Developing GeoSPARQL Applications with Oracle Spatial and Graph

Matthew Perry
Ana Estrada
Souri Das
Jay Banerjee

First Joint International Workshop on Semantic Sensor Networks and Terra Cognita
SSN-TC 2015
October 11, 2015

ORACLE
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Agenda

1. GeoSPARQL Overview
2. Implementation in Oracle
3. Demonstration with Oracle 12c
Agenda

1. GeoSPARQL Overview
2. Implementation in Oracle
3. Demonstration with Oracle 12c
OGC GeoSPARQL

- GeoSPARQL – A Geographic Query Language for RDF Data
 - OGC Standard (document 11-052r4)
 - Published in June 2012
 - Submitting Organizations
SPARQL Query

RDF Data

:res1 rdf:type :House .
:res1 :baths "2.5"^^xsd:decimal .
:res1 :bedrooms "3"^^xsd:decimal .

:res2 rdf:type :Condo .
:res2 :baths "2"^^xsd:decimal .
:res2 :bedrooms "2"^^xsd:decimal .

:res3 rdf:type :House
:res3 :baths "1.5"^^xsd:decimal .

SPARQL Query

SELECT ?r ?ba ?br
 ?r :bedrooms ?br }
SPARQL Query

RDF Data

:res1 rdf:type :House .
:res1 :baths "2.5"^^xsd:decimal .
:res1 :bedrooms "3"^^xsd:decimal .

:res2 rdf:type :Condo .
:res2 :baths "2"^^xsd:decimal .
:res2 :bedrooms "2"^^xsd:decimal .

:res3 rdf:type :House
:res3 :baths "1.5"^^xsd:decimal .

SPARQL Query

SELECT ?r ?ba ?br
 ?r :bedrooms ?br
 FILTER (?ba > 2) }

Result Bindings

<table>
<thead>
<tr>
<th>?r</th>
<th>?ba</th>
<th>?br</th>
</tr>
</thead>
<tbody>
<tr>
<td>res1</td>
<td>"2.5"</td>
<td>"3"</td>
</tr>
</tbody>
</table>
Spatial SPARQL QUERY

Spatial RDF Data

This is what GeoSPARQL standardizes

Vocabulary & Datatypes

Extension Functions

Find houses within a search polygon

GeoSPARQL Query

```
SELECT ?r ?ba ?br 
  ?r ogc:hasGeometry ?g . ?g ogc:asWKT ?wkt
  FILTER(ogcf:sfWithin(?wkt, "POLYGON(...)"^^ogc:wktLiteral)) }
```
Details of ogc:WKTLiteral

All RDFS Literals of type ogc:wktLiteral shall consist of an optional IRI identifying the spatial reference system followed by Simple Features Well Known Text (WKT) describing a geometric value [ISO 19125-1].

"<http://www.opengis.net/def/crs/OGC/1.3/CRS84>
POINT(-122.4192 37.7793)"^^ogc:wktLiteral

WGS84 longitude – latitude is the default CRS

"POINT(-122.4192 37.7793)"^^ogc:wktLiteral

European Petroleum Survey Group (EPSG) maintains a set of CRS identifiers.
GeoSPARQL Spatial Function Library

- **Topological Relations**
 - ogcf:relate, ogcf:sfContains, ogcf:sfCrosses, ogcf:sfDisjoint,
 ogcf:sfEquals, ogcf:sfIntersects, ogcf:sfOverlaps, ogcf:sfTouches,
 ogcf:sfWithin

- **Distance-based Operations**
 - ogcf:distance, ogcf:buffer

- **Geometry Operations**
 - ogcf:boundary, ogcf:convexHull, ogcf:envelope, ogcf:getSRID,

- **Geometry-Geometry Operations**
 - ogcf:difference, ogcf:intersection, ogcf:symDifference, ogcf:union
Implementations

Raytheon
Parliament™

strabon.di.uoa.gr

12c

Oracle Database

Open Sahara | uSeekM
Agenda

1. GeoSPARQL Overview
2. Implementation in Oracle
3. Demonstration with Oracle 12c
GeoSPARQL Support in Oracle

- Oracle Spatial and Graph supports the following conformance classes for GeoSPARQL
 - Core
 - Topology Vocabulary Extension (Simple Features)
 - Geometry Extension (WKT, 1.2.0)
 - Geometry Topology Extension (Simple Features, WKT, 1.2.0)
 - RDFS Entailment Extension (Simple Features, WKT, 1.2.0)
OGC wktLiteral Datatype

- Optional leading Spatial Reference System URI followed by OGC WKT geometry string.
 <http://xmlns.oracle.com/rdf/geo/srid/{srid}>
- WGS 84 Longitude, Latitude is the default SRS (assumed if SRS URI is absent)

SRS: WGS84 Longitude, Latitude
"POINT(-122.4192 37.7793)"^^ogc:wktLiteral

SRS: NAD27 Longitude, Latitude
"<http://xmlns.oracle.com/rdf/geo/srid/8260>
 POINT(-122.4181 37.7793)"^^ogc:wktLiteral
What Types of Spatial Data are Supported?

