Oracle® Rdb JDBC for Rdb
User Guide

Release 7.3.4.1.0.

February 2016

Oracle JDBC for Rdb User Guide, Release 7.3.4.1.0.

Copyright © 2005, 2016 Oracle and/or its affiliates. All rights reserved.

Primary Author: Jim Murray.
Contributing Author:
Contributor:

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or “commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government
contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications that may create
a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the
AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-
party content, products, or services.

Contents

L] 1= (oL RO RPTOPPP 8
PUrpose Of THiS IMANUAL..........ccueiiiiieiie ettt et e e ste e e araesraeneeas 8
INEENAEA AUGIENCE ...ttt st e b e st e et e e e e sbeeesbeeateeebeesaeeabeenrees 8
FN o= (ol O = Tod LI U o] o Lo RS 8
[T Lo N 1T T 1o [S 8
(@004 1V7<T 01 10 SRS 9

Chapter 1 a4 0o [Tod ¥ o o SR 10

Chapter 2 Oracle JDBC fOr RAD DEIVEISociiiiece ettt te et sae e sneenteenes 12
2.1 Oracle JDBC for RAD NatiVe DIIVELccooiuiiiiieeie et 12

2.1.1 URL Specification Used with the Oracle JDBC for Rdb native driverccccoeevennenn 12
2.1.2 Class Used with the Oracle JDBC for Rdb native driver............cccccovvevviicivevciieieens 13
2.2 Oracle JDBC for RAD Thin DFIVELccvviiieeiic ettt 13
2.2.1 URL Specification Used With the Oracle Rdb Thin Driver...........cccoccvvieviveveivieieens 14
2.2.2 Class Used With the Oracle JDBC for Rdb Thin Driver........c.ccccceovvevieiie e, 15
2 B O [0 T=Tot (o] ([@] o) £ o] SO 15
2.4 Oracle JDBC for RAD SyStem PrOPEItIESc.ciiriririieieriesie et 20

Chapter 3 = Oracle IDBC fOr RUD SEIVEIScoiiiiiitiieiiite ettt bbbt sb e et sb et sbe et ane e 22

3.1 Oracle JDBC for RAD THiN SEIVENcviiieeiceceee et 22
311 Starting @ THIN SEIVELiieieiiee ettt ste e e steeaeeneesraeaeeneesneennens 23
3.2 Oracle JDBC for Rdb MUlti-ProCess SEIVENccviiiiierieiieiieese e 25
3.2.1 Starting a MUIti-PrOCESS SEIVEToiviiiiiiiiiiiiiieiee e 26
3.2.2 Shared MemOry USAQE........ccouiiiiiiieeiie ettt et ee e be et e e sba e s e e beesneeaaaeaneas 28
3.2.3 Pre-Started EXECULOISccvieivieiieeitee ettt ettt ste et ete e e e sbeesneeebaesneeebeeannas 28
B S (=T U (o] g \\F- T3 1o SRRSO 29
3.2.5 EXECULOr ProCeSS STAITUDeovieeiieieiiieieet ettt 30
3.2.6 EXECULOr MAINTENANCEeeeiieiiieeiie sttt ettt e e e sba e st e e ba e snaeaaeeannas 32
3.2.7 LOSt EXECULON SWEEP ...ttt b ettt nb e 33
3.2.8 EXeCUtOr BalanCINgcccoiuiiiiiiiiiciie sttt 33
S B (=T (o gl T] SR 34
3.3 Oracle JDBC for RAD POOI SEIVEc..ooiiieiiece ettt 38
3.3. 1 Starting @ POOI SEIVEToouiiiiiiiece bbb 39
3.3.2 POOI SEIVEr OPEIatiONciueeieieiiiiiesteestesiestee sttt sttt ae st e sbe et e s e sreeaesreesbeennens 41
3.4 Oracle JDBC for RUD MaNAQEI SEIVETccuviieiieieiieseeiesieseesiesaesteeneessaesae e sseesseenee e 43
3.4.1 UtIIZING @ MaNAGET SEIVETiiuiiiiieiiieie ettt sttt sttt sre b reesbe e b 44
3.4.2 Starting @ Man@gEl SEIVETcc.eiiveieerieeieseesieeiestee e eeessae e eseesreesseessesseesraesaesseesseensens 45
3.4.3 Adding a Remote Manager Server Configuration ENtrycccoccovveeiininiienneninneennens 47

3.4.4 Using the Controller to Start REMOLE SEIVEIS........ccceiiiieiieiiee e 48

3.4.5 Manager SErver OPEIratiONSccccieerueiiieiiereeiesieeseeieseesreeseeseesseeseesseesreesseseesseensens 49
Chapter 4 Server CONFIQUIATION........c..oii it e b et et e s teene e e e st e besreeteaneeneesneneenrees 50
4.1 Server Configuration OPLIONS.ciiiieiiiieieiese st 51
4.2 Multi-Process Server Configuration OPtIONS..........ccceiiieiieiiiiie e 65
4.3 Pool Server Configuration OPLIONScc.eiuiiieiiiriiisi e 68
4.4 Manager Server Configuration OPLIONS..........ccceiieiiiiieieere e 71
4.5 CoNfIQUIALION FIIES......cviiiieiieie e ettt sne e 73
4.5.1 Standard PropertieS File.........ccoiiiiiiiiicce et 73
45.2 XML-Formatted Configuration FIlecccooiiiiiiiiiiiiei e 75
4.5.3 Using filenames in the configuration file............cccoeiieiiiii i 92
(01 0T T (1 gl ST U1 T [0 S 1S | TS 93
5.1 SSL CONFIGUIALION ...ttt bbbt bbbt 93
5.1.1 Client SSL Configurationcccoiieiiiiie ittt sre e 94
5.1.2 Server SSL CONFIQUIALIONuiiiieieieiieiie sttt 95
5.2 SSL @nd the CONLIOIETccoiiiiiieieee e e 97
5.3 SSL CoNnfiguration OPLIONS..........coveieieieieitesie sttt sre e 98
5.4 Using Self-Signed Certificates for TEStINGc.cccveviiiiiieieiie e 99
Chapter 6 Oracle JIDBC for RAD CONEIOIIETc.oiviiiiiiieee e 101
6.1 RUNNING the CONIOIIENcveeeiee e 104
6.1.2 Controller Command LINEc.cooueieiieiieeeie et ee e eas 108
6.2 CONNECLING L0 SEIVEISccuiiivieie ettt ettt et ste et st e st e e b e s reesbaesesneesaeeneeeneennas 114
6.2.1 CONNECE COMMEANT.......iiieriieieeriesieee e ee e se e ree e te e steeaeeneesreenseareesneeneeeneenrs 115
I 2 1111 o] [Tod) A O] g T=To! o o ISR 116
6.3 CONLIOl PASSWOITcoiiiiiiieieie ettt se et e e s e steenteaneenneeneenneenns 116
6.4 MUIICASE POIING ...oviiiicie ettt ae et anas 117
T T e YT gl V- 1 o] o OSSR 119
6.5.1 TYPE MALCH .. .oiiiii e 120
6.5.2 NAME MALCN ...t ettt st et e see e e nreeeeeneers 121
6.5.3 POITMALICH c..oeiiiic e re e 121
6.5.4 SEALMALCH ..oeiee et rn 122
6.5.5 NOUE MALCH ... ettt 122
TG T S I T (3 1 0T (o S 123
6.5.7 Handling Servers From Prior ReI€aSEScccieiieiiiiiiii et 123
I I e QYT g @ 0T - £ [0 SRS 125
6.6.1 ClOSING SEIVEISeitieiisiie ittt ettt sttt ettt sbe e be s e e st e et e st e st e e sbe bt e s beeneenneeneas 125
T O T o T[T 1= AV £ S 127
6.6.3 SNOWING SEIVEIS ...ttt sttt ettt sttt et e b sneenes 128
6.6.4 STAITING SEIVEISeeiieeiiiie ettt et e e st et e s e ste e ae e st e sbeeseesaesneeneesneenes 135
6.6.5 STOPPING SEIVELSviiniiiiie ettt sttt st ettt et et esbeebesreesbeebeeneenes 136

6.6.6 WALCHING SEIVEIS ...ttt bbb 138

6.6.7 WaALChING EVENTS ...c.oooiiiie ettt nae e rs 139
6.6.8 POIING SEIVEIS ...ttt sttt e st e sneenes 141
6.6.9 POl SUD-COMMANGS ..ot bbb 142
6.6.10 SHOWING EXECULOISc.viiiiiiiiiiiieiieie e 144
6.6.11 ShOWING SEIVEI POOL........cuiiieiieeiece sttt 147
6.7 ClIENT OPEIALIONS.eiueiiitiitiete etttk ettt bbb eneas 150
6.7.1 ShOWING ClHIENTScviiiiiie et reeee e ns 150
6.7.2 SOPPING CHIENTS ..o bbb 156
6.8 Other COMMANUScoiiiiiti ittt sttt b e bbb bennenneas 159
B.8. 1 DHOBSE ...ttt bbbttt bbb 159
B.8.2 ODFUSCALEeveiieiieiee e bbbttt e 160
Chapter 7 Oracle SQL/Services and Oracle JDBC for RAD SErVErSc.covviieiieiicic e 161
7.1 JIDBC DISPAICNETeiuiiiiitiitisit ettt bbbttt bbb sneene s 161
7.1.1 Creating an Oracle SQL/Services JDBC DiSpatCher..........c.cccovveveiiieieeiie e 162
7.1.2 Associating an Oracle SQL/Services JDBC Dispatcher to a Server...........cccccoovvvnene. 163
7.1.3 Starting a JDBC DiSPatCEr.........cceciuiiieiiei et 169
7.1.4 Stopping 8 JDBC DISPALCNENc.eiiiieieiiieiieiiesie e 170
7.2 Command Procedures used by Oracle SQL/SEIVICES.........cccveiieieerie i 170
7.2.1 JDBC DispatCher SEtup PrOCEAUIEooiiirieiieieieee s 171
7.3 USING POOI SEIVEIS ...veeeiecte sttt sttt ettt b nbesbennenneas 172
(O 0T 1o T g T ==Y (0] i 0= T S SSSRTRR 175
8.1 Performance FRATUIES ..ottt 176
ST =1 (o] T2 SRS 176
8.3 LOCKWAIL ANA MAXLIIES .. .eviviiiiiieiieiieieie sttt sttt bt beeneaneas 176
8.3.1 LOCKWAIL PrECEABINCE ..ottt bt 177
8.4 INACLIVILY TIMEOULS.......ciuiiieieieiie ettt ettt e e b e s beenesaeeste e e e sneennas 179
8.4.1 Client CONNECLION TIMEBOUL........ceeiieieeie et ee e es 179
8.4.2 Server INaCtiVIty TIMEOULccviiiiiiie ittt srre e eere e 180
8.5 SQL StatemMent CACNEcceeiieie ettt et este e neenns 181
8.5.1 Caching Statement HaNAIEScvviiiiiiiicic e 183
8.6 RESUITS CACKNE.i e ettt e e e sse e teeteeneente e e eneenns 184
Chapter 9 Event Logging and NOUTICAIONcciiiriiiii e e 186
IR R e VT o1 oo o 1 T SO PSPPOPRSRPP 186
9.2 Defining and ENabling EVENTS.ccoiiiiiiiiiiiiieie e 186
0.2.1 DEFINING EVENLS ..ooeiiiicie ettt e e be e s e e re e 189
TR T V= 0| A Y/ o L= OO TSR OPR PR 191
0.3.1 DENIAI EVENESeeiiiiiiiie ettt sttt et sttt be e ene e e 191
0.3.2 EXCEPLION EVENTSoeeiiiie ettt ettt et ne e eneenns 192
0.3.3 TIIESNOId EVENTSocviiiiiieie et et e 193
0.3.4 GENEIAI EVENLS ..ottt bbb 199

9.4 Watch Events using the Controller. ... 199

9.5 WatchEvent Sample APPlICALION.ccueiiiiiie s 201
9.5.1 WatchEvent Sample Application SETUPccviiriiiiieie s 201
9.5.2 Invoking the WatchEvent Sample Application............cccovevieieeie i 204

(O{pT=T o) t=T O @ g T-T gl T (UL =T PSS 206

10.1 ANONYMOUS USEINEIMEScoitiiiiiiiieiieieiitieti ettt n e sneene s 206

10.2 BYPASS PIIVIIEOE ...ooiieeie ettt ettt te et e sraenneeneesneenne s 206
10.2.1 BYPASS and MUlti-ProCESS SEIVEIScvieiirieiiitiee ettt 207

O JRC J ==Y 0] o = TSP 208
10.3.1 Persona and Server OPEratiONSc.cuueiieeeierierieriestesiesieseee e siesresieeneas 208

10.4 Default TranSACTIONcccviiiiiie e e e s e e st e e s sabe e e erbeeenes 209
10.4.1 Autocommit Transaction DUFAtIONcceeeiieeiiiee it 210

10.5 Executor Sub-process used with the Rdb Native driver...........ccccccooeiieiiiiic i 211
10.5.1 Setting Maximum Handshake Tries and Wait DUration..............ccccceeveesvvenveresnenee 211

10.6 JDBC HINt MEINOGSccviitiiiiie ettt ettt ere e s ree e ebe e b e reennee e 212

IO A oo To g To =Yoo B I - Tod T T TSROSO 212
10.7.1 LOgfile PAttern.ooiiiie et 213

10.8 Ignoring Statement.cancel() Method Calls ... 215

O BT o gl N\ F= 1 T T 215

10.10 NAMEd DAtADASESeeeivieeirie ettt ettt e eneeas 217

10.11 (O I e= 1 A OL0] 111 P> g0 218
IO T I Y VA1 15 =T (O 1 2 T IR 219
IO TR 7 VAo o T (Toa] - L L 1 1[0 [220
10.11.3 SIV.ONCHSTANTCMA ...ttt e e erae e eneeas 221

10.12 Password Obfuscation in Server Configuration FilesS..........cccccooviieiiivciiccecce e 222
10.12.1 CONLrOl PASSWOIASvveiivieecitie ettt ettt ettt st sbe e st e s s e e e sabe e e snbe e e sneeeeeneeas 222
TR U 1= gl o TSI Yo (o 224

10.13 Restricting Server, Database and Operational ACCESS..........ccovvvirieienene i 225
10.13.1 ReStricting Database ACCESSueiiveeirieiiieiiie et e siee et see e srae s be e re e snee s 225
10.13.2 RESIIICHING USEI ACCESSveiviiiienieiteiteste sttt ettt sttt sttt bbb b i eneas 227
10.13.3 RESIICHNG TP ACCESSveevieiiieiiee et stee ettt sttt e b e e be e aneeeteennne s 228
10.13.4 Privileged USEIS ACCESS......cueiueieriiriesiisiesiieieesieie ettt e bbbt sbe s s 232
10.13.5 Access to the Command LiNEccvveeiiiiiiii et 233
10.13.6 ACCESS 10 the SEIVEI ROOTviiiciiie ettt 234
10.13.7 Create and Drop Database Entitlement............c.cocoviiiiii e 235
10.13.8 Further Server aCcCess PrOTECION.........couiiiirieieriesiee ettt 237
10.13.9 Restricting SQL StAtEMENTS.......ccveiieiieieseere e ae e es 238

10.14 Scope of CONNECTION.SetREadONIY()...cviiveeiiiieiieiiiie e 240

10.15 Server Command PrOCEAUIESveeicvie ittt ettt sive e eabe e erbe e erae e 240
10.15.1 Server Startup Command ProCEAUIE.........ccveruirieiierieeie et 241

10.15.2 Executor Startup Command ProCeAUIE...........cceieriiiiriiiiisiereeese e 242

10.15.3 CLI Startup Command ProCEAUIE..........cueieerieiieieerieeee st et sre e ae e e 243
10.16 Server/Client ProtoCol CheCKINGcccoviiiiiieiieieiieie e e 244
10.17 Using OpenVMS FailSAFE IP........ccco i 245
10.18 Attaching to Multiple Databases in the Same CONNECLIONccocceevveiieiienenieseeins 246
10.19 ShULAOWN TRFBAMiiviiiiiiieiieiieie ettt bbb 247
10.20 Getting a List of Known Databases from SErVErcccceiieiiiiieniieiiie e 248

10.20.1 Show Databases SQL StateMENtc.cceveiieiiieeiie e 249

10.20.2 gEtDALADASES() .. veverereriieieeiieieie sttt bbb 249
10.21 Create and Drop Database.........cccceveiiiiiiiiiiiieieeiee e 250

10.21.1 SEIVEN ROOT ...ttt sttt sttt et sbe et e et e b e nnee e 250

10.21.2 Server Configuration REQUITEMENTSccveieierieieiiesie e 251

10.21.3 Create Databaseccccviieieeieiie ettt 251

10.21.4 Drop Database........c.coveiiiieiieie sttt 253
10.22 1L T O ST T O PP TPPPPPPPPPIN 254

10.22.1 Setting traCIEVEL..........cve e 255

10.22.2 Abbreviated form Of traCIEVELcov i s 256

10.22.3 TTACE VAIUESovveieieicieeiieeeie ettt ettt sttt sbesneeneas 256
10.23 File and Directory access REQUITEMENTScoveiiirierierieninieseeeeee e 257

Chapter 11 JDBC Extensions for Oracle RAD...........ccooiiiiiiie e 258
O R =] o] oI O F- 1P 259

11.1.1 setSegSeparator() PUDIIC MEthodcooiiiiiiiiiiiesc e 259
O B 4 11T O TSRS 260

11.2.1 attach() PUblic MEthOd...........ooviiiiiii s 261

11.2.2 getDatabases() Public Static Methodcccoooiiieiiiicicce e 263
11.3 RESUIISEL ClaSS. ... uiiuiiiiieieiiesieeiesiee sttt e sttt et e e e st teeneeete e e aneesneenseeneesneeneens 264

11.3.1 getBytes() PUDIIC MELNOMc.oooviiiiiiic e 264
11.4 Extended SQL SYNTAX - SET ...ociiiiiiiieiieie sttt 265
11.5 Extended SQL Syntax — SHOW DATABASEScooiiiiieieieieeeeiee e 265

Chapter 12 Other INTOIMALIONc.ooii e ettt et b e bbb e e e e e e b e 267
12.1 Disallowed Dynamic SQL StatemMeNtSccecvieiiiiiieiii e 267
12.2 Sample Setup, Starting and Using an Oracle JDBC for Rdb thin server.cc.c....... 267
12.3 Sample Setup, Starting an Oracle JDBC for Rdb thin server from Oracle SQL/Services.278
12.4 Sample configuration file MY_SERVERS. XMLccooiiiiiiiiiiiiiieee e 284
12,5 Datatype Mapping from Oracle Rdb t0 java.SqLTYPES ..cc.covvveeriiiiiieesie e 287
12.6 Datatype Mapping from java.sgl.Types to Oracle RADcceoveviieeiiicieccce 288
12.7 JDBC Specification SQL to Java Datatype Mappingsccceceerereerieeriesienseenieseeseennens 288
12.8 JDBC Specification Java to SQL Datatype Mappingscccccvereereerieeresieesieesesieesieeneens 289

Preface
Purpose of This Manual

The Oracle JDBC for Rdb User Guide describes concepts, features and usage of the Oracle
JDBC for Rdb drivers and servers. This user guide covers Oracle JDBC for Rdb for
OpenVMS on both Alpha and Integrity Servers.

Intended Audience

This document is intended for users responsible for:

. System management
. Database administration
. Application programming

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Document Structure

This document consists of the following chapters:

Chapter 1 Introduction.
Chapter 2 Describes the Oracle JDBC for Rdb drivers.
Chapter 3 Describes the Oracle JDBC for Rdb servers.
Chapter 4 Describes details on how to configure Oracle JDBC for Rdb servers.
Chapter 5 Describes details on how to use SSL with Oracle JDBC for Rdb.
Chapter 6 Describes how to use the Oracle JDBC for Rdb controller.
Chapter 7 Describes how to use Oracle JDBC for Rdb with
Oracle SQL/Services.
Chapter 8 Describes performance features that are available.
Chapter 9 Describes Event Notification and Logging.

Chapter 10 Describes other features that are available.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 11 Describes the JDBC extensions available for use with Oracle Rdb.
Chapter 12 Shows general examples and data type compatibilities.

Conventions

Oracle JDBC for Rdb is often referred to as JDBC.
Oracle Rdb is often referred to as Rdb.
Hewlett-Packard Company is often referred to as HP.

The following conventions are used in this document:

A lowercase word in a format example indicates a syntax element that

word
you supply.
Brackets enclose optional clauses from which you can choose one or
L] none.
{} Braces enclose clauses from which you must choose one alternative.

A horizontal ellipsis means you can repeat the previous item.

A vertical ellipsis in an example means that information not directly
related to the example has been omitted.

Release Specific Information

Certain features require specific versions of JDBC. These features are highlighted by a
banner similar to the following:

Since release 7.3.4.0.0

Note: Only new features or changed behavior seen since (and including) release 7.3.1.0.0 are
highlighted.

Conventions in Code Examples

Code examples illustrate SQL or other command-line statements. They are displayed in a
monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT last name FROM employees WHERE last name = 'TOLIVER';

Contents

Chapter 1
Introduction

Oracle provides the following Oracle JDBC for Rdb drivers:

« Oracle JDBC for Rdb native driver for client-side use with an Oracle Rdb installation
« Oracle JDBC for Rdb thin driver, a 100 percent pure Java driver for client-side use
without an Oracle Rdb installation. This is particularly useful with applets.

The Oracle JDBC for Rdb drivers provide the same basic functionality. They both support
the following standards and features:

- JDK1.5/JDBC3.0
« Same syntax and APIs

The Oracle JDBC for Rdb drivers implement standard Sun Microsystems java.sql
interfaces. It is assumed that the reader of these notes is already familiar with Java and
JDBC.

General information on Java may be found at
http://www.oracle.com/technetwork/java/index.html

General information on JDBC may be found at
http://www.oracle.com/technetwork/java/index-142838.html

Documentation for HP's Java for OpenVMS system may be found at the following web
sites:

http://www.compag.com/java/documentation/index.html - Java 2.

http://h18012.www1.hp.com/java/documentation/index.html

In conjunction with the Oracle JDBC for Rdb thin driver, Oracle provides the following
Oracle JDBC for Rdb servers:

« Oracle Rdb thin server
« Oracle Rdb multi-process server
« Oracle Rdb Pool server

The Oracle JDBC for Rdb servers carry out remote database access operations on behalf of
the Oracle JDBC for Rdb thin driver.

10

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index-142838.html
http://www.compaq.com/java/documentation/index.html#Java 2
http://h18012.www1.hp.com/java/documentation/index.html

Contents

Management of the Oracle JDBC for Rdb servers may be carried out using the Oracle
JDBC for Rdb controller or by using the Oracle SQL/Services manager.

11

Chapter 2
Oracle JDBC for Rdb Drivers

There are two types of Oracle JDBC for Rdb drivers:

« Oracle JDBC for Rdb native driver
« Oracle JDBC for Rdb thin driver

The following sections discuss these two diver types as well how to connect to Oracle Rdb
databases and use System Properties when using the drivers:

« Connection Options
« Oracle JDBC for Rdb System Properties

2.1 Oracle JDBC for Rdb Native Driver

The Oracle JDBC for Rdb native driver is a Type Il driver intended for use with client-
server Java applications.

The native driver, written in a combination of Java and C, converts JDBC invocations to
calls to SQLMOD modules, using native methods to call C-entry points.

When you use the native driver, the driver connects directly to the Oracle Rdb database
system using SQLMOD. If you are not using Rdb Remote Access then there are no
network connections involved. This means that the native driver is potentially the fastest
JDBC access method available within the Oracle JDBC for Rdb drivers.

Because the driver uses SQLMOD libraries to carry out Oracle Rdb access, the driver can
only be used on a client machine if Oracle Rdb has been setup on that machine and the
appropriate Oracle Rdb and SQL shared images are available. In addition, it is necessary
for the driver to dynamically load a shared image to use with its Java JNI interface. Thus
this driver is not suitable for use with applications that require Java applets.

2.1.1 URL Specification Used with the Oracle JDBC for Rdb native
driver

When you use the JDBC DriverManager to connect to an Oracle Rdb database using the
native driver the following connection URL format should be used:

Format
jdbc:rdbNative:<database specification><connect switches>

12

Elements
The format elements are described in the following table:

Table 2.1-1 rdbNative Format Elements
Element Description

<database_specification> Is the full file specification of the Rdb
database that you wish to connect.

<connect_switches> These optional switches may be used to
specify certain settings that should be
established when the database connection is
made.

See Connection Options for more details.

Remarks
The <database specification> Sshould be a valid OpenVMS file specification or logical
name.

Example
To connectto MY_DB_DIR:PERSONNEL.:

Connection conn = DriverManager.getConnection (
"jdbc:rdbNative:my db dir:personnel",user, pass);

2.1.2 Class Used with the Oracle JDBC for Rdb native driver

The Rdb native driver can be found in the following class:

oracle.rdb.jdbc.rdbNative.Driver

2.2 Oracle JDBC for Rdb Thin Driver

The Oracle JDBC for Rdb thin driver is a 100 percent pure Java, Type IV driver. Because it
is written entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side.

For use with applets, the thin driver can be downloaded into a browser along with the Java

applet being run. The HTTP protocol is stateless, but the thin driver is not. The initial HTTP
request to download the applet and the thin driver is stateless. Once the thin driver establishes

13

the database connection, the communication between the browser and the database is stateful
and in a two-tier configuration.

The thin driver allows a direct connection to any Oracle Rdb database via an Oracle JDBC
for Rdb server using TCP/IP on Java sockets.

Note:

When the thin driver is used with an applet, the client browser must have the capability to
support Java sockets.

2.2.1 URL Specification Used With the Oracle Rdb Thin Driver

When you use the JDBC DriverManager to connect to an Oracle Rdb database using the thin
driver the following connection URL format should be used:

Format
jdbc:rdbThin://<node>:<port>/<database_specification><connect_options>
Elements
The format elements are described in the following table:
Table 2.2-1 RdbThin Format Elements
Element Description
<node> Is the node name or IP address of the node
that the Rdb JDBC server you wish to
connect to is running.
<port> Is the port the Rdb thin server you wish to
connect to is listening.
<database_specification> Is the full file specification of the Rdb
database that you wish to connect.
<connect_options> These optional switches may be used to
specify certain settings that should be
established when the database connection is
made.
See Connection Options for more details.
Example

To connect using the thin driver via an Oracle Rdb thin server to
MY_DB_DIR:PERSONNEL on node BRAVO using port 1701:

14

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/my db dir:personnel”,
user, pass);

Note:

The <database specification> Sshould be a valid OpenVMS-style file specification or
logical name, for example:

my disk:[my directorylmy database
When you use an Oracle Rdb thin driver connection, any logical names and relative

directory specifications used in the database specification must be valid for the account and
directory from which the Oracle Rdb thin server was started.

2.2.2 Class Used With the Oracle JDBC for Rdb Thin Driver

The Rdb thin driver can be found in the following class:
oracle.rdb.jdbc.rdbThin.Driver

Contents

2.3 Connection Options

The Oracle JDBC for Rdb drivers recognize a number of options that may be added to the
connection string to specify certain default behavior and settings to be established when the
connection is made.

Connection options may be either added directly to a connection URL using the @ character
as a separator, or as property values in the properties block that may be passed to the
DriverManager.getConnection () method.

Format (In connection URL only)

@<option name>=<value>

Options
The connections options that may be used are described in the following table:

15

Table 2.3-1 Connection Options

<option_name> <value> Default Description

alias string NULL

app string NULL

cli.idleTimeout decimal or hex O
integer

handshakeTries decimal or hex 500
integer

handshakeWait decimal or hex 10
integer

Sets the alias for this database attach.

This option is used only when attaching to a
second database within the same Connection.
See Attaching to Multiple Databases in the
Same Connection for more details.

Since release 7.3.2.0.0

Sets the application name using this
connection. This optional switch may be used
to help identify application use of JDBC
connections.

The application name, if provided, will be
displayed in the JDBC server logs and in the
display of client information when using the
controller show clients command.

Sets the maximum time (in milliseconds) this
client connection may be idle. If no operation
is carried out using this connection within the
time specified, the connection will be forcibly
disconnected.

The value 0 means unlimited idle time
allowed.

See Client connection timeout for more
details.

Sets the maximum number of times the main
process will attempt to establish handshake
with its associated executor sub-process.

This option is only valid on connections using
rdbNative driver and when multiprocess is
enabled on the native connection.

This option may only be used in conjunction
with the multiprocess option.

See Executor Sub-process used with the Rdb
Native driver for more details.

Sets the time (in milliseconds) between
handshake tries attempted between the main
process and its associated executor sub-

16

<option_name>

<value>

Default Description

lockwait

multiProcess

decimal or hex -1

integer

true or false

networkKeepalive true or false

networkTimeout

nlslang

false

false

decimal or hex 0

integer

Character set
name

DEC_MCS

process.

This option is only valid on connections using
rdbNative driver and when multiprocess is
enabled on the native connection.

This option may only be used in conjunction
with the multiprocess option.

See Executor Sub-process used with the Rdb
Native driver for more details.

Sets the lockwait (in seconds) for transactions.
The value —1 means that the server will wait
indefinitely for the lock.

See Lockwait and Maxtries for more details.

If true a new executor process will be created
for this connection.

This option is only valid when used with an
Rdb Native driver connection and will be
ignored by the Rdb Thin driver.

See Executor Sub-process used with the Rdb
Native driver for more details.

If true the socket used to connect the client to
the server will have SoKeepAlive enabled
See your socket documentation for more
information on SoKeepAlive.

Sets the maximum time (in milliseconds) this
client connection will wait on the completion
of a read or write on the network. If the read
or write does not complete within the
designated time an exception will be raised.

The value 0 means unlimited time allowed.
This timeout is only applicable to the thin

driver and is only placed on the client-side
socket operations.

Since release 7.3.3.0.0
Sets the character set to use when converting
DEC_MCS columns or literals for access by

17

<option_name>

<value>

Default Description

sglcache

srv.password

ssl*

ticks

decimal or hex 0

integer

string value

various

true or false

NONE

NONE

true

JDBC. If the column or literal is designated
as having the character set DEC_MCS but
contains non-MCS characters, when
converting to Unicode during string
operations JDBC will convert these characters
as if they are DEC_MCS resulting in
unexpected encoding of these characters.
Setting nlslang tells JDBC to encode these
strings using the specified character set
instead of DEC_MCS.

The value provided must be a valid character
set name as found in the Supported Character
Sets table of the Rdb SQL Reference Manual.

If not provided the default character set used
will be DEC_MCS.

Note: This option does not alter the SQL
National Language.

Specifies the number of statements that may
be maintained in the SQL cache.

If less than or equal to 0, SQL statement cache
is disabled. Positive values specify the size of
the SQL statement cache.

Specifies the server password to be used for
the connection. See Further server access
protection for more details.

Sets one or more SSL characteristics, see
Using SSL for more details on these
characteristics.

Since release 7.3.3.0.0

If true (the default), JDBC timestamp values
will use seven (7) decimal places for the
precision of fractions of seconds, otherwise
three (3) decimal places will be used.

By default, OpenVMS timestamp precision is

in ticks or 100 nanosecond units which use
seven (7) decimal places, but Rdb SQL may

18

<option_name>

<value>

Default Description

tracelevel or
tl

transaction

useHints

useQueryHeader

decimal or hex 0
integer

readonly or
readonlydefer
or

readwrite or
readwritedefer
or

automatic or
oracle or
manual or
autofetch or
autoreadfetch

true or false true

true or false or false
character set
name

automatic

limit timestamp precision to 2 decimal places
for timestamp values generated by SQL, for
example, CURRENT_TIMESTAMP.

Specifies the default tracelevel for the
connection.

Specifies the default transaction for this
connection.

See Default Transaction and

Scope of CONNECTION.setReadOnly() for
more details.

Since release 7.3.4.0.4

The autofetch and autoreadfetch transaction
options are only available when using the
JDBC thin driver.

If true, the optional JDBC hint methods will
be observed.

If false, the optional JDBC hint methods will
be silently ignored.

See JDBC Hint Methods for more details.

Since release 7.3.3.0.0

If true or a valid character set name , JDBC
will use the RDB$QUERY_HEADER column
of the RDBSRELATION_FIELDS system
table information to derive the Remarks
property for the table columns returned in the
DatabaseMetadata.getColumns() method.

If false (the default) the Remarks field will be
derived from the RDB$DESCRIPTION
column of RDBSRELATION_FIELDS.

If a character set name is used and is valid that
character set will be used when converting the
contents of the query header segmented string.

The character set name provided must be a
valid character set name as found in the
Supported Character Sets table of the Rdb
SQL Reference Manual.

19

<option_name> <value> Default Description

If a character name is provided but is not valid
the query header value will be converted
assuming DEC_MCS encoding.

Example
To connect using the thin driver via an Oracle JDBC for Rdb server to
MY DB DIR:PERS onnode BRAVO using port 1755 and enabling full trace logging for
this connection:

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1755/my db dir:pers@tracelevel=-1",
user, pass);

Alternatively, these options may be placed in a properties block:

Properties info = new Properties();
info.put ("user", user);

info.put ("password", password) ;
info.put ("tracelevel", tracelevel);

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1755/my db dir:pers", info);

2.4 Oracle JDBC for Rdb System Properties

The Oracle JDBC for Rdb drivers and servers can recognize configuration or connection
properties passed in as Java System Properties from the operating system command line
during application invocation.

When used in conjunction with an application invoking the Rdb native or Rdb thin driver,
the drivers will recognize system properties with an <option name> similar to a valid
Connection option, see Connection Options for more details of these options.

If the same configuration option is specified as both an Rdb system property and within the
connection URL, then the value within the connection URL will take precedence.

When used in conjunction with an Rdb server invocation the server will recognize system
properties with any <option name> that may be used as a server configuration option,

20

see Server Configuration Options and Pool Server Configuration Options for more details
of these options.

Any Rdb system property specified during the invocation of a server will take precedence
over the same property specified on the command line as a standard configuration option or
in a configuration file.

Format

-Doracle.rdb.jdbc.<option name>=<value>

Example
To set trace level to trace everything for your application that utilizes either the Rdb native
or Rdb thin driver:

$java —Doracle.rdb.jdbc.tracelevel=-1 my application

Contents

21

Chapter 3
Oracle JDBC for Rdb Servers

Oracle JDBC for Rdb servers are the server-side components that services JDBC requests
issued by applications using the Oracle Rdb thin driver.

There are four types of Oracle JDBC for Rdb servers:

« Oracle JDBC for Rdb thin server

« Oracle JDBC for Rdb Multi-Process server
« Oracle JDBC for Rdb Pool server

« Oracle JDBC for Rdb Manager Server

Each server is multi-threaded, able to handle multiple client requests at the same time.

Oracle JDBC for Rdb servers should be installed and invoked on each node from which
you wish to serve Oracle Rdb databases.

The Oracle JDBC for Rdb thin driver communicates with the Oracle JDBC for Rdb servers
using Java sockets over TCP/IP.

Any of the servers, with the exception of the Oracle JDBC for Rdb manager server, may be
used by thin clients to connect to Rdb databases. The Oracle JDBC for Rdb manager
server cannot be used for thin client access, it is a special server that may be used to aid in
the management of your JDBC server environment.

The following sections provide information about each of the server types and the various
ways you may start-up a server on your system.

Note:
In order to start Oracle JDBC for Rdb servers you will require certain access to the
Oracle JDBC for Rdb directories and files. See File and Directory access
Requirements for more details.

3.1 Oracle JDBC for Rdb Thin Server

The Oracle JDBC for Rdb thin server is a server-side component that services JDBC
requests issued by applications using the Oracle Rdb thin driver.

The standard thin server is multi-threaded, able to handle multiple client requests at the

same time. Because the server is maintained as a single OpenVVMS process, database access
for each of the threads is synchronized.

22

A thin server is installed and invoked on each node from which you wish to serve Oracle
Rdb databases. Oracle Rdb must be already installed and running on these nodes.

The server communicates with the Oracle Rdb thin driver using Java sockets over TCP/IP
with the default Port 1D 1701.

3.1.1 Starting a Thin Server

A thin server may be started by using the appropriate start statement within the controller,
as an Oracle SQL/Services JDBC dispatcher or directly from the operating system
command line.

3.1.1.1 Starting a Thin Server From the Oracle JDBC for Rdb Controller

A thin server may be started from the controller by referencing a thin server definition in an
XML-formatted configuration file. See Starting Servers within Oracle JDBC for Rdb
Controller for more details.

Example
Given the following server section in the XML-formatted configuration file mycfg.xml:

<server
name="servl"
type="RdbThinSrv"
url="//localhost:1707/"
logfile="myLogs:servl.log"
/>

the following command may be used to start this server from within the controller:
rdbthincontrol> start server servl
Alternatively the controller may be used in command mode to start a server:

S java —-jar rdbthincontrol.jar -cfg mycfg.xml -
—name servl —-startserver

3.1.1.2 Starting a Thin Server from Oracle SQL/Services

A thin server may be started from the Oracle SQL/Services manager.

23

Using the Oracle SQL/Services manager, you must first establish a connection to the
SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle
SQL/Services environment.
See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
srun sys$system:SQLSRV MANAGE72
SQLSRV> connect server;
Connecting to server
Connected
SQLSRV> start disp JDBC MPDISP;
SQLSRV>

3.1.1.3 Starting a Thin Server from the Command Line
You may invoke a thin server from the OpenVVMS command line.

Instead of placing a number of options on the command line, you may wish to create a
server definition within an XML-formatted configuration file and then start the server using
its server name. The server type for this server definition must be set to RdbThinSrv for a
standard thin server.

Format
$ java —-Jjar rdbthinsrv.jar [<-option>]..

Elements
See Server Configuration Options for a list of valid <-option>s. Remember that on the
DCL command line, each configuration option must have a hyphen (-) prepended to it.

Remarks
By default, the server is assumed to be of type RdbThinSrv, a standard thin server.

See XML formatted Configuration File for more details on server definitions within
configuration files.

Example 1
$ java -jar rdbthinsrv.jar -port 1707
Example 2

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

24

name="servl"

type="RdbThinSrv"

url="//localhost:1707/"

logfile="myLogs:servl.log"
/>

the following method may be used to start this thin server:

$ java -Jjar rdbthinsrv.jar -cfg mycfg.xml -name servl

3.2 Oracle JDBC for Rdb Multi-Process Server

The Oracle JDBC for Rdb multi-process server is a server-side component that processes
requests from the Oracle JDBC for Rdb thin driver using small memory footprint sub-
processes to carry out the requested operations on the Oracle Rdb database.

A multi-process server is multi-threaded and may handle multiple concurrent clients
allocating each client its own subprocess for database access, thus allowing better
concurrency and availability.

The majority of the multi-process server operations are carried out in a client thread context
within the main server process, handing off control to the client’s allocated subprocess only
when direct Oracle Rdb database operations are required. Each client has its own
OpenVMS subprocess, thus concurrency is improved, as the server does not need to
synchronize database operations.

By default, the allocated subprocess is terminated on client disconnect. Executors may also
be retained for re-use after client disconnect by specifying a positive maxFreeExecutors
configuration option.

An idle timeout value may be placed on executors to request the server to close down a free
executor after a predefined amount of time of non-use ,even if the number of free executors
is less than the maxFreeExecutors limit. If the specified idle time elapses, the
executor will be a candidate for termination if the number of free executors is greater than
the minFreeExecutors.

A multi-process server is installed and invoked on each node from which you wish to serve
Oracle Rdb databases. Oracle Rdb must be already installed and running on these nodes.

The server communicates with the thin driver using Java sockets over TCP/IP with the
default Port ID 1701.

25

3.2.1 Starting a Multi-Process Server

A multi-process server may be invoked by using the appropriate start statement within the
controller, as an Oracle SQL/Services JDBC dispatcher, or directly from the operating
system command line.

3.2.1.1 Starting a Multi-Process Server from the Controller

A multi-process server may be started from the controller by referencing a multi-process
server definition in an XML-formatted configuration file.

See Starting Servers within Oracle JDBC for Rdb Controller for more details.

Example 1
Given the following server section in the XML-formatted configuration file mycfg.xml:

<server
name="Mpservl"
type="RdbThinSrvMP"
url="//localhost:1799/"
logfile="myLogs:servl.log"
/>
the following command may be used to start this server from within the controller:

rdbthincontrol> start server Mpservl

Example 2
Given the same configuration file as shown above, the controller may be used in command
mode to start a server:

$ java -jar rdbthincontrol.jar -cfg mycfg.xml -
—-name Mpservl -startserver
3.2.1.2 Starting a Multi-Process Server from Oracle SQL/Services
A multi-process server may be started from Oracle SQL/Services manager.

Using the Oracle SQL/Services manager, you must first establish a connection to the
SQL/Service server. Once connected you may then start a JDBC dispatcher.

26

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle

SQL/Services environment.
See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
srun sys$system:SQLSRV MANAGE72
SQLSRV> connect server;
Connecting to server
Connected
SQLSRV> start disp JDBC MPDISP;
SQLSRV>

See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

3.2.1.3 Starting a Multi-Process Server from the Command Line

You may invoke a multi-process server from the OpenVMS command line.

Format
$ java —-Jjar rdbthinsrv.jar [<-option>]..

Elements
See Server Configuration Options for a list of valid <-option>s. Remember that on the

DCL command line, each configuration option must have a hyphen (-) pre-pended to it.

Remarks
Both the thin server and multi-process server are started using the same rdbthinsrv.jar file.

It is the server type that determines the style of server that will be started.

By default, the server is assumed to be of type RdbThinSrv, a standard thin server. To
start a multi-process server, the server type must be set to RdbThinSrvMP.

Alternatively, the developer may wish to create a server definition within an XML-
formatted configuration file and then start the server using its server name. Again the server

type must be set to RdbThinSrvMP.

On the DCL command line you must use double quotes to preserve the case-sensitive type
name.

Example 1

$ java -Jjar rdbthinsrv.jar -port 1755 —-type "RdbThinSrvMP"

Example 2
Given the following server section in the XML-formatted configuration file mycfg.xml:

27

<server
name="Mpservl"
type="RdbThinSrvMP"
url="//localhost:1799/"
sharedmem="102400"
logfile="myLogs:servl.log"
/>

the following method may be used to start this multi-process server:

S java -jar rdbthinsrv.jar -cfg mycfg.xml —-name Mpservl

3.2.2 Shared Memory Usage

The multi-process server needs to allocate shared global memory for communication with
its executors, the size of which you may specify using the sharedmem server
configuration option.

The default allocation for shared memory is 1024 KB and is only adequate for one or two
executors.

A rule of thumb that can be used is to allow 1024 KB for each concurrent executor you
expect to be running in conjunction with the server, but this will depend on the complexity
of the queries, the number of columns involved and the size of the data area that will have
to be created to hold the data returned to the executor by Rdb.

3.2.3 Pre-started Executors

With a multi-process server you may also specify the number of executor process that may
be pre-started when the server starts running, by specifying a positive prestartedExecutors
configuration option.

This is particularly useful if your system takes a while to start OpenVVMS processes and
sub-processes due to system load.

In addition you can also specify the maximum number of free executor process that may be
kept around while the server is running by specifying a positive maxFreeExecutors
configuration option.

By pre-starting executor processes you may reduce the overall elapsed time it takes for a
client to make its initial database connection, but keep in mind that free executors ,

28

although they may not have database connections active, may still have OpenVMS system
resources allocated.

3.2.4 Executor Naming

Each executor started up on a single system requires a unique process name on that system.
By default, a name will be created for the executor based on the name of the server that
started it and a hexadecimal value that represents the instance of the executor process with
relation to the server.

By default, the name of the executor subprocess has the following format:

Format
First seven (7) characters of server name +
eight (8) character hexadecimal id.

Remarks
Names of executors are not case-sensitive.

The first seven (7) characters of the names of multi-process servers started up within the
same system should be unique irrespective of character casing; otherwise, executor process
names may clash.

Example 1

RDBTHNS00000220

The format of the executor names may be changed by using the srv.execPrefix
configuration option:

Format
srv.execPrefix + up to eight (8) character hexadecimal id.

Remarks
If the srv.execPrefix configuration option is specified for a multi-process server, all
executors for that server will have this name prefix. The server will try to provide a unique
name for each executor instance by appending to the given prefix as many characters of the
hexadecimal numeric id of the executor that will still keep the executor name within the
Process name sized expected by OpenVMS.

See XML Formatted Configuration File for more details on server definitions.

29

Example 2
Giventhe srv.execPrefix of "MY EXECUTOR " the fourth executor will be named:

MY EXECUTOR 004

Note:
The longer the prefix, the smaller the number of characters that may be used to
provide uniqueness, so consideration should be given to the number of concurrent
executors that you expect a server to maintain when specify a customized
executor name prefix.

3.2.5 Executor Process Startup

The multi-process server will create a subprocess for each executor it allocates and starts.
OpenVMS command procedures are used during this subprocess creation. Information
about these command procedures may found in the Server Command Procedures and On
Start Commands sections of this document.

If a persona is specified for the server (see Persona for more information) the server will
use the OpenVMS CREPRC system service to start the process. If persona is not used
then the Java System.exec () method will be used instead.

If the server environment, or the JDBC directories are not appropriately setup, errors may
occur during the startup of the executor process.

See File and Directory access Requirements for more details on JDBC directories access
requirements.

The steps taken during the startup of an executor process depend on whether or not
persona is used with the server.

3.2.5.1 Executor Start-up Steps
Without Persona
If persona is not used the following steps are carried out by the server to start an executor:

1. An executor name based on the server name is generated for the new process; see
Executor Naming for more details.

2. An attached process is created using the System.exec () method.

30

With Persona

The command procedure designated by the srv.execStartup option for the
multi-process server is executed. If this option has not been specified for the server
nor for the DEFAULT server in the configuration file, then

RDB$JDBC_ HOME : RDBJDBC STARTEXEC.COM is used. See Server Startup
Command Procedure.

If the srv.onExecStartCmd option is present for this server or for the
DEFAULT server then this command is executed. This is generally used to setup
server and site specific environments. See srv.onExecStartCmd.

The executor image pointed to by the logical name RDBIJDBCEXEC IS executed.

The executor and server establish communications channels using global shared
memory.

If persona is used:

1.

