
Oracle® Rdb for OpenVMS

Table of Contents
Oracle® Rdb for OpenVMS..1

Release Notes...2

October 2014..3

Contents...4

Preface..5

Purpose of This Manual...6

Intended Audience..7

Access to Oracle Support...8

Document Structure..9

Chapter 1Installing Oracle Rdb Release 7.3.1.2..10

1.1 Oracle Rdb on HP OpenVMS Industry Standard 64..11

1.2 Requirements...12
1.2.1 Ensure No Processes Have RDMSHRP Image Activated..12

1.3 Intel Itanium Processor 9300 "Tukwila" Support..14

1.4 Maximum OpenVMS Version Check...15

1.5 Database Format Changed...16

1.6 Using Databases from Releases Earlier than V7.0...17

1.7 Invoking the VMSINSTAL Procedure...18

1.8 Stopping the Installation..19

1.9 After Installing Oracle Rdb...20

1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required..21

1.11 Installation, Configuration, Migration, Upgrade Suggestions..22

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.3.1.2..25

2.1 Software Errors Fixed That Apply to All Interfaces...26
2.1.1 Ranked Index Bugchecks − PSII2REMOVEDUPBBC & PSII2INSERTDUPBBC...................26
2.1.2 Wrong Result From a Nested UNION Query With OR Predicate...26

Oracle® Rdb for OpenVMS

i

Table of Contents
2.1 Software Errors Fixed That Apply to All Interfaces

2.1.3 Dialect SQL99 Does Not Use Max Key Lookup..28
2.1.4 Inner Join Query With NOT LIKE Predicate Slows Down..29
2.1.5 Unable to Call External Routine When Attached Remotely to a Database..................................30
2.1.6 RDMDBRBUG Bugcheck at RUJUTL$BIJBL_GET_FORWARD + 1E0.................................31
2.1.7 Join Query Returns Wrong Result With Index Counts Lookup Using Ranked Index.................31
2.1.8 Unexpected Zero Cardinality Set for Some Tables..32
2.1.9 Query With Aggregate Bugchecks Using Match Strategy...32

2.2 SQL Errors Fixed...34
2.2.1 Unexpected Zero Result From COUNT Aggregate..34
2.2.2 Unexpected −RDMS−F−ACTQUERY Error During ALTER TABLE.......................................35
2.2.3 Unexpected SQL Bugcheck With Malformed INSERT or UPDATE Column Target................35
2.2.4 Incorrect Evaluation of DEFAULT Expression During INSERT Statement...............................36

2.3 RMU Errors Fixed..37
2.3.1 RMU Unload Not Generating Oracle Style INTERVAL DAY Values.......................................37
2.3.2 Full Backup No Longer Required After Altering the Snapshot Area Page Allocation................37
2.3.3 RMU Unload After_Journal Did Not Correctly Unload Oracle Database Format Date/Time
 Values...38
2.3.4 RMU Convert Leaves After Image Journal SUPPRESSED...39

2.4 RMU Show Statistics Errors Fixed...41
2.4.1 RMU/SHOW STATISTICS Playback Zeroed Final Transaction Duration Screen.....................41
2.4.2 Field Help Missing for Some RMU Show Statistics Fields...42

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.3.1.1..43

3.1 Software Errors Fixed That Apply to All Interfaces...44
3.1.1 Memory Leak Corrected in Queries That Use Sorting...44
3.1.2 Wrong Result Using Match Strategy on EXISTS Subquery..44
3.1.3 Bugcheck at DIOFETCH$FETCH_SNAP_SEG...46
3.1.4 Performance Improvement for OJ Query With Temporary TTBL and Sort................................46
3.1.5 In Some Cases System User Audited Instead of Session User...47
3.1.6 Using BEGIN/END Around Set Transaction Leads to Memory Leak...48
3.1.7 Excessive Alignment Faults on Client Side Using RDB$REMOTE...48
3.1.8 Ranked Index Bugchecks − PSII2REMOVEDUPBBC & PSII2INSERTDUPBBC...................48

3.2 SQL Errors Fixed...50
3.2.1 Memory Leak Possible in DESCRIBE Dynamic SQL Statement..50
3.2.2 Changes to Date/Time Literal Processing...50
3.2.3 Unexpected Bugcheck From Invalid DBKEY Use..51
3.2.4 Not Equals Operator Causes BITMAPPED SCAN Strategy to be Rejected................................52
3.2.5 Data Dictionary Tables Now Use Key Suffix Compression..53
3.2.6 Unexpected Bugcheck When Using NUMBER OF SWEEP ROWS Clause...............................54
3.2.7 Memory Leak Possible When Using BITMAPPED SCAN Queries..54

Oracle® Rdb for OpenVMS

ii

Table of Contents
3.3 RMU Errors Fixed..56

3.3.1 RMU/CONVERT/ROLLBACK From V7.3 May Prevent Access to Some Tables....................56
3.3.2 Bugcheck from RMU/VERIFY/ALL After Constraint Verification..56
3.3.3 Unexpected Bugcheck During Large RMU Load When Using /Defer_Index_Updates
 Qualifier..57
3.3.4 RMU/BACKUP/AFTER_JOURNAL Returned a Success Status if %RMU−F−AIJJRNBSY...57
3.3.5 Unexpected Failure of RMU/SET AIP and RMU/SHOW AIP..58
3.3.6 RMU/SET AUDIT Ignoring "*" Wildcard for the IDENTIFIERS Option..................................60

Chapter 4Software Errors Fixed in Oracle Rdb Release 7.3.1.0..62

4.1 Software Errors Fixed That Apply to All Interfaces...63
4.1.1 Make Values in RDB$CLIENT_DEFAULTS.DAT Case Insensitive...63
4.1.2 Query Ignores Potentially Useful BgrNdx..63
4.1.3 Query Runs Slow Executing BGRNDX2 With Full Index Scan..65
4.1.4 Filter Predicates are Ignored in Aggregate Query..66
4.1.5 Parallel Index Build Name Restriction Relaxed...68
4.1.6 EXQUOTA Caused Inaccessible AIJ...69
4.1.7 Query Bugchecks with MAX, MIN or COUNT...69

4.2 SQL Errors Fixed...71
4.2.1 NULL Elimination Semantics Now Supported by COUNT Function...71
4.2.2 Unexpected FOREIGN KEY Constraint Failure Due to Mismatched Evaluating Time..............71
4.2.3 Unexpected RDB−E−OBSOLETE_METADA Error During ALTER TABLE..........................72
4.2.4 Unexpected RDMS−F−ACTQUERY Query Error From ALTER TABLE ... DROP
 COLUMN...73

4.3 RMU Errors Fixed..74
4.3.1 Unexpected Definitions in RMU Extract Output..74
4.3.2 RMU BACKUP GROUP_SIZE Default Value Increased...74
4.3.3 RMU Parallel Backup Fails With /PROTECTION Qualifier...74
4.3.4 Improvements to RMU/COLLECT OPTIMIZER_STATISTICS...75

4.4 RMU Show Statistics Errors Fixed...76
4.4.1 RMU/SHOW/STATISTICS Avoids VASFULL Errors By Moving to P2 Address Space.........76

Chapter 5Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2.......................................77

5.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2..78
5.1.1 New FULBCKREQ Message Output When a Full Backup is Required......................................78
5.1.2 New TRACE Option for EXPORT DATABASE Statement...79
5.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File Creation by RMU/RECOVER......80
5.1.4 Enhance Dumper of Merge Range List..81
5.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC Function..82
5.1.6 Alter Index Now Supports REVERSE and NOREVERSE Clauses...82
5.1.7 SQL Precompiler Now Generates C++ Compatible Intermediate C Source................................83
5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache
 Directories...84

Oracle® Rdb for OpenVMS

iii

Table of Contents
5.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2

5.1.9 RMU Unload Record_Definition File Can Include Offset and Length Comment.......................92
5.1.10 New RMU/DUMP/BACKUP Enhanced Error Handling Features..92
5.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and IDENTITY Clause.......94

Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1.......................................96

6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1..97
6.1.1 New LIMIT_TO Qualifier Added to RMU Load Command...97
6.1.2 New BEFORE and SINCE Qualifiers Added to RMU Load Audit...98
6.1.3 New RMU/SHOW/STATISTICS Output File Periodic Buffer Flushes......................................99
6.1.4 New Error and Log Messages Added for Segmented String Verification..................................100

Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0.....................................104

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0..105
7.1.1 Changes to Default and Limits Behavior in Oracle Rdb..105
7.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY................................107
7.1.3 RMU /VERIFY Root Displays the Corrupt Page Table Entries...109
7.1.4 DECLARE LOCAL TEMPORARY TABLE Supports COMMENT IS Clause.......................110
7.1.5 Temporary Tables Now Support LARGE MEMORY Option...110
7.1.6 COUNT Now Returns BIGINT Result...111
7.1.7 Aggregate Functions Now Use BIGINT Counters...111
7.1.8 /[NO]KEY_VALUES Qualifier Added to RMU/VERIFY/INDEX...112
7.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the Database Default......................................113
7.1.10 Compression of AIJ Backup Files for Automatic AIJ Backups...114
7.1.11 Global Statistics Sections for Better Performance..114
7.1.12 RMU/SET AUDIT Supports Wildcard Table and Column Names..115
7.1.13 RMU/BACKUP Database Root Verification Performance Enhancement...............................116
7.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier /DELETES_FIRST...........................118
7.1.15 Add Option to Pass Values to /CONFIRM During RESTORE Operation...............................118
7.1.16 Table Names Can Now Be Specified For Index Verification...119
7.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets.......................................120
7.1.18 New COMPILE Clause for ALTER TRIGGER Statement..122
7.1.19 New COMPILE ALL TRIGGERS Clause for ALTER TABLE Statement.............................123
7.1.20 New RETRY Clause for ACCEPT Statement..124
7.1.21 New Character Sets ISOLATIN2 and WIN_LATIN2 Supported..124
7.1.22 Changes and Enhancements to Trigger Support...125
7.1.23 New RMU BACKUP RBF File BRHK_ROOT1, BRHK_ROOT2, BRH$K_ROOT3
 Records /kroot_records...126
7.1.24 New Functions NUMTODSINTERVAL, NUMTOYMINTERVAL Supported.....................127
7.1.25 RMU Dump Audit Command...128
7.1.26 New BIN_TO_NUM Numeric Function..133
7.1.27 RMU /PROGRESS_REPORT and Control−T for RMU Backup and Restore........................133
7.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to RMU/MOVE_AREA.............................134
7.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE Command.............136
7.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES..................................138
7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics........................141

Oracle® Rdb for OpenVMS

iv

Table of Contents
7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT...........................146
7.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape Drives..................................153
7.1.34 New RMU/ALTER Feature to Modify the Area Header Root File Specification...................153
7.1.35 REVERSE Index...155
7.1.36 Support for New Syntax for Sequence Generator Statements..156
7.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW......................157
7.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW.................159
7.1.39 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS ALL Statement...........159
7.1.40 Support ANSI and ISO SQL Standard Length Units..160
7.1.41 New SET FLAGS Clause Supported by CREATE and ALTER PROFILE............................161
7.1.42 New Support for SAVEPOINT Syntax and Semantics..162

7.1.42.1 SAVEPOINT Statement..162
7.1.42.2 RELEASE SAVEPOINT Statement...164
7.1.42.3 ROLLBACK TO SAVEPOINT Statement...165

7.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification...166
7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled....168
7.1.45 RMU/LOAD Now Supports CSV Formatted Files..173
7.1.46 RMU/UNLOAD Now Supports CSV Formatted Files..173
7.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize Option..174
7.1.48 New EDIT STRING Clause for CREATE FUNCTION and CREATE MODULE
 Functions...175
7.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER TABLE Statement.......................176
7.1.50 New SQRT Numeric Function..177
7.1.51 New MOD Numeric Function..178
7.1.52 New Data Types BINARY and BINARY VARYING...179
7.1.53 PERSONA SUPPORT is Enabled For All New Databases..180
7.1.54 New Dialects Support in SQL...182
7.1.55 New WITH Clause Provides Subquery Factoring..182
7.1.56 DECLARE LOCAL TEMPORARY VIEW Statement..186
7.1.57 Enhancements for Buffered Read Support in SQL EXPORT DATABASE Command..........188
7.1.58 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause...188
7.1.59 New Support for Allocations Specified Using Quantified Numeric Literal.............................189
7.1.60 New SQL Functions Added..190
7.1.61 Changes and Improvements to the Rdb Optimizer and Query Compiler.................................190
7.1.62 Optimized NOT NULL Constraint Execution..194
7.1.63 New RMU/LOAD Option CHARACTER_ENCODING_XML..194
7.1.64 New MEMORY ALLOCATION Clause for the GLOBAL BUFFERS Definition.................195
7.1.65 New REPLACE Statement...196

Chapter 8Documentation Corrections, Additions and Changes..198

8.1 Documentation Corrections...199
8.1.1 Oracle Rdb Release 7.3.x.x New Features Document Added..199
8.1.2 Oracle Rdb Position on NFS Devices...199
8.1.3 RDM$BIND_STAREA_EMERGENCY_DIR Logical Name...200
8.1.4 RDMS−F−FULLAIJBKUP, Partially−Journaled Changes Made..201
8.1.5 Undocumented Hot Standby Logical Names..203

Oracle® Rdb for OpenVMS

v

Table of Contents
8.1 Documentation Corrections

8.1.6 Clarification on Using the RMU/VERIFY SEGMENTED_STRINGS Qualifier......................205
8.1.7 Missing Documentation for the TRANSACTION_TYPE Keyword for GET
 DIAGNOSTICS..206
8.1.8 Clarification on Using the RMU/UNLOAD TRIM=TRAILING Option..................................207
8.1.9 Corrections to the EDIT STRING Documentation...209
8.1.10 Revised SUBSTRING Description...209
8.1.11 New OVERLAY Built−in Function...211
8.1.12 Changes and Improvements to the Rdb Optimizer and Query Compiler.................................213
8.1.13 Missing or Incorrect Documentation for SET AUTOMATIC TRANSLATION Command...216
8.1.14 Required Privileges for AUTHORIZATION Clause of CREATE MODULE........................217
8.1.15 Missing Documentation for CREATE OUTLINE Statement..218
8.1.16 Sorting Capabilities in Oracle Rdb...220
8.1.17 RMU /SET ROW_CACHE Command Updates..220
8.1.18 Documentation for the DEBUG_OPTIONS Qualifier of RMU/Unload..................................222
8.1.19 Revised Example for SET OPTIMIZATION LEVEL Statement..223
8.1.20 RMU /VERIFY Process Quotas and Limits Clarification..225
8.1.21 Online Backup Can Be Performed With Transfer Via Memory...225
8.1.22 Missing Example for CREATE STORAGE MAP...225
8.1.23 RDM$BIND_MAX_DBR_COUNT Documentation Clarification...227
8.1.24 Database Server Process Priority Clarification...228
8.1.25 Clarification of PREPARE Statement Behavior...229
8.1.26 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter...............229
8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class.....................................230
8.1.28 Missing Columns Descriptions for Tables in the Formatted Database.....................................230

8.2 Address and Phone Number Correction for Documentation...239

8.3 Online Document Format and Ordering Information ..240

Chapter 9Known Problems and Restrictions...241

9.1 Known Problems and Restrictions in All Interfaces...242
9.1.1 Known Problems With REVERSE Indices..242
9.1.2 Null Elimination Warning Not Generated for Some Aggregates...242
9.1.3 RMU/BACKUP/AFTER_JOURNAL Ignores the Default After Journal Compression
 Setting...243
9.1.4 RMU /VERIFY /KEY_VALUES May Fail on Some Indices..244
9.1.5 REPLACE Statement Fails With Primary Key Constraint Failure When Used on a View.......244
9.1.6 Possible Incorrect Results When Using Partitioned Descending Indexes..................................245
9.1.7 Remote Attach Stalls Before Detecting a Node is Unreachable...246
9.1.8 Application and Oracle Rdb Both Using SYS$HIBER..247
9.1.9 Unexpected RCS Termination..248
9.1.10 Changes for Processing Existence Logical Names...249
9.1.11 Patch Required When Using VMS V8.3 and Dedicated CPU Lock Manager.........................249
9.1.12 SQL Module or Program Fails with %SQL−F−IGNCASE_BAD...250
9.1.13 External Routine Images Linked with PTHREAD$RTL...250
9.1.14 Using Databases from Releases Earlier than V7.0...251

Oracle® Rdb for OpenVMS

vi

Table of Contents
9.1 Known Problems and Restrictions in All Interfaces

9.1.15 ILINK−E−INVOVRINI Error on I64...251
9.1.16 New Attributes Saved by RMU/UNLOAD Incompatible With Prior Versions.......................251
9.1.17 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or
 LARGE MEMORY IS ENABLED in Galaxy Environment...252
9.1.18 Oracle Rdb and OpenVMS ODS−5 Volumes..252
9.1.19 Optimization of Check Constraints...253
9.1.20 Carryover Locks and NOWAIT Transaction Clarification..255
9.1.21 Unexpected Results Occur During Read−Only Transactions on a Hot Standby Database......255
9.1.22 Row Cache Not Allowed While Hot Standby Replication is Active..256
9.1.23 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb
 Sorts..256
9.1.24 Control of Sort Work Memory Allocation..258
9.1.25 The Halloween Problem...258

9.2 SQL Known Problems and Restrictions...261
9.2.1 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL
 Precompiler...261
9.2.2 Multistatement or Stored Procedures May Cause Hangs...261
9.2.3 Use of Oracle Rdb from Shareable Images...262

9.3 Oracle RMU Known Problems and Restrictions...264
9.3.1 RMU/CONVERT Fails When Maximum Relation ID is Exceeded..264
9.3.2 RMU/UNLOAD/AFTER_JOURNAL Requires Accurate AIP Logical Area Information.......264
9.3.3 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL Command...............265
9.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU/BACKUP....................................266
9.3.5 RMU/BACKUP Operations Should Use Only One Type of Tape Drive...................................266
9.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors..267

9.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier...............................269
9.4.1 Converting Single−File Databases..269
9.4.2 Row Caches and Exclusive Access...269
9.4.3 Exclusive Access Transactions May Deadlock with RCS Process..269
9.4.4 Strict Partitioning May Scan Extra Partitions...269
9.4.5 Restriction When Adding Storage Areas with Users Attached to Database..............................270
9.4.6 Multiblock Page Writes May Require Restore Operation..271
9.4.7 Replication Option Copy Processes Do Not Process Database Pages Ahead of an
 Application..271

9.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier272
9.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE.......................................272
9.5.2 Different Methods of Limiting Returned Rows from Queries..272
9.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index
 Creation...273
9.5.4 Side Effect When Calling Stored Routines...275
9.5.5 Considerations When Using Holdable Cursors..276
9.5.6 AIJSERVER Privileges..276

Oracle® Rdb for OpenVMS

vii

Oracle® Rdb for OpenVMS

Oracle® Rdb for OpenVMS 1

Release Notes
Release 7.3.1.2

Release Notes 2

October 2014
Oracle Rdb Release Notes, Release 7.3.1.2 for OpenVMS

Copyright © 1984, 2014 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error−free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency−specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the
Government contract, the additional rights set forth in FAR 52.227−19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail−safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle CODASYL DBMS,
Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are registered trademarks of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

This software or hardware and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
all warranties of any kind with respect to third−party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third−party content, products, or services.

October 2014 3

Contents

Contents 4

Preface

Preface 5

Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.3.1.2. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections.

Purpose of This Manual 6

Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.3.1.2.

Intended Audience 7

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/us/support/contact/index.html or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html if you are hearing impaired.

Access to Oracle Support 8

Document Structure
This manual consists of the following chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.3.1.2.

Chapter 2 Describes problems corrected in Oracle Rdb Release 7.3.1.2.

Chapter 3 Describes problems corrected in Oracle Rdb Release 7.3.1.1.

Chapter 4 Describes problems corrected in Oracle Rdb Release 7.3.1.0.

Chapter 5 Describes enhancements introduced in Oracle Rdb Release 7.3.1.2.

Chapter 6 Describes enhancements introduced in Oracle Rdb Release 7.3.1.1.

Chapter 7 Describes enhancements introduced in Oracle Rdb Release 7.3.1.0.

Chapter 8 Provides information not currently available in the Oracle Rdb documentation set.

Chapter 9 Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.3.1.2.

Document Structure 9

Chapter 1
Installing Oracle Rdb Release 7.3.1.2
This software update is installed using the OpenVMS VMSINSTAL utility.

NOTE

Oracle Rdb Release 7.3 kits are full kits. There is no requirement to install any prior
release of Oracle Rdb when installing new Rdb Release 7.3 kits.

Chapter 1Installing Oracle Rdb Release 7.3.1.2 10

1.1 Oracle Rdb on HP OpenVMS Industry Standard
64
The Oracle Rdb product family is available on the HP OpenVMS Industry Standard 64 platform and the
OpenVMS AlphaServer platform. In general, the functionality for one platform is available on the other
platform. However, certain differences between the platforms may result in minor capability and functionality
differences.

The database format for Oracle Rdb Release 7.3 is the same on both I64 and Alpha platforms and databases
may be accessed simultaneously from both architectures in a cluster environment. Access to an Oracle Rdb
Release 7.3 database from prior Rdb versions (on Alpha or VAX platforms) or from other systems on the
network is available via the Oracle Rdb remote database server.

1.1 Oracle Rdb on HP OpenVMS Industry Standard 64 11

1.2 Requirements
The following conditions must be met in order to install this software:

This Oracle Rdb release requires the following OpenVMS environments:
OpenVMS Alpha V8.3 to V8.4−x.♦
OpenVMS Industry Standard 64 V8.3 to V8.4−x.♦

•

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP73.COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown the Rdb Release 7.3 monitor on all nodes in the
cluster before proceeding.

•

After executing RMONSTOP73.COM, no process on any system in the cluster should have any
existing RDMSHRP73.EXE image activated. See Section 1.2.1 for additional information.

•

The installation requires approximately 280,000 blocks for OpenVMS Alpha systems.•
The installation requires approximately 500,000 blocks for OpenVMS I64 systems.•
The following OpenVMS Mandatory Update from HP needs to be installed on Itanium 8.4 systems
before installing this kit: VMS84I_MUP−V0500. A reboot is required after the MUP is installed. The
problem description for this fix is: The OpenVMS OTS library string comparison routines
OTS$STRCMP_LSSP and OTS$STRCMP_LEQP might return inaccurate results when used with
specific string patterns.
This Mandatory Kit has the following dependencies:

VMS84I_SYS−V0300♦
VMS84I_UPDATE−V0800♦
VMS84I_PCSI−V0400♦

•

The following OpenVMS patches should be installed before the Rdb kit is installed (this corrects a
problem that caused processes to go into an RWINS state, thus prompting a reboot of the system to
clear the error):

VMS84A_SYS−V0500 (for Alpha)
This kit supersedes VMS84A_SYS−V0400. The following remedial kit(s) must be installed
BEFORE installation of this kit:

VMS84A_PCSI−V0400◊
VMS84A_UPDATE−V0900◊

♦

VMS84I_SYS−V0500 (for Itanium)
This kit supersedes VMS84I_SYS−V0400. The following remedial kit(s) must be installed
BEFORE installation of this kit:

VMS84I_PCSI−V0400◊
VMS84I_UPDATE−V0900◊

♦

Please contact your HP support representative if you have questions or need more information about
these updates.

•

Oracle strongly recommends that all available OpenVMS patches are installed on all systems prior to
installing Oracle Rdb. Contact your HP support representative for more information and assistance.

•

1.2.1 Ensure No Processes Have RDMSHRP Image
Activated

The Oracle Rdb installation procedure checks to make sure that the Oracle Rdb Monitor (RDMMON) process
is not running. However, it is also important to make sure that there are no processes on the cluster that share

1.2 Requirements 12

the system disk that have image activated a prior version RDMSHRP image. Such processes may not be
currently attached to a database but may do so in the future and could cause problems by using an older
RDMSHRP image with a later Rdb installation.

The following command procedure can be used on each cluster node that shares the system disk to determine
if there are any processes that have activated the RDMSHRP73.EXE image. This procedure should be
executed by a privileged account after RMONSTOP73 has been run. Any processes that have
RDMSHRP73.EXE activated at this point should be terminated prior to starting the Rdb installation
procedure.

$ DEFINE /NOLOG /USER RDB$TMP 'RDB$TMP
$ ANALYZE /SYSTEM
 SET OUTPUT RDB$TMP
 SHOW PROCESS /CHANNELS ALL
 EXIT
$ SEARCH /OUTPUT='RDB$TMP' 'RDB$TMP';−1 RDMSHRP73.EXE,"PID:"
$ SEARCH 'RDB$TMP' RDMSHRP73.EXE /WINDOW=(1,0)
$ DELETE /NOLOG 'RDB$TMP';*

In the following example, the process 2729F16D named "FOO$SERVER" has the image RDMSHRP73.EXE
activated even after RMONSTOP73.COM has been executed and this process is terminated prior to starting
the Rdb installation procedure:

$ @SYS$STARTUP:RMONSTOP73.COM
.
.
.

$ @FIND_RDMSHRP73_PROC.COM

OpenVMS system analyzer

Process index: 016D Name: FOO$SERVER Extended PID: 2729F16D
 0240 7FEF4460 8384F300 1DGA2:[VMS$COMMON.SYSLIB]RDMSHRP73.EXE;222

$ STOP/IDENTIFICATION=2729F16D

Oracle® Rdb for OpenVMS

1.2 Requirements 13

1.3 Intel Itanium Processor 9300 "Tukwila" Support
For this release of Oracle Rdb on HP Integrity servers, the Intel Itanium Processor 9300 series, code named
"Tukwila", is the newest processor supported.

1.3 Intel Itanium Processor 9300 "Tukwila" Support 14

1.4 Maximum OpenVMS Version Check
OpenVMS Version 8.4−x is the maximum supported version of OpenVMS for this release of Oracle Rdb.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.4 Maximum OpenVMS Version Check 15

1.5 Database Format Changed
The Oracle Rdb on−disk database format is 730 as shown in the following example.

$ RMU/DUMP/HEADER databasename
...
 Oracle Rdb structure level is 73.0
...

An RMU/CONVERT operation is required for databases created by or accessed by Oracle Rdb V7.0, V7.1 or
V7.2 to be accessed with Rdb Release 7.3.

Prior to upgrading to Oracle Rdb Release 7.3 and prior to converting an existing database to Oracle Rdb
Release 7.3 format, Oracle strongly recommends that you perform a full database verification (with the "RMU
/VERIFY /ALL" command) along with a full database backup (with the "RMU /BACKUP" command) to
ensure a valid and protected database copy.

1.5 Database Format Changed 16

1.6 Using Databases from Releases Earlier than
V7.0
You cannot convert or restore databases earlier than the Oracle Rdb V7.0 format directly to Oracle Rdb V7.3
format. The RMU Convert command for Oracle Rdb V7.3 supports conversions from Oracle Rdb V7.0, V7.1
and V7.2 format databases only. If you have an Oracle Rdb V3.0 through V6.1 format database or database
backup, you must convert it to at least Oracle Rdb V7.0 format and then convert it to Oracle Rdb V7.3 format.
For example, if you have a V4.2 format database, you must convert it first to at least Oracle Rdb V7.0 format,
then convert it to Oracle Rdb V7.3 format.

If you attempt to convert or restore a database that is prior to Oracle Rdb V7.0 format directly to Oracle Rdb
V7.3 format, Oracle RMU generates an error.

1.6 Using Databases from Releases Earlier than V7.0 17

1.7 Invoking the VMSINSTAL Procedure
The installation procedure for Oracle Rdb has been simplified as compared with prior Oracle Rdb major
releases. All Oracle Rdb components are always installed and the number of prompts during the installation
has been reduced. The installation procedure is the same for Oracle Rdb for OpenVMS Alpha and Oracle Rdb
for OpenVMS I64.

To start the installation procedure, invoke the VMSINSTAL command procedure as in the following
examples.

To install the Oracle Rdb for OpenVMS I64 kit

 @SYS$UPDATE:VMSINSTAL RDBV73120IM073 device−name

•

To install the Oracle Rdb for OpenVMS Alpha kit

 @SYS$UPDATE:VMSINSTAL RDBV73121AM073 device−name

•

device−name

Use the name of the device on which the media is mounted. If the device is a disk−type drive, you also need
to specify a directory. For example: DKA400:[RDB.KIT]

1.7 Invoking the VMSINSTAL Procedure 18

1.8 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.8 Stopping the Installation 19

1.9 After Installing Oracle Rdb
This update provides a new Oracle TRACE facility definition for Oracle Rdb. Any Oracle TRACE selections
that reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.3".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.3 −
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

1.

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

2.

Note that the process executing the INSERT DEFINITION command must use the version of Oracle Rdb that
matches the version used to create the Oracle TRACE administration database or the INSERT DEFINITION
command will fail.

1.9 After Installing Oracle Rdb 20

1.10 VMS$MEM_RESIDENT_USER Rights Identifier
Required
Oracle Rdb Version 7.1 introduced additional privilege enforcement for the database or row cache attributes
RESIDENT, SHARED MEMORY IS SYSTEM and LARGE MEMORY IS ENABLED. If a database utilizes
any of these features, then the user account that opens the database must be granted the
VMS$MEM_RESIDENT_USER rights identifier.

Oracle recommends that the RMU/OPEN command be used when utilizing these features.

1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required 21

1.11 Installation, Configuration, Migration, Upgrade
Suggestions
Oracle Rdb Release 7.3 fully supports mixed−architecture clusters for AlphaServer systems and HP Integrity
servers.

In certain development environments, it may be helpful to incorporate a VAX system into the AlphaServer
systems and HP Integrity servers cluster. While HP and Oracle believe that in most cases this will not cause
problems to the computing environment, we have not tested it extensively enough to provide support. It is
possible that VAX systems in a cluster may cause a problem with the cluster performance or stability. Should
this happen, the VAX systems in the cluster which are causing the difficulty should be removed.

Oracle continues to support mixed architecture clusters of VAX systems and AlphaServer systems with direct
database access using Rdb V7.0. Oracle Rdb V7.1 runs natively on Alpha systems and clusters. All Rdb
versions include a built−in remote network database server allowing cross−architecture and cross−version
application and database access.

All systems directly accessing the same database within a cluster environment must be running an identical
version of Oracle Rdb (where the first 4 digits of the version number match). Access from other versions of
Oracle Rdb may be accomplished with the built−in remote network database server for cross−version
database access.

When moving applications from existing Alpha or VAX configurations to new environments containing
Integrity Server systems, there are numerous possible paths depending on the requirements of individual sites.
In general, this can be as straightforward as adding a new node to an already existing AlphaServer systems
cluster or standalone system, except the node is an HP Integrity server. Table 1−1, Migration Suggestions,
considers several possible situations and recommended steps to take.

Table 1−1 Migration Suggestions

Case You Wish To... You should...

1 Add an Integrity server to an existing cluster of Alpha
servers Verify database(s) using

RMU/VERIFY/ALL.
1.

Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.3 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.3 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity directly by
specifying database root file

7.

1.11 Installation, Configuration, Migration, Upgrade Suggestions 22

specification(s) in SQL
ATTACH statements.

2

Add an Integrity server to an existing mixed cluster of
VAX and Alpha nodes and access an Rdb database
from all nodes. Disks used for the database are
accessible from all nodes.

Verify database(s) using
RMU/VERIFY/ALL.

1.

Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.3 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.3 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity nodes directly by
specifying database root file
specification(s) in SQL
ATTACH statements.

7.

Access the database from VAX
node(s) using the Rdb built−in
network server (remote
database) by specifying one of
the Alpha or Integrity node
names in SQL ATTACH
statements.

8.

After thorough testing, remove
VAX nodes from the cluster.

9.

3
Move database(s) to new disks and add an Integrity
server to an existing cluster.

Use RMU/COPY with an
options file to move the
database files to the new disks.

1.

Follow the steps for case 1 or
case 2.

2.

4
Continue to use Rdb primarily from VAX or Alpha
nodes using earlier releases. Add an Integrity server for
application testing purposes.

Install Rdb 7.3 on Integrity
node.

1.

Access existing database(s)
from Integrity node by
specifying one of the Alpha or
VAX node names in the SQL
ATTACH statements.

2.

When testing is complete,
follow the steps in case 1 or
case 2.

3.

5 Add an Integrity server to an existing cluster of Alpha
servers or create a new cluster from an existing
stand−alone Alpha server by adding one or more new

Verify database(s) using
RMU/VERIFY/ALL.

1.

Oracle® Rdb for OpenVMS

1.11 Installation, Configuration, Migration, Upgrade Suggestions 23

Integrity servers. Backup database(s) using
RMU/BACKUP.

2.

Install Rdb 7.3 on Integrity and
Alpha nodes.

3.

Convert database(s) to the Rdb
7.3 structure level using
RMU/CONVERT.

4.

Verify database(s) again using
RMU/VERIFY/ALL.

5.

Backup database(s) using
RMU/BACKUP.

6.

Access database(s) from Alpha
and Integrity directly by
specifying database root file
specification in the SQL
ATTACH statements.

7.

6
Create a new stand−alone Integrity Server system or
cluster of Integrity Servers and move database(s) to the
new environment.

Verify database(s) using
RMU/VERIFY/ALL.

1.

Install Rdb 7.3 on new
system(s).

2.

Back up database(s) on the
existing cluster using
RMU/BACKUP.

3.

Copy backup file(s) to the new
system (or, if using tape media,
make the tapes available to the
new system).

4.

Restore database(s) on the new
system using RMU/RESTORE
specifying the location of each
database file in an options file.

5.

Verify the new database using
RMU/VERIFY/ALL.

6.

Refer to the Oracle Rdb documentation set for additional information and detailed instructions for using RMU
and remote databases.

Note that database parameters might need to be altered in the case of accessing a database from a larger
number of systems in a cluster.

Oracle® Rdb for OpenVMS

1.11 Installation, Configuration, Migration, Upgrade Suggestions 24

Chapter 2
Software Errors Fixed in Oracle Rdb Release
7.3.1.2
This chapter describes software errors that are fixed by Oracle Rdb Release 7.3.1.2.

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.3.1.2 25

2.1 Software Errors Fixed That Apply to All
Interfaces

2.1.1 Ranked Index Bugchecks − PSII2REMOVEDUPBBC &
PSII2INSERTDUPBBC

Bug 17383599

In prior versions of Oracle Rdb, applications trying to insert or remove records using a ranked index may
bugcheck with an exception similar to the following:

Exception at 00000000xxxxxxxx : RDMSHRP72\PSII2REMOVEDUPBBC + 0000xxxx
%COSI−F−BUGCHECK, internal consistency failure

A bugcheck may also be raised with the following exception:

Exception at 00000000xxxxxxxx : RDMSHRP72\PSII2INSERTDUPBBC + 0000xxxx
%COSI−F−BUGCHECK, internal consistency failure

In addition, the following exception may be raised during record retrieval:

%RDMS−F−NODBK, 61:117:29 does not point to a data record

This problem may also lead to a corruption of the index on−disk: an RMU VERIFY INDEX of the database
will indicate that the index is corrupt with an exception similar to:

RMU−E−BADDBKFET, Error fetching dbkey 61:117:29

Depending on the transaction mix of insertions and deletions, it is possible that these problems may not cause
any on−disk index corruption: the problem may only be a transient error, affecting in−memory structures
only.

These problems are more likely to occur when there are a large number of duplicates within the ranked index
entries.

A possible workaround is to rebuild the index if RMU/VERIFY has shown an exception similar to the one
cited above. The rebuild of the index will rectify any ranked index corruptions. However, in prior versions of
Oracle Rdb, the same problem may re−occur on subsequent transactions.

These problems were actually corrected in Oracle Rdb Release 7.3.1.1.

2.1.2 Wrong Result From a Nested UNION Query With OR
Predicate

Bug 18825653

2.1 Software Errors Fixed That Apply to All Interfaces 26

In prior releases of Oracle Rdb, a complex query referencing a view containing a UNION may return the
wrong result when an OR predicate is involved in the outer query.

For example, the following query is expected to return some rows and it does not.

SELECT C1, C3, C6 FROM Q_VIEW
WHERE C6='20' AND (C3= 'KMT' or C3= 'HFM');
0 rows selected

However, if the OR predicate is omitted, the query returns the rows correctly.

SELECT C1, C3, C6 FROM Q_VIEW
WHERE C6='20' AND C3= 'KMT';
 C1 C3 C6
 EGP KMT 20
1 row selected

The views are defined as follows:

create view Q_VIEW (QC1, QC2, QC3, QC4, QC5, QC6)
as
select (CI.C1, CI.C2, CI.C3, CI.C4, CI.C5, CI.C6)
from CI_VIEW CI, ! 1 row
 TT1 ! empty table
UNION
select (CI.C1, CI.C2, CI.C3, CI.C4, CI.C5, CI.C6)
from CI_VIEW CI inner join ! 1 row
 TT2 on (TT2.C1 = CI.C1) ! 1 row
;

create view CI_VIEW (CI1, CI2, CI3, CI4, CI5, CI6)
as
select (T1.C1, T1.C2, T1.C3, T1.C4, T1.C5,
 CAST('CGS' AS CHAR(3) ! C6
)
from T1 inner join T2 ! empty tables
 on (T1.C1 = T2.C1)
UNION
select (T3.C1, T3.C2, T3.C3, T3.C4, T5.C5,
 CASE WHEN EXISTS (SELECT * FROM T6
 WHERE T6.C3= T4.C3)
 THEN CAST('EGP' AS CHAR(3))
 ELSE CAST(' ' AS CHAR(3))
 END ! C6
from T3 inner join ! 1 row
 T4 on (T4.C3 = T3.C3) inner join ! 1 row
 T5 on (T5.C1 = T3.C1) ! 1 row
where T3.C7 = 'XXXXX';

The key parts of this query which contributed to the error are:

The main query selects from a nested UNION view with an OR predicate in the WHERE clause.1.
The main view, Q_VIEW, is a UNION query of two legs where another view, CI_VIEW, is nested
within the join.

2.

CI_VIEW is also a UNION query where each leg joins another table.3.
The first UNION leg joins an empty table but the second one joins three main tables using inner join.
The column C6 of the select clause contains a CASE statement with subselect joining another table.

4.

Oracle® Rdb for OpenVMS

2.1 Software Errors Fixed That Apply to All Interfaces 27

Currently there is no workaround for this problem.

These problems have been corrected in Oracle Rdb Release 7.3.1.2.

2.1.3 Dialect SQL99 Does Not Use Max Key Lookup

Bug 18517510

In Oracle Rdb Release 7.3.1.1, the optimizer avoids using "Max key lookup" and "Min key lookup"
optimizations if any of these dialects are used: SQL92, SQL99, SQL2011, ORACLE LEVEL1, ORACLE
LEVEL2 or ORACLE LEVEL3.

Many customers have queries where the performance benefits of the "Max key lookup" strategy outweigh the
theoretical correctness of getting NULL elimination warnings.

For example, the following query applies "Max key lookup" in a MF_PERSONNEL database with
SALARY_HISTORY_TEST_IDX defined as sorted ranked but does not use that strategy when using (for
example) SET DIALECT 'SQL99'.

SQL> CREATE INDEX SALARY_HISTORY_TEST_IDX
cont> ON SALARY_HISTORY (EMPLOYEE_ID, SALARY_START)
cont> TYPE IS SORTED RANKED;
SQL>
SQL> SELECT MAX(SALARY_START)
cont> FROM SALARY_HISTORY
cont> WHERE EMPLOYEE_ID = '00374';
Tables:
 0 = SALARY_HISTORY
Aggregate: 0:MAX (0.SALARY_START)
Index only retrieval of relation 0:SALARY_HISTORY
 Index name SALARY_HISTORY_TEST_IDX [1:1] Max key lookup
 Keys: 0.EMPLOYEE_ID = '00374'

 10−OCT−1982 00:00:00.00
1 row selected
SQL> set dialect 'sql99' ;
SQL> SELECT MAX(SALARY_START)
cont> FROM SALARY_HISTORY
cont> WHERE EMPLOYEE_ID = '00374';
Tables:
 0 = SALARY_HISTORY
Aggregate: 0:MAX (0.SALARY_START)
Index only retrieval of relation 0:SALARY_HISTORY
 Index name SALARY_HISTORY_TEST_IDX [1:1]
 Keys: 0.EMPLOYEE_ID = '00374'

 10−OCT−1982 00:00:00.00
1 row selected

There is no workaround for this problem except to avoid the listed dialects when using MIN and MAX
optimizations.

These problems have been corrected in Oracle Rdb Release 7.3.1.2.

Oracle® Rdb for OpenVMS

2.1.3 Dialect SQL99 Does Not Use Max Key Lookup 28

2.1.4 Inner Join Query With NOT LIKE Predicate Slows
Down

Bug 18081992

In prior releases of Oracle Rdb, an inner join query using a predicate with a NOT operator may slow down
when using Cross strategy. Note that in this example, the NOT LIKE operation is transformed to a NOT
STARTING WITH operation.

The problem is caused by the NOT operator during the costing as a Cross join. With the fix, the strategy is
switched to a Match join by disabling the transitivity in such cases.

For example, the following query may run for an extended time.

SELECT count(*)
FROM (
 SELECT
 T1.DEV_ID,
 T1.OPER_ID,
 T1.OPER_SEQ_NO,
 T1.STEP_ID
 FROM T1
 WHERE (((T1.STEP_ID)<>'−−−−−−'))
) stp
 INNER JOIN T2
 ON stp.OPER_ID = T2.OPER_ID
 where
 stp.OPER_ID Not Like 'WC%' and
 T2.STEP_ID Like 'PP%'
 ;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:COUNT (*) Q2
Cross block of 2 entries Q2
 Cross block entry 1
 Leaf#01 NdxOnly 1:T2 Card=123039
 Bool: 1.STEP_ID STARTING WITH 'PP'
 FgrNdx T2_NDX1 [0:0] Fan=12
 BgrNdx1 T2_NDX2 [1:1] Fan=15
 Keys: 1.STEP_ID STARTING WITH 'PP'
 Cross block entry 2
 Conjunct: 0.OPER_ID = 1.OPER_ID
 Merge of 1 entries Q2
 Merge block entry 1 Q3
 Conjunct: NOT (0.OPER_ID STARTING WITH 'WC')
 Leaf#02 BgrOnly 0:T1 Card=158894
 Bool: 0.STEP_ID <> '−−−−−−'
 BgrNdx1 T1_IDX [0:0] Fan=11
 Bool: (NOT (0.OPER_ID STARTING WITH 'WC')) AND (NOT (0.OPER_ID
 STARTING WITH 'WC')) AND (0.STEP_ID <> '−−−−−−')

The query runs fast if transitivity is disabled, which uses a Match strategy. When executing the same query as
before, you can see the altered strategy which leads to a reduced execution time.

Tables:
 0 = T1

Oracle® Rdb for OpenVMS

2.1.4 Inner Join Query With NOT LIKE Predicate Slows Down 29

 1 = T2
Aggregate: 0:COUNT (*) Q2
Conjunct: 0.OPER_ID = 1.OPER_ID
Match Q2
 Outer loop
 Match_Key:0.OPER_ID
 Sort: 0.OPER_ID(a)
 Merge of 1 entries Q2
 Merge block entry 1 Q3
 Conjunct: NOT (0.OPER_ID STARTING WITH 'WC')
 Leaf#01 BgrOnly 0:T1 Card=158894
 Bool: 0.STEP_ID <> '−−−−−−'
 BgrNdx1 T1_IDX [0:0] Fan=11
 Bool: (NOT (0.OPER_ID STARTING WITH 'WC')) AND (0.STEP_ID <>
 '−−−−−−')
 Inner loop (zig−zag)
 Match_Key:1.OPER_ID
 Index_Key:OPER_ID, STEP_ID
 Conjunct: 1.STEP_ID STARTING WITH 'PP'
 Index only retrieval of relation 1:T2
 Index name T2_IDX1 [0:0]
 Bool: 1.STEP_ID STARTING WITH 'PP'

 172849
1 row selected

A workaround may be to disable transitivity using the SET FLAGS 'NOTRANSITIVITY' statement.

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

2.1.5 Unable to Call External Routine When Attached
Remotely to a Database

Bug 13640883

When an external routine which uses SQL statements, attached to the same database that was remotely
accessed, then it would fail with an error −RDB−E−INVALID_SEC_INF, invalid security information. For
example:

SQL> attach 'filename remhst"username password"::mydb';
SQL> declare :syu, :ssu, :cru rdb$object_name = '';
SQL> declare :sc int = 0;
SQL> begin
cont> call show_user (:sc, :syu, :ssu, :cru);
cont> trace 'sqlcode −> ', :sc;
cont> if :sc < 0
cont> then
cont> call sql_signal ();
cont> end if;
cont> end;
%RDB−E−EXTFUN_FAIL, external routine failed to compile or execute successfully
−RDMS−E−RTN_ERROR, routine "SQL_SIGNAL" generated an error during execution
−RDB−E−INVALID_SEC_INF, invalid security information
SQL>

A workaround would be to include explicit USER/USING clauses in the external routine to attach to the local
database.

Oracle® Rdb for OpenVMS

2.1.5 Unable to Call External Routine When Attached Remotely to a Database 30

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

2.1.6 RDMDBRBUG Bugcheck at
RUJUTL$BIJBL_GET_FORWARD + 1E0

Bug 18506440

In rare circumstances, a Database Recovery Process (DBR) may fail an internal sanity check and bugcheck
with the above exception (the actual offset would depend on the Oracle Rdb version and OpenVMS platform).
After the recovery fails, the database will shutdown all users. However, the next database attach will cause
another DBR process to start. This follow−up DBR should be able to successfully complete the original
recovery, allowing access to the database once more.

The problem was caused by mismanagement of a data buffer while reading the Run Unit Journal (RUJ)
recovery file. As such, there is no user workaround. There is no database or RUJ file corruption associated
with this failure.

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

2.1.7 Join Query Returns Wrong Result With Index Counts
Lookup Using Ranked Index

Bug 19595377

In Oracle Rdb Release 7.3.1.1, a simple query joining another query of "select count(*)" with "Index counts
lookup" using a sorted ranked index could return the wrong result.

!
! The following query returns correct result using sorted index:
!
select e.employee_id,
 (select count(*) from salary_history s where e.employee_id=s.employee_id)
 from employees e limit to 5 rows;
Tables:
 0 = EMPLOYEES
 1 = SALARY_HISTORY
Cross block of 2 entries Q0
 Cross block entry 1
 Firstn: 5
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Aggregate: 0:COUNT (*) Q2
 Index only retrieval of relation 1:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1]
 Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 EMPLOYEE_ID
 00164 4
 00165 12
 00166 6
 00167 5
 00168 11
5 rows selected

Oracle® Rdb for OpenVMS

2.1.6 RDMDBRBUG Bugcheck at RUJUTL$BIJBL_GET_FORWARD + 1E0 31

! now drop the sorted index and create a ranked index
!
drop index sh_employee_id;
create index sh_employee_id on salary_history (employee_id) type is sorted
ranked;

! If using sorted ranked index, the query returns wrong result
!
select e.employee_id,
 (select count(*) from salary_history s where e.employee_id=s.employee_id)
 from employees e limit to 5 rows;
Tables:
 0 = EMPLOYEES
 1 = SALARY_HISTORY
Cross block of 2 entries Q0
 Cross block entry 1
 Firstn: 5
 Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
 Cross block entry 2
 Aggregate: 0:COUNT (*) Q2
 Index only retrieval of relation 1:SALARY_HISTORY
 Index name SH_EMPLOYEE_ID [1:1] Index counts lookup
 Keys: 0.EMPLOYEE_ID = 1.EMPLOYEE_ID
 EMPLOYEE_ID
 00164 0
 00165 0
 00166 0
 00167 0
 00168 0
5 rows selected

There is no workaround for this problem except to avoid using sorted ranked indices.

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

2.1.8 Unexpected Zero Cardinality Set for Some Tables

Bug 19611808

In prior releases of Oracle Rdb V7.3, it was possible that a sequential scan of a table following an INSERT or
DELETE statement might erroneously set the table cardinality to zero.

In turn, this change could cause poor query performamce when the optimizer used sequential access to query
that which it thought was an empty table.

This problem has been corrected in Oracle Rdb Release 7.3.1.2. Oracle recommends that all customers
execute RMU Collect after this update is installed.

$ RMU/COLLECT OPTIMIZER_STATISTICS/Statistics=Cardinality/NoIndexes dbname

2.1.9 Query With Aggregate Bugchecks Using Match
Strategy

Oracle® Rdb for OpenVMS

2.1.8 Unexpected Zero Cardinality Set for Some Tables 32

Bug 19622034

In prior releases of Oracle Rdb, the optimizer may bugcheck while processing an aggregate subquery such as
EXISTS in the following example.

SELECT count(*)
FROM t1, t2, t3, t4
WHERE
 t1.col=t4.col and
 t2.col=t1.col and
 t1.status='E' and
 t1.col=t3.col and
 EXISTS (SELECT * FROM t5
 WHERE t5.col=t1.col) and
 t2.fdate = (SELECT max(fdate)
 FROM t2 t5
 WHERE t5.col=t2.col
 and fdate<='20140912');
%RDMS−I−BUGCHKDMP, generating bugcheck dump file DISK:[USERNAME]RDSBUGCHK.DMP;

A workaround may be to use a query outline to use a CROSS JOIN instead of a MATCH JOIN, or to replace
the EXISTS clause with a (SELECT COUNT(*) FROM ... WHERE) > 0.

SELECT count(*)
FROM t1, t2, t3, t4
WHERE
 t1.col=t4.col and
 t2.col=t1.col and
 t1.status='E' and
 t1.col=t3.col and
 (SELECT COUNT(*) FROM t5
 WHERE t5.col=t1.col) > 0 and
 t2.fdate = (SELECT max(fdate)
 FROM t2 t5
 WHERE t5.col=t2.col
 and fdate<='20140912');

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

Oracle® Rdb for OpenVMS

2.1.8 Unexpected Zero Cardinality Set for Some Tables 33

2.2 SQL Errors Fixed

2.2.1 Unexpected Zero Result From COUNT Aggregate

Bug 17908875

In prior releases of Oracle Rdb, it was possible, in rare cases, for the Rdb optimizer to use a dynamic retrieval
strategy to solve a COUNT aggregate using more than one SORTED RANKED background index.
Depending on the index chosen by the estimation (Estim) phase as the most likely index, it was possible for
the COUNT to erroneously return zero when the "Index counts lookup" optimization was used.

The following example shows such a strategy.

SQL> SELECT COUNT(*)
cont> FROM SAMPLE
cont> WHERE SAMPLE_BX = 7001
cont> AND SAMPLE_AC = 'Xxxx'
cont> AND SAMPLE_XC = 'Yyyy'
cont> AND SAMPLE_CD = '1234567'
cont> ;
~S#0002
Tables:
 0 = SAMPLE
Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:SAMPLE Card=1492231
 Bool: (0.SAMPLE_BX = 7001) AND (0.SAMPLE_AC = 'Xxxx') AND (
 0.SAMPLE_XC = 'Yyyy') AND (0.SAMPLE_CD = '1234567')
 BgrNdx1 SAMPLE_KEY [3:3] Fan=1
 Keys: (0.SAMPLE_BX = 7001) AND (0.SAMPLE_AC = 'Xxxx') AND (
 0.SAMPLE_CD = '1234567')
 BgrNdx2 SAMPLE_RANKED_1 [4:4] Fan=51 Index counts lookup
 Keys: (0.SAMPLE_CD = '1234567') AND (0.SAMPLE_BX = 7001) AND (
 0.SAMPLE_XC = 'Yyyy') AND (0.SAMPLE_AC = 'Xxxx')
 BgrNdx3 SAMPLE_RANKED_2 [4:4] Fan=51 Index counts lookup
 Keys: (0.SAMPLE_AC = 'Xxxx') AND (0.SAMPLE_BX = 7001) AND (
 0.SAMPLE_CD = '1234567') AND (0.SAMPLE_XC = 'Yyyy')
~Estim SAMPLE_KEY Hashed: Nodes=0, Est=4 Precise IO=0
~Estim SAMPLE_RANKED_1 Ranked: Nodes=1, Min=2, Est=2 Precise IO=1
~Estim RLEAF Cardinality= 1.4922310E+06
~Estim SAMPLE_RANKED_2 Ranked: Nodes=1, Min=2, Est=2 Precise IO=1
~E#0002.01(1) Estim Index/Estimate 2/2 3/2 1/4
~E#0002.01(1) BgrNdx2 EofData DBKeys=0 Fetches=0+0 RecsOut=0 #Bufs=0

 0
1 row selected
SQL>

For such a strategy to be used, multiple SORTED RANKED indices must include leading segments that
match the query criteria specified by the WHERE clause.

This problem can be avoided by using SET FLAGS 'NOCOUNT_SCAN' prior to executing this query, either
as a dynamic statement or by defining the logical name RDMS$SET_FLAGS.

This problem has been corrected in Oracle Rdb Release 7.3.1.2. Oracle Rdb now supports multiple SORTED

2.2 SQL Errors Fixed 34

RANKED indices for use with Index counts lookup optimization as part of a dynamic query strategy. In
addition, the STRATEGY display now includes added notation to show that Index counts lookup optimization
was used.

2.2.2 Unexpected −RDMS−F−ACTQUERY Error During
ALTER TABLE

Bug 13738014

In prior releases of Oracle Rdb, an ALTER TABLE statement might fail if a DEFAULT clause referenced a
SQL function that also referenced the table being altered. The following example shows the reported error.

create table T
 (id integer
);

create module M
 function MAX_ID ()
 returns integer;
 return (select max (id) from T) + 1;
end module;

alter table T
 add column ID2 integer default MAX_ID();
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−ACTQUERY, there are queries compiled that reference relation "T"
−RDMS−F−RELNOTCHG, relation T has not been changed

This problem may occur for ALTER TABLE ... ALTER COLUMN or ALTER TABLE ... ADD COLUMN
clauses.

This problem has been corrected in Oracle Rdb Release 7.3.1.2. SQL now avoids loading the referenced
function when checking the return result type of the referenced function. This also means that nested routines
are no longer loaded.

2.2.3 Unexpected SQL Bugcheck With Malformed INSERT or
UPDATE Column Target

Bug 18848877

In prior releases of Oracle Rdb, SQL would bugcheck if the target of an INSERT or UPDATE was
erroneously coded as a sequence reference (either CURRVAL or NEXTVAL).

The following example shows the problem.

SQL> insert into X (y.nextval) values (0);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTER]SQLBUGCHK.
%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle support
representative
SQL> update X set y.nextval = 0;
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTER]SQLBUGCHK.
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=000000000000

Oracle® Rdb for OpenVMS

2.2.2 Unexpected −RDMS−F−ACTQUERY Error During ALTER TABLE 35

This problem has been corrected in Oracle Rdb Release 7.3.1.2. SQL now correctly diagnoses these problems.
The following output from the SQL Module Language compiler shows the new diagnostics.

insert into X (y.currval) values (1);
 1
%SQL−F−INVCOLREF, (1) Invalid column reference for INSERT or UPDATE statement
update X set y.nextval = 0;
 1
%SQL−F−INVCOLREF, (1) Invalid column reference for INSERT or UPDATE statement

2.2.4 Incorrect Evaluation of DEFAULT Expression During
INSERT Statement

Bug 18999785

In prior versions of Oracle Rdb, it was possible to define a DEFAULT which referenced another column in
the same table but not have that DEFAULT correctly evaluated during the INSERT statement.

The following example shows that the DEFAULT inherited by column C3 is incorrect. It should be NULL.

SQL> create table t1
cont> (c1 int
cont> ,c2 char (2)
cont> ,c3 char (2) default lower(c2)
cont>);
SQL>
SQL> insert into t1 (c1) values (4);
1 row inserted
SQL>
SQL> select * from t1;
 C1 C2 C3
 4 NULL ..
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

Oracle® Rdb for OpenVMS

2.2.4 Incorrect Evaluation of DEFAULT Expression During INSERT Statement 36

2.3 RMU Errors Fixed

2.3.1 RMU Unload Not Generating Oracle Style INTERVAL
DAY Values

Bug 18262460

In prior versions of Oracle Rdb, the RMU Unload command, when requested to generate a CONTROL file
format for processing by the sqlldr tool, would not generate INTERVAL DAY values acceptable by the
Oracle Database.

This problem has been corrected in Oracle Rdb Release 7.3.1.2. RMU Unload now implicitly establishes the
DIALECT as ORACLE LEVEL2 (see SET DIALECT Command for more details). This dialect causes Oracle
Rdb to use an ASCII space character to separate the DAY field from the following HOUR field.

In addition, RMU Unload also transforms the following types to be compatible with the Oracle Database.

DATE VMS is unloaded as TIMESTAMP(2).
This allows fractional second values (100th of a second) to be unloaded. In prior releases, this type
was unloaded as a DATE with fractional second values truncated.

•

INTERVAL YEAR and INTERVAL MONTH types are unloaded as INTERVAL YEAR(9) TO
MONTH.