- Spatial Reference Systems
 - Built-in support for 1000’s of SRS
 - Plus you can define your own
 - Coordinate system transformations applied transparently during indexing and query

- Geometry Types
 - Support OGC Simple Features geometry types
 - Point, Line, Polygon
 - Multi-Point, Multi-Line, Multi-Polygon
 - Geometry Collection
 - Up to 500,000 vertices per Geometry
Spatial Function Library

Standard OGC functions

• Topological Relations
 - ogcf:relate, ogcf:sfContains, ogcf:sfCrosses, ogcf:sfDisjoint,
 ogcf:sfEquals, ogcf:sfIntersects, ogcf:sfOverlaps, ogcf:sfTouches,
 ogcf:sfWithin

• Distance-based Operations
 - ogcf:distance, ogcf:buffer

• Geometry Operations
 - ogcf:boundary, ogcf:convexHull, ogcf:envelope, ogcf:getSRID,

• Geometry-Geometry Operations
 - ogcf:difference, ogcf:intersection, ogcf:symDifference, ogcf:union
Spatial Function Library

Oracle Extensions

• Topological Relations
 – orageo:relate

• Distance-based Operations
 – orageo:distance, orageo:withinDistance, orageo:buffer,
 orageo:nearestNeighbor

• Geometry Operations
 – orageo:area, orageo:length

• Geometry-Geometry Operations
 – orageo:intersection, orageo:union, orageo:difference, orageo:xor
SPARQL and SPARQL in SQL Query Architecture

HTTP

Standard SPARQL Endpoint
Enhanced with query management control

Java

Adapter for Apache Jena

Oracle
Fusion Middleware
WebLogic Server

JBoss
by Red Hat

Apache Jena

Oracle
Database

SQL

SEM_MATCH

SPARQL-to-SQL Core Logic
Oracle Spatial and Graph is Scalable
1 Trillion Quad RDF Benchmark with Oracle Spatial and Graph (LUBM 4400K)

• Massive scalability: 1.08 trillion quads
• Most scalable data loading performance
 – 1.42 million quads per second
• Most scalable query performance
 – 1.52 million quads per second
• Most scalable inference performance
 – 1.13 million query results per second

• Platform: Oracle Exadata X4-2 Database Machine
• Source: w3.org/wiki/LargeTripleStores, 9/26/2014

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.
Data Storage Tables

RDF_LINKS

- **Unique key:** PCSGM

<table>
<thead>
<tr>
<th>S (subj id)</th>
<th>P (pred id)</th>
<th>C (c. obj id)</th>
<th>G (graph id)</th>
<th>M (model id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>300</td>
<td>200</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

RDF_VALUES

- **Unique key:** Vpfx-Vtyp-Vsfx-Lit-Lang

<table>
<thead>
<tr>
<th>val. id</th>
<th>vname_prefix</th>
<th>vname_suffix</th>
<th>value_type</th>
<th>Literal type</th>
<th>Lang type</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>http://xyz.com/</td>
<td></td>
<td>geom1</td>
<td>UR</td>
<td>ogc:wktLiteral</td>
</tr>
<tr>
<td>200</td>
<td>POINT(...)</td>
<td></td>
<td></td>
<td>TL</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>http://opengis...</td>
<td>asWKT</td>
<td></td>
<td>UR</td>
<td></td>
</tr>
</tbody>
</table>
Spatial Index on ogc:wktLiteral Datatype

- Prepare for spatial querying by creating a spatial index for the ogc:wktLiteral datatype

```sql
SQL> exec sem_apis.add_datatype_index(
    'http://www.opengis.net/ont/geojson#wktLiteral',
    options=>'TOLERANCE=0.1 SRID=8307
           DIMENSIONS=((LONGITUDE,-180,180)(LATITUDE,-90,90))
);
```
Spatial Indexing

Helper function to generate SDO_GEOMETRY objects

```sql
FUNCTION getV$GeometryVal (  
  value_type  IN VARCHAR2,  
  vname_prefix IN VARCHAR2,  
  vname_suffix IN VARCHAR2,  
  literal_type IN VARCHAR2,  
  language_type IN VARCHAR2,  
  srid       IN NUMBER  
) RETURN MDSYS.SDO_GEOMETRY
```

<table>
<thead>
<tr>
<th>val. id</th>
<th>vname_prefix</th>
<th>vname_suffix</th>
<th>value_type</th>
<th>literal_type</th>
<th>language_type</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>http://xyz.com/</td>
<td>geom1</td>
<td>UR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>POINT(...)</td>
<td></td>
<td>TL</td>
<td>ogc:wktLiteral</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>http://opengis..</td>
<td>asWKT</td>
<td>UR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial Indexing

ogcf:sfOverlaps(?geom, "POLYGON((...))")

1) Primary Filter

Function-based R-Tree Index (BBox)

2) Secondary Filter

getV$GeometryVal(value_type, vname_prefix, ...)

<table>
<thead>
<tr>
<th>val. id</th>
<th>vname_prefix</th>
<th>vname_suffix</th>
<th>value_type</th>
<th>Literal type</th>
<th>Lang type</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>http://xyz.com/</td>
<td>geom1</td>
<td>UR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>POINT(...)</td>
<td>asWKT</td>
<td>TL</td>
<td>ogc:wktLiteral</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>http://opengis..</td>
<td></td>
<td>UR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spatial Query Execution

SQL Query

```
SELECT ?s ?l ?wkt
WHERE {
  ?s rdf:type lgd:Monument .
  ?s rdfs:label ?l .
  ?s geovocab:geometry ?geom .
  ?geom ogc:asWKT ?wkt .
FILTER(
  ogc:sfWithin(?wkt, "POLYGON((-71.44 42.50, -71.42 42.40, -71.08 42.39, -71.03 42.56, -71.44 42.50))"^^ogc:wktLiteral)))
```
Agenda

1. GeoSPARQL Overview
2. Implementation in Oracle
3. Demonstration with Oracle 12c
Demonstration with Oracle 12c

Oracle Big Data Lite VM + Spatial & Graph Support + Map Viewer

HistoricThing.node
4.1 Million Triples
268K Points (WGS 84)

Create semantic model → Bulk load into model → Create spatial index → Execute GeoSPARQL queries → Create Map Viewer layer
Integrated Cloud
Applications & Platform Services