2.

An executor name based on the server name is generated for the new process; see
Executor Naming for more details.

Process quotas are determined for the executor process based on the current quotas
of the executing server.

A termination mailbox is setup for the executor process and read issued.

CREPRC is used to create a process and SYSSSYSTEM: LOGINOUT . EXE is
executed.

Steps 3 thru 6 as described in the previous list above.

3.2.5.2 Executor Process Start-up Problems

If a problem occurs during executor subprocess creation, the status codes relating to the
problem will be written to the server log, for example:

Java.sql.SQLException: Unable to start process,

status: 0x56EC03C : substatus 65535

The status code shown is a VMS status code or an Rdb specific status code; see your
OpenVMS and Oracle Rdb documentation for more information on this status code.

The substatus indicates more information about the problem found. The following table
lists the substatus values and their meanings.

31

Table 3.2-1Substatus Descriptions

substatus Description

12 No more memory, check your quotas.

13 Unable to create command procedure in rdb$jdbc_com:
directory, either insufficient privilege or access denied or there
already exists an earlier version of the file with the same name
but created by another user.

19 Problem in pathname pointed to by rdb$jdbc_com logical
name, invalid device specified.

20 Problem in pathname pointed to by rdb$jdbc_com logical
name, invalid directory specified.

24
Too many files open by server already, check your quotas.

28 Disk full, check the disk pointed to by rdb$jdbc_com.

30 Disk or directory is write-protected, check the disk/directory
pointed to by rdb$jdbc_com.

65530 Process terminated prematurely.

65531 Problem reading termination mailbox.

65532 Problem during call to CREPRC.

65533 Problem getting information about termination mailbox.

65534 Problem creating termination mailbox.

Note:

It is important that the server process has appropriate access rights to the directories

specified by JDBCSRDB_HOME, RDB$JDBC COM and RDB$JDBC_LOGS logical
names, see File and Directory access Requirements for more details.

3.2.6 Executor Maintenance

The multi-process server maintains a list of executor processes that it has started to allow it
to do basic housekeeping on these processes.

At process start up, the server will attempt to create the number of executors specified in the
server configuration parameter prestartedExecutors. Once started, these executors
will be placed in the server’s free executor list.

Executors may be either free, meaning that currently no client is using it, or occupied,
meaning that the executor has been allocated to a client.

32

When an executor is freed, for example, when the occupying connection disconnects, the
server has to decide if it should be kept in its free executor list, or alternatively, closed
down. The server configuration parameter mnaxFreeExecutors specifies the maximum
number of free executors to keep around.

If the server has a positive, non-zero value for its configuration parameter
minFreeExecutors, depending on the executor reuse scheme specified for the server,
it may attempt to prestart enough executors to meet the minimum free executor limit
specified. The server may check the minimum executor level whenever an executor is
allocated from the free list, returned to the free list, or periodically if lost executor
sweeping is enabled.

The server may also periodically check to see if any executors in its free list have been free
for longer than the specified srv.execTimeout. Executors that have exceeded this
limit will be candidates for termination. However, if the number of free executors is less
than or equal to the server configuration parameter ninFreeExecutors, theidle
executor will not be terminated.

3.2.7 Lost Executor Sweep

The server may periodically check occupied executors to ensure that they are still viable.

If an executor process has been terminated unexpectedly, or appears to be unresponsive, the
server will try to ensure that the executors OpenVMS process is terminated correctly and
the client connection will be flagged as lost. The next time the client attempts to carry out
an action, a lost connection exception will be returned to them.

The server configuration parameter srv. lostExecSweep controls how often the server
will do its executor viability checks.

The server may also use the lost executor sweep to ensure that the required minimum
number of free executors are available, see Executor Reuse for more details.

3.2.8 Executor Balancing
Since release 7.3.2.0.0

By default, the multi-process server uses a first-in/first-out (FIFO) scan of its free executor
list to select the next executor process to allocate to the new connection request.

The way the free executor list is scanned to select the next executor process may be
changed to suit your requirements; this is called executor balancing.

33

Executor balancing specifies the order in which the multi-process server should select the
next candidate from the free executor list and may be changed by specifying a value for the
srv.execBalance configuration attribute for that server.

T he srv.execBalance configuration attribute will accept either a numeric value or the
appropriate keyword as shown in the table below. Keywords are not case sensitive.

The following table shows the possible balance values recognized by the multi-process
server:

Table 3.2-2Executor Balancing

Value Keyword Description

0 Default or Use a FIFO to select the next free executor.
FIFO This is the default balancing style.

1 MostMemory Select the executor that has the most

memory already allocated to it.

This is determined by checking the
PAGEFILE count for the executor process.

2 LeastMemory Select the executor that has the least
memory already allocated to it.

This is determined by checking the
PAGEFILE count for the executor process.

3 Oldest Select the executor that has spent the most
amount of time in the current free list.

4 Youngest Select the executor that has spent the least
amount of time in the current free list.

3.2.9 Executor Reuse

By default, the multi-process server will reuse executors when they are free, however, the
server’s reuse of executors may be changed to suit your application and environmental
requirements.

The srv.execReuse configuration attribute is used to set the type of executor reuse the
server should carry out.

34

The following table shows the possible executor reuse values recognized by the multi-
process server:

Table 3.2-3Reuse Executors

Value

Keyword

Description

0

Serial

Reuse executors. The scope of executor use is a single server
connection request. This is the default reuse type.

1

-2

-3

Preemptive

None

Fresh

Fresh_Preemptive

Reuse executors. The scope of executor use is a single server
connection request.

Whenever an executor is allocated to a connection, and the
number of free executors is below the minimum number set by
minFreeExecutors, another executor will be started
concurrently to replace the one used.

If the lost executor sweeper is active, the number of free
executors will be checked on each sweep cycle. If the number
of free executors is below the minimum number set by
minFreeExecutors, executors will be started until the
required minimum number of executors are present.

Do not reuse executors.

On disconnect, the executor will be destroyed, and if the
number of free executors is below the minimum number set by
minFreeExecutors, another executor will be started to
replace the one destroyed.

Do not reuse executors.

On disconnect, the executor will be destroyed, and if the
number of free executors is below the minimum number set by
minFreeExecutors, another executor will be started to
replace the one destroyed.

If the lost executor sweeper is active, the number of free
executors will be checked on each sweep cycle. If the number
of free executors is below the minimum number set by
minFreeExecutors, executorswill be started until the
required minimum number of executors are present.

Do not reuse executors.

Whenever an executor is allocated to a connection, and the

35

Value Keyword Description
number of free executors is below the minimum number set by

minFreeExecutors, another executor will be started
concurrently to replace the one used.

On disconnect, the executor will be destroyed, and if the
number of free executors is below the minimum number set by
minFreeExecutors, another executor will be started to
replace the one destroyed.

If the lost executor sweeper is active, the number of free
executors will be checked on each sweep cycle. If the number
of free executors is below the minimum number set by
minFreeExecutors, executors will be started until the
required minimum number of executors are present.

The srv.execReuse configuration attribute will accept either a numeric value or the
appropriate keyword as shown in the table above. Keywords are not case sensitive.

The different types of executor reuse are described in the following sections.

3.2.9.2 Executor Reuse “Serial”

When a client disconnects, the executor used for the connection will be returned to the
server’s free list to be reused later. This is termed “serial” reuse and is the default reuse

behaviour.

Before returning the executor to the free list, the multi-process server also checks the
number of free executors currently in the free list. If there are already more free executors
than the maxFreeExecutors server configuration attribute, the executor process will be

terminated instead of being returned to the free list.

If the executor reuse is set to serial, the server with disregard any minFreeExecutors
configuration attribute set.

3.2.9.3 Executor Reuse “Preemptive”

If the srv.execReuse configuration attribute is set to “preemptive”, the MP server
will attempt to retain a minimum number of free executors as set by
minFreeExecutors.

As executors are allocated to connections, if the number of free executors is below the
minFreeExecutors value, the server will concurrently start a new executor to replace

the allocated one.

36

If executor processes are prematurely terminated by any means and the lost executor
sweeper is active, the server will attempt to restart enough executors to maintain the
required minimum number.

Before returning the executor to the free list, the multi-process server also checks the
number of free executors currently in the free list. If there are already more free executors
than the maxFreeExecutors server configuration attribute, the executor process will be
terminated instead of being returned to the free list.

3.2.9.4 Executor Reuse “None”

There may be situations where you require pre-started and available executor processes, for
example, to reduce the initial connection time, but require that a fresh OpenVMS process be
used for each new connection.

In these situation it is required that the executor process be pre-started prior to the
connection request, but be terminated after the connection has been released.

The srv.execReuse configuration attribute used in conjunction with the
minFreeExecutors configuration attribute allows you to setup this type of
configuration.

Setting the srv.execReuse configuration attribute to “none”, tells the MP server to
terminate each executor after the client has disconnected from it. At this time, if the current
number of free executors is less than the server’s minFreeExecutors configuration
attribute, and less than maxFreeExecutors, the server will prestart new executor
processes until the minFreeExecutors number of free executor process is reached.

Note:
If the executor reuse is “none”, idle executors are not placed back on the free list and

the associated OpenVMS processes will be terminated.

3.2.9.5 Executor Reuse “Fresh”

If the srv.execReuse configuration attribute is set to “fresh”, the MP server will
terminate each executor after the client has disconnected from it. At this time, if the current
number of free executors is less than the server’s minFreeExecutors configuration
attribute, and less than maxFreeExecutors, the server will prestart new executor
processes until the minFreeExecutors number of free executor process is reached.

37

In addition, if the lost executor sweeper is active, the number of free executors will be
checked on each sweep cycle. If the number of free executors is below the minimum
number set by minFreeExecutors, executors will be started until the required
minimum number of executors are present.

3.2.9.6 Executor Reuse “Fresh Preemptive”

If the srv.execReuse configuration attribute is set to “fresh premptive”, the MP
server will terminate each executor after the client has disconnected from it. At this time, if
the current number of free executors is less than the server’s minFreeExecutors
configuration attribute, and less than maxFreeExecutors, the server will prestart new
executor processes until the minFreeExecutors number of free executor process is
reached.

As executors are allocated to connections, if the number of free executors is below the
minFreeExecutors value, the server will concurrently start a new executor to replace
the allocated one.

If executor processes are prematurely terminated by any means and the lost executor
sweeper is active, the server will attempt to restart enough executors to maintain the
required minimum number.

Contents

3.3 Oracle JDBC for Rdb Pool Server

The Oracle JDBC for Rdb Pool server is a server-side component that accepts connection
requests from the thin driver and redirects the requests to the next available Oracle JDBC
for Rdb server for processing,

Using the Pool server you can designate a single Port ID that can be used by client-side
applications to connect to the next available server. The Pool server selects the next
available server from a table of candidate servers in a round-robin fashion.

Once the connection request has been redirected, the thin driver and the designated server
communicate directly with each other; the Pool server is no longer involved with that
connection.

A Pool server is installed and invoked on each node from which you wish to direct the

access to Oracle JDBC for Rdb servers. Oracle Rdb need not be present on these nodes, as
the Pool server does not communicate directly with Oracle Rdb.

38

The Pool server and its pooled servers do not need to be on the same node, but they must
be able to communicate with each other over TCP/IP. Firewalls and other network security
devices may interfere with this communication.

The Pool server communicates with the thin driver using Java sockets over TCP/IP with the
default Port ID 1702.

Note:
The Pool server carries out server pooling NOT connection pooling. Connections are
created in each connection request and are not reusable.

3.3.1 Starting a Pool Server

A Pool server must be invoked on each node on which you wish to provide server
redirection. The Pool server does not need to be on the same node as its pooled servers.

A Pool server may be invoked by using the appropriate start statement within the
controller, as an Oracle SQL/Services JDBC dispatcher or directly from the operating
system command line.

3.3.1.1 Starting a Pool Server from the Controller

A Pool server may be started from the controller by referencing a Pool server definition in
an XML-formatted configuration file. See Starting Servers within Oracle JDBC for Rdb
Controller for more details.

Example
Given the following server section in the XML-formatted configuration file mycfg.xm1:

<server
name="mypoolserver"
type="RdbThinSrvPool"
url="//localhost:1702/" >
<pooledServer name="srvlforRdb"/>
<pooledServer name="srv2forRdb" />
<pooledServer name="srvMPforRdb"/>

</server>

, the following command may be used to start this server from within the controller:

rdbthincontrol> start server mypoolserver

39

Alternatively the controller may be used in command mode to start a server:

$ java -Jjar rdbthincontrol.jar -cfg mycfg.xml -
—name mypoolserver —startserver

3.3.1.2 Starting a Pool Server from Oracle SQL/Services
A Pool server may be started from the Oracle SQL/Services manager:

Using the Oracle SQL/Services manager, you must first establish a connection to the
SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle
SQL/Services environment.
See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example

$run sys$system:SQLSRV MANAGE72
SQLSRV> connect server;
Connecting to server

Connected

SQLSRV> start disp JDBC DISP;
SQLSRV>

See Oracle SOL/Services and Oracle JDBC for Rdb Servers for more details.

3.3.1.3 Starting a Pool Server from the Command Line
You may invoke a Pool server from the OpenVMS command line.

Format
$ java —-Jjar rdbthinsrvpool.jar [-option]

See Pool Server Configuration Options for a list of valid options.
Each option must have a hyphen (=) prepended to it.

Example

S java —-Jjar rdbthinsrvpool.jar -cfg mycfg.xml -
-name mypoolserver

40

3.3.2 Pool Server Operation

Once started, by default, the Pool server will scan the list of pooled servers in a round-robin
fashion to select the next available server. See the section Pool Balancing on how this scan
order may be changed to suit your needs.

You can start and stop the servers in the pool at anytime. If a server is not available, then
the Pool server will bypass it. The Pool server also has the ability to automatically start up
one or more pooled servers when the Pool server itself starts up.

During Pool server startup, a check is made on each server within its pool to see if the
pooled server has the autoStart option enabled. If autoStart is enabled, then the
command procedure pointed to by the srv. startup option of that pooled server will be
executed. See Server Command Procedures for more details.

While the Pool server is running, it will periodically check to see that each pooled server
within its pool of servers with autoRestart option enabled is still running. If
autoRestart is enabled for a non-running pooled server, the command procedure
pointed to by the srv. startup option of that pooled server will be executed to restart
the server.

You can use the srv.keepAliveTimer option on Pool server start-up to specify the
time between checks for non-running autoRestart servers. See Pool Server
Configuration Options for more details.

If the Pool server is shutdown using the controller or the Oracle SQL/Services manager,
then during server shutdown all pooled servers within the pool that were started by the pool
server will also be shut down.

However, if the Pool server is terminated forcibly by stopping or deleting the OpenVMS
process, it will not be able to carry out an orderly shutdown, in which case its pooled
servers will not be shutdown automatically.

3.3.2.1 Pool Server redirection and failSAFE IP

During connection redirection by the Pool server, the IP of the chosen pooled server will be
returned to the thin driver so that it may redirect the client's connection request to that
chosen server. As the DNS node name conversions may differ on the client and server
node, the Pool server will implicitly convert any named nodes to IP addresses before
returning the resultant IP to the thin driver.

The conversion to IP addresses may limit the failover to a standby address carried out by

failSAFE IP. failSAFE IP is an optional service provided by TCP/IP Services on
OpenVMS to allow IP addresses to fail over when nodes fail.

41

You may specify that the Pool server should not carry out the translation of named nodes to
IP addresses during the connection redirection. This will then maintain the "logical” nature
of the named IP and thus allowing failSAFE IP to correctly redirect to a standby node. See

srv.useLogicalIPs in Pool Server Configuration Options for more details.

3.3.2.2 Server Pool Balancing
By default, the pool server uses a round-robin scan of the pool to select the next candidate
pooled server for allocation. The order in which the pool server scans the pool may be
changed to suit your requirements; this is called server pool balancing.
Server pool balancing specifies the order in which the pool server should select the next
candidate from the pool and may be changed by specifying a value for the srv.balance
configuration attribute for that pool server.

T he srv.balance configuration attribute will accept either a numeric value or the
appropriate keyword as shown in the table below. Keywords are not case sensitive.

The following table shows the possible balance values recognized by the pool server:

Table 3.3-1Pool Balancing

Value Keyword Description

0 Default Use a round-robin to select the next server
from the pool. This is the default balancing
style.

1 Memory Select the server that has the least percentage

of its total global shared memory allocation
currently in use.

2 Users Select the server that has the least number of
users currently connected.

The servers are searched using round-robin.
If the server has no clients currently
connected it will be selected, otherwise the
first server encountered with the least
number of current clients will be selected.

4 Executors Select the server that has the greatest
number of free executors. This is only
applicable to multi-process pooled servers.

Pooled servers that are not multi-process are
deemed to have zero(0) free executors.

42

Value Keyword Description

8 FreeExecutors Using round-robin, select the server that has
at least 1 free executor. If no server is found
to have a free executor then the next server is
selected using round-robin.

16 Usage Select the server that has the greatest
number of free client slots available.

The number of free slots is determined by
subtracting the current number of clients
connected from the maximum number of
clients allowed (maxClients).

The first server found by a round-robin
search to have no clients currently connected
will be selected irrespective of its
maxClients setting.

Servers that have no maxClients limit
will be selected as primary candidates, in
which case the server with the least number
of current clients will be selected.

3.4 Oracle JDBC for Rdb Manager Server

Since release 7.3.2.0.0

The Oracle JDBC for Rdb manager server is a server-side component that services JDBC
management requests.

The manager server is multi-threaded, able to handle multiple management requests at the
same time.

A manager server cannot be used to access databases. Its purpose is to provide a
management capability on nodes that may be remote to where the controller application is
running. Its main function is to handle starting of JDBC servers on remote nodes.

A manager server is installed and invoked on each node on which you wish to remotely

start JDBC servers. Oracle Rdb needs to be installed and running on these nodes, if you
wish to remotely start a JDBC server that will access a local Rdb database.

43

The server communicates with management applications using Java sockets over TCP/IP
with the default Port 1D 2060.

3.4.1 Utilizing a Manager Server

The main purpose of the manager server is to provide a mechanism that will allow JDBC
servers to be started up on nodes remote to the one the controlling application is running.

The manager server can also be used to automatically start servers on its local host and to
periodically check to ensure each server is operational. If the manager server finds a failed
server it can attempt to restart that server. See Manager Server Operations for more details.

Although any JDBC server running on your network may be stopped by the controller as
long as the controller has the appropriate server control password for that server, and has
network access to that node, the invocation or startup of a JDBC server using the controller
is limited to the local node on which the controller application is running.

This is because an OpenVMS process has to be started for the server to run within, which is
more difficult when the node on which the process is to be started is remote to the invoking
application.

Oracle JDBC for Rdb does not use features such as Java RMI to invoke remote events as
this may introduce greater security risks on your network. Thus, without any additional
components, the controller can only start server processes locally.

In order to provide a controlled mechanism to start remote server processes, Oracle JDBC
for Rdb introduced the manager server.

Although the manager server itself needs to be started on the remote node, which is a
necessary bootstrapping step, once it is started it can service requests from the remote
controller application to startup new JDBC server instances.

The manager server will only respond to management requests made from application that
have connected as control users, that is, the application must know the manager server’s
control password to connect successfully to it.

To utilize a manager server for remote server startup, the following steps are required:

1. Startup an instance of a manager server on the remote node you wish to later start
JDBC servers on.
See Starting a Manager Server for more details.

2. Add a manager server entry to the local configuration file that you will be using
with the controller.

3. Request the controller to start the remote server.

44

3.4.2 Starting a Manager Server

A manager server may be started by using the appropriate start statement within the

controller, as an Oracle SQL/Services JDBC dispatcher or directly from the operating
system command line.

The configuration file used to start the manager server should also contain server
definitions for all JDBC servers that you wish to be able to start remotely using this

manager server, otherwise the DEFAULT server definition found in this configuration file
will be used.

3.4.2.1 Starting a Manager Server from the Oracle JDBC for Rdb Controller

A manager server may be started from the controller by referencing a manager server
definition in an XML-formatted configuration file. See Starting Servers within Oracle
JDBC for Rdb Controller for more details.

Example
Given the following server section in the XML-formatted configuration file mycfg.xml:

<server
name="manservl"
type="RdbManSrv"
url="//localhost:2060/"
logfile="myLogs:manservl.log"

/>

the following command may be used to start this server from within the controller:

rdbthincontrol> start server servl

Alternatively the controller may be used in command mode to start a server:

$ java -jar rdbthincontrol.jar -cfg mycfg.xml -
—-name servl —-startserver

3.4.2.2 Starting a Manager Server from Oracle SQL/Services

A manager server may be started from the Oracle SQL/Services manager.

45

Using the Oracle SQL/Services manager, you must first establish a connection to the
SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle
SQL/Services environment.
See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
srun sys$system:SQLSRV MANAGE72
SQLSRV> connect server;
Connecting to server
Connected
SQLSRV> start disp JDBC MANDISP;
SQLSRV>

3.4.2.3 Starting a Manager Server from the Command Line
You may invoke a manager server from the OpenVMS command line.
Instead of placing a number of options on the command line, you may wish to create a
server definition within an XML-formatted configuration file and then start the server using
its server name.

The server type for this server definition must be set to RdbManSrv for a manager server.

Manager servers are invoked using the rdbmansrv jar.

Format
$ java —-Jjar rdbmansrv.jar [<-option>]..

Elements
See Server Configuration Options for a list of valid <-option>s. Remember that on the
DCL command line, each configuration option must have a hyphen (-) prepended to it.

Remarks
By default, the server is assumed to be of type RdbManSrv.

See XML formatted Configuration File for more details on server definitions within
configuration files.

Example 1

S java —-jar rdbmansrv.jar —-port 2666

46

Example 2
Given the following server section in the XML-formatted configuration file

mymancfg.xml:

<server
name="manservl"
url="//localhost:2060/"
logfile="myLogs:manservl.log"

/>
the following method may be used to start this manager server:

$ java -jar rdbmansrv.jar -cfg mymancfg.xml -name manservl

3.4.3 Adding a Remote Manager Server Configuration Entry

In order for the controller to know where manager servers can be found, you have to add
one or more entries to your controller configuration file specifying the name, and url of the

manager Server or Servers.

Once defined, this information will be used by the controller to connect to the appropriate
manager server and request that the designated remote server should be started.

The manager server entry need only contain the name, and url of the manager server.

<server
name="manservl"
url="//myremotenode.adir.com:2060/"

/>

Once defined you may then use the controller to start remote servers on the same node the
manager server is running.

See Using the Controller to Start Remote Servers for more details.

47

3.4.4 Using the Controller to Start Remote Servers.

If a remote node has a manager server currently running you can start a JDBC server on that
node by utilizing the VIA qualifier of the controller start command.

The name of the server you wish to start will be sent to the manager server, which in turn
will lookup that name within the server definitions of its own configuration file to
determine the server characteristics to use. It will then use these characteristics to startup
that server on behalf of the controller.

Example 1
Assuming the local controller configuration file mycfg.xml contains the following server
definition:
<server
name="manservl"
url="//myremotenode.adir.com:2060/"
/>

And that the remote manager server was started on node myremotenode.adir.com
using a configuration file that included the following server definitions:

<server
name="manservl"
type="RdbManSrv"
url="//localhost:2060/"
controlpass="MYCONTROL"

/>

<server
name="mysrvl"
type="RdbThinSrv"
url="//localhost:1701/"

/>

The following local command will start up a thin server called mysrv1 listening on port
1701 on node myremotenode.adir.com:

$java -jar rdb$jdbc home:rdbthincontrol.jar -cfg mycfg.xml
rdbthincontrol> start server mysrvl via manservl Jjones
MYCONTROL

rdbthincontrol>

48

Example 2

If you have a session control password in the configuration file that is the same as the
control password of the manager server then you do not need to give the control password
on the command line.

Assuming the local controller configuration file mycfg.xml contains the following
session and server definitions:

<session
name="DEFAULT"
controlUser="jones"
controlPass="MYCONTROL" />

<server
name="manservl"
url="//myremotenode.adir.com:2060/"

/>

And given the same remote configuration file used for the remote manager server setup as
shown in Example 1, the following local command will start up a thin server called
mysrv1 listening on port 1701 on node myremotenode.adir.com:

$java —-jar rdb$jdbc home:rdbthincontrol.jar -cfg mycfg.xml
rdbthincontrol> start server mysrvl via manservl
rdbthincontrol>

Oracle recommends not to store password in your configuration file, however if you choose
to store them then an obfuscated form should be used. You may use the obfuscate
function within the Controller application to generate an obfuscated password that is suitable
to use with the controlpass property. See Password Obfuscation in Server Configuration
Files for more details.

3.4.5 Manager Server Operations

Once started, by default, the manager server will scan the list of servers found in its
configuration file to determine if any require starting.

49

During the manager server startup, a check is made on each server definition within its
configuration file to locate any servers that have autoStart option enabled. For each
server that has an URL indicating that it should run on the same host on which the manager
server is running, and that has autoStart enabled, the manager server will attempt to start
that server using the command procedure pointed to by the srv. startup option for that
server. See Server Command Procedures for more details.

While the manager server is running, it will periodically check to see that each server found
in its configuration file that has an URL indicating that it should run on the same host on
which the manager server is running, that has the autoRestart option enabled, is still
running. If autoRestart is enabled for a non-running server, the command procedure
pointed to by the srv. startup option of that server will be executed to restart the server.

You can use the srv.keepAliveTimer option on manager server start-up to specify the
time between checks for non-running autoRestart servers. See Manager Server
Configuration Options for more details.

You may also use the srv. keepAliveWait option on manager server start-up to specify
the time the manager server will wait for a newly started server to respond that it has started
successfully. See Manager Server Configuration Options for more details.

If the manager server is shutdown, any servers it has started will continue to run. You may
use the controller to stop these servers if required.

Contents

Chapter 4
Server Configuration

There are a number of configuration options that apply to Oracle JDBC for Rdb servers that
may be used as command line options or as server options inside a configuration file.

See Configuration Files for more details on how to use these options within a configuration
file.

The following sections detail the configuration options and files:
« Server Configuration Options
« Multi-Process Server Configuration Options
« Pool Server Configuration Options
« Manager Server Configuration Options

50

« Configuration Files

4.1 Server Configuration Options

The following server configuration options may be used on the command line or in
configuration files in conjunction with standard thin servers:

Table 4.1-1Server Configuration Options

Option

Default

Description

anonymous

allowAccessToCL

allowAccessToRoot

false

false

false

If specified true, tells the server to allow
anonymous connections, that is,
connections where the user and password
are not specified.

Depending on how the Oracle Rdb database
has been set up, Oracle Rdb may allow
connection to the database without a
username being explicitly specified, in
which case the characteristics of the
authorization account of the server invoker
will be used by Oracle Rdb to determine
database access.

This switch may be used in conjunction
with the password and user configuration
options to provide default authorization on
connections.

By default, anonymous connections are
disabled and the client must specify a valid
username and password combination to
access the Rdb database.

If specified true, indicates that users may be
allowed access to Command Line
operations on the system on which the
server is executing.

This option should only be used within an
XML formatted configuration file.

See Access to the Command Line for more
details.

Since release 7.3.4.0.0
If specified, indicates that users may be

o1

Option

Default

Description

allowCreateDatabase

allowDropDatabase

false

false

allowed access to the server root.

Server root access is required to carry out
operations such as CREATE and DROP
databases.

If the specified value is “true”, all users
will have the ability to connect to the server
root. If the specified value is “priv”, only
privileged users will have the ability to
connect to the server root.

This option should only be used within an
XML formatted configuration file.

See Access to the Server Root for more
details.

By default, server root access is disabled.

Since release 7.3.4.0.0

If specified, indicates that the server will
allow appropriate users the ability to create
new Rdb databases.

If the specified value is “true”, all users
will have the ability to create new database
if allowed by OpenVMS and Rdb. If the
specified value is “priv”, only privileged
users will have the ability create new
databases.

See Create and Drop Database for more
details.
By default, create database is prohibited.

Since release 7.3.4.0.0

If specified, indicates that the server will
allow appropriate users the ability to drop
existing Rdb databases.

If the specified value is “true”, all users
will have the ability to drop databases if
allowed by OpenVMS and Rdb. If the
specified value is “priv”, only privileged
users will have the ability to drop databases.

52

Option

Default

Description

allowShowDatabases

autorestart

autostart

false

false

false

See Create and Drop Database for more
details.
By default, drop database is prohibited.

If specified true, indicates that the server
will respond to user requests for a list of
databases that are known to the server.

The list of known named databases is
specified in the Database section of the
configuration file.

See Named Databases for more details.

If specified true, indicates to any Pool
server that may include this server in its
pool of servers to automatically restart this
pooled server.

See Oracle JDBC for Rdb Pool Server for
more details.

Manager servers may also restart servers
that have this option enabled.

See Oracle JDBC for Rdb Manager Server
for more details.

This option is only valid in an XML
formatted Configuration File.

If specified true, indicates to any Pool
server that may include this server in its
pool of servers to automatically start up this
pooled server.

See Pool Server Operation for more details.

Manager servers may also start servers that
have this option enabled.

See Oracle JDBC for Rdb Manager Server
for more details.

This option is only valid in an XML

53

Option

Default

Description

b or buffersize send_buffer_size

bypass

cfg or configfile file_specification

see
description

false

none

formatted Configuration File.

Provides a hint to the server on sizing of the
underlying network 1/O buffers.

Increasing buffer size can increase the
performance of network 1/0 for high-
volume connection, while decreasing it can
help reduce the backlog of incoming data.

The default buffer size is the current default
network buffer size for TCP/IP set on the
server system.

Specifies true, that if the privilege is
available, bypass will be an allowable
privilege for the server process.

Rdb checks for this privilege to determine
the access rights to databases and database
objects.

If enabled, all validated users connected to
databases via this server instance will be
considered to have bypass privilege.

The default is false where the bypass
privilege is disabled for the server by
default. Validated users who already
possess the bypass privilege will still have
bypass available.

See BYPASS Privileges for more details.

The file specification of a configuration file
where server attributes may be found.

Attributes set in this configuration file may
be overridden by setting the same attribute
at the command line level.

If the file extension is XML, the
configuration parameters are held in a XML
format. See Configuration Files for more
details.

By default no configuration file is used.

54

Option

Default

Description

cli.idleTimeout timeout

controlpass control_password

fs or fetchsize default_fetch_size

lockwait lock wait

none

100

Sets the maximum time, in milliseconds, a
client connection may be idle. If no
operation is carried out using this
connection within the time specified, the
connection will be forcibly disconnected.

A value of zero (0) means unlimited idle
time allowed.

See Client connection timeout for more
details.

Specifies the password that control users
must use to be able to issue control
commands on this server instance.

This password may be either plain text or
an obfuscated password value.

See Control Password for more information
on this password.

Specifies the default fetchsize to use.

The fetchsize provides a hint to the server
indicating the number of records to retrieve
and send back to the client at the one time.

Increasing the fetchsize may improve the
network performance by reducing the
average network overhead per record
retrieved.

Specifies the maximum number of seconds
to wait on getting a record lock.

This switch, used in conjunction with
maxtries and trywait, specifies how often
and how long to try to get a lock on a
locked object before issuing a locked object
exception.

A value of minus one (-1) means wait
indefinitely.

55

Description

Option Default
log or logfile file_specification console
maxclients max_num_of clients -1

maxtries max_num_of lock attempts 10

name server_name see
description
p or port port_num 1701

pw or password default_user_password none

persona username none

Specifies the file specification of the log file
for this server.

If trace is enabled, the trace messages will
be written to this file instead of the console.

By default, trace messages will be written
to the console.

Specifies the maximum number of
concurrent clients this server instance may
handle.

A value of minus one (-1) means allow an
unlimited number of clients.

Specifies the maximum number of times to
try to get a record lock.

This switch, used in conjunction with
lockwait and trywait, specifies how often
and how long to try to get a lock on a
locked object before issuing a locked object
exception.

Specifies a name for this server instance.
This name need not be unique; however the
name may be used to lookup server
information within the start-up
configuration file.

The value of this name is not case-sensitive.

If not specified, a name will be created for
the server based on the server type.

Tells the server to listen on port port_num.
Used in conjunction with the user and
anonymous switches, provides the password
to use on an anonymous connection
Specifies the Operating system username,

which the process running the server will
assume.

56

Option

Default

Description

relay

restrictAccess

restrictSQL sql_verb_list

retainRdbSQL State

srv.bindTimeout timeout

false

false

none

false

If not specified, persona will not be used.
See Persona for more details.

If specified true, designates that this server
should relay poll requests to all active
servers in its network community.

Used in conjunction with allow, deny and
other options to restrict access to designated
databases, users and operations.

This option should only be used within an
XML formatted configuration file.

See Restricting Server, Database and
Operational Access for more details.

Used to restrict allowable SQL statements
to only those that start with the one of the
verbs specified in the comma —separated
verb list.

This option should only be used within an
XML formatted configuration file.

See Restricting SQL Statements for more
details.

Since release 7.3.2.0.0

If specified true, designates that this server
should retain the SQLState values returned
by Rdb and pass them unchanged to the
client.

The default behaviour is to alter the
SQLState values returned under some
circumstances, to a generic “S1000” state.

Sets the timeout, in milliseconds, on
waiting for a database connection to
complete. If the database fails to connect
within this time, an exception will be raised.

A value of zero (0) means unlimited
timeout.

S7

Option

Default

Description

srv.cliStartup file_specification

srv.idleTimeout timeout

srv.mcBasePort base_port

srv.mcGrouplIP group_ip

srv.networkKeepAlive

srv.onStartCmd command

see
description

5517

Specifies the start-up batch or command file
that will be used to execute any CLI
statements the server issues.

If not specified,

rdb$jdbc_home:rdbjdbc execcli.com
will be used.

See Server Command Procedures for more
details.

Sets the maximum time, in milliseconds,
the server will wait for a new client
connection request. If no new connection is
made within the timeout period, the server
will be closed down due to inactivity.

A value of zero (0) means unlimited idle
time allowed.

See Server Inactivity Timeout for more
details.

Specifies the base port number that will be
used for multicast operations.

A value of zero (0) will disable multicast
operations.

239.192.1.1Specifies the multicast IP group within

false

none

which this server will participate.

If specified true, the socket used to connect
to the client will have SoKeepAlive
enabled.

See your socket documentation for more
information on SoKeepAlive (TCP option
SO_KEEPALIVE).

Specifies a DCL command statement that
should be executed prior to starting up a
server.

The specified command will only be

executed if the server is started using the
controller or by a Pool server.

58

Option

Default

Description

srv.password server_password

srv.showPoll

srv.startup file_specification

tl or tracelevel trace_level

transaction transaction_option

tracelocal

none

false

see
description

none

false

See On Start Commands for more details.

Specifies an additional password that clients
need to provide before they may use the
server for database connections.

See Further server access protection for
more details.

If specified true, information about POLL
requests received should be traced, if server
action tracing has been enabled.

See Trace for further information.

Specifies the start-up batch or command file
that will be used by the controller to start
the process for this server.

If not specified,
rdbS$jdbc _home:rdbjdbc startsrv.com

will be used.

See Server Command Procedures for more
details.

Sets the trace level for debugging purposes.
See Trace for further information.

Since release 7.3.4.0.4
Specifies the default transaction behaviour
for all connections using this server.

The value autofetch is the only transaction
option recognized and specifies that
transactions should be auto-committed
when the server sends FETCHSIZE groups
of records back to the client.

See the section Default Transaction for
more information on the autofetch
transaction option.

If specified true, only local server base
tracing should be enabled.

59

Option Default Description
If this option is set, any tracelevel values
specified by a client connection will not
affect the trace level of the server
components.

trywait wait_time 10 Specifies the time in milliseconds to wait

type server_type

u or user default_user_name

url connection_URL

between lock tries.

This switch, used in conjunction with
maxtries and lockwait, specifies how often
and how long to try to get a lock on a
locked object before issuing a locked object
Exception.

A value of zero (0) or a negative value,
indicates not to wait between lock tries.

RdbThinSrv Specifies the server type of this server.

none

none

Valid values are:

* RdbThinSrv - standard thin
server.

* RdbThinSrvSSL - thin server
using SSL for communication.

* RdbThinSrvMP — multi-process
server.

* RdbThinSrvMPSSL — multi-
process server using SSL.

Used in conjunction with the password and
anonymous switches, provides the username
to use on an anonymous connection.

Specifies the node IP and port this server
will run on. This switch overrides any port
switch.

The format of the <connection URL> is
//<node>:<port>/

60

The following server configuration options may only be used in XML-formatted

configuration:

Table 4.1-2Server Configuration Options2

Option

Default

Description

<allow
database ="database-name”>

<allow
IP="ip-mask”>

<allow
privuser="user-name’’>

none

none

none

Since release 7.3.2.0.0

Specifies the name of a database to which
this server will allow access. This is used
in conjunction with the restrictAccess
option.

The named database should also be
described in the same configuration file.

A separate allowDatabase option should be
used for each database to which this server
will allow access.

Note: this form of the allow database
option is only available release 7.3.2.0.0
Oracle JDBC for Rdb and later.

See Restricting Database Access for more
details.

Since release 7.3.2.0.0

Specifies the IPs this server will allow
access from. This is used in conjunction
with the restrictAccess option.

A separate allowIP option should be used
for each IP or IP group from which this
server will allow access.

Note: The allow IP option is only available
option is only available release 7.3.2.0.0
Oracle JDBC for Rdb and later.

See Restricting IP_Access for more details.

Since release 7.3.2.0.0

Specifies the usernames to which this

61

Option

Default

Description

<allow
user="user-name”>

<allowDatabase
name="database-name”>

none

none

server will allow special access.

This is used in conjunction with options
such as the allowAccessToCL option.

A separate allowPrivUser option should be
used for each username to which this
server will allow special access to.

Note: this form of the allow privuser
option is only available release 7.3.2.0.0
Oracle JDBC for Rdb and later.

See Privileged Users for more details.

Since release 7.3.2.0.0

Specifies the usernames to which this
server will allow database access. This is
used in conjunction with the restrictAccess
option.

A separate allowUser option should be
used for each user to which this server will
allow database access.

This option should only be used within an
XML formatted configuration file.

Note: this form of the allow user option is
only available release 7.3.2.0.0 Oracle
JDBC for Rdb and later.

See Restricting User Access for more
details.

Specifies the name of a database to which
this server will allow access. This is used
in conjunction with the restrictAccess
option.

The named database should also be
described in the same configuration file.

62

Option Default

Description

<allowlP none
[P="ip-mask”>
<allowPrivUser none

name=""uUser-name”>

<allowUser none
name=""User-name’>

A separate allowDatabase option should be
used for each database to which this server
will allow access.

See Restricting Database Access for more
details.

Since release 7.3.2.0.0

Specifies the IPs this server will allow
access from. This is used in conjunction
with the restrictAccess option.

A separate allowlP option should be used
for each IP or IP group from which this
server will allow access.

Note: The allow IP option is only available
option is only available release 7.3.2.0.0
Oracle JDBC for Rdb and later.

See Restricting IP_Access for more details.

Specifies the usernames to which this
server will allow special access.

This is used in conjunction with options
such as the allowAccessToCL option.

A separate allowPrivUser option should be
used for each username to which this
server will allow special access to.

See Privileged Users for more details.

Specifies the usernames to which this
server will allow database access. This is
used in conjunction with the restrictAccess
option.

A separate allowUser option should be
used for each user to which this server will

63

Option Default

Description

<deny none
[P="ip-mask”>
<deny none

sql ="sqgl pattern”>

<deny none
user="user-name”>

allow database access.

This option should only be used within an
XML formatted configuration file.

See Restricting User Access for more
details.

Since release 7.3.2.0.0

Specifies the IPs from which this server
will deny access. This is used in
conjunction with the restrictAccess option.

A separate deny IP option should be used
for each IP or IP group from which this
server will deny access.

Note: The deny IP option is only available
release 7.3.2.0.0 Oracle JDBC for Rdb and
later.

See Restricting IP_Access for more details.

Used to restrict allowable SQL statements
to only those that do not match the
provided regular expression pattern.

This option should only be used within an
XML formatted configuration file.

See Restricting SQL Statements for more
details.

Since release 7.3.3.0.0

Specifies the usernames to which this
server will deny database access. This is
used in conjunction with the restrictAccess
option.

A separate deny User option should be

used for each user to which this server will
deny database access.

64

Option Default

Description

<enableEvent none
name="event-name”>

This option should only be used within an
XML formatted configuration file.

Note: the deny user option is only available
release 7.3.3.0.0 Oracle JDBC for Rdb and
later.

See Restricting User Access for more
details.

Since release 7.3.1.0.0

Specifies the events this server should log.
This is used in conjunction with the Events
configuration section.

A separate enableEvent option should be
used for each event this server will log.

This option should only be used within an
XML formatted configuration file.

See Event Logging and Notification for
more details.

See Multi-Process Server Configuration Options for additional options that may be used

with multi-process servers.

See Pool Server Configuration Options for the options that may be used with Pool servers.

Contents

4.2 Multi-Process Server Configuration Options

In addition to the options shown in Server Configuration Options , the following

configuration options may be used on the command line or in configuration files in

conjunction with multi-process servers:

Table 4.2-1Server Config_;uration Options

Option Default

Description

65

Option

Default

Description

maxFreeExecutors
max_num_of free_executors

minFreeExecutors
min_num_of _free_executors

prestartedExecutors
num_of prestarted_executors

sharedMem size_in_KB

srv.execPrefix prefix

srv.execStartup file_specification

srv.execBalance balance

0

1024

see
description

see
description

Specifies the maximum number of free
(unused) executor processes that may be
maintained while the server is running.

Since release 7.3.2.0.0

Specifies the minimum number of free
(unused) executor processes that should be
maintained during executor cleanup due to
excess idle time, or when the executor
reuse is set to “none”.

See Executor Maintenance and Executor
Reuse for more details.

Specifies the number of executor process to
start up when the multi-process server
starts.

Specifies the amount of global shared
memory (in KB) that should be allocated
by the server.

Specifies the prefix to use for executor
names.

If not specified, a standard prefix based on
server name will be used.
See Executor Naming for more details.

Specifies the start-up batch or command
file that will be used to start the subprocess
for each client connection.

If not specified,
rdbS$jdbc home:rdbjdbc startexec.com

will be used.

See Server Command Procedures for more
details.

Since release 7.3.2.0.0
Sets the executor balancing to be used.

A value of zero (0) means FIFO.
See Executor Balancing for more details.

66

Option

Default

Description

srv.execReuse reuse

srv.execTimeout timeout

srv.lostExecSweep wait_time

srv.mpMaxTries maximum_tries

srv.mpTryWait wait_time

srv.onExecStartCmd command

0

30000

500

10

none

Since release 7.3.2.0.0
Sets the executor reuse to be used.

A value of zero (0) means “Serial” reuse.
See Executor Reuse for more details.

Sets the timeout, in milliseconds, that an
unused executor process can remain idle in
the free executor queue before being
terminated.

A value of zero (0) means unlimited
timeout.

Since release 7.3.1.0.0

Specifies the time, in milliseconds, to wait
before checking for lost executor processes
again.

The default is 30 seconds.

A value of zero (0) will disable lost
executor sweeps.

Specifies the number of times the server
should try to synchronize handshake with
executor before giving up.

Specifies the time in milliseconds to wait
between server/executor handshake
synchronization tries.

Specifies a DCL command statement that
should be executed prior to starting up an
executor.

See On Start Commands for more details.

See Executor Maintenance for more information on executor housekeeping carried out by

the multi-process server.

Contents

67

4.3 Pool Server Configuration Options

The valid configuration options that may be used with a Pool server can be found in the

following table:

Table 4.3-1Pool Server Configuration Options

Option Default

Description

cfg or configfile none
configuration_filename

controlpass control_password none

log or logfile console
file_specification

node<n> node none

pOO|S€I’V€I’ none

The file specification of a configuration
file where server attributes may be
found.

Attributes set in this configuration file
may be overridden by setting the same
attribute at the command line level.

If the file extension is XML, the
configuration parameters are held in a
XML format.

By default no configuration file is used.
See Configuration Files for more
details.

Specifies the password that control users
must use to be able to issue control
commands on this server instance.

See Control Password for more
information on this password.

Specifies the file specification of the log
file for this server. If trace is enabled,
the trace messages will be written to this
file instead of the console.

By default trace messages will be
written to the console.

Specifies the node on which the thin
server number <n> resides.

This option is not valid for use in XML-
formatted configuration files.

Specifies that the server should act as a
Pool server.

68

Option

Default

Description

poolsize pool_size

port<n> port_num

p or port port_num

srv.balance balance _type or
srv.balance balance_keyword

srv.keepAliveTimer seconds

srv.mcBasePort base port

srv.mcGrouplIP group_ip

none

none

1701

0
Default

60

5517

239.192.1.1

This is a mandatory option if used on the
command line or a non-XML formatted
configuration file.

Specifies the number of thin servers that
will be specified.

This is a mandatory option if used on
the command line or a non-XML
formatted configuration file.

Specifies the port for the thin server
number <n> in server list.

This option is not valid for use in XML-
formatted configuration files.

Tells the Pool server to listen on port
port_num.

Specifies the server pool balancing to
use. The option value may be a numeric
literal or a keyword.

See Server Pool Balancing for more
details.

Sets the time, in seconds, of the duration
between Pool server checks for non-
running pooled servers that have
autoRestart enabled.

See Oracle JDBC for Rdb Pool Server
for more details.

Specifies the base port number that will
be used for multicast operations.

A value of zero (0) will disable multicast
operations.

Specifies the multicast IP group within
which this server will participate.

Option Default

Description

srv.password server_password none

srv.useLogicallPs false

tl or tracelevel trace level 0

type server_type

url connection_URL none

Specifies an additional password that
clients need to provide before they may
use the server for database connections.

See Further server access protection for
more details.

Only Valid for Pool servers.

Specifies that the server should not
translate named IP values to IP
addresses prior to redirecting connection
request.

See Using OpenVVMS FailSAFE IP for
more details.

Sets the trace level for debugging
purposes.
See Trace for further information.

RdbThinSrvPool Specifies the server type of this server.

Valid values are:
e RdbThinSrvPool -Pool
server.
e RdbThinSrvPoolSSL - Pool
server using SSL.

Specifies the node IP and port this server
will run on.

This switch overrides any port switch .