•

INTERVAL DAY, INTERVAL HOUR, INTERVAL MINUTE, INTERVAL SECOND, INTERVAL
DAY TO HOUR, INTERVAL DAY TO MINUTE, INTERVAL HOUR TO MINUTE, INTERVAL
HOUR TO SECOND, INTERVAL MINUTE TO SECOND are unloaded as INTERVAL DAY(9)
TO SECOND(2).

•

2.3.2 Full Backup No Longer Required After Altering the
Snapshot Area Page Allocation

Bug 18319063

Modifying the Oracle Rdb database snapshot storage area page allocation previously required the next
database backup to be a full database backup. If an incremental backup was executed without a preceding full
backup following a modification of the snapshot storage area page allocation, the fatal
RMU−F−NOFULLBCK error message was output and the incremental backup was aborted.

This restriction has now been removed since database corruption does not occur when an incremental
database restore is not preceded by a full database restore following a modification of the database snapshot
storage area page allocation. When the snapshot storage area page allocation is modified, the incremental
backup now succeeds when the incremental backup is executed without a preceding full backup.

The following example shows the previous incorrect behavior. If the next database backup after altering a
database storage area snapshot page allocation was not a full backup, the %RMU−F−NOFULLBCK message
was output and the backup was aborted.

2.3 RMU Errors Fixed 37

$ SQL
 alter database filename mf_personnel
 alter storage area jobs snapshot allocation is 100 pages;
 exit
$ rmu/backup/incremental/nolog mf_personnel.rdb −
 DEVICE:[DIRECTORY]mfp.rbf
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 28−FEB−2014 06:56:02.11
$

The following example shows that this restriction has now been removed. If the next database backup after
altering a database storage area snapshot page allocation is an incremental backup, the incremental backup
now succeeds.

$ SQL
 alter database filename mf_personnel
 alter storage area jobs snapshot allocation is 100 pages;
 exit
$ rmu/backup/incremental/nolog mf_personnel.rdb −
 DEVICE:[DIRECTORY]mfp.rbf
$

This problem has been corrected in Oracle Rdb Release 7.3.1.2.

2.3.3 RMU Unload After_Journal Did Not Correctly Unload
Oracle Database Format Date/Time Values

Bug 18262460

In prior releases of Oracle Rdb, RMU/UNLOAD/AFTER_JOURNAL would generate incorrect definitions in
the generated CONTROL file (.CTL) and incorrectly formatted data for date/time types (DATE, TIME,
TIMESTAMP and INTERVAL).

This problem has been corrected in Oracle Rdb Release 7.3.1.2. RMU/UNLOAD/AFTER_JOURNAL now
generates definitions and data that are acceptable to Oracle Database release 10g or later and allow these
complex types to be shipped in a portable data format and used by SQL*Loader (sqlldr).

These changes include:

DATE VMS is unloaded as TIMESTAMP(2). This allows fractional second values (100th of a
second) to be unloaded. In prior releases, this type was unloaded as DATE with fractional second
values truncated.

•

INTERVAL YEAR and INTERVAL MONTH types are unloaded as INTERVAL YEAR(9) TO
MONTH.

•

INTERVAL DAY, INTERVAL HOUR, INTERVAL MINUTE, INTERVAL SECOND, INTERVAL
DAY TO HOUR, INTERVAL DAY TO MINUTE, INTERVAL HOUR TO MINUTE, INTERVAL
HOUR TO SECOND, INTERVAL MINUTE TO SECOND are unloaded as INTERVAL DAY(9)
TO SECOND(2).

•

Oracle® Rdb for OpenVMS

2.3.3 RMU Unload After_Journal Did Not Correctly Unload Oracle Database Format Date/Time Values38

2.3.4 RMU Convert Leaves After Image Journal
SUPPRESSED

Bug 19429891

In prior versions of Oracle Rdb V7.3, it was possible that RMU Convert would leave a journal in the
SUPPRESSED state, without warning from RMU Convert.

$ rmu/convert/noconfirm sample
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.3−110 on OpenVMS IA64 V8.4
%RMU−I−AIJ_DISABLED, after−image journaling is being disabled temporarily for
the Convert operation
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database USER2:[TESTING]SAMPLE.RDB;1 successfully converted
from version V7.2 to V7.3
%RMU−I−CVTCOMSUC, CONVERT committed for USER2:[TESTING]SAMPLE.RDB;1 to version
V7.3
%RMU−I−LOGMODSTR, activated after−image journal "SAMPLE_JOURNAL_01"
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

The /NOCONFIRM was used to avoid the questions from RMU Convert concerning complete backups prior
to the convert of the database.

This change to the journal state would later be diagnosed when an RMU Backup After_Image was perform.
The following example shows that the error RMU−F−AIJBCKINAC is reported during the backup of the after
image journals.

$ rmu/backup/after sample ""
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 1
%RMU−I−LOGBCKAIJ, backing up after−image journal SAMPLE_JOURNAL_02 at
17:22:08.86
%RMU−I−AIJBCKSTOP, backup of after−image journal SAMPLE_JOURNAL_02 did not
complete
%RMU−I−OPERNOTIFY, system operator notification: AIJ manual backup operation
failed
%RMU−F−AIJBCKINAC, AIJ backup completed when accessing inaccessible journal SAMPLE_JOURNAL_02
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 4−SEP−2014 17:22:08.86

This problem has been corrected in Oracle Rdb Release 7.3.1.2. Both RMU Convert and RMU Backup have
been modified to issue improved diagnostics in this case. In addition the Oracle Rdb Installation and
Configuration Guide has been updated with instructions for recovering from this state.

In this example, an RMU Set After_Image statement can be used to modify the named after image to the
current Oracle Rdb version. Oracle recommends that the contents of the after image file be backed up prior to
the RMU/SET AFTER_IMAGE command since it will modify and truncate the prior contents.

$ rmu/set after/alter=(Name=SAMPLE_JOURNAL_02) SAMPLE
%RMU−I−LOGMODSTR, unsuppressed after−image journal "SAMPLE_JOURNAL_02"

The following example shows the RMU−W−AIJSUPPRESSED now issued by RMU Convert for each
suppressed journal.

Oracle® Rdb for OpenVMS

2.3.4 RMU Convert Leaves After Image Journal SUPPRESSED 39

$ rmu/convert/noconfirm sample
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.3−120 on OpenVMS IA64 V8.4
%RMU−I−AIJ_DISABLED, after−image journaling is being disabled temporarily for
the Convert operation
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database USER2:[TESTING]SAMPLE.RDB;1 successfully converted
from version V7.2 to V7.3
%RMU−I−CVTCOMSUC, CONVERT committed for USER2:[TESTING]SAMPLE.RDB;1 to version
V7.3
%RMU−I−LOGMODSTR, activated after−image journal "SAMPLE_JOURNAL_01"
%RMU−W−AIJSUPPRESSED, After journal "SAMPLE_JOURNAL_02" has been
suppressed and not converted since it contains data from the previous
version
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

In addition, RMU Backup has been modified to similarly warn that some of the after image journal files (AIJ)
are incompatible with the current version. The subsequent database backup is unaffected by the state of the
after image journals.

$ rmu/backup sample sample_bck73
%RMU−F−BADAIJVER, after−image journal version is incompatible with
the runtime system
%RMU−W−ROOERRORS, 1 error encountered in root verification
%RMU−I−BCKTXT_00, Backed up root file USER2:[TESTING]SAMPLE.RDB;3
%RMU−I−BCKTXT_02, Starting full backup of storage area (RDB$SYSTEM)
USER2:[TESTING]SAMPLE.RDA;3 at 4−SEP−2014 17:22:08.80
%RMU−I−BCKTXT_12, Completed full backup of storage area (RDB$SYSTEM)
USER2:[TESTING]SAMPLE.RDA;3 at 4−SEP−2014 17:22:08.81
%RMU−I−BCKTXT_02, Starting full backup of storage area (SAMPLE_AREA1)
USER2:[TESTING]SAMPLE_AREA1.RDA;3 at 4−SEP−2014 17:22:08.81
%RMU−I−BCKTXT_12, Completed full backup of storage area (SAMPLE_AREA1)
USER2:[TESTING]SAMPLE_AREA1.RDA;3 at 4−SEP−2014 17:22:08.82
%RMU−I−COMPLETED, BACKUP operation completed at 4−SEP−2014 17:22:08.82

Oracle® Rdb for OpenVMS

2.3.4 RMU Convert Leaves After Image Journal SUPPRESSED 40

2.4 RMU Show Statistics Errors Fixed

2.4.1 RMU/SHOW STATISTICS Playback Zeroed Final
Transaction Duration Screen

Bug 14549459

On the OpenVMS Itanium platform, if an Oracle Rdb RMU/SHOW STATISTICS/INPUT command was
invoked to play back a prerecorded binary statistics file created by a prior RMU/SHOW
STATISTICS/OUTPUT command, and a TRANSACTION DURATION (TOTAL) screen was invoked,
when the playback ended the TRANSACTION DURATION (TOTAL) screen statistics were all incorrectly
set to zeroes. This did not happen on the OpenVMS Alpha platform.

This problem has been fixed. Now, after the RMU/SHOW STATISTICS playback reaches the end of file, the
TRANSACTION DURATION (TOTAL) screen statistics displayed will have valid values.

The following example shows the problem. At the end of the playback, the TRANSACTION DURATION
(TOTAL) screen statistics were all zero.

$ rmu/show statistics/time=−1/input=RMU_STAT.DAT

Node: A (1/1/2) Oracle Rdb V7.3−100 Perf. Monitor
 7−AUG−2013 23:59:25.65
Rate: 0.01 Seconds Transaction Duration (Total)
 Elapsed: 2 16:59:08.19
Page: 1 of 1
DEV:[DIR]TEST.RDB;1 Mode: Replay

Total transaction count: 0
Seconds Tx.Count: % #Complete: % #Incomplete: %
 0−< 1: 0 0% 0 0% 0 0% <−avg=0.000000 95%=0.00
 1−< 2: 0 0% 0 0% 0 0%
 2−< 3: 0 0% 0 0% 0 0%
 3−< 4: 0 0% 0 0% 0 0%
 4−< 5: 0 0% 0 0% 0 0%
 5−< 6: 0 0% 0 0% 0 0%
 6−< 7: 0 0% 0 0% 0 0%
 7−< 8: 0 0% 0 0% 0 0%
 8−< 9: 0 0% 0 0% 0 0%
 9−<10: 0 0% 0 0% 0 0%
 10+++: 0 0% 0 0% 0 0%

The following example shows that the problem has been fixed. At the end of the playback, the
TRANSACTION DURATION (TOTAL) screen statistics contain valid values.

$ rmu/show statistics/time=−1/input=RMU_STAT.DAT

Node: A (1/1/2) Oracle Rdb V7.3−120 Perf. Monitor
 7−JAN−2014 23:59:25.65
Rate: 0.01 Seconds Transaction Duration (Total)
 Elapsed: 2 16:59:08.19
Page: 1 of 1
DEV:[DIR]TEST.RDB;1 Mode: Replay

2.4 RMU Show Statistics Errors Fixed 41

Total transaction count: 165498168
Seconds Tx.Count: % #Complete: % #Incomplete: %
 0−< 1: 165399645 99% 165399645 99% 98523 1% <−avg=0.011572 95%=0.01
 1−< 2: 55503 0% 165455148 99% 43020 1%
 2−< 3: 15124 0% 165470272 99% 27896 1%
 3−< 4: 6768 0% 165477040 99% 21128 1%
 4−< 5: 3512 0% 165480552 99% 17616 1%
 5−< 6: 2870 0% 165483422 99% 14746 1%
 6−< 7: 1764 0% 165485186 99% 12982 1%
 7−< 8: 1729 0% 165486915 99% 11253 1%
 8−< 9: 1562 0% 165488477 99% 9691 1%
 9−<10: 1106 0% 165489583 99% 8585 1%
 10+++: 8585 0% 165498168 100% 0 0%

This problem was actually corrected in Oracle Rdb Release 7.3.1.1.

2.4.2 Field Help Missing for Some RMU Show Statistics
Fields

Bug 19267444

In prior releases of Oracle Rdb, it was possible that some field level help for some RMU Show Statistics
screens was missing. This has been corrected for the reported cases.

This problem has been corrected in Oracle Rdb Release 7.3.1.2. If any missing field help is noticed, Oracle
requests that you contact Oracle Support after running the RMU/SHOW STATISTICS command with
/OPTION=DEBUG and repeating the Help request. RMU will display the screen and field keys with the "No
help available" message. This information will be used by Oracle Rdb engineering to locate and correct the
missing help text.

Oracle® Rdb for OpenVMS

2.4.2 Field Help Missing for Some RMU Show Statistics Fields 42

Chapter 3
Software Errors Fixed in Oracle Rdb Release
7.3.1.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.3.1.1.

Chapter 3Software Errors Fixed in Oracle Rdb Release 7.3.1.1 43

3.1 Software Errors Fixed That Apply to All
Interfaces

3.1.1 Memory Leak Corrected in Queries That Use Sorting

Bug 17360970

In all prior releases of Oracle Rdb, there was a minor memory leak that occurred when a query used sorting
(ORDER BY, GROUP BY, DISTINCT, UNION, and so on) and the query was terminated prior to returning
all rows. For instance, a cursor was closed (using CLOSE, COMMIT or RELEASE statements) or if the query
contained a LIMIT TO clause.

In these cases, the normal cleanup code could fail to release a small piece of virtual memory if an I/O had
fetched data from the SORT work files and that buffered data was not returned to the query.

Workarounds to this problem include:

Avoiding the use of SORT for such queries. For example, creating an index (possibly adding a
COLLATING SEQUENCE) which is the correct order for the query. In such cases, the SORT
operation can be avoided by using the index ordering.

•

Avoid using the disk sorting interface. This can be done by allowing QSORT (an alternate algorithm)
to be used for larger sets of data or defining the logical name RDMS$BIND_MAX_QSORT_COUNT
to a value adequate to hold all rows input into the sort.

•

Restructuring the query so that the LIMIT TO is part of an outer reference and perform the ORDER
BY in a nested derived table.

•

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.1.2 Wrong Result Using Match Strategy on EXISTS
Subquery

Bug 16819636

In prior releases of Oracle Rdb, the optimizer might return wrong results when the previous aggregate
subquery is later joined by a cross with a direct lookup index key, which is part of an equivalent class of
transitive equality booleans between multiple table joins.

For example, the following query contains four tables joined with transitive equality booleans between them,
followed by an EXISTS subquery joining with another equality boolean transitive to one of the outer tables.

SELECT
 t2.active, t2.fdate, t1.id, t1.status
FROM
 T0 t0, T1 t1, T2 t2, T3 t3,
WHERE
 t1.status = 'E'
 AND ((t3.fdate BETWEEN '20130421' AND '20130810') OR (t3.active='1'))
 AND t3.id=t1.id

3.1 Software Errors Fixed That Apply to All Interfaces 44

 AND EXISTS
 (SELECT * FROM T4 t4 WHERE
 t4.id=t1.id AND t4.type = '1')
 AND t2.id=t1.id
 AND t2.id=t0.id
 AND ((t2.fdate between '20130421' AND '20130810') OR (t2.active='1'))
 AND t0.iso='GB'
;
Tables:
 0 = T0
 1 = T1
 2 = T2
 3 = T3
 4 = T4
Cross block of 4 entries Q1
 Cross block entry 1
 Conjunct: 3.ID = 1.ID
 Match Q1
 Outer loop
 Match_Key:1.ID
 Conjunct: <agg0> <> 0
 Match Q1
 Outer loop (zig−zag)
 Match_Key:1.ID
 Index_Key:ID
 Conjunct: 1.STATUS = 'E'
 Get Retrieval by index of relation 1:T1
 Index name T1_IDX [0:0]
 Inner loop (zig−zag)
 Match_Key:4.ID
 Index_Key:TYPE, ID, FDATE
 Aggregate−F1: 0:COUNT−ANY (<subselect>) Q2
 Index only retrieval of relation 4:T4
 Index name T4_IDX [1:1]
 Keys: T4.TYPE = '1'
 Inner loop (zig−zag)
 Match_Key:3.ID
 Index_Key:ID, SLID, FDATE
 Conjunct: ((3.FDATE >= '20130421') AND (3.FDATE <=
 '20130810')) OR (3.ACTIVE = '1')
 Get Retrieval by index of relation 3:T3
 Index name T3_IDX [0:0]
 Cross block entry 2
 Index only retrieval of relation 0:T0
 Index name T0_NDX [2:2] Direct lookup <== See Note below
 Keys: (4.ID = 0.ID) AND (0.ISO = 'GB')
 Cross block entry 4
 Leaf#01 FFirst 2:T2 Card=32
 Bool: (2.ID = 1.ID) AND (2.ID = 0.ID) AND (((2.FDATE >= '20130421'
) AND (2.FDATE <= '20130810')) OR (2.ACTIVE = '1'))
 BgrNdx1 T2_IDX [1:1] Fan=11
 Keys: 2.ID = 1.ID
...etc...

0 rows selected <= wrong result returned

The wrong result is caused by the index boolean "(4.ID = 0.ID)" in the keys for the direct lookup index
T0_NDX under the "Cross block entry 2".

A workaround may be to use a query outline to change the join order.

Oracle® Rdb for OpenVMS

3.1 Software Errors Fixed That Apply to All Interfaces 45

These problems have been corrected in Oracle Rdb Release 7.3.1.1.

3.1.3 Bugcheck at DIOFETCH$FETCH_SNAP_SEG

Bug 8881798

Starting in Oracle Rdb Release V7.2, it was possible for a read−only transaction to bugcheck with an
exception at routine DIOFETCH$FETCH_SNAP_SEG. The actual offset within that routine would depend on
the current platform and release version number.

For database consistency, if a record is modified on a data page by a read−write (RW) transaction, but not
committed prior to the start of a read−only (RO) transaction, those updates should not be visible to that RO
transaction. In such a case, the RO transaction would need to find some prior version of the record that would
be visible. This prior version is written by a RW transaction to a page in a snapshot file. The data page
maintains a pointer to this snapshot page. Transaction Sequence Numbers (TSNs) play an important role in
determining which prior copy of a record is visible and when a snapshot page is considered obsolete and
re−useable.

The bugcheck occurs when the RO transaction needs to find a prior version of a data record, follows the
pointer to one or more snapshot pages, but cannot find a version that is visible. This problem was caused by
RW transactions that erroneously re−used valid snapshot pages needed by these RO transactions.

This problem does not cause any data inconsistencies or corruption. Simply restarting the RO transaction
would often suffice.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.1.4 Performance Improvement for OJ Query With
Temporary TTBL and Sort

Bug 3539303

In prior releases of Oracle Rdb, an Outer Join query might slow down when the inner loop applies a
temporary table with sort node. See the following examples.

Left OJ query with "is null" predicate

select count(*)
 from T1 as C1
 left outer join
 T2 as C2
 on (C1.COL_ID = C2.COL_ID)
 where C2.COL_ID is null;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:COUNT (*) Q2
Conjunct: MISSING (1.COL_ID)
Match (Left Outer Join) Inner_TTBL Q3
 Outer loop
 Match_Key:0.COL_ID
 Index only retrieval of relation 0:T1

1.

Oracle® Rdb for OpenVMS

3.1.3 Bugcheck at DIOFETCH$FETCH_SNAP_SEG 46

 Index name I_AR_AT_2 [0:0]
 Inner loop
 Match_Key:1.COL_ID
 Temporary relation
 Sort: 1.COL_ID(a)
 Index only retrieval of relation 1:T2
 Index name I_UR_TN_AS_6 [0:0]

 0
1 row selected

Left OJ query with "CCOL = CVAR" predicate

select count(*)
 from T1 as C1
 left outer join
 T2 as C2
 on (C1.COL_ID = C2.COL_ID)
 where C2.COL_ID = 0;
Tables:
 0 = T1
 1 = T2
Aggregate: 0:COUNT (*) Q2
Conjunct: 1.COL_ID = 0
Match (Left Outer Join) Inner_TTBL Q3
 Outer loop
 Match_Key:0.COL_ID
 Index only retrieval of relation 0:T1
 Index name I_AR_AT_2 [0:0]
 Inner loop
 Match_Key:1.COL_ID
 Temporary relation
 Sort: 1.COL_ID(a)
 Conjunct: 1.COL_ID = 0
 Index only retrieval of relation 1:T2
 Index name I_UR_TN_AS_6 [1:1]
 Keys: 1.COL_ID = 0

 0
1 row selected

2.

A workaround may be to use a query outline to change the match strategy to a cross strategy.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.1.5 In Some Cases System User Audited Instead of
Session User

Bug 17731257

In prior releases of Oracle Rdb, it was possible that when auditing actions on database objects, the
SYSTEM_USER was recorded instead of the SESSION_USER. This occurred during user impersonation,
such as when an application uses CONNECT using USER and USING parameters.

This most commonly occurs when the SESSION_USER is not established for auditing database events. A
possible workaround is to enable DACCESS auditing for the DATABASE for at least the SELECT privilege.

$ RMU/SET AUDIT/ENABLE=DACCESS=DATABASE/PRIV=(SELECT,ALTER) PERSONNEL

Oracle® Rdb for OpenVMS

3.1.5 In Some Cases System User Audited Instead of Session User 47

This problem has been corrected in Oracle Rdb Release 7.3.1.1. Oracle Rdb now correctly records the session
user in the audit journal.

3.1.6 Using BEGIN/END Around Set Transaction Leads to
Memory Leak

Bug 16536178

The following sequence of SQL statements can cause a memory leak in Dispatch and, if run for long enough
without disconnecting, could cause the process to run out of memory.

BEGIN
 SET TRANSACTION READ WRITE
 RESERVING EMPLOYEES FOR SHARED WRITE;
END;
BEGIN
 COMMIT;
END;

Removing at least one BEGIN/END (it doesn't matter which) can avoid the problem.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.1.7 Excessive Alignment Faults on Client Side Using
RDB$REMOTE

Bug 18155052

It was possible for the client side of an RDB$REMOTE type of connection to experience excessive alignment
faults.

Exception PC Rate Exception PC Module Offset EPID
−−−−−−−−−−−−−−−−− −−−− −−
00000000.800F5191 94.95 RDB$SHARE72+8005D191 RDB$SHARE72 8005D191 20E07125
00000000.800F50B0 94.86 RDB$SHARE72+8005D0B0 RDB$SHARE72 8005D0B0 20E07125

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.1.8 Ranked Index Bugchecks − PSII2REMOVEDUPBBC &
PSII2INSERTDUPBBC

Bug 17383599

In prior versions of Oracle Rdb, applications trying to insert or remove records using a ranked index may
bugcheck with an exception similar to the following:

Exception at 00000000xxxxxxxx : RDMSHRP72\PSII2REMOVEDUPBBC + 0000xxxx
%COSI−F−BUGCHECK, internal consistency failure

A bugcheck may also be raised with the following exception:

Oracle® Rdb for OpenVMS

3.1.6 Using BEGIN/END Around Set Transaction Leads to Memory Leak 48

Exception at 00000000xxxxxxxx : RDMSHRP72\PSII2INSERTDUPBBC + 0000xxxx
%COSI−F−BUGCHECK, internal consistency failure

In addition, the following exception may be raised during record retrieval:

%RDMS−F−NODBK, 61:117:29 does not point to a data record

This problem may also lead to a corruption of the index on−disk: an RMU VERIFY INDEX of the database
will indicate that the index is corrupt with an exception similar to:

RMU−E−BADDBKFET, Error fetching dbkey 61:117:29

Depending on the transaction mix of insertions and deletions, it is possible that these problems may not cause
any on−disk index corruption: the problem may only be a transient error, affecting in−memory structures
only.

These problems are more likely to occur when there are a large number of duplicates within the ranked index
entries.

A possible workaround is to rebuild the index if RMU/VERIFY has shown an exception similar to the one
cited above. The rebuild of the index will rectify any ranked index corruptions. However, in prior versions of
Oracle Rdb, the same problem may re−occur on subsequent transactions.

These problems have been corrected in Oracle Rdb Release 7.3.1.1.

Oracle® Rdb for OpenVMS

3.1.6 Using BEGIN/END Around Set Transaction Leads to Memory Leak 49

3.2 SQL Errors Fixed

3.2.1 Memory Leak Possible in DESCRIBE Dynamic SQL
Statement

Bug 14570971

In prior releases of Oracle Rdb V7.3, it was possible that applications using Dynamic SQL could encounter a
small memory leak. Application servers which stayed active for a long time might exhaust available memory.
This might affect SQL/Services, JDBC, and so on.

This problem occurs during the DESCRIBE statement when processing any of several special character
columns or functions. This includes:

DBKEY•
ROWID•
the SYS_GUID() function•
the RDB$SECURITY_CLASS system table column•
a column defined using the system domain RDB$DATABASE_KEY•
any COMPUTED BY or AUTOMATIC AS column that uses such value expressions•
and any view column based on any of these value expressions.•

These character types use a special character set which is not being handled correctly when building the
SQLDA.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.2.2 Changes to Date/Time Literal Processing

This release of Oracle Rdb improves the diagnostics reported for malformed date/time and interval
values. In prior versions of Oracle Rdb, a single exception COSI$_IVTIME would be reported if there
was a syntax error in the date/time value or if the field values exceeded the allowed range of values.
The following example shows these additional messages.

SQL> select interval'100−100' year to month from rdb$database;
%SQL−F−DATCONERR, Data conversion error for string '100−100'
−COSI−F−IVTIMEILF, invalid interval − leading field has too many digits
SQL> select interval'100−100' year(3) to month from rdb$database;
%SQL−F−DATCONERR, Data conversion error for string '100−100'
−COSI−F−IVTIMEINT, invalid interval − error in the format or values
SQL> select time'12:00:01.999' from rdb$database;
%SQL−F−DATCONERR, Data conversion error for string '12:00:01.999'
−COSI−F−IVTIMEFSP, invalid time or interval − fractional seconds field has too
many digits
SQL>

Oracle Rdb now returns SQLSTATE '22015' Interval field overflow in some cases where SQLSTATE
'22007' Invalid datetime format was returned in prior releases.

•

3.2 SQL Errors Fixed 50

Leading zeros for the interval leading field are now ignored when checking the format of literal
values. Prior versions of Oracle Rdb would raise an exception even though these were insignificant.

SQL> create table TEST (duration interval year(2) to month);
SQL> insert into TEST values (interval'00000'year to month);
%SQL−F−DATCONERR, Data conversion error for string '00000'
−COSI−F−IVTIMEILF, invalid interval − leading field has too many digits
−COSI−F−IVTIME, invalid date or time

This example no longer causes an exception.

•

This release of Oracle Rdb also allows the "T" character as a separator between date and time portions
of a TIMESTAMP literal. This allows literal dates that conform to ISO 8601 Data elements and
interchange formats − Information interchange − Representation of dates and times which is an
International standard for date/time representations.

SQL> select timestamp'2013−10−29T14:52:11.42' from rdb$database;

 2013−10−29 14:52:11.42
1 row selected

•

New SQLCODE values
The table Values Returned to the SQLCODE Field now includes these new SQLCODE values.

Table 3−1 Values Returned to the SQLCODE Field

Numeric
Value

Literal Value Meaning

−1045 SQLCODE_INV_INTERVAL Invalid interval format

−1046 SQLCODE_INV_FRACSEC
Time, Timestamp or interval has too many
fractional digits

−1047 SQLCODE_INV_INTLEAD Interval leading field is too large

−1048 SQLCODE_INC_CSET Incompatible character set

−1049 SQLCODE_DATA_CVT_ERRORData conversion error

•

These problems have been corrected in Oracle Rdb Release 7.3.1.1.

3.2.3 Unexpected Bugcheck From Invalid DBKEY Use

Bug 17656896

In prior releases of Oracle Rdb, the test for valid DBKEY (ROWID) values might fail to diagnose some
illegal values. The result was a bugcheck when an attempt was made to use these bad DBKEY values.

The following example shows one such case.

SQL> begin
cont> set :dbk = _dbkey'−32767:1:0';
cont> end;
SQL>
SQL> select * from employees
cont> where dbkey = :dbk;

Oracle® Rdb for OpenVMS

3.2.3 Unexpected Bugcheck From Invalid DBKEY Use 51

%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[...]RDSBUGCHK.DMP;
%SYSTEM−F−ACCVIO, access violation, reason mask=00,
virtual address=0000000000000000, PC=FFFFFFFF8191FA30, PS=0000001B
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.1. The DBKEY validation has been improved to
catch this and similar cases. This is shown in the following example.

SQL> select * from employees
cont> where dbkey = :dbk;
%RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer associated
with a record
−RDMS−F−NODBK, −32767:1:0 does not point to a data record
SQL>

3.2.4 Not Equals Operator Causes BITMAPPED SCAN
Strategy to be Rejected

Bug 5399245

In some cases, the use of not equals will cause the Rdb optimizer to reject BITMAPPED SCAN strategy. This
is shown in this example:

SQL> select count(*)
cont> from
cont> (select dbkey from T1 where C2 <>'XYZ' or C4 >='03−jul−2006') as x
cont> optimize for bitmapped scan;
Tables:
 0 = T1
Aggregate: 0:COUNT (*) Q2
Merge of 1 entries Q2
 Merge block entry 1 Q3
 Conjunct: (0.C2 <> 'XYZ') OR (0.C4 >= '3−JUL−2006')
 Get Retrieval sequentially of relation 0:T1

 2514
1 row selected
SQL>

With this release of Oracle Rdb, when BITMAPPED SCAN is requested and REWRITE is enabled, the query
compiler will rewrite the not equals operator (<>) as an OR of a less than operator (<) and a greater than
operator (>). This new expression is semantically the same and encourages the use of the BITMAPPED
SCAN strategy. Note that this transformation is only used if one of the operands of the not equals operator is a
column of a sorted index.

Programmers can request bitmapped scan be attempted using the SET FLAGS statement, the
RDMS$SET_FLAGS logical name, the RDMS$ENABLE_BITMAPPED_SCAN logical name or the
OPTIMIZE clause of the query.

This is the new strategy using the new capability of Oracle Rdb. The result is a faster query using less I/O and
lower CPU time.

SQL> select count(*)
cont> from

Oracle® Rdb for OpenVMS

3.2.4 Not Equals Operator Causes BITMAPPED SCAN Strategy to be Rejected 52

cont> (select dbkey from T1 where C2 <>'XYZ' or C4 >='03−jul−2006') as x
cont> optimize for bitmapped scan;
Tables:
 0 = T1
Aggregate: 0:COUNT (*) Q2
Merge of 1 entries Q2
 Merge block entry 1 Q3
 Leaf#01 BgrOnly 0:T1 Card=348838 Bitmapped scan
 Bool: (0.C2 < 'XYZ') OR (0.C2 > 'XYZ') OR (0.C4 >= '3−JUL−2006')
 BgrNdx1 X1_T1 [0:1,1:0] Fan=100
 Keys: r0: 0.C2 > 'XYZ'
 r1: 0.C2 < 'XYZ'
 OrNdx1 X3_T1 [1:0] Fan=84
 Keys: 0.C4 >= '3−JUL−2006'

 2514
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.2.5 Data Dictionary Tables Now Use Key Suffix
Compression

Bug 18118478

In prior versions of Oracle Rdb, when preparing a database for use by OCI Services for Rdb, indices for the
data dictionary tables were created with "Key suffix compression is DISABLED".

The following example shows this setting for the index on the USER$ table.

$ @sys$share:RDB_NATCONN73.COM
Operation (prepare/upgrade/drop/add_user/modify_user/remove_user/show_users):
prepare
Database: mf_personnel
Developer version (60/6I/<CR>):
**** Preparing database MF_PERSONNEL ****
**** Preparing database successfully completed ****
Operation (prepare/upgrade/drop/add_user/modify_user/remove_user/show_users):
$
$ sql$
SQL> attach 'file mf_personnel';
SQL> show table USER$
...
Indexes on table USER$:
USER$_NAME with column NAME
 No Duplicates allowed
 Type is Sorted
 Key suffix compression is DISABLED
 Node size 430
...
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.1. Now such indices will be created with "Key
suffix compression is ENABLED". This has the advantage of reducing the size of metadata indices, since
most names are space filled to 31 octets.

Oracle® Rdb for OpenVMS

3.2.5 Data Dictionary Tables Now Use Key Suffix Compression 53

3.2.6 Unexpected Bugcheck When Using NUMBER OF
SWEEP ROWS Clause

Bug 18187722

In prior releases of Oracle Rdb, the clause NUMBER OF SWEEP ROWS was accepted as part of the ROW
CACHE IS ENABLED clause. This would cause SQL to generate a bugcheck dump.

The following example shows the problem in ALTER DATABASE.

SQL> CREATE DATABASE
cont> FILENAME 'SAMPLE.RDB'
cont> ROW CACHE ENABLE
cont> ;
SQL> ALTER DATABASE
cont> FILENAME 'SAMPLE.RDB'
cont> ROW CACHE ENABLE
cont> (NUMBER OF SWEEP ROWS IS 500);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]SQLBUGCHK.DMP;
%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle
support representative. walk_alter_dbase − bad RC option
SQL>

A similar error occurs during CREATE DATABASE.

SQL> CREATE DATABASE
cont> FILENAME 'SAMPLE.RDB'
cont> ROW CACHE ENABLE
cont> (NUMBER OF SWEEP ROWS IS 500
cont> ,SWEEP INTERVAL IS 60 SECONDS);
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]SQLBUGCHK.DMP;
%SQL−F−BUGCHK, There has been a fatal error. Please contact your Oracle
support representative. walk_create_dbase − bad RC option

This clause is only applicable to the CREATE CACHE, ALTER CACHE or ADD CACHE clauses and
should not have been accepted or documented for the CREATE DATABASE statement, ALTER
DATABASE statement or IMPORT Statement.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.2.7 Memory Leak Possible When Using BITMAPPED SCAN
Queries

Bug 17834421

In prior releases of Oracle Rdb, applications which performed BITMAPPED SCAN on SORTED RANKED
indices might encounter a small memory leak. This allocated but unused memory can accumulate in server
processes that ATTACH (CONNECT) and DISCONNECT to many databases over time.

This problem is more obvious in Oracle Rdb Release 7.3.1 because all system tables use SORTED RANKED
indices and are queried using BITMAPPED SCAN.

Oracle® Rdb for OpenVMS

3.2.6 Unexpected Bugcheck When Using NUMBER OF SWEEP ROWS Clause 54

This problem has been corrected in Oracle Rdb Release 7.3.1.1. Memory used by BITMAPPED SCAN is now
correctly released upon end of the query.

Oracle® Rdb for OpenVMS

3.2.6 Unexpected Bugcheck When Using NUMBER OF SWEEP ROWS Clause 55

3.3 RMU Errors Fixed

3.3.1 RMU/CONVERT/ROLLBACK From V7.3 May Prevent
Access to Some Tables

Bug 18020072

In some rare cases, an RMU/CONVERT/NOCOMMIT can damage the database metadata such that a
subsequent RMU/CONVERT/ROLLBACK prevents access to some tables. An RMU/CONVERT/COMMIT
however is not affected by this problem and the resulting Rdb V7.3 database is correctly converted.

The following example shows the reported error.

$ RMU/CONVERT/NOCOMMIT TEST
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.3−100 on OpenVMS IA64
V8.3−1H1
Are you satisfied with your backup of USER1:[TESTING]TEST.RDB;1 and your backup
 of any associated .aij files [N]? y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database USER1:[TESTING]TEST.RDB;1 successfully converted from
 version V7.2 to V7.3
$ RMU/CONVERT/ROLLBACK TEST
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.3−100 on OpenVMS IA64
V8.3−1H1
Are you satisfied with your backup of USER1:[TESTING]TEST.RDB;1 and your backup
 of any associated .aij files [N]? y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−I−CVTROLSUC, CONVERT rolled−back for USER1:[TESTING]TEST.RDB;1 to version
V7.2
$ SQL$
SQL> attach 'file test';
SQL> show index T1_NDX
Indexes on table T1
T1_NDX with column COL1
%RDB−E−NO_RECORD, access by dbkey failed because dbkey is no longer associated
with a record
−RDMS−F−NODBK, 1:2847:130 does not point to a data record

This problem occurs while loading the index metadata for the referenced table. In practice, any query against
the affected tables will fail. This includes tools such as RMU/UNLOAD, RMU/EXTRACT and SQL
EXPORT DATABASE.

This problem has been corrected in Oracle Rdb Release 7.3.1.1. RMU/CONVERT now correctly manages the
index attributes during conversion so that a rollback is no longer affected by changes to V7.3.

3.3.2 Bugcheck from RMU/VERIFY/ALL After Constraint
Verification

Bug 17548158

3.3 RMU Errors Fixed 56

In prior releases of Oracle Rdb, the RMU Verify command might fail with a bugcheck on a CHECK
constraint similar to the example below.

check ((not col1 in (' ', NULL)))

If the IN clause does not contain NULL, then no bugcheck occurs.

In fact, the coding for this constraint is in error and does not achieve the expected behavior. A corrected
version is shown here.

check ((col1 <> ' ' and col1 is not NULL))

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.3.3 Unexpected Bugcheck During Large RMU Load When
Using /Defer_Index_Updates Qualifier

Bug 13402630

In prior releases of Oracle Rdb, it was possible that RMU Load might fail with a bugcheck dump.

$ RMU/LOAD −
 ABC_DB −
 LARGE_TABLE −
 LARGE_TABLE_DATA.UNL −
 /Commit=100000 −
 /Defer_Index_Updates −
 /Transaction=exclusive −
 /Buffer=10000
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP;

The workaround was to not use the /Defer_Index_Updates qualifier.

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.3.4 RMU/BACKUP/AFTER_JOURNAL Returned a Success
Status if %RMU−F−AIJJRNBSY

Bug 17316940

When the Oracle Rdb RMU/BACKUP/AFTER_JOURNAL command is backing up Rdb database After
Image Journal files and the backup cannnot continue because RMU cannot access an AIJ file, it outputs the
fatal error:

%RMU−F−AIJJRNBSY, journal AIJ_FILE_NAME is busy and cannot be backed up

The backup is then terminated. However, even though the RMU/BACKUP/AFTER_JOURNAL command
was terminated because of a fatal error and did not complete, the backup operation returned a success exit
status and the following output success message so that the %RMU−F−AIJJRNBSY failure status could be
overlooked.

Oracle® Rdb for OpenVMS

3.3.3 Unexpected Bugcheck During Large RMU Load When Using /Defer_Index_Updates Qualifier57

%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully

This problem has been fixed. Now, when the fatal %RMU−F−AIJJRNBSY error condition occurs, the
misleading message will no longer be output and the %RMU−F−AIJJRNBSY fatal error status will be set as
the RMU/BACKUP/AFTER_JOURNAL command exit status instead of the incorrect success status.

The following example shows the problem. The after image journal file backup operation is terminated and
the %RMU−F−AIJJRNBSY fatal error is output but the backup operation returns a success status and the
following misleading message is output:

%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully

Here is the example.

$ rmu/back/after_after/log mf_personnel mfpaijbck
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ1 at 10:04:53.86
%RMU−I−QUIETPT, waiting for database quiet point at 21−OCT−2013 10:04:53.86
%RMU−I−QUIETPTREL, released database quiet point at 21−OCT−2013 10:04:53.91
%RMU−F−AIJJRNBSY, journal AIJ1 is busy and cannot be backed up
%RMU−I−AIJNOBACKUP, AIJ contains no transactions that qualify for backup
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully
MALIBU>SHOW SYMBOL $STATUS
 $STATUS == "%X10000001"

The following example shows that this problem has been fixed. The fatal %RMU−F−AIJJRNBSY error is
now the return status of the after image journal file backup operation and the misleading message is not
output.

$ rmu/back/after/log mf_personnel mfpaijbck
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal AIJ1 at 10:04:53.86
%RMU−I−QUIETPT, waiting for database quiet point at 21−OCT−2013 10:04:53.86
%RMU−I−QUIETPTREL, released database quiet point at 21−OCT−2013 10:04:53.91
%RMU−F−AIJJRNBSY, journal AIJ1 is busy and cannot be backed up
%RMU−I−AIJNOBACKUP, AIJ contains no transactions that qualify for backup
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation completed
MALIBU>SHOW SYMBOL $STATUS
 $STATUS == "%X12C8ADAC"

This problem has been corrected in Oracle Rdb Release 7.3.1.1.

3.3.5 Unexpected Failure of RMU/SET AIP and RMU/SHOW
AIP

Bug 17722306

In prior releases of Oracle Rdb, the RENAME TABLE and RENAME INDEX commands modified the
logical area names for the referenced object, including padding spaces. This did not affect the functioning of
the tables or indices but caused some confusion when using tools such as RMU/SET AIP or RMU/SHOW

Oracle® Rdb for OpenVMS

3.3.5 Unexpected Failure of RMU/SET AIP and RMU/SHOW AIP 58

AIP. For these commands, the trailing spaces are significant and they would fail to find the named objects.

The following example shows the renaming of a table. Using SET FLAGS 'STOMAP_STATS' you can
clearly see the log messages using space padded names.

SQL> set flags 'stomap_stats';
SQL>
SQL> rename table EXAMPLE_TABLE_NAME
cont> to NEW_EXAMPLE_TABLE_NAME;
~As: reads: async 0 synch 53, writes: async 20 synch 0
SQL>
SQL> commit;
%RDMS−I−LOGMODSTR, modified logical area name to "NEW_EXAMPLE_TABLE_NAME
 "
%RDMS−I−LOGMODSTR, modified logical area name to "NEW_EXAMPLE_TABLE_NAME
 "
%RDMS−I−LOGMODSTR, modified logical area name to "NEW_EXAMPLE_TABLE_NAME
 "
%RDMS−I−LOGMODSTR, modified logical area name to "NEW_EXAMPLE_TABLE_NAME
 "
SQL>

A subsequent attempt to update the logical areas (using RMU/SET AIP) fails to locate the new name, as is
true for RMU/SHOW AIP.

$ rmu/set aip abc NEW_EXAMPLE_TABLE_NAME/length/log
%RMU−F−NOLAREAFOUND, No logical areas match the specified selection parameters
%RMU−F−FTL_RMU, Fatal error for RMU operation at 5−NOV−2013 14:35:39.05
$
$ rmu/show aip abc NEW_EXAMPLE_TABLE_NAME
*−−
* Logical Area Name LArea PArea Len Type
*−−
$

However, using a wildcard, the names are located.

$ rmu/show aip abc NEW_EXAMPLE_TABLE_NAME*/brief
*−−
* Logical Area Name LArea PArea Len Type
*−−
NEW_EXAMPLE_TABLE_NAME 61 3 665 TABLE
NEW_EXAMPLE_TABLE_NAME 62 4 665 TABLE
NEW_EXAMPLE_TABLE_NAME 63 5 665 TABLE
NEW_EXAMPLE_TABLE_NAME 64 2 665 TABLE
$

The problem with RMU/SET AIP and RMU/SHOW AIP can be avoided by using wildcard specifications of
the object name, using "*" wildcard to match the trailing spaces, or using delimited names on the DCL
command line that include the trailing spaces.

The database administrator can modify the names of the logical areas using RMU/SET AIP/RENAME.
However, Oracle suggests great care be taken to not change the name (apart from removing trailing spaces) as
this will cause issues with future DDL operations.

$ rmu/set aip abc NEW_EXAMPLE_TABLE_NAME*/rename=NEW_EXAMPLE_TABLE_NAME/log
%RMU−I−AIPSELMOD, Logical area id 61, name NEW_EXAMPLE_TABLE_NAME
selected for modification

Oracle® Rdb for OpenVMS

3.3.5 Unexpected Failure of RMU/SET AIP and RMU/SHOW AIP 59

%RMU−I−AIPSELMOD, Logical area id 62, name NEW_EXAMPLE_TABLE_NAME
selected for modification
%RMU−I−AIPSELMOD, Logical area id 63, name NEW_EXAMPLE_TABLE_NAME
selected for modification
%RMU−I−AIPSELMOD, Logical area id 64, name NEW_EXAMPLE_TABLE_NAME
selected for modification
$
$ rmu/show aip abc NEW_EXAMPLE_TABLE_NAME/brief
*−−
* Logical Area Name LArea PArea Len Type
*−−
NEW_EXAMPLE_TABLE_NAME 61 3 665 TABLE
NEW_EXAMPLE_TABLE_NAME 62 4 665 TABLE
NEW_EXAMPLE_TABLE_NAME 63 5 665 TABLE
NEW_EXAMPLE_TABLE_NAME 64 2 665 TABLE
$

This problem has been corrected in Oracle Rdb Release 7.3.1.1. Oracle Rdb has been corrected to pass the
object name without the padding spaces.

3.3.6 RMU/SET AUDIT Ignoring "*" Wildcard for the
IDENTIFIERS Option

In prior releases of Oracle Rdb, the RMU Set Audit command ignored the "*" when specified for
/ENABLE=IDENTIFIERS=* or /DISABLE=IDENTIFIERS=* to select all users to be audited.

The following example shows that a successful RMU command didn't change the enabled identifiers.

$ rmu/show audit/ident TEST_DB

Enabled identifiers:
 None

$ rmu/set audit/enable=ident=* TEST_DB
$ rmu/show audit/ident TEST_DB

Enabled identifiers:
 None

$

A workaround to this problem is to specify the string "[*]" which is an equivalent specification.

This problem has been corrected in Oracle Rdb Release 7.3.1.1. RMU now correctly interprets the "*" as a
request to audit all user and role (rights) identifiers used by the database.

$ rmu/show audit/ident TEST_DB

Enabled identifiers:
 None

$ rmu/set audit/enable=ident=* TEST_DB
$ rmu/show audit/ident TEST_DB

Enabled identifiers:
 (IDENTIFIER=*)

Oracle® Rdb for OpenVMS

3.3.6 RMU/SET AUDIT Ignoring "*" Wildcard for the IDENTIFIERS Option 60

$

Oracle® Rdb for OpenVMS

3.3.6 RMU/SET AUDIT Ignoring "*" Wildcard for the IDENTIFIERS Option 61

Chapter 4
Software Errors Fixed in Oracle Rdb Release
7.3.1.0
This chapter describes software errors that are fixed by Oracle Rdb Release 7.3.1.0.

Chapter 4Software Errors Fixed in Oracle Rdb Release 7.3.1.0 62

4.1 Software Errors Fixed That Apply to All
Interfaces

4.1.1 Make Values in RDB$CLIENT_DEFAULTS.DAT Case
Insensitive

Bug 7681548

In previous versions of Oracle Rdb, the values for the parameters
SQL_MESSAGE_VECTOR_RETURN_TYPE, SQL_NETWORK_TRANSPORT_TYPE and
SQL_DEFAULTS_RESTRICTION in the configuration file RDB$CLIENT_DEFAULTS.DAT only took
effect if specified in UPPER CASE. For example, if decnet was specified as the transport type, then the
default (to first try DECnet and then TCPIP) would still be applied. Only if DECNET was specified in all
UPPER CASE would only DECnet be used.

This problem has been corrected in Oracle Rdb Release 7.3.1.0. The values for
SQL_MESSAGE_VECTOR_RETURN_TYPE, SQL_NETWORK_TRANSPORT_TYPE and
SQL_DEFAULTS_RESTRICTION can now be specified in UPPER, lower or Mixed case with the same
result in all three cases.

Note that for systems where, before an upgrade to Oracle Rdb Release 7.3.1,
SQL_NETWORK_TRANSPORT_TYPE was specified as "decnet" with one or more lower case characters in
this string, the behavior might change after an upgrade. Such systems will now strictly use DECnet as the
transport while before the upgrade they would use the default which is to attempt to connect via TCPIP if the
attempt to connect via DECnet failed.

4.1.2 Query Ignores Potentially Useful BgrNdx

Bug 2586052

The Dynamic optimizer ignores some potentially useful index as background index (BgrNdx) that could
improve the performance at run time.

For example, the following query shows that the index I23 could be considered as a useful background index:

show table (index) t2
Indexes on table T2:
I21 with column F1
 and column F2
...etc...

Indexes on table T2:
I22 with column F1
 and column F3
...etc...

Indexes on table T2:
I23 with column F2
 and column F3

4.1 Software Errors Fixed That Apply to All Interfaces 63

...etc...

select count(*) from t2 where f1 = 1 and f2 = 1 and f3 = 1;
Tables:
 0 = T2
Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:T2 Card=64
 Bool: (0.F1 = 1) AND (0.F2 = 1) AND (0.F3 = 1)
 BgrNdx1 I21 [2:2] Fan=14
 Keys: (0.F1 = 1) AND (0.F2 = 1)
 BgrNdx2 I22 [2:2] Fan=14
 Keys: (0.F1 = 1) AND (0.F3 = 1)
~Estim I21 Sorted: Split lev=1, Seps=1 Est=4
~Estim I22 Sorted: Split lev=1, Seps=1 Est=4
~E#0011.01(1) Estim Index/Estimate 1/4 2/4
~E#0011.01(1) BgrNdx1 EofData DBKeys=4 Fetches=0+0 RecsOut=0 #Bufs=1
~E#0011.01(1) BgrNdx2 FtchLim DBKeys=0 Fetches=0+0 RecsOut=0
~E#0011.01(1) Fin Buf DBKeys=4 Fetches=0+1 RecsOut=1

 1
1 row selected

Note that I23 is not used as BgrNdx3 in this case since we already had all the DBKEYs covered by BgrNdx1
for F1 and F2 and BgrNdx2 for F3. The following query shows the obvious problem with performance when
I23 is ignored as BgrNdx3.

select count(*) from t2
 where (f1 = 1 or (f1 between 1 and 100))
 and f2 > 80
 and f3 < 100;
Tables:
 0 = T2
Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:T2 Card=64
 Bool: ((0.F1 = 1) OR ((0.F1 >= 1) AND (0.F1 <= 100))) AND (0.F2 > 80) AND (
 0.F3 < 100)
 BgrNdx1 I21 [1:1,2:1] Fan=14
 Keys: r0: (0.F1 >= 1) AND (0.F1 <= 100)
 r1: (0.F1 = 1) AND (0.F2 > 80)
 Bool: 0.F2 > 80
 BgrNdx2 I22 [1:1,1:2] Fan=14
 Keys: r0: (0.F1 >= 1) AND (0.F1 <= 100)
 r1: (0.F1 = 1) AND (0.F3 < 100)
 Bool: 0.F3 < 100
~Estim I21 Sorted: Split lev=1, Seps=16 Est=64
~Estim I22 Sorted: Split lev=1, Seps=16 Est=64
~E#0012.01(1) Estim Index/Estimate 1/64 2/64
~E#0012.01(1) BgrNdx1 EofData DBKeys=16 Fetches=0+0 RecsOut=0 #Bufs=1
~E#0012.01(1) BgrNdx2 FtchLim DBKeys=0 Fetches=0+0 RecsOut=0
~E#0012.01(1) Fin Buf DBKeys=16 Fetches=0+0 RecsOut=16

 16
1 row selected

In this case, I23 would be the perfect index since it covers F2 and F3, and should be considered as BgrNdx3.

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

Oracle® Rdb for OpenVMS

4.1 Software Errors Fixed That Apply to All Interfaces 64

4.1.3 Query Runs Slow Executing BGRNDX2 With Full Index
Scan

Bugs 4731889 and 4020688

In Bug 4731889, the following query spent a significant amount of time (approximately 26 CPU seconds as
compared to less than 1 CPU second) fetching over 80k IO's in the BGRNDX2 without finding useful
matching records.

Select * from CTR_TAB
where
 CTR_FID='129' and
 CTR_BDATE>=20040712 and
 CTR_STATUS='1' and
 ((CTR_ADATE>=20040712) or
 (CTR_ADATE=20040712 and CTR_ATIME>=15300898));
Tables:
 0 = CTR_TAB
Leaf#01 FFirst 0:CTR_TAB Card=17244926
 Bool: (0.CTR_FID = '129') AND (0.CTR_BDATE >= 20040712) AND (
 0.CTR_STATUS = '1') AND ((0.CTR_ADATE >= 20040712) OR ((
 0.CTR_ADATE = 20040712) AND (0.CTR_ATIME >= 15300898)))
 BgrNdx1 CTR_FID_NDX [2:1,2:2] Fan=25
 Keys: r0: (0.CTR_FID = '129') AND (0.CTR_ADATE = 20040712)
 r1: (0.CTR_FID = '129') AND (0.CTR_ADATE >= 20040712)
 Bool: 0.CTR_FID = '129'
 BgrNdx2 CTR_UNIQUE_NDX [0:0] Fan=14
 Bool: (0.CTR_FID = '129') AND (0.CTR_BDATE >= 20040712) AND ((
 0.CTR_ADATE >= 20040712) OR ((0.CTR_ADATE = 20040712) AND
 (0.CTR_ATIME >= 15300898)))
~Estim CTR_FID_NDX Sorted: Split lev=3, Seps=4 Est=3345
~Estim CTR_UNIQUE_NDX Sorted: Split lev=6, Seps=2 Est=2345530
~E#0001.01(1) Estim Index/Estimate 1/3345 2/2345530
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=1024 Fetches=2+19 RecsOut=0
~E#0004.01(1) BgrNdx2 EofBuf DBKeys=1024 Fetches=4+80967 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=2048* Fetches=0+17 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=3072* Fetches=0+18 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=4096* Fetches=0+17 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=5120* Fetches=0+18 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=6144* Fetches=0+17 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=7168* Fetches=0+18 RecsOut=0
~E#0004.01(1) BgrNdx1 EofBuf DBKeys=8192* Fetches=0+19 RecsOut=0
~E#0004.01(1) BgrNdx1 EofData DBKeys=8408* Fetches=0+4 RecsOut=0 #Bufs=6832
~E#0004.01(1) FgrNdx FFirst DBKeys=0 Fetches=0+7029 RecsOut=0`ABA
~E#0004.01(1) Fin TTblIni DBKeys=0 Fetches=0+0 RecsOut=0`ABA
0 rows selected
show stat

 process statistics at <date−time>
 elapsed time = 0 00:05:05.50 CPU time = 0 00:00:26.16
 page fault count = 4453 pages in working set = 41184
 buffered I/O count = 97 direct I/O count = 88328
 open file count = 13 file quota remaining = 1987
 locks held = 215 locks remaining = 31785
 CPU utilization = 8.5% AST quota remaining = 995

In Bug 4020688, the following query spent quite some time (~01:21 CPU minutes as compared to less than 1
CPU second) using full scan through the BGRNDX2 fetching over 102K IO's without finding matching rows.

Oracle® Rdb for OpenVMS

4.1.3 Query Runs Slow Executing BGRNDX2 With Full Index Scan 65

select ggggg, dbkey from test_tbl
where
 aaaaa = 'M14A250221'
 and bbbbb = ''
 and ddddd = '41010'
order by eeeee desc limit to 1 rows;

Tables:
 0 = TEST_TBL
Firstn: 1
Sort: 0.EEEEE(d)
Leaf#01 BgrOnly 0:TEST_TBL Card=9379030
 Bool: (0.AAAAA = 'M14A250221') AND (0.BBBBB = '') AND (0.DDDDD = '41010')
 BgrNdx1 TEST_TBL_I1 [2:2] Fan=5
 Keys: (0.AAAAA = 'M14A250221') AND (0.BBBBB = '')
 BgrNdx2 TEST_TBL_I2 [0:0] Fan=4
 Bool: (0.AAAAA = 'M14A250221') AND (0.BBBBB = '') AND (0.DDDDD = '41010')
~Estim TEST_TBL_I1 Sorted: Split lev=4, Seps=1 Est=204
~Estim TEST_TBL_I2 Sorted: Split lev=7, Seps=2 Est=30324
~E#0001.01(1) Estim Index/Estimate 1/204 2/30324
~E#0001.01(1) BgrNdx1 EofBuf DBKeys=1024 Fetches=3+85 RecsOut=0
~E#0001.01(1) BgrNdx2 FtchLim DBKeys=0 Fetches=5+102391 RecsOut=0
~E#0001.01(1) BgrNdx2 FtchLim DBKeys=1 Fetches=0+51234 RecsOut=0
~E#0001.01(1) Fin Seq DBKeys=9379030 Fetches=0+108154 RecsOut=1129
 GGGGG DBKEY
 58:3640066:6
1 row selected
show stat

 process statistics at <date−time>
 elapsed time = 0 00:04:52.64 CPU time = 0 00:01:20.87
 page fault count = 36150 pages in working set = 104208
 buffered I/O count = 67 direct I/O count = 261978
 open file count = 10 file quota remaining = 1990
 locks held = 162 locks remaining = 31838
 CPU utilization = 27.6% AST quota remaining = 994

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

4.1.4 Filter Predicates are Ignored in Aggregate Query

Bug 14133515

When COUNT (column−name) can use a SORTED RANKED index, the optimizer might select "Index
Counts Lookup" strategy but it ignores the implicit FILTER (column−name is not null) that should be applied
before the COUNT.

The following example shows the problem. The COUNT query returns correct results (64 rows) using a
SORTED index.

SQL> show index mi_index
Indexes on table EMPLOYEES:
MI_INDEX with column MIDDLE_INITIAL
 Duplicates are allowed
 Type is Sorted
 Key suffix compression is DISABLED
SQL> select count(middle_initial) from employees;
Tables:

Oracle® Rdb for OpenVMS

4.1.4 Filter Predicates are Ignored in Aggregate Query 66

 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0]

 64
1 row selected

However, it returns 100 rows (incorrectly) when SORTED RANKED index is used, as in the following
example.

