plus various attributes, up to sampling of full waveform
- Data storage, pre-processing
- Analysis
 - Data extraction, filtering, projection
 - Object recognition
 - Derivation of secondary products (DEM, ...)
- Data dissemination
Why use a database here?

Requires a spatially enabled database

- Data integration with other sources
 - Online availability
 - Geo-referenced imagery, existing 3D structures, attributes,...
- Fast access to arbitrary part of data set
 - For processing or visualization
- General benefits of mature DBMS
 - Information lifecycle management – data administration, tuning
 - Scaleability – multi-processor support, clustering, ...
 - Executing data-intense logic where the data resides
Storing point cloud in SDO_PC datatype

Logical structures
- Contains point cloud metadata and footprint
- Also contains pointers to one or more block tables

Physical structures
- Point cloud block tables
- Contain the points
- Can be very large
- Could be partitioned
- Add new tables as necessary

<table>
<thead>
<tr>
<th>pc 1</th>
<th>pc 1 blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc 2</td>
<td>pc 2 blocks</td>
</tr>
<tr>
<td>pc 3</td>
<td>pc 3 blocks</td>
</tr>
<tr>
<td>pc 4</td>
<td>pc 4 blocks</td>
</tr>
<tr>
<td>pc 5</td>
<td>pc 5 blocks</td>
</tr>
<tr>
<td>pc 6</td>
<td>pc 6 blocks</td>
</tr>
</tbody>
</table>
Possible LiDAR data processing flows

- LiDAR Files
 - LiDAR loader
 - SDO_PC tables or flat table
 - Load point cloud
 - Flat files
 - Point Tables
 - Query and Clip
 - Convert to Geometries
 - Generate TIN
 - Generate DEM
 - TIN tables
 - Query and Clip
 - Calculate Contour Lines
 - Convert to Geometries
 - Georaster
LiDAR Data Processing in Oracle 12c

Benefits

- Ability to rapidly ingest and manage vast amounts of data
- Fast data extraction, based on location or attributes
 - For visualization
 - For further processing
- Executing data logic where the data resides
 - Derivation of secondary products (TINs, DEMs, geometries)
 - Pyramiding
 - Contour generation
 - Object recognition
Program Agenda

- Introduction
- Spatial Business Processes
- Topology Data Model
- LiDAR Data Management
- 3D Modeling
3D Modeling

City Modeling – a few use cases …

- Urban Planning
 - Solar potential
 - Wind Energy
 - Noise Emission

- Public Safety
 - Disaster Management

- Engineering & Construction
 - BIM
 - Asset Management
Support for 3D objects

- Simple Surfaces
 - Face = 3D Polygon
- Composite Surface
 - Multiple connected faces
- Simple Solid
 - Closed composite surface
- Composite Solid
 - Multiple connected simple solids

- Extrusion
 - Generating solids from 2D polygons
Data models for City Modeling

3DCityDB (open source) is widely used

- Semantically structured model
- Structures at multiple levels of detail
- Textures and facades
- Orthophotos
- Versioning

Source: Research Center Karlsruhe

3DCityDB is widely used.
City of Berlin – 3D City Model
Implemented by TU Berlin

- 550,000 buildings, reconstructed from 2D cadastre and LIDAR data
- Textures extracted from oblique aerial photography
- Stored in 3DCityDB
- 2012 Oracle Spatial Excellence Award

Images courtesy of: TU Berlin, Institute for Geodesy and Geoinformation
Publish KML in the XDB Repository

declare
 result boolean;
 kmlDoc xmltype;
begin
 SELECT
 xmlElement("kml",
 xmlAttributes(’http://www.opengis.net/kml/2.2’ as "xmlns"),
 xmlElement("Document",
 xmlElement("Style",
 xmlAttributes(’BuildingStyle’ as "id"),
 xmlElement("LineStyle", xmlElement("width",’1’),xmlElement("color",’ff0000ff’)),
 xmlElement("PolyStyle", xmlElement("color",’7d0000ff’))
),
 xmlElement("Placemark",
 xmlElement("name",’Building ‘|| omlid),
 xmlElement("styleUrl",’#BuildingStyle’)
)
)
 FROM buildings_ext;
 result := dbms_xdb.createResource(’/public/Buildings/buildings_ext.kml’, kmlDoc);
end;
Innovation in Spatial Data Processing

More reference projects today ...

- Spatial Business Processes
 - Ordnance Survey Ireland
 - Track B, 3.30pm, presented by Chris Tagg, 1Spatial

- Explicit Topology Management
 - US Census Bureau
 - Track B, 3.30pm, presented by Jay Spurlin

- LiDAR Data Management
 - Austrian Federal Railways
 - Track A, 3.30pm, presented by Dr. Rinaldo Wurglitsch, IQsoft
Resources

Oracle Technology Network

- www.oracle.com/technetwork/database/options/spatialandgraph
- www.oracle.com/technetwork/middleware/mapviewer
- blogs.oracle.com ➔ oraclespatial ➔ oracle_maps_blog
Oracle Spatial & Graph Special Interest Group

Connect and exchange knowledge with the community of Spatial & Graph users

- **Talk with the Board this week**
 - Wednesday lunch – SIG Board presentation (150AB)
 - Stop by the SIG User Group roundtable at Meet the Experts, 4:30pm Wednesday in150AB
 - Visit Oracle’s exhibitor table at breaks & sign up

- **Join us**
 - Online communities: LinkedIn, Google+, IOUG SIG (free membership)
 - Visit OTN Spatial Community page
 - (or search online for “Oracle Spatial and Graph Community”)
 - Email oraclespatialsig@gmail.com
Spatial Certification & Partner Specialization

Get valuable credentials – differentiate your skills

▪ Learn more at the Summit
 – Wed, Track C 3:30 – Exam preparation session
 – Talk to us at Oracle’s exhibitor table & “Meet the Experts” Certification table (Wed 4:30-5:00)

▪ Take the next steps
 – Schedule an exam, access topic lists / online training, learn about Partner Specialization requirements
 – Online training materials for Certified Implementation Specialist exam
 https://competencycenter.oracle.com/opncc/full_glp.cc?group_id=22003
More Resources

[Images of books: Pro Oracle Spatial for Oracle Database 11g and Applying and Extending Oracle Spatial]

[QR Codes for more resources]

[Oracle Spatial Summit 2014 logo]
▪ Next: Lunch – Awards & SIG Presentation in Room 150AB (11:45am-1:15pm)
- **4:30-5:00pm: Meet the Experts – roundtable Q&A on topics in Room 150AB**
 - Spatial Performance
 - Upgrading/Testing Apps for Spatial 12c
 - Raster & 3D
 - MapViewer/BI
 - Certification
 - SIG User Group
- **Closing Reception (5:00) – Exhibit Hall**