The valid configuration options that may be used in conjunction with a Pool server, and
used only within an XML-formatted configuration file, can be found in the following table:

Table 4.3-2Pool Server Configuration Options2

Option Default

Description

<pooledserver none

name=""Server-name”>

Specifies the name of a server that will
take part in the pool.

The named server should also be

70

Option Default Description

described in the same configuration file.

As there may be a number of servers listed in the server pool, Oracle advises to use the
configuration file to specify these options.

If you are using a standard configuration file, the number of servers in the pool is specified
by the poolsize option. In the case of an XML-formatted configuration file, the number of
servers in the pool will be the same as the number of PooledServer subsections within the

server definition.

Each server participating in the pool must have both a node and a port id specified for it.

See Configuration Files for examples of configuring a Pool server.

Contents

4.4 Manager Server Configuration Options

The valid configuration options that may be used with a manager server can be found in the
following table:

Table 4.4-1Manager Server Configuration Options

Option Default Description

cfg or configfile none The file specification of a configuration

configuration_filename file where server attributes may be
found.

Attributes set in this configuration file
may be overridden by setting the same
attribute at the command line level.

If the file extension is XML, the
configuration parameters are held in a
XML format.

By default no configuration file is used.
See Configuration Files for more
details.

controlpass control_password none Specifies the password that control users
must use to be able to issue control
commands on this server instance.

71

Option

Default

Description

log or logfile file_specification

p or port port_num

srv.keepAliveTimer seconds

srv.keepAliveWait seconds

srv.mcBasePort base port

srv.mcGrouplP group_ip

tl or tracelevel trace_level

type server_type

console

1701

60

60

5517

239.192.1.1

RdbManSrv

See Control Password for more
information on this password.

Specifies the file specification of the log

file for this server. If trace is enabled, the
trace messages will be written to this file
instead of the console.

By default trace messages will be written
to the console.

Tells the server to listen on port
port_num.

Sets the time, in seconds, of the duration
between manager server checks for non-
running servers that have autoRestart
enabled.

See Oracle JDBC for Rdb Manager
Server for more details.

Sets the time, in seconds, the manager
server will wait for a newly started
server to confirm it has started correctly,
before raising a failed server event.

See Oracle JDBC for Rdb Manager
Server for more details.

Specifies the base port number that will
be used for multicast operations.

A value of zero (0) will disable multicast
operations.

Specifies the multicast IP group within
which this server will participate.

Sets the trace level for debugging
purposes.
See Trace for further information.

Specifies the server type of this server.

72

Option Default Description

Valid values are:
* RdbManSrv - Manager server.
* RdbManSrvSSL — Manager
server using SSL for
communication.

url connection_URL none Specifies the node IP and port this server
will run on.

This switch overrides any port switch.

See Configuration Files for examples of configuring a manager server.

Contents

4.5 Configuration Files

Instead of setting the switches on the command line, you can specify a configuration file
that details the settings.

Two formats of configuration files are recognized:

« Standard Java Properties load file
 XML-formatted file

4.5.1 Standard Properties File

The following section describes the use of configuration file formatted as a standard Java
Properties load file. See XML Formatted Configuration File for details on using an XML-
formatted configuration file.

Most of the server configuration options as specified in configuration options tables can be
used but with the following changes:

« Each keyword requires a value, even those that do not have values on the command -
line; these options are considered Booleans and thus should have the appropriate
‘TRUE’ value.

« Each keyword must be separated from its value by an equals sign (=)

73

The —cfg switch on the command line allows you to specify the file specification of this
configuration file:

Format
$java —jar rdbS$jdbc home:rdbthinsrv.jar -cfg thinsrv.cfg

Example
Java style comments and empty lines may be included in the file, for example:

//

// configuration file for our thin server

//
// the default port for the thin server is 1701 but we

// want it to listen on another port
port=1708

// allow anonymous connections
anonymous=true

// enable password display
showpass=true

// limit the number of clients
maxclients=10

// set the locking keywords
lockwait=2
maxtries=20

// end of config file

In addition, the configuration file for a Pool server should contain information about the list
of servers to which it may delegate connection requests, for example:

//

// configuration file for Pool server

//

// the default port for the Pool server is 1702
port=1702

// show is a Pool server and the poolsize
// (number of subservient servers)
poolserver=true

poolsize=4

74

// now add the servers
nodel=MYNODE1
portl=1704

node2=MYNODE1
port2=1705

node3=MYNODE1
port3=1706

node4=MYNODEZ
port4=1704

// end of config file

Contents

4.5.2 XML-Formatted Configuration File

Instead of setting the switches on the command line, you can specify an XML-formatted
configuration file that details the settings of these switches. The XML-formatted
configuration file allows a greater number of configuration options to be specified than the
standard CFG file and is the recommended configuration file format.

The XML-formatted configuration file differs from the standard CFG file in that it may
contain information about multiple servers in the same configuration file.

Each server is specified within a separate server section and must be given a unique name.
This name is used to get default configuration information about the server on server start-
up, as well as how a server may be identified on your system and within the controller
interface.

The —cfg switch on the command line allows you to specify the file specification of this
file.

The server configuration options as specified in configuration options tables can be used but
with the following changes:

« Each keyword requires a value, even those that do not have values on the
command line. These options are considered Boolean values and thus should have
the appropriate ‘“TRUE’ value.

« Each keyword must be separated from its value by an equals sign (=).

« All option values must be enclosed in double quotation marks.

75

The configuration document is a hierarchical XML object. Each keyword must be placed

within its appropriate section or subsection.

Multiple servers may be specified within the same configuration file but each server must

have a unique name.

The format of the contents of the configuration file is XML V1.0.

Format

$java . . . —cfg <config file>.xml

Example

<?xml version = '1.0'?>
<!—Configuration file for Rdb Thin JDBC Drivers
>

<config>
<!—SERVERS -->
<servers>
<!-DEFAULT server characteristics-->
<server

name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="1000"
srv.idleTimeout="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

tracelevel = "Q"
autostart = "false"
autorestart = "false"
restrictAccess = "false"
anonymous = "false"
bypass = "false"
tracelocal = "false"
relay = "false"

controlUser="control user"

and Servers

controlPass="0x18EQ007C81F6B2E2EA02065F78A587BD3"

cfg="rdb$jdbc com:rdbjdbccfg.xml"

srv.execStartup="rdb$jdbc home:rdbjdbc startexec.com"
srv.startup="rdb$jdbc_home:rdbjdbc startsrv.com"

sharedmem = "Q"
/>
<!-DEFAULT Secure socket server -->
<server

name="DEFAULTSSL"

76

type="RdbThinSrvSSL"
ssl.default="false"
ssl.context="TLS"
ssl.keyManagerFactory="SunX509"
ssl.keyStoreType="jks"
ssl.keyStore="rdbjdbcsrv.kst"
ssl.keyStorePassword="CHANGETHIS"
ssl.trustStore="rdbjdbcsrv.kst"
ssl.trustStorePassword="CHANGETHIS"

/>

<!—now specific servers that will be started up by Pool

server —-->

<server
name="srvlforRdb"
type="RdbThinSrv"
url="//localhost:1701/"
autoStart="true"
autoRestart="true"
logfile="rdb$jdbc logs:srvlforRdb.log"
tracelevel="-1"
maxClients="1"

/>

<server
name="srv2forRdb"
type="RdbThinSrv"
url="//localhost:1708/"
autoStart="true"
logfile="rdb$jdbc logs:srv2forRdb.log"

/>

<!—MP server -->

<!—sharedmem is in KB default = 1024 -->

<server
name="srvMPforRdb"
type="RdbThinSrvMP"
url="//localhost:1705/"
autoStart="true"
maxClients="10"
maxFreeExecutors="10"
prestartedExecutors="10"
sharedMem="10240"

/>

<!—the Pool server -->

<server
name="rdbpool"
type="RdbThinSrvPool"
url="//localhost:1702/" >

77

<pooledServer name="srvlforRdb"/>

<pooledServer name="srv2forRdb"/>

<pooledServer name="srvMPforRdb"/>
</server>

<!—Secure socket server -->

<server
name="srvssllforRdb"
type="RdbThinSrvSSL"
url="//localhost:1709/"

/>
<!— a Manager server —-->
<server

name="rdbman"

type="RdbManSrv"

url="//localhost:2060/"
/>

</servers>
<!—database -->
<databases>
<database
name="mf pers"
url="//localhost:1701/mydisk: [databases]mf personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"
/>
<database
name="pers"
url="//localhost:1702/mydisk: [databases]personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"
/>

</databases>

</config>

The XML-formatted configuration file is an XML document that is composed of several
sections and sub-sections.

Description of the sections and sub-sections within an XML-formatted configuration file is
now presented:

» Config Section
« Session Section

78

Databases Section

Database Section

Events Section
Event Section
Servers Section

Server Section
Pooled Server Subsection

Allow Database Subsection

Allow IP Subsection

Allow User Subsection

EnableEvents Subsection

Deny IP Subsection

Deny SQL Subsection

4.5.2.1 Config Section

This section covers the entire configuration settings and contains the specific configuration
sections as described below.

Format

<config>

</config>

[
[
[
[

session section]
databases section
servers section |
events section]

4.5.2.2 Session Section

This section describes session characteristics for an interactive session. Information within
the session section is currently only used by the Oracle JDBC for Rdb controller. You can
specify information such as passwords and user names that may be used when you start up
a controller session.

If it exists, the session named DEFAULT will be used to setup the default session

characteristics.

These session properties provide an alternate way of specifying options you may have
otherwise supplied on the command line during controller startup.

Format

<session

/>

[

session property]..

79

Options

Valid properties for the session section can be seen in the following table:

Table 4.5-1Session Section Properties

Option

Default

Description

controlPass

controlUser

password

name

user
tracelevel

srv.mcBasePort <base_port>

none

none

none

none

none

5517

Specifies the password that will be used by
default when connecting to an active server
for control purposes.

Note: This password can be a plain-text or
obfuscated password created using the
obfuscate command.

You should not use an obfuscated password
created using the digest command, as the
server will not recognize the password.

See Password Obfuscation in Server
Configuration Files for more details.

User name to use on control connections.

Currently this has the same function as
controlPass, however if both are present,
controlPass will take precedence.

Note: This password can be a plain-text or
obfuscated password created using the
obfuscate command.

You should not use an obfuscated password
created using the digest command as the
server will not recognize the password.

See Password Obfuscation in Server
Configuration Files for more details.

Name for this session description; must be
DEFAULT.

User name to use on connection.
The sessions default trace level.

Specifies the base port number that will be
used for multicast operations.

80

Option Default Description

srv.mcGrouplP <group_ip> 239.192.1.1 Specifies the multicast IP group that will be
used for multicast operations.

ssl.* none Specifies SSL configuration information for
the session that may be used to connect to
SSL-enabled thin servers. See Using SSL
for more information.

Example

<session
name="DEFAULT"
controlPass="jdbc control"
user="jdcb user"
password="jdbc control"
tracelevel="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

/>

Note:

1. The session properties srv.mcBasePort and srv.mcGroupI P specify
the multicast attributes that should be used for polling servers. Only those
servers participating in the specified multicast group will respond to any poll
requests issued by the controller.

2. Although the user and control passwords may be stored in plain-text format
in the configuration file as shown in the example above, this may be
contrary to your organization's security policy. Oracle recommends to not
store plain-text passwords in your configuration files, instead the
appropriate command line switches should be used to provide the password.

3. User passwords and control passwords used within the session section of the
configuration file may be stored as obfuscated values created using the
Obfuscate command. Control passwords associated with servers may also be
specified in the server section of the configuration file as obfuscated values
created using the Digest command.

4.5.2.3 Databases Section

This section specifies one or more database sections.

81

Format
<databases>

[database section]..
</databases>

4.5.2.4 Database Section

This section specifies a named database with the given properties.

Format
<database>
[database property ..
/>
Options

Valid properties for the database section can be seen in the following table:

Table 4.5-2Database Section Properties

Option Default

Description

name none

url none

driver none

URLPrefix none

The name by which the Oracle JDBC for Rdb
drivers may recognize this database.

This name is required and must be unique
within the databases section of this
configuration file.

The url that may be used to access this
database.

The class path of the preferred JDBC driver
that may be used to access this database.

The prefix that needs to be added to the url
above to provide a complete JDBC
Connection URL.

Example

<!—database -->
<databases>

82

<database
name="mf pers"
url="//localhost:1701/mydisk: [databases]mf personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"

/>

<database
name="pers"
url="//localhost:1702/mydisk: [databases]personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"

/>

</databases>

4.5.2.5 Events Section
Since release 7.3.1.0.0

This section specifies one or more event sections.
Format
<events>

[event section]..
</events>

4.5.2.6 Event Section

This section specifies a named event with the given properties.

Format
<event>
[event property 1]..
/>
Options

Valid properties for the event section can be seen in the following table:

Table 4.5-3EventSection Properties

Option Default Description

name none The name by which the Oracle JDBC for Rdb
servers may recognize this event.

This name is required and must be unique

83

Option Default Description

within the events section of this configuration

file.
type none The type or category of the event.
See Event criteria for more details.
watch none The criteria that should be watched.

The watch criteria depends on the event type.
See Event criteria for more details.

pattern none The pattern that should be used to filter the
event watch criteria.

The pattern is a Java regular expression that
will be used to match the watched criteria.
See Event criteria for more details.

threshold “Max” The actual value that has to be met, exceeded,
or near to trigger a threshold event. See Event
criteria for more details.

deviation none The allowed deviation that the watched
criteria can have before the event will be
triggered. See Event criteria for more details.

testFor none Criteria condition to test for.
See Event criteria for more details.

message none This is the customized message that will be
logged when this event is triggered.

Example

<!—Rdb events -->

<events>
<event
name = "NO TABLE"
type = "EXCEPTION"
watch = "SYSERROR"
pattern = ".*RELNOTDEF.*"
message = "Problem with table "
/>

84

<event

name = "Near Max"
type = "THRESHOLD"
watch = "NUMUSERS"
deviation="-3"
message = "The number of users nearing maximum allowed"
/>
</events>

Details on using the various event properties may be found in Defining and Enabling Events.

4.5.2.7 Servers Section
This section specifies one or more server property sections.
Format
<servers>

[server section]..
</servers>

45.2.8 Server Section

This section specifies one or more properties to assign to this server. See Server
Configuration for details on the properties that may be set.

Format

<server
<property="value"/>..

/>

or

<server
<property="value"/>..

>

pooled server subsection]..
allow database subsection]..
allow IP subsection]..

allow user subsection]..
enabled event subsection]..
deny IP subsection]..

deny SQl1 subsection]..

L B B e T e B s T e B |

85

</server>

Example 1

A standard thin server called serv1 listening on port 1799 could be described using the
following Server Property section:

<server

/>

Remarks

name="servl"
type="RdbThinSrv"
url="//localhost:1799/"
logfile="myLogs:servl.log"

Default server characteristics for server configuration can be specified so that options need
not be repeated within the specific server configuration sections. Default server options
may be specified by declaring a server section with a name of DEFAULT or DEFAULTSSL:

<server

/>

name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="0"
srv.idleTimeout="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.1.1.1"
autoStart="false"
controlUser="jdbc user"
controlPass="0x811B15F866179583EB3C96751585B843"

The DEFAULT and DEFAULTSSL server definitions should only be used to define the
default server characteristics and are not intended to represent actual server instances that
can be started by the controller or Pool servers.

These default server properties will be assigned to each server found defined after them in
the configuration file unless explicitly overridden in the specific server subsection.

The placement of the DEFAULT and DEFAULTSSL server sections within the
configuration file is important. Only those servers defined in sections that occur after these
default definitions will have these default characteristics. Any server section specified prior
to the default server sections will not get these default characteristics. Oracle recommends
that these two sections be the first two server sections within your configuration file.

86

If subsections such as Pooled Server or Allowed Database are required, then the
second format for a Server section must be used.

Example 2

<server
name="rdbpool"
type="RdbThinSrvPool"
url="//localhost:1702/" >
<pooledServer name="srvlforRdb"/>
<pooledServer name="srv2forRdb" />
<pooledServer name="srvMPforRdb" />

</server>

4.5.2.9 Pooled Server Subsection

This subsection specifies a server that will take part in the Pool server's server pool, and is
valid only when used within an RdbThinSrvPool server declaration.

The declared server name must reference a server already named in this configuration file.
Multiple PooledServer subsections may be present in a single server declaration.

The set of pooledServers provided will make up the pool of servers that the Pool
server may try to access.

Format
<pooledServer name="declared server"/>
Example
<server
name="rdbpool"
type="RdbThinSrvPool"
url="//localhost:1702/" >
<pooledServer name="srvlforRdb"/>
<pooledServer name="srv2forRdb"/>
<pooledServer name="srvMPforRdb"/>
</server>

87

45.2.10 Allow Database Subsection

This subsection specifies the database that clients using the server may access, and is only
valid when used within a server declaration.

The declared database name must either reference a database already named in the database

section of this configuration file, or must be a valid database file specification or logical
name.

Multiple A11owDatabase subsections may be present in a single server declaration.

For database access to be restricted the server attribute restrictAccess must be set
"true".

See the section Restricting Database Access for more details

Format

<allowDatabase name="db specification" />
Alternatively, from release 7.3.2.0.0 onwards:

<allow database="db specification" />

Example
<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true"
>
<allowDatabase name="mf pers"/>
<allowDatabase name="diskl: [databases]customers"/>
</server>

45211 Allow IP Subsection
Since release 7.3.2.0.0

This subsection specifies the IPs that may be allowed to access this server, and is only valid
when used within a server declaration.

The declared IP must be a valid IPv4 dot-decimal formatted IP string, or a Java regular
expression based on the same standard IPv4 dot-decimal notation.

88

Format

Multiple 211 owIP subsections may be present in a single server declaration.

For IP access to be restricted the server attribute restrictAccess must be set
"true".

This feature is only available when using Oracle JDBC for Rdb release 7.3.2.0.0 and later.

See the section Restricting IP Access for more details.

<allowIP IP="IP allowed" />

0

r

<allow IP="IP allowed" />

Example

<server

name="srv2restrict"

type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true"

>

<allow IP ="170.0.0.1"/>

<allow IP ="170\.0\.0\. ([5-7]11[8=-9])"/>

</server>

45.2.12

Allow User Subsection

This subsection specifies the usernames the server will allow access to, and is only valid
when used within a server declaration.

The declared username must be a valid username recognized by Rdb. The matching of
usernames by the server for this level of restriction is not case-sensitive.

Multiple A11owUser subsections may be present in a single server declaration.

For user access to be restricted the server attribute restrictAccess must be set
"true".

See the section Restricting User Access for more details

89

Format

<allowUser name="username" />
Since release 7.3.2.0.0

Alternatively, from release 7.3.2.0.0 onwards:
Format

<allow user="username" />

Example

<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true"

>

<allowUser name="smith"/>
<allowUser name="jones"/>

</server>

45.2.13 EnableEvents Subsection
Since release 7.3.1.0.0

This subsection specifies the events the server should log, and is only valid when used
within a server declaration.

Multiple enableEvent subsections may be present in a single server declaration.

See Event Logqging and Notification for more details.

Format
<enableEvent name="event name" />
Example

<server
name="srv2"
type="RdbThinSrv"
url="//localhost:1701/"
>
<enableEvent name="BAD TABLE"/>

<enableEvent name="DENIED SQL"/>
</server>

The name provided in the enableEvent must match a valid Event specified in the
Events Section of the same configuration file.

45.2.14 Deny IP Subsection
Since release 7.3.2.0.0

This subsection specifies the IPs that may be denied to access this server, and is only valid
when used within a server declaration.

The declared IP must be a valid IPv4 dot-decimal formatted IP string, or a Java regular
expression based on the same standard IPv4 dot-decimal notation.

Multiple DenyIP subsections may be present in a single server declaration.

For IP access to be restricted the server attribute restrictAccess must be set
"true".

This feature is only available when using Oracle JDBC for Rdb release 7.3.2.0.0 and later.

See the section Restricting IP Access for more details.

Format

<denyIP IP="IP denied" />
or

<deny IP="IP denied" />

Example

<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true"
>
<deny IP ="170.0.0.1"/>
<deny IP ="170.0.0.2"/>

</server>

91

4.5.2.15 Deny SQL Subsection
Since release 7.3.1.0.0

This subsection specifies the SQL statement that should be denied by the server, and is
only valid when used within a server declaration.

Multiple Deny subsections may be present in a single server declaration.

See Restricting SOL Statements for more details.

Format

<deny SQL="sgl pattern" />

Example
<server
name="srv2"
type="RdbThinSrv"
url="//localhost:1701/"
>
<deny SQL =" (?1i).*select.*jobs.* "/>
<deny SQL =" (?1).*select.*from.*employees.* "/>
</server>

4.5.3 Using filenames in the configuration file

A number of attributes within the configuration file sections require the specification of a
filename, for example:

cfg="<filename>"
log="<filename>"
srv.execStartup="<filename>"
srv.startup="<filename>"

The filename must be a valid OpenVMS file specification that may contain a full or partial
file path and may include logical names.

You must ensure that, if logical names are used, they are available to the context within

which the server will be started, and that the file is accessible by the VMS user that starts
up the server.

92

If a server defined in the configuration will be started up using the controller, as a pooled
server by a Pool server, or by Oracle SQL/Services, a detached process will be created for
the server and the LOGINOUT.EXE will be run to ensure a valid process environment
under which Java and Oracle Rdb can be accessed.

Because the LOGINOUT . EXE program is run, any file specification using relative file
paths must be relative to the login directory of the invoker, otherwise a full file
specification must be used.

Contents

Chapter 5
Using SSL

Secure Sockets Layer (SSL) was developed to provide security for Web traffic, including
confidentiality, message integrity, and authentication. SSL achieves this through the use of
cryptography, digital signatures, and certificates.

Oracle JDBC for Rdb servers and thin clients may use SSL for communication over
TCP/IP. SSL allows an SSL-enabled server to authenticate itself to an SSL-enabled client,
allows the client to authenticate itself to the server, and allows both machines to establish
an encrypted connection.

Before trying to use SSL with the thin driver, you should familiarize yourself with general
Java security and SSL concepts. Please refer to your Java documentation for general
information on SSL and Java Security.

The following sections provide SSL information specific to using SSL with the thin driver
and assume a basic understanding of Java Security and SSL:

» SSL Configuration
« SSL and the Controller
» SSL Configuration Options

5.1 SSL Configuration

Information about SSL connection characteristics must be provided to both the client and
server, and in order for a communication channel to be established, both the server and
client must agree on the SSL security characteristics.

In addition, it is important that both the client and the server have the same security
certificate for authorization. The following sections detail how to provide SSL

93

characteristics in a client connection request and to an SSL-enabled Oracle JDBC for Rdb
server:

« Client SSL Configuration

« Server SSL Configuration

5.1.1 Client SSL Configuration

The client application must specify its SSL characteristics during its connection request to
the thin driver. The simplest way of doing this is by providing extra SSL information in the
properties block that is passed to the DriverManager.getConnection () method.

The SSL information provides information such as where to find the appropriate certificate
for SSL connections and what context and protocols should be used to carry out the SSL
handshake during connection set-up.

Example 1

Properties info = new Properties();

info.put ("user", user);

info.put ("password", password):;

info.put ("tracelevel", tracelevel);

info.put ("ssl", "true");

info.put ("ssl.default", "false");

info.put ("ssl.context", "TLS");

info.put ("ssl.keyManagerFactory", "SunX509");
info.put ("ssl.keyStoreType", "jks");

info.put ("ssl.keyStore", "rdbjdbccli.kst");
info.put ("ssl.keyStorePassword", "CHANGETHIS")
info.put ("ssl.trustStore", "rdbjdbccli.kst");
info.put ("ssl.trustStorePassword", "CHANGETHIS")

Connection conn =
"jdbc:rdbThin://bravo:1755/my db dir:pers",

Remarks

DriverManager.getConnection (
info);

The properties block must have the property ssl set to true for SSL connections to be

attempted.

In addition, the SSL characteristics can be specified explicitly as properties, or you may use
ssl.default setto true to request that the default SSL characteristics for your system

should be used.

Example 2

Properties info =

new Properties();

94

info.put ("user", user);

(
info.put ("password", password):;
info.put ("tracelevel", tracelevel);
info.put("ssl", "true");

info.put ("ssl.default", "true");
Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1755/my db dir:pers", info);

Remarks
See SSL configuration options for details of the ssl.* options.

For an SSL connection to be made, the appropriate certificate for the server to which you
are trying to attach to should be in the keystore you have designated in the SSL properties
for the connection.

If no certificate is found the following exception will be raised:

javax.net.ssl.SSLException: No available certificate
corresponds to the SSL cipher suites, which are enabled.

See your Java Security documentation for more information on certificates.

5.1.2 Server SSL Configuration

An SSL-enabled server must also be provided with SSL configuration information. This is
usually provided within the server section for the named server in an XML-based
configuration file.

To indicate that the server should be SSL-enabled, the server must be defined as one of the
following SSL server types:

* RdbThinSrvSSL

* RdbThinSrvMPSSL

* RdbThinSrvPoolSSL
* RdbManSrvSSL

Example 1
<server
name="MYSSL"
type="RdbThinSrvSSL"
ssl.default="false"
ssl.context="TLS"
ssl.keyManagerFactory="SunX509"

95

ssl.keyStoreType="jks"

ssl.keyStore="rdbjdbcsrv.kst"

ssl.keyStorePassword="CHANGETHIS"

ssl.trustStore="rdbjdbcsrv.kst"

ssl.trustStorePassword="CHANGETHIS"
/>

Remarks
If you wish to define a number of SSL-enabled servers with the same SSL characteristics,
then you can use the special DEFAULTSSL server definition to define the default
characteristics. Each subsequent server definition that has one of the SSL server types will
use these characteristics, unless explicitly overridden in the server definition.

Example 2

<server
name="DEFAULTSSL"
type="RdbThinSrvSSL"
ssl.default="false"
ssl.context="TLS"
ssl.keyManagerFactory="SunX509"
ssl.keyStoreType="jks"
ssl.keyStore="rdbjdbcsrv.kst"
ssl.keyStorePassword="CHANGETHIS"
ssl.trustStore="rdbjdbcsrv.kst"
ssl.trustStorePassword="CHANGETHIS"

/>

<server
name="SSLsrvl1l"
type="RdbThinSrvSSL"
url="//localhost:1707/"

/>

<server
name="SSLsrv2"
type="RdbThinSrvMPSSL"
url="//localhost:1708/"
sharedMem="10000"

/>

<server
name="SSLmansrv"
type="RdbManSrvSSL"
url="//localhost:2061/"

/>

96

Remarks
If a Pool server is SSL-enabled, for security reasons it will only communicate with pooled
servers within its pool that are also SSL-enabled. Non-SSL-enabled pooled servers within
the pool will be ignored and will not be considered candidates for redirection of connection
requests.

See SSL Configuration Options for details of these options.

5.2 SSL and the Controller

All connections made to SSL-enabled servers must be made using SSL connections. This
also includes the controller.

If the controller will be used to manage SSL-enabled servers, then the controller session
must also have the correct SSL information to make the secure connection to the server.

You can specify the SSL information that the controller uses for connecting to SSL-enabled
thin servers by starting the controller using an XML-formatted configuration file that has
the appropriate SSL information in its SESSION section.

Example

<session
name="DEFAULT"
controlPass="jdbc user"
user="ctsl"
password="jdbc user"
tracelevel="0"
srv.mcBasePort="5518"
srv.mcGroupIP="239.192.1.2"
ssl.default="false"
ssl.context="TLS"
ssl.keyManagerFactory="SunX509"
ssl.keyStoreType="jks"
ssl.keyStore="rdbjdbccli.kst"
ssl.keyStorePassword="CHANGETHIS"
ssl.trustStore="rdbjdbccli.kst"
ssl.trustStorePassword="CHANGETHIS"

/>

Remarks
This is the same SSL information that you would have provided for a client SSL
configuration as described in Client SSL configuration.

97

If this information is provided, the controller will use the SSL configuration to connect to
any server that responds to a poll request as an SSL-enabled server.

5.3 SSL Configuration Options

The various SSL configuration options that may be set can be found in the following table:

Table 5.3-1SSL Configuration Options

Option Default Description

ssl.default false If specified, indicates that the default SSL socket
factory should be used to create an SSL socket.
The default SSL socket factory can be changed by
setting the value of the
"ssl.ServerSocketFactory.provider"
security property (in the Java security properties file)
to the desired class.
All other ssl.* configuration options will be ignored,
if ssl.default is specified and set to true.

If ssl.default is not specified, or specified as false,
then the values of the following ssl.* properties
should be used to create an SSL socket factory.

ssl.context <ssl context> none Indicates the SSL context to use, for example "TLS".
ssl.keyManagerFactory none Indicates the keymanager factory to use, for example
<keymanager factory> "SunX509".

ssl.keyStoreType <store none Indicates the type of the key store, for example
type> A j kS A .

ssl.keyStore <store none Indicates the filename of the keystore.

filename>

ssl.keyStorePassword none Indicates the password for the keystore.

<password>

ssl.trustStore none Indicates the filename of the trust store.

<trust store filename>

ssl.trustStorePassword none Indicates the password of the trust store.

<password>

98

5.4 Using Self-Signed Certificates for Testing

The following code is an example that may be used to build and copy certificates that may
be used for SSL communications where the client and server are on OpenVMS nodes that
have Java environments already set up.

Note:
A copy of this code can be found in the JDBC installation directory within the file
BUILD CERTS TEMPLATE.COM

Information such as the keystore and password should be changed appropriately for your
own situation.

S! The following should be done on the Server node

S write sys$output "Generating the Server KeyStore in file
rdbjdbcsrv.kst

$ keytool —-genkey —-alias rdbjdbc-sv -

—dname "CN=Jim Murray, OU=Rdb Engineering, O=Oracle, c=US" -
—keypass "CHANGETHIS" -storepass "CHANGETHIS" -KeyStore
rdbjdbcsrv. kst

S$!

Swrite sysSoutput "Exporting the certificate from keystore to
external file server.cer

S keytool -—-export —-alias rdbjdbc-sv -storepass "CHANGETHIS" -
-file server.cer —-keystore rdbjdbcsrv.kst

S !

$!

$! The following should be done on the client node

$!

Swrite sysSoutput "Generating the Client KeyStore in file
rdbjdbccli. kst

$ keytool —-genkey —-alias rdbjdbc-cl -

—dname "CN=Rdbjdbc Client, 0OU=X, 0O=Y, L=7Z, S=XY, C=YZ" -
-keyalg RSA —-keypass "CHANGETHIS" —-storepass "CHANGETHIS"
—keystore rdbjdbccli.kst

S$!

Swrite sysS$output "Exporting the certificate from keystore to
external file client.cer

$ keytool -—-export —-alias rdbjdbc-cl -storepass "CHANGETHIS" -
-file client.cer —-keystore rdbjdbccli.kst

$!

99

$!

S! Exchange the certificates by copying the client certificate
file (client.cer) to

S! The server node, and the server certificate file
(server.cer) to the client node

$!

$! Now on the server node

Swrite sysS$output "Importing Client’s certificate into
Server’s keystore

S keytool —-import -v —trustcacerts -alias rdbjdbc —-file
client.cer -

-keystore rdbjdbcsrv.kst —-keypass "CHANGETHIS" -
—storepass "CHANGETHIS"

yes

$! Now on the client node

Swrite sysS$output "Importing Server’s certificate into
Client’s keystore

S keytool —-import -v —trustcacerts -alias rdbjdbc -file
server.cer -

-keystore rdbjdbccli.kst —-keypass "CHANGETHIS" -storepass
"CHANGETHIS"

yes

The keytool command should work as shown above on most operating systems that have
Java installed.

Once the keystores have been set up, as long as you have setup the SSL properties correctly
for the client and the server as shown in previous sections, you can use SSL for
client/server communication within the thin driver.

Note:
It is important to use double quotes to maintain values such as passwords exactly as
you specify them in the server or client SSL connection configuration properties.

Contents

100

Chapter 6
Oracle JDBC for Rdb Controller

The Oracle JDBC for Rdb controller (here-on referred to as the controller) allows basic
management of Oracle JDBC for Rdb servers.

Contained in the rdbthincontrol. jar file, this application allows local and remote
password-protected server management operations to be carried out on a thin server or Pool
server. These operations can include showing the clients that are currently connected,
stopping client threads, and starting and stopping thin servers.

The controller can be run either in interactive mode or single command mode. In
interactive mode you typically connect to the server you wish to manage and then issue the
management requests. When you are finished using the controller, you can issue the exit
command to terminate the image.

In single command mode, you provide command line switches to tell the controller what
action has to be performed. When the action is complete, the controller image will
terminate.

The controller is typically used in conjunction with an XML-formatted configuration file
that provides information about the Oracle JDBC for Rdb servers running on your system.

In addition, the configuration file may provide session information such as the broadcast
port information to use when doing poll operations. See Configuration Files for more
information about configuration files.

The controller may be used to start and stop servers, as well as other operations pertaining
to servers and connected clients. In addition, the controller may be used to show the current
status of Oracle JDBC for Rdb servers running throughout your network.

Below is a sample session using the controller in interactive mode:

Example

rdbthincontrol> show stored servers
Stored server info

RDBSNODE : localhost
RDBSPORT : 1702
RDBSSTATUS : not available
RDB$SERVER_NAME : SRV2
RDB$SERVER_TYPE : RdbThinSrv
RDB$SERVER_VERSION : not available

101

RDBSSERVER SHR VERSION : not available

RDBSSERVER PID : not available
RDBSALLOWS ANON : false
RDB$ALLOW87BYPASS : false
RDBSNUMBER OF CLIENTS : 0
RDB$MAX_CLIENTS 3 =1

RDBSNODE : localhost
RDBSPORT : 1701
RDBSSTATUS : not available
RDB$SERVER7NAME : SRV1
RDB$SERVER_TYPE : RdbThinSrv
RDB$SERVER_VERSION : not available
RDB$SERVER78HR7VERSION : not available
RDB$SERVER_PID : not available
RDBSALLOWS ANON : false
RDB$ALLOW87BYPASS : false
RDBSNUMBER OF CLIENTS : 0
RDB$MAX_CLIENTS s =1

RDBSNODE : localhost
RDBSPORT : 1701
RDBSSTATUS : not available
RDB$SERVER_NAME : DEFAULT
RDB$SERVER_TYPE : RdbThinSrv
RDBSSERVER_VERSION : not available
RDB$SERVER_SHR_VERSION : not available
RDBSSERVER_PID : not available
RDB$ALLOWS_ANON : false
RDB$ALLOWS_BYPASS : false
RDB$NUMBER_OF_CLIENTS : 0
RDB$MAX_CLIENTS g =1

rdbthincontrol> start server srvl
Starting server

RDBSNODE : 138.1.14.91

RDBSPORT : 1701

RDBSSTATUS : Idle

RDBSSERVER NAME : srvl

RDBSSERVER_TYPE : RdbThinSrv

RDBSSERVER VERSTION : T7.2-510 20070109 B719
RDBSSERVER_SHR VERSION : T7.2-510 20061221 B6CL
RDBSSERVER_PID : 0x20238378(539198328)
RDBSALLOWS ANON : false

102

RDBSALLOWS BYPASS
RDB$NUMBER OF CLIENTS
RDB$MAX CLIENTS
RDBSTRACE LEVEL
RDB$LOG FILE
RDBSRESTRICT ACCESS
rdbthincontrol> poll
Polling servers

false

0

=1

0
rdbjdbclog
false

srvl(0) //138.1.14.91:1701/ (0x20238378<539198328>)
rdbthincontrol> start server srv2

Starting server

RDBSNODE

RDBSPORT

RDB$STATUS

RDBSSERVER NAME
RDB$SERVER7TYPE
RDBSSERVER VERSION
RDB$SERVER_SHR_VERSION
RDB$SERVER_PID
RDBSALLOWS ANON
RDB$ALLOWS_BYPASS
RDBSNUMBER OF CLIENTS
RDBSMAX CLIENTS
RDB$TRACE_LEVEL
RDBSLOG_FILE
RDBSRESTRICT ACCESS
rdbthincontrol> poll
Polling servers

138.1.14.91

1702

Idle

Srv2

RdbThinSrv

T7.2-510 20070109 B719
T7.2-510 20061221 B6CL
0x2033137C(540218236)
false

false

0

=1

0

rdbjdbclog

false

srv2(0) //138.1.14.91:1702/ (0x2033137C<540218236>)
srvl(0) //138.1.14.91:1701/ (0x20238378<539198328>)
rdbthincontrol> show active servers

Active server info

RDBSNODE

RDBSPORT

RDBSSTATUS

RDB$SERVER NAME
RDBSSERVER_TYPE
RDBSSERVER_VERSTION
RDBSSERVER SHR VERSION
RDBSSERVER PID
RDBSALLOWS ANON
RDBSALLOWS BYPASS
RDBSNUMBER_OF CLIENTS
RDBSMAX CLIENTS

138.1.14.91

1702

Idle

Srv2

RdbThinSrv

T7.2-510 20070109 B719
T7.2-510 20061221 B6CL
0x2033137C(540218236)
false

false

0

=1

103

RDBSTRACE LEVEL : 0

RDBSLOG FILE : rdbjdbclog
RDBSRESTRICT ACCESS : false

RDBSNODE : 138.1.14.91

RDBSPORT : 1701

RDBSSTATUS : Idle

RDBSSERVER NAME : srvl

RDBSSERVER TYPE : RdbThinSrv

RDBSSERVER VERSION : T7.2-510 20070109 B719
RDBSSERVER SHR VERSION : T7.2-510 20061221 B6CL
RDBSSERVER PID : 0x20238378(539198328)
RDBSALLOWS ANON : false

RDBSALLOWS BYPASS : false
RDBSNUMBER OF CLIENTS : O

RDBSMAX CLIENTS g =1

RDBSTRACE LEVEL : 0

RDBSLOG FILE : rdbjdbclog
RDBSRESTRICT ACCESS : false

rdbthincontrol> stop all servers

Successfully stopped Thin Server : srvl (//138.1.14.91:1701/)
Successfully stopped Thin Server : srv2 (//138.1.14.91:1702/)
rdbthincontrol> poll

Polling servers

rdbthincontrol> exit

The following sections detail how to run the controller and carry out various server and
client control functions on active servers within your network:

Running the Controller
Connecting to Servers
Control Password
Multicast Polling
Server Matching
Server Operations
Client Operations

6.1 Running the Controller

The controller allows basic management of Oracle JDBC for Rdb servers.
The controller can be run from the OpenVMS DCL command line either in single
command mode or as a command line interface:

104

Format

$java —jar rdbS$Sjdbc home:rdbthincontrol.jar [<option> |
<command keyword>]...

Remarks
Valid <option>s can be found in Table 6.1-1.
Valid <command keyword>s can be found in Table 6.1-2.

For the controller to be able to manage an Oracle JDBC for Rdb server the server must
have a control password.

See Server Configuration Options for more details on specifying the control password.

Table 6.1-1Controller Options

Option Default Description

-active false Used in conjunction with a
command_keyword to specify that the
action applies to only active designated
entities.

-all n/a Used in conjunction with a
command_keyword to specify that the
action applies to all designated entities.

—configfile or -cfg none The file specification of a configuration
<configuration_filename> file where session and server attributes
may be found.

Attributes set in this configuration file
may be overridden by setting the same
attribute at the command line level.

See Configuration Files for more details.

By default no configuration file is used.

-controlpass <control none Specifies the control password to use
password> when connecting to servers.

This password takes precedence over
any password option provided on the
same command line.

-n or —node <node> none Specifies the node where the server to
be connected to is running.

105

Option

Default

Description

—name <server name >

—oem

-password or —-pw <password>

-pollTimeout <timeout>

—port or -p <port num>

-srvargs <server arguments>

-srv.mcBasePort <base port>

-srv.mcGroupIP <group ip>

-stored

none

n/a

none

2000

none

none

5517

239.192.1.1

n/a

Specifies a name for the server. The
name is used to lookup server
information within the start-up
configuration file.

The value of this name is not case-
sensitive.

Used by OEM to indicate that the return
status and messages should be formatted
for OEM usage.

Specifies the password to send to the
thin server when requesting a control
connection.

If a controlpass option is also found on
the same command line the controlpass
option will take precedence.

Specifies the time, in milliseconds, that
the controller should wait for POLL
replies from servers. See Polling Servers
for more information.

Specifies the port on which the server to
be connected to is listening.

Additional arguments to be passed on
the connection URL when connecting to
the server.

Forexample : @tracelevel=-1

Specifies the base port number that will
be used for multicast operations.

Specifies the multicast IP group within
which this server will participate.

Used in conjunction with a
command_keyword to specify that the
action applies to the stored designated

106

Option

Default Description

—tracelevel or -tl
<trace_ level>

—user or —u <user name>

-url <connection URL>

entities as found in the XML
configuration file.

0 Specifies the default tracelevel for the
session

The value zero (0) means no tracing.

.none Specifies the username to use for
connection to the server.

none Specifies the node IP and port of the
server to connect.

This switch overrides any port and
node switch specified.

The format of the <connection URL> is
//I<node>:<port>/

Note:

A number of these options may also be specified in a session section of the
XML-formatted configuration file used to start an interactive controller
session. See Session Section within XML Formatted Configuration File for

more details.

Table 6.1-2Controller Command Keywords

Option Description
-poll Sends a poll request out to locate active servers.
See Polling Servers for more information.
-startserver Starts the server as specified by the other options
given on the command line.
See Starting Servers for more information.
-openserver Opens the server as specified by the other options
given on the command line.
See Opening Servers for more information.
-closeserver Closes the server as specified by the other options

given on the command line.
See Closing Servers for more information.

107

—showserver Issues the Show Server command that gets server
information from the connected server.
See Showing Servers for more information.

-showclients Issues the Show Clients command, which gets
client information from the connected server.
See Showing Clients for more information.

-stopserver Stops the server as specified by the other options
given on the command line.
See Stopping Servers for more information.

-stopclient <client id> Issues the Stop Client command which requests
the connected server to terminate the specified client
thread.

The <client id>isan id of aclient as displayed
by the Show Clients command See Stopping Clients
for more information. There is no default value for
<client id>.

If the controller is invoked with the appropriate connect information and one of command
keywords, the controller will issue the desired request to the server, optionally display the
results, and terminate immediately.

If more than one command keyword is present, only one will be issued using the
precedence as shown in the preceding table.

Example
An example of issuing command keyword to the controller:

$java -jar rdb$jdbc home:rdbthincontrol.jar -u jan -
—-controlpass mpass -node ndl -port 1701 —-stopserver

6.1.2 Controller Command Line

If no command keyword is used on the controller invocation, the application will go into
command line prompt mode allowing multiple commands to be issued.

If valid connection information is provided at the controller invocation (i.e. node, port, user
and password), the controller will automatically attempt to connect to the specified server.

108

If a connection has not been established or a different server connection is required, then
the Connect command can be issued at the control command line. See Connecting to
Servers for more information.

If username and password are not provided on the connect command line, then the values
of the configuration options when the controller was invoked will be used.

If a configuration file is specified, the configuration file session characteristics will be
used. See Session Section within XML formatted Configuration File for more information
on session characteristics.

Commands may be issued at the control command line either within the context of a server
connection or outside the context of a specific server connection.

The commands that may be issued once a connection has been established to a server are
discussed in Commands requiring server connection.

The commands that do not require a server connection are discussed in Commands Not
requiring a server connection.

Format
$java —-jar rdb$jdbc home:rdbthincontrol.jar -
-cfg my servers.xml

6.1.2.1 Commands requiring a server connection

Once a valid server connection has been established the commands shown in the following
table may be issued.

Table 6.1-3Controller Command Line Commands Within Connection

Command Description

close server Closes the currently connected server.
See Closing Servers for more details.

disconnect Disconnects from the currently connected server.

open server Opens the currently connected server.
See Opening Servers for more details

set logfile [<filename>] Sets the logfile for the currently connected active
server.

This may be used to redirect trace log message to a

different log file, which will close the current log file.
If <filename> is missing of is equal to the value

109

set default tracelevel <int>

set tracelevel <int>

show clients

show server

stop client <client_id>

stop clients

stop server

watch [server]

OFF the current logfile is still closed and log
messages will no longer be sent to the log file.

Sets the default tracelevel on the currently connected
active server.

This does not affect currently connected clients. Only
clients connecting after the set default tracelevel is
issued will be affected.

Sets the tracelevel on the currently connected active
server.

This will set the trace level for all clients that are
currently connected to the server. Clients connecting
after the set is issued will not be affected.

Show all clients on the currently connected server.
See Showing Clients for more details.

Show the details of the currently connected server.
See Showing Servers for more information.

Stops the client matching the specified

<client id> on the currently connected server.
See Stopping Clients for more details.

Stops all clients on the currently connected server.
See Stopping Clients for more details.

Stops the currently connected server.

Send trace logging from connected server to the
current console.
See Watching Servers for more details.

Example

$java -jar rdb$jdbc home:rdbthincontrol.jar
rdbthincontrol> connect //localhost:1701/ jones mypassword
rdbthincontrol> show server

RDBSNODE : localhost

RDBSPORT : 1701
RDBSSTATUS : Idle

110

RDB$SERVER7NAME : rdbthnsrvl

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : V7.1-300 20040624 B46N
RDB$SERVER78HR7VERSION : V7.1-300 20040624 B46N
RDBSSERVER PID : 0x0B24 (2852)

RDB$ALLOWS_ANON : false

RDB$ALLOW87BYPASS : false

RDBSNUMBER OF CLIENTS : 0

RDB$MAX_CLIENTS 3 =1

rdbthincontrol>

rdbthincontrol> stop server

Successfully stopped Rdb Thin Server : //localhost:1701/
rdbthincontrol> exit

$
6.1.2.2 Commands not Requiring a Server Connection
A number of commands may be issued that do not require you to have a connection
established, however, for all commands other than poll and quit, you will have to provide a
username and control password which will be used to connect to the servers to obtain the
required information.

The commands that do not require a server connection are listed in the following table:

Table 6.1-4Controller Command Line Commands Without Connection

Command Description
poll Multicast Poll for responding servers.
See Polling Servers for more details.

set session controlpass <pwd> Sets the sessions control password.
See Control Password for more information.

set default tracelevel <int> Sets the default tracelevel on the identified active
<server_ident> server.