SQL> show index mi_index
Indexes on table EMPLOYEES:
MI_INDEX with column MIDDLE_INITIAL
 Duplicates are allowed
 Type is Sorted Ranked
 Duplicates are Compressed Bitmaps
 Key suffix compression is DISABLED
 Node size 430

SQL> select count(middle_initial) from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Index counts lookup

 100
1 row selected

Here is an example of a related problem when an explicit FILTER clause is ignored.

! the following should return 3 rows
SQL> select middle_initial from employees where middle_initial = 'R';
Tables:
 0 = EMPLOYEES
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [1:1]
 Keys: 0.MIDDLE_INITIAL = 'R'
 MIDDLE_INITIAL
 R
 R
 R
3 rows selected

SQL> select count(middle_initial) from employees where middle_initial = 'R';
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [1:1] Index counts lookup
 Keys: 0.MIDDLE_INITIAL = 'R'

 3
1 row selected

However, it returns the wrong result (100 rows) if the predicate is applied as a filter.

SQL> select count(middle_initial) filter (where middle_initial = 'R') from
EMPLOYEES;

Oracle® Rdb for OpenVMS

4.1.4 Filter Predicates are Ignored in Aggregate Query 67

Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
 Bool: 0.MIDDLE_INITIAL = 'R'
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Index counts lookup

 100
1 row selected

A similar query using either MAX or MIN aggregate function fails using either SORTED or SORTED
RANKED index.

SQL> select max(middle_initial) filter (where middle_initial = 'R') from
EMPLOYEES;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
 Bool: 0.MIDDLE_INITIAL = 'R'
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Max key lookup

 NULL
1 row selected

! create a sorted index
!
SQL> show index MI_INDEX
Indexes on table EMPLOYEES:
MI_INDEX with column MIDDLE_INITIAL
 Duplicates are allowed
 Type is Sorted
 Key suffix compression is DISABLED

SQL> select max(middle_initial) filter (where middle_initial = 'R') from
EMPLOYEES;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
 Bool: 0.MIDDLE_INITIAL = 'R'
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Max key lookup

 NULL
1 row selected

These problems have been corrected in Oracle Rdb Release 7.3.1.0.

4.1.5 Parallel Index Build Name Restriction Relaxed

Prior Oracle Rdb releases included the following documented restriction related to index names longer than
27 characters used when performing parallel index builds:

For effective parallel sort index builds against the same database table, the index name of each index
being built concurrently must be unique within the first 27 characters. Failure to specify a unique
name creates only one sort index because each index build requests the same name lock prior to the
start of each index build.

•

Oracle® Rdb for OpenVMS

4.1.5 Parallel Index Build Name Restriction Relaxed 68

Attempts to perform parallel index builds with indexes that were not unique within the first 27 characters of
the index names could result in misleading error SQL−F−IND_EXISTS messages. The following example
demonstrates the create operations for EMPLOYEE_APPLICATION_CREDIT_1 and
EMPLOYEE_APPLICATION_CREDIT_2 (these names are 29 characters long) running at the same time:

In session 1:

 SQL> CREATE INDEX EMPLOYEE_APPLICATION_CREDIT_1

In session 2:

 SQL> CREATE INDEX EMPLOYEE_APPLICATION_CREDIT_2
 %SQL−F−IND_EXISTS, Index EMPLOYEE_APPLICATION_CREDIT_2 already exists in
 this database or schema

This documented restriction has been relaxed and the problem corrected in Oracle Rdb Release 7.3.1.0. The
entire name of the index is now used for the lock, allowing parallel index builds even when the first 27
characters of the index names are not unique.

4.1.6 EXQUOTA Caused Inaccessible AIJ

Bug 5120555

In prior versions of Oracle Rdb, if any After Image Journal (AIJ) write operation failed with a FILACCERR
error and COMMIT TO JOURNAL was enabled, the AIJ file would be immediately marked as inaccessible,
the database would be shutdown, and the offending process (database user or database server) would be
terminated. Manual intervention would be required to reset journalling before the database could be
re−opened.

Starting in this release, Oracle Rdb has eased one of the restrictions. Now, if a user process gets an
FILACCERR error due to "exceeded quota" (EXQUOTA), the AIJ will not be marked as inaccessible and the
database won't be shutdown. The process will, however, still be terminated. This abnormal termination will
cause a Database Recovery (DBR) process to be automatically started to recover that user. No manual
intervention will be required and normal database processing will continue after the DBR completes.

Note that this change will affect only database user processes. The behavior of database server processes
(such as ALS, RCS, LCS, LRS) remains the same.

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

4.1.7 Query Bugchecks with MAX, MIN or COUNT

Bug 5245269

When the dialect is set to enable NULL elimination warnings, a select query with either MAX, MIN or
COUNT using a partitioned index, may bugcheck.

The following is an example of the problem stated above:

$ SQL$
SQL> attach 'filename PERSONNEL2';
SQL> set flags 'strategy,detail(2)';

Oracle® Rdb for OpenVMS

4.1.6 EXQUOTA Caused Inaccessible AIJ 69

SQL> create index MI_INDEX
cont> on EMPLOYEES (MIDDLE_INITIAL)
cont> type is SORTED RANKED
cont> store using (MIDDLE_INITIAL)
cont> in AREA_20 with limit of ('F')
cont> in AREA_21 with limit of ('Z')
cont> otherwise in AREA_22
cont> ;
SQL>
SQL> select max(middle_initial) from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0] Max key lookup
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USD04:[JONES]RDSBUGCHK.DMP;

The query works without the partitioned index defined, as in the following example:

SQL> drop index MI_INDEX;
SQL> select max(middle_initial) from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:MAX (0.MIDDLE_INITIAL) Q2
Get Retrieval sequentially of relation 0:EMPLOYEES

 Z
1 row selected
%RDB−I−ELIM_NULL, null value eliminated in set function

The key parts of this query which contributed to the situation leading to the error are these:

The SQL dialect is set to SQL92, SQL99, ORACLE LEVEL1, or ORACLE LEVEL2.1.
The index is partitioned.2.
The function is either MAX (where the "Max key lookup" strategy is employed), MIN (where the
"Min key lookup" strategy is employed) or COUNT (where the "Index counts lookup" or "Index
distinct lookup" strategy is employed).

3.

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

Oracle® Rdb for OpenVMS

4.1.6 EXQUOTA Caused Inaccessible AIJ 70

4.2 SQL Errors Fixed

4.2.1 NULL Elimination Semantics Now Supported by
COUNT Function

In prior versions of Oracle Rdb, the COUNT aggregate function did not support the ANSI and ISO SQL
Language Standard NULL Elimination semantics. This support should report the warning "null value
eliminated in set function" whenever the row set included a NULL value that was ignored when computing
the count of the valueexpression. This problem effected both COUNT (valueexpression) and COUNT
(DISTINCT valueexpression).

In prior versions, these functions were implicitly defined as COUNT (*) FILTER (WHERE valueexpression
IS NOT NULL) and so NULL values were never processed by the COUNT function. This can be seen in the
strategy display shown in the following example.

SQL> select count(middle_initial)
cont> from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
 Bool: NOT MISSING (0.MIDDLE_INITIAL)
Get Retrieval sequentially of relation 0:EMPLOYEES

 64
1 row selected
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.0. Please note that query encoding for COUNT
(valueexpression) and COUNT (DISTINCT valueexpression) has changed in this release and any query
outlines defined for queries, views or procedures using these functions will need to be recreated.

The following example shows the new strategy and results.

SQL> select count(middle_initial)
cont> from employees;
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (0.MIDDLE_INITIAL) Q2
Index only retrieval of relation 0:EMPLOYEES
 Index name MI_INDEX [0:0]

 64
1 row selected
%RDB−I−ELIM_NULL, null value eliminated in set function
SQL>

4.2.2 Unexpected FOREIGN KEY Constraint Failure Due to
Mismatched Evaluating Time

Bug 3858486

4.2 SQL Errors Fixed 71

In prior releases of Oracle Rdb, a PRIMARY KEY or UNIQUE constraint could be defined with an
evaluating time of DEFERRABLE and subsequently referenced by a FOREIGN KEY constraint that was
defined as NOT DEFERRABLE. In such cases, it was possible for the PRIMARY KEY or UNIQUE columns
to violate the constraint (just a transient state until a COMMIT or SET CONSTRAINT ALL statement was
executed). This transient state of the data could cause the FOREIGN KEY constraint to fail unexpectedly.

In this release of Oracle Rdb, SQL will enforce the SQL Standard semantics such that the PRIMARY KEY or
UNIQUE constraint must be evaluated at the same time or sooner than the referencing FOREIGN KEY
constraints. It is possible that existing customer databases contain such definitions therefore only a warning
will be generated for most dialects. If the DIALECT is set to SQL2011 or ORACLE LEVEL3, an error will
be raised.

The following example shows the error reported when SQL2011 dialect is selected.

create table DEPARTMENTS (
 DEPARTMENT_CODE
 CHAR (4),
 DEPARTMENT_NAME
 CHAR (30),
 MANAGER_ID
 CHAR (5)
 constraint DEPT_EMPID_FK
 references EMPLOYEES (EMPLOYEE_ID)
 not deferrable,
 BUDGET_PROJECTED
 INTEGER,
 BUDGET_ACTUAL
 INTEGER);
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−UNQCONFEVAL, the constraint "EMPL_EMPID_PK" referenced by
"DEPT_EMPID_FK" has a conflicting evaluation time attribute

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

4.2.3 Unexpected RDB−E−OBSOLETE_METADA Error
During ALTER TABLE

Bug 17361878

In prior releases of Oracle Rdb, the implicit alter of a view definition was not handling missing metadata
items correctly. When a COMPUTED BY column of a table or view cannot be resolved because of a prior
DROP ... CASCADE operation, the value returned for the computed expression should be NULL. The
database administrator should replace the missing object as soon as possible.

The reported problem shows that subsequent ALTER TABLE operations fail when the missing column is
referenced. This is shown by this simple example.

SQL> create table TEST_TBL
cont> (c0 bigint
cont> ,c1 tinyint
cont>);
SQL>
SQL> insert into TEST_TBL
cont> values (0, 1);

Oracle® Rdb for OpenVMS

4.2.3 Unexpected RDB−E−OBSOLETE_METADA Error During ALTER TABLE 72

1 row inserted
SQL>
SQL> alter table TEST_TBL
cont> add c2
cont> automatic as −1;
SQL>
SQL> create view TEST_TBL_VIEW
cont> as select * from TEST_TBL;
SQL>
SQL> alter table TEST_TBL
cont> drop column c2 cascade;
SQL>
SQL> alter table TEST_TBL
cont> alter C1 smallint;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−BAD_SYM, unknown field symbol − C2
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

4.2.4 Unexpected RDMS−F−ACTQUERY Query Error From
ALTER TABLE ... DROP COLUMN

In prior versions of Oracle Rdb, attempts to use ALTER TABLE to drop a column would fail with a
RDMS−F−ACTQUERY error. This occurred because the table being altered was in use by a compile query,
such as a declared cursor. This is normal for the RESTRICT option (the default behavior) but should not
happen when using the CASCADE option. When using DROP TABLE ... CASCADE no such error occurs
because Oracle Rdb implicitly invalidates active queries.

The following example shows the reported error.

SQL> DECLARE C11332 CURSOR FOR SELECT COUNT(*) FROM CHANGG;
SQL> OPEN C11332;
SQL> DECLARE :INT1 INT;
SQL> FETCH C11332 INTO :INT1;
SQL> CLOSE C11332;
SQL> ALTER TABLE CHANGG DROP AGE CASCADE;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−F−ACTQUERY, there are queries compiled that reference relation "CHANGG"
−RDMS−F−RELNOTCHG, relation CHANGG has not been changed
SQL>

This problem has been corrected in Oracle Rdb Release 7.3.1.0. When the CASCADE option is used, the
ALTER TABLE statement invalidates active queries in the same way as the DROP TABLE ... CASCADE
statement.

Oracle® Rdb for OpenVMS

4.2.4 Unexpected RDMS−F−ACTQUERY Query Error From ALTER TABLE ... DROP COLUMN 73

4.3 RMU Errors Fixed

4.3.1 Unexpected Definitions in RMU Extract Output

Bug 14786014

In prior releases of Oracle Rdb, the RMU Extract command would include special objects created by OCI
Services for Rdb. These data dictionary objects (domains, functions, modules, procedures, tables and views)
are marked as hidden by Rdb and are not usually visible. However, RMU Extract was including them in the
output SQL script, often making the output confusing.

The new option Hidden_Objects can be used to display these definitions if desired. The default is
NoHidden_Objects.

This problem has been corrected in Oracle Rdb Release 7.3.1.0.

4.3.2 RMU BACKUP GROUP_SIZE Default Value Increased

The RMU BACKUP "GROUP_SIZE" qualifier specifies the frequency at which XOR recovery blocks are
written to tape. In prior releases of Oracle Rdb, the default group size when writing to a tape device was 10.

Starting with Oracle Rdb Release 7.3.1.0, the default group size when writing to a tape device is 100. This
change may result in increased throughput and a reduction in tape space used.

4.3.3 RMU Parallel Backup Fails With /PROTECTION
Qualifier

In releases prior to Oracle Rdb Release 7.3.1.0, there was a problem in RMU/BACKUP/PARALLEL and
RMU/BACKUP/PLAN where the information specified in the /PROTECTION qualifier was not correctly
reflected in the plan file. For example, the following RMU command:

$ RMU/BACKUP/PARALLEL=EXECUTOR=1/DISK/EXECUTE /PROTECTION=(S:,O:,G:W,W:R) −
 /LIST_PLAN=MFP.PLAN MF_PERSONNEL DISK1:[MF_P]MFP.RBF

resulted in the following entry in the plan file:

 Protection = S:

Also, RMU/BACKUP/PLAN/LIST_PLAN failed with the following errors.

%CLI−F−SYNTAX, error parsing 'PROTECTION'
−CLI−E−ENTNF, specified entity not found in command tables
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 19−JUN−2013 15:35:05

Both of these problems have been corrected in Oracle Rdb Release 7.3.1.0.

4.3 RMU Errors Fixed 74

4.3.4 Improvements to RMU/COLLECT
OPTIMIZER_STATISTICS

This release of Oracle Rdb improves RMU/COLLECT OPTIMIZER_STATISTICS
/STATISTIC=WORKLOAD in the following areas.

In prior versions of Oracle Rdb, the existence of a UNIQUE HASHED SCATTERED or UNIQUE
HASHED ORDERED index was not considered when estimating various workload statistics. This
has been corrected.

•

In addition, even if a UNIQUE SORTED or UNIQUE SORTED RANKED index was found, the
estimated value for duplicity (RDB$DUPLICITY_FACTOR) was over estimated. Rdb knows from
the index that there are no duplicates and the duplicity factor is computed as 1 / table−cardinality (or
zero if the table is empty). This has now been corrected.

•

Oracle recommends running RMU/COLLECT OPTIMIZER_STATISTICS against your workload as soon as
possible after the upgrade to Oracle Rdb Release 7.3.1.0.

Oracle® Rdb for OpenVMS

4.3.4 Improvements to RMU/COLLECT OPTIMIZER_STATISTICS 75

4.4 RMU Show Statistics Errors Fixed

4.4.1 RMU/SHOW/STATISTICS Avoids VASFULL Errors By
Moving to P2 Address Space

Bug 12921679

In releases prior to Oracle Rdb 7.3.1.0, RMU/SHOW/STATISTICS gave a VASFULL error if the largest
logical area number was a large number.

The following is an example of the errors seen with RMU/SHOW/STATISTICS when the maximum logical
area ID was a large number.

$RMU/SHOW STATISTICS TEST_DB
%COSI−F−VASFULL, virtual address space full
−SYSTEM−F−ILLPAGCNT, illegal page count parameter
%RMU−F−FATALOSI, Fatal error from the Operating System Interface.
%RMU−F−FTL_SHOW, Fatal error for SHOW operation at 26−AUG−2012 10:53:36.75
$ SQL
SQL>ATTACH 'FILENAME TEST_DB';
SQL>SELECT MAX(RDB$LOGICAL_AREA_ID) FROM RDB$LOGICAL_AREAS;

 21987
1 row selected

This problem has been corrected in Oracle Rdb Release 7.3.1.0. This release eases the memory restriction by
making use of P2 address space. The COSI−F−VASFULL error should no longer occur.

4.4 RMU Show Statistics Errors Fixed 76

Chapter 5
Enhancements And Changes Provided in Oracle
Rdb Release 7.3.1.2

Chapter 5Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 77

5.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.3.1.2

5.1.1 New FULBCKREQ Message Output When a Full
Backup is Required

Bug 18328148

There are some Oracle Rdb database changes that require the next database backup to be a full backup to
guarantee correct database recovery using an incremental backup. If an incremental database backup is
executed without a preceding full database backup, the incremental backup will be aborted with a fatal error.

$ rmu/backup/incremental/nolog mf_personnel.rdb −
 DEVICE:[DIRECTORY]mfp.rbf
%RMU−F−NOFULLBCK, no full backup of this database exists
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 14−MAR−2014 13:45:21.35

A dump of the database header will show if this root flag is set.

$ rmu/dump/header mf_personnel
*−−
* Oracle Rdb V7.3−12 14−MAR−2014 13:45:18.51
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
*
*−−
Database Parameters:

 Database Backup...

 − Incremental backup not allowed until full backup

A new warning message will now be output at the end of an ALTER DATABASE command if the ALTER
DATABASE command contains one or more operations which require the next database backup to be a full
database backup.

%RDMS−W−FULBCKREQ, The next database backup must be a full backup

These are the operations that require the next database backup to be a full database backup.

Add one or more storage areas to the database.

$ SQL$
alter data filename mf_personnel
 add storage area new_area;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
$

•

Delete one or more storage areas from the database.

$ SQL$

•

5.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2 78

alter database filename mf_personnel
 drop storage area area1
 drop storage area area2
 drop storage area area3
 drop storage area area4;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
$

Reserve database entries for additional storage areas.

$ SQL$
alter database filename mf_personnel
 reserve 10 storage areas;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
$

•

Modify the live storage area page allocation.

$ SQL$
alter database filename mf_personnel
 alter storage area jobs allocation is 2000 pages;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
$

•

Modify the maximum number of database users.

$ SQL$
alter database filename mf_personnel
 number of users is 50;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
$

•

Modify the maximum number of database cluster nodes.

$ SQL$
alter database filename mf_personnel
 number of cluster nodes is 4;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup

•

5.1.2 New TRACE Option for EXPORT DATABASE
Statement

This release of Oracle Rdb adds a TRACE option to the EXPORT DATABASE Statement. This option
enables tracing of certain operations internal to EXPORT. For example, when COMPRESSION and TRACE
are specified, the TRACE option causes output of the compression percentages for each table, null bit vector
(NBV) and list of byte varying data.

SQL> export database filename personnel into pers compression trace;
** compress nbv : <CANDIDATES> too small to compress
** compress data: <CANDIDATES> input 846 output 244 deflate 72%
** compress nbv : <COLLEGES> too small to compress
** compress data: <COLLEGES> input 896 output 556 deflate 38%
** compress nbv : <DEGREES> too small to compress
** compress data: <DEGREES> input 4785 output 2268 deflate 53%
** compress nbv : <DEPARTMENTS> too small to compress
** compress data: <DEPARTMENTS> input 1222 output 750 deflate 39%
** compress data: <EMPLOYEES> input 11700 output 4559 deflate 62%
** compress nbv : <EMPLOYEES> input 1200 output 808 deflate 33%
** compress nbv : <JOBS> too small to compress
** compress data: <JOBS> input 495 output 434 deflate 13%

Oracle® Rdb for OpenVMS

5.1.2 New TRACE Option for EXPORT DATABASE Statement 79

** compress nbv : <JOB_HISTORY> too small to compress
** compress data: <JOB_HISTORY> input 9316 output 6095 deflate 35%
** compress nbv : <RESUMES> too small to compress
** compress data: <RESUMES> too small to compress
** compress nbv : <SALARY_HISTORY> too small to compress
** compress data: <SALARY_HISTORY> input 18225 output 13695 deflate 25%
** compress nbv : <WORK_STATUS> too small to compress
** compress data: <WORK_STATUS> input 69 output 66 deflate 5%
SQL>

In this example, several tables and null bit vectors (NBV) can not be reduced by compression because of their
small size.

5.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File
Creation by RMU/RECOVER

Bug 6656199

Oracle Rdb normally writes information to the after image journal (AIJ) file describing the creation of new
after image journal files. There are cases where the user does not want RMU/RECOVER to process this
information and recreate AIJ files, such as lack of disk space. This release of Oracle Rdb adds a new
/NOAFTER_JOURNAL qualifier to the RMU/RECOVER command. If this qualifier is specified, no new
Rdb AIJ files will be created by the current RMU/RECOVER command and any AIJ file deletion records for
those AIJ files which were not created will also be ignored.

The syntax for this new RMU/RECOVER qualifier is as follows.

/[NO]AFTER_JOURNAL

The default if this qualifier is not specified is /AFTER_JOURNAL. Therefore, /NOAFTER_JOURNAL must
be specified to ignore the creation of new AIJ files recorded in any AIJ file being recovered by the current
RMU/RECOVER command.

In the following example, the creation of the new after image journal file J2.AIJ for the MF_PERSONNEL
database is journaled to the current after image journal file RMU_RECOVER_4.AIJ_1. When the
MF_PERSONNEL database is deleted and then restored from the MF_PERSONNEL.RBF file and then
recovered from RMU_RECOVER_4.AIJ_1 using the new /NOAFTER_JOURNAL qualifier, the J2.AIJ file
does not get created.

$!
$! Change the database to enable after image journaling to the
$! RMU_RECOVER_4.AIJ_1 AIJ file
$!
$ SQL$
 alter database filename MF_PERSONNEL
 reserve 10 journals
 journal filename disk:[directory]RMU_RECOVER_4.AIJ_1;
%RDMS−W−DOFULLBCK, full database backup should be done to ensure future recovery
 exit
$!
$! Backup the database
$!
$ RMU/BACKUP/NOLOG MF_PERSONNEL DISK:[DIRECTORY]MF_PERSONNEL.RBF
$!

Oracle® Rdb for OpenVMS

5.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File Creation by RMU/RECOVER 80

$! Add a new AIJ file J2.AIJ to put a create AIJ file record in the current
$! RMU_RECOVER_4.AIJ_1 AIJ file
$!
$ SQL$
 alter database file mf_personnel
 add journal j2 filename disk:[directory]j2 allocation is 1000 blocks;
exit
$!
$! Drop the database and then restore the database from the backup RBF file
$!
$ SQL$
 drop database filename MF_PERSONNEL;
 exit
$!
$! Delete the added j2.aij file
$!
$ DELETE DISK:[DIRECTORY]J2.AIJ;*
$!
$! Restore the database
$!
$ RMU/RESTORE/NOCDD/NOLOG/NOAFTER_JOURNAL −
 /ROOT=DISK:[DIRECTORY]MF_PERSONNEL.RDB DISK:[DIRECTORY]MF_PERSONNEL.RBF
$!
$! Recover the database from RMU_RECOVER_4.AIJ_1 to show that the J2.AIJ
$! file does not get created if RMU/RECOVER/NOAFTER_JOURNAL is specified
$!
$ RMU /RECOVER /NOAFTER_JOURNAL /NOLOG /ROOT=DISK:[DIRECTORY]MF_PERSONNEL.RDB −
 DISK:[DIRECTORY]RMU_RECOVER_4.AIJ_1
%RMU−I−LOGRECDB, recovering database file DISK:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled
$ DIR DISK:[DIRECTORY]J2.AIJ
%DIRECT−W−NOFILES, no files found

5.1.4 Enhance Dumper of Merge Range List

Bug 18530761

In prior releases of Oracle Rdb, the strategy display for a query with OR predicates could be misleading when
multiple range lists were merged. The following example demonstrates this problem with a query performed
with IN and OR predicates to restrict values to selected ranges.

create table TEST_TABLE
 (a char);
create index TEST_TABLE_INDEX on TEST_TABLE (A);

select * from TEST_TABLE
where a in ('A', 'A', 'V', 'B') or a between 'C' and 'Y';
Tables:
 0 = TEST_TABLE
Conjunct: (0.A = 'A') OR (0.A = 'V') OR (0.A = 'B') OR ((0.A >= 'C') AND (0.A
 <= 'Y'))
Index only retrieval of relation 0:TEST_TABLE
 Index name TEST_TABLE_INDEX [(1:1)4]
 Keys: r0: (0.A >= 'C') AND (0.A <= 'Y')
 r1: 0.A = 'B'

Oracle® Rdb for OpenVMS

5.1.4 Enhance Dumper of Merge Range List 81

 r2: 0.A = 'V'
 r3: 0.A = 'A'
0 rows selected

Rdb has merged the OR ranges into a single range list ('A' .. 'Y') and eliminated duplicate ranges. However,
the STRATEGY and DETAIL display do not reflect this state.

In this release, use the SET FLAGS 'MERGE_RANGE_LIST' flag in addition to STRATEGY and DETAIL
to display further details.

! turn on the display of merge_range_list
set flags 'merge_range_list';

select * from TEST_TABLE
where a in ('A', 'A', 'V', 'B') or a between 'C' and 'Y';
Tables:
 0 = TEST_TABLE
Conjunct: (0.A = 'A') OR (0.A = 'V') OR (0.A = 'B') OR ((0.A >= 'C') AND (0.A
 <= 'Y'))
Index only retrieval of relation 0:TEST_TABLE
 Index name TEST_TABLE_INDEX [(1:1)4]
 Keys: r0: (0.A >= 'C') AND (0.A <= 'Y')
 r1: 0.A = 'B'
 r2: 0.A = 'V'
 r3: 0.A = 'A'
 Index name TEST_TABLE_INDEX [1:1]
 Columns: r0:{(0.A),(0.A)}
 IKeys: r0:{('A'), ('Z')}
0 rows selected

Note that the upper range is encoded as a higher value internally so that the index scan is terminated correctly.

5.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC
Function

With this release of Oracle Rdb, the RMU Extract command now correctly formats the
SYS_GET_DIAGNOSTIC function, which was added in earlier releases.

5.1.6 Alter Index Now Supports REVERSE and NOREVERSE
Clauses

This release of Oracle Rdb now supports the REVERSE keyword on the ALTER INDEX statement as part of
the REBUILD action. This clause requests that the named index be rebuilt as a REVERSE key index.

Syntax

The revised syntax for the ALTER INDEX statement is:

Oracle® Rdb for OpenVMS

5.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC Function 82

REVERSE
NOREVERSE

An existing SORTED or SORTED RANKED index can be converted to a REVERSE index by using this
variation of the REBUILD ALL PARTITIONS clause. An already REVERSE index can be changed to a
non−REVERSE index using the NOREVERSE keyword.

The following example shows an existing index being converted to a REVERSE index.

SQL> alter index DOCUMENTS
cont> rebuild reverse;
SQL>

Usage Notes

If an index is already defined as REVERSE, then REBUILD REVERSE is equivalent to REBUILD
ALL PARTITIONS.

•

If an index is not defined as REVERSE, then REBUILD NOREVERSE is equivalent to REBUILD
ALL PARTITIONS.

•

The clause REVERSE may not be applied to a HASHED index.•
When applying REVERSE to an existing index, any column defined as DESC will be modified to
remove the descending ordering.

•

5.1.7 SQL Precompiler Now Generates C++ Compatible
Intermediate C Source

Enhancement Bug 1504425

Oracle® Rdb for OpenVMS

5.1.7 SQL Precompiler Now Generates C++ Compatible Intermediate C Source 83

This release of Oracle Rdb includes some support for using SQL Precompiler with the C++ compiler (CXX).
The Rdb SQL precompiler now generates C++ compatible definitions when processing embedded SQL
commands in a .SC source. This support does not support the C++ language, and the processed .SC file must
conform to a legal C source format and language features.

Please note the following changes:

The SQL$PRE command line now accepts CXX as an option to the /CC qualifier. This option will
direct the SQL precompiler to generate C code which is acceptable to the C++ compiler.

•

The CXX DCL command will be used to invoke the C++ compiler, instead of the CC command.
Additional qualifiers on the SQL$PRE command line will be passed to the CXX compiler and must
be legal qualifiers for C++.

•

Function prototypes will include parameter definitions•
Function prototypes are enclosed by extern "C" to prevent the names being interpreted as C++
routines.

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
...
#ifdef __cplusplus
}
#endif /* __cplusplus */

•

SQLCODE is expected to be defined as type int.•
On OpenVMS Alpha systems, the application is expected to be linked with the special library
SYS$LIBRARY:LIBCXXSTD.OLB. Please refer to the relevant HP C++ documentation.

•

Syntax

The revised syntax for the PRE−LANG−QUALIFIERS qualifier is:

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas,
After_Journal and Record_Cache Directories

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories84

Enhancement Bug 867636

A new feature has been added to RMU/RECOVER and RMU/DUMP to alter the directory specifications for
new storage areas, after image journal files and row caches created during the recovery of an Oracle Rdb
database. This is only for the creation of new storage areas, after image journal files and row caches as
recorded in the after image journal files used for a database recovery by the RMU/RECOVER command, and
only for modifying the directory specifications defined in the after image journal files for the new storage
areas, after image journal files and row caches at the time RMU/RECOVER creates them.

This new feature will allow the user to control where newly created storage areas, after image journal files and
row caches are located. Previously, they could only be put in the directory locations recorded in the after
image journal files used for the recovery.

Logicals can be used for the directory specifications but must translate to valid directory specifications that
exist when the RMU/RECOVER or RMU/DUMP command is executed.

A new RMU/RECOVER /DIRECTORY qualifier can be used to specify one directory specification for all
storage areas created, one directory specification for all after image journal files created and/or one directory
specification for all row caches created.

The syntax for this new qualifier for storage areas is:

/DIRECTORY=AREAS=directory_specification

The syntax for this new qualifier for after image journal files is:

/DIRECTORY=AFTER_JOURNAL=directory_specification

The syntax for this new qualifier for row caches is:

/DIRECTORY=ROW_CACHE=directory_specification

To specify two or more of these options with the /DIRECTORY qualifier, use the following syntax.

/DIRECTORY=(AREAS=directory_specification, −
 AFTER_JOURNAL=directory_specification, −
 ROW_CACHE=directory_specification)

The following example shows all three options used with the /DIRECTORY qualifier in the RMU/RECOVER
command.

$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC−
 /DIRECTORY=(AREAS=DISK:[DIRECTORY], −
 AFTER_JOURNAL=DISK:[DIRECTORY], −
 ROW_CACHE=DISK:[DIRECTORY]) −
 DISK:[DIRECTORY]:TEST_J1_BCK.AIJ

To specify different directory specifications for specific storage areas, after journal files and row caches,
option files can be designated using the new RMU/RECOVER /OPTIONS qualifier. One option file must be
specifed to select one or more storage areas for directory modification, one option file must be specified to
select one or more after image journal files for directory modification and one option file must be specified to
select one or more row caches for directory modification.

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories85

The syntax for this new qualifier for storage areas is:

/OPTIONS=AREAS=option_file_specification

The syntax for this new qualifier for after image journal files is:

/OPTIONS=AFTER_JOURNAL=option_file_specification

The syntax for this new qualifier for row caches is:

/OPTIONS=ROW_CACHE=option_file_specification

To specify two or more of these options with the /OPTIONS qualifier, use the following syntax.

/OPTIONS=(AREAS=option_file_specification, −
 AFTER_JOURNAL=option_file_specification, −
 ROW_CACHE=option_file_specification)

The following example shows all three options used with the /OPTIONS qualifier in the RMU/RECOVER
command.

$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC−
 /OPTIONS=(AREAS=DISK:[DIRECTORY]RECOVOPTAREAS.OPT, −
 AFTER_JOURNAL=DISK:[DIRECTORY]RECOVOPTAIJ.OPT, −
 ROW_CACHE=DISK:[DIRECTORY]RECOVOPTRCACHE.OPT) −
 DISK:[DIRECTORY]TEST_J1_BCK.AIJ

A new /DIRECTORY_OPTIONS qualifier has been added to the RMU/DUMP command to create storage
area, after image journal and row cache option files for use with the /OPTIONS qualifier in the
RMU/RECOVER command. These option files will contain entries for all storage areas, after image journal
files and row caches defined for the database. These option files can then be edited by the user to eliminate
storage area, after image journal or row cache entries that will not be created during the RMU/RECOVER
session, or they can be used without being edited since entries for storage areas, after image journal files and
row caches not created during the recovery operation will be ignored.

The syntax for this new qualifier for storage areas is:

/DIRECTORY_OPTIONS=AREAS=option_file_specification

The syntax for this new qualifier for after image journal files is:

/DIRECTORY_OPTIONS=AFTER_JOURNAL=option_file_specification

The syntax for this new qualifier for row caches is:

/DIRECTORY_OPTIONS=ROW_CACHE=option_file_specification

To specify two or more of these options with the /DIRECTORY_OPTIONS qualifier, use the following
syntax.

/DIRECTORY_OPTIONS=(AREAS=option_file_specification, −
 AFTER_JOURNAL=option_file_specification, −
 ROW_CACHE=option_file_specification)

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories86

The following example shows all three options used with the /DIRECTORY_OPTIONS qualifier in the
RMU/DUMP command.

$ RMU/DUMP−
 /DIRECTORY_OPTIONS=(AREAS=DISK:[DIRECTORY]RECOVOPTAREAS.OPT, −
 AFTER_JOURNAL=DISK:[DIRECTORY]RECOVOPTAIJ.OPT, −
 ROW_CACHE=DISK:[DIRECTORY]RECOVOPTRCACHE.OPT) −
 DISK:[DIRECTORY]TEST

The following example, created by the new RMU/DUMP /DIRECTORY_OPTIONS qualifier, shows the
format of the option file used with the new RMU/RECOVER /OPTIONS qualifier for storage areas. The live
data storage area name is followed by /DIRECTORY=DISK:[DIRECTORY] for the live storage area file to
specify the directory specification for the storage area *.RDA file. This is followed by
/SNAPSHOT_DIRECTORY=DISK:[DIRECTORY] for the storage area snaphot file to specify the directory
specification for the storage area *.SNP file. If /SNAPSHOT_DIRECTORY is not specified, the directory
specification specified by /DIRECTORY is used for both the live and snapshot storage area files.

 ! Recover Areas Directory Options file for database
 ! DISK:[DIRECTORY]FILENAME.EXT;VERSION
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 RDB$SYSTEM −
 /directory=DISK:[DIRECTORY] −
 /snapshot_directory=DISK:[DIRECTORY]

 TEST_A1 −
 /directory=DISK:[DIRECTORY] −
 /snapshot_directory=DISK:[DIRECTORY]

 TEST_A2 −
 /directory=DISK:[DIRECTORY] −
 /snapshot_directory=DISK:[DIRECTORY]

 TEST_A3 −
 /directory=DISK:[DIRECTORY] −
 /snapshot_directory=DISK:[DIRECTORY]

 TEST_A4 −
 /directory=DISK:[DIRECTORY] −
 /snapshot_directory=DISK:[DIRECTORY]

The following example, created by the new /DIRECTORY_OPTIONS qualifier of the RMU/DUMP
command, shows the format of the option file used with the new RMU/RECOVER /OPTIONS qualifier for
after image journal files. The after image journal file name is followed by
/DIRECTORY=DISK:[DIRECTORY] to specify the after image journal file directory specification. This is
followed by /BACKUP_DIRECTORY=DISK:[DIRECTORY] to specify the directory specification for the
after image journal backup file. If /BACKUP_DIRECTORY is not specified, the directory specification
specified by /DIRECTORY is used for both the after image journal file and the after image journal backup
file. If no backup directory is defined for the after image journal entry in the database, the backup directory
specification will be ignored.

 ! Recover After Journal Options file for database

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories87

 ! DISK:[DIRECTORY]FILENAME.EXT;VERSION
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 TEST_J1 −
 /directory=DISK:[DIRECTORY] −
 /backup_directory=DISK:[DIRECTORY]

 TEST_J2 −
 /directory=DISK:[DIRECTORY] −
 /backup_directory=DISK:[DIRECTORY]

 TEST_J3 −
 /directory=DISK:[DIRECTORY] −
 /backup_directory=DISK:[DIRECTORY]

 TEST_J4 −
 /directory=DISK:[DIRECTORY] −
 /backup_directory=DISK:[DIRECTORY]

The following example, created by the new /DIRECTORY_OPTIONS qualifier of the RMU/DUMP
command, shows the format of the option file used with the new RMU/RECOVER /OPTIONS qualifier for
row caches. The row cache name is followed by /DIRECTORY=DISK:[DIRECTORY] to specify the row
cache directory specification. If no directory specification is defined for the row cache entry in the database,
the directory specification will be ignored.

 ! Recover Row Cache Directory Options file for database
 ! DISK:[DIRECTORY]FILENAME.EXT;VERSION
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 TEST_A1 −
 /directory=DISK:[DIRECTORY]

 TEST_A2 −
 /directory=DISK:[DIRECTORY]

 TEST_A3 −
 /directory=DISK:[DIRECTORY]

 TEST_A4 −
 /directory=DISK:[DIRECTORY]

In the following example for database DISK:[HOME]TEST.RDB, the first RMU/RECOVER command uses
the /DIRECTORY qualifier to change all directories from DISK:[HOME] to DISK:[NEW] for the storage
areas TEST_A3 and TEST_A4, the after image journal files TEST_J3 and TEST_J4 and the row caches
TEST_A3 and TEST_A4, whose creation was recorded in the journal file TEST_J1_BCK.AIJ. Then, the new
/DIRECTORY_OPTIONS qualifier in the RMU/DUMP command is used to create option files for all TEST
database after image journal files, storage areas and row caches, including those with directories changed to
DISK:[NEW]. The TEST database is then deleted and again restored with all directories again set to
DISK:[HOME]. The second RMU/RECOVER command then uses the /OPTIONS qualifier to specify the

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories88

option files created by RMU/DUMP, which include the after image journal file, storage area and row cache
directories changed by the first RMU/RECOVER to DISK:[NEW], to change the directories back again from
the journaled directory specification of DISK:[HOME] to DISK:[NEW].

$! Create the TEST database
$
$ SQL
 CREATE DATABASE FILENAME DISK:[HOME]TEST
 NUMBER OF CLUSTER NODES 1
 RESERVE 6 STORAGE AREAS
 RESERVE 6 JOURNALS
 RESERVE 6 CACHE SLOTS
 ROW CACHE IS ENABLED
 CREATE STORAGE AREA RDB$SYSTEM FILENAME DISK:[HOME]TEST_SYS
 CREATE STORAGE AREA TEST_A1 FILENAME DISK:[HOME]TEST_A1
 CREATE STORAGE AREA TEST_A2 FILENAME DISK:[HOME]TEST_A2
 CREATE CACHE TEST_A1
 CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS 'DISK:[HOME]'
 CREATE CACHE TEST_A2
 CACHE SIZE 200 ROWS ROW LENGTH 200 BYTES LOCATION IS 'DISK:[HOME]';
 DISCONNECT ALL;

 ALTER DATABASE FILENAME TEST
 ADD JOURNAL TEST_J1 FILENAME DISK:[HOME]TEST_J1.AIJ
 BACKUP FILENAME DISK:[HOME]TEST_J1_BCK.AIJ
 ADD JOURNAL TEST_J2 FILENAME DISK:[HOME]TEST_J2.AIJ
 BACKUP FILENAME DISK:[HOME]TEST_J2_BCK.AIJ
 JOURNAL IS ENABLED
 (FAST COMMIT ENABLED);
%RDMS−W−DOFULLBCK, full database backup should be done to ensure future recovery
 EXIT;
$
$! Back up the original database configuration.
$
$ RMU/BACKUP/NOLOG DISK:[HOME]TEST DISK:[HOME]TEST
$
$! Add new journals, row caches and storage areas
$
$ SQL
 ALTER DATABASE FILENAME DISK:[HOME]TEST
 ADD JOURNAL TEST_J3 FILENAME DISK:[HOME]TEST_J3.AIJ
 BACKUP FILENAME DISK:[HOME]TEST_J3_BCK.AIJ
 ADD JOURNAL TEST_J4 FILENAME DISK:[HOME]TEST_J4.AIJ
 BACKUP FILENAME DISK:[HOME]TEST_J4_BCK.AIJ
 ADD CACHE TEST_A3
 CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS 'DISK:[HOME]'
 ADD CACHE TEST_A4
 CACHE SIZE 100 ROWS ROW LENGTH 100 BYTES LOCATION IS 'DISK:[HOME]'
 ADD STORAGE AREA TEST_A3 FILENAME DISK:[HOME]TEST_A3
 ADD STORAGE AREA TEST_A4 FILENAME DISK:[HOME]TEST_A4;
%RDMS−W−FULBCKREQ, The next database backup must be a full backup
 EXIT;
$
$! Backup TEST_J1.AIJ, where the creation of the new journals, row caches
$! and storage areas in DISK:[HOME] is recorded.
$
$ RMU/BACKUP/AFTER/NOLOG/NOQUIET DISK:[HOME]TEST DISK:[HOME]TEST_J1_BCK.AIJ
$
$! Delete the database.
$
$ SQL

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories89

 DROP DATABASE FILENAME DISK:[HOME]TEST;
 EXIT;
$
$! Restore the database with all storage areas, after image journals
$! and row caches in DISK:[HOME]
$
$ RMU/RESTORE/NOCDD/NOLOG/NORECOVER/DIR=DISK:[HOME] DISK:[HOME]TEST
%RMU−I−AIJRSTAVL, 2 after−image journals available for use
%RMU−I−AIJRSTMOD, 1 after−image journal marked as "modified"
%RMU−I−AIJISON, after−image journaling has been enabled
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery
$
$! Recover the database and change the directories from DISK:[HOME] to
$! DISK:[NEW] for the new storage areas, after image journals and row
$! caches whose creation was recorded in the backed up journal file
$! TEST_J1_BCK.AIJ
$
$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC−
 /DIRECTORY=(AREAS=DISK:[NEW], −
 AFTER_JOURNAL=DISK:[NEW], −
 ROW_CACHE=DISK:[NEW]) −
 DISK:[HOME]TEST_J1_BCK.AIJ
%RMU−I−LOGRECDB, recovering database file DISK:[HOME]TEST_J1_BCK.AIJ;1
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
$
$! Create directory option files for all storage areas,
$! after image journals and row caches in DISK:[HOME]
$! or DISK:[NEW]
$
$ RMU/DUMP−
 /DIRECTORY_OPTIONS=(AREAS=DISK:[HOME]RECOVOPTAREAS.OPT, −
 AFTER_JOURNAL=DISK:HOME]RECOVOPTAIJ.OPT, −
 ROW_CACHE=DISK:[HOME]RECOVOPTRCACHE.OPT) −
 DISK:[HOME]TEST
$
$! Delete the database.
$
$ SQL$
 DROP DATABASE FILENAME DISK:[HOME]TEST;
 EXIT;
$
$! Restore the database with all storage areas, after image journals
$! and row caches again in DISK:[HOME]
$
$ RMU/RESTORE/NOCDD/NOLOG/NORECOVER/DIR=DISK:[HOME] DISK:[HOME]TEST
%RMU−I−AIJRSTAVL, 2 after−image journals available for use
%RMU−I−AIJRSTMOD, 2 after−image journals marked as "modified"
%RMU−F−AIJENBOVR, enabling AIJ journaling would overwrite an existing journal
%RMU−I−AIJISOFF, after−image journaling has been disabled
$
$! Recover the database and again change the directories from DISK:[HOME]
$! to DISK:[NEW] for the new storage areas, after image journals and row
$! caches whose creation was recorded in the backed up journal file
$! TEST_J1_BCK.AIJ
$
$ RMU/RECOVER/NOLOG/NOTRACE/NOCONFIRM/NOAUTOMATIC−
 /OPTIONS=(AREAS=DISK:[HOME]RECOVOPTAREAS.OPT, −
 AFTER_JOURNAL=DISK:[HOME]RECOVOPTAIJ.OPT, −

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories90

 ROW_CACHE=DISK:[HOME]RECOVOPTRCACHE.OPT) −
 TEST$SCRATCH:TEST_J1_BCK.AIJ
 ! Recover Areas Directory Options file for database
 ! DISK:[HOME]TEST.RDB;1
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 RDB$SYSTEM −
 /directory=DISK:[HOME] −
 /snapshot_directory=DISK:[HOME]

 TEST_A1 −
 /directory=DISK:[HOME] −
 /snapshot_directory=DISK:[HOME]

 TEST_A2 −
 /directory=DISK:[HOME] −
 /snapshot_directory=DISK:[HOME]

 TEST_A3 −
 /directory=DISK:[NEW] −
 /snapshot_directory=DISK:[NEW]

 TEST_A4 −
 /directory=DISK:[NEW] −
 /snapshot_directory=DISK:[NEW]
 ! Recover After Journal Directory Options file for database
 ! DISK:[HOME]TEST.RDB;1
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 TEST_J1 −
 /directory=DISK:[HOME] −
 /backup_directory=DISK:[HOME]

 TEST_J2 −
 /directory=DISK:[HOME] −
 /backup_directory=DISK:[HOME]

 TEST_J3 −
 /directory=DISK:[NEW] −
 /backup_directory=DISK:[NEW]

 TEST_J4 −
 /directory=DISK:[NEW] −
 /backup_directory=DISK:[NEW]
 ! Recover Row Cache Directory Options file for database
 ! DISK:[HOME]TEST.RDB;1
 ! Created 22−JUL−2014 09:37:24.29
 ! Created by DUMP command

 TEST_A1 −
 /directory=DISK:[HOME]

Oracle® Rdb for OpenVMS

5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories91

 TEST_A2 −
 /directory=DISK:[HOME]

 TEST_A3 −
 /directory=DISK:[NEW]

 TEST_A4 −
 /directory=DISK:[NEW]
%RMU−I−LOGRECDB, recovering database file DISK:[HOME]TEST.RDB;1
%RMU−I−AEDONE, AIJ file sequence 0 roll−forward operations completed
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed
%RMU−I−AIJSUCCES, database recovery completed successfully
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number
needed will be 1
%RMU−I−AIJNOENABLD, after−image journaling has not yet been enabled

5.1.9 RMU Unload Record_Definition File Can Include Offset
and Length Comment

The record definition (.rrd) file created by the RMU Unload Record_Definition command has been enhanced
to include a comment containing each field length and offset within the output record.

This optional information is included when the qualifier /DEBUG_OPTIONS=OFFSET is included on the
command line. The following example shows the comment string for each field:

$ RMU/UNLOAD−
 /RECORD=(FILE=SALARY_HISTORY)−
 /DEBUG_OPTIONS=OFFSET−
 PERSONNEL −
 SALARY_HISTORY −
 SALARY_HISTORY
%RMU−I−DATRECUNL, 729 data records unloaded
$ type SALARY_HISTORY.RRD
DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SALARY_AMOUNT DATATYPE IS SIGNED LONGWORD SCALE −2.
DEFINE FIELD SALARY_START DATATYPE IS DATE.
DEFINE FIELD SALARY_END DATATYPE IS DATE.
DEFINE RECORD SALARY_HISTORY.
 EMPLOYEE_ID . /* Offset = 0 Length = 5 */
 SALARY_AMOUNT . /* Offset = 5 Length = 4 */
 SALARY_START . /* Offset = 9 Length = 8 */
 SALARY_END . /* Offset = 17 Length = 8 */
END SALARY_HISTORY RECORD. /* Total Length = 25 */
$

5.1.10 New RMU/DUMP/BACKUP Enhanced Error Handling
Features

When the RMU/DUMP/BACKUP command detected a non−fatal error as it was reading an Oracle Rdb
database backup file, it reported the error but continued with the dump to determine if there were other errors

Oracle® Rdb for OpenVMS

5.1.9 RMU Unload Record_Definition File Can Include Offset and Length Comment 92

in the backup file. In addition, RMU/DUMP/BACKUP returned a success status in the $STATUS symbol
when it finished reading the backup file and had a normal termination, whether or not it had output errors it
detected while reading the backup file.

If the RMU/DUMP/BACKUP command is being used just to verify the validity of the backup file, reading the
entire backup file just to determine if it is valid can take a long time for large backup files, especially if they
are on tape media. In addition, the success status in the $STATUS symbol when the dump completed
sometimes caused errors output during the dump to be missed or unnecessary time to be spent searching for
any errors in an RMU/DUMP/BACKUP batch job log file.

To fix these problems, the RMU/DUMP/BACKUP error handling has been enhanced. The last most serious
error detected by RMU/DUMP/BACKUP during the dump of the backup file will now always be put in the
symbol $STATUS which can be tested when RMU/DUMP/BACKUP completes or aborts by executing the
VMS command "SHOW SYMBOL $STATUS". In addition, a new [NO]EXIT_ERROR qualifier has been
added to the RMU/DUMP/BACKUP command to optionally abort the dump operation as soon as an error is
detected reading the backup file.

[NO]EXIT_ERROR

NOEXIT_ERROR, the default, keeps the current functionality: the RMU/DUMP/BACKUP operation will
only be aborted if a fatal error is detected which prevents RMU/DUMP/BACKUP from continuing to dump
the database backup file.

In the following example, the /EXIT_ERROR qualifier is specified with the RMU/DUMP/BACKUP
command. When the first error is detected while reading the backup file, MF_PERSONNEL.RBF, the dump
operation is aborted and the status of the error which caused the dump to be aborted, RMU−E−BLOCKLOST,
is saved in the $STATUS symbol when the RMU/DUMP/BACKUP command exits.

$ RMU/DUMP/BACKUP/EXIT_ERROR MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−F−FATALERR, fatal error on DUMP_BACKUP
%RMU−F−FTL_DUMP, Fatal error for DUMP operation at 1−MAY−2013 11:32:13.45
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8821A"

In the following example, the /NOEXIT_ERROR qualifier is first specified with the RMU/DUMP/BACKUP
command. This is the default so the second RMU/DUMP/BACKUP command, which does not specify the
/NOEXIT_ERROR qualifier, has the same results as the first RMU/DUMP/BACKUP command which does
specify the /NOEXIT_ERROR qualifier. When non−fatal errors are detected reading the backup file,
MF_PERSONNEL.RBF, the dump operation continues and is not aborted. But now the status of the last most
severe error detected reading the backup file, RMU−E−BLOCKLOST, is saved in the $STATUS symbol
when the RMU/DUMP/BACKUP command finishes reading the backup file, not a success status. A count is
also given of any soft media errors which were not reported because they did not reoccur when retrying the
media read operations.

$ RMU/DUMP/BACKUP/NOEXIT_ERROR MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−I−SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS

Oracle® Rdb for OpenVMS

5.1.9 RMU Unload Record_Definition File Can Include Offset and Length Comment 93

 $STATUS == "%X12C8821A"
$ RMU/DUMP/BACKUP MF_PERSONNEL.RBF
%RMU−I−DMPTXT_163, No dump option selected. Performing read check.
%RMU−E−BLOCKLOST, block of DEVICE:[DIRECTORY]MF_PERSONNEL.RBF; lost due to
unrecoverable error
%RMU−I−SOFTRERRS, 5 recoverable media errors occurred reading
DEVICE:[DIRECTORY]MF_PERSONNEL.RBF;
$ SHOW SYMBOL $STATUS
 $STATUS == "%X12C8821A"

5.1.11 New REVERSE Attribute for CREATE SEQUENCE
Statement and IDENTITY Clause

This release of Oracle Rdb adds support for a new type of sequence. The REVERSE clause causes the value
returned by NEXTVAL and CURRVAL to be bit/byte reversed. While the sequence of values computed
internally by the sequence generator are regularly increasing, the values presented through the CURRVAL
and NEXTVAL pseudo columns, and assigned to IDENTITY columns may not be adjacent. The advantage of
such a sequence is scattered I/O when SORTED or SORTED RANKED indices are defined on such columns.
This scattering of values may reduce I/O contention on nodes containing the new values generated from a
normal sequence.

The new REVERSE keyword can be used in CREATE SEQUENCE, or as part of the IDENTITY clause of
CREATE and ALTER TABLE statements.

The following example shows creating a table with an identity clause.

SQL> create table T3
cont> (a bigint identity (reverse
cont> increment by 1000000
cont> start with −1000000)
cont> ,rel_id integer);
SQL> insert into T3
cont> select rel_id
cont> from relations
cont> order by 1 fetch
cont> first 10 rows only;
10 rows inserted
SQL>
SQL> select t3.currval from rdb$database;

 20369552416178176
1 row selected
SQL>
SQL> table t3 order by a;
 A REL_ID
 0 2
 20369552416178176 12
 40739104832356352 6
 81478209664712704 4
 122118358450569216 8
 162956419329425408 3
 203279908766482432 7
 244236716901138432 5
 269389144898142207 1
 284665759454461952 9
10 rows selected

Oracle® Rdb for OpenVMS

5.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and IDENTITY Clause 94

SQL>

Usage Notes

Sequences created using REVERSE generate a full 64 bit value, so columns should be created as
BIGINT. Allocating a target data type that is too small will result in an integer overflow error as
shown in the following example.

SQL> create table T2
cont> (a integer identity (reverse increment by 20)
cont> ,rel_id integer);
cont> insert into T2 select rel_id from relations;
%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−COSI−F−INTOVF, integer overflow

•

The REVERSE clause is incompatible with RANDOMIZE.•
REVERSE sequences are maintained as a normal sequence. RDB$NEXT_SEQUENCE_VALUE will
return the current last value, but not bit/byte reversed.

•

Oracle® Rdb for OpenVMS

5.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and IDENTITY Clause 95

Chapter 6
Enhancements And Changes Provided in Oracle
Rdb Release 7.3.1.1

Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 96

6.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.3.1.1

6.1.1 New LIMIT_TO Qualifier Added to RMU Load
Command

This release of Oracle Rdb adds a /LIMIT_TO qualifier to the RMU Load command.

The LIMIT_TO qualifier defines the maximum number of rows to read from the source data file. Depending
upon the value specified for the SKIP qualifier, this also controls the number of rows written to the database.

The value of LIMIT_TO may not be zero, and the value of SKIP may not exceed this limit.

The default is NOLIMIT_TO which indicates that all rows read from the unload data file can be inserted into
the database table, depending on other factors such as the value of the SKIP qualifier.

The following example shows loading a sample from the EMPLOYEES table using the LIMIT_TO qualifier.

$ RMU/LOAD −
 /LIMIT_TO=80 −
 /RECORD=(FILE:EMP_TXT,FORMAT:DELIMIT) −
 PERSONNEL_SAMPLE −
 EMPLOYEES −
 EMP.TXT
 DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
 DEFINE FIELD LAST_NAME DATATYPE IS TEXT SIZE IS 14.
 DEFINE FIELD FIRST_NAME DATATYPE IS TEXT SIZE IS 10.
 DEFINE FIELD MIDDLE_INITIAL DATATYPE IS TEXT SIZE IS 1.
 DEFINE FIELD ADDRESS_DATA_1 DATATYPE IS TEXT SIZE IS 25.
 DEFINE FIELD ADDRESS_DATA_2 DATATYPE IS TEXT SIZE IS 25.
 DEFINE FIELD CITY DATATYPE IS TEXT SIZE IS 20.
 DEFINE FIELD STATE DATATYPE IS TEXT SIZE IS 2.
 DEFINE FIELD POSTAL_CODE DATATYPE IS TEXT SIZE IS 5.
 DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1.
 DEFINE FIELD BIRTHDAY DATATYPE IS TEXT SIZE IS 16.
 DEFINE FIELD STATUS_CODE DATATYPE IS TEXT SIZE IS 1.
 DEFINE RECORD EMPLOYEES.
 EMPLOYEE_ID .
 LAST_NAME .
 FIRST_NAME .
 MIDDLE_INITIAL .
 ADDRESS_DATA_1 .
 ADDRESS_DATA_2 .
 CITY .
 STATE .
 POSTAL_CODE .
 SEX .
 BIRTHDAY .
 STATUS_CODE .
 END EMPLOYEES RECORD.
%RMU−I−DATRECREAD, 80 data records read from input file.
%RMU−I−DATRECSTO, 80 data records stored 14−OCT−2013 07:14:03.52.
$

6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1 97

This enhancement has been added in Oracle Rdb Release 7.3.1.1.

6.1.2 New BEFORE and SINCE Qualifiers Added to RMU
Load Audit

Bug 17859712

This release of Oracle Rdb adds new qualifiers to RMU Load Audit to allow audit records to be filtered by
timestamp. The qualifiers BEFORE and SINCE can specify the date/time range which will be extracted from
the OpenVMS audit journal and saved in the target auditing table.

These qualifiers accept the standard OpenVMS date/time specification that includes special keywords such as
YESTERDAY, TODAY and TOMORROW. These values can be very effective when used with the List_Plan
qualifier and used later when using RMU Load Plan.

If these qualifiers are omitted, then their values default to minimum and maximum possible date/time values.

