Oracle10g & Beyond

Justin Lokitz Senior Member - Technical Staff GIS/Web Development Specialist

What is spatial data?

- Spatial data is ubiquitous
- Business data that contains or describes location
 - Street and postal address (customers, stores, factory, etc.)
 - Sales data (sales territory, customer registration, etc.)
 - Assets (cell tower, fire hydrant, electrical transformer, etc.)
 - Geographic features (roads, rivers, parks, etc.)
- Anything connected to a physical location
- Every database in the world contains some form of business data that can be leveraged using spatial technologies

What Business Problems Are Solved using spatial software?

 Problems relating to customers, market and site location can all be solved by leveraging spatial technologies

Mhara are my quetomore or constituente?

How much is this insurance really going to cost me?!

- What are the environmental, economic and health effects of logging, building, drilling in a certain area?
- What percentage of customers account for store sales and where are they located?
- What are the demographics in my most successful sales territories?
- Can I consolidate sites without hurting customer service?

Bringing it all together

Information Type

Location-enabled Use

Address

 Map Customers and Business Relationships

 Routes, Utility, infrastructure, etc.

 Develop Routes / Trace & Manage Field Assets and Parcels

 Administrative areas (zip, tax, county, area code, real estate, sales territories etc.)

 Summarize, Compare, Drill Down Analytics, Track Assets etc.

Location in the Oracle Database

Relational and GIS Data in a Hybrid setup NO Data Integration

"Give me all you know about roads in San Francisco..."

ROAD_ID NAME SURFACE LANES 1 Homestead Asphalt 4 2 Bellomy Asphalt 2 3 Santa Clara Asphalt 2

Spatial Data in Oracle Tables

Data Types and Models:

Vector SDO_GEOMETRY
SDO_TOPO_GEOMETRY

Raster SDO_GEORASTER

Road

ROAD_ID	NAME	SURFACE	LANES	LOCATION
1	Homestead	Asphalt	4	
2	Bellomy	Asphalt	2	
3	Santa Clara	Asphalt	2	

Oracle10^g Core Spatial Capabilities

Spatial Access Through SQL

Spatial Query Via SQL

Find all buildings within 500 meters of building 902

Oracle: Defining the Spatial DBMS

- SQL Spatial Type
- R-tree index
- Spatial Operators
- Spatial Reference System
- Geodetic (lat/long) Support
- Whole Earth Model
- Linear Referencing
- Spatial Aggregates
- Long Transactions
- Parallel Index, Query, Load
- Partitioning

- GeoRaster Type
- Network Data Model
- Topology Data Model
- Geocoding Engine
- Routing Engine
- Spatial Data Analysis / Mining
- GML 2.0 and 3.0
- SVG Support
- Oriented Point / Text Geometry

Oracle10*g* Database Spatial Features

SDO_GEOMETRY **Vector Data Types**

- **Points**
- **Line Strings**
- **Polygons**
- **Polygons with holes**
- **Circles**
- Arcs, arc strings
- Rectangles
- **Compound elements**

Geographic Data

Non-Geographic Data

Geocoder & Routing

- Geocoding Engine within the Oracle database
 - Generates

 latitude/longitude (points)
 from address
 - Supports international addressing standardization
 - Data dictionary completely extensible
- Router Data within the Oracle Database
 - Standard directions output as XML
- Base dictionary data available from Navteq & TeleAtlas

Northport 680 Fort Salonga Rd Huntington, NY 11768

Network Data Model

Network Data Model

- A data model to store network (graph) structure in the database
- Explicitly stores and maintains connectivity of the network
- Attributes at link and node level

Routing Engine

- Street navigation for single or multiple destinations
- Provide network analysis functionality in the database

Supports Network solutions (Tracing & Routing)

- Transportation and Transit Solutions
- Field Service, Logistics
- Location based Services, Telematics
- Bio-Info Pathways (Life Sciences)
 - Hierarchical Networks
 - Scale-free Networks
 - Small Worlds

What is a network?