This does not affect currently connected clients. Only

clients connecting after the set default tracelevel is
issued will be affected.

set logfile <filename> Sets the log file specification for the identified active
<server_ident> server.

This may be used to redirect trace log message to a
different log file, which will close the current log file.

If <filename> is the value OFF then the current

111

set polltimeout <int>

set tracelevel <int> <server_ident>

show active servers
show all servers
show server <server_ident>

show active clients
show all clients

show active clients <name>
show all clients <name>

stop active clients
stop all clients

stop active clients <name>
stop all clients <name>

stop active clients in <database
spec>
stop all clients in <database spec>

stop active servers
stop all servers
stop server <server_ident>

open active servers
open all servers
open server <server_ident>

close active servers

logfile will be closed and log messages will no longer
be sent to the log file.

Sets the time, in milliseconds that the controller
should wait for POLL replies from servers.
See Polling Servers for more information.

Sets the tracelevel on the identified active server.

This will set the trace level for all clients that are
currently connected to the server. Clients connecting
after the set is issued will not be affected.

Show information about servers.
See Showing Servers for more details.

Shows information about clients on all responding
Servers.
See Showing Clients for more details.

Shows information about clients with username
<name> on all responding servers.
See Showing Clients for more details.

Stops all clients on all responding servers.
See Stopping Clients for more details.

Stops all clients with username <name> on all
responding servers.
See Stopping Clients for more details.

Stops all clients on all responding servers if the client
is currently connected to the specified database.
See Stopping Clients for more details.

Stops active servers.
See Stopping Servers for more details.

Opens active servers.
See Opening Servers for more details.

Closes active servers.

112

close all servers See Closing Servers for more details.
close server <server_ident>

watch [server] <server_ident> Watches active servers.
See Watching Servers for more details.

quit or exit Exits the controller application.

Example

$java —-jar rdb$jdbc home:rdbthincontrol.jar -user jones -
-controlpass jdbc user
rdbthincontrol> show active servers

RDBSNODE : localhost

RDBSPORT : 1701

RDBSSTATUS : Idle

RDB$SERVER_NAME : rdbthnsrvl
RDB$SERVER_TYPE : RdbThinSrv
RDB$SERVER_VERSION : V7.1-300 20040624 B46N
RDB$SERVER_SHR_VERSION : V7.1-300 20040624 B4oN
RDBSSERVER_PID : 0x0B30(2864)

RDBSALLOWS ANON : false

RDB$ALLOWS_BYPASS : false
RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS s =1

RDBSNODE : localhost

RDBSPORT : 1711

RDBSSTATUS : Idle

RDBSSERVER NAME : myserver

RDB$SERVER_TYPE : RdbThinSrv
RDB$SERVER_VERSION : V7.1-300 20040624 B46N
RDB$SERVER_SHR_VERSION : V7.1-300 200400624 B4o6N
RDB$SERVER_PID : 0x0B88(2952)

RDBSALLOWS ANON : false

RDB$ALLOWS_BYPASS : false
RDB$NUMBER_OF_CLIENTS s ©

RDB$MAX_CLIENTS s =1

rdbthincontrol>

If a server does not recognize the provided control password, it will respond with a failure
message:

113

rdbthincontrol> show active servers

Failed
No Rdb
Unable
Failed

to connect <CONTROL>

Thin Server connection has been established
to connect to server //localhost:1701/

to connect <CONTROL>

No Rdb Thin Server connection has been established
Unable to connect to server //localhost:1711/
rdbthincontrol>

Contents

6.2 Connecting to Servers

The majority of commands that can be issued from the controller require a valid control
connection to be established with a server. If valid connection information is provided at
the controller invocation (node, port, user and password), the controller will automatically
attempt to connect to the specified server when the controller starts up.

If user and password are provided at the controller invocation, this information will be
maintained for the entire controller session and will be used in subsequent connection
request unless explicitly overridden on the command statement.

Commands will only be carried out on a server if a control connection has been established,
which requires the correct control password to be provided during the connect request. See
Control Password for more information of this password.

This control connection may be an explicit connection established for the session by using
the Connect command or may be implicitly established if a command is issued to a server
that requires control access to execute successfully. Many controller commands allow
server connection information to be specified, indicating which server to apply the
command. In addition, the connection information may provide a username and password
to use for that server.

<command> <server connection>

The <server connection> information is comprised of a server identification string
and optional connection username and control password:

<server ident> [<server uid>]

The <server ident> string can be one of the following:

114

« Port ID - this is the same as issuing: //localhost:<port>/

« full URL with the format: //<node>:<port>/

- name of server as found in the configuration used to start the controller
The <server_uid> is:

<username> [<password>]

The <password> must match the control password of the server for the control
connection to be carried out successfully.

If a username or password is not provided on the command line then the current session
information is used.

This connection, once established, will be maintained until either an explicit Disconnect
is issued, or a new connection is established to another server or the controller exits.

If an attempt is made to issue a controller command without a connection being
established, then an error condition will be raised:

Example

rdbthincontrol> watch
No Rdb Thin Server connection has been established

If username and password are not provided on the connect command line, then the values
of the appropriate configuration options set when the controller was invoked will be used.

If a configuration file is specified, the configuration file session characteristics will be used.

See Session Section within XML formatted Configuration File for more information on
session characteristics.

6.2.1 Connect Command

Format

If a connection has not been established, or the current connection has been disconnected,
or a different server connection is required, then the Connect command can be issued at
the control command line.

connect [server] <server_connection>

This command connects to the server specified by the <server connection>
information.

115

Example
The following examples use the Connect command:

rdbthincontrol> connect //localhost:1701/ jones mypassword
rdbthincontrol> connect server 1701
rdbthincontrol> connect myServer jim XXXXX

Remarks
If username and password are not provided on the Connect command line, then the
values entered in the configuration options when the controller was invoked will be used,
or if a configuration file is specified, the configuration file session characteristics will be
used. See Session Section within XML formatted Configuration File for more information
on session characteristics.

6.2.2 Implicit Connection

A number of the control commands require a control connection to be established with the
target server. If the target server is not currently connected, both explicitly provided
connection information and session connection information may be used to attempt to
establish a control connection.

Connection information may be provided on the command line along with the command,
for example:

Example
rdbthincontrol> stop server //localhost:1701/ jones mypassword

Once an implicit connection is made, this connection will be established as the current
session connection until overridden by another implicit or explicit connection.

6.3 Control Password

To carry out any operations on active servers or clients, you are required to provide a
control password. This password must match the control password for that active server,
otherwise, an exception will be raised and the operation will fail.

When you start up the controller you may provide a password as a command line option
or in the session section of an XML-formatted Configuration file. If you provide both a
password and a controlPass the controlPass will take precedence.

116

Example
rdbthincontrol> stop server myMPServer
Failed to connect <CONTROL>
No Rdb Thin Server connection has been established
Unable to connect to server //localhost:1788/

In addition the control password may be set for a session by using the Set Session
Controlpass statement at the controller command line prompt.

rdbthincontrol> set session controlpass badpassword
rdbthincontrol> show server 1701

Failed to connect <CONTROL>

No Rdb Thin Server connection has been established
rdbthincontrol> set session controlpass mypassword
rdbthincontrol> show server 1701

RDBSNODE : 192.168.1.100

RDBSPORT : 1701

RDBSSTATUS : Idle

RDBSSERVER NAME : jimserv

RDBSSERVER TYPE : RdbThinSrv

RDBSSERVER VERSION : X7.1-301 20040713 B47C
RDBSSERVER SHR VERSION : X7.1-301 20040712 B47C
RDBSSERVER PID : 0x1728(5928)

RDBSALLOWS ANON : false

RDBSALLOWS BYPASS : false
RDBSNUMBER OF CLIENTS : 0O

RDBSMAX CLIENTS : -1

Note:
A session password or controlPass specified on the controller command line should not
start with the following strings:
° A\Y OX” or

° A\Y # # ”
A session password or controlPass specified in a configuration file starting with the
prefixes as designated above, will be considered to be a digested or obfuscated password.

Contents

6.4 Multicast Polling

117

The controller uses multicast polling to discover Oracle JDBC for Rdb servers that may be
available on the network.

Multicasting is a style of efficiently broadcasting data over a network connection to
many connected servers. Any server listening in to the multicast IP address will
receive the data packets that are broadcast, such as poll requests.

Oracle JDBC for Rdb servers use the Administrative Scoping range of addresses that allow
easy limiting of multicast transmission to well defined boundaries within your network.

Administrative Scoping is the restriction of multicast transport based on the address range
of the multicast group. It is defined by REC 2365 "Administratively Scoped IP Multicast.” and is
restricted to the address range:

239.0.0.0 to 239.255.255.255

The IP address for server multicast polling should be chosen from within the following
range:

239.192.0.0 to 239.192.255.255

This range is known as the IPv4 Organization Local Scope and has a subnet mask of
255.252.0.0. It is intended for use by an entire organization setting multicast scopes
privately for its own internal or organizational use and allows up to 262,144 group
addresses.

By default, Rdb servers use the multicast IP 239.192.1.1 with a base port of 5517.

Multicast Group IP addresses can be assigned to a server using the srv.mcGroupIP
option within a server configuration file or the server start-up command line.

The srv.mcBasePort option allows you to change the Multicast Base port.

Note:
When a server participates in a multicast group, as part of the standard multicast
protocol its presence in the group will be broadcast at regular intervals. This may
conflict with the network policy and procedures of your network administration.

Please consult your network manager to ensure that multicast polling is allowed
on your system. Your network manager may also allocate a specific IP address
and Port range that may be used by the Rdb Native Drivers, and you should
change your server and session configuration files to reflect these allocated
addresses.

Setting the Multicast Base port to zero (0) will effectively disable multicast
broadcast and receipt for that server. This also means that the server will not

118

http://www.ietf.org/rfc/rfc2365.txt

respond to any POLL requests issued by the Controller.

See Polling Servers for more details on how the controller may be used to POLL servers.

Contents

6.5 Server Matching

To allow the selectivity of servers when issuing controller commands, certain commands
may take a server matching pattern.

The server matching pattern takes the form of a standard Java Regular Expression
(REGEX) and may be used to select out those servers on the system that should either
respond and/or carry out the required operation.

Note:
In addition to the server matching criteria, only servers that are using the same Group
IP will respond to controller command such as POLL. See Multicast Polling for more
details.

Note:
Currently the only controller command allowing server matching is the POLL
command. See Polling Servers for more details.

Example 1
rdbthincontrol>poll #type:RdbThinSrvPool#node:ALPHA.*

In this example, the server matching pattern refines the server selection for the POLL

request to target only Pool servers currently running on nodes starting with names
"ALPHA".

Format
The format of the server match pattern is:

[#<match type>:<match value>]..
where <match type> isone of:

« type —the type of server
« name — the server name

119

« port -the portthe server is listening on

« stat —the state of the server

« node — the node the server is running on

« vers —the version JDBC the server is running

and <match value> dependsonthe <match type>. Some <match type>s will
allow a regular expression pattern to match on. The following sections describe each of the
<match type>sand their allowable <match value>s.

See your Java documentation for more information on Regular Expressions.

6.5.1 type match

The type <match type> specifies the type of server that should respond. The
following table shows the <match wvalue>s allowed for a t ype match:

Table 6.5-1 RdbThin Format Elements

Type name Type code Description

RdbThinSrv 0 Standard thin server.

RdbThinSrvMP 1 Multi-process server.

RdbThinSrvSSL 2 Thin server using SSL for communication.
RdbThinSrvMPSSL 3 Multi-process server using SSL.
RdbThinSrvPool 4 Pool server.

RdbThinSrvPoolSSL 5 Pool server using SSL

RdbManSrv 102 JDBC Manager server

RdbManSrvSSL 103 JDBC Manager server using SSL

The <match wvalue> for server type may be either an int value, representing the server
type code as shown above, or a string value to match the server type name.

The <match wvalue> may be aregular expression. Character case will be ignored.

Example 1
All SSL server types

rdbthincontrol>poll #type:.*SSL

Example 2
All multi-process server types

rdbthincontrol>poll #type:[13]

120

Example 3
Any multi-process server using SSL

rdbthincontrol>poll #type:rdbthinsrvmpssl

6.5.2 name match

The name <match type> specifies the name of server that should respond.
The <match wvalue> may be aregular expression. Character casing will be ignored.

Example 1
All servers named "MY_MP_SRV"

rdbthincontrol>poll #name:MY MP SRV
Example 2
All servers with names starting with "MP_", ending with "_SRV" and any 2 characters in
between.
rdbthincontrol>poll #name:MP .. SRV
Example 3
All servers with names starting with "P_", ending with "_SRV" and 1 or more digits in

between.

rdbthincontrol>poll #name:P (\d+) SRV

6.5.3 port match

The port <match type> specifies the port numbers for server that should respond.
The <match wvalue> may be aregular expression.

Example 1
All servers listening on port 1701

rdbthincontrol>poll #port:1701

Example 2
All servers listening on port 1700 though 1709

rdbthincontrol>poll #port:170\d

121

6.5.4 stat match

The stat <match type> specifies only servers currently in the specified state should
respond. The following table shows the <match value>sallowed for a stat match:

Table 6.5-2 RdbThin Format Elements

Match Value Description

AVAILABLE The server is currently available and has at least one client
connected.

BUSY The server has the maximum number of clients connected.
See maxClients server property.

CLOSED The server is currently closed with no clients connected. See
Closing Servers.

CLOSING The server is currently closing but still has at least one client
connected. See Closing Servers.

IDLE The server is currently available and no clients connected.

The <match value> may be aregular expression. Character casing will be ignored.

Example 1
All idle servers

rdbthincontrol>poll #stat:idle

Example 2
All closed servers or servers in the process of closing

rdbthincontrol>poll #stat:clos.*

Example 3
All available servers irrespective of the number of clients connected

rdbthincontrol>poll #stat:IDLE|BUSY|AVAIL.*

6.5.5 node match

The node <match type> specifies that only servers running on the specified node(s)
should respond.
The <match value> may be a regular expression. Character casing will be ignored.

The <match wvalue> pattern can represent either the name of the node or the IP address of
the node.

122

Example 1
All servers running on node ALPHAL

rdbthincontrol>poll #node:ALPHA1l

Example 2
All servers running on node ALPHAL, ALPHA2 and ALPHA3

rdbthincontrol>poll #node:ALPHA[123]

Example 3
All servers running in the sub-network 192.169.1.*

rdbthincontrol>poll #node:192.169.1. (\d+)

6.5.6 vers match

The vers <match type> specifies that only servers running under the specified Oracle
JDBC for Rdb version should respond.

The <match value> may be a regular expression. Character casing will be ignored.

The <match wvalue> pattern may optionally include the "V" prefix for the version.

The <match wvalue> patternstrings "*", ".*"and "ALL" are handled as special
patterns and indicate that ALL versions should matched. This wildcard version specification

may be used to allow prior-version servers to respond to controller command containing
match selectivity. See Handling prior version Servers for more details.

Example 1
All servers with release 7.3.0.0.0 Oracle JDBC for Rdb

rdbthincontrol>poll #vers:73

Example 2
All servers running on node ALPHAL including prior-version servers

rdbthincontrol>poll #vers:ALL#node:ALPHA1

6.5.7 Handling Servers From Prior Releases

123

Server matching relies on special handling of controller command by the servers that is only
available in servers from release 7.3.0.0.0 Oracle JDBC for Rdb and later. This handling
ensures that only those servers that match the selection criteria will carry out the operations
requested.

If your network has prior-version JDBC servers running, while these servers may respond to
standard control requests such as POLL, they may not respond to the control statements
containing matching patterns introduced in release 7.3.0.0.0. For example, assuming the
network has several 7.3.x.x.x servers and one 7.2.X.X.X server, named "V72SRV", running,
the standard POLL request will discover all of the servers:

rdbthincontrol> poll

Polling servers

mpx (1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy2
rdbthnsrvl (0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy2
rdbthnsrv2 (0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy?2
v72srv(0) //192.168.1.2:1800/ (0xC10<3088>) node = froggy?2

But a POLL request with matching criteria will not:

rdbthincontrol> poll #node:192.168.1.\d+

Polling servers (using qualifiers : #node:192.168.1.\d+)

mpx (1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy2
rdbthnsrvl (0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy?2
rdbthnsrv2 (0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy?2

If match criteria is required and prior version servers are present, then the #VERS match
condition set to ALL may be used to indicate to the controller that matching should be done
by the controller, rather than the servers. This will allow prior version servers to respond
correctly:

rdbthincontrol> poll #node:192.168.1.\d+#vers:all

Polling servers (using qualifiers

#node:192.168.1.\d+#vers:all)

mpx (1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy?2
rdbthnsrvl (0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy?2
rdbthnsrv2 (0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy?2
v72srv(0) //192.168.1.2:1800/ (0xC10<3088>) node = froggy2

124

6.6 Server Operations

This section details the operations you may carry out on servers using the controller both
interactively and in command mode.

The following sub-sections describe:
« Closing Servers
« Opening Servers
« Showing Servers
 Starting Servers
« Stopping Servers
« Watching Servers
« Watching Events
« Polling Servers
« Showing Executors

Note:
The examples in this section assume that Java has been set up and the following DCL
symbol has been set in the environment.

$ thincontrol :== 'java' -jar rdb$jdbc home:rdbthincontrol.jar -
-cfg my servers.xml —-controlpass "MySecretPassword"

The configuration file contents used for these examples may be seen in Sample
configuration file MY_SERVERS.XML

Server Matching may be used in conjunction with the following server commands to target
specific servers or groups of servers on your network.

6.6.1 Closing Servers

Active servers may be closed using the controller. You must provide a valid control
password for the server.

Closing a server sets its maxClients attribute to zero (0) thus preventing any further
connections to be made. Already established connections are not affected.

You may issue an open command later to re-open a closed server, which will reestablish
the maxClients value for the server back to the value it was prior to closing. See Opening
Servers for more details.

Only those servers where the control password matches the control session control
password will be closed.

125

6.6.1.1 Interactive mode

The interactive control commands available to close servers can be seen in the following

table:

Table 6.6-1Interactive Close Server

Command

Description

close active servers
close all servers

close server

close server <server_connection>

Closes all responding servers.
Keywords all and active in this context are
considered synonyms.

Closes the currently connected server.

Closes the active server specified by the server

connection information. See Connecting to Servers
for more information.

Example

rdbthincontrol> close
rdbthincontrol> close
rdbthincontrol> close
rdbthincontrol> close
rdbthincontrol> close

6.6.1.2 Command mode

server
server
server
active
server

myserver

//prod node:1766/

1701

server

myserver george MySecretPassword

The command mode commands available to close servers can be seen in the following

table:

Table 6.6-2Command Mode Close Server

Command Required Ado_litional Ign_ored Description
options options options
—closeServer —name -active Close the server as specified by
~node -all other command line options.
—port -using
-URL —-in
-closeServer -active or -name Close all servers that are
—all 'nOd‘E responding to the multicast poll
-por
_URL request.
-using

-in

126

Qualifiers specified in the Ignored Options column are silently ignored if present on the
Command line.

Example
$ thincontrol -closeServer -url //prod node:1766/
$ thincontrol -closeServer -port 1701 -node localhost
$ thincontrol -closeServer -active
S thincontrol -closeServer —-name myserver

6.6.2 Opening Servers

Active servers may be opened using the controller. You must provide a valid control
password for the server.

Opening a server allows new client connections to be made using that server.

You may issue an open command to re-open a closed server, which will reestablish the
maxClients value for the server back to the value it was prior to closing.

Only those servers where the control password matches the control session control
password will be opened.

6.6.2.1 Interactive mode

The control commands available to open servers can be seen in the following table:

Table 6.6-3Interactive Open Server

Command Description
open active servers Opens all responding servers.
open all servers

open server Opens the currently connected server.

open server <server_connection> Opens the active server specified by the server
connection information. See Connecting to Servers
for more information.

Example

rdbthincontrol> open server

127

rdbthincontrol> open server myserv

rdbthincontrol> open server //prod node:1766/
rdbthincontrol> open server 1701

rdbthincontrol> open all servers

rdbthincontrol> open server //prod node:1766/ fred mypass

6.6.2.2 Command mode

The command mode commands available to open servers can be seen in the following

table:

Table 6.6-4Command Mode Open Server

Command Requned AdgMOnaI Igngred Description
options options options
-openServer —name -active Opens the server as specified by
—node -all other command line options.
—port -using
-URL —in
-openServer -active or —name Open all servers that are
—all ‘nOdi responding to the multicast poll
—-por
_URL request.
-using

—1n

Qualifiers specified in the Ignored Options column are silently ignored if present on the

Command line.

Example

Uy Uy Uy >

6.6.3 Showing Servers

thincontrol -openServer -url //prod node:1766/
thincontrol -openServer -port 1701 -node localhost
thincontrol -openServer -—active

thincontrol -openServer —-name myserver

Information about active and known servers may be displayed using the controller. You
must provide a valid control password for the server before information will be displayed.

If showing all or active servers only those servers where the control password matches
the control session control password will have information displayed.

128

All server definitions as stored in the configuration file will be displayed when showing
stored or all servers irrespective of the control password.

6.6.3.1 Interactive mode

The control commands available to show servers can be seen in the following table:

Table 6.6-5Interactive Show Server

Command

Description

show active servers

show all servers

show stored servers

show server

show server <server_connection>

Show all servers that are responding to the multicast
poll request.

Shows active servers as well as the server definitions
as found in the configuration file used to start the
controller.

Shows the server definitions as found in the
configuration file used to start the controller.

Shows information about the currently connected
server.

Shows information about the active server specified
by the server connection information. See
Connecting to servers for more information.

Example

rdbthincontrol> show
rdbthincontrol> show
rdbthincontrol> show
rdbthincontrol> show
rdbthincontrol> show
rdbthincontrol> show

6.6.3.2 Command mode

server
server
server
server
active
server

myserv

//prod node:1766/

1701

servers

//prod node:1766/ fred mypass

The command mode commands available to show servers can be seen in the following

table:

Table 6.6-6Command Mode Show Server

Command Requwed AddMonal Ignpred Description
options options options
-showServer -name -active Shows the server as specified by
~node -all other command line options.

129

Required Additional Ignored _
Command options options options Description
-port -using
-URL -in

-showServer -active -name Show all servers that are
‘ggdi responding to the multicast poll
- r
_URL request.
-using
-in

-showServer -all -name Shows active servers as well as
‘“Odi the server definitions as found in
—por - . .
_SRL the configuration file used to
~using start the controller.
-in

-showServer -stored —name Shows the server definitions as
‘mdi found in the configuration file
—por
i used to start the controller.
-using

130

Required Additional Ignored
options options options
-in

Command Description

Qualifiers specified in the Ignored Options column are silently ignored if present on the
Command line.

Note:
If multiple conflicting keywords are found on the one command line only one
action will be taken and the following precedence is used:
e -all
* -—active
* -stored
 specified server
Example
$ thincontrol -showServer -url //prod node:1766/
S thincontrol -showServer -port 1701 -node localhost
$ thincontrol -showServer -active
S thincontrol -showServer -all
$ thincontrol -showServer -stored
$ thincontrol -showServer —-name myserver

6.6.3.3 Information displayed in Show Server

When the show server command is executed, the following information about the server

is displayed:

Table 6.6-7Show Server display attributes

Attribute Description
RDBS$NODE The node the server is running on.
RDB$PORT The TCP/IP port the server is listening on.
RDBSSTATUS The current status of the server.
RDB$SERVER_NAME The name of the server.
RDB$SERVER TYPE The type of server.

131

Attribute Description

RDBSSERVER_VERSION The version information for the server JAR file used.
Format “Release release# build# internalCheckId”.

RDBSSERVER_SHR_VERSION The version of the JDBC shared images used.
Format “Release release# build# internalCheckId”.
RDBSSERVER_PID The process identification of the server process.

Format “hexadecimal PID (decimal PID)”.

RDBSALLOWS_ANON If true, the server allows anonymous connections.
See Anonymous Usernames.
RDBSALLOWS_BYPASS If true, the server will uses BYPASS during

database connection setup.
See BYPASS Privilege.

RDBSNUMBER _OF CLIENTS The number of non-control client connections
currently using the server.

RDBSMAX CLIENTS The maximum number of non-control client
connections the server will allow.

RDBSTRACE_LEVEL The current trace level for the server.
RDBSLOG_FILE The log file currently being used.
RDBSRESTRICT_ACCESS If true, access is restricted to this server.
RDBSCAST INFO Multicast information.

Format “Group IP:Base port”
RDB$START TIMESTAMP Timestamp when server was started.
RDBSCFG_FILE The server configuration file.

In addition, if the connected server is multi-process then the following attributes will also be
displayed:

Table 6.6-8Additional Multi-Process Server Attributes
Attribute Description
RDBSNUMBER_OF_FREE_EXECUTORS The number of free executor processes.

RDBSMAX FREE_EXECUTORS The maximum number of free executor process that
the server will maintain.

RDBSSHARED_MEMORY The amount of shared memory (bytes) allocated by
the server.

132

Attribute

Description

RDBSFREE SHARED MEMORY

RDBSMEM SEG_STRINGS

RDBSNUMBER_OF CHUNKS

RDB$LARGEST CHUNK

RDBSNUMBER OF BUSY EXECUTORS

RDBSMEM PAGEFILE QUOTA

RDBSMEM PAGEFILE COUNT

RDBSMEM GLOBPAGE COUNT

RDB$MEM WS_COUNT

RDBSMEM PAGETBL COUNT

RDBSMEM PAGE FAULTS

RDBSMEM CPU TIME

The amount of shared memory (bytes) allocated but
not used.

The amount of shared memory (bytes) used by
segmented strings (blobs).

The number of free chunks of shared memory
available for use.

The amount of memory (bytes) of the largest
memory chunk available.

The number of executor processes currently allocated
to active connections.

Server process JPI$_PGFLQUOTA value.
Server process JPI$_PAGFILCNT value.
Server process JPI$_GPGCNT value.
Server process JPI$_PPGCNT value.
Server process JPI$_APTCNT value.
Server process JPI$_PAGEFLTS value.

Server process JPI$_CPUTIM value.

Example

Note:

The format and contents of the show server display may change in future
releases of Oracle JDBC for Rdb.

133

rdbthincontrol> connect 1804
rdbthincontrol> show server

RDBSNODE : 192.168.1.100

RDBSPORT : 1804

RDB$SSTATUS ¢ Idle

RDBSSERVER NAME : mppool2

RDBSSERVER TYPE : RdbThinSrvPool

RDBSSERVER VERSION : Release 7.3.2.0.5 20130626 BD6Q
RDBSSERVER SHR VERSION : Release 7.3.2.0.5 20130625 BD6P
RDB$SERVER PID : Ox22A7DF71(581427057)
RDBSALLOWS ANON : false

RDBSALLOWS BYPASS : false

RDBSNUMBER OF CLIENTS : O

RDBSMAX CLIENTS g =il

RDBSTRACE LEVEL g =1l

RDBSLOG_FILE : null

RDBSRESTRICT ACCESS : false

RDBSCAST INFO g 239,192,1,185517

RDBSSTART TIMESTAMP : 2013-06-27 9:57:12.531
RDBSCFG_FILE : [mydir]jdbccfg.xml

rdbthincontrol> connect 1881
rdbthincontrol> show server

RDB$SNODE

RDBSPORT

RDBS$SSTATUS
RDB$SERVER_NAME
RDB$SERVER_TYPE
RDB$SERVER_VERSION
RDB$SERVER_SHR_VERSION
RDB$SERVER_PID
RDB$ALLOWS_ANON
RDB$ALLOWS_BYPASS
RDB$NUMBER_OF_CLIENTS
RDB$MAX_CLIENTS
RDB$TRACE_LEVEL
RDB$LOG7FILE
RDB$RESTRICT7ACCESS
RDB$CAST_INFO
RDB$START_TIMESTAMP
RDB$CFG_FILE
RDB$NUMBERﬁOFiFREEiEXECUTORS
RDB$MAX7FREE7EXECUTORS
RDB$SHARED_MEMORY
RDB$FREE_SHARED_MEMORY
RDB$NUMBER_OF_CHUNKS
RDB$LARGEST7CHUNK
RDB$NUMBERﬁOFiBUSYiEXECUTORS
RDB$MEM_PAGEFILE_QUOTA
RDB$SMEM PAGEFILE COUNT
RDBSMEM GLOBPAGE COUNT
RDBSMEM WS _COUNT
RDB$MEM7PAGETBL7COUNT
RDBSMEM PAGE_FAULTS
RDBSMEM CPU_ TIME
rdbthincontrol>

192.168.1.100

1881

Idle

srv1MP

RdbThinSrvMP

Release 7.3.2.0.5 20130626 BD6Q
Release 7.3.2.0.5 20130625 BD6P
0x22A7DF73(581427059)
false

false

0

10

0

srv1MP. log

false

239.192.1.1:5517
2013-06-27 10:01:38.921
[mydir]jdbccfg.xml

2

2

1048576

432312

1

432292

0

~J O v O

7105
57

134

6.6.4 Starting Servers

Servers may be started using the controller.

If the server specifies a node or URL that is not the same as the node the controller is running
on you must use the VIA command qualifier otherwise an exception will be raised.

6.6.4.1 Interactive mode

The control commands available to start servers can be seen in the following table:

Table 6.6-9Interactive Start Server

Command

Description

start all servers

Start server

Start server <port id>

Start server <name>

Start server <name> via

<server_connection>

Starts all autostart servers found in the XML-
formatted configuration file used when invoking the
controller.

Only those servers that have the autostart
attribute and are for the local host will be started.

Starts a server of type RdbThinSrv on the local
host with all default characteristics.

Starts a server of type RdbThinSrv listening on the
designated port on the local host with default
remaining characteristics.

Starts the server that matches the <name> provided.
See XML formatted Configuration File for more
information on named server definitions.

Starts the server that matches the <name> provided,
by forwarding the request to the manager server
specified by <server_connection>.

Example

rdbthincontrol>
rdbthincontrol>
rdbthincontrol>
rdbthincontrol>

start
start
start
start

server
server
Server
server

myserver
1799
all
servl via managl

135

6.6.4.2 Command mode

The command mode commands available to start servers can be seen in the following table:

Table 6.6-10 Command Mode Start Server

Command Required AintionaI Ign(_)red Description
options options options
-startServer —name -active Starts the server as specified by
~node -all other command line options.
-port -using
-URL —in
~startServer -all —name Starts all autostart servers
“node found in the XML-formatted
—-port . . .
_URL configuration file used when
~using invoking the controller.

-in

Qualifiers specified in the Ignored Options column are silently ignored if present on the

Command line.

Note:

There 1s no command mode equivalence of the “start server via” interactive node command.

Example

S thincontrol -startServer -port 1701 -node localhost
$ thincontrol -startServer —-name myserver

S thincontrol —-startServer —-all

6.6.5 Stopping Servers

Active servers may be stopped using the controller. You must provide a valid control

password for the server.

Only those servers where the control password matches the control session control

password will be stopped.

Note:

Stopping a server will forcibly terminate all database connections on that server and does

not wait for client transaction completion.

136

Consider using the Close Server command first, to stop further client connections and
then use the Stop Server command later when no clients are bound. See Closing
Servers for more details.

You may use Show Server Of Show Clients command to see if any clients are
currently using the server. See Showing Servers for more details.

6.6.5.1 Interactive mode

The control commands available to stop servers can be seen in the following table:

Table 6.6-11 Interactive Stop Server

Command

Description

stop active servers
stop all servers

stop server

stop server <server_connection>

Stops all responding servers.
The keywords all and active in this context are
considered synonyms.

Stops the currently connected server.

Stops the active server specified by the server
connection information. See Connecting to servers
for more information.

Example

rdbthincontrol>
rdbthincontrol>
rdbthincontrol>
rdbthincontrol>
rdbthincontrol>
rdbthincontrol>

6.6.5.2 Command mode

stop
stop
stop
stop
stop
stop

server
server
server
server
active
server

myserv
//prod _node:1766/

1701

servers

//prod node:1766/ fred mypass

The command mode commands available to stop servers can be seen in the following

table:

Table 6.6-12 Command Mode Stop Server

Command Requned AddMonaI Ignpred Description
options options options
-stopServer -name -active Stops the server as specified by
~node -all other command line options.
—port -using
-URL

-in

137

Required Additional Ignored

Command ! . : Description
options options options
-stopServer _gctive or -name Stops all responding servers.
-all -node
-port
-URL
-using

—-1n

Q

ualifiers specified in the Ignored Options column are silently ignored if present on the

Command line.

Example

Uy Uy Uy >

thincontrol -stopServer -url //prod node:1766/
thincontrol -stopServer -port 1701 -node localhost
thincontrol -stopServer -active

thincontrol -stopServer -name myserver

6.6.6 Watching Servers

The trace output for an active server may be displayed on the controller console. You must
provide a valid control password for the server to be able to watch its trace.

Only those servers where the control password matches the control session control
password will be watched.

When you watch a server, all trace output from that server will also be sent to the current
console running the controller.

The display of trace output messages occurs asynchronously with the command line
interface. The same trace information will also be sent to the servers log file.

6.6.6.1

Note:
Because the server uses Java logger to log trace message to remote consoles such
as the controller, the output from the server will be buffered prior to being sent
across the network to the console. This means that the trace output may be
displayed sporadically on the console as the buffer is first filled and then flushed.

Interactive mode
The control commands available to watch servers can be seen in the following table:

138

Table 6.6-13 Interactive Watch Server
Command Description

watch [server] Watch the currently connected server.

watch server <server_connection> Watch the active server specified by the server
connection information. See Connecting to servers
for more information.

Example

rdbthincontrol> watch server myserv
rdbthincontrol> watch server //prod node:1766/
rdbthincontrol> watch server 1701 jack passwordl
rdbthincontrol> watch

6.6.6.2 Command mode
The command mode commands available to watch servers can be seen in the following
table:

Table 6.6-14 Command Mode Watch Server

Command Requned Ad@MonaI Ignpred Description
options options options
-watch -name -active Watches the server as specified
-node -all by other command line options.
-port -using
-URL —in
Example

$ thincontrol —--port 1701 -node localhost -watch
$ thincontrol -cfg my cfg.xml —-name myserver -watch

6.6.7 Watching Events

Since release 7.3.1.0.0

Events logged output for an active server may be displayed on the controller console. You
must provide a valid control password for the server to be able to watch for events.

When you watch for events on a server, all Events logged by that server will also be sent to

the current console running the controller. The logged event output is in the form of XML-
formatted messages.

139

The display of event output messages occurs asynchronously with the command line

interface.

Note:

Because the server uses Java logger to log trace message to remote consoles such
as the controller, the output from the server will be buffered prior to being sent
across the network to the console. This means that the trace output may be
displayed sporadically on the console as the buffer is first filled and then flushed.

See also Event Logging and Notification.

6.6.7.1 Interactive mode

The control commands available to watch events can be seen in the following table:

Table 6.6-15 Interactive Watch Events

Command

Description

watch events

watch events [on]
<server_connection>

Watch for events on the currently connected server.

Watch for events on the active server specified by
the server connection information.

The keyword “ON” is optional.

See Connecting to servers for more information.

Example

rdbthincontrol> watch
rdbthincontrol> watch
rdbthincontrol> watch
rdbthincontrol> watch

6.6.7.2 Command mode

events
events
events
events

myserv
//prod node:1766/
on 1701 jack passwordl

The command mode commands available to watch events can be seen in the following

table:

Table 6.6-16 Command Mode Watch Events

Required

Additional

Ignored

Command : . : Description
options options options
-watchEvents —name -active Watches events logged by the
‘nOdi -all server as specified by other
-por ~using . .
_URL o command line options.
Example

140

$ thincontrol --port 1701 -node localhost -watchEvents
$ thincontrol -cfg my cfg.xml —-name myserver -watchEvents

6.6.8 Polling Servers

6.6.8.1

The poll command uses the multicast information to poll responding Oracle JDBC for Rdb
Servers:

Each available server will respond with information about which node and port it is
listening on. In addition the poll response identifies the Process ID the server is using on
that node.

A control password is not required to use the poll command.

As the operation is a poll, the thin controller will wait a prescribed amount of time before
displaying the responses from the poll request. The pol1Timeout attribute specifies the
amount of time in milliseconds that the controller should wait for a reply on the receiving
socket. If no reply is received within that period of time the poll operation is deemed
complete and the responding servers will be sorted and listed.

The default value for the po11Timeout attribute is 2000 milliseconds (2 seconds).

If the network or the servers are very busy it is possible that a server may not respond
within the default time, if this is the case the timeout may be increased by specifying a
larger value for pol1Timeout attribute in either the command line or the session section
of the configuration file used when invoking the controller.

The pollTimeout attribute may also be set within a controller session using the Set
command on the controller command line.

Interactive mode
The control commands available to poll servers can be seen in the following table:

Table 6.6-17 Interactive Poll Server

Command Description

poll Poll active servers.

141

Example

rdbthincontrol> poll

Polling servers

i73spregtestsrv(5) //111.137.33.8:2505/
(0x23E3B538<602125624>) node = alfred

i73sslregtstsrv(2) //111.137.32.212:2503/
(0x2400FF7E<604045182>) node = victoria

i73sslregtstsrv(2) //111.137.33.8:2503/
(Ox23E3CC2A<602131498>) node = alfred regtestsrv a7l (0)
//111.137.32.177:1850/ (0x2026C201<539410945>) node = spencer
rdbthincontrol>

6.6.8.2 Command mode

The command mode commands available to poll servers can be seen in following table:

Table 6.6-18Command Mode Poll Server

Required Additional Ignored
options options options

Command Description

-poll -active Poll active servers.

-all
-name
-node
-port
—-URL
-using
-in

Example

$ thincontrol -poll

6.6.9 Poll Sub-commands

Starting with release 7.3.0.1.0, the controller will allow subcommands to be issued during
a POLL request.

When a listening server receives a POLL request it may optionally carry-out a sub-
command sent to it within the POLL request message.

There is currently only one recognized POLL sub-command:

* Reopenlogs

142

Note:
The POLL sub-command functionality is only available when using the thin
controller JAR from release 7.3.0.1.0 (or above). Only release 7.3.0.1.0 (or
above) servers will accept a POLL sub-command.

6.6.9.1 Reopenlogs Sub-command

The reopenlogs subcommand tells the listening server to re-open its log files allowing
the prior version of the files to be read or copied.

Due to a restriction within Java on OpenVMS, log files opened by a JDBC server cannot
be read or copied while the log files are currently being used by the server, thus to see
the contents of these files they must first be closed by the server process.

On receiving this sub-command, the server will flush out its log stream, and then close its

currently opened log files. It will then create a new version of the log files using the
same file names.

6.6.9.2 Interactive mode

The control commands available to poll servers can be seen in the following table:

Table 6.6-19 Interactive Poll reopenlogs

Command Description
poll reopenlogs Poll active servers and request the log files to be re-
opened.
Example

rdbthincontrol> poll reopenlogs

Polling servers

i73spregtestsrv(5) //111.137.33.8:2505/
(0x23E3B538<602125624>) node = alfred
i73sslregtstsrv(2) //111.137.32.212:2503/
(0x2400FF7E<604045182>) node = victoria
i73sslregtstsrv(2) //111.137.33.8:2503/
(0x23E3CC2A<602131498>) node = george

143

regtestsrv a71(0) //111.137.32.177:1850/
(0x2026C201<539410945>) node = spencer

rdbthincontrol> poll reopenlogs #name:regtestsrv a7l
Polling servers (using qualifiers #name:regtestsrv a’l)
regtestsrv a71(0) //111.137.32.177:1850/
(0x2026C201<539410945>) node = spencer

6.6.9.3 Command mode

The command mode commands available to poll servers can be seen in following table:

Table 6.6-20Command Mode Poll reopenlogs

Required Additional
options options

Ignored

Command ;
options

Description

-active
-all
-name
-node
-port
-URL
-using
-in

-poll reopenlogs Poll active servers and request

the log files to be re-opened.

Example

$ thincontrol -poll reopenlogs

S thincontrol -poll reopenlogs

#name:MY MP_ SRV

6.6.10 Showing Executors

Since release 7.3.2.0.0

6.6.10.1

Information about executors within the currently connected multi-process server may be
displayed using the controller.

Interactive mode

The control commands available to show executors can be seen in following table:

Table 6.6-21 Interactive Show Clients

Command Description
show executors Shows all executors used by the currently connected
server.

144

Example

rdbthincontrol> show executors

6.6.10.2 Command mode

The command mode commands available to show clients can be seen in following table:

Table 6.6-22 Command Mode Show Clients

Command Adqlltlonal Ignpred Description
OpthﬂS OpthﬂS

-showexecutors -active Show executors on the

-all currently connected server.

~name If present will be used to
—node establish a connection to a
-port
_URL server.

Qualifiers specified in the Ignored Options column are silently ignored if present on the
Command line.

Example

S thincontrol -showexecutors -port 1701 -node mynode

6.6.10.3 Information displayed in Show Executors

When the show executors command is executed, information about each executor is
displayed as a list of attributes:

Table 6.6-23 Show Executors Display Attributes
Attribute Description
RDBSEXECUTOR_NAME Internal unique JDBC executor name allocated to
each new executor.

RDBSPID Show the OpenVMS process ID of the executor
process.
RDB$STATE Current state of the executor.

145

Attribute

Description

RDBSNUM_ STMTS

RDBSNUM_CURSORS

RDBSMEM SQLDAS

RDBSMEM BUFFERS

RDBSMEM SEG_STRINGS

RDBSMEM NUM FREE CHUNKS

RDB$MEM LARGEST CHUNK

RDB$MEM TOTAL FREE

RDBSMEM PAGEFILE QUOTA

RDBSMEM PAGEFILE COUNT

RDBSMEM GLOBPAGE COUNT

RDBSMEM WS_COUNT

RDBSMEM PAGETBL COUNT

RDBSMEM PAGE FAULTS

RDBSMEM CPU TIME

The number of open and compiled SQL statements.
The number of cursors allocated.

The amount of shared memory (bytes) used by
SQLDA structures.

The amount of shared memory (bytes) used by
buffers.

The amount of shared memory (bytes) used by
segmented strings (blobs).

The number of free chunks of shared memory
available for use.

The amount of memory (bytes) of the largest
memory chunk available.

The amount of shared memory (bytes) allocated to
this executor and still free.

Executor process JPI$_PGFLQUOTA value.
Executor process JPI$ PAGFILCNT value.
Executor process JPI$_GPGCNT value.
Executor process JPI$_PPGCNT value.
Executor process JPI$_APTCNT value.
Executor process JPI$_PAGEFLTS value.

Executor process JPI$_CPUTIM value.

Note:

The format and contents of the show executors display may change in future

146

releases of Oracle JDBC for Rdb.

Example

rdbthincontrol> show executors
//localhost:1799/ is currently running 1 executor

RDB$EXECUTOR_NAME : JDBCDEV00000001
RDBSPID : O0x22A7DF71(581427057)
RDBSSTATE : Client 00000004 connected

raidl: [jdbc.regtest.721]mf personnel as murray
RDBSNUM STMTS 1

RDBSNUM CURSORS : 0

RDBSMEM SQLDAS : 139496

RDBSMEM BUFFERS : 0

RDBSMEM SEG STRINGS 0
RDBSMEM NUM FREE CHUNKS : 2

RDB$MEM_LARGEST_CHUNK : 165008
RDB$MEM_TOTAL_FREE : 165800
RDB$MEM_PAGEFILE_QUOTA : 718750
RDB$MEM_PAGEFILE_COUNT : 576751
RDB$MEM_GLOBPAGE_COUNT : 945
RDB$MEM WS COUNT : 2070
RDB$MEM_PAGETBL_COUNT : 0
RDB$MEM_PAGE_FAULTS : 3987
RDBSMEM CPU_TIME : 55
rdbthincontrol>

6.6.11 Showing Server Pool

Information about pooled servers being maintained by the currently connected pool
server may be displayed using the controller.

6.6.11.1 Interactive mode

The control commands available to show pooled servers can be seen in following table:

Table 6.6-24 Interactive Show ServerPool

Command Description
show serverpool Shows all pooled servers maintained by the currently
connected pool server.

147

Example

rdbthincontrol> show serverpool

6.6.11.2 Command mode

The command mode commands available to show server pools can be seen in following
table:

Table 6.6-25 Command Mode Show Clients
Additional Ignored

Command . - Description
options options
-showserverpool -active Show pooled servers
-all maintained by the currently
connected server.
—name If present will be used to
~node establish a connection to a
-port
_URL server,

Qualifiers specified in the Ignored Options column are silently ignored if present on the
Command line.

Example

$ thincontrol -showserverpool -port 1701 —-node mynode

6.6.11.3 Information displayed in Show ServerPool

When the show serverpool command is executed, information about each pooled server
is displayed as a list of attributes:

Table 6.6-26 Show Executors Display Attributes

Attribute Description
RDBSSERVER NAME Server name.
RDBSURL URL of the server.
Format “//node:port/”
RDBSPID The process identification of the server process.
Format “hexadecimal PID (decimal PID)”.
RDBSVERSION The version information for the server JAR file used.

Format “Release release# build#”.

148

Attribute Description

RDBSMAX CLIENTS Maximum number of non-control client connections
allowed by server.

RDBS$NUM CLIENTS Current number non-control client connections.

RDBSSTATE Current state of the pooled server.

Possible values:

RUNNING — pooled server available.

NOT RESPONDING - pooled server not responding
to poll server status request.

Note:
The format and contents of the show serverpool display may change in
future releases of Oracle JDBC for Rdb.

Example

rdbthincontrol> connect 1804
rdbthincontrol> show serverpool
Server Pool controlled by //localhost:1804/ contains 3 servers:

RDBSSERVER NAME : srv1MP

RDBSURL : //localhost:1881/
RDBSPID : 5804
RDBSVERSION : 73205:20130626

RDBSMAX CLIENTS : 10
RDBSNUM CLIENTS : O
RDBSSTATE : RUNNING

RDBSSERVER NAME : srv2MP

RDBSURL : //localhost:1882/
RDBSPID : 5032
RDBSVERSION : 73205:20130626

RDBSMAX CLIENTS : 10
RDBSNUM CLIENTS : O
RDBSSTATE : RUNNING

RDBSSERVER NAME : srv3MP

RDBSURL : //localhost:1883/
RDBSPID : 5960
RDBSVERSION : 73205:20130626

RDB$MAX CLIENTS : 10
RDB$NUM CLIENTS : 0

149

RDBSSTATE : RUNNING
rdbthincontrol>

6.7 Client Operations

6.7.1 Showing Clients

Information about clients within active servers may be displayed using the controller.
You must provide a valid control password for the server.