This example shows the use of DCL symbols to be used at runtime to provide the date/time range.

$ RMU/LOAD/AUDIT −
 /SINCE=&start_ts −
 /BEFORE=&end_ts −
 TESTDB AUDIT_RECORDS −
 SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
%RMU−I−DATRECREAD, 91 data records read from input file.
%RMU−I−DATRECSTO, 63 data records stored 27−NOV−2013 00:59:33.18.
$

This example uses explicit date and time values to load a specific range of audit records.

$ RMU/LOAD/AUDIT −
 /SINCE=1−JAN−2011 −
 /BEFORE="1−NOV−2013 13:00" −
 TESTDB AUDIT_RECORDS −
 SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
%RMU−I−DATRECREAD, 91 data records read from input file.
%RMU−I−DATRECSTO, 0 data records stored 27−NOV−2013 00:59:33.75.
$

Additionally, RMU/LOAD/PLAN now supports the AUDIT keyword and the new associated BEFORE and
SINCE keywords that correspond to this new functionality.

$ RMU/LOAD/AUDIT −
 /SINCE=YESTERDAY −
 /NOEXECUTE −
 /LIST_PLAN=SAMPLE.PLAN −
 TESTDB AUDIT_RECORDS −
 SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
$

Later the Plan can be executed and inherit the current value for YESTERDAY.

$ RMU/LOAD/PLAN SAMPLE.PLAN
%RMU−I−PROCPLNFIL, Processing plan file SAMPLE.PLAN.

Oracle® Rdb for OpenVMS

6.1.2 New BEFORE and SINCE Qualifiers Added to RMU Load Audit 98

 ! Plan created on 28−NOV−2013 by RMU/LOAD.

 Plan Name = LOAD_PLAN
 Plan Type = LOAD

 Plan Parameters:
 Database Root File = DISK1:[TESTING]TESTDB.RDB;
 Table Name = AUDIT_RECORDS
 Input File = SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL
 Audit = TESTDB
 Since = "YESTERDAY"

 ! Fields = <all>
 NoVirtual_Fields
 NoMatch_Name
 Dialect = SQL99
 Transaction_Type = PROTECTED
 ! Buffers = <default>
 ! Commit_Every = <never>
 Row_Count = 500
 ! Skip = <none>
 ! Limit_To = <none>
 NoReplace_Rows
 NoLog_Commits
 NoCorresponding
 NoDefer_Index_Updates
 Constraints
 NoParallel
 NoRestricted_Access
 NoPlace
 ! Statistics = <none>
 ! Trigger_Relations = <not specified>
 End Plan Parameters

 Executor Parameters:
 Executor Name = EXECUTOR_1
 ! Place_Only = <none>
 ! Exception_File = <none>
 ! RUJ Directory = <default>
 Communication Buffers = 1
 End Executor Parameters
%RMU−I−DATRECREAD, 195 data records read from input file.
%RMU−I−DATRECSTO, 21 data records stored 28−NOV−2013 23:34:50.27.
$

This enhancement has been added in Oracle Rdb Release 7.3.1.1.

6.1.3 New RMU/SHOW/STATISTICS Output File Periodic
Buffer Flushes

When a system failure occurred, important diagnostic data could be lost from the Oracle Rdb RMU/SHOW
STATISTICS output files: the binary file used to record Oracle Rdb database statistics for later replay; the
logical area access log file; the record access dbkey log file; the process deadlock log file; the lock timeout log
file; the OPCOM messages log file; the Hot Standby log file; the online analysis log file; and the stall
messages log file. To minimize the loss of diagnostic data from these RMU/SHOW STATISTICS output files,
periodic buffer data flushes will now occur if these files are created. These periodic output file data flushes

Oracle® Rdb for OpenVMS

6.1.3 New RMU/SHOW/STATISTICS Output File Periodic Buffer Flushes 99

will be the default. The user will be able to modify the periodic flush interval or specify that periodic buffer
flushes are not to occur.

The syntax for this new RMU/SHOW STATISTICS qualifier is as follows.

/FLUSH_INTERVAL=seconds
/NOFLUSH_INTERVAL

The default if the new /FLUSH_INTERVAL qualifier is not specified will be a periodic flush interval of 60
seconds. The minimum flush interval that can be specified is 0 seconds. The maximum flush interval that can
be specified is 3600 seconds (1 hour). Specifying 0 seconds for the flush interval is equivalent to specifying
/NOFLUSH_INTERVAL. If the flush interval is active and less than the statistics collection interval, to avoid
unnecessary buffer flushes the flush interval will be set to the statistics collection interval, which has a default
of 3 seconds and can be set by the existing /TIME qualifier, or by typing an "S" if "Set rate" is displayed at the
bottom of the statistics screen. The currrent collection interval is displayed following "Rate:" in the statistics
screen header.

The first and second command examples below use the default flush interval of 60 seconds. The third and
fourth command examples below specify a flush interval of 10 seconds. Note that the flush interval can be set
even if the RMU/SHOW STATISTICS command does not specify any log or output files. This is because the
TOOLS menu can be used later in the RMU/SHOW STATISTICS session to create log files for which the
flush interval of 60 or 10 will be used.

$ RMU/SHOW STATISTICS MF_PERSONNEL
$ RMU/SHOW STATISTICS/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10 MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL

The following command example specifies a statistics collection interval of 12 seconds using the /TIME
command qualifier. This is larger than the 10 seconds specified by the new /FLUSH_INTERVAL qualifier.
Since the collection interval is larger than the flush interval, the collection interval will be used for the flush
interval to avoid excess buffer flushes.

$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=10/TIME=12/OUTPUT=SHOWSTAT.DAT
/DBKEY_LOG=D.LOG MF_PERSONNEL

The following command examples are equivalent and specify that periodic buffer flushes will not be used for
the RMU/SHOW STATISTICS binary output and log files.

$ RMU/SHOW STATISTICS/NOFLUSH_INTERVAL/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL
$ RMU/SHOW STATISTICS/FLUSH_INTERVAL=0/OUTPUT=SHOWSTAT.DAT/DBKEY_LOG=D.LOG
MF_PERSONNEL

This enhancement has been added to Oracle Rdb Release 7.3.1.1.

6.1.4 New Error and Log Messages Added for Segmented
String Verification

To verify segmented strings for all Oracle Rdb database tables, the commands RMU/VERIFY/ALL or
RMU/VERIFY/SEGMENTED_STRINGS/LAREAS or

Oracle® Rdb for OpenVMS

6.1.4 New Error and Log Messages Added for Segmented String Verification 100

RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=* can be used. To verify segmented strings for
individual tables, the /LAREAS qualifier must be used with the /SEGMENTED_STRINGS qualifier to
specify one or more names of tables to be verified.

There was a problem where, if the /LAREAS qualifier was used with the /SEGMENTED_STRINGS qualifier,
logical area identifier numbers or the names of logical areas that were not tables could be specified with the
/LAREAS qualifier without an error, even though segmented string data is verified only on a table−wide basis
for a table which contains segmented string columns, including all table records that may be vertically or
horizontally partitioned across multiple logical areas.

Allowing logical area id numbers or the names of logical areas that were not table names to be specified could
cause confusion or lead the user to falsely assume that segmented strings contained in these logical areas were
being verified. Therefore, the RMU/VERIFY operation will now be aborted and a new fatal
"%RMU−I−TBLSEGVER" error will be output if the /SEGMENTED_STRINGS qualifier is specified in the
same RMU/VERIFY command as the /LAREAS qualifier and the /LAREAS qualifier specifies a logical area
id or a logical area name which is not a valid table name.

The following example shows the previous behavior. In the first command, "RESUMES" is a valid table that
contains segmented strings and the segmented strings are therefore verified. In the second command,
RMU/VERIFY detected that the "NOTATABLE" table did not exist and returned the fatal
"%RMU−F−NOTLAREA" error. In the third command, the logical area id number "95" was ignored and no
segmented string verification took place but the user could wrongly assume that segmented string data had
been verified. In the fourth command, the index logical area name "SH_EMPLOYEE_ID" was also ignored
so the user could again wrongly assume that segmented string data had been verified.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=NOTATABLE MF_PERSONNEL
%RMU−F−NOTLAREA, "NOTATABLE" is not a valid logical area name or number
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=95 MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=SH_EMPLOYEE_ID MF_PERSONNEL

The following example shows the new behavior. In the first command, "RESUMES" is a valid table that
contains segmented strings so the segmented string data is verified as previously. In the second command, a
fatal error is returned as previously but the error is detected earlier and a more specific error message is output
using the new "%RMU−F−INVSEGTBL" fatal error message. In the third command and the fourth command,
the invalid table names are now detected and the new "%RMU−F−INVSEGTBL" fatal error message is
output.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=NOTATABLE MF_PERSONNEL
%RMU−F−INVSEGTBL, Invalid table name NOTATABLE specified for segmented string
verification
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 27−JAN−2014 15:09:05.08
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=95 MF_PERSONNEL
%RMU−F−INVSEGTBL, Invalid table name 95 specified for segmented string
verification
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 27−JAN−2014 15:02:39.04
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=SH_EMPLOYEE_ID MF_PERSONNEL
%RMU−F−INVSEGTBL, Invalid table name SH_EMPLOYEE_ID specified for segmented
string verification
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 27−JAN−2014 15:03:42.15

A new LOG message has also been added to RMU/VERIFY to list the tables containing columns defined for
segmented string data for which the segmented string data will be verified. If log messages are activated for

Oracle® Rdb for OpenVMS

6.1.4 New Error and Log Messages Added for Segmented String Verification 101

the RMU/VERIFY command, the new log message "%RMU−I−TBLSEGVER" will be output at the
beginning of the verify operation and will be repeated for each table selected for segmented string data
verification. In the first command, only the "RESUMES" table specified by the /LAREA qualifier is verified.
In the second command, "RMU/VERIFY/ALL" is specified which, by default, verifies all tables in the
database with segmented string columns, including the system tables. Note that in the second command, most
of the log messages that follow the "%RMU−I−TBLSEGVER" messages have been left out to save space.

$ RMU/VERIFY/LOG/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RESUMES
%RMU−I−DBBOUND, bound to database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
%RMU−I−OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU−I−BGNAIPVER, beginning AIP pages verification
%RMU−I−ENDAIPVER, completed AIP pages verification
%RMU−I−BGNABMSPM, beginning ABM pages verification
%RMU−I−OPENAREA, opened storage area MF_PERS_SEGSTR for protected retrieval
%RMU−I−ENDABMSPM, completed ABM pages verification
%RMU−I−BSGPGLARE, beginning verification of RESUMES logical area
 as part of EMP_INFO storage area
%RMU−I−OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU−I−ESGPGLARE, completed verification of RESUMES logical area
 as part of EMP_INFO storage area
%RMU−I−CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU−S−ENDVERIFY, elapsed time for verification : 0 00:00:00.80
$ RMU/VERIFY/ALL/LOG MF_PERSONNEL
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−TBLSEGVER, Segmented strings will be verified for table CANDIDATES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RESUMES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$COLLATIONS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$CONSTRAINTS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$DATABASE
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$FIELDS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$FIELD_VERSIONS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$INDEX_SEGMENTS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$INDICES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$MODULES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$PARAMETERS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$PRIVILEGES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$PROFILES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$QUERY_OUTLINES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$RELATIONS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$RELATION_CONSTRAINTS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$RELATION_FIELDS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$ROUTINES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$SEQUENCES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$STORAGE_MAPS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$STORAGE_MAP_AREAS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$TRIGGERS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table
RDB$TRIGGER_ACTIONS
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$TYPES
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RDB$TYPE_FIELDS
%RMU−I−BGNVCONST, beginning verification of constraints for database

Oracle® Rdb for OpenVMS

6.1.4 New Error and Log Messages Added for Segmented String Verification 102

DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU−I−ENDVCONST, completed verification of constraints for database
DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
%RMU−I−DBBOUND, bound to database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
$

Oracle® Rdb for OpenVMS

6.1.4 New Error and Log Messages Added for Segmented String Verification 103

Chapter 7
Enhancements And Changes Provided in Oracle
Rdb Release 7.3.1.0

Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 104

7.1 Enhancements And Changes Provided in
Oracle Rdb Release 7.3.1.0

7.1.1 Changes to Default and Limits Behavior in Oracle Rdb

This release of Oracle Rdb changes the following default behavior.

CREATE DATABASE Statement

These new defaults will be used when creating a database.

The default PAGE SIZE changes from 2 to 4 blocks•
The default BUFFER SIZE changes from 3 pages to 4 pages•
The default NUMBER OF BUFFERS changes from 20 to 250 buffers•
The default NUMBER OF RECOVERY BUFFERS changes from 20 to 250 buffers•
The default for SECURITY CHECKING clause is now (PERSONA IS ENABLED)•
The default for SYSTEM INDEX is now (TYPE IS SORTED RANKED, COMPRESSION IS
ENABLED)

•

The SYSTEM INDEX changes are applied to all new databases created with CREATE DATABASE
statement and IMPORT DATABASE statement. Older databases converted using RMU/CONVERT or
RMU/RESTORE (with the implicit Convert action) will also result in the new SYSTEM INDEX default.

The other new defaults do not affect databases created in Rdb V7.2 (or older versions) that are converted to
Oracle Rdb V7.3.1 (or later) using RMU/CONVERT or RMU/RESTORE. In most cases, recreating databases
using the SQL IMPORT DATABASE statement using an interchange file (.rbr) from older versions of Oracle
Rdb will preserve the settings from the source database.

Interchanges files (.rbr) created with Oracle Rdb SQL EXPORT from V7.2.4 and later do export the PAGE
SIZE of the database. However, older versions of Rdb did not export the PAGE SIZE if it was 2 pages (the
old default). If you are using older interchange files then the IMPORT DATABASE statement should include
PAGE SIZE definitions for the database and each storage area that used PAGE SIZE 2. Tools such as
RMU/EXTRACT/ITEM=IMPORT can be used to create a script for this purpose.

These new limits are now enforced by Oracle Rdb.

The maximum BUFFER SIZE can now be specified up to 256 blocks.
Previously, the maximum allowed database buffer size was 128 blocks. Be aware that using larger
database buffer sizes will require additional virtual memory.

•

The minimum NUMBER OF USERS is now 5.
In prior versions of Oracle Rdb, the minimum number of allowed database users was one (1). This
minimum has been increased to five to allow for various optional database servers (such as the ABS
or RCS or ALS) to access the database.
When RMU Convert or SQL IMPORT DATABASE are used to create databases in Rdb Release 7.3,
they will automatically establish a new minimum if the one defined for the original database was less
than 5 users.

•

ALTER DATABASE Statement

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 105

When adding a new storage area to a database, that new storage area will assume a default PAGE SIZE of 4
blocks. This may be problematic if the database has a small (for instance the default) BUFFER SIZE from
older database versions.

In this example, a database created under Oracle Rdb Release 7.2.5.3 was converted to Rdb Release 7.3.1.0.

SQL> alter database filename ABC add storage area XYZ;
SQL> attach 'filename ABC';
SQL> show storage area XYZ

 XYZ
 Access is: Read write
 Page Format: Uniform
 Page Size: 4 blocks
 Area File: USER2:[TESTING]XYZ.RDA;1
 Area Allocation: 700 pages
 Extent: Enabled
 Area Extent Minimum: 99 pages
 Area Extent Maximum: 9999 pages
 Area Extent Percent: 20 percent
 Snapshot File: USER2:[TESTING]XYZ.SNP;1
 Snapshot Allocation: 100 pages
 Snapshot Extent Minimum: 99 pages
 Snapshot Extent Maximum: 9999 pages
 Snapshot Extent Percent: 20 percent
 Locking is Row Level
 No Cache Associated with Storage Area
No database objects use Storage Area XYZ
SQL>

The problem lies in the fact that the current BUFFER SIZE is only 6 blocks (see the SHOW DATABASE
output below). This would mean that I/O to the new storage area would only be adding one page to the buffer,
with over 33% of the buffer wasted.

SQL> show database rdb$dbhandle
Default alias:
 Oracle Rdb database in file ABC
 Multischema mode is disabled
 Number of users: 50
 Number of nodes: 16

Buffer Size (blocks/buffer): 6
 Number of Buffers: 20
 Number of Recovery Buffers: 20

.

.

.

Oracle recommends that an explicit PAGE SIZE clause be used when defining a new storage area.

CREATE INDEX Statement

These new defaults will be used when creating an index.

The default NODE SIZE for SORTED RANKED and unique SORTED indices is now chosen to be
large enough to fill the free space in the new logical area. In prior versions, a smaller NODE SIZE
was chosen based on the index key length. However, these small nodes left unused space on the
database pages and so were wasteful of disk space and virtual memory (when in buffers).

•

Oracle® Rdb for OpenVMS

7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0 106

No changes were made to the default node size for SORTED indices with duplicates. In this case, the
smaller duplicate nodes may fill the unused space on the page.
The default PERCENT FILL changes from 70% to 85%•

These changes do not affect indices created in Rdb V7.2 (or older versions) when the database is converted to
Oracle Rdb Release 7.3.1 using RMU/CONVERT or RMU/RESTORE.

Importing a database using the IMPORT DATABASE statement will fix up the metadata for the PERCENT
FILL and NODE SIZE so that the output from SHOW INDEX will provide more information than in prior
versions.

Logical Name RDMS$BIND_WORK_VM

The Oracle Rdb query optimizer might make use of temporary virtual memory (VM) during query processing.
This memory is used to cache index keys during zig−zag match strategy and dbkey lists during
temporary−relation processing (not related to the SQL temporary table feature). In either case, the virtual
memory size defined by the logical name RDMS$BIND_WORK_VM is used for each buffer which might
overflow to a temporary disk file (located using the RDMS$BIND_WORK_FILE logical name).

With this release the new default has increased from 10,000 to 100,000 bytes. This change makes it more
likely that queries can complete entirely in VM rather than opening and using a small disk file.

Logical Name RDMS$BIND_MAX_QSORT_COUNT

When the number of rows is relatively small, the Oracle Rdb query processor can avoid using SORT32
(which has a higher setup cost) by using an in−memory Quick Sort. In prior versions, the default threshold
was 63 rows. This release of Oracle Rdb defaults to 5,000 rows. The larger threshold should allow more
sorting to consume less resources. This threshold can be changed (for instance to return to the prior default of
63) using the logical name RDMS$BIND_MAX_QSORT_COUNT.

7.1.2 New /ERROR_LIMIT Qualifier Added as the Default to
RMU/VERIFY

New default functionality has been added to RMU/VERIFY to limit the number of diagnostics output when
verifying an Oracle Rdb database. By default, RMU/VERIFY will now limit the number of diagnostic
messages output by RMU/VERIFY to 100. If this limit is exceeded, the RMU/VERIFY will terminate with a
warning messsage.

%RMU−W−MAXVERERR, Maximum error limit 100 exceeded − ending verification

To disable this behavior and have no limit on the number of diagnostic messages output by the verification,
/NOERROR_LIMIT must be specified on the command line.

RMU/VERIFY/ALL/NOERROR_LIMIT mf_personnel

To override the default of 100, the user can specify a numeric value for the /ERROR_LIMIT between 1 and
2147483647.

RMU/VERIFY/ALL/ERROR_LIMIT=50 mf_personnel

Oracle® Rdb for OpenVMS

7.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY 107

If /ERROR_LIMIT is specified without a value, the default limit of 100 diagnostics will be used.

RMU/VERIFY/ALL/ERROR_LIMIT mf_personnel

The /ERROR_LIMIT does not include any logging messages put out when the /LOG qualifier is used with
RMU/VERIFY. It only includes diagnostic messages which are defined as messages of any severity which are
not logging messages put out when the /LOG qualifier is specified. The %RMU−W−MAXVERERR message
is not included in the /ERROR_LIMIT count but is output once the /ERROR_LIMIT in force is exceeded in
place of the diagnostic message that would have exceeded the error limit.

We have done everything we can to make the /ERROR_LIMIT count as accurate as possible but related
messages output together in one output operation may be counted as one message in a limited number of
cases. Therefore, we do not guarantee absolute accuracy in the /ERROR_LIMIT count in all cases but
consider it as an acceptably accurate way to limit the potentially large number of diagnostics that can be
output by the RMU/VERIFY of a database.

The syntax for this qualifier is as follows:

/[NO]ERROR_LIMIT[=n]

"n" is a positive numeric value between 1 and 2147483647.

In the following example, the RMU/VERIFY of a database completes normally with 6 diagnostics since the
default error limit of 100 is not exceeded.

$ rmu/verify/all mf_personnel
%RMU−W−PAGCKSBAD, area EMP_INFO, page 2
 contains an invalid checksum
 expected: A77B3D6D, found: A7713D6D
%RMU−W−PAGLIXFRS, area EMP_INFO, page 2
 line index entry 15 maps free space at offset 00000106 (hex)
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 19, length too small
 expected at least 2, found: 0
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 20, length too small
 expected at least 2, found: 0
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 21, length too small
 expected at least 2, found: 0
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 22, length too small
 expected at least 2, found: 0
$

In the following example, the RMU/VERIFY is of the same database as in the previous example but an error
limit of 5 diagnostic messages is specified. Therefore, 5 diagnostic messages are output and instead of the 6th
diagnostic message being output, the %RMU−W−MAXVERERR is output and the database verify
terminates.

$ rmu/verify/all/error_limit=5 mf_personnel
%RMU−W−PAGCKSBAD, area EMP_INFO, page 2
 contains an invalid checksum
 expected: A77B3D6D, found: A7713D6D
%RMU−W−PAGLIXFRS, area EMP_INFO, page 2
 line index entry 15 maps free space at offset 00000106 (hex)

Oracle® Rdb for OpenVMS

7.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY 108

%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 19, length too small
 expected at least 2, found: 0
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 20, length too small
 expected at least 2, found: 0
%RMU−W−PAGLIXSML, area EMP_INFO, page 2
 line index entry 21, length too small
 expected at least 2, found: 0
%RMU−W−MAXVERERR, Maxium error limit 5 exceeded − ending verification

7.1.3 RMU /VERIFY Root Displays the Corrupt Page Table
Entries

Bug 870984

In previous releases of Oracle Rdb, the command RMU/VERIFY ROOT did not show any Corrupt Page
Table (CPT) entries even when they existed. The commands RMU/SHOW CORRUPT,
RMU/DUMP/HEAD=CORRUPT and RMU/VERIFY/ALL would show them.

A new feature has been added to RMU/VERIFY ROOT so that it now displays the CPT entries.

The following example shows that RMU/VERIFY/ROOT now displays the corrupt page entries in the
database corrupt page table. The RMU/SHOW CORRUPT command is first executed to display the corrupt
page entries in the corrupt page table for the PERSONNEL database. When the RMU/VERIFY/ROOT
command is then executed it outputs a message for each corrupt page entry in the corrupt page table. This is
the same message output by the RMU/VERIFY/ALL command.

$ RMU/SHOW CORRUPT PERSONNEL
*−−
* Oracle Rdb V7.3−100 1−FEB−2013 16:41:40.77
*
* Dump of Corrupt Page Table
* Database: DEVICE:[DIRECTORY]PERSONNEL.RDB;2
*
*−−
Entries for storage area RDB$SYSTEM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Page 300
 − AIJ recovery sequence number is −1
 − Live area ID number is 1
 − Consistency transaction sequence number is 0
 − State of page is: corrupt

*−−
* Oracle Rdb V7.3−100 1−FEB−2013 16:41:40.77
*
* Dump of Storage Area State Information
* Database: DEVICE:[DIRECTORY]PERSONNEL.RDB;2
*
*−−

All storage areas are consistent.

Oracle® Rdb for OpenVMS

7.1.3 RMU /VERIFY Root Displays the Corrupt Page Table Entries 109

$ RMU/VERIFY/ROOT/LOG PERSONNEL
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−DBBOUND, bound to database "DEVICE:[DIRECTORY]PERSONNEL.RDB;2"
%RMU−I−OPENAREA, opened storage area DEVICE:[DIRECTORY]PERSONNEL.RDB;2 for protected retrieval
%RMU−I−BGNAIPVER, beginning AIP pages verification
%RMU−I−ENDAIPVER, completed AIP pages verification
%RMU−I−BGNABMSPM, beginning ABM pages verification
%RMU−I−ENDABMSPM, completed ABM pages verification
%RMU−E−CORRUPTPG, Page 300 in area DEVICE:[DIRECTORY]PERSONNEL.RDB;2 is marked as corrupt.
%RMU−I−CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU−S−ENDVERIFY, elapsed time for verification : 0 00:00:00.49
$

7.1.4 DECLARE LOCAL TEMPORARY TABLE Supports
COMMENT IS Clause

With this release of Oracle Rdb, the DECLARE LOCAL TEMPORARY TABLE statement now supports the
COMMENT IS clause. This comment is not stored by Rdb but can be used to document the DECLARE
statement when it appears in a CREATE MODULE statement or when used in Interactive SQL scripts.

The following example shows the placement of the clause.

SQL> declare local temporary table module.STBL
cont> (a int)
cont> on commit preserve rows
cont> comment is 'Test for local temporary table'
cont> large memory is enabled
cont> ;

For further details please refer to the Oracle Rdb SQL Reference Manual.

7.1.5 Temporary Tables Now Support LARGE MEMORY
Option

With this release of Oracle Rdb, the DECLARE LOCAL TEMPORARY TABLE statement, the CREATE
GLOBAL TEMPORARY TABLE statement, and the CREATE LOCAL TEMPORARY TABLE statement
all support the use of LARGE MEMORY on OpenVMS.

A new LARGE MEMORY IS { ENABLED | DISABLED } clause has been added to these statements so that
the temporary table virtual memory now resides in 64 bit memory. This allows much larger temporary tables
than in previous releases of Oracle Rdb.

The following example shows the placement of the clause.

SQL> create local temporary table LTBL
cont> (a int)
cont> on commit preserve rows
cont> comment is 'Test for local temporary table'
cont> large memory is enabled
cont> ;
SQL> show table (column) LTBL;

Oracle® Rdb for OpenVMS

7.1.4 DECLARE LOCAL TEMPORARY TABLE Supports COMMENT IS Clause 110

 Information for table LTBL

A local temporary table.
On commit Preserve rows
 Large Memory: Enabled

Columns for table LTBL:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−
A INTEGER

SQL>

Additionally, the ALTER TABLE statement has been enhanced to enable (or disable) this feature on existing
temporary table definitions. This clause is not permitted for information on base tables.

For further details please refer to the Oracle SQL Reference Manual.

7.1.6 COUNT Now Returns BIGINT Result

The SQL aggregate function COUNT now returns BIGINT (aka 64 bit values) in this release of Oracle Rdb
(Release 7.3.1.0). This change has been made to accommodate large tables and result sets.

The side effects of this change that may be visible are:

Wider column output in interactive SQL for queries that perform SELECT COUNT(*),
COUNT(DISTINCT expression) and COUNT(expression).

•

COMPUTED BY and AUTOMATIC columns will now be displayed as BIGINT type because of an
expression that uses a COUNT function.

•

SQLDA data type change for COUNT expressions.•

In general, this change is backward compatible with existing applications. The computed BIGINT value will
automatically be converted to INTEGER for older SQL precompiler or SQL module language applications.

7.1.7 Aggregate Functions Now Use BIGINT Counters

COUNT and related aggregate functions AVG, VARIANCE, and STDDEV all process counters in BIGINT
registers. This allows Rdb to process aggregation across much larger row sets than in previous releases.

With this release of Oracle Rdb, the COUNT aggregate function will return BIGINT data type results. In prior
releases, an INTEGER type was the result. Applications that create COMPUTED BY or AUTOMATIC
columns may notice that the data type of such columns changed to BIGINT.

Note

Oracle Rdb will implicitly convert internal results to INTEGER if the target data type in the
application has not changed.

Oracle® Rdb for OpenVMS

7.1.6 COUNT Now Returns BIGINT Result 111

7.1.8 /[NO]KEY_VALUES Qualifier Added to
RMU/VERIFY/INDEX

A new /KEY_VALUES qualifier has been added to the Oracle Rdb RMU/VERIFY command for verifying
the integrity of Rdb databases. The /KEY_VALUES qualifier verifies the key field values contained in a
sorted, sorted ranked or hashed index against the key field values in the matching table row to make sure the
key field values contained in the index match the field values in the table. This qualifier can only be specified
if indexes are being verified explicitly as with the RMU/VERIFY/INDEX command or if indexes are being
verified by default such as with the RMU/VERIFY/ALL command. Key field values will be verified for all
indexes or a specified list of one or more indexes. Diagnostic error messages will be put out if the index key
field value does not match the table row key field value, if a DBKEY contained in the index node or hash
bucket does not match the DBKEY of a table row, or if the DBKEY of a table row is not contained in the
index node or hash bucket. Indexes with one key field or multiple key fields can be verified using the
/KEY_VALUES qualifier.

The /KEY_VALUES qualifier will ignore index fields that have a collating sequence or are of type character
varying. The character encoding for the collating sequence prevents a byte by byte comparison with the
column row values. The key encoding for character varying pads with spaces so the precise length cannot be
compared with the column row values. For these index fields, a warning message will be output and a
comparison with the column row values will not be done.

The syntax for this new qualifier is as follows −

/[NO]KEY_VALUES

Note that /KEY_VALUES is not the default and must be specified.

The following example shows the error message put out if the index key field value in the index structure does
not match the key field value in the table row. The DBKEY pointer to the index node or hash bucket that
contains the row DBKEY is output as well as the table row DBKEY.

$ RMU/VERIFY/INDEX=JH_EMPLOYEE_ID/KEY_VALUES MF_PERSONNEL
%RMU−E−BADIDXFLD, Index JH_EMPLOYEE_ID key field EMPLOYEE_ID value at dbkey
93:810:3 does not match stored value for table JOB_HISTORY at dbkey 90:289:5 .

The following example shows the error message put out if the key field value(s) returned from index only
retrieval of the key fields do not match on row DBKEY with the key fields returned sequentially from the
table row. Because the retrieval is out of sequence, the key field values cannot be compared.

$ RMU/VERIFY/INDEX/KEY_VALUES MF_PERSONNEL
%RMU−E−BADIDXDBK, Index JH_EMPLOYEE_ID dbkey 91:413:3 does not match
table JOB_HISTORY row dbkey 90:200:4 .

The following example shows the error message put out if the table contains a DBKEY pointing to a table row
that is not in the index.

$ RMU/VERIFY/INDEX/KEY_VALUES/ERROR_LIMIT=200 MF_PERSONNEL
%RMU−E−NOTIDXDBK, Table COLLEGES row dbkey 68:2:1 is not in index
 COLL_COLLEGE_CODE .

The following example shows the error message put out if the index contains a DBKEY pointing to a table

Oracle® Rdb for OpenVMS

7.1.8 /[NO]KEY_VALUES Qualifier Added to RMU/VERIFY/INDEX 112

row that is not in the table.

$ RMU/VERIFY/INDEX/KEY_VALUES/ERROR=200 MF_PERSONNEL
%RMU−E−NOTTABDBK, Index COLL_COLLEGE_CODE dbkey 68:2:1 is not in table
 COLLEGES .

The following example shows that a warning message is put out for index key fields that have a collating
sequence or that are of type character varying. These index fields cannot be compared with row values using
the /KEY_VALUES qualifier.

$ RMU/VERIFY/INDEX/KEY_VALUES ABC.RDB
%RMU−W−NOTTYPNDX, Index MANUFACTURING_INDEX field MANUFACTURER_NAME cannot
 be verified with the row value in table MANUFACTURING;
 reason − COLLATING SEQUENCE.
$ RMU/VERIFY/INDEX/KEY_VALUES DBASE_INDEX.RDB
%RMU−W−NOTTYPNDX, Index FORECAST_HASH field PART_NO cannot be verified with
 the row value in table FORECAST_VOLUME; reason − CHARACTER VARYING.

7.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the
Database Default

For the Oracle Rdb RMU commands RMU/BACKUP/ONLINE, RMU/COPY/ONLINE, and
RMU/BACKUP/AFTER/QUIET_POINT, the /LOCK_TIMEOUT qualifier can be specified. Previously the
/LOCK_TIMEOUT qualifier required a value, the maximum time in seconds to wait for acquiring the
database QUIET POINT and other locks used for online database access. If "/LOCK_TIMEOUT = n" was not
specified, RMU would wait indefinitely to acquire the database lock it needed.

Now the /LOCK_TIMEOUT qualifier can be specified without a value. In this case, the default lock timeout
value specified for the database will be used. Specifically, the default lock timeout value used will be the
value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL if it has been specified, otherwise
the "LOCK TIMEOUT INTERVAL" specified by the SQL CREATE DATABASE or ALTER DATABASE
command will be used. If neither value has been specified, the value used will be the maximum possible lock
timeout value which can be specified for an Oracle Rdb database.

The new syntax for this qualifier is as follows −

/LOCK_TIMEOUT [= n]

Note that /LOCK_TIMEOUT is not the default and must be specified. The default, if /LOCK_TIMEOUT is
not specified, continues to be to wait indefinitely to acquire the QUIET POINT or other database locks
requested by RMU.

The following example shows the different RMU commands which accept the /LOCK_TIMEOUT qualifier.
In the first command, the specified lock timeout value of 100 seconds will be used. In the other commands,
since a lock timeout value is not specified, the default database lock timeout value described above will now
be used.

$ RMU/BACKUP/ONLINE/LOCK_TIMEOUT=100/NOLOG MF_PERSONNEL MFP.RBF
$ RMU/BACKUP/ONLINE/LOCK_TIMEOUT/NOLOG MF_PERSONNEL MFP.RBF
$ RMU/COPY/ONLINE/LOCK_TIMEOUT/ROOT=DISK:[DIRECTORY]MF_PERSONNEL−
 /NOAFTER/NOLOG MF_PERSONNEL
$ RMU/BACKUP/AFTER/NOLOG/QUIET_POINT/LOCK_TIMEOUT −

Oracle® Rdb for OpenVMS

7.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the Database Default 113

 DISK:[DIRECTORY]MF_PERSONNEL MFP_AIJ_1

The following example shows that the PLAN file used with the RMU PARALLEL BACKUP command will
accept either the specified lock timeout value of 100 seconds or will now accept the default database lock
timeout value described above.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE−
 /LOCK_TIMEOUT=100 MF_PERSONNEL DISK:[DIRECTORY]MFP,DISK:[DIRECTORY]
$ SEAR TMP.PLAN LOCK_TIMEOUT
 Lock_Timeout = 100
$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE−
 /LOCK_TIMEOUT MF_PERSONNEL DISK:[DIRECTORY]MFP,DISK:[DIRECTORY]
$ SEAR TMP.PLAN LOCK_TIMEOUT
 Lock_Timeout
$ RMU/BACKUP/PLAN TMP.PLAN

7.1.10 Compression of AIJ Backup Files for Automatic AIJ
Backups

A new feature has been added to allow compression of AIJ files during automatic AIJ backups.

Also backups of after image journals using /Format=Old_File can be compressed using the ZLIB compression
method.

To set the compression level, the RMU SET command has been extended:

$ RMU /SET AFTER_JOURNAL /BACKUPS=(...,[[NO]COMPRESSION[=ZLIB[=n]]])
 default is NOCOMPRESSION
 n = ZLIB compression level,
 default is 6, minimum is 1, maximum is 9

The RMU recover command has been enhanced to automatically decompress AIJ backup files in the 'Old_file'
format which have been compressed using the ZLIB compression method.

7.1.11 Global Statistics Sections for Better Performance

On systems with many CPUs, updating database statistics from many application processes causes memory
cache invalidation and therefore prolongs the update of the statistics data.

With the change in this release of Oracle Rdb, the RDM Monitor creates 16 global statistic sections for
systems with 16 or more CPUs. Application processes attach to a statistics section based on the modulo 16 of
their process ID value. This should reduce the coincidence that two or more processes use the same global
section from different processors and thus cause memory cache invalidation when updating statistics data.

The default used for RAD (Resource Allocation Domain) systems still remains (see below).

The use of multiple global statistic sections can be overridden with the following system logical name:

$ DEFINE /SYSTEM RDM$BIND_MONITOR_GLOBAL_STATS_SECTIONS n
 n = 0 − always use statistics in the database's shared memory section
 n = 1..16 − use statistics in separate global sections

Oracle® Rdb for OpenVMS

7.1.10 Compression of AIJ Backup Files for Automatic AIJ Backups 114

 with n the number of global sections being used
 If n is equal −1 or if the logical is not defined, use the default (see
 below).

By default, the statistics area in the database's shared memory section is used unless a system has more than
one RAD with memory or the system has 16 or more CPUs. In the case of more than one RAD with memory,
one global statistics section is created per RAD with memory. In the case of 16 or more CPUs, 16 global
statistics sections are created. The more than one RAD with memory case has precedence over the 16 or more
CPUs case.

7.1.12 RMU/SET AUDIT Supports Wildcard Table and
Column Names

Bug 5865199

In prior versions of Oracle Rdb, the RMU Set Audit command did not allow wildcards to be used to specify
tables or column names for the DACCESS qualifier. A database administrator was required to enumerate all
tables and columns to be audited. Further, if a table was specified as * then this was ignored by RMU.

With this release, Rdb RMU Set Audit has been enhanced to provide more flexible naming conventions for
tables and columns.

TABLE=* and COLUMN=*.* are now accepted to specify all tables or all columns of all tables.•
Table and column names may also contain OpenVMS style wildcards "*" and "%". For instance, in
the PERSONNEL database, JOB* will match both the JOBS and JOB_HISTORY table and
*HISTORY.EMPLOYEE_ID will match all EMPLOYEE_ID columns in any table ending in
HISTORY which includes both the JOB_HISTORY and SALARY_HISTORY tables.

•

The following example shows the simplified commands for enabling auditing for important fields in the
PERSONNEL database.

$ rmu/set audit−
 /enable=daccess=column=(−
 *.employee_id,−
 *_history.*end,−
 *_history.*start)−
 /privileges=(insert,select,update,delete) personnel
$
$ rmu/show audit/daccess=(DATABASE,TABLE,COLUMN) personnel
Security auditing STOPPED for:
 DACCESS (disabled)
 DATABASE
 (NONE)
 COLUMN : DEGREES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : EMPLOYEES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.JOB_START
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.JOB_END
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : RESUMES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)

Oracle® Rdb for OpenVMS

7.1.12 RMU/SET AUDIT Supports Wildcard Table and Column Names 115

 COLUMN : SALARY_HISTORY.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : SALARY_HISTORY.SALARY_START
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : SALARY_HISTORY.SALARY_END
 (SELECT,INSERT,UPDATE,DELETE)

Security alarms STOPPED for:
 DACCESS (disabled)
 DATABASE
 (NONE)
 COLUMN : DEGREES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : EMPLOYEES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.JOB_START
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : JOB_HISTORY.JOB_END
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : RESUMES.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : SALARY_HISTORY.EMPLOYEE_ID
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : SALARY_HISTORY.SALARY_START
 (SELECT,INSERT,UPDATE,DELETE)
 COLUMN : SALARY_HISTORY.SALARY_END
 (SELECT,INSERT,UPDATE,DELETE)

Usage Notes

When using wildcard characters with /ENABLE=DACCESS or /DISABLE=DACCESS option, only user
defined objects will be selected.

TABLE − only user defined tables will be matched by the wildcard search. Views, system tables and
special tables created by OCI Services for Rdb will not be returned. For excluded tables, you must
specify their full name on the RMU command line.

•

SEQUENCE − only user defined sequences will be matched by the wildcard search. This includes
sequences implicity created for IDENTITY columns. For excluded sequences, you must specify their
full name on the RMU command line.

•

MODULE − only user defined modules will be matched by the wildcard search. For excluded
modules, you must specify their full name on the RMU command line.

•

ROUTINE − only user defined routines will be matched by the wildcard search. Any routine defined
in a module with USAGE IS LOCAL will be excluded from this matching. Such routines can only be
called from within the module itself and so additional auditing is not required. For excluded routines,
you must specify their full name on the RMU command line.

•

VIEW − only user defined views will be matched by the wildcard search. Base tables, system views,
and special views created by OCI Services for Rdb will not be returned. For excluded views, you
must specify their full name on the RMU command line.

•

7.1.13 RMU/BACKUP Database Root Verification
Performance Enhancement

Oracle® Rdb for OpenVMS

7.1.13 RMU/BACKUP Database Root Verification Performance Enhancement 116

By default, RMU/BACKUP verifies the database root at the start of the backup before backing up an Oracle
Rdb database. If the database root is invalid, the error diagnostics from the verification are output and the
backup is terminated. This is to prevent backing up a corrupt database. To not verify the database root, the
user must specify /NODATABASE_VERIFICATION. As part of this verification, all live and snapshot
database storage areas were opened to verify the area prologue block and the area maximum page number and
then closed. Later, the storage areas were again opened and closed a second time to do the actual backup of
the data in each storage area.

To improve the performance of RMU/BACKUP, the extra open and close of the live and snapshot database
storage areas just to verify the database root has been eliminated. The same verification is still done but the
storage areas are now only opened and closed once during the backup. Note that
/DATABASE_VERIFICATION remains the default for RMU/BACKUP.

As part of this change, the following new syntax has been added to the RMU/BACKUP/PARALLEL *.PLAN
file.

[No]Database_Verification

The existing command line qualifier "/[NO]DATABASE_VERIFICATION" is used to set the new
"[No]Database_Verification" option in the initial *.PLAN file created from the RMU/BACKUP command
line. The *.PLAN file can then be edited to change this option if desired. The default is
"/DATABASE_VERIFICATION".

The following example shows some of the verification diagnostics that can be output when the database root
is verified by RMU/BACKUP.

$ RMU/BACKUP/NOLOG MF_PERSONNEL MFP.RBF
%RMU−E−BADMAXPNO, unable to read last page (1052) in file
DEVICE:[DIRECTORY]DEPARTMENTS.RDA;1
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%RMU−F−FATALERR, fatal error on BACKUP
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 11−MAY−2009
11:16:59.46
$ RMU/BACKUP/NOQUIET/ONLINE/NOLOG MF_PERSONNEL MFP
%RMU−W−BADPROID, DEVICE:[DIRECTORY]EMPIDS_MID.SNP;1
 file contains a bad identifier
 Expected "RDMSDATA", found "NOTRDBDB"
%RMU−W−INVALFILE, inconsistent database file
 DEVICE:[DIRECTORY]EMPIDS_MID.SNP;1
%RMU−F−ABORTVER, fatal error encountered; aborting verification
%RMU−F−FATALERR, fatal error on BACKUP
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at 11−MAY−2009
11:11:25.68

The following example shows that the RMU/BACKUP *.PLAN file "[No]Database_Verification" option is
set based on the "/DATABASE_VERIFICATION" qualifier on the RMU/BACKUP command line. The
default is "Database_Verification" so unless "/NODATABASE_VERIFICATION" is specified, the
"Database_Verification" option will be set in the *.PLAN file.

$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE−
 MF_PERSONNEL DISK:[DIRECTORY1]MFP,DISK:[DIRECTORY2]
$ SEAR TMP.PLAN DATABASE_VERIFICATION
 Database_Verification
$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE−
 /DATABASE_VERIFICATION MF_PERSONNEL DISK:[DIRECTORY1]MFP,−

Oracle® Rdb for OpenVMS

7.1.13 RMU/BACKUP Database Root Verification Performance Enhancement 117

 DISK:[DIRECTORY2]
$ SEAR TMP.PLAN DATABASE_VERIFICATION
 Database_Verification
$ RMU/BACKUP/PARALLEL=EXEC=1/DISK=WRITER=2/LIST=TMP.PLAN/ONLINE−
 /NODATABASE_VERIFICATION MF_PERSONNEL −
 DISK:[DIRECTORY1]MFP,DISK:[DIRECTORY2]
$ SEAR TMP.PLAN DATABASE_VERIFICATION
 NoDatabase_Verification
$ RMU/BACKUP/PLAN TMP.PLAN

7.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier
/DELETES_FIRST

Bug 3388774

The qualifier "/DELETES_FIRST" has been added to the RMU /UNLOAD /AFTER_JOURNAL command.
Specifying "/DELETES_FIRST" indicates that all delete operations within each transaction are to be returned
before any add/modify operations.

Record Order Unpredictable

Within the output stream for a transaction, the order of records returned from the
LogMiner remains unpredictable.

7.1.15 Add Option to Pass Values to /CONFIRM During
RESTORE Operation

Bug 411144

In prior releases of Oracle Rdb, if problems occurred during tape operation of an RMU/RESTORE command
and the /CONFIRM option was selected, then the operation would wait for user input on the terminal before
continuing.

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU−I−WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 −
Found MF_PER
%RMU−I−TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> QUIT (User has to enter the RESPONSE.)
%RMU−F−ABORT, operator requested abort on fatal error
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:22:32.90

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU−I−WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 −
Found MF_PER
%RMU−I−TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> RETRY (User has to enter the RESPONSE.)
%MOUNT−I−MOUNTED, MF_PER mounted on LMA1001:
%RMU−I−WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 −

Oracle® Rdb for OpenVMS

7.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier /DELETES_FIRST 118

Found MF_PER
%RMU−I−TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> QUIT (User has to enter the RESPONSE.)
%RMU−F−ABORT, operator requested abort on fatal error
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:22:55.86

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[] /LOG
%RMU−I−WRNGLBL, Tape on LMA1001 was incorrectly labeled. Expected VOL002 −
Found MF_PER
%RMU−I−TAPEDISPR, Specify tape disposition for LMA1001 (QUIT,OVERRIDE,RETRY,
UNLOAD)
RMU> OVERRIDE (User has to enter the RESPONSE.)
%RMU−F−FILACCERR, error opening input file LMA1001:[000000]VOL002.RBF;
−SYSTEM−W−NOSUCHFILE, no such file
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:23:05.59

A new feature has been added in this release to correct this problem. The user has the option of selecting
values for /CONFIRM during a RESTORE from tape operation. The new syntax and valid values are:

RMU/RESTORE... /CONFIRM[=QUIT|RETRY=x|OVERRIDE|UNLOAD]

See the following examples of this new feature.

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=QUIT
%MOUNT−I−MOUNTED, MF_PER mounted on LMA1001:
%RMU−I−TAPEDEF, Terminating restore operation as requested by user
%RMU−F−ABORT, operator requested abort on fatal error
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:43:31.35

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=RETRY=2
%RMU−I−TAPEDEF, Retrying tape operation as requested by user
%MOUNT−I−MOUNTED, MF_PER mounted on LMA1001:
%RMU−I−TAPEDEF, Retrying tape operation as requested by user
%MOUNT−I−MOUNTED, MF_PER mounted on LMA1001:
%RMU−F−ABORT, operator requested abort on fatal error
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:43:42.97

$RMU/RESTORE/NOCDD/REWIND LMA1001:VOL002.RBF MF_PERSONNEL /DIRECTORY=[]
/LOG /CONFIRM=OVERRIDE
%RMU−I−TAPEDEF, Overriding tape label as requested by user
%RMU−F−FILACCERR, error opening input file LMA1001:[000000]VOL002.RBF;
−SYSTEM−W−NOSUCHFILE, no such file
%RMU−F−FATALERR, fatal error on RESTORE
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 13−JUL−2013 11:43:58.38

7.1.16 Table Names Can Now Be Specified For Index
Verification

A new feature has been added to the Oracle Rdb RMU/VERIFY command which allows table names to be
specified for database index verification. Currently, only a list of one or more index names can be specified

Oracle® Rdb for OpenVMS

7.1.16 Table Names Can Now Be Specified For Index Verification 119

with either the /INDEXES or /INDICES qualifier. Now, if one or more database table names is specified with
the new /FOR_TABLE qualifier, all the indexes defined for the named table(s) will be selected for
verification. If the /FOR_TABLE qualifier is used, then either the /INDEXES or /INDICES qualifier must
also be specified in the same RMU/VERIFY command.

The /INDEXES or /INDICES qualifiers can continue to specify a list of one or more index names to be
verified in addition to the /FOR_TABLE list of one or more table names for which all the indexes defined for
each table are to be verified. Index names cannot be specified with the new /FOR_TABLE qualifier and table
names cannot be specified with the existing /INDEXES or /INDICES qualifiers. Either the syntax
RMU/VERIFY/INDEXES/FOR_TABLE=* or RMU/VERIFY/INDEXES/FOR_TABLE can be used to
specify that all indexes defined for all database tables should be verified. If lower case charcters are not to be
converted to upper case in table names, table names must be delimited with double quotes.

The following new syntax can be specified for the /FOR_TABLE qualifier.

/FOR_TABLE=(table_name,...)
/FOR_TABLE=table_name
/FOR_TABLE=*
/FOR_TABLE

The following examples show that both the /FOR_TABLE and /INDEXES or /INDICES qualifiers can
specify either no values or lists of one or more table or index names in the same RMU/VERIFY command
line. Only table name values can be specified with the /FOR_TABLE qualifier, and only index name values
can be specified with the /INDEXES or /INDICES qualifiers. If table name values are specified, all the
indexes defined for each named table will be verified.

$RMU/VERIFY/INDEXES/FOR_TABLE=EMPLOYEES/NOLOG MF_PERSONNEL
$RMU/VERIFY/INDEXES=(EMPLOYEES_HASH,EMP_EMPLOYEE_ID)/FOR_TABLE=COLLEGES/NOLOG
MF_PERSONNEL
$RMU/VERIFY/INDICES=EMP_EMPLOYEE_ID/FOR_TABLE=(COLLEGES,JOB_HISTORY)/NOLOG
MF_PERSONNEL

The following examples show that both of the following commands are equivalent and will verify all indexes
defined for all tables in the database.

$RMU/VERIFY/INDEXES/FOR_TABLE=*/NOLOG MF_PERSONNEL
$RMU/VERIFY/INDICES/FOR_TABLE/NOLOG MF_PERSONNEL

The following examples shows that if the /FOR_TABLE qualifier is specified, either the /INDEXES or
/INDICES qualifiers must be specified in the same RMU/VERIFY command or a fatal error will occur.

$RMU/VERIFY/FOR_TABLE=EMPLOYEES MF_PERSONNEL
%RMU−F−CONFLSWIT, conflicting qualifiers /FOR_TABLE and /INDEXES or /INDICES
not specified
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 14−FEB−2013 14:58:47.09

7.1.17 New RMU/VERIFY Feature to Detect Orphan Hash
Index Buckets

To ensure Oracle Rdb database integrity, a new feature has been added to the RMU/VERIFY command to
detect "orphan" hash index buckets on database pages in mixed storage areas which do not belong to any

Oracle® Rdb for OpenVMS

7.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets 120

existing hash index defined for the database. Orphan hash buckets are either not referenced in a SYSTEM
RECORD on a mixed area database page or are not refernced by another hash bucket.

This is not a default feature but must be activated by specifying the new "/ORPHAN_INDEXES" qualifier on
the command line. Orphan hash index buckets will only be reported if RMU/VERIFY is verifying one or
more hash indexes as part of the database verification. For each orphan hash bucket detected, an error
message will be output specifying the storage area name and physical "dbkey" address of the orphan hash
bucket. The physical dbkey address specifies the storage area number, the storage area page number, and the
storage area line number of the orphan hash bucket. This information can be used with the RMU/DUMP
command to dump the area page where the orphan hash bucket is located.

In the short term, these orphaned hash index elements are harmless but consume space which would otherwise
be used by new inserts. Eventually, as objects get dropped and created, these elements may be confused with
current structures. Therefore, Oracle recommends cleaning them up as soon as practical.

However, these orphaned hash index elements can no longer be removed using the standard DROP commands
in SQL. To reclaim the space used by these elements will require a DROP STORAGE AREA for the affected
area. The database administrator should create a replacement storage area and use ALTER or DROP
commands to move other tables and indices out of the affected storage area. Then use DROP STORAGE
AREA to remove the unused area. Alternatively, you can use the SQL EXPORT DATABASE and IMPORT
DATABASE commands to rebuild the whole database.

If RMU/VERIFY detects and reports any structural problems with the database pages or hash index stuctures
for the area being verified, or any problems with VMS sort which is used in the process of detecting orphan
hash buckets, detection of orphan hash buckets will be aborted for the area and the following error message
will be output.

$ RMU/VERIFY/ALL/ORPHAN_INDEXES MF_PERSONNEL
%RMU−E−ORPHANERR, Error searching for orphan index nodes in area EMPIDS_LOW

The user should correct the reported problems and repeat the verification.

The new syntax for this feature which can be specified with the RMU/VERIFY command is the following.

/[NO]ORPHAN_INDEXES

The default is "/NOORPHAN_INDEXES" − orphan hash buckets will not be detected or reported. To activate
this feature "/ORPHAN_INDEXES" must be specified.

The following example shows the diagnostic error message that will be put out by RMU/VERIFY for each
orphan hash bucket found on a database page in the current storage area. Both the storage area name and the
physical dbkey address of the orphan hash bucket are reported. The dbkey address in the message following
the word "at" specifies the storage area number followed by the page number followed by the line number
where the orphan hash bucket is located.

$ RMU/VERIFY/ALL/ORPHAN_INDEXES/NOERROR_LIMIT DATABASE.RDB
%RMU−E−ORPHANIDX, Orphan hashed index bucket found in area
 DATABASE_AREA at 21:2:5
%RMU−E−ORPHANIDX, Orphan hashed index bucket found in area
 DATABASE_AREA at 21:2:9
%RMU−E−ORPHANIDX, Orphan hashed index bucket found in area
DATABASE_AREA at 21:2510:32
%RMU−E−ORPHANIDX, Orphan hashed index bucket found in area

Oracle® Rdb for OpenVMS

7.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets 121

DATABASE_AREA at 21:2510:43

7.1.18 New COMPILE Clause for ALTER TRIGGER
Statement

This release of Oracle Rdb supports a new COMPILE clause for the ALTER TRIGGER statement. This
clause directs Rdb to re−compile the trigger to ensure that it is valid. If COMPILE is successful and the
trigger was marked invalid, but "Can be revalidated" then the invalid flag will be cleared.

Triggers can be marked "invalid" when a procedure, function or sequence is dropped using the CASCADE
clause.

The following example shows how this new clause could be used.

SQL> set flags 'warn_invalid';
SQL>
SQL> alter module M
cont> drop procedure PP cascade;
~Xw: Trigger "C_INSERT" marked invalid
SQL>
SQL> show trigger C_INSERT
 C_INSERT
 Current state is INVALID
 Can be revalidated
 Source:
 c_insert
 after insert on C
 when (C.b is NULL)
 (call PP())
 for each row
SQL>
SQL> alter trigger C_INSERT
cont> compile;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−BAD_SYM, unknown routine symbol − PP
SQL>
SQL> alter module M
cont> add procedure PP;
cont> trace 'in PP';
cont> end module;
SQL>
SQL> alter trigger C_INSERT
cont> compile;
SQL>
SQL> show trigger C_INSERT
 C_INSERT
 Source:
 c_insert
 after insert on C
 when (C.b is NULL)
 (call PP())
 for each row
SQL>

Note

Oracle® Rdb for OpenVMS

7.1.18 New COMPILE Clause for ALTER TRIGGER Statement 122

Any trigger marked with the invalid flag will still be used by Oracle Rdb if at runtime it can
be compiled successfully. However, only the COMPILE clause of the ALTER TRIGGER
statement, or the COMPILE ALL TRIGGERS clause of the ALTER TABLE statement will
clear the "invalid" flag.

7.1.19 New COMPILE ALL TRIGGERS Clause for ALTER
TABLE Statement

This release of Oracle Rdb supports a new COMPILE ALL TRIGGERS clause for the ALTER TABLE
statement. This clause directs Rdb to re−compile all the triggers defined for the table to ensure that they are
valid. If COMPILE ALL TRIGGERS is successful and any trigger was marked invalid and "Can be
revalidated" then the invalid flag will be cleared.

Triggers can be marked "invalid" when a procedure, function or sequence is dropped using the CASCADE
clause.

The following example shows how this new clause could be used.

SQL> set flags 'warn_invalid';
SQL>
SQL> alter module M
cont> drop procedure PP cascade;
~Xw: Trigger "C_INSERT" marked invalid
SQL>
SQL> show trigger C_INSERT
 C_INSERT
 Current state is INVALID
 Can be revalidated
 Source:
 c_insert
 after insert on C
 when (C.b is NULL)
 (call PP())
 for each row
SQL>
SQL> alter table C
cont> compile all triggers;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist
−RDMS−F−BAD_SYM, unknown routine symbol − PP
SQL>
SQL> ! Replace missing procedure PP
SQL> alter module M
cont> add procedure PP;
cont> trace 'in PP';
cont> end module;
SQL>
SQL> alter table C
cont> compile all triggers;
SQL>
SQL> ! Show that the INVALID flag is now cleared
SQL> show trigger C_INSERT
 C_INSERT
 Source:
 c_insert
 after insert on C

Oracle® Rdb for OpenVMS

7.1.19 New COMPILE ALL TRIGGERS Clause for ALTER TABLE Statement 123

 when (C.b is NULL)
 (call PP())
 for each row
SQL>

Note

Any trigger marked with the invalid flag will still be used by Oracle Rdb if at runtime it can
be compiled successfully. However, only the COMPILE clause of the ALTER TRIGGER
statement or the COMPILE ALL TRIGGERS clause of the ALTER TABLE statement will
clear the "invalid" flag.