Spatial Analysis Versus Network Analysis

Spatial analysis:

- Accomplished with traditional Oracle Spatial
- Connectivity not required for proximity and distance
- Maintains topological relationships

Network analysis:

- Connectivity:
 - Solely based on cost and direction of links (graph analysis)
 - Uses link/node cost and link direction

Spatial proximity Connectivity

Distance

Closest feature

Oracle Network Data Model

- Analysis is based on connectivity and optionally cost information
- Common analysis includes:
 - Accessibility (start at node X, can node Y be accessed)
 - Least cost path analysis (cheapest path from X to Y)
 - Within cost analysis (given a cost limit and a start node, what nodes can be reached)
 - Minimum cost spanning tree (the least expensive way to connect all nodes in a network)
 - Traveling Salesman Problem
 - All paths between nodes
- Many other analysis functions
- Result of analysis is often a path
 - A path has start and end nodes, and one or more links

Benefits of Oracle's NDM

- Provides an open and generic network data model for network applications
 - Network data model information is stored in tables in the database
 - SQL queries can be issued
- Allows the extension of data model and analysis capabilities
- Enables spatial information support
 - Spatial information can be associated with the network using the Oracle Spatial format

Network Data Model Editor

Topology Data Model

- New data model to store persistent topology
 - Easier to do data consistency checks in this model
 - Example: when the road moves, the property boundary automatically moves with it
- Topology Data Model and Schema
 - Describes how different spatial features are related to each other
 - A land parcel shares the boundary with a road
- 10g continues to support transient topology
 - Topology computed on demand
 - Customers have choice of 2 topology management capabilities

Oracle Spatial Vector Data Models

- Each of these represents a spatial feature.
- Oracle Spatial can store features in two ways:
 - Object storage: Each feature is stored as a separate, complete object.
 - Topology storage: Each feature is modeled in terms of the topological primitives it is composed of.

Oracle Spatial Vector Data Models

Topology Example

- Land parcel features
 - Land Parcel 1 associated with face F1
 - Land Parcel 2 associated with face F2
 - Both faces include edge E3.
- Road features
 - Road 1 associated with edge E3 (and edges E1 and E5)

Hierarchical Feature Model: Example

- Parcels features derived from topological primitives (faces)
 - Oracle table called PARCELS with SDO_TOPO_GEOMETRY column
 - Each parcel feature is derived from topological primitives (faces)
- Neighborhoods features derived from parcels features
 - Oracle table called NEIGHBORHOODS with SDO_TOPO_GEOMETRY column
 - Each neighborhood is derived from a list of parcel features
- School District features derived from neighborhood features
 - Oracle table called school_districts with sdo_topo_geometry column
 - Each school district feature is derived from a list of neighborhood features

Advantages of Using Topology

- Some of the advantages of using topology to store and manage data include the following:
 - No redundant storage of data
 - Shared edges between objects are stored only once.
 - Features from different columns can share edges, such as roads and land parcels.
 - Persistent Data consistency
 - There are no "registration" issues between geometries.
 - Moving a boundary between objects is done once.
 - Quick and easy determination of topological relationships

SDO_GEORASTER GeoRaster Data Support

 Some of the types of data supported by GeoRaster, classified by Data source:

Satellite imagery

- Airborne photographs
- Thematic grid maps
- Digital terrain/elevation models
- Lattice GIS data
- Scanned maps and graphs
- Raster data associated with geology, geophysics, and geochemistry
- Medical images
- Others

What is GeoRaster?

A new data type to store raster data

- Satellite images, remote sensing data, grids
 - Multi-band, multi-layer
- An XML schema to store Metadata
 - Data source, layer information
- Geo Referencing information
 - Relates image pixels to a longitude/latitude on Earth's surface

Operations on the new data type

- Storage and indexing of raster data
 - Logical / physical storage separation
 - No size limit for raster objects
- Generate resolution pyramid
- Query and analysis
- Importing and exporting

Geological Map of India

Blocking

- A GeoRaster image can be composed of an extremely large number of cells
- It is more efficient in terms of storage and retrieval to break large images into smaller blocks
- In GeoRaster, users/applications can determine how data is blocked
 - Specify rows, columns, and optionally bands

Resolution Pyramid

GeoRaster Functions

- Insert, update, index, and retrieve raster data and metadata
- Raster Manipulation:
 - Generate pyramids
 - Copy
 - Change format: Interleaving, blocking
 - Subset: Clip GeoRaster data by band or layer
 - Scaling: Enlarge or reduce
 - Generate the spatial extent of an image
 - Tile adjacent images to build a mosaic of the data
- Georectified and georeferenced GeoRaster data is supported