Clients will only be displayed for those servers where the control password matches the

control session control password.

6.7.1.1 Interactive mode
The control commands available to show clients can be seen in following table:
Table 6.7-1Interactive Show Clients
Command Description
show active clients Shows all clients on responding servers.
show all clients
show active clients <name> Shows all clients with username <name> on
show all clients <name> responding servers.
show active clients in Shows all clients currently connected to the specified
<database_spec> database on all responding servers.
show all clients in <database_spec>
show clients Shows all clients in the currently connected server.
show clients in <database_spec> Shows all clients currently connected to the specified
database on the currently connected server.
Example

rdbthincontrol> show active clients

rdbthincontrol> show all clients fred
rdbthincontrol> show clients

rdbthincontrol> show clients in diskl:[dbc]pers
rdbthincontrol> show all clients in diskl: [dbc]pers

150

6.7.1.2 Command mode

The command mode commands available to show clients can be seen in following table:

Table 6.7-2Command Mode Show Clients

Command Requned AddMonaI Ignpred Description
options options options
-showClient <client id> -active Show specified client on the
-all currently connected server.

-name
-node
-port
-URL
-using
<user>

-showClients

-name
-node
-port
-URL
-using
<user>

-in

<database spec>

-showClients -all or
—active

-using
<user>

-in

<database spec>

—-name
-node
-port
-URL

If present will be used to
establish a connection to a
server.

If present specifies that only
users using the username
<user> should be shown.

Show all clients on the
currently connected server.
If present will be used to
establish a connection to a
server.

If present specifies that only
users using the username
<user> should be shown.

If present specifies that only
users connected to
<database_spec> should be
shown.

Show all clients on all
responding servers.

If present specifies that only
users using the username
<user> should be shown.

If present specifies that only
users connected to
<database_spec> should be
shown.

151

Qualifiers specified in the Ignored Options column are silently ignored if present on the
Command line.

Example
$ thincontrol -showclients -all
$ thincontrol -showclients -port 1701 -node mynode
$ thincontrol -showclients -all -in db dir:personnel
$ thincontrol -showclients -all -using murray

6.7.1.3 Information displayed in Show Client

When the show client command is executed, information about each client that matches any
selection criteria provided is displayed as a list of attributes:

Table 6.7-3Show Clients display attributes
Attribute Description
RDBSCLIENT_ID Internal unique JDBC client id allocated to each new
connection request. An asterisk (*) suffix indicates
your current control connection.

RDBSURL The database specification component of the URL
provided by the client connection.

If this is a control connection the following string
will be displayed :”<CONTROL CONNECTION>".

RDBSUSER The username used by this client.

In addition, if an application name has been provided
for this connection (using the “@app” connection
option) it will be displayed in parenthesis after the
username. See Connection Options for more
information on the use of the “@app” option.

If this is a control connection the following string
will be displayed :”<control>".

RDBSTP The IP of the source of the connection request.
Format “node:port”.

RDBSPID The identification of the thread this client is using on

the server.
Format “hexadecimal PID:THREAD ID (decimal

152

Attribute Description
PID:THREAD ID)”.

If this is a control connection only the PID portion
will be displayed.

RDBSPID_AT_EXECUTOR The process identification of the executor this client
IS using.
Format “hexadecimal PID (decimal PID)”.

If the server is not multi-process, this attribute
indicates the process identification of the server and
the unique connection number allocated to this
connection.

Format “hexadecimal PID:CONNECT ID (decimal
PID:CONNECT ID)”.

RDBSLAST_SQL The last SQL statement (if any) issued by the client.

RDBSLAST_ACTION The last action issued by client.
Format “timestamp : action”.

RDBSLAST_EXCEPTION The last exception (if any) raised on this client
request within the server.

RDBSTIME_SINCE_LAST_ACTION The amount of time elapsed since the last action
recorded for this client on the server.
Format “days hours:minutes”.

RDBSMINUTES_SINCE_LAST_ACTION The amount of time elapsed in minutes since the last
action recorded for this client on the server.
Format “minutes”.

RDBSLAST_OPEN Timestamp of the last connection made by this client.

RDBSPID_AT_DB Since release 7.3.2.0.2
The process identification of the internal Rdb Stream
this client is using.
Format “hexadecimal PID: decimal STREAM ID”.

This is the same PID format used by other Rdb
facilities such as RMU to uniquely identify client
connections within the database.

The Rdb stream information is only available if the
client has connected to a database within an Rdb

153

Attribute

Description

environment of Oracle Rdb release 7.2.5.0.0 or
above, and the JDBC server used is release 7.3.2.0.2
or above.

In addition, if the connected server is multi-process then the following attributes will also be
displayed for each client’s executor process (control connections will have all values set to

zero (0)):

Table 6.7-4Additional Multi-Process Server Attributes

Attribute

Description

RDB$NUM_STMTS

RDB$NUM_CURSORS

RDBSMEM SQLDAS

RDB$MEM BUFFERS

RDBSMEM SEG STRINGS

RDBSMEM NUM FREE CHUNKS

RDBSMEM LARGEST CHUNK

RDBSMEM TOTAL FREE

RDBSMEM PAGEFILE QUOTA

RDBSMEM PAGEFILE COUNT

RDBSMEM GLOBPAGE COUNT

RDBSMEM WS_COUNT

RDBSMEM PAGETBL_COUNT

RDBSMEM PAGE FAULTS

The number of open and compiled SQL statements.
The number of cursors allocated.

The amount of shared memory (bytes) used by
SQLDA structures.

The amount of shared memory (bytes) used by
buffers.

The amount of shared memory (bytes) used by
segmented strings (blobs).

The number of free chunks of shared memory
available for use.

The amount of memory (bytes) of the largest
memory chunk available.

The amount of shared memory (bytes) allocated to
this executor and still free.

Executor process JPI$ PGFLQUOTA value.
Executor process JPI$ PAGFILCNT value.
Executor process JPI$_GPGCNT value.
Executor process JPI$ PPGCNT value.
Executor process JPI$_APTCNT value.

Executor process JPI$_PAGEFLTS value.

154

Attribute Description

RDBSMEM_CPU_TIME Executor process JPI$_CPUTIM value.

Note:

The format and contents of the show clients display may change in future
releases of Oracle JDBC for Rdb.

Example

rdbthincontrol> show clients

RDB$CLIENTiID : 00000002%*

RDBSURL : <CONTROL CONNECTION>

RDBSUSER : <control>

RDBSIP : 127.0.0.1:62799

RDBSPID : 0x22A57736(581269302)
RDB$PID_AT_EXECUTOR : Ox22A51437:1(581243959:1)

RDB$LAST_SQL 3

RDB$LAST_ACTION : 2013-04-22 18:43:56.4106 : INIT_CONTROL
RDB$LAST_EXCEPTION :

RDBSTIME SINCE LAST ACTION : 0 01:46

RDBSMINUTES SINCE LAST ACTION : 106
RDBSLAST OPEN :
RDBSPID AT DB
RDB$NUM_STMTS

RDB$NUM CURSORS

RDBSMEM SQLDAS

RDBSMEM BUFFERS

RDB$MEM SEG_STRINGS
RDB$MEM NUM FREE CHUNKS
RDBSMEM LARGEST CHUNK
RDBSMEM TOTAL FREE
RDBSMEM PAGEFILE QUOTA
RDB$MEM PAGEFILE COUNT
RDB$MEM GLOBPAGE COUNT
RDBSMEM WS COUNT
RDBSMEM PAGETBL_COUNT
RDB$MEM PAGE FAULTS
RDB$MEM CPU_TIME

cNoNoNoNoNoNoNolololNolololNolNo)

RDBSCLIENT ID : 00000005

RDBSURL : raidl:[jdbc.regtest.721]mf personnel
RDBSUSER : murray [rSQL]

RDBSIP : 127.0.0.1:62850

155

RDBSPID
RDB$SPID AT EXECUTOR
RDB$LAST75QL
RDB$LAST_ACTION

CONNECT SECURE_V73
RDBSLAST EXCEPTION
RDBSTIME SINCE LAST ACTION
RDB$MINUTESisINCEiLASTiACTION
RDB$LAST_OPEN
RDBSPID AT DB

RDBSNUM STMTS

RDBSNUM CURSORS
RDB$MEM78QLDAS
RDB$MEM_BUFFERS
RDB$SMEM SEG STRINGS
RDBSMEM NUM FREE CHUNKS
RDB$MEM_LARGEST_CHUNK
RDB$MEM7TOTAL7FREE
RDB$MEM_PAGEFILE_QUOTA
RDB$MEM_PAGEFILE_COUNT
RDB$MEM_GLOBPAGE_COUNT
RDBSMEM WS COUNT
RDB$MEM7PAGETBL7COUNT
RDB$MEM_PAGE_FAULTS
RDBSMEM CPU TIME
rdbthincontrol>

6.7.2 Stopping Clients

Note:

0x22A57736:
0x22A51437:

2013-04-22

0 00:00

0
2013-04-22
22A57736:3
1

0

139496

0

0

2

165008
165800
718750
576763
1200

2071

0

3608

47

2(581269302:2)
1(581243959:1)

20:29:49.919

20:29:50.044

Clients within active servers may be stopped using the controller. You must provide a valid

control password for the server.

Clients will only be stopped in those servers where the control password matches the

control session control password.

If a database file specification is used, only those clients current connected to that database

will be stopped. The database file specification must match exactly, ignoring character

case, to that shown in the show clients output.

Stopping a client will forcibly terminate all database connections on that server for that

client and does not wait for client transaction completion.

You may use the Show Clients command to see clients that are currently using the

server. See Showing Clients for more details.

In the following command, if <client id> is provided, it must match a client id
returned by the show clients command. Leading zeroes (0) may be left off the

<client id>.

156

6.7.2.1

Interactive mode

The control commands available to stop clients can be seen in following table:

Table 6.7-5Interactive Stop Clients

Command Description

stop active clients Stops all clients on responding servers.
stop all clients

stop active clients <name> Stops all clients with user name <name> on
stop all clients <name> responding servers.

stop active clients in<database_spec> Stops all clients currently connected to the specified
stop all clients in <database_spec> database on all responding servers.

stop clients Stops all clients in the currently connected server.

stop clients in<database spec> Stops all clients on the currently connect server that
are currently connected to the specified database.

stop client <client_id> Stops the specified client on the currently connected
server.

Example

rdbthincontrol> stop active clients

rdbthincontrol> stop all clients fred
rdbthincontrol> stop clients

rdbthincontrol> stop client 0000000A
rdbthincontrol> stop all clients in diskl: [dbs]pers

6.7.2.2 Command mode

The command mode commands available to stop clients can be seen in the following table:

Table 6.7-6Command Mode Stop Clients

Command Required Ado_litional Ignpred Description
options options options
-stopClient <client id> -active Stops specified client on the
-all currently connected server.
-name If present will be used to
-node establish a connection to a
-port

157

Additional Ignored

Command . - Description
options options
-URL Server.
-using If present specifies that only
<user> users using the username
<user> should be stopped.
-stopClients Stops all clients on the
currently connected server.
-name If present will be used to
node establish a connection to a
-port
_URL server.
-using If present specifies that only
<user>

-stopClients -all or

-in
<database spec>

—name

-node
-port
-URL
-using
<user>

-in
<database spec>

users using the username
<user> should be stopped.
If present specifies that only
users connected to
<database_spec> should be
stopped.

Stops all clients on all
responding servers.

If present specifies that only
users using the username
<user> should be stopped.

If present specifies that only
users connected to
<database_spec> should be
stopped.

Qualifiers specified in the Ignored Options column are silently ignored if present on the

Command line.

Example

Ur Uy Uy U >

murray

thincontrol —-stopClient 0000000A
thincontrol -stopClients —-all

thincontrol -stopClients
thincontrol -stopClients
thincontrol -stopClients

—active -in db dir:mf personnel
—all -using murray
-port 1701 -node mynode -using

158

Contents

6.8 Other Commands

The Controller has several commands that are neither server nor client operations:

« digest
« obfuscate

6.8.1 Digest

Digest will create a non-reversible obfuscated control password to be used in
configuration files. See obfuscating Control Passwords for more details.

6.8.1.1 Interactive mode

The control command available to obfuscate control passwords can be seen in following
table:

Table 6.8-1Interactive Mode Digest

Command Description

digest <plain text pwd> Obfuscates the control password using digest.

Example

rdbthincontrol> digest thisismypassword
digest : 0x31435008693CE6976F45DEDC5532E2C1

6.8.1.2 Command mode

The command mode commands available to obfuscate user passwords can be seen in
following table:

Table 6.8-2Command Mode Digest
Command Description

-digest <plain text pwd> Obfuscates the control password using digest.

Example

S java -jar rdbthincontrol.jar -digest "MySecretPassword"
digest : 0x7315A012ECAD1059A3634F8BE1347846

159

Note:
If double quotation characters are not used to surround the plain text password DCL
may, depending on your environment, force the value to all lower case or all upper case
which may differ from the original.

6.8.2 Obfuscate

Obfuscate will create a reversible obfuscated user password to be used in configuration
files. See obfuscating User Passwords for more details.

6.8.2.1 Interactive mode

The control command available to obfuscate user passwords can be seen in following table:

Table 6.8-3Interactive Mode Obfuscate
Command Description

obfuscate <plain text pwd> Obfuscates the user password.

Example

rdbthincontrol> obfuscate mypassword
obfuscation : ##016BA4158E5884C8D6EAFE71697D4DC9483417DA0RA1

6.8.2.2 Command mode

The command mode commands available to obfuscate user passwords can be seen in
following table:

Table 6.8-4Command Mode Obfuscate
Command Description

-obfuscate <plain text pwd> Obfuscates the user password.

Example

$ thincontrol -obfuscate "mypassword"
obfuscation : ##0145A4158E5884C8D6EAFE71697D4DC9483417DA0BAL

Note:
If double quotation characters are not used to surround the plain text password DCL
may, depending on your environment, force the value to all lower case or all upper case
which may differ from the original.

160

Contents

Chapter 7
Oracle SQL/Services and Oracle JDBC for
Rdb Servers

The Oracle SQL/Services management command line may be used to start and stop servers
using the new dispatcher protocol called JDBC available in Oracle SQL/Services V7.1.6 and
later.

Currently the Oracle SQL/Services interface to Oracle JDBC for Rdb Servers is minimal and
may only be used to start and stop a JDBC dispatcher which in turn will start or stop the
associated Oracle JDBC for Rdb server.

Starting an Oracle JDBC for Rdb server using Oracle SQL/Services involves the following
steps:

1. Create an SQL/Services Dispatcher with the protocol JDBC.
See Creating an Oracle SQL/Services JDBC Dispatcher.
2. Associate the JDBC Dispatcher with an Oracle JDBC for Rdb server.
See Associating an Oracle SQL/Services JDBC Dispatcher to a Server
3. Start the JDBC dispatcher.
See Starting a JDBC Dispatcher

In order for the dispatcher to start a server, the dispatcher must determine the name and type
of the server, as well as the command procedures and configuration files to use during
startup.

The following sections show how these determinations are carried out.

Al.3 Sample Setup, Starting an Oracle JDBC for Rdb thin server from Oracle SQL/Services.
provides a working example on creating a JDBC dispatcher and its server associations.

7.1 JDBC Dispatcher

A new SQL/Services dispatcher protocol of JDBC was introduced in release 7.1.6 of Oracle
SQL/Services. This dispatcher type allows you to create JDBC dispatchers that may be
associated with Oracle JDBC for Rdb servers.

161

7.1.1 Creating an Oracle SQL/Services JDBC Dispatcher

To be able to start and stop Oracle JDBC for Rdb servers using Oracle SQL/Services, a
dispatcher with protocol JDBC must be defined using the Oracle SQL/Services management
console.

You must provide the new dispatcher with a unique name and network_port. It is important
to ensure that the use of the PORT_ID is unique as the port provided will be used by the
associated Oracle JDBC for Rdb server and only one server at a time may listen on a single
TCPIP port.

Format

CREATE DISPATCHER <dispatcher name> NETWORKiPORT TCPIP PORTiID
<port> PROTOCOL JDBC;

Where:
¢ <dispatcher name> isa unique name for this dispatcher instance
s <port> isthe port number the associated server will listen on

Example

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1880 PROTOCOL JDBC;

SQLSRV> SHOW DISPATCHER;

Dispatcher JDBC DISP

State: UNKNOWN

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)
TCP/IP port 1880 Unknown JDBC clients

Log path: SYSSMANAGER:

Dump path: SYSSMANAGER:

Caution:

The Oracle SQL/Services Management GUI (unsupported software) does not recognize
dispatchers of the type JDBC. This means that you will no longer be able to use the GUI

once a JDBC dispatcher has been defined.

162

7.1.2 Associating an Oracle SQL/Services JDBC Dispatcher to a Server

Each Oracle SQL/Services JDBC dispatcher must be associated with an Oracle JDBC for
Rdb server. The PORT 1D specified in the dispatcher creation is the key to this relationship.

The PORT ID specifies the TCPIP port that will be used by the Oracle JDBC for Rdb server
and is used by the dispatcher start up procedures to determine information about the
associated server.

In addition to which port the server will listen on, the PORT ID may be used by the
dispatcher to determine:

« What type of Oracle JDBC for Rdb server to start.

« The name that will be given to this server.

« What configuration file to use for this server.

« Any DCL command to run during the server startup procedure.

The overloading of the use of the PORT ID by the JDBC dispatcher is necessary as the
amount of information stored for a JDBC dispatcher is minimal keeping it in line with the
information stored for other SQL/Services Dispatcher types.

In the process of determining the server attributes the dispatcher may try to translate the
following logical names:

« RDB$JDBC_SQSNAM <port>
« RDB$JDBC_ SQSCFG_<port>
« RDB$JDBC_SQSCMD_ <port>
« RDBS$JDBC_SQSTYPE <port>

In the above logical names the <port> will be substituted by the PORT ID of the JDBC
dispatcher prior to logical name translation.

If no such logical names exist, the dispatcher will then use alternate methods to provide the
server with a name and will to try to locate a suitable command procedure and configuration
file. The following sections detail how these determinations are carried out.

When determining the server information required to correctly start the associated Oracle
JDBC for Rdb server, the dispatcher will carry out the following steps in the order specified:

1. First the dispatcher will create a name for the server.

2. Any DCL command required to be executed during server start up is then determined.

3. The file specification of the configuration file to provide to the server is then
determined.

4. The server type for the server is then determined.

163

7.1.2.1 Determining the server name

A server name is required as it may be used by the server start up procedure to locate
properties from its configuration file. The name used will determine various characteristics of
the started server.

In addition the server name will be used as the OpenVVMS process name and will determine
the naming of any associated executors if the server is a multi-process server.

The server name is also used in creating log and temporary files during the running of the
server.

The PORT_ID is used to determine the name of the Oracle JDBC for Rdb server using the
following precedence:

1. If the logical name RDB$JDBC_SQSNAM <port> exists then it is translated to
provide the server name
2. If the logical name does not exist the server name will be SQS<port>

Example 1
Logical name not defined:

$ show log RDBSJDBC SQSNAM 1888

$SHOW-S-NOTRAN, no translation for logical name

RDBSJDBC SQSNAM 1888

$ MCR SQLSRV_ MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

This will create a server named sQs188s.

Example 2
Logical name defined:

$ DEFINE/SYSTEM RDBSJDBC SQSNAM 1888 MY POOL SRV

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

This will create a server named My PooL SRv.

164

7.1.2.2 Determining extra DCL commands for use during start-up
During the invocation of a JDBC server, the following DCL command procedure is executed:
RDB$JDBC_HOME : RDBJDBC STARTSRV.COM

This is the standard startup command procedure used by Oracle JDBC for Rdb and was
created for you during the installation of the Oracle JDBC for Rdb product.

This command procedure will setup some environmental elements and then execute a Java
command to start the server. A discrete dispatcher process will be set up by the
SQL/Services START DISPATCHER command and the Java command will be run under
this process context.

The RDBJDBC STARTSRV command procedure will try to locate and execute any specific
setup command procedures you may have designated for its use. This is done prior to the
procedure executing the Java command that will ultimately start the server instance.

The PORT ID is used to determine the name of an Open VMS DCL command procedure
that may be invoked containing your system and environmental setup procedures. The file
specification of the command procedure is determined using the following precedence:

1. If the logical name RDB$JDBC_SQSCMD_<port> exXists then it is translated to
provide the command procedure file specification

2. If the logical name does not exist the dispatcher will try to locate and execute the
file rdb$jdbc com:rdbjdbc sgs onStartup.com.

3. If this file does not exists the dispatcher will try to locate and execute the file
rdb$jdbc _home:rdbjdbc sgs onStartup.com

Example 1
Logical name not defined and file rdb$jdbc_com:rdbjdbc_sqgs_onStartup.com does exist:

$ show log RDBSJDBC SQSCMD 1888

$SHOW-S-NOTRAN, no translation for logical name

RDBSJDBC SQSCMD 1888

S MCR SQLSRV_MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

The file RDB$JDBC_COM: RDBJIDBC_SQS_ONSTARTUP.coM Will be executed.

Example 2
Logical name defined:

165

$ DEFINE/SYSTEM RDBS$JDBC SQSCMD 1888
RDBSJDBC_COM:MY SRV1888 ONSTART.COM

$ MCR SQLSRV_MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

The file RDB$JDBC_coM:MY_SRv1888_ONSTART.coM Will be executed.

7.1.2.3 Determining the server configuration file

The PORT_ID is also used to determine the configuration file to use on server startup. This
file can be a CFG or an XML-formatted configuration file and is used to provide information
to the server about what characteristics it should use when running. See Configuration Files
for more details on the use of configuration files.

You may choose to provide a separate configuration file for the server associated with each
JDBC dispatcher, or you may choose to use a single XML-formatted configuration file
containing the server attributes for all your servers.

The appropriate configuration file is determined by the dispatcher by trying to translate the
logical name RDBSJDBC SQSCFG <port> where PORT ID is substituted for <port>
prior to logical name translation. If the logical name is not there then the dispatcher will try
use a configuration file from the JDBC system directories.

The following is the precedence for this file search

1. The file pointed to by the RDBSJDBC_SQSCFG_<port> if it exists.

2. RDB$JDBC COM:<server name> CFG.XML where the server name as
determined in previous steps is substituted for <server name>

3. RDBSJDBC COM:SQLSRV JDBC SERVER CFG.XML

4. RDB$JDBC_COM:RDBJDBCCFG . XML a

Example 1
Logical name not defined and file RDB$JDBC COM: SQLSRV_JDBC_SERVER_CFG.XML
does exist:

$ show log RDBSJDBC SQSCFG 1888

%$SHOW-S-NOTRAN, no translation for logical name
RDB$JDBC78QSCFG71888

$ MCR SQLSRV_MANAGE72

SQLSRV> CONNECT SERVER;

166

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

The file RDB$JDBC_ COM: SQLSRV_JDBC_SERVER CFG.XML Will be used.

Example 2
Logical name defined:

$ DEFINE/SYSTEM RDB$JDBC SQSCFG 1888
RDB$JDBC_COM:MY SRV1888 CFG.XML

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

The file RoB$JDBC _com:MY srv1888 cFG.xML Will be used.

7.1.2.4 Determining Server Type

During the startup of the server associated with the Oracle SQL/Services JDBC dispatcher,
the type of the server to startup also needs to be determined.

The server type will be used by the dispatcher to determine the appropriate JDBC JAR file to
use when invoking the server. The server type will also used to determine other server
attributes that have to be set for a successful instantiation of a server process.

The dispatcher will use the PORT ID to try to identify the appropriate JDBC server type to
start.

There are four types of Oracle JDBC for Rdb servers recognized by Oracle SQL/Services:

e POOL -aPool server i.e. type="RdbThinSrvPool"

e MP - amulti-process server i.e. type="RdbThinSrvMP"
e STD -astandard thinserveri.e. type="RdbThinSrv"
¢+ MAN -amanager serveri.e. type="RdbManSrv"

When the dispatcher determines the server type, the following steps are used :
1. If the logical name RDB$JDBC_SQSTYPE <port> exists, it is translated to
provide the server type. The translated logical name must be one of the valid server

types as shown above.
2. If the logical name does not exist the server type will be POOL

167

Note:
As the dispatcher cannot currently use the server name to determine the server type,
it is important that this logical name be correctly setup if the type of the server to
start is not a POOL server i.e. type="RdbThinSrvPool". If this is not correctly
set the wrong JDBC JAR file may be used and the server may fail to start correctly.
The log files associated with the server, usually written to the directory
RDB$JDBC_LOGS will show the start-up failure and the reason for the failure.

Example 1
Logical name not defined:

$ show log RDB$JDBC SQSTYPE 1888

$SHOW-S-NOTRAN, no translation for logical name

RDB$JDBC SQSTYPE 1888

S MCR SQLSRV_MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP
PORT ID 1888 PROTOCOL JDBC;

This will create a server with type RdbThinSrvPool.

Example 2
Logical name defined:

$ DEFINE/SYSTEM RDBSJDBC SQSTYPE 1888 MP

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
1888 PROTOCOL JDBC;

This will create a server with type RdbThinSrvMp.

Example 3
Logical name defined:

$ DEFINE/SYSTEM RDBSJDBC SQSTYPE 2070 MAN

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC DISP NETWORK PORT TCPIP PORT ID
2070 PROTOCOL JDBC;

This will create a server with type RdbManSrv.

Contents

168

7.1.3 Starting a JDBC Dispatcher

Once you have defined a JDBC dispatcher, it can be started like any other Oracle SQL/Services
dispatcher:

Example
SQLSRV> start dispatcher jdbc disp;
SQLSRV> show disp jdbc disp;
Dispatcher JDBC DISP
State: STARTING
Autostart: on
Max connects: 100 clients
Idle User Timeout: <none>
Max client buffer size: 5000 bytes
Network Ports: (State) (Protocol)
TCP/IP port 1880 Inactive JDBC clients
Log path: SYSSMANAGER:
Dump path: SYSSMANAGER:

SQLSRV> show disp jdbc disp;

Dispatcher JDBC DISP

State: RUNNING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)

TCP/IP port 1880 Inactive JDBC clients

Log path: SYSSMANAGER:

Dump path: SYSSMANAGER:

Log File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISPO607l.LOG;
Dump File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISPO60.DMP;

The Oracle SQL/Services monitor will attempt to start the server associated this dispatcher
and create a log of the dispatcher events in the SYSSMANAGER directory in a log file
named:

SYSSMANAGER:SQS <nodename> JDBC DISP<nnnnn>.LOG

The <nodename> depends on the node the dispatcher is started up on.
The <nnnnn> is the unique id given to this dispatcher instance by Oracle SQL/Services

For example:

SQS DECRDB JDBC DISP06071.LOG

169

This log can be useful in determining why a dispatcher did not start up properly. For example
if appropriate logical names have not been setup as specified in the installation of Oracle
JDBC Drivers for Rdb then a message similar to the following may be found at the end of the
log file:

$ @rdb$jdbc home:rdbjdbc startsrv SQS1880 "SQS"
$DCL-E-OPENIN, error opening

RDB$JDBC7HOME: [SYSMGR]RDBJDBC STARTSRV.COM; as input
-RMS-F-DEV, error in device name or inappropriate device type
for operation

SYSTEM job terminated at 21-JUL-2004 21:52:07.56

Accounting information:

Buffered I/0 count: 37 Peak working set size: 2272

Direct I/0 count: 14 Peak virtual size: 173072

Page faults: 192 Mounted volumes: O

Charged CPU time: 0 00:00:00.04 Elapsed time: 0 00:00:00.21

7.1.4 Stopping a JDBC Dispatcher

The STOP DISPATCHER statement may be used to stop a running JDBC dispatcher.

Example

SQLSRV> STOP DISPATCHER JDBC DISP
This will also stop the associated Oracle JDBC for Rdb server.

If you have associated the dispatcher with a Pool server, and the pooled servers have
autoStart enabled, then these pooled servers will also be shut down at this time.

See your Oracle SQL/Services documentation for more information on the Oracle
SQL/Services management console.

Contents

7.2 Command Procedures used by Oracle SQL/Services

When a JDBC dispatcher is started, Oracle SQL/Services will use the OpenVMS command
procedure

170

SYSSMANAGER: SQLSRV JDBC_SERVER STARTUP<version>.COM
to start the server associated with a JDBC dispatcher.

As multiple versions of SQL/Services may be present on your system, the Oracle JDBC for
Rdb installation provides multiple versions of the SQLSRV_JDBC SERVER STARTUP
command procedure. The <version> of the command procedure determines the version
of SQL/Services it is associated with, thus:

SYSSMANAGER: SQLSRV_JDBC SERVER STARTUP71.COM

will be the command procedure used by version 7.1 SQL/Services during the JDBC
dispatcher startup.

These command procedures in turn execute the following command procedure:

RDBSJDBC HOME :RDBJDBC STARTSRV.COM

This enables you to have multiple versions of the Oracle JDBC for Rdb on your systems,
each with potentially different startup requirements specified in the
RDBJDBC_STARTUP.COM. The logical name RDB$JDBC HOME in your SQL/Services
environment may be used to select the specific version of the Oracle JDBC for Rdb it will
use.

Note:
As the releases of Oracle JDBC for Rdb are independent of the releases of Oracle
SQL/Services, the currently installed version of Oracle JDBC for Rdb may not have
installed an appropriate SQL/services JDBC Server command procedure for all
SQL/Services versions installed on your system.

If this is the case, JDBC dispatchers will not start up correctly for the installed
SQL/Services version.

To fix this problem you can simply copy an existing SQL/services JDBC Server
command procedure within SYSSMANAGER: and alter the version number of its
filename to reflect the SQL/Services version you are using.

7.2.1 JDBC Dispatcher Setup Procedure

171

In addition, an additional OpenVMS command procedure can be defined to set up
environmental characteristics required for your system. This command procedure is located
for use with this server using the following precedence:

1. the file pointed to by the logical name RDB$JDBC SQSCMD <port> if defined
2. RDB$JDBC COM:RDBJDBC SQS ONSTARTUP.COM
3. RDB$JDBC HOME:RDBJDBC SQS ONSTARTUP.COM

If command procedure is found on your system using this search list, this command
procedure will be executed just prior to the server being invoked. You may use this
command procedure and to setup environmental conditions for the server execution, for
example:

$Q@sys$share:rdb$Ssetver 71
S@sysScommon: [java$l4l.com] JAVAS141 SETUP.COM

Contents

7.3 Using Pool Servers

Each JDBC dispatcher defined is related only to a single server. Use a Pool server if you
require more than one server to be started for a single dispatcher.

By defining a pool of servers that the Pool server can use and enabling autoStart on
each of these servers, a whole pool of servers can be started by starting a single dispatcher.
See Pool Server Operation for more information on Pool servers.

The following example shows how you can define a dispatcher to start up a Pool server that
will automatically start up three standard thin servers as part of its pool:

Note:
This example uses the default server naming, default server type of POOL and a
standard SQS_ONSTARTUP command procedure. No RDBSJDBC SQS* logical
names need be set up.

1. Define an Oracle SQL/Services dispatcher

$ MCR SQLSRV MANAGE72

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER POOL DISP NETWORK PORT TCPIP PORT ID
1880 PROTOCOL JDBC;

172

2. Create a configuration file for this server in
RDB$JDBC_COM:SQS1880 CFG.XML

<?xml version = '1.0'?>
<!-- Configuration file for Rdb Thin JDBC Drivers/Servers -->
<config>
<!-- SERVERS -->
<servers>
<!-- DEFAULT server characteristics—-->

<server
name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1880/"
maxClients="-1"
srv.bindTimeout="0"
srv.idleTimeout="0"
srv.mcBasePort="5520"
srv.mcGroupIP="239.192.1.10"
autoStart="false"
controlUser="jdbc user"
controlPass="0x811B15F866179583EB3C96751585B843"
cfg="rdb$jdbc com:sglsrv_jdbc server cfg.xml"
srv.startup="rdb$jdbc home:rdbjdbc startsrv.com"

srv.onStartCmd="Q@rdbS$Sjdbc com:rdbjdbc sgs onstartup.com"

/>

<!-- now the servers that will be started by pool server -->

<s

/>

<s

/>

<s

/>

erver
name="SQSrjs1l"
type="RdbThinSrv"
url="//localhost:1891/"
autoStart="true"
maxClients="10"

erver
name="SQSrjs2"
type="RdbThinSrv"
url="//localhost:1892/"
autoStart="true"
maxClients="10"

erver
name="SQSrjs3"
type="RdbThinSrv"
url="//localhost:1893/"
autoStart="true"
maxClients="10"

173

<!-- Pool Server -->
<server
name="SQS1880"
type="RdbThinSrvPool"
url="//localhost:1880/" >
<pooledServer name="SQSrjsl"/>
<pooledServer name="SQSrjs2"/>
<pooledServer name="SQSrjs3"/>
</server>
</servers>
</config>

3. Create an onStartup command procedure that sets up the appropriate Rdb and
Java versions for your system:
For example, RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM may contain:

S@sysS$Sshare:rdb$setver 71
S@sysScommon: [java$l4l.com] JAVAS141 SETUP.COM

4. Start the dispatcher

SQLSRV> start dispatcher pool disp;

Remarks

In this example the command procedure pointed to by default srv.onStartCmd in the XML
configuration file happens to be the same as the one created as the SOS ONSTARTUP
command procedure. These do not have to be the same command procedure.

The Oracle SQL/Services JDBC dispatcher SQS ONSTARTUP command procedure is used
during the startup of the associated Pool server. The pooled servers that the Pool server starts,
use the command procedure pointed to by the srv.onStartCmd switch.

The Oracle SQL/Services JDBC dispatcher does not directly use any information from the
JDBC XML configuration file.

Contents

174

Chapter 8
Performance

The overall performance of application access to an underlying relational database depends on
a number of factors including:

« Database performance including:

O

O
O
O
O

Speed of query compilation

Efficiency of query optimization

Efficiency of record lookup using indexes

Efficiency of record retrieval

Performance of the underlying operating system and hardware

« JDBC performance including

O O O O

Efficiency of object creation and disposal

Efficiency of internal message protocols

Degree of buffering of data and metadata

Efficiency of the underlying subsystem used by the drivers and servers including the
Java VM, operating system and hardware

« Network performance including:

O
O

O
O

The number of client /server message round-trips

The network “distance” between the client and server machines, the more hops taken
between the two nodes, the longer the round-trip time

Size of network buffers and flush times

Overall performance of the network

« Application performance including

O
@]
O

Effective utilization of database and operating system resources
SQL statement re-use utilizing PreparedStatements
Use of data buffering by utilizing appropriate Fetchsize

Details on performance considerations for the underlying Rdb database system may be found
in your Oracle Rdb documentation.

Details about performance and your network may be found in the appropriate documentation
provided by your hardware and operating system vendors.

Details about Java VM and operating system performance may be found in documentation
provided by your operating system vendors.

Details about performance consideration related to the use of Oracle JDBC for Rdb drivers and
servers maybe be found in the following sub-sections and elsewhere in this document and the
Oracle JDBC for Rdb Release Notes.

175

8.1 Performance Features

There are several features available in Oracle JDBC for Rdb to help improve the overall
performance of your applications using the JDBC drivers and the efficiency and performance
of the JDBC servers:

« Fetchsize may be used to improve the overall performance of record retrieval by
reducing the number of network round-trips used to retrieve records.

« Lockwait and Maxtries may help overall concurrency and performance when using thin
servers.

 Inactivity timeouts may be used to limit the number of resources tied-up by unused
servers and inactive connections.

« SQL statement caching may be used to reduce the compilation and setup time of
frequently used queries.

« Results caching may be used to improve record retrieval times by caching frequently
used query results.

8.2 FetchSize

The SetFetchSize methods in Statement and ResultSet allow you to set the
record fetch size for server record retrieval. The FetchSize gives a hint to the server as to
how many records to batch up and send over the network at one time.

Network 1/O is very expensive, so the more data you can send in a single 1/0O the better the
performance. If you do not explicitly change the default Fetchsize by using the
FetchSize option, the default is 100.

Contents

8.3 Lockwait and Maxtries

The standard thin server is a multi-threaded server that allows concurrent access to Oracle
Rdb by many client processes. Within a single OpenVMS process, Oracle Rdb is single-
threaded, thus the thin server has to synchronize client database activity.

Because database actions must be serialized, any action that might take a prolonged length of
time may seriously impact the overall throughput of the server.

By default the server will wait indefinitely for a lock, however, in order to try to minimize

the impact of one client thread on another you may specify the period of time the server
should wait for a lock.

176

If this wait is not indefinite, any thread will wait for the specified amount of time trying to
get a lock. If the lock is not granted control is returned to the server. By default, the server
will then try to get a lock ten (10) times, waiting for the specified amount of time each time,
before raising a locking exception.

Specifying a short wait duration, for example one (1) second, may help reduce the impact
that one thread may have on another sibling thread.

The 1ockwait connection option or server option allows control of the duration of the wait
for a lock, the minimum actual wait period being one (1) second, which is the minimum lock
wait time supported by Rdb transactions.

A lockwait of 0is the same as starting up a transaction with NOWATT. A lockwait of
minus one (-1) is the same as starting up a transaction with WAT T without specifying a value,
which causes the server to wait indefinitely,

The maxtries connection option or server option allows you to specify the maximum
number of times the server will try to get a lock before giving up. The default maxtries
value is 10.

The higher the value you assign to the 1ockwait switch, the more likely that a locked
object may slow down all clients, so it is preferable to keep the lockwait at a minimum but
increase the number of lock attempts appropriately.

8.3.1 Lockwait precedence

As well as being able to specify the lockwait either at the server level or at the connection
level as shown above, Oracle Rdb allows you to specify a maximum lock wait for the process
by using the RDM$BIND LOCK TIMEOUT INTERVAL logical name. In additiona
database-wide lock timeout value may be established using the LOCK TIMEOUT
INTERVAL clause of the SQL. CREATE DATABASE and SQL. ALTER DATABASE
statements.

The following describes the order of precedence observed when lockwait has been specified
in more than one way.

1. A connection lockwait value as specified explicitly on the connection string will take
precedence over the server lockwait value but only for that one connection.

2. Anexplicit lockwait set on either the server or connection will take precedence
over the value set by the RDM$SBIND LOCK TIMEOUT INTERVAL logical name.

3. The database-wide lock timeout interval if specified will place an upper limit on the
interval specified by the RDMSBIND LOCK TIMEOUT INTERVAL logical name
or the Tockwait on both the server and connection.

177

Example 1
RDM$BINDiLOCKiTIMEOUTiINTERVAL = 10
server LOCKWAIT = 20
connection LOCKWAIT = 30
LOCK TIMEOUT INTERVAL not specified

Results in a lockwait of 30.

Example 2
RDMSBIND LOCK TIMEOUT INTERVAL = 10
server LOCKWAIT = 20

connection LOCKWAIT = 30
LOCK TIMEOUT INTERVAL = 25

Results in a lockwait of 25.

Example 3
RDMSBIND LOCK TIMEOUT INTERVAL = 10
server LOCKWAIT = 20

connection LOCKWAIT = 30
LOCK TIMEOUT INTERVAL = 35

Results in a lockwait of 30.

Example 4
RDM$BIND LOCK TIMEOUT INTERVAL = 10
server LOCKWAIT = 20

connection LOCKWAIT not specified
LOCK TIMEOUT INTERVAL not specified

Results in a lockwait of 20.
Example 5
RDM$BIND LOCK TIMEOUT INTERVAL = 10
server LOCKWAIT not specified
connection LOCKWAIT not specified
LOCK TIMEOUT INTERVAL = 25
Results in a lockwait of 10.

See your Oracle Rdb Documentation for more information on the use of the
RDM$BIND LOCK TIMEOUT INTERVAL logical name and the LOCK TIMEOUT
INTERVAL clause.

Contents

178

8.4 Inactivity timeouts

The amount of time either a client connection or a server may remain inactive before being
forcibly terminated may be set using server and connection switches.

8.4.1 Client connection timeout

The —cli.idleTimeout switch may be used to specify the amount of time in
milliseconds that a connection may remain inactive before being closed down. The default
value of 0 specifies that the time is indefinite, i.e. the connection will not timeout.

You may specify the client idle timeout as a server configuration option either in the server
definition within an XML-formatted configuration file or as a command-line switch when
starting a server.

Example
For example:

S java -jar rdbthinsrv.jar -port 1701 -cli.idleTimeout 3600000
specifies that any client connection may remain idle for 1 hour before being terminated

or in the Xml-formatted configuration file :

<server
name="srv2forRdb"
type="RdbThinSrv"
url="//localhost:1708/"
cli.idleTimeout="3600000"
/>

When a client is forcibly terminated by this timeout the following message will be logged in
the server log:

oracle.rdb.jdbc.common.RdbException:
Client terminated due to inactivity

When specified as a server switch, the timeout will apply to all clients connected using that
server.

You may also specify the client timeout as a qualifier on the connection string on the client-
side application.

Connection conn = DriverManager.getConnection (

179

"jdbc:rdbthin://bravo:1701/my db dir:personnel@cli.idleTimeout
=3600000",user, pass);

When specified this way the timeout will only apply to this one connection.

Ifanon-zero c1i.idleTimeout is specified in both the server configuration and as a
connection qualifier, the lesser of the two values will be used for that connection.

Inactivity is determined by the lack of activity on the socket the server is listening to the
client on, if no request is sent from the client for the specified amount of time, a timeout is
deemed to have occurred.

If a client inactivity timeout occurs on a connection that is using a multi-process server
executor, that executor will be terminated. Even though the connection will be correctly
closed down after the timeout event, as it is unknown why there was no activity seen on the
connection, the executor sub-process is deemed "unsafe" and consequently is terminated.

8.4.2 Server Inactivity Timeout

You can specify the amount of time that a server may remain idle before being closed down
due to inactivity.

The -srv.idleTimeout switch may be used to specify the amount of time in
milliseconds that a server may remain inactive before being closed down. The default value
of 0 specifies that the time is indefinite, i.e. the server will not timeout.

You may specify the server idle timeout as a server configuration option either in the server
definition within an XML-formatted configuration file or as a command-line switch when
starting a server.

Example
For example:

$ java -jar rdbthinsrv.jar -port 1701 -srv.idleTimeout 3600000

specifies that the server may remain idle for 1 hour before being terminated
Or in the Xml-formatted configuration file :

<server
name="srv2forRdb"
type="RdbThinSrv"
url="//localhost:1708/"
srv.idleTimeout="3600000"

180

/>

When server is terminated by this timeout the following message will be logged in the server
log:

Server terminated due to inactivity
2006-02-08 12:28:03.578 : Forced disconnect by Server
terminated due to inactivity @ LOCAL

A server inactivity timeout will occur if, after the length of time specified, no new client
connection is made to that server, and there are current not connect clients.

In other words, the timeout period is started after each new connection. If the timeout
expires and there are current connections still using the server, the timeout period will be
reset to start again.

Contents

8.5 SQL Statement Cache

When using the thin driver, performance may be improved by enabling SQL statement
caching.

Whenever the thin driver needs to prepare a SQL statement, the statement must be sent over
the network to the server for Oracle Rdb to prepare the statement and to send back a list of
columns or parameters that the statement references.

If the same SQL statement is prepared repeatedly during a single connection, without SQL
statement caching the statement will be prepared and column information sent back each
time. This can be time consuming because it requires network traffic, the preparation of the
statement, and getting the column and parameter information. These steps can be a
substantial part of the network 1/0 and performance cost of the queries.

To help reduce this cost, the thin driver allows you to cache SQL statements so that if the
exact same SQL string is prepared more than once during a single connected session, the cost
for retrieving column information is only incurred once.
SQL statement caching can be enabled by using the sgl cache switch when you request a
connection either by placing the switch in the connection URL or using the information block
that is passed in the connect request.

Example

Set the sglcache property of the Properties passed to the
DriverManager.getConnection method:

181

Properties info = new Properties();

info.put ("user", user);

info.put ("password", pw):;

info.put ("sglcache", 100);

conn = DriverManager.getConnection (connStr, info);

Or append @sglcache to the database specification part of the connect URL:

Connection conn = DriverManager.getConnection (
"jdbc:rdbthin://bravo:1701/"+
"my db dir:personnel@sglcache=100",user, pass);

In addition a SET SQLCACHE statement can be executed.
Stmt .executeUpdate ("set sglcache 100");

Remarks
The value specified with the sglcache switch tells the thin driver how many SQL statements
it can hold concurrently in its cache. A value of 0 (the default) specifies that SQL statement
caching be disabled.

Once the SQL statement cache is full for a given connection, the storing of a new statement
will remove the least commonly used statement from the cache.

Because SQL statements may be held in cache even after the user has closed the containing
java.sql.Statement, the query will still be registered as current by Oracle Rdb and may
prevent actions such as prop TaBLE from being done. In addition each concurrent statement
that is held in cache may take up memory on both the server and client side of the
connection.

You can clean out the connection SQL cache by issuing a seT sorcache statement with
value 0 and then issuing another seT sorcacHE statement to reset the cache to the desired
size.

Currently you cannot specify the removal of a specific SQL statement from cache.

Note:
SQL statement caching is a client-side action and is disabled by default. This
feature is only applicable to the thin driver. Using the SQL Statement cache
property or using the set sqlcache statement will be silently ignored by the native
driver.

182

8.5.1 Caching Statement Handles

In addition to saving the network cost of retrieving column information, enabling SQL
statement handle caching may also improve application performance when used in
conjunction with SQL statement caching.

Similar to using the PreparedStatements, enabling statement handle caching allows the Thin
driver to re-use compiled Rdb statements which may improve the overall performance of
retrieving results as the statement does not have to be compiled again or the column
information retrieved from the server.

SQL statement handling caching works for both Statements and PreparedStatements. If the
exact SQL text is recognized as being prepared previously in the same connection context,
and that Statement is no longer in use (i.e. the Statement or PreparedStatement has been
closed) then, instead of sending down a request to the server to compile the query again, the
driver will re-use the statement handle compiled by the previous request.