7.1.20 New RETRY Clause for ACCEPT Statement

This release of Oracle Rdb adds a new RETRY clause to the ACCEPT Statement. The RETRY clause
specifies the number of times that SQL will reprompt the user when an error occurs after processing the user's
input.

The following example shows that after an erroneous input, the user is prompted again for the data.

SQL> declare :v integer = 0;
SQL> accept :v retry 5;
Enter value for V: xxxx
%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−COSI−F−INPCONERR, input conversion error
Enter value for V: 42
SQL> print :v;
 V
 42
SQL>

7.1.21 New Character Sets ISOLATIN2 and WIN_LATIN2
Supported

This release of Oracle Rdb adds two new character sets, ISOLATIN2 and WIN_LATIN2.

Usage Notes

ISOLATIN2 is a single octet character set that has the following characteristics:

Encodes Extended East European characters as defined by the ISO/IEC 8859−2 standard.•
Fixed single octet characters.•
May be used as an Identifier character set.•
Contains the full set of ASCII characters.•
EE8ISO8859P2 is the Oracle NLS equivalent character set.•
The translation name to translate to ISOLATIN2 characters is RDB$ISOLATIN2.•
The Wildcard Underscore character is %X5F.•
The Wildcard Percent character is %X25.•

Oracle® Rdb for OpenVMS

7.1.20 New RETRY Clause for ACCEPT Statement 124

WIN_LATIN2 is a single octet character set that has the following characteristics:

Encodes Extended East European characters as defined by the MS Windows Code Page 1250 8−Bit
standard.

•

Fixed single octet characters.•
May be used as an Identifier character set.•
Contains the full set of ASCII characters.•
EE8MSWIN1250 is the Oracle NLS equivalent character set.•
The translation name to translate to WIN_LATIN2 characters is RDB$WIN_LATIN2.•
The Wildcard Underscore character is %X5F.•
The Wildcard Percent character is %X25.•

7.1.22 Changes and Enhancements to Trigger Support

In this release of Oracle Rdb, the handling of trigger definitions has been changed to allow future
enhancements to triggers.

The following changes may be observed with this release.

In prior versions, the entire definition was stored in a single row in the system table Rdb$TRIGGERS.
With this release, all new trigger definitions are split into separate rows stored in
Rdb$TRIGGER_ACTIONS with a single base row in Rdb$TRIGGERS.

•

Each trigger action is given a generated action name.•
Each trigger is assigned a unique trigger identification.•
Trigger definitions that existed in prior releases of Oracle Rdb will remain unchanged in a database
converted to Oracle Rdb Release 7.3 using RMU/CONVERT or RMU/RESTORE (which implicitly
calls RMU/CONVERT). All new triggers created with Oracle Rdb Release 7.3 or later will use the
new format.

•

Oracle Rdb no longer supports the export of Triggers from remote databases older than Rdb V6.0.
These would be older systems running on VAX and Alpha systems with Rdb V5.1 or earlier. The
EXPORT DATABASE will need to be run under that Rdb release and not remotely from an Oracle
Rdb V7.3 system.

•

It should be noted that the SQL (and RDO) EXPORT DATABASE statement will now save extended
attributes. Therefore, interchange files created with Oracle Rdb V7.3 used with older versions will not support
new trigger definitions. Oracle Rdb V7.2.5.3 or later is required to handle the new interchange format.

The following example shows the errors reported when triggers created using Rdb V7.3 and exported, are
imported using an older Rdb V7.2 release.

SQL> IMPORT DATABASE FROM TP_EXP.RBR FILENAME TP2;
%SQL−F−NOTRGRES, Unable to IMPORT trigger TELLER_DELETE
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−BAD_CODE, corruption in the query string
%SQL−F−NOTRGRES, Unable to IMPORT trigger TELLER_INSERT
%RDB−E−NO_META_UPDATE, metadata update failed
−RDMS−E−BAD_CODE, corruption in the query string
SQL>

Oracle recommends using RMU/EXTRACT/ITEM=TRIGGERS if the triggers need to be recreated in prior
versions. RMU Extract is a best−effort utility and some manual editing of the generated SQL syntax may be

Oracle® Rdb for OpenVMS

7.1.22 Changes and Enhancements to Trigger Support 125

required.

7.1.23 New RMU BACKUP RBF File BRH$K_ROOT1,
BRHK_ROOT2, BRHK_ROOT3 Records /kroot_records

In this release of Oracle Rdb, three new BRH record types have been added to the RBF file used to back up
Oracle Rdb databases. New BRHK_ROOT1, BRHK_ROOT2, and BRH$K_ROOT3 records have been
added for backing up the enlarged Rdb root file KROOT structure in three parts. This will preserve the current
minimum /BLOCK_SIZE of 2048 that can be specified for determining the buffer size used for backing up
BRH records to the backup RBF file. For this release of Rdb, the KROOT has been enlarged to 5120 bytes
which will not fit into the smaller block sizes that can be specified with the optional /BLOCK_SIZE qualifier
for the RMU /BACKUP, DUMP/BACKUP, /BACKUP/AFTER_JOURNAL and
/OPTIMIZE/AFTER_JOURNAL commands. Since the enlarged KROOT is now backed up and restored in
three parts, the current range of between 2048 and 65,024 bytes that can be specified with the optional
/BLOCK_SIZE qualifier has not changed for this release.

The BRH record type previously used to back up the smaller 1536 byte Rdb KROOT root structure for Rdb
V7.2 and earlier releases in one record was BRH$K_ROOT. This record type will no longer be in RBF
backup files produced by RMU BACKUP commands created by this version of Rdb, but it will be accepted
by the RMU/RESTORE and RMU/DUMP/BACKUP commands which currently accept RBF files produced
by previous V72, V71 and V70 versions of Oracle Rdb. However, V72 and previous versions of Oracle Rdb
will not accept RBF records produced by this release but will return the error %RMU−E−INVRECTYP,
invalid record type in backup file for the new BRHK_ROOT1, BRHK_ROOT2 and BRH$K_ROOT3
backup record types.

The following example shows the Oracle Rdb V7.3 database backup file MFP73.DMP created by the
RMU/BACKUP command, which is then dumped with the most detailed "DEBUG" option by the
RMU/DUMP/BACKUP command. The portion of the dump file shown contains the new BRH$K_ROOT1
(TYPE = 32), BRH$K_ROOT2 (TYPE = 33) and BRH$K_ROOT3 (TYPE = 34) records now used to backup
the enlarged Rdb root file KROOT structure.

$ RMU/BACKUP MF_PERSONNEL.RDB MFP73.RBF
$ RMU/DUMP/BACKUP/OPTION=DEBUG/OUTPUT=MFP73.DMP MFP73.RBF
$ TYPE MFP73.DMP

REC_SIZE = 1708 REC_TYPE = 32 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002006AC 0000 '.'

KODA database root record
0000000000000049544F4F52534D4452 0000 'RDMSROOTI.......'
2EC700C900A66EB9EBCF255B00000000 0010 '.....[%Ïë¹n.É.Ç.'
0000002100000088000000170000000F 0020 '............!...'
0000000B000000280000001900000022 0030 '".......(.......'
00000070000000800000003A0000006C 0040 'l...:.......p...'
00000010000000040000001200000001 0050 '................'
00000014000000140000001000000032 0060 '2...............'
0000000300000005000000FA00000006 0070 '....ú...........'
000000000000000A0000000A0000000A 0080 '................'
00000000000000000000000000000000 0090 '................'
00000100000000000000000000000000 00A0 '................'
00000000000000000000000000000000 00B0 '................'

Oracle® Rdb for OpenVMS

7.1.23 New RMU BACKUP RBF File BRHK_ROOT1, BRHK_ROOT2, BRH$K_ROOT3 Records /kroot_records126

 :::: (1 duplicate line)
00000003000000020000000200000000 00D0 '................'
000000080000000800AC93EB3CA7391C 00E0 '.9§<ë...........'
00000001000000040000000500000005 00F0 '................'
00000000000000040000002400000002 0100 '....$...........'
00000004000000010000008A00000000 0110 '................'
0000000000000000000000FF00000004 0120 '................'
00000200000000000000000000000000 0130 '................'
20571AEA00000000000000200000008B 0140 '....ê.W '
0000000000AC93EB216424E900AC93EB 0150 'ë...é$d!ë.......'
00000000000000000000000000000000 0160 '................'
0000008C000000000000000000000000 0170 '................'
00000000000000000000001400000010 0180 '................'
00000000000000000000000000000000 0190 '................'
00AC93EB205B2CA40000000000000000 01A0 '.........,[ë...'
00000000000000000000000000000000 01B0 '................'
 :::: (20 duplicate lines)
4F485B3A31524553555F424452455347 0300 'GSERDB_USER1:[HO'
37562E545245564E4F432E494C554843 0310 'CHULI.CONVERT.V7'
545345542E544944452E4B524F572E33 0320 '3.WORK.EDIT.TEST'
4E4E4F535245505F464D5D504C45482E 0330 '.HELP]MF_PERSONN'
0000000000000000313B4244522E4C45 0340 'EL.RDB;1........'
00000000000000000000000000000000 0350 '................'
 :::: (52 duplicate lines)
 000000000000000000000000 06A0 '............'

REC_SIZE = 1706 REC_TYPE = 33 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002106AA 0000 'ª.!.............'

KODA database root record
00000000000000000000000000000000 0000 '................'
 :::: (105 duplicate lines)
 00000000000000000000 06A0 '..........'

REC_SIZE = 1706 REC_TYPE = 34 BADDATA = 00
ROOT = 01 AREA_ID = 0 LAREA_ID = 0
PNO = 0

00000000000000000000000A002206AA 0000 'ª.".............'

KODA database root record
00000000000000000000000000000000 0000 '................'
 :::: (105 duplicate lines)
 00000000000000000000 06A0 '..........'

7.1.24 New Functions NUMTODSINTERVAL,
NUMTOYMINTERVAL Supported

This release of Oracle Rdb adds two new functions for compatibility with the Oracle database.

NUMTODSINTERVAL
NUMTODSINTERVAL (n, 'interval_unit')
NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND value.
The first argument, n, can be any numeric value. The value for interval_unit specifies the interval

•

Oracle® Rdb for OpenVMS

7.1.24 New Functions NUMTODSINTERVAL, NUMTOYMINTERVAL Supported 127

qualifier and must resolve to one of the following string values: 'day', 'hour', 'minute', 'second'.
Interval_unit is case insensitive. Leading and trailing values within the parentheses are ignored. The
interval leading precision of the return is 9.
NUMTOYMINTERVAL
NUMTOYMINTERVAL (n, 'interval_unit')
NUMTOYMINTERVAL converts n to an INTERVAL YEAR TO MONTH literal.
The first argument, n, can be any numeric value. The value for interval_unit specifies the interval
qualifier and must resolve to one of the following string values: 'year', 'month'. Interval_unit is case
insensitive. Leading and trailing values within the parentheses are ignored. The interval leading
precision of the return is 9.

•

Usage Notes

This function is implicitly converted by SQL to the equivalent CAST function. Therefore, other
facilities such as RMU Extract or SET FLAGS with the STRATEGY,DETAIL options will show
CAST only.

SQL> select last_name
cont> from employees
cont> where birthday + NUMTOYMINTERVAL (20, 'year') > current_date;
Tables:
 0 = EMPLOYEES
Conjunct: (0.BIRTHDAY + CAST (20 AS INTERVAL YEAR(9))) > CURRENT_DATE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

•

Examples

This example queries the PERSONNEL database and lists any employees who are more than 20 years older
than their manager.

SQL> select e.last_name || e.first_name as employee,
cont> e.birthday,
cont> m.last_name || m.first_name as manager,
cont> m.birthday
cont> from job_history jh, employees e, departments d, employees m
cont> where jh.employee_id = e.employee_id
cont> and jh.job_end is null
cont> and jh.department_code = d.department_code
cont> and d.manager_id <> e.employee_id
cont> and d.manager_id = m.employee_id
cont> and e.birthday + NUMTOYMINTERVAL (20, 'year') < m.birthday;
EMPLOYEE E.BIRTHDAY MANAGER M.BIRTHDAY
Iacobone Eloi 1−May−1933 Stornelli James 10−Jan−1960
Nash Walter 19−Jan−1925 Keisling Edward 21−Mar−1957
Hall Lawrence 10−Jul−1933 Belliveau Paul 9−May−1955
Clairmont Rick 23−Dec−1924 Clarke Karen 16−May−1950
Johnson Bill 13−Apr−1927 Clarke Karen 16−May−1950
5 rows selected
SQL>

7.1.25 RMU Dump Audit Command

Oracle® Rdb for OpenVMS

7.1.25 RMU Dump Audit Command 128

When RMU/SET AUDIT is used to enable auditing for a database, Oracle Rdb writes records to the
OpenVMS audit journal (for example SYS$MANAGER:SECURITY.AUDIT$JOURNAL). This command
can be used to dump selected records from an OpenVMS AUDIT journal for a specific database for review.

This command is closely related to the RMU/LOAD/AUDIT command in that it reads and processes the rows
from the audit journal.

Format

RMU/DUMP/AUDIT root−file−spec input−file−name

Command Qualifiers Defaults

/BEFORE=timestamp none

/FORMAT=formatting−options/FORMAT=LIST

/LOG /NOLOG

/OUTPUT=outputfile /OUTPUT=SYS$OUTPUT

/SINCE=timestamp none

/TYPE=(type−list) /TYPE=ALL
Command Parameters

root−file−spec
The file specification for the database root file into which the table will be loaded. The default file
extension is .rdb.

•

input−file−name
The input−file−name parameter is the name of the journal containing the audit record data to be
dumped. The default file extension is .AUDIT$JOURNAL. You can determine the name of the
security audit journal by using the DCL SHOW AUDIT/JOURNAL command.

•

Command Qualifiers

Before=date−time
Specifies the ending date and time for records extracted from the audit journal. The value is a standard
OpenVMS date and time. Enclose the date in quotes if it also includes a space between the date and
time fields. If omitted, then all records to the end of the journal will be dumped.

•

Format=formatting−options
This qualifier allows the database administrator to change the default format (LIST) to XML. The
XML output is more useful for archiving and historical analysis.
The following formatting options are accepted:

LIST − the default output displays the attribute and value on a single line. Long values will be
split across multiple lines if necessary.

♦

XML − formats the audit details as an XML record that can be archived.♦
CHARACTER_ENCODING_XML − adjusts the character encoding to that appropriate to the
data being dumped in XML format. CHARACTER_ENCODING_XML is not compatible
with the LIST keyword.

♦

•

Log
If specified, RMU will display a summary line reporting the number of records read from the audit
journal and the count of those displayed by RMU Dump.

•

Since=date−time
Specifies the starting date and time for records extracted from the audit journal. The value is a

•

Oracle® Rdb for OpenVMS

7.1.25 RMU Dump Audit Command 129

standard OpenVMS date and time. Enclose the date in quotes if it also includes a space between the
date and time fields. If omitted, then all records from the start of the journal will be dumped.
Type=type−list
Select different types of audit records. Values include: ALL, NONE, AUDIT, DACCESS,
PROTECTION, and RMU. The list may contain negated values, such as /TYPE=(ALL,NORMU) so
that some categories are removed. The default is to display all types of audit records.

•

Output[=files−spec]
Specifies the name of the file where output is sent. The default is SYS$OUTPUT. The default output
file type is .LIS, if you specify a file name.

•

Usage Notes

To use the RMU Dump Audit command you must have the RMU$SECURITY privilege in the root
file ACL for the database whose security audit records are being loaded. If you do not have this
privilege, you must have the OpenVMS SYSPRV or BYPASS privilege.

•

The OpenVMS audit journal may contain data from multiple facilities in addition to Oracle Rdb and
may also contain audit records for other databases. Therefore, only a subset may be read and
formatted by RMU Dump.

•

Each audit record is divided into packets. Each packet contains a piece of audit information. The
output from RMU Dump Audit displays the type for the packet (for instance
NSA$C_PKT_FINAL_STATUS), and the formatted value. If necessary, long text packets will be
wrapped across multiple lines.

•

Oracle Rdb uses a combination of OpenVMS types (those starting with NSA$C) and Oracle Rdb tags
(those starting with RDBNSA$K). These tags are described below. Please refer to the relevant
OpenVMS documentation for descriptions of the NSA$C types).

•

The width of the terminal session is used to limit the lines for the output to SYS$OUTPUT.•

Table 7−1 RDBNSA$K types

Type Description

RDBNSA$K_PKT_DBNAME File specification for the database root file

RDBNSA$K_PKT_TSN TSN (transaction sequence number) for the user process

RDBNSA$K_PKT_DACCESS
Discretionary access privileges for the user; based on object
ACL, and OpenVMS override privileges

RDBNSA$K_PKT_NEW_ACE Result of a GRANT or REVOKE statement

RDBNSA$K_PKT_OBJ_TYPE Type of object being altered

RDBNSA$K_PKT_OLD_ACE Prior value before a GRANT or REVOKE statement

RDBNSA$K_PKT_OPERATION_CODEDescription of the operation

RDBNSA$K_PKT_RDB_PRIV_USED Oracle Rdb privilege used for the operation

RDBNSA$K_PKT_RMU_ARGS The RMU command line for the operation

RDBNSA$K_PKT_STATUS_CODE OpenVMS condition following the operation attempt

Examples

Example 1: Dumping output of DACCESS records

The following example extracts just the DACCESS records since a known time.

Oracle® Rdb for OpenVMS

7.1.25 RMU Dump Audit Command 130

$ RMU/DUMP/AUDIT−
 MF_PERSONNEL−
 SYS$MANAGER:SECURITY.AUDIT$JOURNAL−
 /TYPE=(NONE,DACCESS)−
 /LOG−
 /SINCE="14−MAR−2013 14:36:16.70"

.

.

.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−:
REC_SUBTYPE : DACCESS
RDBNSA$K_PKT_DBNAME : _1DGA174:[SMITH.WORK.DB]MF_PE
 : RSONNEL.RDB;1
NSA$C_PKT_AUDIT_NAME : SECURITY
NSA$C_PKT_SYSTEM_ID : 44262
NSA$C_PKT_IMAGE_NAME : 1DGA2:[SYS1.SYSCOMMON.][SYSEX
 : E]SQL$73.EXE
NSA$C_PKT_PROCESS_ID : 2B60A272
NSA$C_PKT_PROCESS_NAME : Ian Smith
NSA$C_PKT_SYSTEM_NAME : MALIBU
NSA$C_PKT_TIME_STAMP : 14−MAR−2013 14:36:16.7079869
NSA$C_PKT_TERMINAL : TNA38:
RDBNSA$K_PKT_TSN : 0:9985
NSA$C_PKT_SUBJECT_OWNER : [PROD,SMITH]
NSA$C_PKT_USERNAME : SMITH
NSA$C_PKT_MESSAGE_TYPE_STR : Attempted table access
NSA$C_PKT_OBJECT_NAME : JOB_HISTORY
RDBNSA$K_PKT_OBJ_TYPE : TABLE
RDBNSA$K_PKT_OPERATION_CODE : Protection Change
RDBNSA$K_PKT_DACCESS : SELECT,INSERT,UPDATE,DELETE,CRE
 : ATE,ALTER,DROP,OPERATOR,DBADM,R
 : EFERENCES
RDBNSA$K_PKT_PRIV_DESIRED : DBCTRL
RDBNSA$K_PKT_STATUS_CODE : Oracle Rdb privilege override
NSA$C_PKT_FINAL_STATUS : %SYSTEM−S−NORMAL
RDBNSA$K_PKT_RDB_PRIV_USED : DBADM
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−:
%RMU−I−DATRECREAD, 6454 data records read from input file.
%RMU−I−DATRECUNL, 4 data records unloaded.

Example 2: Dumping Output in XML Format

The following example extracts details for a time range in XML format.

$ RMU/DUMP/AUDIT −
 EVENTS_DB −
 SYS$MANAGER:SECURITY.AUDIT$JOURNAL −
 /FORMAT=XML −
 /SINCE="12−MAR−2013 16:02:01.40" −
 /BEFORE="12−MAR−2013 16:02:01.97" −
 /LOG

<?xml version="1.0" encoding="iso−8859−1"?>
<!−− RMU Dump Audit for Oracle Rdb V7.3−10 −−>
<!−− Generated: 12−MAR−2013 16:10:16.15 −−>
<!−− Database: _1DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1 −−>
<!−− Since: 2013−03−12T16:02:01.4000000 −−>
<!−− Before: 2013−03−12T16:02:01.9700000 −−>

<audit>
<audit_record type="AUDIT">

Oracle® Rdb for OpenVMS

7.1.25 RMU Dump Audit Command 131

<database_name>_1DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1</database_name>
<audit_name>SECURITY</audit_name>
 <system_id>44390</system_id>
 <image_name>DISK$VMSSYS:<SYS0.SYSCOMMON.SYSEXE>RMU73.EXE</image_name>
 <process_id>15928887</process_id>
 <process_name>DB_Admin</process_name>
 <system_name>PROD03</system_name>
 <time_stamp>2013−03−12T16:02:01.5802476</time_stamp>
 <terminal>TNA465:</terminal>
 <tsn>0</tsn>
 <subject_owner>[DBA,SMITH]</subject_owner>
 <username>SMITH </username>
 <message_type>Auditing change</message_type>
 <rmu_command>RMU/SET AUDIT/TYPE=ALARM/START EVENTS_DB</rmu_command>
 <privilege_desired>RMU$SECURITY</privilege_desired>
 <status_code>RMU required privilege</status_code>
 <final_status>%SYSTEM−S−NORMAL</final_status>
 <rdb_privilege_used>RMU$SECURITY</rdb_privilege_used>
 </audit_record>
</audit>
<!−− 1 row unloaded −−>
%RMU−I−DATRECREAD, 207 data records read from input file.
%RMU−I−DATRECUNL, 1 data records unloaded 12−MAR−2013 16:10:16.16.
$ set noverify

Example 3: Dumping output in LIST format

The following example extracts details for a time range in LIST format.

$ RMU/DUMP/AUDIT −
 EVENTS_DB −
 SYS$MANAGER:SECURITY.AUDIT$JOURNAL −
 /TYPE=(AUDIT) −
 /SINCE="12−MAR−2013 16:02:01.40" −
 /BEFORE="12−MAR−2013 16:02:01.97" −
 /LOG
REC_SUBTYPE : AUDIT
RDBNSA$K_PKT_DBNAME : _1DGA174:[PRODUCTION.DATABASES]EVENTS_DB.RDB;1
NSA$C_PKT_AUDIT_NAME : SECURITY
NSA$C_PKT_SYSTEM_ID : 44390
NSA$C_PKT_IMAGE_NAME : DISK$VMSSYS:<SYS0.SYSCOMMON.SYSEXE>RMU73.EXE
NSA$C_PKT_PROCESS_ID : 215ECCE5
NSA$C_PKT_PROCESS_NAME : DB_Admin
NSA$C_PKT_SYSTEM_NAME : PROD03
NSA$C_PKT_TIME_STAMP : 2013−03−12 16:02:01.5802476
NSA$C_PKT_TERMINAL : TNA465:
RDBNSA$K_PKT_TSN : 0:0
NSA$C_PKT_SUBJECT_OWNER : [DBA,SMITH]
NSA$C_PKT_USERNAME : SMITH
NSA$C_PKT_MESSAGE_TYPE_STR : Auditing change
RDBNSA$K_PKT_RMU_ARGS : RMU/SET AUDIT/TYPE=ALARM/START EVENTS_DB
RDBNSA$K_PKT_PRIV_DESIRED : RMU$SECURITY
RDBNSA$K_PKT_STATUS_CODE : RMU required privilege
NSA$C_PKT_FINAL_STATUS : %SYSTEM−S−NORMAL
RDBNSA$K_PKT_RDB_PRIV_USED : RMU$SECURITY
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−:
%RMU−I−DATRECREAD, 207 data records read from input file.
%RMU−I−DATRECUNL, 1 data records unloaded 12−MAR−2013 16:19:22.31.
$

Oracle® Rdb for OpenVMS

7.1.25 RMU Dump Audit Command 132

7.1.26 New BIN_TO_NUM Numeric Function

The function BIN_TO_NUM converts a bit vector to its equivalent number. Each argument to this function
represents a bit in the bit vector (the last argument is the least significant bit of the number). This function
takes as arguments any numeric datatype. Each expression must evaluate to 0 or 1. This function returns a
BIGINT value with zero scale. If any argument evaluates to NULL, then the result of the conversion is
NULL. This function accepts from 1 to 64 arguments.

Syntax

−+−> BIN_TO_NUM (−+−> value_expr −+−>) −+−−>
 | |
 +−−−−− , <−−−−−−+

Examples

The following example shows the result from using BIN_TO_NUM.

SQL> select bin_to_num (x, y, z), x, y, z from bin_tab order by 1;
 X Y Z
 0 0 0 0
 1 0 0 1
 2 0 1 0
 3 0 1 1
 4 1 0 0
 5 1 0 1
 6 1 1 0
 7 1 1 1
8 rows selected
SQL>

7.1.27 RMU /PROGRESS_REPORT and Control−T for RMU
Backup and Restore

This release of Oracle Rdb adds a new feature to display the performance and progress of backup and restore
operations. This feature can be activated by typing Control−T after the RMU Backup or Restore operation has
been started from the command line or by adding /PROGRESS_REPORT to the RMU command line.

The use of Control−T has to be enabled at the DCL level using:

$ SET CONTROL=T

While a Control−T just displays the information once, the /PROGRESS_REPORT qualifier can be used to
periodically print the information to SYS$OUTPUT in a batch job.

The /PROGRESS_REPORT qualifier will default to 60 seconds.

Example to display backup performance every 10 seconds:

$ RMU/BACKUP 1DGA10:[DB]SAMPLE 1DGA20:[BCK]SAMPLE /DISK /PROGRESS_REPORT=10
Read 18 MB (0%) at 18 MB/s, estimated completion time 14:10:41.15

.

Oracle® Rdb for OpenVMS

7.1.26 New BIN_TO_NUM Numeric Function 133

.

.
Read 3934 MB (99%) at 28 MB/s, estimated completion time 14:10:39.86

Read n MB = raw blocks read so far•
(n%) = percent of total blocks read•
n MB/s = transfer rate since last display•
estimated completion time = recalculated using the current transfer rate•

For parallel backups with the /PROGRESS_REPORT qualifier, each worker process puts out its own progress
report as in the following example:

WORKER_001: Read 41 MB (25%) at 41 MB/s, estimated completion time 14:55:32.96
WORKER_002: Read 37 MB (25%) at 37 MB/s, estimated completion time 14:55:32.96
WORKER_001: Read 75 MB (46%) at 34 MB/s, estimated completion time 14:55:33.62
WORKER_002: Read 69 MB (47%) at 31 MB/s, estimated completion time 14:55:33.57
WORKER_001: Read 104 MB (65%) at 29 MB/s, estimated completion time 14:55:33.96
WORKER_002: Read 100 MB (67%) at 30 MB/s, estimated completion time 14:55:33.62
WORKER_001: Read 135 MB (84%) at 30 MB/s, estimated completion time 14:55:33.92
WORKER_002: Read 130 MB (88%) at 30 MB/s, estimated completion time 14:55:33.66

The following restrictions currently exist:

Restores from other than disk files do not display the percentage completed nor the estimated
completion time:

$ RMU/RESTORE/NOCDD 1MGA500:SAMPLE,1MGA600: /REWIND /PROG=10
Read 72 MB at 14 MB/s
Read 135 MB at 15 MB/s

.

.

.
Read 1441 MB at 12 MB/s

•

7.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to
RMU/MOVE_AREA

Currently, RMU/MOVE_AREA moves or creates a new version of BOTH the storage area data (*.RDA) and
snapshot (*.SNP) files. This new syntax allows moving ONLY the data area file or ONLY the snapshot area
file for all or for named storage areas. /NODATA_FILE and /NOSNAPSHOTS are positional qualifiers that
can be specified globally as a default and/or for one or more named storage areas. They can be specified on
the command line or in an options file using the existing RMU/MOVE_AREA /OPTION=filespec qualifier.

The syntax for these qualifiers is as follows:

/[NO]SNAPSHOTS[=([FILE=filespec],[ALLOCATION=n])]

NOSNAPSHOTS does not move the storage area snapshot file(s). It only moves the data storage area file(s).
SNAPSHOTS is the default. [=([FILE=filespec],[ALLOCATION=n])] cannot be specified with
NOSNAPSHOTS. SNAPSHOTS[=([FILE=filespec],[ALLOCATION=n])] is an existing qualifier but now it
can be negated. SNAPSHOTS as a local qualifier can override NOSNAPSHOTS as a global qualifier.
NOSNAPSHOTS as a local qualifier can override SNAPSHOTS as a global qualifier.

Oracle® Rdb for OpenVMS

7.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to RMU/MOVE_AREA 134

/[NO]DATA_FILE

NODATA_FILE does not move the storage area data file(s). It only moves the snapshot storage area file(s).
DATA_FILE is the default. It does not accept any values. DATA_FILE as a local qualifier can override
NODATA_FILE as a global qualifier. NODATA_FILE as a local qualifier can override DATA_FILE as a
global qualifier.

If NODATA_FILE is specified, the storage area data file is not moved or modified. A new version of the file
will not be created. If NOSNAPSHOT is specified, the storage area snapshot file is not moved or modified. A
new version of the file will not be created. Any existing RMU/MOVE_AREA qualifiers that would require an
update/change to the data area file are disallowed if /NODATA_FILE is specified and any qualifiers that
would require an update/change to the snapshot area file are disallowed if /NOSNAPSHOTS is specified.

Therefore, the following existing /MOVE_AREA qualifiers cannot be specified with either /NODATA_FILE
or /NOSNAPSHOTS.

/ROOT•
/BLOCKS_PER_PAGE•
/NODES_MAX•
/USERS_MAX•

The following existing /MOVE_AREA qualifiers cannot be specified with /NODATA_FILE.

/FILE•
/SPAMS•
/THRESHOLDS•
/READ_ONLY•
/READ_WRITE•
/EXTENSION•

The following existing /MOVE_AREA qualifiers cannot be specified with /NOSNAPSHOTS.

/SNAPSHOTS=(FILE=filespec)•
/SNAPSHOTS=(ALLOCATION=n)•

In the following example, only the storage area snapshot files are moved for all database storage areas.

$ RMU/MOVE_AREA/ALL/NODATA_FILE/NOLOG/DIR=[.MOVE] MF_PERSONNEL.RDB
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, only the storage area data files are moved for all database storage areas.

$ RMU/MOVE_AREA/ALL/NOSNAPSHOTS/NOLOG/DIR=[.MOVE] MF_PERSONNEL.RDB
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, only the snapshot storage area file is moved for the EMP_INFO storage area and
only the data storage area file is moved for the JOBS storage area. Note that for the JOBS storage area,
/DATA_FILE did not need to be specified since it is the default.

$ RMU/MOVE_AREA/NOLOG MF_PERSONNEL.RDB −
 EMP_INFO /nodata_file −
 /snapshots=(file=DISK:[DIRECTORY]test_emp_info.snp), −

Oracle® Rdb for OpenVMS

7.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to RMU/MOVE_AREA 135

 JOBS /data_file −
 /file=DISK:[DIRECTORY]test_jobs −
 /nosnapshots
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, an options file is used to specify the storage areas to be moved. Only the data
storage area file is moved for EMP_INFO; only the snapshot storage area file is moved for JOBS; and both
the snapshot and data storage area files are moved for DEPARTMENTS. NOTE that /DATA_FILE and
/SNAPSHOT are the defaults.

$ RMU/MOVE_AREA/NOLOG/DIR=DISK:[DIRECTORY]/OPTION=TESTMORE.OPT −
 MF_PERSONNEL.RDB
 EMP_INFO −
 /file=DISK:[DIRECTORY]test_emp_info.rda −
 /nosnapshot −
 JOBS /nodata_file −
 /snapshot = (file=DISK:[DIRECTORY]test_jobs.snp)
 DEPARTMENTS −
 /file=DISK:[DIRECTORY]test_departments −
 /snapshot = (file=DISK:[DIRECTORY]test_departments.snp)
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

In the following example, the global default qualifiers designate that only the snapshot files should be moved
for all storage areas. However, an options file is used to override the default for specific storage areas.
Therefore, only the data storage area file is moved for EMP_INFO, only the snapshot storage area file is
moved for JOBS, and both the snapshot and data storage area files are moved for DEPARTMENTS. Note
that, in this case, /DATA_FILE needed to be specified in the options file to override the global specification
of /NODATA_FILE but /NODATA_FILE did not have to be specified in the options file. Also
/NOSNAPSHOT had to be specified in the options file to override the assumed global default of
/SNAPSHOT.

$ RMU/MOVE_AREA/ALL/DIR=DISK:[DIRECTORY]/NOLOG/NODATA_FILE−
/OPTION=TESTMOVE.OPT MF_PERSONNEL.RDB
 EMP_INFO /data_file −
 /file=DISK:[DIRECTORY]test_emp_info.rda −
 /nosnapshot
 JOBS /nodata_file −
 /snapshot = (file=DISK:[DIRECTORY]test_jobs.snp)
 DEPARTMENTS −
 /data_file −
 /file=DISK:[DIRECTORY]test_departments −
 /snapshot = (file=DISK:[DIRECTORY]test_departments.snp)
%RMU−W−DOFULLBCK, full database backup should be done to ensure future recovery

7.1.29 Enhancements for Compression Support in SQL
EXPORT DATABASE Command

This release of Oracle Rdb introduces support for compression to the SQL EXPORT DATABASE statement
and associated decompression to the SQL IMPORT DATABASE statement.

Data compression is applied to the user data exported to the internal (interchange) format file. Table rows,
null byte vector and LIST OF BYTE VARYING data is compressed using either the LZW
(Lempel−Ziv−Welch) technique or the ZLIB algorithm developed by Jean−loup Gailly and Mark Adler.
Table metadata (column names and attributes) are never compressed and the resulting file remains a

Oracle® Rdb for OpenVMS

7.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE Command 136

structured interchange file.

In past releases, it was possible that table data, stored in the database with compression enabled, would be
many times smaller in the database than when exported by SQL. In the database, a simple and fast RLE
(run−length encoding) algorithm is used to store rows but this data is fully expanded by the EXPORT
DATABASE statement. Enabling compression allows the result data file to be more compact using less disk
space and permitting faster network transmission. The tradeoff is that more CPU time will be required for the
compression and decompression of the data.

Changes to the SQL EXPORT DATABASE Statement

A new COMPRESSION clause has been added to the SQL EXPORT DATABASE statement. The default
remains NO COMPRESSION. This clause accepts the following optional keywords: LZW, and ZLIB. The
compression algorithms used are ZLIB (the default) or LZW. ZLIB allows further tuning with the LEVEL
option that accepts a numeric level between 1 and 9. The default of 6 is usually a good trade off between
result file size and the CPU cost of the compression.

−+−> NO COMPRESSION −−−+−>
 | |
 +−> COMMPRESSION −+−−−+
 | |
 +−> USING −+−> LZW −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−+
 | |
 +−> ZLIB −+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−+
 | |
 +−> (LEVEL numeric−literal) −+

The following example shows the specification of the COMPRESSION clause.

SQL> export database
cont> filename COMPLETE_WORKS
cont> into COMPLETE_WORKS.RBR
cont> compression using ZLIB (level 9)
cont> ;

Changes to the IMPORT DATABASE Statement

The metadata in the interchange file defines the compression algorithm to be used by the IMPORT
DATABASE statement and indicates which tables were compressed by the EXPORT DATABASE statement.

Usage Notes

Only the user data is compressed, therefore, additional compression may be applied using various
third party compression tools such as ZIP. It is not the goal of SQL to replace such tools.

•

Only one of LZW or ZLIB may be specified for the COMPRESSION option. The LEVEL clause may
not be used with LZW compression technique.

•

The generated interchange file (.rbr) can be processed using the RMU Dump Export command.•
The EXPORT DATABASE statement uses compression in multiple streams. Each table is treated as a
separate compression stream as is each table's null byte vector and LIST OF BYTE VARYING
columns.

•

In some cases, compression may automatically be disabled. When the null byte vector or row data is
small (less than 9 octets), the compression overhead would typically grow the data.

•

Oracle® Rdb for OpenVMS

7.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE Command 137

7.1.30 /[NO]PARTITIONS Qualifier Added to
RMU/ANALYZE/INDEXES

A new /PARTITIONS qualifier has been added to RMU/ANALYZE/INDEXES which allows data to be
collected and output for individual index partitions for sorted, sorted ranked and hashed indexes which are
partitioned across multiple Oracle Rdb database storage areas. Previously, only index wide data was displayed
by RMU/ANALYZE/INDEXES whether or not an index was partitioned.

The new /PARTITIONS qualifier will work with existing RMU/ANALYZE/INDEXES qualifiers.
RMU/ANALYZE/INDEXES/PARTITIONS can be used with /OPTIONS=FULL and /OPTIONS=DEBUG to
include data for different numbered levels of individual index partitions.
RMU/ANALYZE/INDEXES/PARTITIONS can be used with /BINARY_OUTPUT to output record
definition (*.RRD) and unload files (*.UNL) that can be used to load partition data records into an Oracle Rdb
database table using the RMU/LOAD command.

If /PARTITIONS is not specified or if /PARTITIONS is specified and an index is not partitioned, only index
wide data will be output by RMU/ANALYZE/INDEXES.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS

/NOPARTITIONS is the default.

The following example shows that only index wide data is output for index I1 in database
PART_IND_DB.RDB if /PARTITIONS is not specified.

$ RMU/ANALYZE/INDEX PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx

−−
 Index I1 for relation T1 duplicates allowed
 Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,
 Records: 10000
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

−−

The following example shows that data for each index partition is output after the index wide data for index I1
in database PART_IND_DB.RDB if /PARTITIONS is specified. The partition names are P1 through P6 and
the storage area names for the partitions are INDEX1 through INDEX6. The partition data is sorted by
partition name.

$ RMU/ANALYZE/INDEX/PARTITION PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx

−−
 Index I1 for relation T1 duplicates allowed

Oracle® Rdb for OpenVMS

7.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES 138

 Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,
 Records: 10000
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P1 in area INDEX1
 Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P2 in area INDEX2
 Max Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P3 in area INDEX3
 Max Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P4 in area INDEX4
 Max Level: 2, Nodes: 9, Used/Avail: 1789/3582 (49%), Keys: 103, Records: 95
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P5 in area INDEX5
 Max Level: 3, Nodes: 885, Used/Avail: 192849/352230 (54%), Keys: 10784,
 Records: 9900
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Partition P6 in area INDEX6
 Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

−−

The following example shows that data for each level within each index partition is output after the index
wide data for index I1 in database PART_IND_DB.RDB if /OPTION=FULL is specified. The partition names
are P1 through P6 and the storage area names for the partitions are INDEX1 through INDEX6. The levels are
numbered in descending order.

$ RMU/ANALYZE/INDEX/PARTITION/OPTION=FULL PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx

−−
 Index I1 for relation T1 duplicates allowed
 Max Level: 3, Nodes: 898, Used/Avail: 194731/357404 (54%), Keys: 10892,
 Records: 10000
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 3, Nodes: 1, Used/Avail: 184/398 (46%), Keys: 23, Records: 0
 Level: 2, Nodes: 24, Used/Avail: 6197/9552 (64%), Keys: 869, Records: 0
 Level: 1, Nodes: 873, Used/Avail: 188350/347454 (54%), Keys: 10000,
 Records: 10000

 Partition P1 in area INDEX1
 Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

 Partition P2 in area INDEX2
 Max Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1

Oracle® Rdb for OpenVMS

7.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES 139

 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 1, Nodes: 1, Used/Avail: 21/398 (5%), Keys: 1, Records: 1

 Partition P3 in area INDEX3
 Max Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 1, Nodes: 1, Used/Avail: 72/398 (18%), Keys: 4, Records: 4

 Partition P4 in area INDEX4
 Max Level: 2, Nodes: 9, Used/Avail: 1789/3582 (49%), Keys: 103, Records: 95
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 2, Nodes: 1, Used/Avail: 56/398 (14%), Keys: 8, Records: 0
 Level: 1, Nodes: 8, Used/Avail: 1733/3184 (54%), Keys: 95, Records: 95

 Partition P5 in area INDEX5
 Max Level: 3, Nodes: 885, Used/Avail: 192849/352230 (54%), Keys: 10784,
 Records: 9900
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 3, Nodes: 1, Used/Avail: 184/398 (46%), Keys: 23, Records: 0
 Level: 2, Nodes: 23, Used/Avail: 6141/9154 (67%), Keys: 861, Records: 0
 Level: 1, Nodes: 861, Used/Avail: 186524/342678 (54%), Keys: 9900,
 Records: 9900

 Partition P6 in area INDEX6
 Max Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0
 Duplicate nodes: 0, Used/Avail: 0/0 (0%), Keys: 0, Records: 0

 Level: 1, Nodes: 1, Used/Avail: 0/398 (0%), Keys: 0, Records: 0

−−

The following example shows that, if /BINARY_OUTPUT is specified, a PARTIND.UNL file and a
PARTIND.RRD file are created that can be used with the RMU/LOAD command to load partition data for the
index I1 into an Oracle Rdb database table. The PARTIND.RRD file contains the fields
RMU$PARTITION_NAME and RMU$AREA_NAME which will contain the partition name and area name
for each record in the PARTIND.UNL file which contains partition specific data.

$ RMU/ANALYZE/INDEX/PARTITION/BINARY=(FILE=PARTIND.UNL,RECORD=PARTIND.RRD) −
 /OUTPUT=I1.OUT PART_IND_DB I1
$ TYPE PARTIND.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_MAP DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_USED DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_AVAILABLE DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.

Oracle® Rdb for OpenVMS

7.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES 140

DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COMPRESSED_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_IKEY_COUNT DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_INDEX.
 RMU$DATE.
 RMU$INDEX_NAME.
 RMU$RELATION_NAME.
 RMU$PARTITION_NAME.
 RMU$AREA_NAME.
 RMU$LEVEL.
 RMU$FLAGS.
 RMU$COUNT.
 RMU$USED.
 RMU$AVAILABLE.
 RMU$DUPLICATE_COUNT.
 RMU$DUPLICATE_MAP.
 RMU$DUPLICATE_USED.
 RMU$DUPLICATE_AVAILABLE.
 RMU$KEY_COUNT.
 RMU$DATA_COUNT.
 RMU$DUPLICATE_KEY_COUNT.
 RMU$DUPLICATE_DATA_COUNT.
 RMU$TOTAL_COMPRESSED_IKEY_COUNT.
 RMU$TOTAL_IKEY_COUNT.
END RMU$ANALYZE_INDEX RECORD.

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE
Storage Statistics

A new /[NO]PARTITIONS[=(TABLES,INDEXES)] qualifier has been added to RMU/ANALYZE storage
statistics which allows data to be collected and output for individual table and/or index partitions across
multiple Oracle Rdb database storage areas. Previously, only statistics for storage areas and the logical areas
contained within each storage area could be displayed. Now, if /PARTITIONS is specified, first statistics for
each Oracle Rdb database storage area containing partitions is output. Then statistics for each partition logical
area defined for each partitioned table is output. Finally, statistics for each partition logical area defined for
each partitioned index is output.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS[=(TABLES,INDEXES)]

/NOPARTITIONS is the default.•
/PARTITIONS=TABLES only outputs partitioned table statistics.•
/PARTITIONS=INDEXES only outputs partitioned index statistics.•
If only /PARTITIONS is specified, both partitioned table and partitioned index statistics are output.•

If /PARTITIONS=TABLES is specified, only statistics for partitioned tables are output. If
/PARTITIONS=INDEXES is specified, only statistics for partitioned indexes are output. If the /LAREAS
qualifier is used to specify a list of names of partitioned tables and/or partitioned indexes, only statistics for
those tables and/or indexes will be output. If the /LAREAS qualifier is used to specify a list of logical area
identifier numbers, only those logical area partitions for partitioned tables and/or indexes will be output. IF
/BINARY_OUTPUT is specified with /PARTITIONS, record definition (*.RRD) and binary unload files
(*.UNL) are created that can be used to load storage area and logical area data records for partitioned tables

Oracle® Rdb for OpenVMS

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics 141

and/or indexes into an Oracle Rdb database table using the RMU/LOAD command.

The RMU/ANALYZE/PARTITIONS qualifier for storage statistics cannot be specified with the following
RMU/ANALYZE qualifiers: /PLACEMENT, /CARDINALITY, /INDEXES, /AREAS, /START, /END and
/EXCLUDE. Note that a new qualifier not discussed here has been added to RMU/ANALYZE/INDEXES
with the syntax /[NO]PARTITIONS for index specific statistics (see previous topic). If /LAREAS is used, it
must specify a partitioned table name or index name or a logical area identifier number for a logical area
defined for a partitioned table or partitioned index.

In the following example, for the PART_DB database with one partitioned table T1 and one partitioned index
I1, first statistics for the storage areas containing table and index partitions are output: DATA1.RDA,
INDEX1.RDA and INDEX2.RDA. Then statistics for the partitioned table T1, defined with one partition
SYS_P00059 in area DATA1, is output. Then statistics for the two partitioned index I1 partitions, P1 in the
INDEX1 storage area and P2 in the INDEX2 storage area, are output. Note that if /PARTITIONS=TABLES
was specified for the PART_DB database, only statistics for the partitioned table T1 would be output and if
/PARTITIONS=INDEXES was specified, only statistics for the partitioned index I1 would be output.

$ RMU/ANALYZE/PARTITIONS PART_DB

 Areas containing partitions for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 14:11:38.43

−−

 Storage analysis for storage area: DATA1 − file: DISK:[DIRECTORY]DATA1.RDA;1
 Area_id: 2, Page length: 1024, Last page: 703

 Bytes free: 366675 (51%), bytes overhead: 164457 (23%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 10000, bytes used: 188740 (26%)
 average length: 19, compression ratio: 0.90
 index records: 0, bytes used: 0 (0%)

−−

 Storage analysis for storage area: INDEX1 − file: DISK:[DIRECTORY]INDEX1.RDA;1
 Area_id: 3, Page length: 1024, Last page: 703

 Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 1, bytes used: 428 (0%)
 average length: 428, compression ratio: 1.00
 index records: 1, bytes used: 428 (0%)
 B−Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

−−

 Storage analysis for storage area: INDEX2 − file: DISK:[DIRECTORY]INDEX2.RDA;1
 Area_id: 4, Page length: 1024, Last page: 703

 Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 1, bytes used: 428 (0%)
 average length: 428, compression ratio: 1.00
 index records: 1, bytes used: 428 (0%)
 B−Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

Oracle® Rdb for OpenVMS

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics 142

−−
−−

 Partitioned Tables for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 14:11:38.43

−−

 Storage analysis for Partitioned Table: T1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition SYS_P00059 in area DATA1
 Logical area: T1 Logical area id : 59

 Larea id: 59, Record type: 31, Record length: 26, Compressed

 Data records: 10000, bytes used: 188740 (26%)
 average length: 19, compression ratio: 0.90

−−
−−

 Partitioned Indexes for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 14:11:38.43

−−

 Storage analysis for Partitioned Index: I1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition P1 in area INDEX1
 Logical area: I1 Logical area id : 60

 Larea id: 60, Record type: 0, Record length: 215, Not Compressed

 Data records: 1, bytes used: 428 (0%)
 average length: 428

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition P2 in area INDEX2
 Logical area: I1 Logical area id : 61

 Larea id: 61, Record type: 0, Record length: 215, Not Compressed

 Data records: 1, bytes used: 428 (0%)
 average length: 428

−−

In the following example for the PART_DB database with one partitioned table T1 and one partitioned index
I1, the /LAREA qualifier is specified to name the index I1. Therefore only data for the partitioned index I1 is
output.

$ RMU/ANALYZE/PARTITIONS=INDEXES/LAREA=I1 PART_DB

 Areas containing partitions for database − DISK:[DIRECTORY]PART_DB.RDB;1

Oracle® Rdb for OpenVMS

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics 143

 Created 9−JUN−2013 14:17:47.13

−−

 Storage analysis for storage area: INDEX1 − file: DISK:[DIRECTORY]INDEX1.RDA;1
 Area_id: 3, Page length: 1024, Last page: 703

 Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 1, bytes used: 428 (0%)
 average length: 428, compression ratio: 1.00
 index records: 1, bytes used: 428 (0%)
 B−Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

−−

 Storage analysis for storage area: INDEX2 − file: DISK:[DIRECTORY]INDEX2.RDA;1
 Area_id: 4, Page length: 1024, Last page: 703

 Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 1, bytes used: 428 (0%)
 average length: 428, compression ratio: 1.00
 index records: 1, bytes used: 428 (0%)
 B−Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

−−
−−

 Partitioned Indexes for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 14:17:47.13

−−

 Storage analysis for Partitioned Index: I1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition P1 in area INDEX1
 Logical area: I1 Logical area id : 60

 Larea id: 60, Record type: 0, Record length: 215, Not Compressed

 Data records: 1, bytes used: 428 (0%)
 average length: 428

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition P2 in area INDEX2
 Logical area: I1 Logical area id : 61

 Larea id: 61, Record type: 0, Record length: 215, Not Compressed

 Data records: 1, bytes used: 428 (0%)
 average length: 428

−−

In the following example for the PART_DB database with one partitioned table T1 and one partitioned index
I1, the /LAREA qualifier specifies the logical area identifier number "60". Therefore only data for the single
partition P1 for the index I1 is output.

Oracle® Rdb for OpenVMS

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics 144

$ RMU/ANALYZE/PARTITIONS/LAREA=60 PART_DB.RDB

 Areas containing partitions for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 15:25:23.68

−−

 Storage analysis for storage area: INDEX1 − file: DISK:[DIRECTORY]INDEX1.RDA;1
 Area_id: 3, Page length: 1024, Last page: 703

 Bytes free: 685993 (95%), bytes overhead: 33451 (5%)
 Spam count: 1, AIP count: 0, ABM count: 3
 Data records: 1, bytes used: 428 (0%)
 average length: 428, compression ratio: 1.00
 index records: 1, bytes used: 428 (0%)
 B−Tree: 428, Hash: 0, Duplicate: 0, Overflow: 0

−−
−−

 Partitioned Indexes for database − DISK:[DIRECTORY]PART_DB.RDB;1
 Created 9−JUN−2012 15:25:23.68

−−

 Storage analysis for Partitioned Index: I1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 Partition P1 in area INDEX1
 Logical area: I1 Logical area id : 60

 Larea id: 60, Record type: 0, Record length: 215, Not Compressed

 Data records: 1, bytes used: 428 (0%)
 average length: 428

−−

The following example shows that if /BINARY_OUTPUT is specified, a PART.UNL file and a PART.RRD
file are created that can be used with the RMU/LOAD command to load storage partition data into an Oracle
Rdb database table. The PART.RRD file contains the new fields RMU$TABLE_NAME,
RMU$INDEX_NAME, RMU$PARTITION_NAME and RMU$ST_AREA_NAME for partition specific
data. Note that RMU$AREA_NAME contains the logical area name and RMU$ST_AREA_NAME contains
the storage area name that contains the partition or index.

$ RMU/ANALYZE/PARTITIONS −
 −$ /BINARY=(FILE=PART.UNL,RECORD=PART.RRD) −
 −$ /OUTPUT=PART.OUT PART_DB
$ TYPE PART.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$TABLE_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$ST_AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$STORAGE_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_BYTES DATATYPE IS F_FLOATING.

Oracle® Rdb for OpenVMS

7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics 145

DEFINE FIELD RMU$FRAGMENTED_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$EXPANDED_FRAGMENT_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENTED_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$FRAGMENT_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$PAGE_LENGTH DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$MAX_PAGE_NUMBER DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RMU$FREE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERHEAD_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$AIP_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$ABM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$SPAM_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$INDEX_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$BTREE_NODE_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$HASH_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATES_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$OVERFLOW_BYTES DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$LOGICAL_AREA_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RELATION_ID DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$RECORD_ALLOCATION_SIZE DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$TOTAL_SPACE DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_AREA.
 RMU$DATE.
 RMU$AREA_NAME.
 RMU$TABLE_NAME.
 RMU$INDEX_NAME.
 RMU$PARTITION_NAME.
 RMU$ST_AREA_NAME.
 RMU$STORAGE_AREA_ID.
 RMU$FLAGS.
 RMU$TOTAL_BYTES.
 RMU$EXPANDED_BYTES.
 RMU$FRAGMENTED_BYTES.
 RMU$EXPANDED_FRAGMENT_BYTES.
 RMU$TOTAL_COUNT.
 RMU$FRAGMENTED_COUNT.
 RMU$FRAGMENT_COUNT.
 RMU$PAGE_LENGTH.
 RMU$MAX_PAGE_NUMBER.
 RMU$FREE_BYTES.
 RMU$OVERHEAD_BYTES.
 RMU$AIP_COUNT.
 RMU$ABM_COUNT.
 RMU$SPAM_COUNT.
 RMU$INDEX_COUNT.
 RMU$BTREE_NODE_BYTES.
 RMU$HASH_BYTES.
 RMU$DUPLICATES_BYTES.
 RMU$OVERFLOW_BYTES.
 RMU$LOGICAL_AREA_ID.
 RMU$RELATION_ID.
 RMU$RECORD_ALLOCATION_SIZE.
 RMU$TOTAL_SPACE.
END RMU$ANALYZE_AREA RECORD.

7.1.32 /[NO]PARTITIONS Qualifier Added to
RMU/ANALYZE/PLACEMENT

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 146

The RMU/ANALYZE/PLACEMENT command collects and displays statistical information describing table
row placement relative to the index structure for an Oracle Rdb database. A new /PARTITIONS qualifier has
been added to RMU/ANALYZE/PLACEMENT which allows placement data to be collected and output for
individual index partitions for sorted, sorted ranked and hashed indexes which are partitoned across multiple
Oracle Rdb database storage areas. Previously, only index wide data was displayed by
RMU/ANALYZE/PLACEMENT whether or not an index was partitioned. The new /PARTITIONS qualifier
will work with existing RMU/ANALYZE/PLACEMENT qualifiers.

RMU/ANALYZE/PLACEMENT/PARTITIONS can be used with /OPTIONS=FULL and
/OPTIONS=DEBUG to include histogram displays for individual index partitions.
RMU/ANALYZE/PLACEMENT/PARTITIONS can be used with /BINARY_OUTPUT to output record
definition (*.RRD) and unload files (*.UNL) that can be used to load partition placement data records into an
Oracle Rdb database table using the RMU/LOAD command.

The syntax for this new qualifier is as follows:

/[NO]PARTITIONS

/NOPARTITIONS is the default.

If /PARTITIONS is not specified or if /PARTITIONS is specified and an index is not partitioned, only index
wide placement data will be output by RMU/ANALYZE/PLACEMENT.

The following example shows that only index wide placement data is output for index I1 in database
PART_IND_DB.RDB, if /PARTITIONS is not specified.

$ RMU/ANALYZE/PLACEMENT PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx

−−
 Index I1 for relation T1 duplicates allowed
 Levels: 3, Nodes: 898, Keys: 10892, Records: 10000
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 4, IO range: 2 to 4
 Average path length −− dbkeys: 3.99, IO range: 3.96 to 3.96

−−

The following example shows that placement data for each index partition is output after the index wide
placement data for index I1 in database PART_IND_DB.RDB, if /PARTITIONS is specified. The partition
names are P1 through P6 and the storage area names for the partitions are INDEX1 through INDEX6. The
partition data is sorted by partition name.

$ RMU/ANALYZE/PLACEMENT/PARTITION PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx
−−
 Index I1 for relation T1 duplicates allowed
 Levels: 3, Nodes: 898, Keys: 10892, Records: 10000
 Dup nodes: 0, Dup keys: 0, Dup records: 0

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 147

 Maximum path length −− dbkeys: 4, IO range: 2 to 4
 Average path length −− dbkeys: 3.99, IO range: 3.96 to 3.96

 Partition P1 in area INDEX1
 Levels: 1, Nodes: 1, Keys: 0, Records: 0
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 0, IO range: 0 to 0
 Average path length −− dbkeys: 0.00, IO range: 0.00 to 0.00

 Partition P2 in area INDEX2
 Levels: 1, Nodes: 1, Keys: 1, Records: 1
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 2, IO range: 2 to 2
 Average path length −− dbkeys: 2.00, IO range: 2.00 to 2.00

 Partition P3 in area INDEX3
 Levels: 1, Nodes: 1, Keys: 4, Records: 4
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 2, IO range: 2 to 2
 Average path length −− dbkeys: 2.00, IO range: 2.00 to 2.00

 Partition P4 in area INDEX4
 Levels: 2, Nodes: 9, Keys: 103, Records: 95
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 3, IO range: 2 to 3
 Average path length −− dbkeys: 3.00, IO range: 2.87 to 2.87

 Partition P5 in area INDEX5
 Levels: 3, Nodes: 885, Keys: 10784, Records: 9900
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 4, IO range: 3 to 4
 Average path length −− dbkeys: 4.00, IO range: 3.97 to 3.97

 Partition P6 in area INDEX6
 Levels: 1, Nodes: 1, Keys: 0, Records: 0
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 0, IO range: 0 to 0
 Average path length −− dbkeys: 0.00, IO range: 0.00 to 0.00

−−

The following example shows that placement data and histograms for each index partition are output after the
index wide placement data and histograms for index I1 in database PART_IND_DB.RDB, if
/OPTION=FULL is specified. The partition names are P1 through P6 and the storage area names for the
partitions are INDEX1 through INDEX6.