GeoRaster Functions

- Oracle relies on partners to import/export data many data formats to/from the SDO_GEORASTER data type
- Oracle's minimum support for loaders and exporters include:
 - TIFF/GeoTIFF
 - ESRI World File
 - JPEG
 - GIF
 - BMP
 - PNG
- MapViewer provides simple support for visualization of GeoRaster data

Advantages of using GeoRaster

- Database management of raster data
 - No size limit for raster objects
 - Very efficient reading and writing of large raster data sets
- Generate resolution pyramids, blocking and formats on the fly
- Query and analysis using standard methods (SQL, APIs, tools)
- Importing and exporting to different formats

Raster Viewer

Spatial Analytic Functions

Discovery based on Spatial Patterns

Explicitly materialize spatial relationships

Usage

- Insurance risk analysis, crime analysis
- Demographic analysis, customer profiling
- Epidemiology, Facility placement
- Insurance Risk analysis:
 - cluster house-holds based on high risk neighborhoods
- Indentify business prospects across a region:
 - examine the average incomes across different regions of the space

What is spatial analysis?

Correlate data based on location (spatial correlation).

- Neighborhood analysis
 - Determine specific information about an area of interest
 - Proportion of theme layer geometries overlapping geometry of interest is applied to aggregate analysis
- Spatial binning
 - Classify data based on location
- Spatial clustering
 - Determine patterns based on location
- Co-location analysis
 - Determine how the location of one thing correlates to the location of something else

Customers Reaping Immediate Benefits Across the Board

- US Census Bureau Redesigning Tiger/MAF
 - Utilizing Topology Model in Oracle10g Spatial
 - Reshaping business processes and validations for future topology models
- Cerebra utilizes Network Analysis in Resource Description Framework (RDF)
 - Dramatically improving the way vocabulary, data, process, policy, and Web services interoperability are accomplished.
- US EPA Utilizes Analytics and Georaster
 - New processes for analysts to evaluate contaminations and come up with solutions based on dynamic data (imagery and vectors)

Long term Benefits

- Integrated enterprise data management for continually growing datasets
 - Spatial and non-spatial in nature
- Consolidated management of spatial operations
- Greater security and interoperability
- Enhanced decision support and business intelligence
- Service Oriented Architecture based on integrated data model
- Reduced training requirements
- Spatially enabled applications

Oracle Application Server 10g MapViewer and LBS Features

Oracle Application Server 10^g MapViewer

- No cost feature of the Oracle Application Server
- Supports vector and raster data
- Easily publishes spatial data to the web
- Centralized managed symbology, annotation

and map definition rules

 Provides an XML API, Java API, JSP Tag library and OGC WMS interface

MapViewer Characteristics

- Scalable. Stateless.
- Makes use of JDBC connection pooling and caching
- Caches Mapping
 Metadata
 (basemap/theme/style definitions)
- Caches geometric and image data in the mid-tier.
- All data queried from Oracle database

MapViewer: Map

Title

Earthquakes

- Renders from spatial data stored in Oracle database
- Defined as a collection of themes
- May contain a legend, title and footnote
- Users request maps using via a MapRequest Themes
- MapViewer returns a map via a MapResponse Legend

MapViewer: Layer Vectors and Rasters

- Render data from vectors and rasters on the fly
- Use SVGs to dynamically render movement etc.

OracleAS 10g Location Based Services

- Java APIs ingest online web services: geocoding, routing, mapping, YP, traffic, mobile positioning
- Region Modeling associates services (billing, personalization) by (geographic) "regions"
- Location Caching caches caller's phone number & location to minimize wireless network pinging.
- Location Privacy manages based on LBS service type, permissions, and subscription.
- Location Marks Manages user defined locations of interest (home, work, PIM addresses)

What's Next?

Feature overview

- Feature enhancements
 - GeoRaster enhancements
 - Network Data Model enhancements
 - Topology model enhancements
 - Geocoder and Router enhancements
- 3D Support
 - Types and functions
- Spatial in Business Intelligence
- MapViewer updates

Summary

- Location information is as ubiquitous as attribute and scalar information
 - Oracle Locator, Spatial and MapViewer locationenable the entire enterprise
 - New models to support changing needs and analysis
- Most comprehensive integration with partner tools in GIS and LBS
- And it just keeps going...

More Information & Resources

- Oracle Technology Network
 - http://www.oracle.com/technology /products/spatial/index.html
- Oracle.com
 - http://www.oracle.com/database/ cm_spatial_new.html
- *New Book: Pro Oracle Spatial

#