This is particularly effective where applications may be using connection pooling. As it
cannot be guaranteed that the query they wish to use is available within the connection
context of the pooled connection allocated to the connection request, the same
PreparedStatements may have to be issued repeatedly within the same actual Rdb connection
context. This redundant query compilation may be costly in terms of network traffic.

If SQL statement handle caching is enabled, PreparedStatements may be effectively re-used
across serial re-use of a pooled connection, thus saving expensive network 10 required for
query recompilation.

Statement handle caching can be enabled by using the sglcachePs switch when you
request a connection either by placing the switch in the connection URL or using the
information block that is passed in the connect request.

Example

Set the sglcacheps property of the Properties passed to the
DriverManager.getConnection method:

Properties info = new Properties();

info.put ("user", user);

info.put ("password", pw):;

info.put ("sglcacheps", “true”);

conn = DriverManager.getConnection (connStr, info);

Or append @sglcacheps to the database specification part of the connect URL:

Connection conn = DriverManager.getConnection (
"jdbc:rdbthin://bravo:1701/"+

183

"my db dir:personnel@sglcacheps=true",user, pass);
In addition a SET SQLCACHEPS statement can be executed.
Stmt.executelUpdate ("set sglcacheps true");

Remarks
The value “true” specified for the sqlcacheps switch tells the thin driver to keep hold of
Rdb statement handles and other statement information to re-use if exactly the same
Statement SQL text is recognized. A value of “false” specifies that SQL statement handle
caching be disabled.

SQL Statement caching must be enabled for SQL statement handle caching to take place; if
SQL statement caching is disabled (i.e. sqlcache having the value ‘0’), the sglcacheps
switch is ignored.

Enabling SQL statement handle caching by executing a sET SQLCACHEPS = TRUE
statement will automatically clear out any the existing SQL statement that may already be
cached to ensure that handles are being maintained for all cached statements.

Disabling SQL statement handle caching on by executing a SET SQLCACHEPS = FALSE
statement will prevent any further statement handles being saved. Existing cached
statements will still be available for reuse for query compilation but the associated statement
handles will not be reused.

To release all the resources associated with holding statement handles in cache you must
clear the SQL cache by issuing a set sglcache 0 Statement.

Note:
SQL statement handle caching is a client-side action and is disabled by default.
This feature is only applicable to the thin driver. The sglcacheps switch will
be silently ignored by the native driver, or if SQL statement caching is not
enabled.

Contents

8.6 Results Cache

When using the thin driver, performance may be improved by enabling Results caching.
Results caching will maintain ResultSet context across the life of a connection, allowing

frequently used data to be cached and reused by subsequent identical queries within the same
connection.

184

Results cache effectively takes a “snapshot” of the query results the first time a particular
SQL query is executed within a connection.

Results caching can be enabled by using the resultscache switch when you request a
connection either by placing the switch in the connection URL or using the information block
that is passed in the connect request.

Example

Set the resultscache property of the Properties passed to the
DriverManager.getConnection method:

Properties info = new Properties();

info.put ("user", user);

info.put ("password", pw);

info.put ("resultscache", 10);

conn = DriverManager.getConnection (connStr, info);

Or append @resultscache to the database specification part of the connect URL:
Connection conn = DriverManager.getConnection (
"Jdbc:rdbthin://bravo:1701/"+
"my db dir:personnel@resultscache=10", user, pass);
In addition a SET RESULTSCACHE statement can be executed.
Stmt.executeUpdate ("set resultscache 10");

Remarks

The value specified with the sglcache switch tells the thin driver how many SQL statements

it can hold concurrently in its cache. A value of 0 (the default) specifies that results caching
be disabled.

The Results cache may be cleared by clearing the SQL cache by issuing a SET SQLCACHE
statement with value 0 and then issuing another SET SQLCACHE statement to reset the
cache to the desired size.

Currently you cannot specify the removal of a specific SQL statement from cache.

Note:
SQL statement caching is a client-side action and is disabled by default. This
feature is only applicable to the thin driver. Using the SQL Statement cache
property or using the set sqlcache statement will be silently ignored by the native
driver.

Contents

185

Chapter 9
Event Logging and Notification

Since release 7.3.1.0.0

9.1 Event Logging

Oracle Rdb for JDBC servers may be setup to log specified events to a special event logger
that can be monitored by either the Oracle JDBC for Rdb controller or a special application
created by you or a third party.

JDBC servers use the standard Java logging facility to log enabled server events, and these
events may be then monitored by local or remote applications that have enlisted with the
server as log watchers.

The controller may be used to watch events notifications by using the WATCH EVENTS
command. Alternatively you may choose to write your own application to handle event
notifications, details on how this may be achieved may be found in the following sections.

An example on how you may use the controller to watch for events of thin servers may be
seen in Watch Events using the Controller. The Controlled subsection Watching Events
covers the syntax of the watch Events command.

Notification of events using a sample event watcher application is covered in WatchEvent
Sample Application.

But before events can be monitored they need to be defined in the XML configuration file
used by the server, and then enabled for each server by designating by using enableEvent
elements. See the following sections for more details.

9.2 Defining and Enabling Events.

Rdb Events are special events that are defined in the Events section of the XML
configuration file. Once defined these events may be enabled on a server-by-server basis by
designating one or more enableEvent elements within the server configuration section of the
XML configuration file.

Enabled Events specified in a default server configuration will be enabled for all servers that
inherit the default server characteristics.

Servers will only log events that have been enabled for them either explicitly in the server’s
configuration or in a default server configuration inherited by the server.

186

The following is an example configuration file that defines and enables events:

<?xml version = '1.0'?>
<!-- Configuration file for Rdb Thin JDBC Drivers/Servers -->
<!-- NOTE: all values (including numbers) must be quoted -->
<!--server names and database names are not case sensitive -->
<config>
<connections>
<!-- SERVERS -->
<servers>
<!-- DEFAULT server characteristics-->
<server

name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="0"
srv.idleTimeout="0"
srv.networkKeepAlive="true"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"
autoStart="false"
controlUser="jdbc user"
controlPass="0x811B15F866179583EB3C96751585B843"
cfg="my.xml"

>
<allowPrivUser name = "owner"/>
<enableEvent name = "denied sqgl"/>
<enableEvent name = "db_error"/>

<enableEvent name "syntax error"/>

</server>

<server
name = "rdbthnsrv8"
description = "My test server"
type = "RdbThinSrv"
url = "//localhost:1708/"
allowAccessToCL = "true"
allowAccessToRMU = "true"
controluser = "jdbc user"
restrictAccess = "true"
restrictSQL = "SELECT, SHOW"
>

187

<deny SQL = " (?1).*select.*jobs.*"/>

<allowUser name = "jdbc user"/>
<allowPrivUser name = "jdbc user"/>
<enableEvent name = "near max"/>
<enableEvent name = "connect event"/>
<enableEvent name = "Atleast2"/>
</server>
</servers>
<!-- events -->
<events>
<event
name = "ALL DENIALS"
type = "DENIAL"
message =

"The operation you have attempted has been denied by this
server - please contact your database administrator"

/>

<event
name = "DENIED USER"
type = "DENIAL"
watch = "USER"
message =

"You are not allowed to access this server - please contact

your database administrator"

/>

<event
name = "DENIED SQL"
type = "DENIAL"
watch = "SQL"
message =

"This sgl operation is not allowed on this
contact your database administrator"

server - please

/>
<event
name = "DB ERROR"
type = "EXCEPTION"
watch = "DBERROR"
message =
"Problem with db connection - please contact your database
administrator"
/>
<event
name = "SYNTAX ERROR"
type = "EXCEPTION"
watch = "SYSERROR"
pattern = ".*SYNTAX.*"
message = "Problem with syntax "

188

/>

<event
name = "Near Max"
type = "THRESHOLD"
watch = "NUMUSERS"
deviation= "-3"
message =
"The number of users nearing maximum allowed"
/>
<event
name = "Atleast2"
type = "THRESHOLD"
watch = "NUMUSERS"
threshold="2"
message = "The number of users is at least 2"
/>
<event
name = "Connect event"
type = "EVENT"
watch = "CONN DISCON"
message = "Connect or Disconnect occurred "
/>
</events>
</config>

The following sections explain how to define and enable events.

9.2.1 Defining Events

Events are described by an event section within the XML configuration file which comprises
of several attributes as seen in the following table:

Table 9.2-1Event criteria

Name Description

deviation The deviation criteria allowed. This attribute is only
valid for threshold type events. See Deviation for
more details.

message A customized message to display in the event log
when this event occurs. This attribute is valid for all
event types.

name The unique name of this event, this attribute must be

189

Name

Description

pattern

testFor

threshold

type

watch

provided for each event.

Pattern that should be matched, the pattern value
should be in the form of a Java regular expression.

See your Java documentation for more information
on Regular Expressions.

Details of how the pattern attribute may be used to

filter events can be found under each event type
subsections within the Event Types section below.

Test criteria to test for, see the testFor table below.

This is the actual value that has to be met, exceeded,
or near to trigger a threshold event. SeeThreshold
Event Threshold attribute for more information.

Type or category of event; valid type are specified in
Event Types.

The specific element to monitor, this will depend on
the type of the event. Details of valid values to watch
can be found under the appropriate event type
subsection within the Event Types section.

Example

<event

name = "NO TABLE"

type = "EXCEPTION"

watch = "SYSERROR"

pattern = ".*RELNOTDEF.*"
message = "Problem with table

"

The above event will be triggered when an exception is raised that contains the string
“RELNOTDEF” in its message. Details of the format of the event configuration section may
be found in Events Section.

Each event must have a unique name, and be valid type as specified in Event Types.
The addition event criteria will depend on the type of the event and is covered under each
event type in the following sections.

190

9.3 Event Types

Events fall into the following categories or types:

« DENIAL - triggered when an operation is denied by the server

« EXCEPTION - triggered when an exception is raised by the server or the underlying
database system

« THRESHOLD - triggered when some threshold has been reached or about to be
reached.

« EVENT — general purpose event notification

Depending on the type of the Event, additional criteria may be required within the event

description to characterize the event that should be logged. The following sections detail the
different event types and attributes used to define the event criteria.

9.3.1 Denial Events

A Denial event, that is, an event with the event type “penTaL” is triggered when an operation
is denied by the server.

The following event criteria may be used with this event type:

e Name
* Message
* Watch
Example
<event
name = "DENIED USER"
type = "DENIAL"
watch = "USER"
message = "You are not allowed to access this server"
/>

The above event will be triggered when a user attempt to login but is not in the allowUser
list for this server.

9.3.1.1 Denial Event Watch Attribute

191

The specific operation to monitor is specified by the WATCH attribute of the event and
include:

« USER — will be triggered when the server raises a denied user exception when the user
attempting to use the server is not found in the server’s allowedUser list.

« DB — will be triggered when the server raises a denied database exception when the user
attempts to connect to a database that is not found in the server’s allowedDB list.

« IP — will be triggered when the server raises a denied IP exception when the user attempts
to connect to a database from an IP that is not found in the server’s allowed IP list.

« AUTH — will be triggered if the username/password provided is refused by the underlying
database system.

« SQL — will be triggered if an attempt to use a SQL statement that is either not in the
restrictSQL list of the server or is found to match the deny SQL attribute of the
server configuration. See Restricting SQL Statements for more details.

If no WATCH attribute is provided then the event will be triggered on the occurrence of any of
the denial events listed above.

9.3.2 Exception Events

An Exception event, that is, an event with the event type “ExcepT1oN” iS triggered when an
exception is raised by the server or the underlying database system.

The following event criteria may be used with this event type:
e Name
* Message
* Watch
e Pattern

Example

<event
name = "NO TABLE"
type = "EXCEPTION"
watch = "SYSERROR"
pattern = ".*RELNOTDEF.*"
message = "Problem with table "

/>

The above event will be triggered when an exception is raised that contains the string
“RELNOTDEF” in its message.

192

9.3.2.1 Exception Event Watch Attribute

Exception types are specified by the WATCH attribute of the event and include:
« SYSERROR - any exception thrown

In addition a pattern may be specified that filters the exceptions to only those that match the

given regular expression pattern. The matching pattern is specified using the PATTERN
attribute.

9.3.2.2 Exception Event Pattern Attribute

A regular expression pattern may be used to filter the exceptions that should be notified as an
event. If a pattern is specified for the event, then only those exceptions where the exception
message matches the specified pattern will be logged as an event.

If no pattern is specified all exceptions will be logged for this exception event.

See your Java documentation for more information on Regular Expressions.

9.3.3 Threshold Events

A Threshold event, that is, an event with the event type “tarESHOLD” IS triggered when the
specified threshold is met or exceeded, or is within or not within the deviation provided.

The following event criteria may be used with this event type:
e Name
* Message
* Watch
* Threshold
e TestFor
e Deviation

The value that will be tested to see if a threshold has been triggered is specified in the
Threshold attribute of the event. The threshold comparison style is determined by the
testFor attribute. If a Deviation attribute is also specified, it is used in conjunction
with the Threshold attribute to determine a triggering range or limit.

Note:
The testing for threshold events is only carried out during certain standard server

193

operations, such as during the connection of a new client or during the disconnect of an
existing connection. During the normal execution cycle of a server, the various
thresholds may be exceeded, but an event is only raised if the triggering criteria are met
at the time of the trigger test.

See Threshold Event Watch attribute for more information.

Example
<event
name = "Atleast2"
type = "THRESHOLD"
watch = "NUMUSERS"
threshold="2"
message = "The number of users of this server is >= 2"
/>

The above event will be triggered when the number of users is equal to or exceeds 2.

9.3.3.1 Threshold Event Watch attribute

Threshold types are specified by the WATCH attribute of the event and include:

Literal Tested during Max determined by
NumUsers Connect The number of current clients on the server.
Disconnect
FreeSharedMem Connect The amount of free global shared memory in
Disconnect bytes.
NumFreeExecs Connect The number of free executors.
Disconnect

The value that will be tested to see if a threshold has been triggered is specified in the
Threshold attribute of the event. The threshold comparison style is determined by the
testFor attribute. If a Deviation attribute is also specified it is used in conjunction
with the Thresho1d attribute to determine a triggering range or limit.

An event is only raised if the triggering threshold is met at the time specified by the “Tested
during” column in the above table. At all other times the watched criteria may come within
trigger range without actually triggering an event. So, for example, FreeSharedMem
events will be only raised if the triggering criteria is met during the Connect or Disconnect
phase of a user connection.

194

9.3.3.2 Threshold Event Threshold attribute

The Threshold attribute can be an integer value or may be the literal “*Min” or may start
with the text literal “Max”.

If a text literal with the value “Min” or starting with “Max” is used then the threshold
value is predetermined by the server attribute that is appropriate:

Literal Watch Threshold determined by
MaxFreeExecs <any> The server’s maxfreeexecutors attribute.
MaxUsers <any> The server’s maxClients attribute.
MaxSharedMemory <any> The server’s sharedmem attribute converted

to the number of bytes.
Max NumUsers The server’s maxClients attribute.
NumFreeExecs The server’s maxfreeexecutors attribute.

FreeSharedMem The server’s sharedmem attribute converted
to the number of bytes.

Min NumUsers The server’s maxClients attribute.

NumFreeExecs The server’s maxfreeexecutors attribute.

FreeSharedMem The server’s sharedmem attribute converted
to the number of bytes.

(Note: See description below.)

The text literals shown above are not case sensitive.
If the Threshold attribute is not specified then “Max” is assumed.
By default “Min” implies the value 0 and will be evaluated as such when used as a threshold

check, however when used with the Watch values as specified in the table above, the literal
“Min” takes on a special meaning:

195

1. If a % deviation is present then the absolute deviation is determined by applying the
% deviation value against the appropriate threshold attribute as shown in the table
above. In this case the positive value of the % deviation is always used, any sign (+/-)
is discarded.

2. The threshold range is then determined as being from 0 to the value calculated in 1
above.

Example

<event
name = "Nearly Exhausted"
type = "THRESHOLD"
watch = "FreeSharedMem"
threshold = "Min"
deviation = "10%"
message = " We have nearly used all free memory !"

/>

In this example, if the server’s sharedmem is set to 100000 bytes, this event will
trigger when the amount of free shared memory is in the range of 0 through 10000
bytes.

9.3.3.3 Threshold Event TestFor attribute

The testFor attribute determines the test used to set the threshold trigger:

testFor Alternatives Trigger when watch is

EQL =, ==, EQUAL Equal to threshold.

NEQ I=, <>, NOT EQUAL Not Equal to threshold.

LSS <, LESS Less than threshold.

GTR > GREATER Greater than threshold.

LEQ <=, LESS OR EQUAL Less than or equal to threshold.

GEQ >=, GREATER OR EQUAL Greater than or equal to threshold.
WITHIN Within the deviation of threshold.
NOT WITHIN Not within the deviation of threshold.

The value of the testFor attribute may be the keyword as show in the testFor column
above, or one of the alternate literals as shown in the Alternative column.

196

If neither a testFor nora Deviation value is specified in the Event attribute list the
testFor will default to GEQ.

If a Deviation value is specified but no testFor the testFor will default to
WITHIN.

9.3.3.4 Threshold Event Deviation attribute

If a Deviation value is specified and a testFor value other than WITHIN or NOT
WITHIN is specified then the Deviation is used to modify the Threshold value.

If a testFor value is not specified or the testFor value of WITHIN or NOT WITHIN
is specified, the deviation is used to produce a value range to be tested. The range is
inclusive, that is, the range limit values will be considered as being included in the testing
criteria.

The Deviation value may be signed or unsigned and may be an absolute or a percentage
value using the following format:

Format
[+ | -] value [%]

If a sign operator prefix is used the value will be used to modify the Threshold value
appropriately.

If a testFor value is not specified or the value of WITHIN or NOT WITHIN is specified
then if a plus (+) operator is present the trigger range will be assumed to be from the
threshold value to the threshold incremented by the value. If a minus(-) operator is present
the range will be assumed to be from the threshold minus the value to the threshold value. If
neither a plus (+) operator nor a minus(-) operator is present then the range will be the
threshold +/- the value;

If a percent (%) operator is present a percentage value rather than an absolute value and will
be used to modify the Thresho1d value.

Examplel
<event

name = "NearExhausted"
type = "THRESHOLD"
watch = "FREESHAREDMEM"
threshold = "MAX"
deviation = "-90%"
testFor = "LSS"

197

| n

message = " Global shared memory is almost Exhausted

/>

This event will trigger when the amount of free shared memory is less than 10% of
the maximum allocated by the server.

Example2

<event
name = "NearExhausted"
type = "THRESHOLD"
watch = "FREESHAREDMEM"
threshold = "MIN"
deviation = "10%"
message = " Global shared memory is almost Exhausted

/>

This event will trigger when the free shared memory is less than or equal to 10% of
the maximum allocated by the server. Note: This is actually a range test for values
falling in the range 0 to 10% of the maximum free shared memory, inclusive.

Example3

<event
name = "Check Max Free Executors"
type = "THRESHOLD"
watch = "NUMUSERS"
threshold= "MAXFREEEXECS"
deviation= "2"
testFor "WITHIN"
message = " Consider increasing number of free executors"
/>
<event
name = "Emphatic Check Max Free Executors"
type = "THRESHOLD"
watch = "NUMUSERS"
threshold = "MAXFREEEXECS"
deviation = "+2"
testFor = "GTR"
message = " INCREASE the number of free executors NOW!"

/>

198

Event “Check Max Free Executors” Will trigger if the current number of users
changes to be within £2 of the maximum number of free executors set for the server.

If the number of users is more than 2 above the max free executors the event
"Emphatic Check Max Free Executors” will be triggered instead.

9.3.4 General Events

A general event, that is, an event with the event type “evenT~ is triggered when the
specified event or operation is noted by the server.

The following event criteria may be used with this event type:

e Name
* Message
e Watch
Example
<event
name = "Connect event"
type = "EVENT"
watch = "CONN DISCON"
message = "Connect or Disconnect occurred "
/>

The above event will be triggered whenever a connection is made or is disconnected.

9.3.4.1 General Event Watch attribute
The server event types are specified by the WATCH attribute of the event and include:

« Conn Discon —log whenever a connection is made or is disconnected.

Contents

9.4 Watch Events using the Controller.

199

The controller may be used to watch for events happening on a JDBC server.

The watch Events command tells the controller to enlist as an event listener with the
specified server. All events then logged by the server will be displayed by the thin controller
as XML-formatted events:

rdbthincontrol> watch events 1708
rdbthincontrol> logger:1540://100.191.133.64:1708/>rdbthnsrv8
14/11/2011 12:29:29 oracle.rdb.jdbc.srv.RdbSrv logEvent
logger:1540://100.191.133.64:1708/>INFO: <event> <seg>0</seq>
<timestamp>2011-11-14 12:29:29.120</timestamp> <type>13</type>
<name>CONNECT</name> <source>
<jdbcServer>
<name>rdbthnsrv8</name>
<type>0</type>
<typeName>RdbThinSrv</typeName>
<ip>//100.191.133.64:1708/</1ip>
<pid>4212</pid>
<pidHex>0x1074</pidHex>
</jdbcServer>
</source> <context>
<trigger>
<eventTrigger> <name>Connect event</name>
<type>EVENT</type>
<message>Connect or Disconnect occurred </message>
</eventTrigger>
<reason>
<type>CONNECT</type>
<info>
<! [CDATA[127.0.0.1:1542]1>
</info>
</reason> </trigger> <client>
<id>00000002</id>
<name>murray</name>
<db>e:\regtest\mf personnel</db>
<ip>127.0.0.1:1542</ip>
</client>
</context>
</event>

logger:1540://100.191.133.64:1708/>rdbthnsrv8 : 14/11/2011
12:29:30 oracle.rdb.jdbc.srv.RdbSrv logEvent
logger:1540://100.191.133.64:1708/>INFO: <event> <seqg>1</seqg>
<timestamp>2011-11-14 12:29:30.573</timestamp> <type>14</type>
<name>DISCONNECT</name> <source>
<jdbcServer>
<name>rdbthnsrv8</name>

200

<type>0</type>
<typeName>RdbThinSrv</typeName>
<ip>//100.191.133.64:1708/</ip>
<pid>4212</pid>
<pidHex>0x1074</pidHex>
</jdbcServer>
</source> <context>
<trigger>
<eventTrigger> <name>Connect event</name>
<type>EVENT</type>
<message>Connect or Disconnect occurred </message>
</eventTrigger>
<reason>
<type>DISCONNECT</type>
<info>
<!'[CDATA[127.0.0.1:1542]11>
</info>
</reason> </trigger> <client>
<id>00000002</id>
<name>murray</name>
<db>e:\regtest\mf personnel</db>
<ip>127.0.0.1:1542</ip>
</client>
</context>
</event>

See Watching Events for the syntax of the Controller watch Events command.

Contents

9.5 WatchEvent Sample Application.
During installation the WatchEvent sample application will be installed in your JDBC
installation directory. This application, deployed as a Java jar, can be run to watch for Rdb
events being raised by the JDBC servers.

This sample application may be used as a template to help you develop your own Event
notification application.

If you have not used this application before please carry out the steps described in the

following sections:

9.5.1 WatchEvent Sample Application Setup

201

The WatchEvent. jar file contains a sample application that may be modified to carry out
your own operations when a JDBC server event is received.

You may run the application unchanged on systems that run Java and have Java/Swing

enabled by carrying out the following steps:

Step 1 Copy the WatchEvent. jar file to your desired system host

The WatchEvent. jar is a Java/Swing based application jar file that may be run on
any system where JRE Version 1.6 or higher is running and that has Java/Swing enabled.

During installation of JDBC the WatchEvent . jar file will be copied to the JDBC
installation directory. If you have carried out the advised post installation steps this
directory will be pointed to by the logical name RDB$JDBC HOME.

Copy this jar file to the system you wish to run on. Make sure that any file copy
application you use copies the file in binary format otherwise it may not work correctly
on the destination system.

As well as containing the Java application , the jar file contains the following source files
that may be extracted and used:

¢« WatchEvents. java — the source for this applciation
* WatchEvents.cfg—asample configuration file
e« Event.xsl —asample XSLT stylesheet

Various JAR and ZIP file explorer applications are available that allow the extraction of
components from Java jar files, please consult your system documentation or the Internet
for a tool you may use on your chosen host system.

Inline comments within the WatchEvents. java source file should help you use the
source as an example of how to write your own JDBC notification application.

These three source files may be tailored or modified to suit your own requirements.

How these files may be modified and used is discussed in the following sections.
Step 2 Optionally create or modify the configuration file

The jar file contains a sample configuration file, watchEvent.cfg, that may be

extracted and modified to suit your specific requirements. This configuration file is

formatted as a standard Java properties file and contains the application configuration

properties that are used to determine the behaviour of the application.

The default configuration file contains the following:

202

WatchEvents configuration file

user = jdbc user
pw = jdbc user
server = localhost:1701

loggerport = 1555
XSL = Event.xsl
display = 0
The following properties may be used:

WatchEvent Configuration Properties

Property Default Description

display 0 The type of display to use:

0 = display each message within its
own individual modal dialog box.

1 = append formatted event information
to the WatchEvent application’s main
dialog box.

-1 = display each message on the
console running the WatchEvent

application.

loggerport 1555 The port to be used for the remote
logging.

pw jdbc_user The control password for the server you

will be watching.
server localhost:1701The url (host:port) of the server.

user jdbc_user The control user name for the server
you will be watching.

XSL Event.xsl The XSLT stylesheet file used to
format the event XML input message
received. See below for more details.

If you use a tailored configuration file you should make sure that the application can use

it when it is invoked.

203

By default the application will look for the configuration file named
WatchEvents.cfg in the same directory that the application jar file is invoked from.

If you wish to change the configuration file name or change its location you will have to
provide the configuration switch —CFG on the command line used to invoke the
application, for example:

java —jar WatchEvents.jar -cfg c:\mydir\my own config.cfg
If no configuration file is found, or if a property is not specified in the configuration file,
then the default settings described in the table above will be used.
Step 2 Optionally create or modify the event XSL stylesheet file

The XSL property of the configuration file specifies an XSLT stylesheet file that should
be used to format the event messages received from the server.

The event messages are XML documents that contain information about the event raised.

You may change how this information is displayed by changing the default XSL file
contents or by specifying your own stylesheet. See XSLT for more information on how
to use stylesheets.

The sample XSLT stylesheet Event .xs1 may be extracted from the application jar
and modified to suit your own setup.

The application will try to locate a valid XSL stylesheet using the following search
precedence:

1 the file described by the XSL property switch if provided on the command
line

2 the file described by the XSL property switch if provided in the
configuration file

3 thefile Event.xsl ifitexists in the same directory containing the
application jar file

4 the file xmlout.xsl if it exists in the same directory containing the
application jar file

5 Event.xsl ifitexistsinside WatchEvents. jar

If no stylesheet is found then the raw XML information will be displayed.

9.5.2 Invoking the WatchEvent Sample Application.

204

http://www.w3.org/Style/XSL/
http://www.w3.org/Style/XSL/

Once correctly setup, the application can be invoked using the standard Java executable jar
invocation:

java —Jjar WatchEvents.jar

The invocation command line may also contain configuration switches using the same
configuration properties as shown in the WatchEvent Configuration Properties table above
by preceding the configuration property name with a hyphen (-) and adding the property
value after it separated by a blank space, for example:

java —Jjar WatchEvents.jar -pw mysecret —-XSL demo.xsl

Any property not specified will be set to the default value as specified in the WatchEvent
Configuration Properties table.

Contents

205

Chapter 10
Other Features

10.1 Anonymous Usernames

By default, the thin driver disallows blank usernames to be passed to it during database
connection. A valid username for that database must be used. If the client attempts to connect
to the database using a blank username the following exception will be raised:
rdb.RdbException: Io exception : Io exception

in <rdbjdbcsrv:connect>

$RDB-E-AUTH FAIL, authentication failed for user .Anonymous.
The following server configuration option can be used to change this behavior:

. anonymous

Use this option tells to allow anonymous connections (that is, where the username is blank)
to the Oracle JDBC for Rdb thin server, for example:

S java -jar rdbthinsrv.jar —-anonymous

In addition, if anonymous connections are allowed, you can specify the default username and
password to use on an anonymous connection by using the following options:

. username <username>
. password <password>

Example

S java -jar rdbthinsrv.jar -—-anonymous -
-username fred -password "jones"

Contents

10.2 BYPASS Privilege

Privilege checking on Oracle Rdb uses the layered method. Sometimes it is not obvious how
privilege checking obtains its results:

206

« The first pass at privilege checking occurs at an object identifier level, asking if this
entity has the right to do this action to this object. If access is denied at this level a
series of cascading attempts are made to try to get the privilege.

« After the object protection is checked, the entity's privilege at the database is checked.
If the entity has been granted DBADM it will be allowed to carry out the operation
even if it does not have the explicit privilege such as CREATE. This privilege is a
kind of catch all much like BYPASS on OpenVMS

« If the entity still has not been granted the privilege at the database level, the
OpenVMS privileges for the OpenVMS user that the application is running under are
checked.

 If that user has the appropriate level of privilege, they are then granted the action on
the object.

This means that privilege checking within Oracle JDBC for Rdb server not only depends on
the privilege assigned to the connection user within the database, but also on the privilege of
the OpenVVMS user that started the server application (the Executor).

Note:
The Executor is the standard term used for the OpenVMS user under which the
application is executing. This should not be confused with the "executor” processes
used in conjunction with multi-process servers.

This allows you to set up a privileged server that has access to data that the user may not
have. In other words, you can restrict user access to data in the database if and only if they
come through the Oracle JDBC for Rdb server; they do not have access directly.

If you wish restricted access, grant restricted access only to the Executor and set minimum
privileges. Then grant the appropriate rights to connection users so that they will have the
required access. If they do not have the rights and the Executor does not have the rights,
access is denied. If the user does have the right even though the Executor does not, access is
allowed.

Within the thin server the BYPASS and SYSPRYV privileges are disabled by default. The
user will only get the privileges he has been granted and will not inherit privileges from the
executor.

If the server must run is required to run with BYPASS privilege, thus allowing less
privileged users access to the database objects, use the -bypass option.

10.2.1 BYPASS and Multi-Process Servers

207

When you use a multi-process server a separate executor process is used to carry out the
database operations. This executor process inherits the privileges and authorization
characteristics from the server process that started it.

Thus the information as described above applies to the executor processes in exactly the
same manner as described for the server process.

Contents

10.3 Persona

When an Oracle JDBC for Rdb thin server is running, it assumes the default privileges and
identifiers of the user that started the server process. Similarly, when a SQL Services JDBC
Dispatcher starts a server, the server will inherit the privileges and identifiers of the
SQL/Services dispatcher process.

You can change this behaviour by specifying a persona value in the server definition for the
server in the XML-formatted configuration file, or by using the persona switch on the
command line when starting up the server.

When started with a persona, the server process will inherit its privileges and identifiers from
the named persona.

BYPASS and SYSPRYV privileges are still disabled by default, see BYPASS Privilege for
more details.

To start a server with a specific persona, you will need to be logged into an account that has
IMPERSONATE privilege and read access to the system authorization database.

The persona value associated with the server must be a valid OpenVVMS persona on the
system you are running the server on.

See Server Configuration Options for the format of the Persona option.

10.3.1 Persona and Server Operations

When persona is used with a server, you should ensure that the persona used has appropriate
access to the JIDBC command procedures and JDBC log directories.
This is especially important if you use persona with a Pool server or a multi-process server.

Before a server carries out any other operation it will assume the persona provided and then
by default disable BYPASS (see BYPASS Privilege). So from that time on the server is

208

operating under the persona supplied and will be restricted to the rights and authorization
given to that persona.

When persona is used both the multi-process server and the Pool server will need to have
read/execute/write access to the RDB$JDBC COM directory and read/write access to the
RDB$JDBC_LOG directory.

By default the installation of the JDBC drivers will create these directories on your
installation destination directory and set the access to both these directories to world
READ/EXECUTE. You will have to alter the file protection on these directories and grant
WRITE access to the persona.

If you have redirected these logical names to another directory you must ensure that the
persona has the read/write access to these directories.

See File and Directory access Requirements for more details.
Contents

10.4 Default Transaction

The type of transaction the Oracle JDBC for Rdb drivers start up when a transaction is
required depends on a number of conditions

e Whether AUTOCOMMIT is enabled

« The verb of the SQL statement to be executed

« The default transaction type specified on connection using the connection option
transaction

« The setting of the transaction types in the connection if changed by methods such as
Connection.setReadOnly () and
Connection.setTransactionIsolation().

If no specific behaviour has been specified, by default the Oracle JDBC for Rdb drivers will
start in AUTOCOMMIT mode and will start up a READ WRITE SERIALIZABLE
transaction if the SQL statement requires a read-write transaction, for example, INSERT or
UPDATE. If the statement does not require a read-write transaction, a READ ONLY
transaction is started.

Immediately after the connection has been made, JDBC will start the default transaction in
anticipation of subsequent operations on the database. By default this will be a READ ONLY
transaction. If you do not wish to have a transaction started at this stage you may defer the
start of the transaction by using either READONLYDEFER or READWRITEDEFER on the
connection string TRANSACT ION option. See Connection Options for more details.

When AUTOCOMMIT is disabled, the type of transaction started will depend on whether the
connection has been set read-only and whether a default transaction type has been specified

209

on the connection using a connection switch. By default, a READ WRITE SERIALIZABLE
transaction will be started if AUTOCOMMIT is turned off and no other method has been called
to change the default transaction type.

If the setting of the transaction type in the connection is MANUAL this default behaviour
changes. Setting transactions to MANUAL indicates that the client will take responsibility for
the starting of transactions. The drivers will no longer start transactions, however, if
AUTOCOMMIT is enabled, the driver will still commit transactions appropriately.

When transactions are set to MANUATL, and the first operation after a connection or after a
transaction termination is not SET TRANSACTION, Oracle Rdb will start a transaction on
behalf of the client. Please see the Oracle Rdb documentation for information on the default
transaction mechanism provided by SQL.

10.4.1 Autocommit Transaction Duration
Since release 7.3.4.0.4

When AUTOCOMMIT is enabled, JDBC will automatically commit transactions at the end of
the execution of a statement.

Sometimes during long-duration client-side read operations it may be advantageous to
commit the current transaction more frequently, to prevent the read-only transaction from
locking out other database operations.

For example, when using SQLDeveloper to read through Rdb records using Oracle JDBC for
Rdb, records are delivered to the client application in groups, where the number of records in
a record group depends on the FETCHS I ZE specified for the statement or session. As you
scroll down a list of records, the application may request the next group of records from the
server. This may mean that if you have not finished scrolling through all the records in the
retrieval set, there may still be a transaction outstanding on the server waiting for the rest of
the records to be requested. If you leave this browse window open for an extended duration,
this could cause read-only transaction lockouts on the database.

JDBC allows you to specify that transactions should be auto-committed each time the server
sends a FETCHSIZE number of records back to the client. This means that while the client
is browsing the current group of records, that no transaction will be outstanding on the server.

The TRANSACTION option AUTOFETCH may be used to inform JDBC that auto-commit is
required each time the server sends FETCHSIZE groups of records. In addition the
TRANSACTION option AUTOREADFETCH not only causes an auto-commit to be done on
each record group send, but also tells JDBC to start a Read-Only transaction by default.

210

See your JDBC documentation on FETCHSI ZE and how to specify the number of records to
retrieve during client/server fetch operations. The application you are using may also have
documentation on how to specify the FETCHSTZE when using JDBC drivers.

Contents

10.5 Executor Sub-process used with the Rdb Native driver

To improve multi-threaded concurrent access to the database while using the Rdb Native
driver, you may specify that separate sub-process executors should be started for each
connection request.

By default all database operations within a standard Rdb Native driver instance are carried
out synchronously, within a single OpenVVMS process. This synchronization is required as
Rdb will only let one thread carry out a database operation at a time. This may limit the
general concurrency that may be seen if you are using the Rdb Native driver within a multi-
threaded environment.

To improve concurrency in a multi-threaded environment you can request the Rdb Native
driver to start-up a separate executor for the database connection.

To start a separate executor for the connection you need to specify the multiprocess
switch on connection URL you use for your database connection.

Connection conn = DriverManager.getConnection (
"jdbc:rdbNative:my db dir:pers@multiprocess=true", user,
pass) ;

Note that this switch is only available when you use the Rdb Native driver.

As a separate sub-process is created for each connection made, output written by the executor
process to SYSSOUTPUT and SYSSERROR will be redirected to log files specific to that
sub-process. You should ensure that your process has write access to the log directory
RDB$JDBC_LOGS.

10.5.1 Setting Maximum Handshake Tries and Wait Duration

When the main process starts an executor process a handshake protocol is established
between the two processes to allow them to carry out subsequent inter-process
communication,

211

The main process will attempt 100 times in quick succession to establish the handshake, and
then, by default, will try 500 more times with a delay of 10 ms between each try.

On some systems where the workload is heavy and particularly on single-cpu systems it is
possible that after the sub-process is created the main process may attempt to establish the
communication unsuccessfully. Depending on process and thread scheduling it is possible
that the maximum number of attempts to establish handshake may occur before the sub-
process is scheduled for execution.

On these systems you may wish to increase the number of attempts at handshake or the
duration to wait between handshake attempts to prevent the premature aborting of the driver-
executor connection. You may use the handshakeTries and handshakeWait options
on the connection string to change these values.

See Connection Options for more details.

Contents

10.6 JDBC Hint Methods

Several methods in the JDBC classes are considered to provide hints to the drivers or
underlying database system and do not have to be strictly observed. Many existing drivers
silently ignore these methods.

To allow compatibility with other drivers, you may specify that optional hint methods be
ignored by using the usehints connection switch:

@usehints=false

This setting tells the Oracle JDBC for Rdb drivers to ignore hint methods.
By default the Oracle JDBC for Rdb drivers will observe hint methods.
The following methods are perceived as non-mandatory hints:

e Connection.setReadOnly ()

e ResultSet.setFetchDirection ()

* ResultSet.setFetchSize()

e Statement.setFetchDirection ()

e Statement.setFetchSize ()

Contents

10.7 Logging and Tracing

212

Exceptions, informational and warning messages are written to the server’s log file, if one
has been specified.

In addition, when a server is started with a non-zero tracelevel, trace messages are also
written to the server’s logfile.

The server’s log file is generally found within the RDB$SJDBC_LOGS directory, but server
configuration attributes may be used to point to any directory that the server process has
write access to.

If an exception is raised within the context of an executor process then the exception message
will be logged to one of the executors log files, usually also found in the RDB$JDBC _LOGS
directory.

If no log file is specified for a server, these messages are written to the System. out
channel of the process within which the server is running.

The logfile server configuration attribute is generally an absolute or relative file specification
of where to write log messages. If the file specification is relative then it will be relative to
the default directory from which the server process was invoked.

The logfile specification may also be a special pattern, in which case certain key character
sequences may be used in conjunction with normal ACSII filename characters to specify the
automatic creation of the log file name. See Logfile Pattern for details on log filename
pattern characters.

In addition to logging to a log file, certain events and other messages can also be logged
using the standard Java Logging facilities.

By default Java Logging is turned off.

See your Java JDK 1.4.1 for information on the Java Logger.

10.7.1 Lodgfile Pattern.

Since release 7.3.2.0.0

The following table shows the pattern character sequences that may be used in logfile
patterns:

Logfile patterns sequences
I

Pattern Description
A Replace with the local directory separator.
"%%ot"" Replace with the systems temporary directory;

213

Pattern Description

SYS$SCRATCH.
"%l" Replace with the standard log directory; RDB$JDBC_LOGS.
"%n" Replace with the server name.
"%h™ Replace with the value of the user .home system property.
""%(Q"" Replace with a generation number to distinguish rotated logs.

If no "%g" field has been specified and the file count is
greater than one, then a generation number will be added to
the end of the generated filename.

"%u"’ Replace with a unique number to resolve conflicts.
"%p™ Replace with the current process id (PID) of the server.
"%d" Replace with a compressed date/time value.

"0404"

Translates to a single percent sign "%".

Example:
Given the following entries in the configuration file:

<server
name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
log="%1%n_%d.log"

/>

<server
name="TESTSRV"
tracelevel="-1"
port = "1899"

/>

When TESTSRYV server is started on the date October 30, 2012 it will log trace messages
and exceptions to the file:

214

RDBSJDBC LOGS:TESTSRV_CAUH3G1.LOG

Contents

10.8 Ignoring Statement.cancel() Method Calls

Currently the method Statement.cancel () is not supported in the Oracle JDBC for
Rdb drivers. If an application calls this method the driver will raise the following Exception:

oracle.rdb.jdbc.common.RdbException: Unsupported feature
<Statement.cancel>

In applications and application servers that expect this feature to be present, the raising of
this exception may cause problems with the application functionality or may lead to
excessive messages being written to the application log file.

If your application does not depend on the statement cancellation to actually take effect, and
that failure to cancel can be safely ignored, you may specify the
ignoreStatementCancel switch of the connection URL.:

Connection conn = DriverManager.getConnection (
"jdbc:rdbNative:my db dir:pers@ignoreStatementCancel=true",
user, pass);

Contents

10.9 Server Name

Each server may be given its own name that may be used to identify a server within the
controller and to look up configuration information. The name of a server may be used to
identify configuration setting within an XML-formatted configuration file on server start up.

Example 1
For example given the following entry in MY CFG. XML file:

<servers>
<server
name="myMPServer"
type="RdbThinSrvMP"
url="//localhost:1788/"

215

/>

</servers>

and the following command line statement:

$ java -jar rdbthinsrv.jar -cfg MY CFG.XML -name myMPServer

A multi-process server with the name myMPServer will be started up on localhost listening
to port 1788.

Names of servers within an XML-formatted configuration file must be unique as it is by
name alone that server characteristics are searched for within the configuration file. Note that
on OpenVMS character case is not significant in name matching.

The following two special server names may be used, DEFAULT and DEFAULTSSL, within
the XML-formatted configuration file.

The server characteristics defined in the DEFAULT server will be used to provide the base
configuration information for all servers, but any of these characteristics can be over-ridden
either by command line switches or by characteristics defined within the specified named
server in the configuration file.

Example 2
For example given the following server entry in MY CFG. XML file:

<servers>
<server
name = "DEFAULT"
type = "RdbThinSrv"
url = "//localhost:1755/"
maxClients="-1"
/>
<server
name="myServer"
maxClients="10"
/>
</servers>

and the following command line statement:

$ java -jar rdbthinsrv.jar -cfg MY CFG.XML -name "myServer"

A thin server with the name myServer will be started up on localhost listening to port 1755
with maxClients =10.

216

The server characteristics within the DEFAULTSSL server will be used to provide base SSL
information for RdbThinSrvSSL type servers.

Example 3
If an XML-formatted configuration file is used, a server is not found that matches the name
provided on the command line, and a DEFAULT server definition is provided, then the
DEFAULT server characteristics will be used for that server.

For example given the following server entry in MY CFG.XML file:

<servers
<server
name = "DEFAULT"
type = "RdbThinSrv"
url = "//localhost:1799/"
maxClients=-1
/>
</servers>

and the following command line statement:
$ java -jar rdbthinsrv.jar -cfg MY CFG.XML -name "myServer"

A thin server with the name myServer will be started up on localhost listening to port 1799
with unlimited maxClients.

Contents

10.10 Named Databases

The XML-formatted configuration file allows the specification of known named databases,
allowing the Oracle JDBC for Rdb servers the ability to recognize alternate names for
databases served on the node the server is running on.

Similar to logical names and JNDI name spaces, the use of alternate names allows the
separation of the name the client uses for the database and the actual file specification of the
database.

Before requesting Oracle Rdb connect to a database, the thin server will check its list of
known databases for a match against the file specification portion on the given Connection
URL. If one matches, then the file specification portion of the URL property of the named
database will be used to provide the connection database specification.

Example
For example, given the following named database:

217

<database
name="mf pers"
url="//localhost:1701/diskl: [databases]mf personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"

/>

And the following connection statement:

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/mf pers",user, pass);

The client will be connected to the Oracle Rdb database
diskl: [databases]mf personnel.rdb

During the translation of the named database, the node and port part of the URL within the
named database definition is discarded.

Named databases may also be used to restrict database access within the server. See
Restricting Database Access for more information on this feature.

The list of named databases may be made available for client application access if the server
configuration option allowShowDatabases is set to “true”. See Getting a List of
Known Databases from Server for more details.

Contents

10.11 On Start Commands

There are three startup command attributes that may be specified in the XML-formatted
configuration file server section: srv.onStartCmd, srv.onExecStartCmd and
Srv.onCliStartCmd.

These options allow the specification of DCL command that should be executed just prior to
the start up of a server or executor.

Note:
The srv.onStartCmd, srv.onExecStartCmd and the
srv.onCliStartCmd point to a command that will be execute on start up of the
server, executor or CLI invocation. If the command is to invoke a DCL command
procedure you must also include the DCL invocation symbol @ in the command line.

218

10.11.1 srv.onStartCmd

This option specifies a DCL command to be executed prior to the invocation of the specified
thin server. It must be a valid OpenVMS DCL command and must be valid within the
context of the server process created by the controller or Pool server.

If multiple DCL commands are required then they should be placed within a DCL command
procedure, which in turn should be made available to the environment under which the
controller or Pool server runs. Oracle recommends that these command procedures be placed
within the rdb$jdbc com directory and the file protection set to allow the controller or
Pool server execute access.

Example 1
For example, if your system requires a specific setup to be run to set your Java environment
and Oracle Rdb environment, you may create a command procedure similar to the following
example.

Create rdb$jdbc_com:our_ setup.com containing

S@sysSshare:rdbS$setver 71
S@sys$Scommon: [java$l4l.com] JAVAS141 SETUP.COM

and provide a pointer to this command procedure in the srv.onStartCmd option

<server
name="srv2forRdb"
type="RdbThinSrv"
url="//localhost:1708/"
srv.onStartCmd="Q@rdbSjdbc com:our setup.com"

/>

Care should be taken when providing commands for the server process to execute using this
property. These commands will be executed prior to the invocation of the Java statement that
starts the actual server instance. As detached OpenVMS processes will be used to run the
server you must ensure that all the necessary symbols and logical names are available for the
server's use within the detached process.

In particular if you redefine the standard RDBSJDBC_* logical names within your set-up to
use a private version of Oracle JDBC for Rdb, you must ensure that appropriate

JAR file and images are available and executable within the detached process server
environment.