$ RMU/ANALYZE/PLACEMENT/PARTITION/OPTION=FULL PART_IND_DB I1
−−

 Indices for database − DISK:[DIRECTORY]PART_IND_DB.RDB;
 Created dd−mmm−yyyy hh:mm:ss.xxxx

−−
 Index I1 for relation T1 duplicates allowed
 Levels: 3, Nodes: 898, Keys: 10892, Records: 10000

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 148

 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 4, IO range: 2 to 4
 Average path length −− dbkeys: 3.99, IO range: 3.96 to 3.96

 dbkey path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9900)
 3 | (95)
 2 | (5)
 1 | (0)

 MAX IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9624)
 3 |== (359)
 2 | (17)
 1 | (0)

 MIN IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9624)
 3 |== (359)
 2 | (17)
 1 | (0)

 Partition P1 in area INDEX1
 Levels: 1, Nodes: 1, Keys: 0, Records: 0
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 0, IO range: 0 to 0
 Average path length −− dbkeys: 0.00, IO range: 0.00 to 0.00

 Partition P2 in area INDEX2
 Levels: 1, Nodes: 1, Keys: 1, Records: 1
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 2, IO range: 2 to 2
 Average path length −− dbkeys: 2.00, IO range: 2.00 to 2.00

 dbkey path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (1)
 1 | (0)

 MAX IO path length vs. frequency

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 149

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (1)
 1 | (0)

 MIN IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (1)
 1 | (0)

 Partition P3 in area INDEX3
 Levels: 1, Nodes: 1, Keys: 4, Records: 4
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 2, IO range: 2 to 2
 Average path length −− dbkeys: 2.00, IO range: 2.00 to 2.00

 dbkey path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (4)
 1 | (0)

 MAX IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (4)
 1 | (0)

 MIN IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 | (0)
 2 |== (4)
 1 | (0)

 Partition P4 in area INDEX4
 Levels: 2, Nodes: 9, Keys: 103, Records: 95
 Dup nodes: 0, Dup keys: 0, Dup records: 0

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 150

 Maximum path length −− dbkeys: 3, IO range: 2 to 3
 Average path length −− dbkeys: 3.00, IO range: 2.87 to 2.87

 dbkey path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 |== (95)
 2 | (0)
 1 | (0)

 MAX IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 |== (83)
 2 |======= (12)
 1 | (0)

 MIN IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 | (0)
 3 |== (83)
 2 |======= (12)
 1 | (0)

 Partition P5 in area INDEX5
 Levels: 3, Nodes: 885, Keys: 10784, Records: 9900
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 4, IO range: 3 to 4
 Average path length −− dbkeys: 4.00, IO range: 3.97 to 3.97

 dbkey path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9900)
 3 | (0)
 2 | (0)
 1 | (0)

 MAX IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9624)
 3 |= (276)
 2 | (0)
 1 | (0)

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 151

 MIN IO path length vs. frequency

 6 | (0)
 5 | (0)
 4 |== (9624)
 3 |= (276)
 2 | (0)
 1 | (0)

 Partition P6 in area INDEX6
 Levels: 1, Nodes: 1, Keys: 0, Records: 0
 Dup nodes: 0, Dup keys: 0, Dup records: 0
 Maximum path length −− dbkeys: 0, IO range: 0 to 0
 Average path length −− dbkeys: 0.00, IO range: 0.00 to 0.00
−−

The following example shows that, if /BINARY_OUTPUT is specified, a PARTIND.UNL file and a
PARTIND.RRD file are created that can be used with the RMU/LOAD command to load partition placement
data for the index I1 into an Oracle Rdb database table. The PARTIND.RRD file contains the fields
RMU$PARTITION_NAME and RMU$AREA_NAME, which will contain the partition name and area name
for each record in the PARTIND.UNL file. PARTIND.UNL contains partition specific data.

$ RMU/ANALYZE/PARTITION/PARTITION/BINARY=(FILE=PARTIND.UNL,RECORD=PARTIND.RRD) −
 /OUTPUT=I1.OUT PART_IND_DB I1
$ TYPE PARTIND.RRD
DEFINE FIELD RMU$DATE DATATYPE IS DATE.
DEFINE FIELD RMU$INDEX_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$RELATION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$PARTITION_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$AREA_NAME DATATYPE IS TEXT SIZE IS 32.
DEFINE FIELD RMU$LEVEL DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$FLAGS DATATYPE IS SIGNED WORD.
DEFINE FIELD RMU$COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_MAP_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_KEY_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$DUPLICATE_DATA_COUNT DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$TOTAL_BUFFER_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_KEY_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MAX_PAGE_PATH DATATYPE IS F_FLOATING.
DEFINE FIELD RMU$MIN_BUF_PATH DATATYPE IS F_FLOATING.
DEFINE RECORD RMU$ANALYZE_PLACEMENT.
 RMU$DATE.
 RMU$INDEX_NAME.
 RMU$RELATION_NAME.
 RMU$PARTITION_NAME.
 RMU$AREA_NAME.
 RMU$LEVEL.
 RMU$FLAGS.
 RMU$COUNT.
 RMU$DUPLICATE_COUNT.
 RMU$DUPLICATE_MAP_COUNT.
 RMU$KEY_COUNT.

Oracle® Rdb for OpenVMS

7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT 152

 RMU$DUPLICATE_KEY_COUNT.
 RMU$DATA_COUNT.
 RMU$DUPLICATE_DATA_COUNT.
 RMU$TOTAL_KEY_PATH.
 RMU$TOTAL_PAGE_PATH.
 RMU$TOTAL_BUFFER_PATH.
 RMU$MAX_KEY_PATH.
 RMU$MAX_PAGE_PATH.
 RMU$MIN_BUF_PATH.
END RMU$ANALYZE_PLACEMENT RECORD.

7.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using
Tape Drives

A new qualifier has been added to improve tape handling when using RMU commands which use tape
volumes. The following commands have been enhanced with the new "/[NO]ASSIST" qualifier:

RMU/BACKUP•
RMU/BACKUP/AFTER_JOURNAL•
RMU/DUMP/BACKUP_FILE•
RMU/DUMP/AFTER_JOURNAL•
RMU/OPTIMIZE•
RMU/RECOVER•
RMU/RESTORE•

This qualifier specifies where tape handling requests are to be sent. With 'NoAssist' these requests are sent to
the current process's SYS$OUTPUT device and allows a command line user to respond to these requests
interactively.

With 'Assist', the requests are sent to an operator terminal and mount commands are issued with assistance
enabled (see MOUNT/ASSIST).

The default for an interactive process (which can be deterined by using F$MODE()) is 'NoAssist' and for any
other process is 'Assist' (for example: a batch job).

7.1.34 New RMU/ALTER Feature to Modify the Area Header
Root File Specification

The Oracle Rdb RMU/ALTER user could change the file specification of the storage area and snapshot files
in the Rdb database root file using the DISPLAY FILE and DEPOSIT FILE commands. He could also change
the root file specification in the database root file using the DEPOSIT ROOT SPECIFICATION and
DISPLAY ROOT SPECIFICATION commands. However, the RMU/ALTER user previously could not
change the database root file specification contained in the storage area file and snapshot file header block
which identifies the database that the storage area or snapshot file belongs to. This enhancement adds this
functionality.

The new syntax, which can only be used at the RMU/ALTER commands's "RdbALTER>" prompt, is the
following, where "name" is the storage area name, and "id" is the storage area identification number in the
database root file.

Oracle® Rdb for OpenVMS

7.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape Drives 153

DISPLAY AREA_HEADER {name|id} [SNAPSHOT] SPECIFICATION

This command displays the current full root file specification in the storage area file or snapshot file header
block for the storage area with the specified name or number.

DEPOSIT AREA_HEADER {name|id} [SNAPSHOT] SPECIFICATION
[=DEV:[DIR]root_file_spec.rdb;version]

If the root file is not specified, this command deposits the current full root file specification in the database
root in the storage area or snapshot file header block for the storage area with the specified name or number.

If the root file is specified, this command deposits the specified full database root file specification
"DEV:[DIR]root_file.rdb;1" in the storage area or snapshot header block for the storage area with the
specified name or number.

Any specified root file must exist or must have been changed by a previous RMU/ALTER DEPOSIT ROOT
SPECIFICATION command. Only full VMS root file specifications are valid and must include a device,
directory, extension and version number. Any changes to the area file headers will only be written to the
actual area files when the "COMMIT" command is executed at the "RdbALTER>" prompt. Any changes to
area file headers since the last "COMMIT" command was issued can be undone by executing the
"ROLLBACK" command at the "RdbALTER>" prompt. "COMMIT" and "ROLLBACK" are existing
RMU/ALTER commands and affect any current uncommitted changes made in RMU/ALTER, not just
changes to the storage area header files.

This new feature only allows modification of the root file specification in area headers, not other area header
data. The "DISPLAY AREA_HEADER" command can be used with single file databases but the root file
specification will always be blank, which is standard for single file databases. The "DEPOSIT
AREA_HEADER" command cannot be used with single file databases since a root file specification is not
specified in area headers in single file databases. To use either the DISPLAY or DEPOSIT AREA_HEADER
command, the user must be attached to the database which the areas belong to, either by specifying the
database name when issuing the RMU/ALTER command or by executing the "ATTACH" command from the
"RdbALTER>" prompt.

The RMU/ALTER command should be used with caution and by those familiar with the internal structure of
Oracle Rdb databases. All necessary interrelated changes need to be made to the database root file, the storage
area and snapshot files, and the After Image Journaling files, etc, or the database will be corrupt. A full
RMU/BACKUP of the database should be done previous to invoking RMU/ALTER and a full RMU/VERIFY
of the database should be done once the RMU/ALTER changes have been commited and RMU/ALTER is
exited.

The following example shows that RMU/ALTER is invoked specifying the multi−file database
MULTIFILE_DB.RDB which has been previously backed up using RMU/BACKUP. The DEPOSIT ROOT
SPECIFICATION command is used to change the full root file specification in the root file to
DEVICE:[DIRECTORY]NEW_ROOT.RDB;1. Then the DEPOSIT AREA_HEADER command is used
without a root file specification to change the root file specification in the storage area header to the current
root file specification set by the previous DEPOSIT ROOT SPECIFICATION command for both the
ST_AREA.RDA and ST_AREA.SNP files. Then the DEPOSIT AREA_HEADER command is used with a
full root file specification "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1" for both the ST_AREA.RDA and
ST_AREA.SNP files. This just repeats the previous change but is included to show the use of the DEPOSIT
AREA_HEADER COMMAND with and without an explicit root file specification. Then a COMMIT
command is used to write the changes to the database files. After exiting RMU/ALTER, the name of the old

Oracle® Rdb for OpenVMS

7.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape Drives 154

root file is changed to DEVICE:[DIRECTORY]NEW_ROOT.RDB;1 from the VMS prompt. Then the
RMU/VERIFY command is used to verify the integrity of the database. The DISPLAY AREA_HEADER
command is used throughout to see the current root file specification in the storage area or snapshot file
headers. In the display output "(marked)" means a change has been made but has not yet been committed.
Note that, although this is not shown, in this case the area headers of all storage area and snapshot files in the
database need to be changed to contain the new root file specification.

$ rmu/alter device:[directory]multifile_db
%RMU−I−ATTACH, now altering database "DEVICE:[DIRECTORY]MULTIFILE_DB.RDB;1"

RdbALTER> deposit root specification = DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
 Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> display root specification
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> display area_header st_area specification
Area ST_AREA:
 Root file specification is: "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> display area_header st_area snapshot specification
Area ST_AREA:
 Root file specification is: "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"

RdbALTER> deposit area_header st_area specification
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> deposit area_header st_area snapshot specification
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> deposit area_header st_area specification =
 DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> deposit area_header st_area snapshot specification =
 DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
Area ST_AREA:
(marked) Root file specification is: "DEVICE:[DIRECTORY]NEW_ROOT.RDB;1"

RdbALTER> commit
RdbALTER> exit

$ RENAME DEVICE:[DIRECTORY]MULTIFILE_DB.RDB;1 DEVICE:[DIRECTORY]NEW_ROOT.RDB;1
$ RMU/VERIFY/ALL DEVICE:[DIRECTORY]NEW_ROOT.RDB

7.1.35 REVERSE Index

Bug 5710904

This release of Oracle Rdb introduces a new sorted index attribute "reverse". A "reverse" key index reverses
the bits of the key value before entering it in the index. Conceptually, a key value 24538 would become 83542
in the index (in reality, the bits of the key are reversed as opposed to the bytes). Reversing the key value can
be particularly useful for indexing data such as sequence numbers, where each new key value is greater than

Oracle® Rdb for OpenVMS

7.1.35 REVERSE Index 155

the prior value (for example: values monotonically increase). This, in turn, can help distribute access within
the index among the leaf nodes rather than concentrating the access on the "lower right corner" of the index.

Reverse key indexes may be helpful in several situations including:

High volume transaction processing systems where they can help reduce contention for index nodes•
Applications that delete data that is older on average (with lower values of the sequence) before
deleting newer data because in traditional b−trees, many index nodes may end up containing few
values, with a commensurate increase in unused space

•

A "reverse" key index can be used for direct key lookup in a similar fashion to hash indexes. Range scans are
not applicable to "reverse" key indexes.

7.1.36 Support for New Syntax for Sequence Generator
Statements

This release of Oracle Rdb enhances the support for CREATE SEQUENCE, ALTER SEQUENCE and the
IDENTITY clause by adding features from the ANSI and ISO SQL Language Standard.

Alternate keywords supported in the ALTER SEQUENCE and CREATE SEQUENCE statements
The original Rdb implementation used single keywords for negated items: NOMAXVALUE,
NOMINVALUE, NOCYCLE, NOORDER, NORANDOM, and NOWAIT. However, in the SQL
Standard that was published after Oracle Rdb was released, SQL uses a separate NO keyword. Rdb
now supports both formats.
The following are equivalent clauses: NOMAXVALUE and NO MAXVALUE, NOMINVALUE and
NO MINVALUE, NOCYCLE and NO CYCLE, NOORDER and NO ORDER, NORANDOM and
NO RANDOM, NOWAIT and NO WAIT.

•

Support for IDENTITY column creation
IDENTITY can now be followed by a list of sequence attributes: START WITH, INCREMENT BY,
MAXVALUE, NO MAXVALUE, MINVALUE, NO MINVALUE, CYCLE, NO CYCLE, ORDER,
and NO ORDER.
The previous numeric list that represented a starting with and an optional increment value is
supported for backward compatibility.
Any IDENTITY created in Oracle Rdb Release 7.3 or later will default to a NO CYCLE sequence,
unlike the default in prior releases. If CYCLE is desired, then include the CYCLE clause as part of the
IDENTITY specification.

SQL> create table SAMPLE1
cont> (a integer identity (cycle minvalue 100 no maxvalue cache 2000)
cont> ,b integer
cont>);
SQL>

•

Support for IDENTITY clause source
SQL now captures the source for the IDENTITY clause and therefore SHOW TABLE includes more
details than previous versions.

SQL> show table (column) SAMPLE1;
Information for table SAMPLE1

Columns for table SAMPLE1:
Column Name Data Type Domain
−−−−−−−−−−− −−−−−−−−− −−−−−−

•

Oracle® Rdb for OpenVMS

7.1.36 Support for New Syntax for Sequence Generator Statements 156

A INTEGER
 Computed: Identity (cycle minvalue 100 no maxvalue cache 2000)
B INTEGER

SQL>

As in prior versions, you can use the SHOW SEQUENCE command with the name of the table to
show details of the identity sequence.

SQL> show sequence SAMPLE1;
 SAMPLE1
 Sequence Id: 4
 An identity column sequence.
 Initial Value: 100
 Minimum Value: 100
 Maximum Value: (none)
 Next Sequence Value: 100
 Increment by: 1
 Cache Size: 2000
 No Order
 Cycle
 No Randomize
 Wait
 Comment: column IDENTITY sequence
SQL>

7.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE,
SEQUENCE and VIEW

This release of Oracle Rdb adds several enhancements to the RMU/SET AUDIT command. The
/ENABLE=DACCESS and /DISABLE=DACCESS qualifiers now accept the following new keywords for
auditing.

SEQUENCE − The SEQUENCE keyword specifies the names of sequences, either explicitly, as in
this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=SEQUENCE:NEW_DEPT MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=SEQUENCE:*ID*

Only user defined sequences will be selected by this type of wildcard command. Those created by
Oracle Rdb must be completely specified.

•

ROUTINE − The ROUTINE keyword specifies the names of functions and procedures, either
explicitly, as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=ROUTINE:CHECKSUM13 ACCOUNTING

•

Oracle® Rdb for OpenVMS

7.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW 157

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=ROUTINE:CHECKSUM%%

Only user defined routines will be selected by this type of wildcard command. Those created by
Oracle Rdb must be completely specified.
MODULE − The MODULE keyword specifies the names of modules, either explicitly, as in this
command:

$ RMU/SET AUDIT/ENABLE=DACCESS=MODULE:PROD_SUPPORT MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=MODULE:UTIL*

Only user defined modules will be selected by this type of wildcard command. Those created by
Oracle Rdb must be completely specified. Note also that routines defined with the clause USAGE IS
LOCAL will not be selected by wildcards. Such routines can only be activated by routines in the same
module.
The MODULE keyword provides a time saving shortcut for auditing related routines. In a similar way
that routine access control is inherited from the containing module, audit and alarm settings are
inherited from the owning module when a routine is first referenced. When a subsequent ALTER
MODULE ... ADD FUNCTION, or ALTER MODULE ... ADD PROCEDURE statement is used,
these new routines will also inherit audit and alarm settings from the module.

•

VIEW − The VIEW keyword specifies the names of views, either explicitly, as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=VIEW:CURRENT_JOB MF_PERSONNEL

or via a wildcard as in this command:

$ RMU/SET AUDIT/ENABLE=DACCESS=VIEW:CURRENT*

Only user defined views will be selected by this type of wildcard command. Views created by Oracle
Rdb must be completely specified.
In prior releases, views could be marked for audit using the TABLE keyword. The TABLE keyword
remains a superset of VIEW and selects both table and view objects. However, to perform wildcard
selection of views you must use the VIEW keyword.

•

Note

At this time RMU/SET AUDIT accesses multischema databases using MULTISCHEMA IS
OFF. Therefore, the external (possibly generated) names must be specified for the
/ENABLE=DACCESS and /DISABLE=DACCESS qualifiers.

Oracle® Rdb for OpenVMS

7.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW 158

7.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE,
SEQUENCE and VIEW

This release of Oracle Rdb adds several enhancements to the RMU/SHOW AUDIT command.

The /DACCESS qualifier now accepts the following new keywords for auditing.

SEQUENCE
The SEQUENCE keyword reports those sequences that have audit and/or alarm settings.

•

ROUTINE
The ROUTINE keyword reports those functions and procedures that have audit and/or alarm settings.
Note that routines defined within a module may inherit audit and alarm settings from the containing
module and will not be reported in such cases.

•

MODULE
The MODULE keyword reports those modules that have audit and/or alarm settings.

•

VIEW
The VIEW keyword reports those views that have audit and/or alarm settings. Note that the TABLE
keyword reports both tables and views that have auditing enabled.

•

In addition to these changes, the /DACCESS=TABLE option shows that the audited relation is a view or a
table.

Note

At this time, RMU/SHOW AUDIT accesses multischema databases using
MULTISCHEMA IS OFF. Therefore, the external (possibly generated) names will be
displayed for all objects.

7.1.39 SQL Now Supports SQL Standard Syntax for SET
CONSTRAINTS ALL Statement

This release of Oracle Rdb now supports the ANSI/ISO SQL Standard statement SET CONSTRAINTS in
addition to the older Rdb syntax.

SET −+−> ALL CONSTRAINTS −+−−−−+−−+−> DEFERRED −−−+−−>
 | | | |
 +−> CONSTRAINT −−+−> ALL −+ +−> IMMEDIATE −−+
 | | | |
 +−> CONSTRAINTS −+ +−> DEFAULT −−−−+
 | |
 +−> ON −−−−−−−−−+
 | |
 +−> OFF −−−−−−−−+

The existing SET ALL CONSTRAINTS statement is retained for backward compatibility.

Please see the Oracle SQL/Services Release 7.3.1.1 Release Notes, Note 4.3.1 SET CONSTRAINTS
Command Now Translated to Oracle Rdb Format, for more information.

Oracle® Rdb for OpenVMS

7.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW 159

This syntax has been implemented in Oracle Rdb Release 7.3.1.0.

7.1.40 Support ANSI and ISO SQL Standard Length Units

This release of Oracle Rdb allows the specification of the length used by data type definitions and string
handling functions. In prior releases, the SET CHARACTER LENGTH statement had to precede the
CREATE, DECLARE, or ALTER data definition (DDL) statements, or any usage of the SUBSTRING
function in a data manipulation (DML) statement to effect the choice of character or octet units for string
length and position values.

The following functions and data types are affected by this change.

The SUBSTRING function now includes an optional USING clause to specify that either OCTETS or
CHARACTERS units are used for the FROM and FOR clauses.

SUBSTRING (char−value−expr
 FROM start−position
 [FOR string−length]
 [USING { CHARACTERS | OCTETS }])

•

The new OVERLAY function includes an optional USING clause to specify that either OCTETS or
CHARACTERS units are used for the FROM and FOR clauses.

OVERLAY (char−value−expr
 PLACING char−value−expr
 FROM start−position
 [FOR string−length]
 [USING { CHARACTERS | OCTETS }])

•

CHARACTER, NATIONAL CHARACTER (NCHAR), CHARACTER VARYING (VARCHAR),
NATIONAL CHARACTER VARYING (NCHAR VARYING) and related types now accept an
optional OCTETS or CHARACTERS option, as in the following example.

CHAR (20 CHARACTERS)
NATIONAL CHARACTER VARYING (300 OCTETS)

•

The SIZE IS clause of the CREATE INDEX statement also accepts an optional OCTETS or
CHARACTERS option.

SIZE IS <n> [CHARACTERS | OCTETS]

•

Using these clauses will override any current setting of the SET CHARACTER LENGTH statement or the
SET DIALECT statement.

The following shows examples of these changes.

SQL> create database
cont> filename SAMPLE_DB
cont> national character set DEC_KANJI
cont> ;
SQL>
SQL> set character length 'characters';
SQL>
SQL> create table EMPLOYEES
cont> (name nchar(10 characters)
cont> ,department char(10 octets)
cont> ,comments character varying (300 characters)
cont>);

Oracle® Rdb for OpenVMS

7.1.40 Support ANSI and ISO SQL Standard Length Units 160

SQL>
SQL> create index EMPLOYEES_COMMENTS
cont> on EMPLOYEES (comments size is 30 characters)
cont> ;
SQL>
SQL> declare :fl char(20 octets);
SQL> select rdb$flags into :fl from rdb$database;
SQL> print :fl;
 FL
 131328
SQL>
SQL> select name
cont> ,department
cont> ,substring (comments from 1 for 30 using characters) as part_comment
cont> from EMPLOYEES
cont> where comments starting with 'Review:';
0 rows selected
SQL>
SQL> commit;
SQL>

7.1.41 New SET FLAGS Clause Supported by CREATE and
ALTER PROFILE

In this release of Oracle Rdb, the CREATE and ALTER PROFILE statements have been enhanced with a
SET FLAGS clause. This new clause is related to the SET FLAGS statement; refer to that documentation for
the list of available keywords that can be specified.

The string associated with the SET FLAGS clause is saved with the created profile. Any user that has this
assigned profile will implicitly execute SET FLAGS during session start.

Note

Please notice that some SET FLAGS keywords affect actions during database attach and so
have no action when defined within a profile. For example, DATABASE_PARAMETERS,
generates minimal effects in such cases.

The following example shows the creation of a profile with flags and the assigning of the profile to a user.

SQL> create profile SF_USER
cont> set flags
cont> 'old_cost_model,noindex_column_group,optimization_level(total_time)'
cont> ;
SQL>
SQL> alter user SMITH
cont> profile SF_USER;
SQL>

When this user (SMITH) attaches to a database (ATTACH, CONNECT, DECLARE ALIAS), or uses SET
SESSION AUTHORIZATION, a SET FLAGS statement will implicitly be executed using this string of
keywords.

Note that the CREATE PROFILE and ALTER PROFILE statements will validate the listed keywords.

Oracle® Rdb for OpenVMS

7.1.41 New SET FLAGS Clause Supported by CREATE and ALTER PROFILE 161

SQL> alter profile SF_USER
cont> set flags 'THIS_OLD_HOUSE'
cont> ;
%RDB−E−NO_META_UPDATE, metadata update failed
−RDB−E−EXT_ERR, Oracle Rdb extension error
−RDMS−E−UNKAMBFLAG, 'THIS_OLD_HOUSE' is an unknown or ambiguous flag name
SQL>

The clause NO SET FLAGS can be used to remove any flags associated with the profile. All users assigned
that profile will no longer perform a SET FLAGS action during session start.

SQL> show profile SF_USER
 SF_USER
 Flags: "old_cost_model,noindex_column_group,optimization_level(total_time)"
SQL> alter profile SF_USER
cont> no set flags;
SQL> show profile SF_USER
 SF_USER
SQL>

7.1.42 New Support for SAVEPOINT Syntax and Semantics

This release of Oracle Rdb adds support for a SAVEPOINT. The SAVEPOINT feature allows the
programmer to place a marker within a transaction that can later be used to undo part of the transaction using
the ROLLBACK TO SAVEPOINT statement. Additionally, this marker can be freed using the RELEASE
SAVEPOINT statement.

Note

At this time, Oracle Rdb only supports a single active SAVEPOINT per transaction.

Some SQL DDL statements currently use this feature to implement SQL semantics and therefore mixing
SAVEPOINT and these statements is not supported. Some SQL statements that use SAVEPOINT include:
GRANT and REVOKE using * wildcard object names, SET CONSTRAINT MODE 'ON', some forms of
ALTER MODULE statement, and an INSERT ... SELECT statement that uses two database aliases.

7.1.42.1 SAVEPOINT Statement

The SAVEPOINT statement establishes a marker in the current transaction that allows the programmer to
undo part of the transaction (using ROLLBACK TO SAVEPOINT) without resorting to a full transaction
ROLLBACK.

Syntax

SAVEPOINT −+−−−−−−−−−−−−−−−−−+−> savepoint−name −+−>
 | |
 +−> alias−name . −+

Arguments

alias−name
This optional alias name can be used to target a specific database alias. If no alias−name is provided,

•

Oracle® Rdb for OpenVMS

7.1.42 New Support for SAVEPOINT Syntax and Semantics 162

then the current default database will be used.
savepoint−name
Name of a unique identifier for this savepoint. This name will be used with subsequent ROLLBACK
TO SAVEPOINT and RELEASE SAVEPOINT statements.

•

Usage Notes

If the SAVEPOINT statement is used more than once with the same name, then the prior
SAVEPOINT is destroyed and replaced with this new location.

•

Any established savepoints will be discarded by a ROLLBACK statement (which does not use the TO
SAVEPOINT clause), and by a COMMIT statement.

•

If more savepoints are created than are supported by Rdb, then the error RDB$_EXCESS_SVPT will
be raised. SQLCODE will be returned as −880 and SQLSTATE will be returned as 3B002.

%RDB−E−EXCESS_SVPT, maximum number of savepoints are already active −
"BOOK2" failed

•

The SAVEPOINT statement may not be used in a SQL function definition nor can it be called
indirectly from a function.

•

The SAVEPOINT statement may not be called indirectly from a trigger action.•
A SAVEPOINT statement is only valid if a transaction is in progress. This can be either a READ
WRITE or READ ONLY transaction. Note that temporary tables can be updated during a read only
transaction.

SQL> commit;
SQL> savepoint BK;
%RDB−E−NOTXNINPRGS, no transaction is in progress
−RDB−E−SVPT_NOALLOWED, a savepoint may not be established in this context −
"BK" failed

•

The following example shows the use of the SAVEPOINT statement. Note that reusing the savepoint name
will re−establish that marker and so affect different rows in the transaction.

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> −−
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> −− Establish the initial marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;
 A
 1
 2
 3

Oracle® Rdb for OpenVMS

7.1.42 New Support for SAVEPOINT Syntax and Semantics 163

3 rows selected
SQL>
SQL> −− Move the marker
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> table module.SAMPLE;
 A
 1
 2
 3
3 rows selected
SQL>
SQL> commit;
SQL>

7.1.42.2 RELEASE SAVEPOINT Statement

The RELEASE SAVEPOINT Statement destroys the named savepoint established by the SAVEPOINT
statement. Changes made by the transaction are unaffected by this statement.

Syntax

RELEASE SAVEPOINT −+−−−−−−−−−−−−−−−−−+−> savepoint−name −+−>
 | |
 +−> alias−name . −+

Arguments

alias−name
This optional alias name can be used to target a specific database alias. If no alias−name is provided,
then the current default database will be used.

•

savepoint−name
Name of a unique identifier for this savepoint. This name is declared using the SAVEPOINT
statement.

•

Usage Notes

If no established savepoint exists with this name, then the error RDB$_BAD_SVPT_HANDLE will
be raised. SQLCODE will be returned as −882 and SQLSTATE will be returned as 3B001.

%RDB−E−BAD_SVPT_HANDLE, invalid savepoint handle − "BOOKMARK2" is unknown

•

The RELEASE SAVEPOINT statement may not be used in a SQL function definition nor can it be
called indirectly from a function.

•

The RELEASE SAVEPOINT statement may not be called indirectly from a trigger action.•

The following example shows the use of the RELEASE SAVEPOINT statement.

SQL> set transaction read write;
SQL>

Oracle® Rdb for OpenVMS

7.1.42.2 RELEASE SAVEPOINT Statement 164

SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;
 A
 1
 2
 3
3 rows selected
SQL>
SQL> release savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> table module.SAMPLE;
 A
 1
 2
 3
 4
4 rows selected
SQL>
SQL> commit;
SQL>

7.1.42.3 ROLLBACK TO SAVEPOINT Statement

The ROLLBACK TO SAVEPOINT statement destroys the named savepoint established by the SAVEPOINT
statement and removes all database changes made from the time the SAVEPOINT statement established the
named savepoint.

Syntax

ROLLBACK TO −+−−−−−−−−−−−−−−+−−+−−−−−−−−−−−−−−−−−+−> savepoint−name −+−>
 | | | |
 +−> SAVEPOINT −+ +−> alias−name . −+

Arguments

alias−name
This optional alias name can be used to target a specific database alias. If no alias−name is provided
then the current default database will be used.

•

savepoint−name
Name of a unique identifier for this savepoint. This name is declared using the SAVEPOINT
statement.

•

Usage Notes

Oracle® Rdb for OpenVMS

7.1.42.3 ROLLBACK TO SAVEPOINT Statement 165

If no established savepoint exists with this name then the error RDB$_BAD_SVPT_HANDLE will be
raised. SQLCODE will be returned as −882 and SQLSTATE will be returned as 3B001.

%RDB−E−BAD_SVPT_HANDLE, invalid savepoint handle − "BOOKMARK2" is unknown

•

The ROLLBACK TO SAVEPOINT statement may not be used in a SQL function definition nor can
it be called indirectly from a function.

•

The ROLLBACK TO SAVEPOINT statement may not be called indirectly from a trigger action.•

The following example shows the use of SAVEPOINT and ROLLBACK TO SAVEPOINT to exclude rows
inserted during the transaction. In an actual application, the ROLLBACK TO SAVEPOINT statement would
probably be within a conditional statement such as IF−THEN−ELSE or CASE statement.

SQL> declare local temporary table module.SAMPLE
cont> (a integer)
cont> on commit preserve rows
cont> ;
SQL>
SQL> set transaction read only;
SQL>
SQL> insert into module.SAMPLE values (1);
1 row inserted
SQL>
SQL> savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (2);
1 row inserted
SQL> insert into module.SAMPLE values (3);
1 row inserted
SQL>
SQL> table module.SAMPLE;
 A
 1
 2
 3
3 rows selected
SQL>
SQL> rollback to savepoint BOOK_IT;
SQL>
SQL> insert into module.SAMPLE values (4);
1 row inserted
SQL>
SQL> table module.SAMPLE;
 A
 1
 4
2 rows selected
SQL>
SQL> commit;
SQL>

7.1.43 New OPTIMIZE OUTLINE Clause Allows Outline
Specification

Bug 2835544

Oracle® Rdb for OpenVMS

7.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification 166

This release of Oracle Rdb extends the use of query outlines so they can be specified in−line with SELECT,
DELETE, UPDATE, INSERT and BEGIN PRAGMA statements.

In some cases, using the CREATE OUTLINE statement to define a query outline might not be possible or
permitted. The OUTLINE option is part of the OPTIMIZE clause and allows the query outline to be packaged
with the query.

The following example shows a query modified with an outline.

SQL> set flags 'strategy,detail(2),request_name';
SQL> select last_name, middle_initial, first_name
cont> from employees2
cont> where last_name = 'Toliver' and first_name = 'Alvin'
cont> optimize
cont> as test3
cont> outline (
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES2 0 access path index E3_INDEX
cont>)
cont>)
cont>)
cont> compliance optional
cont> execution options (total time)
cont>);
~Query Name: "TEST3"
~S: Outline "(unnamed)" used
Tables:
 0 = EMPLOYEES2
Leaf#01 BgrOnly 0:EMPLOYEES2 Card=100
 Bool: (0.LAST_NAME = 'Toliver') AND (0.FIRST_NAME = 'Alvin')
 BgrNdx1 E3_INDEX [1:1] Fan=14
 Keys: 0.LAST_NAME = 'Toliver'
 LAST_NAME MIDDLE_INITIAL FIRST_NAME
 Toliver A. Alvin
1 row selected
SQL>

This example was produced by using the output from the SET FLAGS 'OUTLINE' statement and capturing
the portion that defines the outline actions.

Usage Notes

If MODE is specified with the OPTIMIZE OUTLINE clause, then the specified query outline will be
ignored unless that mode is established using the SET FLAGS 'MODE(n)' statement or if the logical
name RDMS$BIND_OUTLINE_MODE is used to define a matching mode value.

set flags 'strategy';

call DELETE_EMP ('Toliver', 'Alvin');
~S: Specified mode (99) does not match current mode − outline ignored
~Query Name: "TEST6"
Tables:
 0 = EMPLOYEES2
Conjunct: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)
Get Temporary relation Retrieval by index of relation 0:EMPLOYEES2

•

Oracle® Rdb for OpenVMS

7.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification 167

 Index name E1_INDEX [2:2]
 Keys: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)

set flags 'mode(99)';

call DELETE_EMP ('Toliver', 'Alvin');
~Query Name: "TEST6"
~S: Outline "(unnamed)" used
Tables:
 0 = EMPLOYEES2
Conjunct: (0.LAST_NAME = <var0>) AND (0.FIRST_NAME = <var1>)
Get Retrieval sequentially of relation 0:EMPLOYEES2

The SET FLAGS 'OUTLINE' statement can be used to have the Rdb optimizer provide a template
query outline that can then be modified and incorporated into the problem query.

•

Refer to the CREATE OUTLINE statement for detail of the query outline definition language.•

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays
Whether Row Cache is Enabled

Prior to Oracle Rdb Release 7.3.1.0, the RMU RMU/DUMP/HEADER=ROW_CACHE command displayed
the database−wide Row Cache definitions for an Rdb database and the RMU/DUMP/HEADER/AREA
command displayed the Row Cache to be used and whether the Row Cache feature was enabled for a
particular storage area. The RMU/DUMP/HEADER=ROW_CACHE command will now display whether
Row Cache is enabled for ANY database storage areas. The RMU/DUMP/HEADER=ROW_CACHE
command will now display the following:

Row caching is enabled

if the Row Cache feature is currently enabled for one or more database storage areas. If the Row Cache
feature is not currently enabled for at least one database storage area the
RMU/DUMP/HEADER=ROW_CACHE command will now display the following:

Row caching is disabled

Note that Row Cache definitions can exist in the database but a Row Cache must be enabled for a particular
database storage area. The RMU/DUMP/HEADER/AREA command must still be used to see the per area
Row Cache settings and whether Row Cache is currently enabled or disabled for a particular storage area.

In the following example, a database is defined with two Row Caches which are assigned to storage areas for
which row caching is enabled. An RMU/DUMP/HEADER=AREA command shows the row cache
parameters and whether or not row caching is enabled for each storage area. The
RMU/DUMP/HEADER=ROW_CACHE command shows the database−wide Row Cache definitions. The
new display "Row caching is enabled" is output since row caching is enabled for at least one storage area (in
this case for all storage areas).

$ sql
create database filename DEVICE:[DIRECTORY]:ROW_CACHEDB
 number of cluster nodes is 1
 reserve 5 cache slots
 reserve 5 storage areas
 row cache is enabled (checkpoint updated rows to database)
 create cache tbl_phys_cache row length is 44 bytes cache size is 40 rows
 create cache idx_phys_cache row length is 432 bytes cache size is 10 rows

Oracle® Rdb for OpenVMS

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled 168

 create storage area tbl_sto_ar_low filename rcachedb_emp_sal_low
 cache using tbl_phys_cache
 create storage area tbl_sto_ar_high filename rcachedb_emp_sal_high
 cache using tbl_phys_cache
 create storage area idx_sto_ar filename rcachedb_emp_no
 cache using idx_phys_cache;
exit;
$ RMU/DUMP/HEADER=AREA DEVICE:[DIRECTORY]ROW_CACHEDB
*−−
* Oracle Rdb V7.3−01 dd−mmm−yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*−−

Database Parameters:
 Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"

Storage area "RDB$SYSTEM"

 Row Caching...
 − Row caching is enabled
 − No row cache is defined for this area

Storage area "TBL_STO_AR_LOW"

 Row Caching...
 − Row caching is enabled
 − Row cache ID is 1

Storage area "TBL_STO_AR_HIGH"

 Row Caching...
 − Row caching is enabled
 − Row cache ID is 1

Storage area "IDX_STO_AR"

 Row Caching...
 − Row caching is enabled
 − Row cache ID is 2

$ RMU/DUMP/HEADER=ROW_CACHE DEVICE:[DIRECTORY]:ROW_CACHEDB
*−−
* Oracle Rdb V7.3−01 dd−mmm−yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*−−

Database Parameters:
 Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"
 Row Caches...
 − Active row cache count is 2
 − Reserved row cache count is 5
 − Checkpoint information
 No time interval is specified
 Default source is updated rows
 Default target is database
 Default backing file directory is database directory

Oracle® Rdb for OpenVMS

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled 169

 RUJ Global Buffers are enabled
 No RCS sweep time interval is specified
 − WARNING: After−image journaling is disabled
 − WARNING: Fast commit is disabled

Row caching is enabled

Row cache "TBL_PHYS_CACHE"
 Cache ID number is 1
 Allocation...
 − Row slot count is 40
 − Snapshot slot count is 1000
 − Snapshots in cache disabled
 − Maximum row size allowed in cache is 44 bytes
 − Working set count is 10
 − Maximum slot reservation count is 20
 − Row replacement is enabled
 Sweeping...
 − Sweep row count is 0
 − Maximum batch I/O count is 3000
 Checkpointing...
 − Source is updated rows (database default)
 − Target is database (database default)
 − No checkpoint information available
 − Checkpoint sequence is 0
 Files...
 − Derived cache file directory is "DEVICE:[DIRECTORY]"
 − File allocation is 100 blocks
 − File extension is 100 blocks
 Hashing...
 − Hash value for logical area DBIDs is 31
 − Hash value for page numbers is 7
 Shared Memory...
 − Global Section Name is "RDM73R1DGA22084690010000000000001"
 − Shared memory section requirement is 16,384 bytes (1MB)

Row cache "IDX_PHYS_CACHE"
 Cache ID number is 2
 Allocation...
 − Row slot count is 10
 − Snapshot slot count is 1000
 − Snapshots in cache disabled
 − Maximum row size allowed in cache is 432 bytes
 − Working set count is 10
 − Maximum slot reservation count is 20
 − Row replacement is enabled
 Sweeping...
 − Sweep row count is 0
 − Maximum batch I/O count is 3000
 Checkpointing...
 − Source is updated rows (database default)
 − Target is database (database default)
 − No checkpoint information available
 − Checkpoint sequence is 0
 Files...
 − Derived cache file directory is "DEVICE:[DIRECTORY]"
 − File allocation is 100 blocks
 − File extension is 100 blocks
 Hashing...
 − Hash value for logical area DBIDs is 31
 − Hash value for page numbers is 7
 Shared Memory...

Oracle® Rdb for OpenVMS

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled 170

 − Global Section Name is "RDM73R1DGA22084690010000000000002"
 − Shared memory section requirement is 16,384 bytes (1MB)

Now an SQL statement is used to disable row caching for all storage areas. The
RMU/DUMP/HEADER=AREA display shows that row caching is disabled for all storage areas and the
RMU/DUMP/HEADER=ROW_CACHE command also displays "Row caching is disabled" since row
caching is now disabled for all storage areas.

$ SQL
alter database filename DEVICE:[DIRECTORY]ROW_CACHEDB
row cache is disabled;
exit;
$ RMU/DUMP/HEADER=AREA DEVICE:[DIRECTORY]:ROW_CACHEDB
*−−
* Oracle Rdb V7.3−01 dd−mmm−yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*−−

Database Parameters:
 Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"

Storage area "RDB$SYSTEM"

 Row Caching...
 − Row caching is disabled
 − No row cache is defined for this area

Storage area "TBL_STO_AR_LOW"

 Row Caching...
 − Row caching is disabled
 − Row cache ID is 1

Storage area "TBL_STO_AR_HIGH"
 Row Caching...
 − Row caching is disabled
 − Row cache ID is 1

Storage area "IDX_STO_AR"
 Row Caching...
 − Row caching is disabled
 − Row cache ID is 2

$ RMU/DUMP/HEADER=ROW_CACHE DEVICE:[DIRECTORY]ROW_CACHEDB
*−−
* Oracle Rdb v7.3−01 dd−mmm−yyyy hh:mm:ss.xxxx
*
* Dump of Database header
* Database: DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1
*
*−−

Database Parameters:
 Root filename is "DEVICE:[DIRECTORY]ROW_CACHEDB.RDB;1"
 Row Caches...
 − Active row cache count is 2
 − Reserved row cache count is 5

Oracle® Rdb for OpenVMS

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled 171

 − Checkpoint information
 No time interval is specified
 Default source is updated rows
 Default target is database
 Default backing file directory is database directory
 RUJ Global Buffers are enabled
 No RCS sweep time interval is specified
 − WARNING: After−image journaling is disabled
 − WARNING: Fast commit is disabled

Row caching is disabled

Row cache "TBL_PHYS_CACHE"
 Cache ID number is 1
 Allocation...
 − Row slot count is 40
 − Snapshot slot count is 1000
 − Snapshots in cache disabled
 − Maximum row size allowed in cache is 44 bytes
 − Working set count is 10
 − Maximum slot reservation count is 20
 − Row replacement is enabled
 Sweeping...
 − Sweep row count is 0
 − Maximum batch I/O count is 3000
 Checkpointing...
 − Source is updated rows (database default)
 − Target is database (database default)
 − No checkpoint information available
 − Checkpoint sequence is 0
 Files...
 − Derived cache file directory is "DEVICE:[DIRECTORY]"
 − File allocation is 100 blocks
 − File extension is 100 blocks
 Hashing...
 − Hash value for logical area DBIDs is 31
 − Hash value for page numbers is 7
 Shared Memory...
 − Global Section Name is "RDM73R1DGA22084690010000000000001"
 − Shared memory section requirement is 16,384 bytes (1MB)

Row cache "IDX_PHYS_CACHE"
 Cache ID number is 2
 Allocation...
 − Row slot count is 10
 − Snapshot slot count is 1000
 − Snapshots in cache disabled
 − Maximum row size allowed in cache is 432 bytes
 − Working set count is 10
 − Maximum slot reservation count is 20
 − Row replacement is enabled
 Sweeping...
 − Sweep row count is 0
 − Maximum batch I/O count is 3000
 Checkpointing...
 − Source is updated rows (database default)
 − Target is database (database default)
 − No checkpoint information available
 − Checkpoint sequence is 0
 Files...
 − Derived cache file directory is "DEVICE:[DIRECTORY]"
 − File allocation is 100 blocks

Oracle® Rdb for OpenVMS

7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled 172

 − File extension is 100 blocks
 Hashing...
 − Hash value for logical area DBIDs is 31
 − Hash value for page numbers is 7
 Shared Memory...
 − Global Section Name is "RDM73R1DGA22084690010000000000002"
 − Shared memory section requirement is 16,384 bytes (1MB)
$ EXIT

7.1.45 RMU/LOAD Now Supports CSV Formatted Files

This release of Oracle Rdb adds limited support for the CSV (comma separated list of values) format used by
many tools to load data. RMU/LOAD now supports the keyword CSV, which is a variation of the
DELIMITED_TEXT format currently supported by Oracle Rdb.

Usage Notes

FORMAT=CSV support is almost identical to FORMAT=DELIMITED_TEXT with some additional
semantics:

RMU/UNLOAD will create TIMESTAMP(2) format strings that are compatible with various CSV
knowledgeable tools (such as Microsoft EXCEL). RMU/LOAD will implicitly convert these strings
to DATE VMS during load.

•

The first row is a list of column names. RMU/LOAD will implicitly skip this first row. If the CSV file
is generated with multiple header lines, use the /SKIP qualifier to skip the additional lines.

•

The file type defaults to .CSV•

7.1.46 RMU/UNLOAD Now Supports CSV Formatted Files

This release of Oracle Rdb adds support for the CSV (comma separated list of values) format used by many
tools to load data. RMU/UNLOAD now supports the keyword CSV which is a variation of the
DELIMITED_TEXT format currently supported by Oracle Rdb.

Usage Notes

Implicit conversion of DATE VMS to TIMESTAMP(2) so that formatting of text string is compatible
with various CSV knowledgeable tools (such as Microsoft EXCEL).

•

The first row is a list of column names. These values are formatted using the same PREFIX, SUFFIX,
SEPARATOR and TERMINATOR strings as defined for the table data.

•

The list of column names is re−generated when the unload file is reopened. See REOPEN_COUNT
qualifier.

•

The file type defaults to .CSV.•

Examples

The following example shows using the RMU/UNLOAD command to generate a portable data file. The
output RRD (record definition) file is suppressed using the NOFILE keyword as it is usually not useful for the
target tool. The TRIM keyword is used to remove unnecessary padding spaces.

Oracle® Rdb for OpenVMS

7.1.45 RMU/LOAD Now Supports CSV Formatted Files 173

Example 7−1 Using CSV format for Microsoft EXCEL export

$ rmu/unload−
 /record=(nofile,format=csv,trim=trailing,term=";") −
 sql$database −
 work_status −
 ws.csv
%RMU−I−DATRECUNL, 4 data records unloaded.
$ ty ws.csv
"STATUS_CODE","STATUS_NAME","STATUS_TYPE";
"0","INACTIVE","RECORD EXPIRED";
"1","ACTIVE","FULL TIME";
"2","ACTIVE","PART TIME";

This example changes the delimiters for the data as required by the target loading tool.

Example 7−2 Using options to change delimiters in a CSV formatted file

$ rmu/unload−
 /record=(nofile,format=csv,trim=trailing,−
 term=";",pref="{",suff="}") −
 sql$database −
 current_job −
 cj.csv
...
{LAST_NAME},{FIRST_NAME},{EMPLOYEE_ID},{JOB_CODE},{DEPARTMENT_CODE},
{SUPERVISOR_ID},{JOB_START};
{Toliver},{Alvin},{00164},{DMGR},{MBMN},{00228},{1981−09−21 00:00:00.00};
...

7.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize
Option

This release of Oracle Rdb adds the keyword BITMAPPED_SCAN to the RMU/UNLOAD/Optimize
qualifier.

Bitmapped_scan
This option requests that the Rdb optimizer attempt to perform bitmapped scan when accessing
multiple indices during the unload. This option is particularly useful for RMU/UNLOAD from
complex views.
This option cannot be specified at the same time as the Sequential_Access option.
The following shows an example of this new keyword.

$ define RDMS$SET_FLAGS "item_list,noprefix,strategy,detail(2)"
$ define RDMS$DEBUG_FLAGS_OUTPUT flags.log
$
$ RMU/UNLOAD−
 /OPTIMIZE=BITMAPPED_SCAN−
 RMU_UNLOAD_BITMAPPED_SCAN_4_DB−
 CURRENT_SALARY−
 CURRENT_SALARY
%RMU−I−DATRECUNL, 100 data records unloaded 5−AUG−2013 12:32:11.11.
$ SEARCH/REMAINING FLAGS.LOG "~H Request"

•

Oracle® Rdb for OpenVMS

7.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize Option 174

~H Request Information Item List: (len=11)
RDB$K_SET_REQ_OPT_PREF "0"
RDB$K_SET_REQ_OPT_BITMAPPED "1"
RDB$K_INFO_END
Tables:
 0 = SALARY_HISTORY
 1 = EMPLOYEES
Cross block of 2 entries Q2
 Cross block entry 1
 Leaf#01 BgrOnly 0:SALARY_HISTORY Card=729 Bitmapped scan
 Bool: MISSING (0.SALARY_END)
 BgrNdx1 SH_EMPLOYEE_SS [1:1] Fan=75
 Keys: MISSING (0.SALARY_END)
 Cross block entry 2
 Get Retrieval by index of relation 1:EMPLOYEES
 Index name EMP_EMPLOYEE_ID [1:1] Direct lookup
 Keys: 1.EMPLOYEE_ID = 0.EMPLOYEE_ID
$
$ deassign RDMS$DEBUG_FLAGS_OUTPUT
$ deassign RDMS$SET_FLAGS

7.1.48 New EDIT STRING Clause for CREATE FUNCTION
and CREATE MODULE Functions

This release of Oracle Rdb adds support for the EDIT STRING clause on a function definition. It allows the
value returned from the function invocation to be implicitly formatted using the EDIT STRING associated
with the function. This is similar to defining an EDIT STRING on a column or domain.

The EDIT STRING clause is only used by queries in Interactive SQL.

The following example shows a simple SQL function that returns the EMPLOYEE_ID but uses the EDIT
STRING for Interactive SQL to add formatting.

SQL> create module SAMPLE
cont> function SHOW_EMP_ID
cont> (in :last_name varchar(30)
cont> ,in : birthday date)
cont> returns integer
cont> edit string '9999"−"9999"−"99?"VOID"'
cont> ;
cont> return
cont> (select cast(employee_id as integer) * 100
cont> from EMPLOYEES
cont> where birthday = :birthday
cont> and last_name = :last_name);
cont> end module;
SQL>
SQL> select SHOW_EMP_ID (last_name, birthday), last_name, first_name
cont> from EMPLOYEES
cont> where employee_id < '00170';
 LAST_NAME FIRST_NAME
 0000−0164−00 Toliver Alvin
 0000−0165−00 Smith Terry
 0000−0166−00 Dietrich Rick
 0000−0167−00 Kilpatrick Janet
 0000−0168−00 Nash Norman
 0000−0169−00 Gray Susan

Oracle® Rdb for OpenVMS

7.1.48 New EDIT STRING Clause for CREATE FUNCTION and CREATE MODULE Functions 175

6 rows selected
SQL>
SQL> −− demonstrate the output when a NULL result is returned
SQL> select SHOW_EMP_ID ('Unknown', current_date)
cont> from EMPLOYEES
cont> fetch first row only;

 VOID
1 row selected
SQL>

The ALTER FUNCTION statement can be used to remove the edit string from a function (DROP EDIT
STRING clause), or add/replace an edit string (EDIT STRING clause).

The "DROP EDIT STRING" clause removes any EDIT STRING that was previously defined for the function.
No error is reported if there is no current edit string.

SQL> create function lib$lp_lines () returns integer;
cont> external language general
cont> general parameter style
cont> edit string 'S9(9)';
SQL> show function lib$lp_lines
Information for function LIB$LP_LINES

 Function ID is: 4
 Edit String: S9(9)
 Language is: GENERAL
 GENERAL parameter passing style used
 Number of parameters is: 0

Parameter Name Data Type Domain or Type
−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−−−−−−−
 INTEGER
 Function result datatype
 Return value is passed by value

SQL> alter function lib$lp_lines drop edit string;

7.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER
TABLE Statement

With this release of Oracle Rdb, the RMU/VERIFY/CONSTRAINTS processing and the action of ALTER
TABLE ... ENABLE ALL CONSTRAINTS has changed.

These changes include:

PRIMARY KEY and UNIQUE constraints are now verified using a rewritten query that performs a
single table scan. In the absence of a suitable index, the I/O required should be considerably reduced.

•

NOT NULL constraints and the not null restriction for PRIMARY KEY constraints are validated
using a single table scan for all such constraints on a table. This should reduce the table sequential
scans in the absence of a suitable index for each constraint. Note that the side effect is that only the
first failing constraint name is reported.

•

When multiple tables are verified, the constraints are now ordered by table name. The goal is to make
use of any buffered table rows for subsequent constraint queries. In prior versions, the constraints

•

Oracle® Rdb for OpenVMS

7.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER TABLE Statement 176

were verified in (approximately) definition order which might result in other tables being read and
buffered data not being available.
During RMU/VERIFY/CONSTRAINTS or during ALTER TABLE ... ENABLE ALL
CONSTRAINTS, more detailed information on the verify can be seen by defining the ITEM_LIST
flag. This can be done using either the SET FLAGS statement in SQL or defining the logical name
RDMS$SET_FLAGS.
In the case of a failing NOT NULL constraint, the DBKEY of the failing row is reported. The failure
status (VMS condition code) is also reported along with the associated message text.

•

The algorithms used by prior releases of Oracle Rdb remain available to
RMU/VERIFY/CONSTRAINTS using the new FALLBACK keyword of the /CONSTRAINTS
qualifier.

$ DEFINE/USER RDMS$SET_FLAGS ITEM_LIST
$ RMU/VERIFY/CONSTRAINTS=FALLBACK PERSONNEL
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0)
~H: ...verify constraint "COLLEGE_CODE_REQUIRED"
~H: ...verify constraint "DEPT_CODE_REQUIRED"
~H: ...verify constraint "EMPLOYEE_ID_REQUIRED"
~H: ...verify constraint "JH_EMP_ID_EXISTS"
~H: ...verify constraint "JOB_CODE_REQUIRED"
~H: ...verify constraint "SH_EMP_ID_EXISTS"
~H: 6 tables processed.
$

•

7.1.50 New SQRT Numeric Function

The function SQRT returns the square−root of the passed value expression. If the expression is NULL then
the result will be NULL. Only positive values can produce a square−root. Input values are converted to
DOUBLE PRECISION, if necessary. The result of the function is a DOUBLE PRECISION value.

Note

Applications which call a user defined function with the same name will continue to do so
if the name is delimited (for example "SQRT") or is part of an SQL Precompiler or SQL
Module Language application compiled by a prior Rdb version. In other cases, Interactive
and Dynamic SQL and applications compiled using Oracle Rdb Release 7.3.1 or later will
use the new built−in function.

Syntax

−+−> SQRT (−+−> value_expr −+−>) −+−−>

Examples

The following examples show the result of using SQRT.

Example 7−3 Example 1: Invalid request for square root of a negative value

SQL> select SQRT (min (salary_amount) − max (salary_amount))
cont> from salary_history
cont> where employee_id < '00170'
cont> group by employee_id;

Oracle® Rdb for OpenVMS

7.1.50 New SQRT Numeric Function 177

%RDB−E−ARITH_EXCEPT, truncation of a numeric value at runtime
−SYSTEM−F−FLTINV, floating invalid operation, PC=FFFFFFFF820E9362, PS=0000000B
SQL>

Example 7−4 Example 2: Correct query showing square root results

SQL> select SQRT (max (salary_amount) − min (salary_amount))
cont> from salary_history
cont> where employee_id < '00170'
cont> group by employee_id;

 1.594396437527380E+002
 6.772739475278819E+001
 5.752390807307862E+001
 5.009990019950140E+001
 1.925486951396971E+002
 9.897979591815695E+001
6 rows selected
SQL>

7.1.51 New MOD Numeric Function

The MOD function returns the remainder of the first value expression divided by the second value expression.

If either value expression is NULL, then the result will be NULL. The result of the function is either a
DOUBLE PRECISION or BIGINT value. For ANSI and ISO SQL Dialects, the result type of the function is
derived from the source argument types. Any floating point argument (REAL, DOUBLE PRECISION or
FLOAT) will be reflected as a DOUBLE PRECISION result. Otherwise, a BIGINT result will be returned.