219

Example 2
For example, care should be taken in how the logical names are specified. The following
redefinition may appear to point the logical name to the current default directory:

$define rdb$jdbc_home []

However this logical name will be translated during the creation of the temporary command
procedure that will be used to start the server, which in this case as only the directory has
been specified, the disk or device will default to the current device of the login directory of
the detached process, which might not be the same device as you expected. This may
prevent the server process form correctly starting.

If you need to redefine a logical name to the current default directory you can use the
fSenvironment DCL lexical function:

$define rdb$jdbc home 'fSenvironment ("DEFAULT")

This will set both the default device and directory.

If problems are found with starting a server process you can look for new log files in the
RDB$JDBC LOGS directory which may provide some information on any errors found.

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVMS Java documentation for more details.

Note:
The srv.onStartCmd command is only used by the controller or Pool server to
start a server. If the server is started by any other means, neither the server startup
command procedure nor any commands in the srv.onStartCmd server attribute
will be executed.

10.11.2 srv.onExecStartCmd

This option specifies a DCL command to be executed prior to the invocation of an executor
by a multi-process server. It must be a valid OpenVMS DCL command and must be valid
within the context of the multi-process server process.

If multiple DCL commands are required, then they should be placed within a DCL command
procedure, which in turn should be made available to the environment under which the server

220

runs. It is recommended that these command procedures should be place within the
rdb$jdbc_com directory and the file protection set so that the server can access them.

Example
For example, if your system requires a specific setup to be run to set your Oracle Rdb
environment, you may create a command procedure similar to the following example.

Create rdb$jdbc com:our exec setup.com containing

S@sysSshare:rdb$setver 7.1

and provide a pointer to this command procedure in the srv.onExecStartCmd option

<server
name="MPsrv2forRdb"
type="RdbThinSrvMP"
url="//localhost:1788/"
srv.onExecStartCmd="@rdbS$jdbc com:our exec setup.com"

/>

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVVMS Java documentation for more details.

10.11.3 srv.onCliStartCmd

This option specifies a DCL command to be executed prior to the invocation of a CLI
statement by a JDBC server. It must be a valid OpenVMS DCL command and must be valid
within the context of the server process.

If multiple DCL commands are required, then they should be placed within a DCL command
procedure, which in turn should be made available to the environment under which the server
runs. It is recommended that these command procedures should be place within the
rdb$jdbc_com directory and the file protection set so that the server can access them.

Example
For example, if your system requires a specific setup to be run to set your Oracle Rdb
environment, you may create a command procedure similar to the following example.

Create rdb$jdbc com:our cli setup.com containing

221

S@sysSshare:rdbS$setver 7.1

and provide a pointer to this command procedure in the srv.onCliStartCmd option

<server
name="MPsrvZ2forRdb"
type="RdbThinSrvMP"
url="//localhost:1788/"
srv.onClistartCmd="@rdb$jdbc com:our cli setup.com"

/>

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVVMS Java documentation for more details.

Contents
10.12 Password Obfuscation in Server Configuration Files

There are two types of passwords that may be stored in the server configuration files
 control passwords
 user passwords

In addition, two types of obfuscated passwords are allowed in server configuration file:
« Obfuscations produced by the digest command which is an allowed form for
control passwords

« Obfuscations produced by the obfuscate command which is an allowed form of
obfuscation of user passwords

The main difference in the obfuscation produced by these two commands is that digest

uses one-way algorithms where-as obfuscate uses reversible algorithms.

10.12.1 Control Passwords

To help prevent an unauthorized user from controlling server operations such as closing
down a running server, a control password should be assigned to each server on startup.
This password must be used whenever server control operations are carried out using the
Oracle JDBC for Rdb Controller interface.

222

To ensure better security of these control passwords, the server configuration file may
contain the server control password in an obfuscated form. You can obtain an obfuscated
password for a control password by using the digest statement in the Controller.

Example 1
rdbthincontrol> digest thisismypassword
digest : 0x31435008693CE6976F45DEDC5532E2C1

The value can then be used in the configuration file where you would have normally
provided a plain text control password.

Example 2

<server
name="RdbThinSrv1707"
type="RdbThinSrvMP"
url="//localhost:1707/"
srv.execStartup="mystartup"
controlUser="jdbc user"
controlPass="0x811B15F866179583EB3C96751585B843"

/>

This value must be copied exactly as returned by the digest command.

The plain text password conversion to its obfuscated form is case-sensitive, so the same word
or phrase but with different character casing will produce a different digested form.

Passwords are case sensitive so you must ensure that the value of the password used in plain
text and in it digested form match exactly character by character including case.

This is particularly important if a password is used on the DCL command line. If double
quotation characters are not used to surround the plain text password DCL may, depending
on your environment, force the value to all lower case or all uppercase which may differ
from the original.

Example 3
For example when —-digest is used in command mode make sure the value is enclosed in
double quotations:

$ java -Jjar rdbthincontrol.jar -digest "MySecretPassword"
digest : 0x7315A012ECAD1059A3634F8BE1347846

S java -jar rdbthincontrol.jar -digest MySecretPassword
digest : 0x4CAB2A2DB6A3C31B01D804DEF28276EG

223

Note:
Obfuscated control passwords are only valid when used in conjunction with a server
definition in a configuration file or as a server start up command line configuration
option. To connect to the server as a control user to carry out operations on it using
the controller, the control password you use in the connect request must still be in
plain text. You cannot use the obfuscated value as a password on connection.

See also: Digest in the section Oracle JDBC for Rdb Controller.

10.12.2 User Passwords

User passwords may be stored in the server configuration file, however storing these
password in plain text form may leave your system vulnerable to anyone who can read the
configuration file. To help improve security, user passwords may be stored in the
configuration file in obfuscated form.

As user passwords must be passed to SQL and Oracle Rdb in their plain-text form, any
obfuscation of these passwords must be reversible. The obfuscate command of the
Controller may be used to create a reversible obfuscation of a password.

Example 1
rdbthincontrol> obfuscate mypassword
obfuscation : ##016BA4158E5884C8D6EAFE71697D4DC9483417DA0BAL

The value can then be used in the configuration file where you would have normally
provided a plain text user password.
Example 2
<server
name="RdbThinSrv1701"
type="RdbThinSrv"
url="//localhost:1701/"
anonymous = "true"
User="jdbc user"
Password="##016BA4158E5884C8D6EAFE71697D4DC9483417DA0BAL"

/>

This value must be copied exactly as returned by the obfuscate command.

The plain-text password conversion to its obfuscated form is case-sensitive, so the same word
or phrase but with different character casing will produce a different obfuscated form.

Passwords are case sensitive so you must ensure that the value of the password used in plain
text and in it digested form match exactly character by character including case.

224

This is particularly important if a password is used on the DCL command line. If double
quotation characters are not used to surround the plain text password DCL may, depending
on your environment, force the value to all lower case or all uppercase which may differ
from the original.

The value of the obfuscated form of the password will change every time the obfuscate
command is used:

Example 3

rdbthincontrol> obfuscate mypassword

obfuscation : ##01114E48372901FAADFF86AT79B1304CCBCIOF51872FAF
rdbthincontrol> obfuscate mypassword

obfuscation : ##01329A04611A8C6DAC388BRA0ODD369C20C2E4DFCRBS801
rdbthincontrol>

Note:
Obfuscated user passwords are only valid when used in conjunction with a session
or server definition in a configuration file or as a server start up command line
configuration option. Any user password used in a connection statement must be in
plain text form.

See also: Obfuscate in the section Oracle JDBC for Rdb Controller.
Contents

10.13 Restricting Server, Database and Operational Access

In addition to the standard Rdb authorization checking that is carried out during the
connection to a database using a thin server, the databases accessed, the operations attempted
and the usernames allowed may be restricted at the server level.

The following sub-sections detail how access to a thin server and its served databases may be
intentionally restricted.

10.13.1 Restricting Database Access

You may restrict connections made via a server to only those databases specified as allowed
databases.

This may be done by setting the restrictAccess property for the server in the
configuration file and then providing a list of databases that may be accessed using
allowDatabase subsections.

Example
<server
name="srv2restrict"

225

type="RdbThinSrv"

url="//localhost:1701/"

restrictAccess="true">

<allowDatabase name="mf pers"/>

<allowDatabase name="diskl: [databases]customers"/>
</server>

The name value of an allowDatabase subsection may be either the name of a database
already declared within the same configuration file, or the database file specification portion
of a connection URL

If a client is using a server with restricted access, then the file specification portion of the
JDBC Connection URL used must match one of the names within the allowed database
subsections. No file expansions or logical name translations are done on the Connection URL
before the server checks these names against the allowed databases, so it is important that,
apart from the variations in case, the names be exactly as specified in the allowed database
subsections.

If the server restrictAccess property is true and there is at least one allowDatabase
subsection specified then the server will allow access to only those databases specified.

If the server restrictAccess property is false or not specified or if no
allowDatabase subsection is specified for the server then no database restrictions will be
applied.

The allowDatabase subsections are also inherited from both the “DEFAULT” and, if
appropriate, the “DEFAULTSSL” server definition.

Thus, the list of allowed databases will be the combination of the allowed database list

present in the “DEFAULT” and the list within the specific server’s definition. If the server
uses SSL, the database list within “DEFAULTSSL” is also included.

Example 1
For example given the above server description of a server running on the node bravo :

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/mf pers",user, pass);

will be allowed.

Example 2
Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/MF Pers",user, pass);

will be allowed because character case in the database specification is not significant.

226

Example 3

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/diskl: [databases]customers", user,
pass) ;

will be allowed.

Example 4
Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/diskl: [databases]customers.rdb",
user, pass);

will NOT be allowed due to the extra " . rdb" .

Example 5
Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1701/cust",user, pass);

will NOT be allowed even though cust may be a logical name that translates to

diskl:[databases]customers
10.13.2 Restricting User Access

When using a thin server, Rdb authorization checking is carried out during the connection to
the database. Rdb will check the username and password provided to determine the
authorization access for the given user.

In addition you may further restrict which users may use the server by setting the
restrictAccess property for the server in the configuration file and then providing a list
of usernames that will be restricted using allow or deny User subsections.

Example
<server

name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true">
<allow user="jdbc user"/>
<allow user="APP.*"/>
<deny wuser="APP M1"/>
</server>

227

The name value of an allow or deny User subsection must be a valid Rdb username or
the keyword “owner” .

If a client is using a server with restricted access, the username used by the originating client
request will be checked against the allow and/or deny lists to see if the server will accept the
connection.

If the server restrictAccess property is true and there is at least one allow user or
deny user subsection specified then the server will allow access to only those users that
match any of the alIlow users specified but do not match any deny user specified for
that server.

If the server restrictAccess property is true and there areno allow user
subsections specified but there is at least one deny user subsection specified then the
server will deny access to usernames that match any of the deny users specified for that
server.

If the server restrictAccess property is false or not specified, or if no allow user
or deny user subsections are specified for the server then no username restrictions will
be applied.

The allow user and deny user subsections are also inherited from both the
“DEFAULT” and, if appropriate, the “DEFAULTSSL” server definition. Thus, the list of
usernames to be considered will be the combination of the username list present in the
“DEFAULT” and the list within the specific server’s definition. If the server uses SSL, the
username list within “DEFAULTSSL” is also included.

As any username within the restriction lists may be a standard username value or a Java
regular expression, the server determines the style of match to apply to each list entry by
looking at the user pattern of that entry.

If the username pattern contains any standard Java regular expression control characters,
other than period or asterisk (*), it will be considered a regular expression.

The username match is not case-sensitive.
Since release 7.3.4.0.0

The keyword “owner” informs JDBC to use the OpenVVMS username of the account under
which the server was started.

10.13.3 Restricting IP Access

Since release 7.3.2.0.0

228

You may restrict client access to a JDBC server by specifying sets of IP addresses that
indicate who will be allowed or denied access to making a connection using the server.

This may be done by setting the restrictAccess property for the server in the
configuration file and then providing one or more IPs using allow or deny subsections.

Example 1

<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictAccess="true">
<allow IP = "100\N.I\N.1I\.(1[0-9]1[0-9]1|[1-91[0-91|[0=-91)"/>
<deny IP = "100.1.1.3"/>

</server>

The value ofan allow or deny IP subsection may be either a numerical IPv4 address
presented in the standard dot-decimal notation or may be a Java regular expression based on
the same standard IPv4 dot-decimal notation.

Note:
IPv4 addresses are 32 bit values that are canonically represented in a dot-decimal
notation, which consists of 4 decimal numbers (segments), each ranging from 0
through 255, separated by dots. For example: 100.1.1.3 .

If a client is using a server with restricted access, the IP of the originating client request will
be checked against the allow and/or deny lists to see if the server will accept the connection.

If the server restrictAccess property is true and there is at least one allow IP or
deny TP subsection specified then the server will allow access to only those IPs that match
any of the allow IPs specified but do not match any deny TP specified for that server.

If the server restrictAccess property is true and there areno allow IP subsections
specified but there is at least one deny IP subsection specified then the server will deny
access to IPs that match any of the deny IPs specified for that server.

If the server restrictAccess property is false or not specified, or ifno ailow IP or
deny IP subsections are specified for the server then no IP restrictions will be applied.

The allow IP and deny IP subsections are also inherited from both the “DEFAULT”

and, if appropriate, the “DEFAULTSSL” server definition. Thus, the list of IPs to be
considered will be the combination of the IP list present in the “DEFAULT” and the list

229

within the specific server’s definition. If the server uses SSL, the IP list within
“DEFAULTSSL” is also included.

As any IP within the restriction lists may be a full or partial IPv4 dot-decimal value or a Java
regular expression, the server determines the style of match to apply to each list entry by
looking at the IP pattern of that entry.

If the IP pattern contains any standard Java regular expression control characters, other than
period (.) or asterisk (*), it will be considered a regular expression. Remember, if you are
using a regular expression, you should to escape any dot separators present in the IP pattern
otherwise they will be used as a character wildcards.

If only numeric characters and periods are found in the pattern, the IP will be matched using
standard string equality matching.

Example 2

Take care when applying restrictions to client connections made from the same host as the
JDBC server is running, you should provide a local network IP value:

<server
name="srv2restrict"
type="RdbThinSrv"
url="//100.1.1.1:1701/"
restrictAccess="true">

<allow IP = "100.1.1.1"/>
<allow IP = "127.0.0.1"/>
</server>

In the above example, only client applications running on the same node as the server will be
allowed access.

Note:
If the client connection is made from the same node the server is running on, the
network socket connection may be using the local network range 127.0.*.*. . This
may depend on how your network has been setup.

If this is the case then you may have to provide both the local network IP and the
full network IP inthe allowor deny IP lists.

The IP masks used in the restriction lists are matched as simple strings, even when

Java regular expressions are used. No translation of IPs or conversion to/from
canonical form is done. Thus, in Example 2 above, even though "100.1.1.1" and

230

"127.0.0.1" may be two designations of the same network node they are
considered discrete IP values when the JDBC server applies IP restriction testing.
Hence, both designations should be provided in the restriction lists.

Example 3

Groups of IPs may be specified by providing partial IP values by specifying from 1 to 3
leading IP segments. The missing segments will be considered as matching the full range of
the segment values i.e. 0 through 255. In this way groups of IPS may be represented by a
single partial IP value, for example:

<allow IP = "100.1.1" />

The above IP property tells the server to allow IP values 100.1.1.0 through 100.1.1.255.

Example 4
Similarly,
<allow IP = "100.0" />

tells the server to allow IP values 100.0.0.0 through 100.0.255.255.

Example 5
Groups of IPs may be specified by providing from 1 to 3 leading IP segments and using
asterisk wildcard characters, “.*”, in the remaining trailing segments. The wildcard
segments will be considered as matching the full range of the segment values i.e. 0 through
255. In this way groups of IPS may be represented by a wildcard IP value, for example:

<allow IP = "100.3.*.*" />

The above IP property tells the server to allow IP values 100.3.0.0 through 100.3.255.255.

Example 6

Alternatively, IP groups may be specified by providing an appropriate Java regular
expression:

<deny IP = "100\.0\.0\.(25[0-5]112[0-4]1[0-9]]1[0-9][0-9]|[1-9]1[0-9]1|[0=-9])"/>

Tells the server to deny any IP in the range 100.0.0.0 through 100.0.0.255

231

Note:
IPv4 addresses may be subject to change during rerouting of connections through
your TCP/IP network. Care should be taken to determine the appropriate IP address
or address ranges that client applications may be connecting from, taking into
account any IP translations or reassignments. Because IP addresses may be subject
to change, Oracle recommends that you should not rely solely on IP addresses for
server access restrictions. You should also consider, additionally using other
restriction criteria such as user restrictions or server passwords to ensure tighter
access security.

Server restrictions do not remove the need to ensure correct authorization and
control access on each of the database that may be accessed. Server restrictions are
meant to enhance the security provided by the underlying standard Rdb database
authorization and access control security measures, and not replace them.

10.13.4 Privileged Users Access

Users may be granted a “Privileged User” status when accessing a JDBC server. Privileged
users may be allowed to carry out operations on the server or the server’s host that would not
normally be granted, for example, access to the command line.

A user is designated “privileged” by having their username specified within an
allowPrivUser configuration option for that server, for example:

Example

<server
name="srv2"
type="RdbThinSrv"
url="//localhost:1701/">
<allowPrivUser name="jdbc user"/>
<allowPrivUser name="owner"/>

</server>

The name value of an allowPrivUser subsection must be a valid Rdb username or the
keyword “owner” .

The keyword “owner” informs JDBC to accept the OpenVVMS username of the account
under which the server was started as a valid privileged user.

232

Normal OpenVMS authorization and privilege checking is still carried out on all operations
executed by a privileged user. The username/password provided for the database connection
will be used for authorization checking by OpenVMS.

Note:

Control users that have successfully connected to the server using a control connection are
automatically considered “Privileged User’s.

10.13.5 Access to the Command Line

Users may be granted access to execute command line operations on the host that the server

IS executing on.

If the user has been granted access, the server may execute OpenVMS DCL commands on

the server’s host system on behalf of the user. The commands are executed in a separate
loginout session established specifically for command line access.

During the execution of the DCL command, messages that are written to either
SYSSOUTPUT or SYS$SERROR will be relayed back to the client application.

Enabling command line access for a server requires two server configuration options:

1. The server must have Command Line access enabled by having the server configuration
option allowAccessToCL setto “true”, see Server Configuration Options for more

details.

2. The user must be a designated “Privileged User”, see Privileged Users for more details.

The following example shows that both “jdbc user” and “smith” will be allowed
command line access when using srv1.

Example

<server

name = "srvl"

type = "RdbThinSrv"

url = "//localhost:1701/"
autoStart="true"

allowAccessToCL = "true">
<allowPrivUser name = "jdbc user"/>
<allowPrivUser name = "smith"/>

</server>

233

Command line access is carried out by the server within a separate process using special
command procedures. See CLI Startup Command Procedure for more details.

Command line access is only available when using certain applications such the
SQLDeveloper Addin for Rdb and is used to provide the ability to execute RMU and other
operations required by the SQLDeveloper application.

This command line access feature is currently not available for general application use.

10.13.6 Access to the Server Root

Since release 7.3.4.0.0

Users may be granted access to the server root in order to carry out operations that do not
require a bind to an Rdb database.

If the user has been granted access, the server may execute commands such as CREATE and
DROP database on behalf of the user.

Server root access is enabled by setting the server configuration option
allowAccessToRoot to either of the following values:

« “true” - allows all users access to server root
« “priv” - allows only privilege users access to server root

By default server root access is disabled. Access may also be disabled by explicitly setting
the allowAccessToRoot server configuration option to “false”.

If allowAccessToRoot issetto “priv” then the user must be a designated “Privileged
User” before root access is allowed, see Privileged Users for more details.

Example

<server
name = "srvl1l"
type = "RdbThinSrv"
url = "//localhost:1701/"
allowAccessToRoot = "priv">
<allowPrivUser name = "jdbc user"/>
<allowPrivUser name = "smith"/>

</server>

234

In this example only the users “jdbc_user” and “smith” will be allowed access to the server
root.

10.13.7 Create and Drop Database Entitlement

Since release 7.3.4.0.0

Note:

Users may be granted the ability to create or drop databases on the host that the server is
executing on.

If the user has been granted access, the server may execute CREATE and DROP database
command on behalf of the user.

Enabling CREATE and DROP database access for a server require the setting of the
following server configuration options:

* allowAccessToRoot

* allowCreateDatabase

e allowDropDatabase

Normal Oracle Rdb and OpenVMS authorization and privilege checking are still carried out
on all operations executed by the user after being granted create and drop database access by
the JDBC server. The username/password provided for the server root connection will be
used for authorization checking.

Control users that have successfully connected to the server using a control connection are
automatically considered “Privileged User’s.

The following sections provide more detail on the granting of CREATE and DROP database
access.

10.13.7.1 Create Database Entitlement

New database creation access is enabled by setting the server configuration option
allowCreateDatabase to either of the following values:

« “true” - allows all users access to create databases
+ “priv”-allows only privilege users access to create databases

In addition, access to the server root must also be enabled, thus in order for a user to be able
to create new databases, the server must have the following configuration options set:

The server must have server root access enabled by having the server configuration option
allowAccessToRoot set to either the value "t rue” or the value “priv”, see Access to
the Server Root for more details.

235

2. The server must have database create access enabled by having the server configuration
option allowCreateDatabase set to the value ”true” or the value “priv”, if the
creation of new databases should be allowed.

3. If either server configuration option allowAccessToRoot Of
allowCreateDatabase is set to the value "priv”, then the user must be a designated
“Privileged User” before being allowed to carry out the operation, see Privileged Users for
more details.

The following example shows that both “jdbc_user” and “smith” will be allowed to create
new databases when using srv1.

<server
name = "srvl"
type = "RdbThinSrv"
url = "//localhost:1701/"
allowAccessToRoot = "true"
allowCreateDatabase = "priv'">
<allowPrivUser name = "jdbc user"/>
<allowPrivUser name = "smith"/>

</server>

Once granted access to the operation by the server, normal Oracle Rdb and OpenVMS
authorization and privilege checking will still be carried out at the time of the command
execution.

See the section Create Database for more information.

10.13.7.2 Drop Database Entitlement

The dropping of existing databases is enabled by setting the server configuration option
allowDropDatabase to either of the following values:

* “true” - allows all users access to drop databases
« “priv”-allows only privilege users access to drop databases

In addition, access to the server root must also be enabled, thus in order for a user to be able
to drop a database, the server must have the following configuration options set:

1. The server must have server root access enabled by having the server configuration option
allowAccessToRoot set to either the value "t rue” or the value “priv”, see AcCCess to
the Server Root for more details.

236

2. The server must have database drop access enabled by having the server configuration option
allowDropDatabase set to the value "t rue” or the value priv”, if the dropping of
existing databases should be allowed.

3. If either server configuration option allowAccessToRoot Or allowDropDatabase is
set to the value "priv”, then the user must be a designated “Privileged User” before being
allowed to carry out the operation, see Privileged Users for more details.

The following example shows that both “jdbc_user” and “jones” will be allowed to use drop
database when served by srv1.

<server
name = "srvl"
type = "RdbThinSrv"
url = "//localhost:1701/"
allowAccessToRoot = "priv"
allowDropDatabase = "priv">
<allowPrivUser name = "jdbc user"/>
<allowPrivUser name = "jones"/>

</server>

Once granted access to the operation by the server, normal Oracle Rdb and OpenVMS
authorization and privilege checking will still be carried out at the time of the command
execution.

See the section Dropping an Existing Database for more information.

10.13.8 Further server access protection

In addition to restricting the databases accessed and the users allowed to use the server, a
server may also be protected using a server password.

This may be done by setting the srv . password property for the server in the
configuration file. This password may be either a plain text password or an obfuscated
password value.

Oracle recommends not to store password in your configuration file, however if you choose
to store them then an obfuscated from should be used. You may use the digest function
within the Controller application to generate an obfuscated password that is suitable to use
with the srv.password property. See Password Obfuscation in Server Configuration Files
for more details.

237

To make a successful connection to a database using a password-protected server the client
connection properties must also provide the plain text value of the password on the client
connection request.

Example
<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
srv.password="0x811B15F866179583EB3C96751585B843"

/>

In this example, an obfuscated password is used which matches the plain text password
"jdbc_user"

To connect to a database using this server the client must provide a @srv.password
value on the connection request and the password must be a plain text password that matched
the one specified for the server.

Connection conn = DriverManager.getConnection (
"jdbc:rdbThin://bravo:1755/"+
"my db dir:pers@srv.password=jdbc user",user, pass);

10.13.9 Restricting SQL Statements

Since release 7.3.1.0.0

You may restrict SQL statements executed via a server to only those specified by providing a
list of restricted verbs and/or by providing a denied SQL statement pattern.

This may be done by providing a list of SQL verbs that may be allowed using the server’s
restrictSQL attribute. Alternatively, or in addition to, you may provide a Java Regular
Expression (REGEX) pattern ina deny SQL attribute that will be used to determine if the
SQL statement should be denied.

The restrictSQL attribute takes a comma separated list of verbs that will be accepted by

the server, if the SQL statement text starts with a verb that is not in this list it will be denied.
This verb check is not case-sensitive.

238

The deny SQL attribute of the server is also used to determine if the SQL statement
attempted will be allowed, if the SQL statement text matches the specified regular expression
pattern it will be denied.

The restrictSQL attribute if present overrides any restrictSQL attribute that may be
inherited from the default server definition.

However, the deny SQIL attributes may also be inherited from the default server
specification. The resultant denial list is the combination of the attributes from both the
default server and the specific server definition.

Note:
A Java regular expression is case-sensitive by default, however you may use the in-
line modifier (?1) to make the pattern case-insensitive. See your Java
documentation for more information on using Java regular expressions.

Example
<server
name="srv2restrict"
type="RdbThinSrv"
url="//localhost:1701/"
restrictSQL = "SELECT, SHOW"
>

<deny SQL = " (?1).*select.*jobs.*"/>
</server>

In the above example, allowable SQL statements must start with either “SELECT” or
“SHOW” and cannot contain the combination of *“SELECT” and “JOBS”, otherwise the
SQL statement will be denied by the server. In this example the tests for verb restriction and
statement denial are both case-insensitive.

The restrictSQL or deny SQL attributes of the server will be used to determine if the
SQL statement will be allowed.

Ifno restrictSQL or deny SQL attributes are specified then no SQL restrictions will
be applied by the server.

Note:

239

Even if the server allows the SQL statement to proceed, the underlying database
system may still restrict the statement depending on ACLs and other database
specific criteria.

The restrictSQL or deny SQL attributes allow some level of checking to be
placed on queries being processed by JDBC, however they are not a substitute for
correct security procedures and controls being in-place on the underlying databases.

You should refer to your Rdb documentation on database security and restricting
access to tables and contents.

Contents

10.14 Scope of CONNECTION.setReadOnly()

By default, the scope of the CONNECTION. setReadOnly () method is session, that is, if
the method CONNECTION.setReadOnly (true) is called, the default transactions for
the rest of the connected session will be READ ONLY unless changed by another call to
CONNECTION.setReadOnly ().

However, the standard Oracle JDBC Drivers have a different scope for
CONNECTION.setReadOnly () . If the method

CONNECTION.setReadOnly (true) is called, only the next transaction will be READ
ONLY; once that transaction has ended, the default transaction will resort back to READ
WRITE.

To provide semantics consistent with the standard Oracle JDBC Drivers, a value of
ORACLE may be specified within the TRANSACTION connection option.

Format
@transaction=oracle

The default transaction will be READ WRITE when this switch is used, but this transaction
type may be changed by issuing the CONNECTION. setReadOnly (true) method call.
This will set only the next transaction to READ ONLY.

Contents

10.15 Server Command Procedures

OpenVMS DCL command procedures are used in the creation of processes in which a thin
server is started using the controller and when a multi-process server starts up an executor

240

process. A command procedure is also used whenever the server has to execute a CLI
statement on behalf of a client.

These command procedures may be tailored for your system environment so that operation
such as software version setup and re-direction of output may be customized.

There are three command procedures used for startup, the server startup command procedure:
rdb$jdbc _home:rdbjdbc startsrv.com

and the executor startup command procedure:
rdb$jdbc _home:rdbjdbc startexec.com

and the CLI startup command procedure:
rdb$jdbc com:rdbjdbc execcli.com

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVMS Java documentation for more details.

Note:
If the only changes required are environmental setup, Oracle recommends that
instead of altering the start-up command procedures, the server attribute
srv.onStartCmd, srv.onkExecStartCmdor srv.onCliStartCmd
should be considered. See On Start Commands for more details.

10.15.1 Server Startup Command Procedure

The controller uses the server startup command procedure to start a thin server.

The srv.startup option within the server section of an XML-formatted configuration file
may be used to specify the file specification of the command procedure that should be used
to start that server.

Example
For example:

<server

241

name="srv2forRdb"

type="RdbThinSrv"

url="//localhost:1708/"

autoStart="true"

logfile="rdbS$jdbc logs:srv2forRdb.log"
srv.startup="rdb$jdbc com:our customized startsrv.com"

/>

During the driver kit installation the command procedure rdbjdbc startsrv.com IS
placed in the rdb$jdbc home directory. This file will be used by default for server start
up using the controller and Pool servers.

The DEFAULT server provided in the default configuration file RDBJDBCCFG . XML
specifies this command procedure.

srv.startup="rdb$jdbc home:rdbjdbc startsrv.com"

You can choose to change this default command procedure to customize for your system
settings, or you can create a new customized procedure and change the configuration file so
that servers use this new file. However Oracle recommends that you use the
srv.onStartCmd server attribute instead. See srv.onStartCmd for more
information.

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVMS Java documentation for more details.

Note:
The server startup command procedure is only used by the controller or Pool server
to start a thin server; if the server is started by any other means neither the server
startup command procedure nor any commands in the srv.onStartCmd server
attribute will be executed.

10.15.2 Executor Startup Command Procedure

The multi-process server uses the executor startup command procedure to start an executor
process for a client connection.

242

You can use the srv.execStartup option to specify the file specification of the
command procedure that should be used to start executors by a multi-process server.

Example
For example:

<server
name="MPsrv2forRdb"
type="RdbThinSrvMP"
url="//localhost:1788/"
srv.execStartup="rdbS$jdbc com:our customized startexec.com"

/>

You can choose to change this default command procedure to customize for your system
settings, or you can create a new customized procedure and change the configuration file so
that servers use this new file. However Oracle recommends that you use the
srv.onExecStartCmd server attribute instead. See srv.onExecStartCmd for more
information.

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name
JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVVMS Java documentation for more details.

The srv.execStartup and srv.onExecStartCmd options are only valid within the XML-
Formatted configuration file server section for a multi-process server.

10.15.3 CLI Startup Command Procedure

The JDBC server uses the CLI startup command procedure to execute any CLI statements it
is required to issue on behalf of a client.

If the server attribute a1 1lowAccessToCL is set to true, clients may issue CLI statements to
execute OpenVMS DCL commands in the context of the running server.

You can use the srv.cliStartup option to specify the file specification of the command
procedure that should be used to execute the CLI commands.

Example
For example:

243

<server
name="Srv2forRdb"
type="RdbThinSrv"
url="//localhost:1777/"
srv.cliStartup="rdb$jdbc com:our customized cli.com"

/>

You can choose to change this default command procedure to customize for your system
settings, or you can create a new customized procedure and change the configuration file so
that servers use this new file. However Oracle recommends that you use the

srv.onCliStartCmd server attribute instead. See srv.onCliStartCmd for more
information.

Caution:
Do not use the SET VERIFY command within these command procedures. As the method
Runtime.exec () may be used by the servers to create processes, the use of the SET
VERIFY command within the command procedure may hang the server. This is a
documented limitation of using Runtime.exec () on Open VMS Java. The logical name

JAVASEXEC TRACE is available to help debug Runtime.exec () calls on OpenVMS.
Refer to the OpenVMS Java documentation for more details.

The srv.execStartup and srv.onExecStartCmd options are only valid within the XML-
Formatted configuration file server section for a multi-process server.

Contents

10.16 Server/Client Protocol Checking

To ensure that the protocol between the Oracle JDBC for Rdb thin driver and servers
correctly align, the Oracle JDBC for Rdb servers check versioning information transmitted
by the client. This allows the quick trapping of problems that may occur because of a
mismatch between the server instance and the thin driver.

Example

The following is an example of the type of error message that will be seen if the client and
server mismatch:

oracle.rdb.jdbc.common.RdbException: Io exception
Io exception : Server Protocol error : received 1 : expected 2
@rdb.Client.FetchBlobSeg

244

To prevent these protocol errors, all the Oracle JDBC for Rdb driver JAR files should be
replaced at the same time whenever a new Kit is installed.

To check that the server/clients instances match enable @t racelevel=-1 on the
connection URL for your client application. See Trace for more details.

Near the start of the log there will be messages indicating the instance values for both the
client and the server. If these two numbers do not match then protocol errors are likely.

An example of the log messages showing Instance information:

>> main ThinConnect@3.setTracelevel msg : Rdb
nativeInstance=20030508
>> main ThinConnect@3.setTracelevel msg : Rdb
serverInstance=20030508

Contents

10.17 Using OpenVMS FailSAFE IP.

OpenVMS FailSAFE IP may be using in conjunction with Oracle JDBC for Rdb thin driver
and servers. During failover, FailSAFE IP will redirect the existing Oracle JDBC for Rdb
client/server IP connections to the standby service.

If the failover service exists on the same node as the failed service the connections should
continue to be viable transparently.

If however, the failover service is on another node, then as Rdb connections cannot be
transferred between processes, the failover will not be transparent. The thin driver should
receive a socket exception on the failed TCP/IP port, as the original service is no longer
available.

Note that server socket exceptions will only be raised on a connection if there is a network
read or write outstanding. If the driver is currently idle and not carrying out a read or write
on the socket to the server, no exception will be raised. Subsequent operations on that
connection by the driver will however raise the socket exception.

The socket exception will be passed through to the application wrapped in an SQLEXxception.
It is then up to the application catch the exception and to clean up its environment and if
applicable establish a new Connection to the driver

Depending on where the client is running it is possible that the client operating system may

not raise a SocketException even if a read or write is pending. On these systems it is
possible for the client connection to be held in limbo waiting for a read or write to complete.

245

To help reduce the impact of possible hangs due to the failure of the socket subsystem to
raise the correct socket exception, a timeout may be placed on network read/writes. If the
read/write does not complete within the designated time an exception will be raised.

Care should be taken in setting this timeout value as longer-duration database operations
such as statement compilation may delay the server sending back its results.

The client-side will have a socket read waiting on the return of the results, which could
timeout if this duration is set too short in relation to the performance of your system and
database software. Oracle recommends that if used, this timeout value should be set to a large
value (in the order of several minutes) if you suspect that query operations on the server side
may take some time.

See networkTimeout in Connection Options for more details on network read and write
timeout.

Contents

10.18 Attaching to Multiple Databases in the Same
Connection
Oracle Rdb allows the application programmer to attach to multiple databases using the same

connection context. Starting with Version 7.3 of Oracle JDBC for Rdb, this feature is also
available to developers using the Oracle JDBC for Rdb drivers.

Both the Native and Thin Driver classes have Oracle Rdb-specific extensions allowing the
developer to attach more databases to an existing Connection.

Example
String dbUrl = "jdbc:rdbThin://localhost:1701/db dir:DB_one";
String user = "jdbc user";
String pwd = "jdbc user";

Connection dbConnection =
DriverManager.getConnection (dbUrl, user, pwd):;

dbConnection.setAutoCommit (false) ;
oracle.rdb.jdbc.rdbThin.Driver d =
(oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver (

dbUrl) ;

dbConnection2 = d.attach("db dir:DBtwo", "MYDB2",
user, pwd, dbConnection);

246

Statement sl = dbConnection.createStatement () ;
// first declare a transaction

sl.execute ("declare transaction read only");

sl.execute ("commit") ;

dbConnection2.close () ;
dbConnection.close () ;

The attach () methods in the Oracle JDBC for Rdb drivers allow the developer to attach
another database to an existing Connection. The following conditions should be noted:
« Autocommit must be disabled prior to attaching a second database and should remain
disabled until the connections have been closed.
 Each attach must provide a unique alias for Oracle Rdb to use.
« Transaction must be handled manually:
o Transactions must be declared or set manually prior to executing any SQL
statement
o Transactions must be finalized manually prior to disconnecting from the
databases.
« Rdb transaction handling when multiple databases are attached is more complex than
single database connections. See the Oracle Rdb documentation for other limitations
and conditions applying to multiple database attaches.

See attach() Public Method in the Driver class for more information on attach ().

Contents

10.19 Shutdown Thread

During the normal shutdown of a multi-threaded application on OpenVMS, the shutdown
will wait on all children threads of the application to terminate before the shutdown will be
finalized.

If for any reason a thread still remains running, the shutdown of the application will stall
indefinitely until the thread terminates.

247

Normal Java class finalizers are not run during application shutdown and so class finalizer
cannot be used to ensure that subordinate threads are correctly terminated during shutdown.

When the multi-process option is used with the JDBC Native Driver, each connection made
by the user application will create its own thread to execute under. This thread is correctly
terminated when the connection Disconnect is called.

If one or more application connections are not closed prior to shutting down the application,
the application will hang during shutdown waiting for these connections to terminate. Thus
the developer should ensure that all connections made using the multi-process Native Driver
during the application are correctly disconnected prior to terminating the application.

Starting with release 7.3.0.0.0 the Oracle JDBC for Rdb drivers will create a shutdown thread
when they are initially invoked. The purpose of this thread is to use the shutdown-hook
feature provided by OpenVMS that will execute the thread at shutdown. The shutdown
thread will ensure that any connection left open by the application will be correctly
disconnected prior to the application shutdown proceeding, thus preventing application hangs
at shutdown.

The application developer does not need to change any code for this shutdown feature to be

enabled, as long as the application is using release 7.3.0.0.0 (or later) JDBC driver libraries
the shutdown hook will be in place.

Contents

10.20 Getting a List of Known Databases from Server

Databases known to servers may be listed within the databases section of the server
configuration file.

This list of known databases is made available to the client application utilizing the Oracle
JDBC for Rdb thin driver by using either:

» Show Databases SQL statement or the
» getDatabases() method

A list of known databases will be returned to the caller only if the server configuration option
allowShowDatabases has been set to true for the connected server. See Server
Configuration Options for more details on this option.

248

10.20.1 Show Databases SQL statement

The Oracle JDBC for Rdb thin driver will allow the following SQL syntax extension in the
SQL text of a Statement or PreparedStatement:

SHOW DATABASES

This syntax is specific to the Oracle JDBC for Rdb thin driver and is not passed through to
the underlying database system. On recognizing this SQL statement, the driver will create a
ResultSet that will contain a list of databases known to the connected thin server.

Example

Connection conn = DriverManager.getConnection (dbUrl,user, pwd
) ;

Statement sc = conn.createStatement () ;

ResultSet rs = sc.executeQuery ("show databases");

while (rs.next())
{
System.out.println (

rs.getString("RDB$DATABASE_NAME") + " "+
rs.getString ("RDBSDESCRIPTION")) ;

}

rs.close();

sc.close();

conn.close () ;

See Extended SOL Syntax — SHOW DATABASES for more information.

Contents

10.20.2 getDatabases()

The Oracle JDBC for Rdb thin driver has a JDBC extension method, getDatabases ()
that may be used to return a list of databases known to a server.

Unlike the SHOW DATABASES SQL statement, the getDatabases () method does not

require a connection to a database prior to being called. The getDatabases () takes a
single parameter, the URL to the server that will be interrogated.

249

Example

Hashtable h = oracle.rdb.jdbc.rdbThin.Driver.getDatabases (
"//localhost:1701/");
if (h != null)
{
Enumeration e = h.keys();
while (e.hasMoreElements())
{
String key =(String)e.nextElement () ;
log(key + " ¢ " + h.get(key)):

See the Driver class extension getDatabases() Public Static Method for more information.

Contents

10.21 Create and Drop Database
Since release 7.3.4.0.0

The Oracle JDBC for Rdb drivers and servers allow the creation of new Rdb databases and
the dropping of existing Rdb databases.

A special JDBC connection is required for CREATE/DROP database operations, this
connection, called a server root connection, is made to the JDBC server itself, rather than to a
database instance.

Rdb database may be created or dropped by executing a JDBC Statement against the server
root connection. The JDBC Statement SQL text may contain the standard Oracle Rdb SQL
create or drop database syntax. As with other SQL statements when using the JDBC drivers,
all syntactic keywords must not be abbreviated.

10.21.1 Server Root

Normally, JDBC thin connections are made to database instances using the JDBC server, that
is, you must provide the details of both the server instance and the database file specification
when specifying the connection URL.

250

However when creating or dropping databases, the connection needs to be made to the server
itself rather than having the server bind to an existing database. To facilitate this, the JDBC
thin drivers will allow connections to be made directly to a JDBC server; the term server root
is used for such a connection.

To connect to the server root, instead of providing a database file specification in the
connection URL you must use the following URL clause:

@ROOT=TRUE

Example

Properties info = new Properties();

info.put ("user", user);

info.put ("password", pw);

info.put ("tracelevel", -1);

String connStr = "//mynode:1701/Q@root=true";

conn = DriverManager.getConnection (connStr, info);

You must still provide a valid username and password to the getConnection() method, this
information will be used by the server to:

¢ validate that you have access to the server root

e be used in the underlying SQL CREATE/DROP statements sent to Rdb

10.21.2 Server Configuration Requirements

By default JDBC servers will not allow access to server root. To allow user access you must
enable root access in the server configuration section of the XML-based configuration file
used by the server.

The server configuration option allowAccessToRoot is used to control root access. If the
server’s allowAccessToRoot option is not specified it will be inherited from default server
and if not specified for the default server, access will be denied.

See Access to the Server Root and Create and Drop Database Entitlement for more details.

10.21.3 Create Database

The create database operation is controlled by the connected server as well as Rdb and
OpenVMS. In addition to having server root access you will require create database access
to be granted by the server. In addition the username used in the server root connection will
need to have the appropriate Rdb and OpenVVMS authorizations necessary for database

251

creation. See Create and Drop Database Entitlement for more information on create database
entitlement and see your Oracle Rdb documentation for create database authorization
requirements.

Once connected to the server root, and you have been allowed CREATE database access,
new databases may be created by executing JDBC Statements containing valid Rdb SQL
create database syntax.

Example 1
Statement stmt = conn.createStatement () ;
stmt.execute ("create database filename 'my db'");

Full file specifications may be used when declaring the database filename. If a directory or
device specification is not provided then the database will be created relative to the default
directory of the connected server if using the JDBC thin driver, or relative to your current
default directory if using the JDBC native driver.

You may provide an ALIAS for the database in the create statement, however the alias value
‘RDBSDBHANDLE?’ is specifically disallowed and JDBC will throw an exception if this
value is used.

You may also provide a username and password within the SQL text to establish the
ownership of the database:

Example 2
Statement stmt = conn.createStatement () ;
stmt.execute (
"create database filename 'my db' " +
"user 'my username' using 'my password' ");

If you do not provide a username directly in the SQL text, the username and password
provided in the server root connection will be used.

10.21.3.1 Overwriting Existing Databases
As OpenVMS allows multiple versions of files, by default, the execution of the create
database statement will create a new version of the database if one already exists for the file
specification provided. JDBC will not throw an exception if the database already exists.

You may specify that JDBC should only create the database if it does not already exist. In
addition to the standard Oracle Rdb SQL syntax, JDBC will also accept the following clause:

252

IF NOT EXISTS

Example
Statement stmt = conn.createStatement ();

stmt .execute (
"create database filename 'my db' if not exists");

If a database already exists matching the provided file specification, the create statement will
be silently ignored.
This clause may be inserted anywhere after the database keyword;

Examples
"create database filename 'my db' if not exists"

"create database if not exists filename 'my db'"
"create database alias 'mydb’ if not exists filename 'my db'"

10.21.4 Drop Database

The drop database operation is controlled by the connected server as well as Rdb and
OpenVMS. In addition to having server root access you will require drop database access
to be granted by the server. In addition the username used will need to have the appropriate
Rdb and OpenVMS authorizations necessary for database creation. See Create and Drop
Database Entitlement for more information on drop database entitlement and see your Oracle
Rdb documentation for drop database authorization requirements.

Once connected to the server root, and you have been allowed drop database access,
existing databases may be dropped by executing JDBC Statements containing valid Rdb SQL
drop database syntax.

Example
Statement stmt = conn.createStatement () ;
stmt.execute ("drop database filename 'my db'");

Full file specifications may be used when declaring the database filename, if a directory or
device specification is not provided then the database will be searched for relative to the
default directory of the connected server if using the JDBC thin driver, or relative to your
current default directory if using the JDBC native driver.

Note: Rdb will not allow a database to be dropped if there are any users currently bound

to the database. You should ensure that no active connections are currently bound to the
database prior to issuing the drop database statement.

253

10.21.4.1 If Exists Clause
If you issue a drop database on a database file specification for a file that does not exist, Rdb

will raise an exception.
To prevent an exception being raised, in addition to the standard Oracle Rdb SQL syntax you
may use the following clause:

IF EXISTS

If a database does not exists matching the provided file specification, the drop statement will
be silently ignored. This clause may be inserted anywhere after the database keyword;

Examples
"drop database filename 'my db' if exists"
"drop database if exists filename 'my db'"

Contents

10.22 Trace

Trace provides tracing of method calls and other debug information within the Oracle JDBC
for Rdb drivers and servers. See Trace Values for valid trace level values.

The trace level value may be a signed decimal or a Java-style hexadecimal literal.

By default, trace output is written to the normal JDBC DriverManager.PrintWriter,
You can override the default by using one of the following settings:

* rdb.Debug.setlLogStream(PrintStream ps)
* rdb.Debug.setLogWriter (PrintWriter pw)

Example
The following example shows how to override the default:

rdb.Debug.setLogStream (new PrintStream (
new FileOutputStream("mylog.log")));

If trace is enabled and the DriverManager.PrintWriter is not currently defined a
PrintWriter for System.out is defined for you.