If the dialect is ORACLE LEVEL1, ORACLE LEVEL2, or ORACLE LEVEL3, then Oracle semantics allow
MOD to return the value of the first argument if the second evaluates to zero. Otherwise, ANSI and ISO SQL
Standard behavior results in a divide by zero exception being raised.

Note

Applications which call a user defined function with the same name will continue to do so
if the name is delimited (for example "MOD") or is part of an SQL Precompiler or SQL
Module Language application compiled by a prior Rdb version. In other cases, Interactive
and Dynamic SQL and applications compiled using Oracle Rdb Release 7.3.1 or later will
use the new built−in function.

Syntax

−+−> MOD (value_expr , value_expr) −+−−>

Examples

The following examples show the result of using MOD. This function uses MOD in the calculation of the
days in a month.

Example 7−5 Example 1: Using the MOD function

Oracle® Rdb for OpenVMS

7.1.51 New MOD Numeric Function 178

SQL> drop module MOD_SAMPLE if exists;
SQL> create module MOD_SAMPLE
cont>
cont> function DAYS_IN_MONTH (in :dt date)
cont> returns integer
cont> comment 'Compute days in the month of the given date'
cont> ;
cont> begin
cont> declare :yr constant integer = extract (year from :dt);
cont> declare :mo constant integer = extract (month from :dt);
cont> return case :mo
cont> −− 30 days has September, April, June, and November
cont> when in (4,6,9,11) then 30
cont> when 2 then
cont> −− February has 28 unless it is a leap year
cont> case MOD(:yr, 400)
cont> −− leap year if divisible by 400
cont> when 0 then 29
cont> else
cont> case MOD(:yr, 100)
cont> −− not a leap year if divisible by 100
cont> when 0 then 28
cont> else
cont> case MOD(:yr, 4)
cont> −− leap year if divisible by 4
cont> when 0 then 29
cont> else 28
cont> end
cont> end
cont> end
cont> −− all the rest of 31 days
cont> else 31
cont> end;
cont> end;
cont>
cont> end module;

7.1.52 New Data Types BINARY and BINARY VARYING

This release of Oracle Rdb adds two new data types BINARY and BINARY VARYING that allow definition
of binary strings. These data types are specified by the ANSI and ISO SQL Language standard. These types
would be suitable for storing small images, encrypted passwords, and so on.

Binary strings have the following characteristics:

The SPACE octet for binary strings is X'00' (the zero valued octet). Therefore, when copying a
BINARY string to a longer string it will be filled with X'00' and when comparing binary strings, the
shorter string will be zero filled.

•

The name VARBINARY is a synonym for BINARY VARYING.•
CONCAT (||), LIKE, MATCHING, OVERLAY, SUBSTRING, and TRIM operate on these types.
The result data type of these operations will be a BINARY VARYING string.
The clause USING { CHARACTERS | OCTETS } available for SUBSTRING and OVERLAY
functions may not be used with BINARY or BINARY VARYING strings.

•

POSITION, CHAR_LENGTH, and OCTET_LENGTH operate on binary string types. The•

Oracle® Rdb for OpenVMS

7.1.52 New Data Types BINARY and BINARY VARYING 179

CHAR_LENGTH function is equivalent to OCTET_LENGTH for these data types.
CONTAINING, LIKE, MATCHING and STARTING WITH operate on binary string types but all
input strings must be binary strings.

•

Binary string literals can be specified using the X'hex−string' literal notation.

Note

In prior releases of Oracle Rdb, such literals inherited the LITERAL
CHARACTER SET but this has changed to allow binary string assignment to
UNSPECIFIED.

•

When declaring host language variables in C or C++, the predefined $SQL_VARBINARY should be
used. This pseudo type creates a typedef in C that allows the length of the string to be passed to SQL,
as frequently C zero terminated strings are inadequate to describe binary data that may need to embed
X'00' values.
The declared variable can reference the length (.len) and data (.data) as shown in the code sample
below.

$SQL_VARBINARY(65000) sql_mem;
.
.
.
sql_mem.len = MAX_STRING;
memcpy(sql_mem.data,src_mem,sql_mem.len);

The resulting host variable will be type compatible with BINARY and BINARY VARYING columns
and variables.

•

Programmers can also use the CHARACTER SET BINARY clause to provide compatible host
variables.

$SQL_VARCHAR(65000) CHARACTER SET BINARY sql_mem;
.
.
.
sql_mem.len = MAX_STRING;
memcpy(sql_mem.data,src_mem,sql_mem.len);

•

Dynamic SQL applications will see the SQLTYPE field have the type SQLDA_BINARY (913) for
BINARY expressions or SQLDA_VARBINARY (909) for BINARY VARYING expressions. The
symbolic names are defined in SYS$SHARE:SQL_LITERALS.H.

#define SQLDA_VARBINARY 909
#define SQLDA_BINARY 913

•

7.1.53 PERSONA SUPPORT is Enabled For All New
Databases

In prior releases of Oracle Rdb, the CREATE DATABASE statement would not enable PERSONA
SUPPORT by default. This meant that impersonation was done only using the OpenVMS UIC for the user.
On the other hand, PERSONA SUPPORT uses the OpenVMS impersonation system services to impersonate
the user including granted rights identifiers.

Oracle® Rdb for OpenVMS

7.1.53 PERSONA SUPPORT is Enabled For All New Databases 180

This release of Oracle Rdb changes the CREATE DATABASE statement to enable the PERSONA
SUPPORT by default. This is shown below in this simple example.

SQL> create database
cont> filename TESTING_DB;
SQL>
SQL> show database rdb$dbhandle;
Default alias:
 Oracle Rdb database in file TESTING_DB

.

.

.
 Shared Memory: Process
 Large Memory: Disabled

Security Checking is External (Persona support Enabled)
 System Index Compression is ENABLED
 System Index:
 Type is sorted ranked
 Prefix cardinality collection is enabled
 Logminer support is disabled
 Galaxy support is disabled
 Prestarted transactions are enabled
 Dictionary Not Required
 ACL based protections
Storage Areas in database with filename TESTING_DB
 RDB$SYSTEM Default and list storage area
Journals in database with filename TESTING_DB
 No Journals found
Cache Objects in database with filename TESTING_DB
 No Caches found
SQL>

Generally when PERSONA SUPPORT is enabled, Rdb provides much better impersonation semantics for
remote database access and for services such as SQL/Services and OCI Services for Rdb. However, this new
default can be disabled using the PERSONA SUPPORT IS DISABLED clause for the ALTER DATABASE
or CREATE DATABASE statement.

SQL> alter database filename TESTING_DB
cont> security checking is external (persona support is disabled);
SQL> attach 'filename TESTING_DB';
SQL> show database rdb$dbhandle
Default alias:
 Oracle Rdb database in file TESTING_DB
 Multischema mode is disabled

.

.

.
 Shared Memory: Process
 Large Memory: Disabled

Security Checking is External
 System Index Compression is ENABLED
 System Index:
 Type is sorted ranked
 Prefix cardinality collection is enabled
 Logminer support is disabled
 Galaxy support is disabled
 Prestarted transactions are enabled
 Dictionary Not Required
 ACL based protections
Storage Areas in database with filename TESTING_DB

Oracle® Rdb for OpenVMS

7.1.53 PERSONA SUPPORT is Enabled For All New Databases 181

 RDB$SYSTEM Default and list storage area
Journals in database with filename TESTING_DB
 No Journals found
Cache Objects in database with filename TESTING_DB
 No Caches found
SQL>

7.1.54 New Dialects Support in SQL

This release of Oracle Rdb supports the following new dialects in SQL.

ORACLE LEVEL3
This includes all the behavior described for ORACLE LEVEL2 plus the following changes:

The same dialect rules as SQL2011 are in effect♦
The DATE data type is assumed to mean ANSI style DATE which does not include time
fields

♦

The CURRENT_TIMESTAMP builtin function returns a TIMESTAMP(2) type♦

•

SQL2011
This includes all the behavior described for SQL99 plus the following changes:

PRIMARY KEY or UNIQUE constraints must be evaluated at the same time or sooner than
the referencing FOREIGN KEY constraints. That is, a FOREIGN KEY constraint defined as
NOT DEFERRABLE may not reference a PRIMARY KEY or UNIQUE constraint defined as
DEFERRABLE.

♦

•

7.1.55 New WITH Clause Provides Subquery Factoring

This release of Oracle Rdb introduces the WITH clause as part of the SELECT expression. This feature,
known as subquery factoring, allows the SQL programmer to simplify complex queries by creating named
subqueries that can be used (possibly multiple times) in the associated SELECT expression.

The following example shows the declaration of two subquery factors, EMP and DPT, that are used in the
select expression.

SQL> with emp as (select *
cont> from employees inner join
cont> job_history using (employee_id)
cont> where job_end is null),
cont> dpt as (select * from departments)
cont> select e.last_name, d.department_name, m.last_name as MANAGER
cont> from emp e
cont> left outer join dpt d using (department_code)
cont> inner join emp m on (d.manager_id = m.employee_id)
cont> order by d.manager_id
cont> fetch first row only
cont> ;
 E.LAST_NAME D.DEPARTMENT_NAME MANAGER
 Siciliano Board Manufacturing North Toliver
1 row selected
SQL>

Syntax

Oracle® Rdb for OpenVMS

7.1.54 New Dialects Support in SQL 182

select−expr =

−−+−−+−> select−clause −−−+−−+−−−−−+
+−> (select−expr) −+			
+−> TABLE table−ref −+			
+−> with−clause −−−−−+			
 +−− select−merge−clause <−−+ |
 |
 +−−−−−−−−−−−−−− <−−−−−−−−−−−−−−−−+
 |
 +−−+−−−−−−−−−−−−−−−−−−−−+−+−−−−−−−−−−−−−−−−−−+−+−−−−−−−−−−−−−−−−−−−−+−−>
 | | | | | |
 +−> order−by−clause −+ +−> offset−clause −+ +−> limit−to−clause −+

with−clause =

−+−> WITH −+−−> subquery−name −+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−+
 | | | |
 | +−> (−+−> <name−of−column> −+−>) −+ |
 | | | |
 | +−−−−−− , <−−−−−−−−−−−+ |
 | |
 | +−−−+
 | |
 | +−> AS (select−expr) −+−−> select−clause −−−−−−−−−−−−−−−−−+−−>
 | |
 +−−−−−−−−−−−−−−−−−−−−−−−−−−− , <−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Usage Notes

The WITH clause can appear in any place that accepts a SELECT expression. For instance, when
declaring a cursor, in an INSERT ... SELECT Statement, as part of Single SELECT Statement, as part
of a nested subquery, a compound statement FOR loop, and so on.

•

You may reuse the subquery name in separate queries, or in more deeply nested subqueries. You may
not repeat the name in the same WITH clause. See the following example.

SQL> with
cont> dept as (select * from departments where department_code <> 'PRES'),
cont> dept as (select * from jobs)
cont> select count(*), (select department_name
cont> from dept
cont> where jh.department_code = department_code)
cont> from job_history jh, dept d
cont> where jh.department_code = d.department_code
cont> group by jh.department_code
cont> ;
%SQL−F−DUPVAR, Variable DEPT is already defined
SQL>

•

If you declare a subquery factor name but do not use it, an informational message will be issued by
SQL. However, the query will still be executed.

SQL> with
cont> dept as (select * from departments)

•

Oracle® Rdb for OpenVMS

7.1.54 New Dialects Support in SQL 183

cont> select count(*), (select department_name
cont> from departments
cont> where jh.department_code = department_code)
cont> from job_history jh, departments d
cont> where jh.department_code = d.department_code
cont> group by jh.department_code
cont> ;
%SQL−I−VARNOTUSED, Variable "DEPT" was declared but never used

 15 Corporate Administration
.
.
.

 12 Western U.S. Sales
26 rows selected
SQL>

In prior versions of Oracle Rdb, it was permitted to follow the BEGIN keyword in a top level
compound statement or stored routine with a WITH HOLD clause to specify that the procedure
treated all FOR loops as HOLD cursors. Unfortunately this syntax conflicts with the WITH clause
specified by the ANSI and ISO SQL Database Language Standard. Therefore, to accommodate this
change, Oracle Rdb has removed the WITH HOLD syntax as a standalone clause after the BEGIN
keyword. The alternate syntax, available since Oracle Rdb V7.1, is to use the PRAGMA clause which
allows the WITH HOLD clause to be specified.
The following example shows the old syntax which now produces a syntax error message.

SQL>
SQL> begin
cont> with hold preserve none
 with hold preserve none
 ^
%SQL−W−LOOK_FOR_STT, Syntax error, looking for:
%SQL−W−LOOK_FOR_CON, (, AS,
%SQL−F−LOOK_FOR_FIN, found PRESERVE instead

It should be replaced with the following syntax which provides the same behavior.

SQL> begin
cont> pragma (with hold preserve none)
cont> trace 'a';
cont> end;

•

Examples

The following example shows the old syntax and the new syntax for the WITH clause. The old syntax causes
a syntax error now.

Example 7−6 Example 1: Using the old syntax vs the new syntax for the WITH clause

SQL>
SQL> begin
cont> with hold preserve none
 with hold preserve none
 ^
%SQL−W−LOOK_FOR_STT, Syntax error, looking for:
%SQL−W−LOOK_FOR_CON, (, AS,
%SQL−F−LOOK_FOR_FIN, found PRESERVE instead

Oracle® Rdb for OpenVMS

7.1.54 New Dialects Support in SQL 184

SQL> begin
cont> pragma (with hold preserve none)
cont> trace 'a';
cont> end;

This example shows the use of nested subquery factoring. The nested subqueries can in turn be factored.

Example 7−7 Example 2: Using Complex Query with INSERT ... SELECT Statement

SQL> declare local temporary table module.EMPS
cont> like EMPLOYEES (job_count int, sal_count int);
SQL>
SQL> insert into module.EMPS
cont> with emp_info as
cont> (select e.*,
cont> (with job_dept as
cont> (select jh.department_code, jh.employee_id
cont> from job_history jh
cont> where jh.employee_id = e.employee_id)
cont> select count(department_code) from job_dept),
cont> (with sal_amt as
cont> (select sh.salary_amount, sh.employee_id
cont> from salary_history sh
cont> where sh.employee_id = e.employee_id)
cont> select count(salary_amount) from sal_amt)
cont> from employees e)
cont> select * from emp_info
cont> ;
100 rows inserted
SQL>

This query finds any other employee who started a new job on a significant date for other employees.

Example 7−8 Example 3: Using subquery factoring within a UNION operator

SQL> select e.last_name, jh.job_start
cont> from employees e, job_history jh
cont> where e.employee_id = jh.employee_id
cont> and jh.job_start in
cont> (with
cont> actual_jobs as
cont> (select *
cont> from job_history j
cont> where j.job_end is null)
cont> select job_start from actual_jobs
cont> where employee_id <> jh.employee_id
cont> union all
cont> with
cont> actual_salary as
cont> (select *
cont> from salary_history s
cont> where s.salary_end is null)
cont> select salary_start from actual_salary
cont> where employee_id <> jh.employee_id)
cont> ;
 E.LAST_NAME JH.JOB_START
 Kilpatrick 16−Aug−1980

Oracle® Rdb for OpenVMS

7.1.54 New Dialects Support in SQL 185

 Nash 17−Nov−1980
 Danzig 2−Feb−1982
 Gehr 9−Sep−1981
 Clinton 28−May−1980
 Siciliano 9−Sep−1981
 Villari 16−Apr−1981
 Jackson 3−Jan−1983
 Gramby 28−May−1980
 Flynn 2−Feb−1982
 Flynn 1−Feb−1981
 Keisling 3−Jan−1983
 Klein 28−Dec−1980
 Silver 7−Aug−1982
 Belliveau 16−Apr−1981
 Crain 28−Dec−1980
 MacDonald 17−Nov−1980
17 rows selected
SQL>

7.1.56 DECLARE LOCAL TEMPORARY VIEW Statement

The DECLARE LOCAL TEMPORARY VIEW statement explicitly declares a local temporary view.

The metadata for a declared local temporary view is not stored in the database and cannot be shared by other
modules.

This statement allows an application to define view definitions that are temporary and do not require
CREATE privilege on the database.

Environment

You can use the DECLARE LOCAL TEMPORARY VIEW statement:

In interactive SQL•
In dynamic SQL as a statement to be dynamically executed•
In a stored module as part of the module header•

Format

DECLARE LOCAL TEMPORARY VIEW [alias .] MODULE . <view−name>

Usage Notes

By using a declared view, queries using those views can be simplified.•
The view definition can specify QUERY HEADER and EDIT STRING, which are only used by
Interactive SQL. If the temporary view is declared in a view, then these attributes of the column are
ignored.

•

The view definition can specify QUERY NAME and DEFAULT VALUE FOR DTR but these
attributes of the column are ignored.

•

A declared local temporary view acts like a created view. Refer to the CREATE VIEW Statement for
further details.

•

Oracle® Rdb for OpenVMS

7.1.56 DECLARE LOCAL TEMPORARY VIEW Statement 186

Examples

The following example declares a view which is subsequently used in a SELECT statement. The QUERY
HEADER and EDIT STRING are applied by the SELECT statement.

Example 7−9 Example 1: Simplifying a query using a declared local view

SQL> declare local temporary view module.employee_summary
cont> (eid
cont> edit string 'XXBXXX'
cont> comment is 'Employee id'
cont> ,num_jobs
cont> query name 'NUMBER_JOBS'
cont> ,started
cont> query header 'When'/'Started'
cont> ,current_start
cont> default value for dtr '1−Jan−1900 00:00:00.00')
cont> as select employee_id, count(*),
cont> min (job_start), max (job_start)
cont> from job_history
cont> group by employee_id;
SQL>
SQL> select * from module.employee_summary where eid <= '00164';
 When
 EID NUM_JOBS Started CURRENT_START
 00 164 2 5−JUL−1980 21−SEP−1981
1 row selected
SQL>

This example shows various operations on a local temporary view, including the definition of a CHECK
OPTION constraint that prevents rows being inserted into the view that cannot also be retrieved by that view.

Example 7−10 Example 2: Operations on an updatable local view

SQL> declare local temporary view module.emp_name
cont> (employee_id, last_name, first_name, middle_initial)
cont> as select employee_id, last_name, first_name, middle_initial
cont> from employees
cont> where middle_initial is not null
cont> with check option constraint OUT_OF_RANGE
cont> ;
SQL>
SQL> select * from module.emp_name;
 EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
 00164 Toliver Alvin A
 00165 Smith Terry D

.

.

.
 00435 MacDonald Johanna P
 00471 Herbener James Q
64 rows selected
SQL>
SQL> insert into module.emp_name values ('00001', 'Grey', 'Zane', NULL);
%RDB−E−INTEG_FAIL, violation of constraint OUT_OF_RANGE caused operation to fail
−RDB−F−ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into module.emp_name values ('00001', 'Grey', 'Zane', 'A');

Oracle® Rdb for OpenVMS

7.1.56 DECLARE LOCAL TEMPORARY VIEW Statement 187

1 row inserted
SQL>
SQL> update module.emp_name
cont> set middle_initial = 'a'
cont> where middle_initial = 'A';
5 rows updated
SQL>
SQL> select * from module.emp_name where middle_initial = 'a';
 EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
 00001 Grey Zane a
 00164 Toliver Alvin a
 00189 Lengyel Peter a
 00229 Robinson Tom a
 00416 Ames Louie a
5 rows selected
SQL>
SQL> rollback;

7.1.57 Enhancements for Buffered Read Support in SQL
EXPORT DATABASE Command

This release of Oracle Rdb includes a new ROW COUNT clause as part of the EXPORT DATABASE
Statement. EXPORT DATABASE now uses the buffered interface to reduce client/server exchanges while
reading data rows from the source tables. In prior versions, each row was read one at a time. The default for
ROW COUNT is 500 rows.

The database administrator can tune this value using the ROW COUNT clause demonstrated in the following
example.

SQL> export database
cont> filename MF_PERSONNEL
cont> into SAVED_MFP
cont> row count 1000
cont> ;
SQL>

7.1.58 New BITMAPPED SCAN Clauses Added to OPTIMIZE
Clause

This release of Oracle Rdb allows the programmer to specify the clause OPTIMIZE FOR BITMAPPED
SCAN as part of a query. This clause requests that the query optimizer attempt to use BITMAPPED SCAN if
there exists multiple supporting indices in the query. The Rdb query optimizer may ignore this request if only
one index is used or if no SORTED RANKED indices would be used to solve the query.

The following example shows the effect of using this new clause.

SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select count(*)
cont> from car
cont> where make = 'holden'
cont> and cyear = 1979

Oracle® Rdb for OpenVMS

7.1.57 Enhancements for Buffered Read Support in SQL EXPORT DATABASE Command 188

cont> and colour = 'blue'
cont> and (ctype = 'sedan' or ctype = 'wagon')
cont> optimize for bitmapped scan
cont> ;
Tables:
 0 = CAR
Aggregate: 0:COUNT (*) Q2
Leaf#01 BgrOnly 0:CAR Card=6047 Bitmapped scan
 Bool: (0.MAKE = 'holden') AND (0.CYEAR = 1979)
 AND (0.COLOUR = 'blue')
 AND ((0.CTYPE = 'sedan') OR (0.CTYPE = 'wagon'))
 BgrNdx1 IYEAR [1:1] Fan=97
 Keys: 0.CYEAR = 1979
 BgrNdx2 ICOLOUR [1:1] Fan=79
 Keys: 0.COLOUR = 'blue'
 BgrNdx3 IMAKE [1:1] Fan=79
 Keys: 0.MAKE = 'holden'
 BgrNdx4 ITYPE [(1:1)2] Fan=79
 Keys: r0: 0.CTYPE = 'wagon'
 r1: 0.CTYPE = 'sedan'

 1
1 row selected
SQL>

In previous releases, the programmer would need to define the logical name
RDMS$ENABLE_BITMAPPED_SCAN as 1, RDMS$SET_FLAGS as "BITMAPPED_SCAN", or use the
SET FLAGS 'BITMAPPED_SCAN' statement in the application.

7.1.59 New Support for Allocations Specified Using
Quantified Numeric Literal

This release of Oracle Rdb allows the database administrator to use allocation sizes using a quantified numeric
literal. This shorthand notation allows the programmer to use numeric values that end in a multiplier
represented by one of the following letters.

K, meaning kilobytes•
M, meaning megabytes•
G, meaning gigabytes•
T, meaning terabytes•
P, meaning petabytes•

The numeric value will be scaled according to the multiplier.

If multiplier is K, then 1,024.•
If the multiplier is M, then 1,048,576.•
If the multiplier is G, then 1,073,741,824.•
If the multiplier is T, then 1,099,511,627,776.•
If the multiplier is P, then 1,125,899,906,842,624.•

Note

Not all values specified by this notation are supported by the current release of Oracle Rdb.

Oracle® Rdb for OpenVMS

7.1.59 New Support for Allocations Specified Using Quantified Numeric Literal 189

These quantified numeric literals can be used with the following clauses and statements:

ALLOCATION and SNAPSHOT ALLOCATION clause
As part of the CREATE DATABASE Statement or IMPORT DATAABSE Statement. These clauses
provide the allocation for the default storage area RDB$SYSTEM, as well as the default allocations if
none are specified for specific storage areas.

•

ALLOCATION and SNAPSHOT ALLOCATION clause
As part of the CREATE STORAGE AREA clause, ADD STORAGE AREA clause, or ALTER
STORAGE AREA clause. These clauses specify explicit sizes for new or altered storage area files.

•

ALLOCATION clause
As part of the CREATE, ADD or ALTER JOURNAL clause. These clauses specify explicit allocation
of the new journal file.

•

ALLOCATION clause
As part of the CREATE, ADD or ALTER CACHE clause. These clauses specify explicit allocation of
the caching backing file.

•

MEMORY ALLOCATION clause
As part of the GLOBAL BUFFERS clause. This value specifies the amount of virtual memory to
allocate for the global buffers.

•

7.1.60 New SQL Functions Added

This release of Oracle Rdb adds new functions to the SYS$LIBRARY:SQL_FUNCTIONS73.SQL script. To
replace the existing library of functions, first use SQL_FUNCTIONS_DROP73.SQL script and then reapply
using SQL_FUNCTIONS73.SQL.

Description

BITANDNOT (numeric−expression, numeric−expression)
This function is used to clear bits in the first expression that are set in the second expression. First a
bitwise NOT (BITNOT) is performed on the second numeric value expression and then a bitwise
AND (BITAND) is performed of the first numeric value expression with the result.
If either of the passed expressions results in NULL then the result of BITANDNOT will be NULL.
Note that BITANDNOT is equivalent to BITAND (exp1, BITNOT (ex2)) but is more efficient.

•

BITNOT (numeric−expression)
Returns the bitwise NOT of the passed numeric value expression. If the passed expression results in
NULL, then the result of BITNOT will be NULL.

•

BITOR (numeric−expression, numeric−expression)
Returns the bitwise OR of the passed numeric value expressions. If either of the passed expressions
results in NULL, then the result of BITOR will be NULL.

•

BITXOR (numeric−expression, numeric−expression)
Returns the bitwise XOR of the passed numeric value expressions. If either of the passed expressions
results in NULL, then the result of BITXOR will be NULL.

•

7.1.61 Changes and Improvements to the Rdb Optimizer and
Query Compiler

Oracle® Rdb for OpenVMS

7.1.60 New SQL Functions Added 190

This release of Oracle Rdb introduces several new capabilities within the query compiler and the query
optimizer. These changes fall generally under the title query rewrite, and allow the query compiler to present
a simplified query for optimization and execution.

CAST function elimination
In most cases, CAST actions must be executed at runtime to convert from the source data type to that
specified by the CAST function. However, in some cases, the Rdb query compiler can eliminate or
replace the CAST function with a literal value during query compile. This saves CPU time as the
action is performed just once rather than once per row processed.
This replacement includes the following:

When CAST of DATE (ANSI), DATE (VMS) or TIMESTAMP data types is performed to a
compatible type of DATE or TIMESTAMP, then in many cases the CAST operator is not
required.

♦

CAST of string literals to DATE (ANSI), DATE (VMS), TIME, TIMESTAMP and
INTERVAL can be processed at compile time. For example, CAST('2013−1−1' AS DATE
ANSI) is implicitly converted to a DATE literal DATE'2013−1−1'.

♦

CAST of small integer values is now done by the compiler. For example, CAST(1 AS
SMALLINT) can be performed at compile time.

♦

CAST of fixed length (CHAR) literal strings to varying length strings (VARCHAR) is now
processed by the compiler if the character set is the same and the target VARCHAR is long
enough to hold the source string, as seen in the following example:

CAST('TABLE' AS VARCHAR(31))

♦

•

Constant Folding
Simple arithmetic expressions involving integer or floating point literals are evaluated by the query
compiler. The overall effect is smaller executable code and some reduced CPU time for queries.
FLOAT, REAL, and DOUBLE PRECISION values are combined to produce DOUBLE PRECISION
results. Integer literals (with no fractional component) are combined to produce BIGINT results.
The side effect is that some expressions may now return DOUBLE PRECISION or BIGINT results
where in prior versions they produced smaller precision results. This should not affect applications
which fetch values into different data types as Oracle Rdb will perform an implicit conversion.
This optimization includes the following:

Addition (+)♦
Subtraction (−)♦
Multiplication (*)♦
Division (/)
Note that division is not performed at compile time if the divisor is a literal zero (0).
Operations which are coded to explicitly divide by zero are probably expected to produce an
error at runtime. Although using the SQL SIGNAL statement is now preferred, this technique
has been used to terminate procedures when an incorrect input is encountered.

♦

•

Algebraic Rules
Additive identity (zero) can be added to an expression without changing the value. The query
compiler will eliminate the literal zero (0) from the expression.
Multiply by zero will result in zero if the other operand is a not nullable expression. In this case, the
expression will be replaced by zero.
Multiplicative identity (one) can be multiplied by an expression without changing the value. The
query compiler will eliminate the literal one (1) from the expression.
The side effect is that some expressions may now return slightly different data types because the
literal is no longer considered as part of the data type computation.

•

Simple Predicate Elimination
When predicates include comparison of simple expressions, then the query compiler will attempt to

•

Oracle® Rdb for OpenVMS

7.1.60 New SQL Functions Added 191

eliminate them from the query predicate. For example, WHERE ('A' = 'A') will be replaced by TRUE,
WHERE (2 <> 2) will be replaced with FALSE, and so on.
Not Nullable Aware
The query compiler is now aware of which columns have a NOT NULL NOT DEFERRABLE
constraint enabled. Additionally, this attribute is also implied from any PRIMARY KEY NOT
DEFERRABLE constraints.
Using this knowledge, the query compiler can reduce (prune) the query expression. This list defines
the ways in which this can occur:

When IS NULL is applied to a not nullable column or expression, then this predicate is
replaced with FALSE.

♦

When IS NOT NULL is applied to a not nullable column or expression, then this predicate is
replaced with TRUE.

♦

The side effect is that constraints for a table are now loaded for SELECT statements.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(IS_NULL). The default is REWRITE(IS_NULL).

•

Replace comparisons with NULL
Queries that erroneously compare value expressions with NULL will now be replaced with a
simplified UNKNOWN value. For example, a query that uses WHERE EMPLOYEE_ID = NULL
will never find matching rows, because the results of the comparison (equals, not equals, greater than,
less than, and so on) are always UNKNOWN.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(UNKNOWN). The default is REWRITE(UNKNOWN).

•

Predicate Pruning
The AND, OR and NOT operators can be simplified if the logical expressions have been reduced to
TRUE, FALSE or UNKNOWN expressions. Depending on the operation, the Rdb query compiler
might be able to eliminate the Boolean operator and part of the expression.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(BOOLEANS). The default is REWRITE(BOOLEANS).

•

CASE Expression Pruning
The prior transformation will also be applied to the Boolean WHEN expressions of a conditional
expression (CASE, DECODE, NULLIF, COALESCE, NVL, NVL2, SIGN, ABS, and so on).
In some cases, the resulting conditional expression might resolve to an equivalent conditional
expression with fewer branches (some WHEN ... THEN clauses being eliminated) or a simple
expression with no conditional expression (all WHEN ... THEN clauses are eliminated).

•

IN Operator Simplification

The IN operator using a subquery looks similar to the EXISTS boolean expression but it differs in its
handling of NULL values. If the query compiler knows that neither source field nor the value set
contain NULL, then the EXISTS expression can replace the IN operator. The EXISTS expression
generates a better query solution in almost all cases.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(IN_CLAUSE). The default is REWRITE(IN_CLAUSE).

•

In most cases, the results of these optimizations will be transparent to the application. However, database
administrators that use SET FLAGS 'STRATEGY,DETAIL' will notice new notations in the displayed
strategy.

The following examples show the types of likely results.

Oracle® Rdb for OpenVMS

7.1.60 New SQL Functions Added 192

In this example, the logical expression (1 = 2) is replaced with FALSE, the logical expression (1 = 1) is
replaced with TRUE and the predicate is reduced to just the IS NULL (aka MISSING) check.

SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = '00164');
Tables:
 0 = EMPLOYEES
Conjunct: MISSING (0.EMPLOYEE_ID)
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

If there existed a NOT NULL NOT DEFERRABLE constraint on the EMPLOYEE_ID column, the
expression can be further reduced because the NOT NULL constraint means the IS NULL test is always
FALSE.

SQL> alter table EMPLOYEES
cont> alter column EMPLOYEE_ID
cont> constraint NN_EMPLOYEE_ID
cont> NOT NULL
cont> NOT DEFERRABLE
cont> ;
SQL>
SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = '00164');
Tables:
 0 = EMPLOYEES
Conjunct: FALSE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected
SQL>

REWRITE Flag

The SET FLAGS statement and the RDMS$SET_FLAGS logical name can be used to enable or disable some
of these rewrite actions. This flag primarily exists for Oracle to test the behavior of the query rewrite changes.
It can be used by programmers to revert to pre−V7.3 behavior.

REWRITE enables each rewrite setting and NOREWRITE disables them. Additionally, keywords can be
added to REWRITE and NOREWRITE to disable selective rewrite actions.

The following new keywords are added for this release of Oracle Rdb.

BOOLEANS•
IN_CLAUSE•
IS_NULL•
UNKNOWN•

Oracle® Rdb for OpenVMS

7.1.60 New SQL Functions Added 193

7.1.62 Optimized NOT NULL Constraint Execution

This release of Oracle Rdb introduces a new mechanism to verify NOT NULL constraints which are executed
immediately ts statement end (that is NOT DEFERRABLE). This new mechanism is more efficient (uses less
code and virtual memory) than mechanisms used in prior releases. The cost of the constraint check in these
cases is a fixed cost with a very small incremental cost for each extra NOT NULL constraint. The NOT
NULL requirement of PRIMARY KEY constraints are also checked in the same way.

In prior releases of Oracle Rdb, each NOT NULL constraint would require its own internal query and each
would be evaluated serially against the row just inserted or updated.

The following example shows an INSERT into a simple table with STRATEGY flags enabled. As can be
observed, the absence of the strategy display indicates that no optimized query was used to validate these
constraints.

SQL> set flags 'strategy,detail(2),internal,request_name';
SQL>
SQL> insert into SAMPLE
cont> default values;
%RDB−E−INTEG_FAIL, violation of constraint SAMPLE_PK caused operation to fail
−RDB−F−ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE (iden)
cont> values (0);
%RDB−E−INTEG_FAIL, violation of constraint SAMPLE_DAT_NOT_NULL caused operation
to fail
−RDB−F−ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> insert into SAMPLE
cont> values (1, 'A');
~Sn: Constraint "SAMPLE_PK" evaluated (verb)
Tables:
 0 = SAMPLE
 1 = SAMPLE
Cross block of 2 entries Q1
 Cross block entry 1
 Conjunct: 0.DBKEY = <var0>
 Firstn: 1
 Get Retrieval by DBK of relation 0:SAMPLE
 Cross block entry 2
 Conjunct: <agg0> <> 1
 Aggregate−F2: 0:COUNT−SINGLE (<subselect>) Q2
 Index only retrieval of relation 1:SAMPLE
 Index name SAMPLE_NDX [1:1]
 Keys: 0.IDEN = 1.IDEN
1 row inserted
SQL>

Note that any DEFERRABLE constraints will be executed as in prior versions.

7.1.63 New RMU/LOAD Option
CHARACTER_ENCODING_XML

When using RMU/UNLOAD/RECORD_DEFINITION/FORMAT=XML, the XML header record will, by
default, use the character encoding "ISO−8859−1", as seen in the folllowing example.

Oracle® Rdb for OpenVMS

7.1.62 Optimized NOT NULL Constraint Execution 194

<?xml version="1.0" encoding="ISO−8859−1"?>

This encoding (ISO−8859−1) is Latin 1 and covers encoding of many European character sets. However, this
encoding is not adequate if you use other character encoding for Asian languages or languages not covered by
this ISO Standard.

This release of Oracle Rdb adds a new option, CHARACTER_ENCODING_XML, that allows the command
procedure to specify an alternate character encoding. For example, if the data being unloaded is using the
UTF8 character set, use this new option as shown in this example.

$ rmu/unload−
 /record=(nofile,format=xml,trim,character_encoding_xml="utf−8")−
 sql$database −
 employees −
 employees
%RMU−I−DATRECUNL, 100 data records unloaded 8−SEP−2013 22:21:49.54.
$

7.1.64 New MEMORY ALLOCATION Clause for the GLOBAL
BUFFERS Definition

This release of Oracle Rdb allows the database administrator to define the size of the GLOBAL BUFFER
pool using direct memory sizing as an alternate to specifying the NUMBER of pages.

MEMORY ALLOCATION IS <mem−octets>
The value of mem−octets is an unsigned numeric literal or a quantified numeric literal. This clause is
not compatible with the NUMBER IS clause. Use just one of the keywords to define the size of the
global buffers.

•

The following example shows the use of MEMORY ALLOCATION when creating global buffers.

create database
 filename TEST_DB

 allocation 110k pages
 snapshot allocation 1k pages
 global buffers are disabled (memory allocation 1m)

 create storage area AREA1
 allocation 100k pages
 snapshot allocation 2k pages
;

Syntax

global−buffer−params =

−+−> GLOBAL BUFFERS ARE −+−> ENABLED −−+−−−+
 | | |
 +−> DISABLED −+ |
 |
 +−−−+
 |

Oracle® Rdb for OpenVMS

7.1.64 New MEMORY ALLOCATION Clause for the GLOBAL BUFFERS Definition 195

 +−+−−−+−−>
 | |
 +−> (−+−+−> LARGE MEMORY IS −+−> ENABLED −−+−−−−+−+−>) −+
 | | | | | |
 | | +−> DISABLED −+ | |
 | | | |
 | +−> MEMORY ALLOCATION IS <mem−octets> −−+ |
 | | | |
 | +−> NUMBER IS <number−glo−buffers> −−−−−+ |
 | | | |
 | +−> PAGE TRANSFER VIA −+−> DISK −−−+−−−−+ |
 | | | | | |
 | | +−> MEMORY −+ | |
 | | | |
 | +−> USER LIMIT IS <max−glo−buffers> −−−−+ |
 | |
 +−−−−−−−−−−−−−−−−−− , <−−−−−−−−−−−−−−−−−−−−−+

7.1.65 New REPLACE Statement

Bug 8929218

This release of Oracle Rdb introduces a new REPLACE statement. When a table includes a PRIMARY KEY
definition, the REPLACE statement uses the key information to remove the existing matching row prior to
inserting the replacement data.

The following example shows an example of the REPLACE ststement. Triggers are defined with only
TRACE statements to show the order of execution during REPLACE.

SQL> set dialect 'sql2011';
SQL> set flags 'test_system';
SQL>
SQL> create table SAMPLE
cont> (ident integer primary key
cont> ,description char(40)
cont>);
SQL>
SQL> create trigger AI_SAMPLE
cont> after insert on SAMPLE
cont> (trace 'after an insert')
cont> for each row;
SQL>
SQL> create trigger BI_SAMPLE
cont> before insert on SAMPLE
cont> (trace 'before an insert')
cont> for each row;
SQL>
SQL> create trigger AD_SAMPLE
cont> after delete on SAMPLE
cont> (trace 'after a delete')
cont> for each row;
SQL>
SQL> create trigger BD_SAMPLE
cont> before delete on SAMPLE
cont> (trace 'before a delete')
cont> for each row;
SQL>

Oracle® Rdb for OpenVMS

7.1.65 New REPLACE Statement 196

SQL> set flags 'trace';
SQL>
SQL> −− first row
SQL> insert into SAMPLE
cont> values (100, 'First description');
~Xt: before an insert
~Xt: after an insert
1 row inserted
SQL>
SQL> −− should fail (duplicate)
SQL> insert into SAMPLE
cont> values (100, 'Second description');
~Xt: before an insert
~Xt: after an insert
%RDB−E−INTEG_FAIL, violation of constraint SAMPLE_PRIMARY_IDENT caused
operation to fail
−RDB−F−ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> replace into SAMPLE
cont> values (100, 'Replace first description');
~Xt: before a delete
~Xt: after a delete
~Xt: before an insert
~Xt: after an insert
1 row replaced
SQL>
SQL> select * from SAMPLE order by ident;
 IDENT DESCRIPTION
 100 Replace first description
1 row selected
SQL>
SQL> commit;
SQL>

Usage Notes

If no PRIMARY KEY exists for the table, or it is disabled, the REPLACE statement acts exactly like
an INSERT statement.

•

REPLACE is a valid statement for a TRIGGER action.•
In addition to the BEFORE and AFTER INSERT triggers, REPLACE will cause BEFORE and
AFTER DELETE triggers to execute.

•

REPLACE is a valid compound−use statement and can be used in a stored procedure.•
It is possible that the implicit DELETE action taken by REPLACE will cause constraint execution.
These constraints may prevent the DELETE actions (due to a table dependency) and therefore cause
the REPLACE to fail.

•

Oracle® Rdb for OpenVMS

7.1.65 New REPLACE Statement 197

Chapter 8
Documentation Corrections, Additions and
Changes
This chapter provides corrections for documentation errors and omissions.

Chapter 8Documentation Corrections, Additions and Changes 198

8.1 Documentation Corrections

8.1.1 Oracle Rdb Release 7.3.x.x New Features Document
Added

A new document has been created which contains all of the New Features Chapters from all Rdb 7.3 Release
Notes. This document will be included in saveset A of the Rdb kit. It is called RDB_NEWFEATURES_73xx
and will be available in postscript, text and PDF format. This will provide customers with one document to
reference to find out about all new features that have been added to the Rdb 7.3 releases.

8.1.2 Oracle Rdb Position on NFS Devices

This release note describes the supported usage of the NFS (Network File System) mounted devices by the
Oracle Rdb product. NFS devices appear in most regards as local mounted file systems but do not allow the
same level of sharing as provided by local OpenVMS devices. In addition, these files reside on a
non−OpenVMS system (for instance a Linux or Windows system) and are therefore outside any scheme used
by Rdb to lock buffers and pages of the database.

Active System Files

When Rdb is actively using database files, these files require specific sharing and locking to guarantee
database integrity and recovery. Therefore, because of the limitations of the NFS mounted devices, active files
such as the database root (.rdb), storage areas (.rda), snapshot files (.snp), row cache work file (.rdc), after
image journal files (.aij), and before image recovery journal (.ruj) must not reside on an NFS mounted device.

Archived Data Files

Files that are not part of the active system may be stored on NFS mounted devices. For example, RMU
/BACKUP /AFTER_JOURNAL can be used to archive an after image journal to a target on an NFS device.
Similarly, RMU /BACKUP can perform a full or incremental backup to an Rdb backup file (.rbf) on an NFS
device and RMU /RESTORE can use that NFS mounted source for database recovery, along with archived
after image files from an NFS device processed by RMU /RECOVER.

Other Miscellaneous Files

Other files that might be used by an Rdb installation include options files, application procedures and sources,
backup journals, record definitions files (.rrd), unloaded database files (.unl), exported databases (.rbr), log
files, and so on. These sequential files may be stored on and referenced by RMU and SQL commands from an
NFS mounted device.

Setting Up NFS

Complete instructions for setting up an NFS mounted device is beyond the scope of this release note and
customers are directed to use system specific documentation for the server platform and for HP OpenVMS
systems. However, during testing with Oracle Rdb we noted the need for the following qualifiers for the
TCPIP MOUNT command.

8.1 Documentation Corrections 199

Use /ADF=CREATE. This ensures that attributes (such as block size and record length) are preserved
on the server.

•

Use /STRUCTURE=5. This will emulate an ODS−5 device and therefore allow the most complete
OpenVMS Files−11 On−Disk Structure emulation.

•

Use /TRANSPORT=UDP. For example,

$ tcpip mount dnfs1:/host="test.company.com"/path="/scratch"
 /stru=5/serve=unix/adf/vers=2/tran=udp

•

Read Performance Issues

In versions of Oracle Rdb prior to Rdb V7.3.1.2, a significant performance issue exists when reading
sequential files from NFS mounted devices. Oracle Rdb uses the RMS read−ahead (RAH) attribute to
improve sequential reads but this has an adverse effect when referencing an NFS device. The latest release of
Oracle Rdb works around this issue by disabling the use of read−ahead when referencing an NFS device and
would be the preferred version when using NFS devices.

Disclaimer

This information is provided to answer customer questions and should not be read as an endorsement or
guarantee for NFS systems. Oracle expects configuration, functional testing, performance testing, security and
integrity of the NFS data to be performed by our customers.

8.1.3 RDM$BIND_STAREA_EMERGENCY_DIR Logical Name

Bugs 19545970 and 3682207

RDM$BIND_STAREA_EMERGENCY_DIR is a HOT STANDBY logical name that can be utilized when
replicating the creation of a new storage area from a master database to its standby database.

RDM$BIND_STAREA_EMERGENCY_DIR provides an alternate device and/or directory specification for
the standby that can replace all or part of the master's file specification. Without the logical, the device and
directory of the new storage area issued from the master must exist and match exactly on the standby. For
example, on the master database we want to create a new starea,
1DGA11:[RDB_RANDOM.FOO]A1.RDA. We would issue the following command:

SQL> alter database file rdb_random$db
 add storage area a1 filename 1DGA11:[RDB_RANDOM.FOO]A1.RDA;

If the standby did not have a device called 1DGA11, the replication would fail and the AIJ Log
Roll−Forward Server (LRS) logfile would log the failure.

3−SEP−2014 16:22:26.94 − Replicating master FILID 19
3−SEP−2014 16:22:26.94 − Attempting to create starea
"1DGA11:[RDB_RANDOM.FOO]A1.RDA;1" ALQ=2808
3−SEP−2014 16:22:26.95 − Unable to create storage area. STATUS: 00DDA89C
3−SEP−2014 16:22:26.95 − No emergency directory defined
3−SEP−2014 16:22:26.95 − Failure reason: LRSSRV$CREATE_AREA_CALLBACK − Could
not create storage area

Suppose the target disk on the standby was 1DGA109 and we defined the logical
RDM$BIND_STAREA_EMERGENCY_DIR to point to that, as in the following example.

Oracle® Rdb for OpenVMS

8.1.3 RDM$BIND_STAREA_EMERGENCY_DIR Logical Name 200

$ define/sys RDM$BIND_STAREA_EMERGENCY_DIR "1DGA109:"
$ create/dir 1DGA109:[RDB_RANDOM.FOO]

The replication operation would succeed and the LRS logfile would show:

3−SEP−2014 15:42:45.65 − Attempting to create starea
"1DGA11:[RDB_RANDOM.FOO]A1.RDA;1" ALQ=2808
3−SEP−2014 15:42:45.67 − Unable to create storage area. STATUS: 00DDA89C
3−SEP−2014 15:42:45.67 − Using emergency area "1DGA109:[RDB_RANDOM.FOO]A1.RDA"
3−SEP−2014 15:42:45.67 − Attempting to create starea
"1DGA109:[RDB_RANDOM.FOO]A1.RDA" ALQ=2808
3−SEP−2014 15:42:45.68 − Starea creation successful
3−SEP−2014 15:42:45.70 − Attempting to create starea
"1DGA11:[RDB_RANDOM.FOO]A1.SNP;1" ALQ=404
3−SEP−2014 15:42:45.70 − Unable to create storage area. STATUS: 00DDA89C
3−SEP−2014 15:42:45.70 − Using emergency area "1DGA109:[RDB_RANDOM.FOO]A1.SNP"
3−SEP−2014 15:42:45.70 − Attempting to create starea
"1DGA109:[RDB_RANDOM.FOO]A1.SNP" ALQ=404
3−SEP−2014 15:42:45.71 − Starea creation successful

The RDM$BIND_STAREA_EMERGENCY_DIR logical must:

Exist on the standby system prior to the create storage area operation.•
Be defined in the LNM$SYSTEM_TABLE table.•
Be a valid file specfication.•

All standby databases on the node where the logical is defined share its use.

This logical was added back in Oracle Rdb Release 7.0.2 but the documentation of the logical was omitted.

8.1.4 RDMS−F−FULLAIJBKUP, Partially−Journaled Changes
Made

Bug 7669735

The Oracle Rdb and Oracle CODASYL DBMS Guide to Hot Standby Databases states: "You can stop
replication operations by explicitly entering the Replicate After_Journal Stop command on either the standby
or master database nodes. Stopping replication on either database terminates replication on both databases."

Although the RMU/REPLICATE AFTER_JOURNAL STOP command may be issued against either Master
or Standby to shut down replication, we have determined that there is at least one scenario where the choice is
important relating to restarting replication in the future.

If you do the following, the operation will fail with a 'FULLAIJBKUP' error when starting the Master.

Stop replication on the Standby.1.
Set the old standby to be the new Master.2.
Set the old Master to be the new Standby.3.
Attempt to restart replication.4.

This is expected behavior. If the Standby is stopped prior to the Master, Oracle Rdb cannot determine if there
has been any network traffic from the Master between the time that the Standby and Master shut down. Since
any such information would be lost and may lead to data inconsistencies, replication will not be started.

Oracle® Rdb for OpenVMS

8.1.4 RDMS−F−FULLAIJBKUP, Partially−Journaled Changes Made 201

The workaround for this scenario would be to stop replication on the Master, not the Standby. Consider the
following two examples (assuming that replication is currently active):

Example 1: Initially stopping Replication on the Standby.

$! Stopping Replication on the Standby:

$ RMU/REPLICATE AFTER STOP/WAIT/LOG STANDBY$DB:STANDBY_PERSONNEL
%RMU−I−HOTSTOPWAIT, stopping database replication, please wait
%RMU−I−LOGMODSTR, stopped master database AIJ Log Replication Server

$! Start Replication of the Standby db (which was previously the Master)

$ RMU/REPLICATE AFTER_JOURNAL START MASTER:MF_PERSONNEL.RDB −
 /CHECKPOINT=10 −
 /LOG −
 /WAIT −
 /BUFFERS=30 −
 /GAP_TIMEOUT=5 −
 /GOVERNOR=DISABLED −
 /MASTER_ROOT=STANDBY$DB:STANDBY_PERSONNEL.RDB −
 /ONLINE
%RMU−I−LOGMODSTR, started standby database AIJ Log Replication Server

$! Start Replication on the Master db (which was previously the Standby)

$ RMU/REPLICATE AFTER_JOURNAL START STANDBY$DB:STANDBY_PERSONNEL.RDB −
 /CHECKPOINT=100 −
 /LOG −
 /WAIT −
 /CONNECT_TIMEOUT=5 −
 /STANDBY_ROOT=MASTER:MF_PERSONNEL.RDB −
 /SYNCHRONIZATION=COLD −
 /QUIET_POINT −
 /TRANSPORT=TCPIP
%RMU−I−LOGMODSTR, started AIJ Log Server
%RDMS−F−CANTSTARTLCS, error starting AIJ Log Catch−Up Server process
−RDMS−F−FULLAIJBKUP, partially−journaled changes made; database may not be
recoverable
%RMU−F−FATALRDB, Fatal error while accessing Oracle Rdb.
%RMU−F−FTL_RMU, Fatal error for RMU operation at 4−AUG−2014 14:19:17.78

Example 2: Initially stopping Replication on the Master.

$! Stopping Replication on the Master:

$ RMU/REPLICATE AFTER STOP/WAIT/LOG MASTER$DB:MF_PERSONNEL.RDB
%RMU−I−HOTSTOPWAIT, stopping database replication, please wait
%RMU−I−LOGMODSTR, stopped master database AIJ Log Replication Server

$! Start Replication of the Standby db (which was previously the Master)

$ RMU/REPLICATE AFTER_JOURNAL START MASTER:MF_PERSONNEL.RDB −
 /CHECKPOINT=10 −
 /LOG −
 /WAIT −
 /BUFFERS=30 −
 /GAP_TIMEOUT=5 −
 /GOVERNOR=DISABLED −
 /MASTER_ROOT=STANDBY$DB:STANDBY_PERSONNEL.RDB −

Oracle® Rdb for OpenVMS

8.1.4 RDMS−F−FULLAIJBKUP, Partially−Journaled Changes Made 202

 /ONLINE
%RMU−I−LOGMODSTR, started standby database AIJ Log Replication Server

$! Start Replication on the Master db (which was previously the Standby)

$ RMU/REPLICATE AFTER_JOURNAL START STANDBY$DB:STANDBY_PERSONNEL.RDB −
 /CHECKPOINT=100 −
 /LOG −
 /WAIT −
 /CONNECT_TIMEOUT=5 −
 /STANDBY_ROOT=MASTER:MF_PERSONNEL.RDB −
 /SYNCHRONIZATION=COLD −
 /QUIET_POINT −
 /TRANSPORT=TCPIP
%RMU−I−LOGMODSTR, started AIJ Log Server
%RMU−I−LOGMODSTR, started master database AIJ Log Replication Server

The SYS$HELP:RMU_MSG*.DOC has more information about the FULLAIJBKUP error:

FULLAIJBKUP, partially−journaled changes made; database may not be
 recoverable

Explanation: Partially journalled changes have been made to the
 database. This may result in the database being
 unrecoverable in the event of database failure; that
 is, it may be impossible to roll−forward the
 after−image journals, due to a transaction mis−match or
 attempts to modify objects that were not journaled.
 This condition typically occurs as a result of
 replicating database changes using the Hot Standby
 feature.

User Action: IMMEDIATELY perform a full (not by−sequence)
 quiet−point AIJ backup to clear the AIJ journals,
 followed immediately by a full (no−quiet−point allowed)
 database backup.

8.1.5 Undocumented Hot Standby Logical Names

Bug 3264793

Table 8−1 Hot Standby Logical Names

Logical Name
Description

Default
Value

Minimum
Value

Maximum
Value

RDM$BIND_ALS_LOG_REOPEN_SECS
Defines the number of seconds after which the ALS output file
will automatically be reopened.

0 seconds (will
not be reopened
automatically)

0 seconds
31449600
(1 year)

RDM$BIND_ALS_LOG_REOPEN_SIZE
Defines the number of blocks after which the ALS output file
will automatically be reopened.

0 blocks (will
not be reopened
automatically)

0 blocks Infinite

RDM$BIND_HOT_ABS_SUSPEND_SHUTDOWN
Defines whether or not the AIJ backup server (ABS) should be

0 0 1

Oracle® Rdb for OpenVMS

8.1.5 Undocumented Hot Standby Logical Names 203

automatically suspended on graceful shutdown.

RDM$BIND_HOT_CHECKPOINT
Specifies the number of messages per server checkpoint interval.

If specified, the first threshold to be exceeded (message count or
elapsed time) will cause the checkpoint.

100 1 50000

RDM$BIND_HOT_CHECKPOINT_INTERVAL
Specifies a checkpoint interval, in minutes, to be used in
addition to the /CHECKPOINT qualifier specified at Hot
Standby startup.

If specified, the first threshold to be exceeded (message count or
elapsed time) will cause the LRS checkpoint.

0 minutes (don't
use elapsed time)

0 minutes
10080 (7
days)

RDM$BIND_HOT_IGNORE_NET_TIMEOUT
Specifies whether or not to ignore network timeout parameters if
the LRS process is still active.

0 0 1

RDM$BIND_HOT_LOG_REOPEN_SECS
Defines the number of seconds after which the AIJSERVER
output file will automatically be reopened.

0 seconds (will
not be reopened
automatically)

0 seconds
604800 (1
week)

RDM$BIND_HOT_LOG_REOPEN_SIZE
Defines the number of blocks after which the AIJSERVER
output file will automatically be reopened.

0 blocks (will
not be reopened
automatically)

0 Infinite

RDM$BIND_HOT_NETWORK_ALT_NODE
Defines the secondary network nodename to be used in the event
of primary nodename network failure. This logical name allows
you to specify an alternate routing pathway to the same standby
database.

None

RDM$BIND_HOT_NETWORK_RETRY
Specifies a network retry timeout interval.

120 seconds 0
1800 (30
minutes)

RDM$BIND_LCS_AIJ_SCAN_IO_COUNT
Defines the number of asynchronous I/O operations to be
performed simultaneously during LCS catch−up.

64 1 128

RDM$BIND_LCS_LOG_REOPEN_SECS
Defines the number of seconds after which the LCS output file
will automatically be reopened.

0 seconds (will
not be reopened
automatically)

0 seconds
31449600
(1 year)

RDM$BIND_LCS_LOG_REOPEN_SIZE
Defines the number of blocks after which the LCS output file
will automatically be reopened.

0 blocks (will
not be reopened
automatically)

0 blocks Infinite

RDM$BIND_LCS_QUIET_TIMEOUT
Defines the number of seconds to wait for the LCS process to
obtain the standby database quiet−point.

600 seconds
0 seconds
(wait
indefinitely)

Infinite

RDM$BIND_LCS_SYNC_COMMIT_MAX
Defines the number of catch−up messages to synchronize with
the standby database. A message may contain multiple
transactions.

128 messages 32 messages
10000
messages

RDM$BIND_LRS_LOG_REOPEN_SECS
Defines the number of seconds after which the LRS output file
will automatically be reopened.

0 seconds (will
not be reopened
automatically)

0 seconds
31449600
(1 year)

Oracle® Rdb for OpenVMS

8.1.5 Undocumented Hot Standby Logical Names 204

RDM$BIND_LRS_LOG_REOPEN_SIZE
Defines the number of blocks after which the LRS output file
will automatically be reopened.

0 blocks (will
not be reopened
automatically)

0 blocks Infinite

RDM$BIND_LRS_QUIET_TIMEOUT
Defines the number of seconds to wait for the LRS process to
obtain the standby database quiet−point.

600
0 seconds
(wait
indefinitely)

Infinite

RDM$BIND_STAREA_EMERGENCY_DIR
Defines an alternate device and directory for the creation of
storage areas on the standby database. The logical must be
defined in the LNM$SYSTEM_TABLE table and it is shared by
all standby databases on that node.

8.1.6 Clarification on Using the RMU/VERIFY
SEGMENTED_STRINGS Qualifier

The /SEGMENTED_STRINGS qualifier can be used with the Oracle Rdb RMU/VERIFY command to verify
all list (segmented string) data for columns in one or more database tables.

To verify segmented strings for all database tables, the command RMU/VERIFY/ALL or
RMU/VERIFY/SEGMENTED_STRINGS/LAREAS or
RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=* can be specified.