254

10.22.1 Setting tracelevel

Trace of JDBC operations may be enabled using one of the following methods:

« tracelevel property

 tracelevel switch

« tracelevel option

» Doracle.rdb.jdbc.tracelevel system option
« Set tracelevel

Details of these methods can be found in the following sections.
10.22.1.1 Tracelevel Property

Tracing can be enabled by setting the tracelevel property of the Properties passed to the
DriverManager.getConnection method to the appropriate value:

Example

Properties info = new Properties{();

info.put ("user", user);

info.put ("password", pw):;

info.put ("tracelevel", -1);

conn = DriverManager.getConnection (connStr, info);

See Connection Options for more details.

10.22.1.2 Tracelevel Switch

Using the tracelevel switch when starting a server can enable tracing:

Example

$java -jar rdbS$jdbc home:rdbthinsrv.jar -cfg thinsrv.cfg -
tracelevel -1

See Starting a Thin Server from the Command Line, Starting a Multi-Process Server from the
Command Line and Starting a Pool Server from the Command Line for more details.

10.22.1.3 Tracelevel Option

Placing the tracelevel option in the server definition within an XML-Formatted
configuration file can enable tracing.

255

Example

<server
name="mypoolserver"
type="RdbThinSrvPool"
tracelevel="-1"
url="//localhost:1702/" >
<pooledServer name="srvlforRdb"/>
<pooledServer name="srv2forRdb"/>
<pooledServer name="srvMPforRdb"/>

</server>

See Server Configuration for more details.

10.22.1.4 Tracelevel System Property

Using the Rdb system property Doracle.rdb. jdbc.tracelevel when invoking your
application or Rdb server can enable tracing

Example
$java Doracle.rdb.jdbc.tracelevel=-1 my application
See Oracle JDBC for Rdb System Properties for more details.

10.22.1.5Set Tracelevel statement
Using the SET TRACELEVEL command in the controller can enable tracing.
Example
$java —-jar rdb$jdbc home:rdbthincontrol.jar
rdbthincontrol> connect //localhost:1701/ jones mypassword

rdbthincontrol> set tracelevel -1

See controller Command Line for more details.

10.22.2 Abbreviated form of tracelevel

The abbreviated form for the traceLevel keyword, "tI", may also be used in the same
manner.

10.22.3 Trace Values

256

The value passed to trace is actually a 32bit flag mask. Each bit set determines what will be
traced, as shown in the following table.

Bit | Hexadecimal Value |Decimal Value | Traces

0 | 0x00000001 1 | Standard JDBC methods.

1 0x00000002 2 Standard JDBC class
create/finalize.

2 | 0x00000004 4 | SQL statements.

4 | 0x00000010 16 | Non-standard JDBC methods.

5 0x00000020 32 Non-standard JDBC class
create/finalize.

6 | 000000040 |64 | Garbage collection.

7 | 000000080 1128 | SQL statement cache information.

8 | 000000100 256 | Rdb JNI calls.

9 | 000000200 1512 | Network sends.

110 | 000000400 11024 | Server actions.

111 | 000000800 12048 | Performance information.

112 | 0x00001000 4096 | Trace handle create/release.

14 | 000004000 116384 | Dump SQLDA information.

129 | 020000000 1536870912 | Memory information.
Full provides more details on

0x40000000 ‘ 1073741824

certain flags.

|(ALL) | OXFFFFFFFF -1 | Trace everything.

Contents

10.23 File and Directory access Requirements

There are certain file and directory access requirements that must be met to successfully use
Oracle JDBC for Rdb servers, drivers and the controller.

The controller and servers require access to the directories pointed to by the following logical
names:

« RDBS$JDBC_HOME
« RDB$JDBC_COM
+ RDB$JDBC_LOGS

During installation a command procedure will be created for you that you can use to set up
these logical names for your system pointing to the installation directory. It is your decision

257

whether to add these logical names to your startup command procedure or require some other
mechanism such as a login setup command procedure to set these up for JDBC users.

The logical names may be placed in any of your logical name tables, the normal OpenVMS
logical translation precedence will be followed when any of the JDBC components try to
access files using these logical names. This allows you to have system-wide, group level or
private copies of the JDBC kits each using their own set of directories.

It is important that the appropriate access be granted to users that require to startup servers or
use the JDBC jar files.

During installation the three directories will be created under the installation directory, and
be given the following protection.

(S:RWE, O:RWE, G:RE, W:RE)

This allows the world read/execute access to all the directories and contents. If this does not
comply with your organizational requirements then you should alter these protections
appropriately.

Users of the controller, or those that startup servers manually will also require WRITE access
to both the RDB$JDBC_COM and RDB$JDBC_LOGS directory to successfully startup
servers, as the server process needs to be able to write log and temporary files to these
directories.

If a server is started up using the SQL/Services JDBC dispatcher then the account under
which the dispatcher runs needs WRITE access to these directories.

If you redirect these logical names to other directories you must ensure that the file and
directory protections comply with the above requirements.

If persona is used with servers then you must ensure that the persona has the appropriate

access rights as described above.
Contents

Chapter 11
JDBC Extensions for Oracle Rdb

The following sections provide information on features that are extensions to the JDBC
standard provided by Oracle JDBC for Rdb.

The following Oracle JDBC for Rdb classes have been enhanced:

« Blob Class

258

« Connection Class
» Driver Class

» ResultSet Class

« Statement Class

In addition to enhancements made to classes, developers using Oracle JDBC for Rdb drivers
may use extended SQL syntax within Statement and PreparedStatement SQL text:

e SET
e SHOW DATABASES

11.1 Blob Class

Classpath
oracle.rdb.jdbc.common.Blob

An additional public method has been added to Blob:
« setSegSeparator()

Note:
The maximum size of a blob segment supported by Oracle Rdb today is 65535. The
Oracle JDBC for Rdb drivers will correctly handle segments up to this maximum size.

There is no limit on the number of segments that can be stored for a single Blob,
however, as the drivers materialize the blob into internal byte arrays. The correct
handling of very large blobs in this version of the Oracle JDBC for Rdb drivers is
limited to the free memory that is available to the Java environment.

11.1.1 setSegSeparator() Public Method

Declaration
// Additional method
public void setSegSeparator(java.lang.String separator)

Parameters
* Separator

The separator string to use between segments. A null or empty string will clear the
separator value.

Remarks
To enable limited formatting of data returned from Oracle Rdb segmented strings, an
additional public method has been added to oracle.rdb.jdbc.common.Blob that

259

allows the specification of a separator string value to be inserted between segments when the
segmented string is converted to a JDBC blob object.

The separator can be cleared by passing either a null object or empty String as the parameter
t0 setSegSeparator () .

Example
The following code segment shows how to add a newline break between segments.

import oracle.rdb.jdbc.common.Blob;

ResultSet rs = s.executeQuery (
"select resume from resumes where employee id = '00164'");
rs.next () ;
Blob bl = (Blob)rs.getBlob (1),
bl.setSegSeparator ("\n") ;
byte[] bytes = bl.getBytes(1,9999);
String stl = new String (bytes):;
System.out.println ("resume : " + stl);

Contents

11.2 Driver Class

Classpath
oracle.rdb.jdbc.rdbThin.Driver
or
oracle.rdb.jdbc.rdbNative.Driver

An additional public method has been added to both Oracle JDBC for Rdb driver classes:
« attach() Public Method (overloaded)

An additional public static method has been added to the Oracle JDBC for Rdb thin driver
class:

« qgetDatabase() Public Static Method

260

11.2.1 attach() Public Method

The attach() method allow another database to be attached within the same Connection
context. Databases that are attached within the same connection may take part in the same
SQL compound statement.

Overload List:

 attach(_String, java.util.Properties. java.sql.Connection)
Attach the database using the provided propreties to the given connection.

« attach(String, String, String, String, java.sql.Connection)
Attach the database using the provided alias, username and password to the given
connection.

11.2.1.1 attach(String, java.util.Properties, java.sql.Connection)

Declaration

// Additional method

public void attach(String url, java.util.Properties info,
java.sqgl.Connection parent)

Parameters
. url

The URL of the database to attach.

info

Properties for the new database attach.
¢ parent

The parent connection the database should be attached to.

Remarks

The url string must contain the specification of the database to attach to. Any driver prefix,
for example, "jdbc:rdbThin:" , node and/or port supplied in the ur1 string will be
disregarded.

See Oracle Rdb Database URL Specification Used with the Oracle JDBC for Rdb native
driver and Oracle Rdbh Database URL Specification Used with the Oracle Rdb thin driver for
more information on specifying a URL.

The info properties object should contains at least the alias, username and password used
for the database attach. See Connection Options for more details on using the connection
properties object.

In addition:
< Autocommit must be disabled prior to attaching a second database and should remain
disabled until the connections have been closed.
« Each attach must provide a unique alias for Oracle Rdb to use.

261

« See the Oracle Rdb documentation for other limitations and conditions applying to
multiple database attaches.

Example

String dbUrl = "jdbc:rdbThin://localhost:1701/db dir:DB one";
Properties info = new Properties();

info.setProperty ("user", "jdbc user");
info.setProperty ("password", "jdbc user");

Connection dbConnection = DriverManager.getConnection (
dbUrl, info);

info.setProperty("alias", "MYDB2");

dbConnection.setAutoCommit (false) ;

oracle.rdb.jdbc.rdbThin.Driver d =
(oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver (

dbUrl) ;

dbConnection2 = d.attach("db dir:DBtwo", info, dbConnection);

11.2.1.2 attach(String, String, String, String, java.sql.Connection)

Declaration

// Additional method

public void attach(String url, String alias, String username,
String password, oracle.rdb.jdbc.common.Connection parent)

Parameters
. url

The URL of the database to attach.
e alias

The alias to use for the database.
* username

The username to use to attach.
* password

The password to use to attach.
* parent

The parent connection the database should be attached to.

262

Remarks

The ur1 string must contain the specification of the database to attach to. Any driver prefix,
for example "jdbc: rdbThin: ", server and/or port supplied in the url string will be
disregarded.

See Oracle Rdb Database URL Specification Used with the Oracle JDBC for Rdb native
driver and Oracle Rdb Database URL Specification Used with the Oracle Rdb thin driver for
more information on specifying a URL.

In addition:
« Autocommit must be disabled prior to attaching a second database and should remain
disabled until the connections have been closed.
« Each attach must provide a unique alias for Oracle Rdb to use.
+ See the Oracle Rdb documentation for other limitations and conditions applying to
multiple database attaches.

Example

String dbUrl = "jdbc:rdbThin://localhost:1701/db dir:DB one";
String user = "jdbc user";

String pwd = "jdbc user";

Connection dbConnection = DriverManager.getConnection (

dbUrl, user, pwd);
dbConnection.setAutoCommit (false) ;
oracle.rdb.jdbc.rdbThin.Driver d =
(oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver (

dbUrl) ;

dbConnection2 = d.attach("db dir:DBtwo", "MYDB2",
user, pwd, dbConnection);

11.2.2 getDatabases() Public Static Method

The Oracle JDBC for Rdb thin driver static method getDatabases() returns a list of databases
known to the specified thin server.

Declaration
// Additional method

263

public static Hashtable getDatabases (String serverUrl)

Parameters

- serverUrl - astring containing a partial connection URL containing just the node and
port components of the server in the format : "/ /<node>:<port>/"

This static method is available only in the Oracle JDBC for Rdb thin driver. It returns a
Hashtable containing the list of databases known to the specified server.

Each key in this Hashtable contains the name of a database as found in the Databases section
of the configuration file used during the server's invocation. The value associated with the
Hashtable key contains the description of the database.

Example

Hashtable h =

oracle.rdb.jdbc.rdbThin.Driver.getDatabases ("//localhost:1701/");
if (h != null)
{
Enumeration e = h.keys();
while (e.hasMoreElements())
{
String key =(String)e.nextElement () ;
log(key + " : " + h.get(key));

Contents

11.3 ResultSet Class

Classpath
oracle.rdb.jdbc.common.ResultSet

A semantic enhancement has been made to an existing public method
« getBytes() — all overloaded methods

11.3.1 getBytes() Public Method

The JDBC standard limits the use of the all the overloaded getBytes () methods for
access to BINARY, VARBINARY and LONGVARBINARY data only. The Oracle JDBC for

Rdb drivers relax this limitation and will attempt to return byte arrays for all valid SQL data
types using these methods.

264

Using getBytes() on:

e CHAR and VARCHAR columns will return the raw data as returned by Rdb to the

driver.

¢ Numeric, columns will be returned in their Rdb native format as a big-endian array of

bytes.
« DATE, and TIME will be returned as 64 bit big-endian array of bytes.

11.4 Extended SQL Syntax - SET

In addition to the standard SQL SET statements allowable in dynamic SQL, the Oracle JDBC

for Rdb drivers will recognize driver specific SET statements as specified below.

Format

SET TRACELEVEL <trace_level> Sets the trace level, see Trace for more information.

SET SQLCACHE <sqlcache_size> Sets the SQL statement cache size to the specified
value. A value of 0 disables SQL statement caching.

The SET statements can be issued as a SQL statement in the following methods:
* Java.sgl.Statement.execute
* Jjava.sgl.Statement.executeUpdate
* Java.sgl.Statement.executeQuery
These SET statements will not be sent down to the underlying database system.
Example

Statement stmt = conn.createStatement () ;
stmt.execute ("set sglcache 10");

Contents

11.5 Extended SQL Syntax —- SHOW DATABASES

The Oracle JDBC for Rdb Thin driver allows the developer to retrieve the list of known
databases from a connected server.

Format
SHOW DATABASES

The SHOW DATABASES statement is captured by the Thin driver, which will return a
ResultsSet containing a row for each database that is known to the connected thin server.

A known database is any database specified in the server XML-formatted configuration file
Databases Section of the configuration file used during start up of the server.

As this is a SQL statement, a valid Connection to a database on the server is required before
the SHOW DATABASES statement can be executed.

The SHOW DATABASES statement will not be sent down to the underlying database system.

The ResultsSet returned by the SHOW DATABASES statement contains one row for each
database known, and each row contains the following columns:

Table 11.5-1 SHOW DATABASES Columns

Column Name Datatype Description

RDB$DATABASE_NAME string The name given to the database in
the server configuration file.

RDB$DESCRIPTION string Description of the database in the

server configuration file.

The value of the RDBSDATABASE NAME column may be used as the database file
specification component of a URL string for Connections made to this server.

Example
Connection conn = DriverManager.getConnection (
dbUrl, user,pwd) ;
Statement sc = conn.createStatement () ;
ResultSet rs = sc.executeQuery ("show databases");

while (rs.next())
{
String dbnam = rs.getString ("RDBSDATABASE NAME");
String desc = rs.getString ("RDBSDESCRIPTION")) ;
System.out.println(dbnam + " : " + desc);
Connection conn? = DriverManager.getConnection (
"Jdbc:rdbThin://localhost:1701/"+dbnam,
user,pwd)
System.out.println (" version : " +
conn?2.getMetaData () .getDatabaseProductVersion () ;
connz2.close();

266

rs.close();
sc.close();
conn.close () ;

Contents

Chapter 12
Other Information

12.1 Disallowed Dynamic SQL Statements

Because JDBC has its own connection protocol, the following dynamic SQL statements will
raise an exception if they are executed from a Statement or PreparedStatement

e SET CONNECT
e CONNECT
e DISCONNECT

12.2 Sample Setup, Starting and Using an Oracle JDBC for
Rdb thin server.

This section describes step by step how you can start a simple JDBC server and use it to
access a database on your system

Install Oracle JDBC for Rdb on the database server.

Decide on the versions of Rdb and Java you wish to use on the server.
Setup server-side configuration files and command procedures.

Start the Oracle JDBC for Rdb thin server.

Install Oracle JDBC for Rdb thin driver on your client machine.
Write you application using the JDBC API.

Run your applications.

NooakwhE

You may choose to start-up a server by either:

 Invoking the rdbthinsrv JAR directly at the DCL command line.
See Starting a Thin Server from the Command Line.

« By creating and starting a JDBC Dispatcher in SQL/Services.
See Starting a Thin Server from Oracle SQL/Services.

267

« Or by using the Oracle JDBC for Rdb controller.
See Starting a Thin Server from the Oracle JDBC for Rdb controller.

In this walk-through we will use the controller to maintain the servers. It is important that
the command procedures used during the start-up of a server from the controller be
correctly specified thus details of the appropriate command procedures will be provided
below.

Step 1 Install Oracle JDBC for Rdb

The Oracle JDBC for Rdb Release Notes describe the steps required to install Oracle
JDBC for Rdb. These steps should be followed to install the product on the OpenVMS
node that will be used as server for you Oracle Rdb database.

The server machine requires Java to be installed prior to installing the Oracle JDBC for
Rdb kit.

Once you have installed the kit you must set up your system so that it can use the JDBC
kit. Several configuration files may have to be created or altered. Details of these steps
follow.

Step 2 Decide on the versions of Rdb and Java

The Oracle JDBC for Rdb Release Notes will tell you the minimum versions of Rdb and
Java supported by Oracle JDBC for Rdb. You may however have several versions of
both Rdb and Java on your server, that meet the minimum requirements.

When the thin servers run they will need to have the environment they are running within
set up so that the correct version of Rdb and Java will be used depending on your
organization requirements, and which Oracle Rdb databases you wish the thin servers to
access.

If you do have multiple versions of Rdb on your system, it is important that the server
runs within the correct version of Rdb for the databases it will access. The Rdb
environment is set up at the process level and cannot be changed for that server while the
server is actually running. This means that a single running instance of a thin server may
only be able to access databases for a single Rdb version.

If you try to connect to a database that does not match the version of Rdb you have set up
for the thin server execution instance you will get an exception similar to:

SQLException: Failed to connect : in

<rdbjdbcsrv:connect failure>

SRDB-F-WRONG ODS, the on-disk structure of the database file
is not supported by this version

268

-RDMS-F-ROOTMAJVER, database format 71.0 is not compatible
with software version 72.1:S51000

You may have different version of Java on your system as well. In addition you can
choose different Java VMs to run under. The VM version and type must be decided for a
single thin server instances as once Java has been invoked and the server is running it
cannot be changed for that server instance.

Both Rdb and Java provide mechanisms by which you can set up your environment for a
specific version or variant. The Rdb version set up and the Java VM set up may be
carried out manually by you prior to invoking a thin server from the DCL command line.

Alternatively there are ways of providing the appropriate set up during the thin server
start-up when you choose to start the server using SQL/Services JDBC Dispatcher or by
using the controller. An example of this type of set up can be seen in the steps that
follow.

For the purpose of this walkthrough we will assume the following:

 Integrity server machine running OpenVMS
« Oracle Rdb release 7.2.x.x.x
« JAVAG6.0(1.6.0)

Step 3 Setup server-side configuration files and command procedures

Oracle JDBC for Rdb uses various command procedures to carry out server operations
and set up its environment. These command procedures may have to be altered to suit
your organizational and operational needs.

You may be required to:

« Modify RDBJDBC_ STARTUP.COM

« Add an invocation RDBJDBC STARTUP.COM from your system startup
procedure

« Create a XML-formatted configuration file for your server definitions

« Create a server set up command procedure

In addition Oracle recommends that XML-Formatted configuration files should be used
to maintain server and other information. These configuration file will have to be created
by you. An example of a server configuration file may be found below and in Sample
configuration file MY _SERVERS.XML.

RDBJDBC_STARTUP.COM

269

During installation a file called RDBJDBC STARTUP.COM will be created in the
installation directory. This command procedure may be used to set up the required
system wide logical names for Oracle JDBC for Rdb to function correctly. You may
choose to use this command procedure with or without changes to set up the JDBC
environment.

If the JDBC servers and drivers are to be used system wide then system logical names
should be used. In this case it may be appropriate to add the RDBJDBC STARTUP.COM
command procedure to your system startup procedure.

If you only require private use then JOB level logical names should be used, in
which case the RDBJDBC STARTUP.COM may be copied and/or modified to change the
logicals to JOB level. Each user of the Oracle JDBC for Rdb on your server system will
then need to invoke this startup procedure prior to carrying out operations such as
controller actions, starting or stopping or accessing the thin servers.

The RDBJDBC STARTUP. COM file provides logical names that will be used by the
Oracle JDBC for Rdb components to locate JARS, images and command procedures and
where to write log and temporary files. See the Oracle JDBC for Rdb Release
Notes for more information on this command procedure and the JDBC specific logical
names.

The steps that follow assume that the appropriate logical names have been set up and are
available for use by you and Oracle JDBC for Rdb.

Server Configuration File

Server, session and connection options may be added individually on the DCL command
line when you invoke a server or the controller, but it may be more convenient to place
these options in a configuration file and then use this configuration file when you carry
out server operations.

See Configuration Files for more information on what may be contained in the
configurations files and the format of the data within the file. Oracle recommends using
the XML-formatted form of the configuration files as it does allow greater flexibility of
option specification and allows more than one server definition to be defined in a single
configuration file.

Since release 7.3.3.0.0

During installation a generic configuration file RDBJDBCCFG TEMPLATE . XML will be
copied to the RDB$JDBC HOME directory. Also during installation, if the
RDB$JDBC_COM directory does not already contain a file named RDBJDBCCFG . XML,
the contents of the configuration template file will be used to create this file.

270

Note: The RDBJDBCCFG TEMPLATE.XML found in the RDB$JDBC HOME directory
will be replaced each time you install Oracle JDBC for Rdb, however, any existing
RDBJDBCCFG. XML file found in the RDB$JDBC COM directory will not be replaced.
Oracle recommends to use RDB$JDBC HOME : RDBJDBCCFG TEMPLATE.XML only
as a template file and not to use this file in production.

You may use the configuration template file as a basis of your server configuration file.
The configuration file provides information to Oracle JDBC for Rdb about the various
servers you may be running. In addition it provides session information for users of the
controller.

Note: The Oracle SQL/Services JDBC dispatcher uses a search list to locate the
configuration file to use on server start up. If no other appropriate configuration file is
found, the file RDBJDBCCFG. XML in RDBSJDBC COM will be used.

For this walkthrough we have decided to create the definition for a thin server called
My SRV listening on port 1888. The generic configuration file was copied and changed
to add this information.

We have also chosen to place configuration and any other site specific files in the
RDB$JDBC_COM directory, mainly as this is a standard Oracle JDBC for Rdb directory
and the logical name should be already set up for us at the system level. The files may be
placed anywhere on your system, as long as the controller and server processes can
access them. Remember that a server process will be started up in much the same way as
a normal login to the system, so it is important that any logical names used in the file
specification be available to that process. The easiest way to ensure this is to have
OpenVMS system wide logical names.

In addition a control password, MySecretPassword has been chosen for control
access to the servers.

Although the controlpass can be stored in its plain text form in the configuration file,
Oracle recommends that you use the obfuscated form in the server characteristics section.
But make sure that you are consistent with the casing of the password as passwords are
case-sensitive

The controller may be used to provide this obfuscated password, but make sure that you
keep the casing correct by placing double quotations around the password phrase if you
use the controller in command mode.

Example

S java -jar rdbthincontrol.jar -digest "MySecretPassword"
digest : 0x7315A012ECAD1059A3634F8BE1347846

See Password Obfuscation in Server Configuration Files for more details.

271

The new configuration file called MY CFG.XML :

<?xml version = '1.0'?>
<!-- Configuration file for MY servers -->
<config>
<!-- SESSION -->
<session
name="DEFAULT"
tracelevel="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

/>
<!-- SERVERS -->
<servers>

<!-- DEFAULT server characteristics—->

<server
name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="1000"
srv.idleTimeout="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"
tracelevel = "0O"
autostart = "false"
autorestart = "false"
restrictAccess = "false"
anonymous = "false"
bypass = "false"
tracelocal = "false"
relay = "false"
srv.startup="rdbS$jdbc home:rdbjdbc startsrv.com"

/> a a

<!—My new server -->
<server

name="MY SRV"

controlUser="GROUND CONTROL"

controlPass="0x7315A012ECAD1059A3634F8BE1347846"

type="RdbThinSrv"

url="//localhost:1888/"

cfg="rdb$jdbc com:my cfg.xml"
srv.onStartCmd="Q@rdb$jdbc com:my setup.com"

/>

272

</servers>
</config>

Note:
The server definition for MY SRV is fairly minimal allowing most of the DEFAULT
characteristics to inherit. Also that the session section is used to ensure that the
broadcast IP the controller will check will be the same as the server uses.

RDB$JDBC_HOME:RDBJDBC_STARTSRV.COM

The default server properties in MY CFG.XML sets the server configuration file used by
the server by using the srv.startup property:

srv.startup="rdb$jdbc home:rdbjdbc startsrv.com"

This file is used by the controller during the start-up of a detached OpenVMS process
that the server will run within. In most situations the default command procedure,
rdb$jdbc_home:rdbjdbc startsrv.com created during installation, can be
used without change.

Sever Setup Command Procedure
During server start-up any DCL command specified on srv.onStartCmd for the
server, will be executed prior to the server class being invoked. So this a good place to

carry out system specific and version specific set up procedures.

srv.onStartCmd="Q@rdb$jdbc com:my setup.com"

Note that as this properties is an executable DCL command, the @ character is required
so that the command procedure is correctly invoked.

Example
my_setup.com

SA@SYSSLIBRARY:RDBSSETVER 72

$@sysScommon: [java$60.com] JAVAS60 SETUP.COM
$define/job MY DB DIR sysScommon: [DBS]

273

These commands ensure that the environment is correct for the server process to access a
V7.2 Oracle Rdb database using the Java 6.0.

Step 4 Start the Oracle JDBC for Rdb thin server
Now that set up and configuration files are created in place the controller may be used to

start the server. The configuration file containing the server definitions is used as a
parameter to the DCL command line invoking the controller. In the example we use

command mode —startServer to start the server

Example

$ JAVA -JAR RDBTHINCONTROL.JAR —-CFG RDBSJDBC COM:MY CFG.XML -

CONTROLPASS "MySecretPassword" —-STARTSERVER —-NAME MY SRV

RDB$NODE

RDBSPORT

RDB$STATUS

RDBSSERVER NAME
RDBSSERVER TYPE
RDBSSERVER VERSION
RDBSSERVER SHR VERSION
RDBSSERVER PID
RDBSALLOWS ANON
RDBSALLOWS BYPASS
RDBSNUMBER OF CLIENTS
RDBSMAX CLIENTS
RDBSTRACE LEVEL
RDBSRESTRICT ACCESS

138.1.14.91

1888

Idle

srvl

RdbThinSrv

V7.3-000 20100101 BAll
V7.3-000 20100101 BAll
0x2030DA4D (540072525)
false

false

0

=1

0

false

In the example we provided both the configuration file to use and the control password.
The controlpass could have been set in plain text in the configuration session section, but
Oracle does not recommend placing plain text passwords in plain text files. Note also that

the password is enclosed in double quotation marks to prevent case changing.

Step 5 Install the Oracle JDBC for Rdb thin driver on your client machine.
Once the Oracle JDBC for Rdb kit is installed on you OpenVMS server machine you
must copy the thin driver component to the machine on which you will be running your
application. This machine will also need to have Java installed.

The client-side components of the thin driver are contained in the RDBTHIN. JAR file.

274

A file transfer program such as FTP may be used to copy this JAR file to your client
machine. Remember to ensure that a binary mode transfer is done as JARs are binary
files.

You should place the JAR in an appropriate directory on your client machine. This may
depend on how you will ultimately use the JDBC drivers and on the application and
development systems you will be using on your client machine. See your application or
development environment documentation on where JDBC drivers should be placed.

You should ensure that the RDBTHIN. JAR is part of your CLASSPATH so that Java
will be able to load it when your application requests it.

Depending on the client system there will be methods by which you can include the
driver JAR as part of the Java command when running your application, in which case
the JAR does not have to placed in the CLASSPATH environmental variable.

Example
For example, in MSDOS, Java allows the use of —cp switch to specify classpath
elements

dos> java —-cp .;rdbThin.jar my app

Note:
JAR files are binary files so you should ensure that the transfer utility copies the JAR
file in binary mode.

Step 6 Write your application using the JDBC API

The following is a simple application that tests that you have installed JDBC and carried
out any set up correctly. This example is based on RdbJdbcCheckup. java from the
installation and assumes that the Rdb server node has an IP of 555.1.14.91 and that the
thin server we will use, the one we started earlier, is listening on port 1888.

Example

/ *

* This sample can be used to check the JDBC installation.
* Just run it and provide the connect information. It will
* select "Hello World" from the database.

*/

// You need to import the java.sgl package to use JDBC

275

import java.sqgl.*;

// We import java.io to be able to read from the command line
import java.io.*;

class my app

{

static BufferedReader in;
public static void main(String argsl([])
throws SQLException, IOException, Exception

{

String driverConStr = "jdbc:rdbThin://555.1.14.91:1888/";

in = new BufferedReader (
new InputStreamReader (System.in));
Class.forName ("oracle.rdb.jdbc.rdbThin.Driver");

// Prompt the user for connect information
System.out.println (

"Please enter information to test connection"+

" to the database");
String user;
String password;
String database;

int slash index user.indexOf ('/");
if (slash index != -1)

{

user = readEntry("user: ");
|

password = user.substring(slash index + 1);

user = user.substring (0, slash index);
}
else

password = readEntry ("password: ");
database = readEntry("database: ");

System.out.print ("Connecting to the database...");

System.out.flush () ;

System.out.println ("Connecting...");
Connection conn = DriverManager.getConnection (
driverConStr + database, user, password);

System.out.println ("connected.") ;
// Create a statement

Statement stmt = conn.createStatement () ;
// Do the SQL "Hello World" thing
ResultSet rset = stmt.executeQuery (

276

"select 'Hello World' from rdbSdatabase");

while (rset.next())
System.out.println(rset.getString(l)) ;

// close the result set, the statement and connect
rset.close();
stmt.close () ;
conn.close();

}

// Utility function to read a line from standard input
static String readEntry (String prompt)
{
try
{
StringBuffer buffer = new StringBuffer();
System.out.print (prompt) ;
System.out.flush();
return in.readLine () ;
}
catch (IOException e)
{
return "";

}

Step 7 Run your application

With the server started you can run the sample application and provide the thin server
connection information

Example
The following example assumes an Oracle Rdb database personnel inMY DB DIR

$java —cp .;rdb$jdbc home:rdbThin.jar "my ap"

Please enter information to test connection to the database
user: my name

password: my password

database: my db dir:personnel

Connecting to the database...Connecting...

connected.

Hello World

Your JDBC installation is correct.

277

Contents

12.3 Sample Setup, Starting an Oracle JDBC for Rdb thin
server from Oracle SQL/Services.

The following sections describe step by step how you can setup and start a simple JDBC
server using Oracle SQL/Services.

Basically you have to:

Decide on the versions of Rdb and Java you wish to use on the server
Setup server-side configuration files and command procedures
Create a JDBC dispatcher in SQL/Services

Associate configuration and setup files

Start the JDBC dispatcher

agrwpdE

See Chapter 7 Oracle SOL/Services and Oracle JDBC for Rdb Servers for more
information on these operations.

Step 1 Decide on the versions of Rdb and Java

This step is basically the same as Step 2 Decide on the versions of Rdb and Java, as
covered in Sample Setup, Starting and Using an Oracle JDBC for Rdb thin server.

Step 2 Setup server-side configuration files and command procedures

For the server to start correctly a command procedure and a configuration file have to be
created.

The following two files must be created:

« The Server Configuration file
« The Server Setup file

You may use a XML configuration file to store the server definitions for you server. In
addition you should provide a command procedure to set up the Rdb and Java
environments correctly for this server. This environment setup may also be done as part
of the setup of dispatcher environment in SQL/Services, but for the purpose of this
example, we shall create our own setup procedure.

Server Configuration File

278

As limited information can be passed to the server at the command line, most of the
server characteristics for a JDBC Dispatcher server can be placed in a configuration file.

See Configuration Files for more information on what may be contained in the
configurations files and the format of the data within the file. Oracle recommends using
the XML-formatted form of the configuration files as it does allow greater flexibility of
option specification and allows more than one server definition to be defined in a single
configuration file.

During installation a generic configuration file RDBJDBCCFG TEMPLATE . XML will be
copied to the RDB$JDBC HOME directory. Also during installation, if the

RDBSJDBC COM directory does not already contain a file named RDBIJDBCCFG . XML,
the contents of the configuration template file will be used to create this file.

Note: The RDBJDBCCFG TEMPLATE.XML found in the RDB$JDBC HOME directory
will be replaced each time you install Oracle JDBC for Rdb, however, any existing
RDBJDBCCFG. XML file found in the RDB$SJDBC COM directory will not be replaced.
Oracle recommends to use RDB$JDBC HOME : RDBJDBCCFG TEMPLATE.XML only
as a template file and not to use this file in production.

You may use the configuration template file as a basis of your server configuration file.
The configuration file provides information to Oracle JDBC for Rdb about the various
servers you may be running. In addition it provides session information for users of the
controller.

Note: The Oracle SQL/Services JDBC dispatcher uses a search list to locate the
configuration file to use on server start up. If no other appropriate configuration file is
found, the file RDBJDBCCFG. XML in RDB$JDBC _COM Wwill be used.

For this walkthrough we have decided to create the definition for a thin server called
S0S1888 listening on port 1888. The generic configuration file was copied and changed
to add this information.

We have also chosen to place configuration and any other site specific files in the
RDBS$JDBC_COM directory, mainly as this is a standard Oracle JDBC for Rdb directory
and the logical name should be already set up for us at the system level. The files may be
placed anywhere on your system, as long as the controller and server processes can
access them. Remember that a server process will be started up in much the same way as
a normal login to the system, so it is important that any logical names used in the file
specification be available to that process. The easiest way to ensure this is to have
system wide logical names.

In addition a control password, MySecretPasswoxrd has been chosen for control
access to the servers.

279

Although the controlpass can be stored in its plain text form in the configuration file,
Oracle recommends that you use the obfuscated form in the server characteristics section.
But make sure that you are consistent with the casing of the password as passwords are
case-sensitive

The controller may be used to provide this obfuscated password, but make sure that you
keep the casing correct by placing double quotations around the password phrase if you
use the controller in command mode.

Example

$ java -Jjar rdbthincontrol.jar -digest "MySecretPassword"
digest : 0x7315A012ECAD1059A3634F8BE1347846

See Password Obfuscation in Server Configuration Files for more details.

We have chosen to create a configuration file using one of the standard file specification
used by the dispatcher when searching for configuration files. See Determining the server
configuration file on how the dispatcher locates a configuration file to use.

As the port used by the server will be 1888 we will create a new configuration file called
SQS1888 CFG.XML and place it RDB$JDBC_COM directory:

Stype RDBSJDBC COM:SQS1888 CFG.XML

<?xml version = '1.0'?>
<!-- Configuration file for MY servers -->
<config>
<!-- SESSION -->
<session
name="DEFAULT"
tracelevel="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

/>

<!-- SERVERS —-—->

<servers>
<!—-— DEFAULT server characteristics—-->
<server

name="DEFAULT"
type="RdbThinSrv"
url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="1000"
srv.idleTimeout="0"

280

srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

tracelevel = "0O"
autostart = "false"
autorestart = "false"
restrictAccess = "false"
anonymous = "false"
bypass = "false"
tracelocal = "false"
relay = "false"
srv.startup="rdb$jdbc home:rdbjdbc startsrv.com"
/>
<!-My new server -->
<server
name="5SQS1888"
controlUser="SQS CONTROL"
controlPass="0x7315A012ECAD1059A3634F8BE1347846"
type="RdbThinSrv"
url="//localhost:1888/"
/>
</servers>
</config>

Note:
The server definition for S0S1888 is fairly minimal allowing most of the DEFAULT
characteristics to inherit. Also that the session section is used to ensure that the
broadcast IP the controller will check will be the same as the server uses.

Server Setup File

The JDBC dispatcher may require environmental setup for Java and the correct Oracle
Rdb version to run. This setup can be done in a command procedure that will be
executed just prior to starting the actual server image.

As the setup is fairly generic we have decided to create the file

RDBJDBC_SQS ONSTARTUP.COM and place it RDBSJDBC COM directory. By
default, this file will be used by the dispatcher whenever a server has to be started. JDBC
Dispatcher Setup Procedure describes the use of a setup command procedure for the
dispatcher.

Example

$type RDBSJDBC_ COM:RDBJDBC_ SQS_ONSTARTUP.COM

281

S@SYSSLIBRARY:RDBSSETVER 72

S@sysScommon: [java$60.com] JAVAS60 SETUP.COM
$define/job MY DB DIR sysS$Scommon: [DBS]

These commands ensure that the environment is correct for the server process to access a
V7.2 Oracle Rdb database using JAVA Hotspot VM, which is the default in Java 6.0.

In addition we have added a JOB level logical name that may be used in database file
specifications on the JDBC Connection URL.

Step 3. Create a JDBC dispatcher in SQL/Services

Now that the configuration file and setuOp procedure have been created and moved to the
appropriate directory we can now create a JDBC Dispatcher. We will use 1888 as the
PORT _ID as this will be the key value used by the dispatcher to locate the necessary files

for server start-up.

$ MCR SQLSRV MANAGE72
SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER MY JDBC DISP NETWORK PORT TCPIP

PORT ID 1888 PROTOCOL JDBC;
SQLSRV> SHOW DISPATCHER;
Dispatcher MY JDBC DISP

State: UNKNOWN

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)
TCP/IP port 1888 Unknown JDBC clients

Log path: SYSSMANAGER:

Dump path: SYSSMANAGER:

Step 4. Associate configuration and setup files

Next we must associate the server configuration and setup files with this dispatcher.

As we chose to use standard configuration file names, the dispatcher will make the
following associations automatically and we need take no further action to make this

happen.

Given the PORT _ID of 1888:

282

* server name = SQS1888
« configuration file =RDB$JDBC_ COM:SQS1888 CFG.XML
« setup file =RDB$SJDBC_COM:RDBJDBC_SQS ONSTARTUP.COM

If we had chosen not to use standard naming then we would have had to set up logical
names to point to the appropriate files. See Associating an Oracle SQL/Services JDBC
Dispatcher to a Server for more details.

However, we still need to tell the dispatcher what type of server it will be starting so we
have to create the appropriate logical name. For simplicity we shall place this logical
name in the SYSTEM logical name table. See Determining Server Type for information
on server type associations.

SDEFINE/SYSTEM RDBS$SJDBC_ SQSTYPE 1888 STD

If we had chosen to start up a Pool server we would not have needed to create this logical
name as this is the default server type used by the JDBC dispatcher, but as the server type
is a normal thin server we must inform the dispatcher of this fact using the logical name.

Step 5 Start the JDBC dispatcher

Now that the configuration files are in place and any logical names used by the dispatcher
have been defined we can now use the SQL/Services manager to start the JDBC
dispatcher.

SQLSRV> start dispatcher my jdbc disp;
SQLSRV> show disp my jdbc disp;
Dispatcher My JDBC DISP

State: STARTING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes
Network Ports: (State) (Protocol)
TCP/IP port 1888 Inactive JDBC clients
Log path: SYSS$SMANAGER:

Dump path: SYSSMANAGER:

SQLSRV> show disp my Jjdbc disp;
Dispatcher MY JDBC DISP

State: RUNNING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes
Network Ports: (State) (Protocol)

283

TCP/IP port 1888 Inactive JDBC clients

Log path: SYS$SMANAGER:

Dump path: SYSSMANAGER:

Log File: SYS$SSYSROOT: [SYSMGR]SQS DECRDB JDBC DISP08091.LOG;
Dump File: SYS$SYSROOT: [SYSMGR]SQS DECRDB JDBC DISP08O.DMP;

See your Oracle SQL/Services documentation and Starting a JODBC Dispatcher for more
details on starting a dispatcher.

If the server starts up correctly you should be able to use the server from any JDBC client
using the Oracle JDBC for Rdb thin driver.

You may also use the controller to check that the server is actually running:
$ java -jar rdb$jdbc home:rdbthincontrol.jar -
-cfg RDBSJDBC COM:SQS1888 CFG.XML —controlpass

"MySecretPassword" -
—-name SQS1888 -showServer

12.4 Sample configuration file MY_SERVERS. XML

<?xml version = '1.0'?>
<!—Configuration file for Rdb Thin JDBC Drivers/Servers -->
<config>

<!—SESSION -->

<session
name="fred"
user="jdcb user"
tracelevel="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

/>
<!—SERVERS ——>
<servers>
<!-DEFAULT server characteristics.-->

<!-NOTE control password is the
obfuscated form of "MySecretPassword"
——>
<server
name="DEFAULT"
type="RdbThinSrv"

284

url="//localhost:1701/"
maxClients="-1"
srv.bindTimeout="1000"
srv.idleTimeout="0"
srv.mcBasePort="5517"
srv.mcGroupIP="239.192.1.1"

tracelevel = "0O"
autostart = "false"
autorestart = "false"
restrictAccess = "false"
anonymous = "false"
bypass = "false"
tracelocal = "false"
relay = "false"

controlUser="control user"
controlPass="0x7315A012ECADI059A3634F8BE1347846"
cfg="rdb$jdbc com:rdbjdbccfg.xml"

srv.execStartup="rdbSjdbc home:rdbjdbc startexec.

srv.startup="rdb$jdbc home:rdbjdbc startsrv.com"
sharedmem = "0O"
ssl.default="true"

/>

<
<s

/>

<!

<s

/>

—DEFAULT Secure socket server -->
erver

name="DEFAULTSSL"
type="RdbThinSrvSSL"
ssl.default="false"
ssl.context="TLS"
ssl.keyManagerFactory="SunX509"
ssl.keyStoreType="jks"
ssl.keyStore="rdbjdbcsrv.kst"
ssl.keyStorePassword="CHANGETHIS"
ssl.trustStore="rdbjdbcsrv.kst"
ssl.trustStorePassword="CHANGETHIS"

—now specific servers that will be started
up by pool server -->

erver

name="srvlforRdb"

type="RdbThinSrv"
url="//localhost:1701/"
autoStart="true"

autoRestart="true"

logfile="rdb$jdbc logs:srvlforRdb.log"
tracelevel="-1"

maxClients=1

com"

285

<server
name="srv2forRdb"
type="RdbThinSrv"
url="//localhost:1708/"
autoStart="true"
logfile="rdbS$jdbc logs:srv2forRdb.log"
/>

<server
name="myserver"
type="RdbThinSrv"
url="//localhost:1788/"
/>

<!-MP server -->

<!—sharedmem is in KB default = 1024 -->

<server
name="srvMPforRdb"
type="RdbThinSrvMP"
url="//localhost:1705/"
autoStart="true"
maxClients="10"
maxFreeExecutors="10"
prestartedExecutors="10"
sharedMem="10240"

/>

<!—the pool server -->

<server
name="rdbpool"
type="RdbThinSrvPool"
url="//localhost:1702/" >
<pooledServer name="srvlforRdb"/>
<pooledServer name="srv2forRdb" />
<pooledServer name="srvMPforRdb" />

</server>

<!—Secure socket server -->
<server
name="srvssllforRdb"
type="RdbThinSrvSSL"
url="//localhost:1709/"
/>

</servers>
<!-DATABASES ——>

<databases>

286

<database

name="mf pers"

url="//localhost:1701/mydisk: [databases]mf personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"

/>

<database

name="pers"

url="//localhost:1702/mydisk: [databases]personnel"
driver="oracle.rdb.jdbc.rdbThin.Driver"
URLPrefix="jdbc:rdbThin:"

/>

</databases>

</config>

Rdb SQL datatype
CHAR(n)
NCHAR(n)
VARCHAR(N)
NCHAR VARYING
FLOATI[(n)]

REAL

DOUBLE PRECISION
DECIMAL[(n[,nD]
INTEGER[(n)]
SMALLINT[(n)]
TINYINT[(n)]
BIGINT[(n)]
QUADWORDI[(n)]
DATE ANSI

DATE VMS

TIME
TIMESTAMP
INTERVAL

BYTE VARYING

12.5 Datatype Mapping from Oracle Rdb to java.sql.Types

java.sgl. Types

CHAR

CHAR

VARCHAR

VARCHAR

If n > 24 then DOUBLE else FLOAT
FLOAT

DOUBLE

DECIMAL

If n == 0 then INTEGER else NUMERIC
If n == 0 then SMALLINT else NUMERIC
If n==0then TINYINT else NUMERIC
If n == 0 then BIGINT else NUMERIC
If n == 0 then BIGINT else NUMERIC
DATE

TIMESTAMP

TIME

TIMESTAMP

BIGINT

VARBINARY

LIST OF BYTE VARYING BLOB

SQL Type (from java.sql.Types)
CHAR
NCHAR
VARCHAR
FLOAT
DOUBLE
DECIMAL
INTEGER
SMALLINT
TINYINT
BIGINT
NUMERIC
DATE
TIMESTAMP
TIME
BIGINT
VARBINARY
BLOB

CLOB

SQL Type (from java.sql.Types)
BIT

TINYINT

SMALLINT

INTEGER

BIGINT

REAL

FLOAT

12.6 Datatype Mapping from java.sgl. Types to Oracle Rdb

Rdb SQL datatype
CHAR(n)

NCHAR(n)

VARCHAR(N)

REAL

DOUBLE PRECISION
DECIMAL[(n[,nD]
INTEGER

SMALLINT

TINYINT

BIGINT

BIGINT(n)

DATE ANSI

TIMESTAMP

TIME

INTERVAL

BYTE VARYING

LIST OF BYTE VARYING
LIST OF BYTE VARYING

12.7 JDBC Specification SQL to Java Datatype Mappings

Java Type
boolean
byte

short

int

long

float
double

288

DOUBLE
DECIMAL
NUMERIC
CHAR
VARCHAR
LONGVARCHAR
DATE

TIME
TIMESTAMP
BINARY
VARBINARY
BLOB

CLOB

Java Type

boolean

byte

short

int

long

float

double
java.math.BigDecimal
java.lang.String
byte(]
java.sql.Date
java.sql.Time
java.sql. Timestamp
java.sql.Blob

double

java.math.BigDecimal
java.math.BigDecimal

java.lang.String
java.lang.String
java.lang.String
java.sql.Date
java.sgl.Time
java.sql. Timestamp
byte[]

byte[]
java.sgl.Blob
java.sql.Clob

12.8 JDBC Specification Java to SQL Datatype Mappings

SQL Type (from java.sql.Types)
BIT

TINYINT

SMALLINT

INTEGER

BIGINT

REAL

DOUBLE

NUMERIC

VARCHAR or LONGVARCHAR
VARBINARY or LONGVARBINARY
DATE

TIME

TIMESTAMP

BLOB

289

java.sql.Clob CLOB

Contents

290