$ RMU/VERIFY/ALL PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=* PERSONNEL

Neither the /SEGMENTED_STRINGS qualifier nor the /LAREAS qualifier can be specified with the /ALL
qualifier since the /ALL qualifier defaults to /LAREAS=* and /SEGMENTED_STRINGS in addition to other
qualifiers.

$ RMU/VERIFY/ALL/SEGMENTED_STRINGS/LAREAS PERSONNEL
%RMU−F−CONFLSWIT, conflicting qualifiers /ALL and /LAREAS
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 16−JAN−2014 15:09:45.22
$ RMU/VERIFY/ALL/SEGMENTED_STRINGS PERSONNEL
%RMU−F−CONFLSWIT, conflicting qualifiers /ALL and /SEGMENTED_STRINGS
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 16−JAN−2014 15:10:10.98

To verify segmented strings for individual tables, the /LAREAS qualifier must be used with the
/SEGMENTED_STRING qualifier to specify one or more names of tables to be verified.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RDB$RELATIONS PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=(RDB$RELATIONS,RESUMES) PERSONNEL

If the /SEGMENTED_STRINGS qualifier is specified, the /LAREAS qualifier must also be specified.

$ RMU/VERIFY/SEGMENTED_STRINGS PERSONNEL
%RMU−F−CONFLSWIT, conflicting qualifiers /SEGMENTED_STRINGS and not LAREA
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 16−JAN−2014 15:11:20.16

When the /LAREAS qualifier is used with the /SEGMENTED_STRINGS qualifier, only logical area names
that are also database table names can be specified or a fatal error will be output and the verify command will

Oracle® Rdb for OpenVMS

8.1.6 Clarification on Using the RMU/VERIFY SEGMENTED_STRINGS Qualifier 205

be aborted.

$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=95 MF_PERSONNEL
%RMU−F−INVSEGTBL, Invalid table name 95 specified for segmented string
verification
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 27−JAN−2014 15:02:39.04
$ RMU/VERIFY/SEGMENTED_STRINGS/LAREAS=SH_EMPLOYEE_ID MF_PERSONNEL
%RMU−F−INVSEGTBL, Invalid table name SH_EMPLOYEE_ID specified for segmented
string verification
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 27−JAN−2014 15:03:42.15

If the /LOG qualifier is specified or logging is the default for the verify command, a log message will list the
tables containing columns defined for segmented string data for which the segmented string data will be
verified.

$ RMU/VERIFY/LOG/SEGMENTED_STRINGS/LAREAS=RESUMES MF_PERSONNEL
%RMU−I−BGNROOVER, beginning root verification
%RMU−I−ENDROOVER, completed root verification
%RMU−I−TBLSEGVER, Segmented strings will be verified for table RESUMES
%RMU−I−DBBOUND, bound to database "DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1"
%RMU−I−OPENAREA, opened storage area RDB$SYSTEM for protected retrieval
%RMU−I−BGNAIPVER, beginning AIP pages verification
%RMU−I−ENDAIPVER, completed AIP pages verification
%RMU−I−BGNABMSPM, beginning ABM pages verification
%RMU−I−OPENAREA, opened storage area MF_PERS_SEGSTR for protected retrieval
%RMU−I−ENDABMSPM, completed ABM pages verification
%RMU−I−BSGPGLARE, beginning verification of RESUMES logical area
 as part of EMP_INFO storage area
%RMU−I−OPENAREA, opened storage area EMP_INFO for protected retrieval
%RMU−I−ESGPGLARE, completed verification of RESUMES logical area
 as part of EMP_INFO storage area
%RMU−I−CLOSAREAS, releasing protected retrieval lock on all storage areas
%RMU−S−ENDVERIFY, elapsed time for verification : 0 00:00:00.80

8.1.7 Missing Documentation for the TRANSACTION_TYPE
Keyword for GET DIAGNOSTICS

Prior versions of the SQL Reference Manual omitted the description of the TRANSACTION_TYPE keyword
for GET DIAGNOSTICS.

TRANSACTION_TYPE returns the type of transaction being executed. The result will be one of the
following strings: 'BATCH UPDATE', 'READ ONLY', 'READ WRITE', or 'NONE'.

The result data type is CHAR (31).

Examples

Within a compound statement, you can use GET DIAGNOSTICS to retrieve information about the query state
and its environment. In this example, we use the GET DIAGNOSTICS keywords TRANSACTION_TYPE
and ROW_COUNT.

Example 8−1 Example: Using TRANSACTION_TYPE to control actions of a procedure

Oracle® Rdb for OpenVMS

8.1.7 Missing Documentation for the TRANSACTION_TYPE Keyword for GET DIAGNOSTICS 206

SQL> attach 'file MF_PERSONNEL';
SQL>
SQL> −− Sample procedure to use GET DIAGNOSTICS
SQL>
SQL> declare :rc integer;
SQL> declare :txn_type char(31);
SQL>
SQL> begin
cont> set :rc = 0;
cont> get diagnostics :txn_type = transaction_type;
cont> trace '"' || :txn_type || '"';
cont> case :txn_type
cont> when 'BATCH UPDATE' then
cont> begin
cont> −− do nothing
cont> end;
cont> when 'READ ONLY' then
cont> rollback;
cont> when 'READ WRITE' then
cont> delete from employees;
cont> get diagnostics :rc = row_count;
cont> trace 'Rows deleted = ', :rc;
cont> when 'NONE' then
cont> begin
cont> −− no transaction so start one
cont> set transaction read only;
cont> end;
cont> end case;
cont> end;
SQL>
SQL> print :txn_type, :rc;
 TXN_TYPE RC
 NONE 0
SQL>
SQL> rollback;

8.1.8 Clarification on Using the RMU/UNLOAD
TRIM=TRAILING Option

The following example shows that unexpected results may occur with the RMU/UNLOAD command Trim
option when spaces are unloaded from an Oracle Rdb database.

Create a table in an Rdb database with two character columns and insert spaces and other character data into
the table fields.

SQL> create database filename testdb;
create table tab1(col1 char(2), col2 char(2));
insert into tab1 values (' ', ' ');
insert into tab1 values ('AB', ' ');
insert into tab1 values (' ', 'CD');
insert into tab1 values ('A ', 'C ');
commit;

Unload the character field data from the table, specifying the Trim=trailing option to eliminate trailing spaces
but do not specify prefix or suffix delimiter values.

Oracle® Rdb for OpenVMS

8.1.8 Clarification on Using the RMU/UNLOAD TRIM=TRAILING Option 207

 $ rmu/unload/record=(file=tab1, −
 format=delimited_text, prefix="", suffix="", separator="|", −
 null="NULL", trim=trailing) testdb tab1 tab1

The trailing spaces are eliminated from the unload file since the Trim=trailing option was used.

$ ty tab1.unl
|
AB|
|CD
A|C

Now load the unloaded data back into the database table from the unload file.

$ rmu/load/log/record=(file=tab1, −
 format=delimited_text, prefix="", suffix="", separator="|", −
 null="NULL") testdb tab1 tab1

This is the result:

SQL> att 'f testdb';
SQL> select '>' || col1 || '< ','>' || col2 || '<' from tab1;

 > < > <
 >AB< > <
 > < >CD<
 >A < >C <
 > < NULL
 >AB< NULL
 > < >CD<
 >A < >C <
8 rows selected

The first and second row, which originally contained two spaces in COL2, are now set to NULL. This
happens because of the use of the option Trim=trailing in the RMU/UNLOAD command.

Because neither prefix nor suffix characters are specified in the RMU/UNLOAD command, it cannot be
determined whether values existed in the character fields which only contained spaces or if these fields were
flagged as NULL fields in the database.

The trailing column is set to NULL as described by the Oracle Rdb RMU Reference Manual which states:

"If the final column or columns of a record are to be set to NULL, you only have to specify data for the
column up to the last non−null column. See the Examples section for an example of each of these methods of
storing the NULL value."

Therefore, a trailing empty field will be null. Inner columns will be null if set to the string specified by the
NULL option.

To avoid this result, you could eliminate the TRIM option in the RMU/UNLOAD command, or if you need
the TRIM option then you can avoid this result by specifying a character value for the PREFIX and SUFFIX
separator options for both the RMU/LOAD and the RMU/UNLOAD commands as in the following example.

$ rmu/unload/record=(file=tab1, −
 format=delimited_text, prefix="*", suffix="*", separator="|", −
 null="NULL", trim=trailing) testdb tab1 tab1

Oracle® Rdb for OpenVMS

8.1.8 Clarification on Using the RMU/UNLOAD TRIM=TRAILING Option 208

$
$ ty tab1.unl
|
AB|**
**|*CD*
A|*C*
$
$ rmu/load/log/record=(file=tab1, −
 format=delimited_text, prefix="*", suffix="*", separator="|", −
 null="NULL") testdb tab1 tab1

8.1.9 Corrections to the EDIT STRING Documentation

Bugs 17365476 and 17365597

The SQL Reference Manual, Volume 1, incorrectly stated that fields following a quoted literal would
have leading zeros trimmed if the literal ended with a space. This was incorrect. The trimming only
takes place after a space formatting character (B).
This is the corrected text:
Oracle Rdb automatically trims leading zeros from the first numeric field in the output, and any
numeric field following a space formatting character (B). The year (Y) and fractional seconds (*)
format fields are never trimmed of leading zeros.

•

To have SQL represent an OpenVMS date format without removing the leading zero from the Hour
field, use the literal string for space rather than the space formatting character (B).

edit string 'YYYY−NN−DD" "RR:PP:QQ.**'

rather than

edit string 'YYYY−NN−DDBRR:PP:QQ.**'

•

The formatting string ** represents the 100ths of a second field. Prior versions using a narrow field *
would erroneously truncate the leading digits. This is corrected in this release, as the trailing digit is
truncated.

•

8.1.10 Revised SUBSTRING Description

This release of Oracle Rdb has changed the SUBSTRING function to support binary strings as well as
character strings and also provide a USING clause for specifying OCTETS or CHARACTERS units.

SUBSTRING Function (binary strings)

The SUBSTRING function returns a portion of a binary value expression. The result will be a BINARY
VARYING (VARBINARY) string value. The binary data types for the source string include BINARY,
BINARY VARYING or character strings with the UNSPECIFIED character set.

The FROM clause specifies the start position (position 1 is the start of the string) and the optional FOR clause
specifies the string length to include in the result. The start position and string length values can be numeric
value expressions.

Oracle® Rdb for OpenVMS

8.1.9 Corrections to the EDIT STRING Documentation 209

If you specify a string length that exceeds the current length of the source string, then SQL returns only valid
octets in the string and terminates the returned substring after the last valid octet.

Note that the USING clause may not be used with a binary value expression. The start position and string
length always specify OCTETS.

If any operand of the SUBSTRING function is a null value, the resulting value is also null.

The following example uses the SUBSTRING function on a binary string to locate employees with invalid
passwords.

Example 8−2 Using SUBSTRING (binary strings)

SQL> set flags 'trace';
SQL> begin
cont> for :emp
cont> as select *
cont> from PASSWORDS p inner join EMPLOYEES e using (employee_id)
cont> where SUBSTRING (encrypted_password FROM 5) = x'00'
cont> do
cont> trace :emp.last_name, 'needs password.';
cont> end for;
cont> end;
~Xt: Toliver needs password.
~Xt: Smith needs password.

.

.

.
SQL>

SUBSTRING Function (character strings)

The SUBSTRING function returns a portion of a character value expression. The result will be a VARCHAR
(CHARACTER VARYING) string value. The character data types for the source string can include CHAR,
VARCHAR, LONG VARCHAR, as well as NATIONAL variants. The character set of the result will reflect
that of the source character value expression.

The FROM clause specifies the start position (position 1 is the start of the string) and the optional FOR clause
specifies the string length to include in the result. The start position and string length values can be numeric
value expressions.

If you specify a string length that exceeds the current length of the source string, then SQL returns only valid
characters in the string and terminates the returned substring after the last valid character.

The start position and string length specify either OCTETS or CHARACTERS within the string. The
programmer can control this using one of these methods:

Include a USING clause that specifies either the OCTETS or CHARACTERS keyword.•
Use the SET CHARACTER LENGTH statement or the CHARACTER LENGTH clause of the SQL
module language header and DECLARE MODULE statement to specify whether the length value is
octets or characters.

•

Use the SET DIALECT or the DIALECT clause of the SQL module language header or DECLARE
MODULE statement to specify a dialect. The character length will be implicitly defined by the dialect

•

Oracle® Rdb for OpenVMS

8.1.9 Corrections to the EDIT STRING Documentation 210

chosen.
The default dialect assumes OCTETS.•

If any operand of the SUBSTRING function is a null value, the resulting value is also null.

The following example uses a substring in the WHERE clause of a SELECT statement. One of the SELECT
statement conditions is that 4 characters starting at position 9 must equal the string 'Math'.

Example 8−3 Using SUBSTRING (character strings)

SQL> select * from DEGREES
cont> where SUBSTRING (degree_field from 9 for 4 using characters) = 'Math'
cont> and year_given >= 1983;
 EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
 00168 CALT 1983 PhD Applied Math
 00212 PRDU 1983 MA Applied Math
2 rows selected
SQL>

8.1.11 New OVERLAY Built−in Function

This release of Oracle Rdb adds support for ANSI and ISO Database Language Standard OVERLAY
function. OVERLAY supports both binary strings and character strings.

Syntax

OVERLAY (source−string
 PLACING replace−string
 FROM start−position
 [FOR string−length]
 [USING { OCTETS | CHARACTERS }])

OVERLAY Function (binary strings)

The OVERLAY function returns a binary value expression with a portion replaced by an alternate binary
string. The result will be a BINARY VARYING (VARBINARY) string value. The binary data types for the
source string include BINARY, BINARY VARYING or character strings with the UNSPECIFIED character
set.

The PLACING clause specifies a replacement binary value expression that will be inserted into the location
specified by the FOR numeric expression. If the PLACING string evaluates to a zero length string, then the
selected substring is omitted from the result. Both the source string and replacement string must be compatible
with BINARY strings.

The FROM clause specifies the start position (position 1 is the start of the string) and the optional FOR clause
specifies the string length to include in the source. The start position and string length values can be numeric
value expressions.

If you specify a string length that exceeds the current length of the source string, then SQL returns only valid
octets in the string and terminates the returned overlay after the last valid octet.

Oracle® Rdb for OpenVMS

8.1.11 New OVERLAY Built−in Function 211

Note that the USING clause may not be used with a binary value expression. The start position and string
length always specify OCTETS.

If any operand of the OVERLAY function is a null value, the resulting value is also null.

OVERLAY Function (character strings)

The OVERLAY function returns a character value expression with a portion replaced by an alternate
character string. The result will be a VARCHAR (CHARACTER VARYING) string value. The character data
types for the source string can include CHAR, VARCHAR, LONG VARCHAR, as well as NATIONAL
variants. The character set of the result will reflect that of the source character value expression.

The PLACING clause specifies a replace character value expression that will be inserted into the location
specified by the FOR numeric expression. If the PLACING string evaluates to a zero length string, then the
selected substring is omitted from the result.

The FROM clause specifies the start position (position 1 is the start of the string) and the optional FOR clause
specifies the string length to replace in the source. The start position and string length values can be numeric
value expressions.

If you specify a string length that exceeds the current length of the source string, then SQL returns only valid
characters in the string and terminates the string after the last valid character.

The start position and string length specify either OCTETS or CHARACTERS within the string. The
programmer can control this using one of these methods:

Include a USING clause that specifies either the OCTETS or CHARACTERS keyword.•
Use the SET CHARACTER LENGTH statement or the CHARACTER LENGTH clause of the SQL
module language header and DECLARE MODULE statement to specify whether the length value is
octets or characters.

•

Use the SET DIALECT or the DIALECT clause of the SQL module language header or DECLARE
MODULE statement to specify a dialect. The character length will be implicitly defined by the dialect
chosen.

•

The default dialect assumes OCTETS.•

If any operand of the OVERLAY function is a null value, the resulting value is also null.

The following example uses an OVERLAY to create a version of the LAST_NAME column that is used to
sort all Mc and Mac prefixed names together. Phonetic sorting might be done for an employee directory to
make it easier to locate a name.

Example 8−4 Using OVERLAY (character string)

SQL> select case POSITION ('Mc' in last_name)
cont> when 1
cont> then OVERLAY (last_name
cont> placing 'Mac'
cont> from 1 for 2)
cont> else last_name
cont> end as sort_name,
cont> last_name,
cont> first_name
cont> from EMPLOYEES

Oracle® Rdb for OpenVMS

8.1.11 New OVERLAY Built−in Function 212

cont> order by sort_name, first_name;
 SORT_NAME LAST_NAME FIRST_NAME
 Ames Ames Louie
 Andriola Andriola Leslie

.

.

.
 Lonergan Lonergan Peter
 MacDonald MacDonald Johanna
 MacElroy McElroy Mary
 Manning Manning Kevin
 Mathias Mathias Susan

.

.

.

8.1.12 Changes and Improvements to the Rdb Optimizer and
Query Compiler

This release of Oracle Rdb introduces several new capabilities within the query compiler and the query
optimizer. These changes fall generally under the title query rewrite, and allow the query compiler to present
a simplified query for optimization and execution.

CAST function elimination
In most cases, CAST actions must be executed at runtime to convert from the source data type to that
specified by the CAST function. However, in some cases, the Rdb query compiler can eliminate or
replace the CAST function with a literal value during query compile. This saves CPU time as the
action is performed just once rather than once per row processed.
This replacement includes the following:

When CAST of DATE (ANSI), DATE (VMS) or TIMESTAMP data types is performed to a
compatible type of DATE or TIMESTAMP, then in many cases the CAST operator is not
required.

♦

CAST of string literals to DATE (ANSI), DATE (VMS), TIME, TIMESTAMP and
INTERVAL can be processed at compile time. For example, CAST('2013−1−1' AS DATE
ANSI) is implicitly converted to a DATE literal DATE'2013−1−1'.

♦

CAST of small integer values is now done by the compiler. For example, CAST(1 AS
SMALLINT) can be performed at compile time.

♦

CAST of fixed length (CHAR) literal strings to varying length strings (VARCHAR) is now
processed by the compiler if the character set is the same and the target VARCHAR is long
enough to hold the source string, as seen in the following example:

CAST('TABLE' AS VARCHAR(31))

♦

•

Constant Folding
Simple arithmetic expressions involving integer or floating point literals are evaluated by the query
compiler. The overall effect is smaller executable code and some reduced CPU time for queries.
FLOAT, REAL, and DOUBLE PRECISION values are combined to produce DOUBLE PRECISION
results. Integer literals (with no fractional component) are combined to produce BIGINT results.
The side effect is that some expressions may now return DOUBLE PRECISION or BIGINT results
where in prior versions they produced smaller precision results. This should not affect applications
which fetch values into different data types as Oracle Rdb will perform an implicit conversion.
This optimization includes the following:

•

Oracle® Rdb for OpenVMS

8.1.12 Changes and Improvements to the Rdb Optimizer and Query Compiler 213

Addition (+)♦
Subtraction (−)♦
Multiplication (*)♦
Division (/)
Note that division is not performed at compile time if the divisor is a literal zero (0).
Operations which are coded to explicitly divide by zero are probably expected to produce an
error at runtime. Although using the SQL SIGNAL statement is now preferred, this technique
has been used to terminate procedures when an incorrect input is encountered.

♦

Algebraic Rules
Additive identity (zero) can be added to an expression without changing the value. The query
compiler will eliminate the literal zero (0) from the expression.
Multiply by zero will result in zero if the other operand is a not nullable expression. In this case, the
expression will be replaced by zero.
Multiplicative identity (one) can be multiplied by an expression without changing the value. The
query compiler will eliminate the literal one (1) from the expression.
The side effect is that some expressions may now return slightly different data types because the
literal is no longer considered as part of the data type computation.

•

Simple Predicate Elimination
When predicates include comparison of simple expressions, then the query compiler will attempt to
eliminate them from the query predicate. For example, WHERE ('A' = 'A') will be replaced by TRUE,
WHERE (2 <> 2) will be replaced with FALSE, and so on.

•

Not Nullable Aware
The query compiler is now aware of which columns have a NOT NULL NOT DEFERRABLE
constraint enabled. Additionally, this attribute is also implied from any PRIMARY KEY NOT
DEFERRABLE constraints.
Using this knowledge, the query compiler can reduce (prune) the query expression. This list defines
the ways in which this can occur:

When IS NULL is applied to a not nullable column or expression, then this predicate is
replaced with FALSE.

♦

When IS NOT NULL is applied to a not nullable column or expression, then this predicate is
replaced with TRUE.

♦

The side effect is that constraints for a table are now loaded for SELECT statements.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(IS_NULL). The default is REWRITE(IS_NULL).

•

Replace comparisons with NULL
Queries that erroneously compare value expressions with NULL will now be replaced with a
simplified UNKNOWN value. For example, a query that uses WHERE EMPLOYEE_ID = NULL
will never find matching rows, because the results of the comparison (equals, not equals, greater than,
less than, and so on) are always UNKNOWN.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(UNKNOWN). The default is REWRITE(UNKNOWN).

•

Predicate Pruning
The AND, OR and NOT operators can be simplified if the logical expressions have been reduced to
TRUE, FALSE or UNKNOWN expressions. Depending on the operation, the Rdb query compiler
might be able to eliminate the Boolean operator and part of the expression.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(BOOLEANS). The default is REWRITE(BOOLEANS).

•

CASE Expression Pruning
The prior transformation will also be applied to the Boolean WHEN expressions of a conditional
expression (CASE, DECODE, NULLIF, COALESCE, NVL, NVL2, SIGN, ABS, and so on).

•

Oracle® Rdb for OpenVMS

8.1.12 Changes and Improvements to the Rdb Optimizer and Query Compiler 214

In some cases, the resulting conditional expression might resolve to an equivalent conditional
expression with fewer branches (some WHEN ... THEN clauses being eliminated) or a simple
expression with no conditional expression (all WHEN ... THEN clauses are eliminated).
IN Operator Simplification

The IN operator using a subquery looks similar to the EXISTS boolean expression but it differs in its
handling of NULL values. If the query compiler knows that neither source field nor the value set
contain NULL, then the EXISTS expression can replace the IN operator. The EXISTS expression
generates a better query solution in almost all cases.
This optimization can be disabled using the SET FLAGS statement, or the RDMS$SET_FLAGS
logical name with the value NOREWRITE(IN_CLAUSE). The default is REWRITE(IN_CLAUSE).

•

In most cases, the results of these optimizations will be transparent to the application. However, database
administrators that use SET FLAGS 'STRATEGY,DETAIL' will notice new notations in the displayed
strategy.

The following examples show the types of likely results.

In this example, the logical expression (1 = 2) is replaced with FALSE, the logical expression (1 = 1) is
replaced with TRUE and the predicate is reduced to just the IS NULL (aka MISSING) check.

SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = '00164');
Tables:
 0 = EMPLOYEES
Conjunct: MISSING (0.EMPLOYEE_ID)
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected

If there existed a NOT NULL NOT DEFERRABLE constraint on the EMPLOYEE_ID column, the
expression can be further reduced because the NOT NULL constraint means the IS NULL test is always
FALSE.

SQL> alter table EMPLOYEES
cont> alter column EMPLOYEE_ID
cont> constraint NN_EMPLOYEE_ID
cont> NOT NULL
cont> NOT DEFERRABLE
cont> ;
SQL>
SQL> select last_name
cont> from employees
cont> where ((1 = 1) and employee_id is null)
cont> or
cont> ((1 = 2) and employee_id = '00164');
Tables:
 0 = EMPLOYEES
Conjunct: FALSE
Get Retrieval sequentially of relation 0:EMPLOYEES
0 rows selected
SQL>

REWRITE Flag

Oracle® Rdb for OpenVMS

8.1.12 Changes and Improvements to the Rdb Optimizer and Query Compiler 215

The SET FLAGS statement and the RDMS$SET_FLAGS logical name can be used to enable or disable some
of these rewrite actions. This flag primarily exists for Oracle to test the behavior of the query rewrite changes.
It can be used by programmers to revert to pre−V7.3 behavior.

REWRITE enables each rewrite setting and NOREWRITE disables them. Additionally, keywords can be
added to REWRITE and NOREWRITE to disable selective rewrite actions.

The following new keywords are added for this release of Oracle Rdb.

BOOLEANS•
IN_CLAUSE•
IS_NULL•
UNKNOWN•

8.1.13 Missing or Incorrect Documentation for SET
AUTOMATIC TRANSLATION Command

Bug 14354801

The following errors or omissions occur in the SQL Reference Manual, Volume 4, for the SET AUTOMATIC
TRANSLATION statement.

The syntax diagram does not indicate that the runtime−options is optional.•
If the runtime−options is omitted, the default behavior is to assume 'ON' as the parameter and enable
automatic translation.

•

The syntax diagram does not document the Interactive SQL statements; SET NOAUTOMATIC
TRANSLATION, or the alternate SET NO AUTOMATIC TRANSLATION statement.

•

The arguments section asserts that DEFAULT is a legal keyword, or value for the parameter. This is
incorrect; only ON or OFF are legal for the runtime−options.

•

The following usage notes should be present.
The SET NOAUTOMATIC TRANSLATION and SET NO AUTOMATIC TRANSLATION
statements may only be used in Interactive SQL. They are equivalent to SET AUTOMATIC
TRANSLATION OFF.

♦

If AUTOMATIC TRANSLATION is enabled, then translation is attempted between different
versions of the table rows. For instance, after an ALTER TABLE command, where a new
character set is specified for existing data. This is demonstrated in the following example.

SQL> create table SAMPLE (description char(20));
SQL> insert into SAMPLE (description) values ('Sample text');
1 row inserted
SQL> select description from SAMPLE;
 DESCRIPTION
 Sample text
1 row selected
SQL> alter table SAMPLE modify (description char(20) character set utf8);
SQL> select description from SAMPLE;
%RDB−E−CONVERT_ERROR, invalid or unsupported data conversion
−RDMS−E−CSETBADASSIGN, incompatible character sets prohibit the requested
assignment
SQL> set automatic translation;
SQL> select description from SAMPLE;

♦

•

Oracle® Rdb for OpenVMS

8.1.13 Missing or Incorrect Documentation for SET AUTOMATIC TRANSLATION Command 216

 DESCRIPTION
 Sample text
1 row selected
SQL>

Note that once the restructuring from an old version is created in the current session, it is not
undone by disabling AUTOMATIC TRANSLATION.

The following examples show the usage of this statement.

Example 1: Using SET AUTOMATIC TRANSLATION command from a SQL Module Language procedure

procedure SET_AUTO_TRANS (sqlcode);
 SET AUTOMATIC TRANSLATION ON;

Or if a parameter is passed:

procedure SET_AUTO_TRANS
 (sqlcode,
 :on_off char(3)
);
 SET AUTOMATIC TRANSLATION :on_off;

Example 2: Using SET AUTOMATIC TRANSLATION at runtime

SQL> declare :auto_trans char(10);
SQL> accept :auto_trans;
Enter value for AUTO_TRANS: off
SQL> set automatic translation :auto_trans;
SQL> show automatic translation;
Automatic translation: OFF
SQL>

8.1.14 Required Privileges for AUTHORIZATION Clause of
CREATE MODULE

The following usage note is missing from the SQL Reference Manual, under the CREATE MODULE
Statement.

When the AUTHORIZATION clause is used, the definer of the module is granting his/her own
privileges to the specified username so that tables, columns, sequences, procedures and functions are
accessed as though accessed by the definer.
The AUTHORIZATION is expected to be the session user, or an OpenVMS rights identifier granted
to that user (when SECURITY CHECKING IS EXTERNAL). If the session is run with one of the
following OpenVMS privileges, then any user or rights identifier can be referenced: SYSPRV,
BYPASS or IMPERSONATE.

•

Note

The OpenVMS IMPERSONATE privilege can be used to override the checking for Oracle
Rdb Release 7.2.5.1 and later versions.

Oracle® Rdb for OpenVMS

8.1.14 Required Privileges for AUTHORIZATION Clause of CREATE MODULE 217

8.1.15 Missing Documentation for CREATE OUTLINE
Statement

Bug 9864420

Prior releases of the Oracle Rdb documentation omitted a description of query outlines pertaining to views.

When Rdb compiles a query that references a view, it will implicitly use the view name to locate a matching
query outline. This allows the database administrator to create partial query outlines that tune just that part of
the query involving the view.

However, if the query outline is named with the same name as a view but does not follow the structure of the
view then a RDMS−F−LEVEL_MISMATCH error will be reported.

The following example shows this problem.

SQL> create outline CURRENT_JOB
cont> from (select * from CURRENT_JOB limit to 1 rows);
SQL>
SQL> show outline CURRENT_JOB;
 CURRENT_JOB
 Source:

−− Rdb Generated Outline : 2−SEP−2010 10:24
create outline CURRENT_JOB
id 'E9968EFAF723ED23DF59216A5DDE4C7D'
mode 0
as (
 query (
−− For loop
 subquery (
 subquery (
 EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
 join by match to
 JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)
)
)
)
compliance optional ;
SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
%RDMS−F−LEVEL_MISMATCH, the table/subquery nesting levels
in the query outline do not match the query
SQL>

To resolve this problem, the database administrator must change the name of the outline so that it is not
assumed to describe the view record selection definition.

SQL> create outline CURRENT_JOB_REF
cont> from (select * from CURRENT_JOB limit to 1 rows);

Oracle® Rdb for OpenVMS

8.1.15 Missing Documentation for CREATE OUTLINE Statement 218

SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB_REF" used
...
 LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE
SUPERVISOR_ID JOB_START
 Toliver Alvin 00164 DMGR MBMN
00228 21−Sep−1981
1 row selected
SQL>
SQL> select * from CURRENT_JOB where employee_id = '00164'
cont> optimize using CURRENT_JOB_REF;
~S: Outline "CURRENT_JOB_REF" used
...
 LAST_NAME FIRST_NAME EMPLOYEE_ID JOB_CODE DEPARTMENT_CODE
SUPERVISOR_ID JOB_START
 Toliver Alvin 00164 DMGR MBMN
00228 21−Sep−1981
1 row selected
SQL>

Alternatively, create the query outline on the view itself to allow it to be used more widely.

SQL> create outline CURRENT_JOB
cont> on view CURRENT_JOB;
SQL>
SQL> show outline CURRENT_JOB;
 CURRENT_JOB
 Source:

−− Rdb Generated Outline : 2−SEP−2010 10:52
create outline CURRENT_JOB
−− On view CURRENT_JOB
id '9C6D98DAAF09A3E1796F7D345399028B'
mode 0
as (
 query (
−− View
 subquery (
 EMPLOYEES 1 access path index EMP_EMPLOYEE_ID
 join by match to
 JOB_HISTORY 0 access path index JH_EMPLOYEE_ID
)
)
)
compliance optional ;
SQL>
SQL> set flags 'strategy,detail(2)';
SQL>
SQL> select * from CURRENT_JOB limit to 1 rows;
~S: Outline "CURRENT_JOB" used
...
SQL>

Oracle® Rdb for OpenVMS

8.1.15 Missing Documentation for CREATE OUTLINE Statement 219

8.1.16 Sorting Capabilities in Oracle Rdb

Oracle Rdb supports both the traditional OpenVMS SORT32 facility as well as a simplified internal sort
facility called QSORT.

QSORT

Use of QSORT preempts use of all other sorting algorithms. The QSORT algorithm is used if sorting is being
done on a single key and if only a small amount of data is involved. The reason for this is that the other
sorting algorithms, while using more efficient methods, have a certain amount of overhead associated with
setting them up and with being general purpose routines.

QSORT is used by default if:

There is a single sort key.•
The number of rows to be sorted is 5000 or fewer.•
The sort key is not floating point (REAL, FLOAT, or DOUBLE PRECISION).•

How to Alter QSORT Usage

To change the usage of QSORT to evaluate behavior with other parameters, define a new row limit as
follows:

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT m

The default value is 5000 rows.

Note

Defining the logical RDMS$BIND_MAX_QSORT_COUNT as 63 will return QSORT
behavior to that used by prior releases of Oracle Rdb V7.2.

To disable QSORT because of either anomalous or undesirable performance, the user can define the following
logical to the value zero, in which case the VMS SORT interface is always used.

$ DEFINE RDMS$BIND_MAX_QSORT_COUNT 0

8.1.17 RMU /SET ROW_CACHE Command Updates

The documentation and online help for the "RMU /SET ROW_CACHE" command inadvertantly did not
include the full set of allowed keywords and qualifiers.

The valid command line qualifiers for the "RMU /SET ROW_CACHE" command are:

/ALTER − Specifies the action to take on the named cache. You must specify the cache name and at
least one other option.

•

/DISABLE − Disables row caching. Do not use with the Enable qualifier.•
/ENABLE − Enables row caching. Do not use with the Disable qualifier.•

Oracle® Rdb for OpenVMS

8.1.16 Sorting Capabilities in Oracle Rdb 220

/LOG − Specifies whether the processing of the command is reported to SYS$OUTPUT. Specify the
Log qualifier to request log output and the Nolog qualifier to prevent it. If you specify neither, the
default is the current setting of the DCL verify switch.

•

/BACKING_STORE_LOCATION=devdir − Specifies the per−database default backing store
location.

•

/NOBACKING_STORE_LOCATION − Removes the per−database default backing store location
and reverts back to the default backing store file location of the root file device and directory.

•

The valid values for the /ALTER qualifier are:

NAME=cachename − Name of the cache to be modified. The cache must already be defined in the
database. This is a required parameter. This parameter accepts the wildcard characters asterisk (*) and
percent sign (%).

•

ENABLE − Enable the cache.•
DISABLE − Disable the cache.•
DROP − Drop (delete) the cache.•
SNAPSHOT_SLOT_COUNT=n − Specify the number of snaphot slots in the cache. A value of zero
disables the snapshot portion for the specified cache.

•

SLOT_COUNT=n − Specify the number of slots in the cache.•
SLOT_SIZE=n − Specify the size (in bytes) of each slot in the cache.•
WORKING_SET_COUNT=n − Specify the number of working set entries for the cache. Valid values
are from 1 to 100.

•

BACKING_STORE_LOCATION=devdir − Specify the per−cache default backing store location.•
NOBACKING_STORE_LOCATION − Remove the per−cache default backing store location and
revert back to the database default backing store file location.

•

SHARED_MEMORY − Specify the shared memory type and parameters for the cache. Valid
keywords are:

TYPE=PROCESS to specify traditional shared memory global section, which means that the
database global section is located in process (P0) address space and may be paged from the
process' working set as needed.

♦

TYPE=RESIDENT to specify that the database global section is memory resident in process
(P0) address space using OpenVMS shared page tables, which means that a system space
global section is fully resident, or pinned, in memory.

♦

RAD_HINT= "number" to indicate a request that memory for this shared memory should be
allocated from the specified OpenVMS Alpha Resource Affinity Domain (RAD). This
parameter specifies a hint to Oracle Rdb and OpenVMS about where memory should be
physically allocated. It is possible that if the memory is not available, it will be allocated from
other RADs in the system. For systems that do not support RADs, no RAD_HINT
specification is valid.
The RAD_HINT qualifier is only valid when the shared memory type is set to RESIDENT.
Setting the shared memory type to SYSTEM or PROCESS explicitly disables any previously
defined RAD hint.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series
systems. For more information about using RADs, refer to the OpenVMS
Alpha Partitioning and Galaxy Guide.

♦

NORAD_HINT disables the RAD hint.♦

•

Oracle® Rdb for OpenVMS

8.1.16 Sorting Capabilities in Oracle Rdb 221

The "/ALTER=(...)" qualifier may be specified multiple times on the command line. Each /ALTER qualifier
specified operates on one unique cache if no wildcard character (% or *) is specified. Otherwise, each
/ALTER operates on all matching cache names.

For example, the following command alters two caches:

$ RMU /SET ROW_CACHE MF_PERSONNEL −
 /ALTER= (NAME = RDB$SYS_CACHE,
 SLOT_COUNT = 800) −
 /ALTER= (NAME = RESUMES, −
 SLOT_SIZE=500, −
 WORKING_SET_COUNT = 15)

The following command alters caches named FOOD and FOOT (and any other cache with a 4 character name
with the first three characters of "FOO" defined in the database):

$ RMU /SET ROW_CACHE MF_PERSONNEL −
 /ALTER= (NAME = FOO%,
 BACKING_STORE_LOCATION=DISK$RDC:[RDC])

8.1.18 Documentation for the DEBUG_OPTIONS Qualifier of
RMU/Unload

Bug 8447357

The RMU Help file and RMU Reference Manual are missing the description of the following qualifier for
RMU/UNLOAD.

The DEBUG_OPTIONS qualifier accepts a list of keyword options.

[NO]TRACE
Traces the qualifier and parameter processing performed by RMU/UNLOAD. In addition, the query
executed to read the table data is annotated with the TRACE statement at each COMMIT (controlled
by the COMMIT_EVERY qualifier). When the logical name RDMS$SET_FLAGS is defined as
"TRACE", then a line similar to the following is output after each commit is performed.

~Xt: 2013−04−23 15:16:16.95: Commit executed.

The default is NOTRACE.

$ RMU/UNLOAD/REC=(FILE=WS,FORMAT=CONTROL) SQL$DATABASE WORK_STATUS WS/DEBUG=
TRACE
Debug = TRACE
* Synonyms are not enabled
Row_Count = 500
Message buffer: Len: 13524
Message buffer: Sze: 27, Cnt: 500, Use: 4 Flg: 00000000
%RMU−I−DATRECUNL, 3 data records unloaded.

•

[NO]FILENAME_ONLY
When the qualifier RECORD_DEFINITION=FORMAT:CONTROL is used, the name of the created
unload file is written to the control file (.CTL). When the keyword FILENAME_ONLY is specified,

•

Oracle® Rdb for OpenVMS

8.1.18 Documentation for the DEBUG_OPTIONS Qualifier of RMU/Unload 222

RMU/UNLOAD will prune the output file specification to show only the file name and type. The
default is NOFILENAME_ONLY.

$ RMU/UNLOAD/REC=(FILE=TT:,FORMAT=CONTROL) SQL$DATABASE WORK_STATUS WS/DEBUG=
FILENAME
−−
−− SQL*Loader Control File
−− Generated by: RMU/UNLOAD
−− Version: Oracle Rdb X7.2−00
−− On: 23−APR−2009 11:12:46.29
−−
LOAD DATA
INFILE 'WS.UNL'
APPEND
INTO TABLE "WORK_STATUS"
(
 STATUS_CODE POSITION(1:1) CHAR NULLIF (RDB$UL_NB1 = '1')
,STATUS_NAME POSITION(2:9) CHAR NULLIF (RDB$UL_NB2 = '1')
,STATUS_TYPE POSITION(10:23) CHAR NULLIF (RDB$UL_NB3 = '1')
−− NULL indicators
,RDB$UL_NB1 FILLER POSITION(24:24) CHAR −− indicator for STATUS_CODE
,RDB$UL_NB2 FILLER POSITION(25:25) CHAR −− indicator for STATUS_NAME
,RDB$UL_NB3 FILLER POSITION(26:26) CHAR −− indicator for STATUS_TYPE
)
%RMU−I−DATRECUNL, 3 data records unloaded.

[NO]HEADER
This keyword controls the output of the header in the control file. To suppress the header, use
NOHEADER. The default is HEADER.

•

APPEND, INSERT, REPLACE, TRUNCATE
These keywords control the text that is output prior to the INTO TABLE clause in the control file.
The default is APPEND and only one of these options can be specified.

•

8.1.19 Revised Example for SET OPTIMIZATION LEVEL
Statement

Bug 6350960

Example 1: Setting the optimization level

The dynamic optimizer can use either FAST FIRST or TOTAL TIME tactics to return rows to the application.
The default setting, FAST FIRST, assumes that applications, especially those using interactive SQL, will want
to see rows as quickly as possible and possibly abort the query before completion. Therefore, if the FAST
FIRST tactic is possible, the optimizer will sacrifice overall retrieval time to initially return rows quickly. This
choice can be affected by setting the OPTIMIZATION LEVEL.

The following example contrasts the query strategies selected when FAST FIRST versus TOTAL TIME is in
effect. Databases and queries will vary in their requirements. Queries should be tuned to see which setting
best suits the needs of the application environment. For the MF_PERSONNEL database, there is little or no
difference between these tactics but for larger tables the differences could be noticeable.

SQL> set flags 'STRATEGY,DETAIL';
SQL> −−
SQL> −− No optimization level has been selected. The optimizer

Oracle® Rdb for OpenVMS

8.1.19 Revised Example for SET OPTIMIZATION LEVEL Statement 223

SQL> −− selects the FAST FIRST (FFirst) retrieval tactic to
SQL> −− retrieve the rows from the EMPLOYEES table in the
SQL> −− following query:
SQL> −−
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL> −−
SQL> −− Use the SET OPTIMIZATION LEVEL statement to specify that
SQL> −− you want the TOTAL TIME (BgrOnly) retrieval strategy to
SQL> −− be used.
SQL> −−
SQL> SET OPTIMIZATION LEVEL 'TOTAL TIME';
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 BgrOnly 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL> −−
SQL> −− When the SET OPTIMIZATION LEVEL 'DEFAULT' statement
SQL> −− is specified the session will revert to the default FAST FIRST
SQL> −− optimizer tactic.
SQL> −−
SQL> SET OPTIMIZATION LEVEL 'DEFAULT';
SQL> select EMPLOYEE_ID, LAST_NAME
cont> from EMPLOYEES
cont> where EMPLOYEE_ID IN ('00167', '00168');
Tables:
 0 = EMPLOYEES
Leaf#01 FFirst 0:EMPLOYEES Card=100
 Bool: (0.EMPLOYEE_ID = '00167') OR (0.EMPLOYEE_ID = '00168')
 BgrNdx1 EMPLOYEES_HASH [(1:1)2] Fan=1
 Keys: r0: 0.EMPLOYEE_ID = '00168'
 r1: 0.EMPLOYEE_ID = '00167'
 EMPLOYEE_ID LAST_NAME
 00167 Kilpatrick
 00168 Nash
2 rows selected
SQL>

Oracle® Rdb for OpenVMS

8.1.19 Revised Example for SET OPTIMIZATION LEVEL Statement 224

8.1.20 RMU /VERIFY Process Quotas and Limits
Clarification

When using the RMU/VERIFY command, a process requires a minimum of the following quotas:

FILLM and CHANNELCNT at least 25 more than the total number of database storage areas,
snapshot storage areas, and after image journals.

•

Large enough BYTLM, page file quota and working set to open all of the database storage areas,
snapshot storage areas, and after image journals.

•

8.1.21 Online Backup Can Be Performed With Transfer Via
Memory

The following incorrect Oracle RMU BACKUP command restriction will be removed from the Oracle RMU
Reference Manual.

In prior releases of the Oracle RMU Reference Manual, it states under the RMU Backup Online option that
"However, an online backup operation cannot be performed if TRANSFER VIA MEMORY, also referred to
as optimized page transfer, is enabled. (See the description of the SQL ALTER DATABASE statement in the
Oracle Rdb SQL Reference Manual for information on optimized page transfer.)". This restriction is no longer
true and will be removed from the Oracle RMU Reference Manual.

The same restriction is also listed for the Online Copy Database and for the Online Move Area commands.
This restriction is no longer in place for these commands so it will be removed from the Oracle RMU
Reference Manual.

8.1.22 Missing Example for CREATE STORAGE MAP

Bug 5655348

The SQL Reference Manual did not include an example showing the storage area attributes for a LIST storage
map. The following example will appear in a future version of the Oracle Rdb V7.3 SQL Reference Manual in
the CREATE STORAGE MAP section.

Example

The following example shows the use of storage area attributes in a LIST storage map. The storage area
attributes must be immediately following the storage area name (as in table storage maps).

SQL> create database
cont> filename 'DB$:MULTIMEDIA'
cont>
cont> create storage area PHOTO_AREA1
cont> filename 'DB$:PHOTO_AREA1'
cont> page format UNIFORM
cont>
cont> create storage area PHOTO_AREA2
cont> filename 'DB$:PHOTO_AREA2'
cont> page format UNIFORM

Oracle® Rdb for OpenVMS

8.1.20 RMU /VERIFY Process Quotas and Limits Clarification 225

cont>
cont> create storage area TEXT_AREA
cont> filename 'DB$:TEXT_AREA'
cont> page format UNIFORM
cont>
cont> create storage area AUDIO_AREA
cont> filename 'DB$:AUDIO_AREA'
cont> page format UNIFORM
cont>
cont> create storage area DATA_AREA
cont> filename 'DB$:DATA_AREA'
cont> page format UNIFORM
cont> ;
SQL>
SQL> create table EMPLOYEES
cont> (name char(30),
cont> dob date,
cont> ident integer,
cont> photograph list of byte varying (4096) as binary,
cont> resume list of byte varying (132) as text,
cont> review list of byte varying (80) as text,
cont> voiceprint list of byte varying (4096) as binary
cont>);
SQL>
SQL> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> enable compression
cont> store in DATA_AREA;f
SQL>
SQL> create storage map LISTS_MAP
cont> store lists
cont> in AUDIO_AREA
cont> (thresholds are (89, 99, 100)
cont> ,comment is 'The voice clips'
cont> ,partition AUDIO_STUFF)
cont> for (employees.voiceprint)
cont> in TEXT_AREA
cont> (thresholds is (99)
cont> ,partition TEXT_DOCUMENTS)
cont> for (employees.resume, employees.review)
cont> in (PHOTO_AREA1
cont> (comment is 'Happy Smiling Faces?'
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_1)
cont> ,PHOTO_AREA2
cont> (comment is 'Happy Smiling Faces?'
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_2)
cont>)
cont> for (employees.photograph)
cont> fill randomly
cont> in RDB$SYSTEM
cont> (partition SYSTEM_LARGE_OBJECTS);
SQL>
SQL> show storage map LISTS_MAP;
 LISTS_MAP
 For Lists
 Store clause: STORE lists
 in AUDIO_AREA
 (thresholds are (89, 99, 100)
 ,comment is 'The voice clips'
 ,partition AUDIO_STUFF)

Oracle® Rdb for OpenVMS

8.1.20 RMU /VERIFY Process Quotas and Limits Clarification 226

 for (employees.voiceprint)
 in TEXT_AREA
 (thresholds is (99)
 ,partition TEXT_DOCUMENTS)
 for (employees.resume, employees.review)
 in (PHOTO_AREA1
 (comment is 'Happy Smiling Faces?'
 ,threshold is (99)
 ,partition PHOTOGRAPHIC_IMAGES_1)
 ,PHOTO_AREA2
 (comment is 'Happy Smiling Faces?'
 ,threshold is (99)
 ,partition PHOTOGRAPHIC_IMAGES_2)
)
 for (employees.photograph)
 fill randomly
 in RDB$SYSTEM
 (partition SYSTEM_LARGE_OBJECTS)

 Partition information for lists map:
 Vertical Partition: VRP_P000
 Partition: (1) AUDIO_STUFF
 Fill Randomly
 Storage Area: AUDIO_AREA
 Thresholds are (89, 99, 100)
 Comment: The voice clips
 Partition: (2) TEXT_DOCUMENTS
 Fill Randomly
 Storage Area: TEXT_AREA
 Thresholds are (99, 100, 100)
 Partition: (3) PHOTOGRAPHIC_IMAGES_1
 Fill Randomly
 Storage Area: PHOTO_AREA1
 Thresholds are (99, 100, 100)
 Comment: Happy Smiling Faces?
 Partition: (3) PHOTOGRAPHIC_IMAGES_2
 Storage Area: PHOTO_AREA2
 Thresholds are (99, 100, 100)
 Comment: Happy Smiling Faces?
 Partition: (4) SYSTEM_LARGE_OBJECTS
 Fill Randomly
 Storage Area: RDB$SYSTEM
SQL>
SQL> commit;

8.1.23 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Bugs 1495227 and 3916606

The Rdb7 Guide to Database Performance and Tuning Manual, Volume 2, page A−18, incorrectly describes
the use of the RDM$BIND_MAX_DBR_COUNT logical.

Following is an updated description. Note that the difference in actual behavior between what is in the
existing documentation and software is that the logical name only controls the number of database recovery
processes created at once during "node failure" recovery (that is, after a system or monitor crash or other
abnormal shutdown) for each database.

Oracle® Rdb for OpenVMS

8.1.23 RDM$BIND_MAX_DBR_COUNT Documentation Clarification 227

When an entire database is abnormally shut down (due, for example, to a system failure), the database will
have to be recovered in a "node failure" recovery mode. This recovery will be performed by another monitor
in the cluster if the database is opened on another node or will be performed the next time the database is
opened.

The RDM$BIND_MAX_DBR_COUNT logical name defines the maximum number of database recovery
(DBR) processes to be simultaneously invoked by the database monitor for each database during a "node
failure" recovery. This logical name applies only to databases that do not have global buffers enabled.
Databases that utilize global buffers have only one recovery process started at a time during a "node failure"
recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the global buffer state),
the database monitor will start a single database recovery (DBR) process to recover the Row Cache Server
(RCS) process and all user processes from the oldest active checkpoint in the database.

Per−Database Value

The RDM$BIND_MAX_DBR_COUNT logical name specifies the maximum number of
database recovery processes to run at once for each database. For example, if there are 10
databases being recovered and the value for the RDM$BIND_MAX_DBR_COUNT logical
name is 8, up to 80 database recovery processes would be started by the monitor after a
node failure.

The RDM$BIND_MAX_DBR_COUNT logical name is translated when the monitor process opens a
database. Databases need to be closed and reopened for a new value of the logical to become effective.

8.1.24 Database Server Process Priority Clarification

By default, the database servers (ABS, ALS, DBR, LCS, LRS, RCS) created by the Rdb monitor inherit their
VMS process scheduling base priority from the Rdb monitor process. The default priority for the Rdb monitor
process is 15.

Individual server priorities can be explicitly controlled via system−wide logical names as described in Table
8−2.

Table 8−2 Server Process Priority Logical Names

Logical Name Use

RDM$BIND_ABS_PRIORITY Base Priority for the ABS Server process

RDM$BIND_ALS_PRIORITY Base Priority for the ALS Server process

RDM$BIND_DBR_PRIORITY Base Priority for the DBR Server process

RDM$BIND_LCS_PRIORITY Base Priority for the LCS Server process

RDM$BIND_LRS_PRIORITY Base Priority for the LRS Server process

RDM$BIND_RCS_PRIORITY Base Priority for the RCS Server process

The RDMAIJSERVER account for Hot Standby is created specifying an account priority of 15. The priority
of AIJ server processes on your system can be restricted with the system−wide logical name

Oracle® Rdb for OpenVMS

8.1.24 Database Server Process Priority Clarification 228

RDM$BIND_AIJSRV_PRIORITY. If this logical name is defined to a value less than 15, an AIJ server
process will adjust its base priority to the value specified when the AIJ server process starts. Values from 0 to
31 are allowed for RDM$BIND_AIJSRV_PRIORITY, but the process is not able to raise its priority above
the RDMAIJSERVER account value.

For most applications and systems, Oracle discourages changing the server process priorities.

8.1.25 Clarification of PREPARE Statement Behavior

Bug 2581863

According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a statement−id
parameter for PREPARE "if that parameter is an integer, then you must explicitly initialize that integer to zero
before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id was stale or
contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement that is not prepared

1.

If the statement−id is non−zero, or the statement name is one that has previously been used and
matches an existing prepared statement, then that statement is automatically released prior to the
prepare of the new statement. Please refer to the RELEASE statement for further details.

2.

If the statement−id is zero or was automatically released, then a new statement−id is allocated and the
statement prepared.

3.

Please note that if you use statement−name instead of a statement−id−parameter then SQL will implicitly
declare an id for use by the application. Therefore, the semantics described apply similarly when using the
statement−name. See the RELEASE statement for details.

8.1.26 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides
the Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock timeout
interval for that transaction. Those values are:

The value specified in the SET TRANSACTION statement1.
The value stored in the database as specified in CREATE or ALTER DATABASE2.
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3.

The timeout interval for a transaction is the smaller of the value specified in the SET TRANSACTION
statement and the value specified in CREATE DATABASE. However, if the logical name
RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this logical name overrides the value
specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb documentation
set, is incorrect and will be replaced by the description above.

Oracle® Rdb for OpenVMS

8.1.25 Clarification of PREPARE Statement Behavior 229

The lock timeout value in the database can be dynamically modified from the Locking Dashboard in
RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used to dynamically override the
logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for one or more processes.

8.1.27 Missing Tables Descriptions for the RDBEXPERT
Collection Class

Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning describes the event−based data
tables in the formatted database for the Oracle Rdb PERFORMANCE and RDBEXPERT collection classes.
This section describes the missing tables for the RDBEXPERT collection class.

Table 8−3 shows the TRANS_TPB table.

Table 8−3 Columns for Table EPC$1_221_TRANS_TPB

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

TPB VARCHAR(127)

TPB_STR_ID INTEGER STR_ID_DOMAIN

Table 8−4 shows the TRANS_TPB_ST table. An index is provided for this table. It is defined with column
STR_ID, duplicates are allowed, and the type is sorted.

Table 8−4 Columns for Table EPC$1_221_TRANS_TPB_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_DOMAIN

STR_SEGMENT VARCHAR(128)

8.1.28 Missing Columns Descriptions for Tables in the
Formatted Database

Some of the columns were missing from the tables in Appendix B in the Oracle Rdb7 Guide to Database
Performance and Tuning. The complete table definitions are described in this section.

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 230

Table 8−5 shows the DATABASE table.

Table 8−5 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_FILE_NAME VARCHAR(255)

IMAGE_FILE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Table 8−6 shows the REQUEST_ACTUAL table.

Table 8−6 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 231

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CLIENT_PC_END INTEGER

STREAM_ID_END INTEGER

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 232

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 233

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table 8−7 shows the TRANSACTION table.

Table 8−7 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

CLIENT_PC_START INTEGER

STREAM_ID_START INTEGER

LOCK_MODE_START INTEGER

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

GLOBAL_TID_START VARCHAR(16)

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 234

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

AREA_ITEMS_START VARCHAR(128)

AREA_ITEMS_START_STR_IDINTEGER STR_ID_DOMAIN

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 235

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CROSS_FAC_2_START INTEGER

CROSS_FAC_3_START INTEGER

CROSS_FAC_7_START INTEGER

CROSS_FAC_14_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 236

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

AREA_ITEMS_END VARCHAR(128)

AREA_ITEMS_END_STR_ID INTEGER STR_ID_DOMAIN

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

CROSS_FAC_2_END INTEGER

CROSS_FAC_3_END INTEGER

CROSS_FAC_7_END INTEGER

CROSS_FAC_14_END INTEGER

Table 8−8 shows the REQUEST_BLR table.

Table 8−8 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

REQ_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 237

REQUEST_NAME VARCHAR(31)

REQUEST_NAME_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

Oracle® Rdb for OpenVMS

8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class 238

8.2 Address and Phone Number Correction for
Documentation
In release 7.0 or earlier documentation, the address and fax phone number listed on the Send Us Your
Comments page are incorrect. The correct information is:

FAX −− 603.897.3825
Oracle Corporation
One Oracle Drive
Nashua, NH 03062−2804
USA

8.2 Address and Phone Number Correction for Documentation 239

8.3 Online Document Format and Ordering
Information
You can view the documentation in Adobe Acrobat format using the Acrobat Reader, which allows anyone to
view, navigate, and print documents in the Adobe Portable Document Format (PDF). See
http://www.adobe.com for information about obtaining a free copy of Acrobat Reader and for information on
supported platforms.

The Oracle Rdb documentation in Adobe Acrobat format is available on the Oracle Rdb Documentation web
page:

http://www.oracle.com/technetwork/products/rdb/documentation/index.html

Customers should contact their Oracle representative to purchase printed documentation.

8.3 Online Document Format and Ordering Information 240

Chapter 9
Known Problems and Restrictions
This chapter describes problems and restrictions relating to Oracle Rdb and includes workarounds where
appropriate.

Chapter 9Known Problems and Restrictions 241

9.1 Known Problems and Restrictions in All
Interfaces
This section describes known problems and restrictions that affect all interfaces. This is not an exhaustive list.
Check the Oracle Bug database to see a list of all open Rdb bugs and their current status.

9.1.1 Known Problems With REVERSE Indices

Bugs 18496095 and 18496853

Oracle Rdb Release 7.3.1 introduced a new REVERSE attribute for use with SORTED and SORTED
RANKED indices. Unfortunately, this functionality has had several reported issues for both Interity and Alpha
platforms. Therefore, this functionality has been disabled in this release of Oracle Rdb (7.3.1.2).

Oracle Rdb is continuing to improve and test this functionality and plans to re−enable this functionality in a
future release of Oracle Rdb.

If you currently have indices defined with the REVERSE attribute, they will automatically be considered as
MAINTENANCE IS DISABLED and will not be updated by DELETE, INSERT or UPDATE statements, nor
used by the query optimizer. At your earliest convenience, they should be dropped and re−created without the
REVERSE clause.

Oracle apologizes for the inconvenience and removal of this functionality.

9.1.2 Null Elimination Warning Not Generated for Some
Aggregates

The current release of Oracle Rdb does not correctly return the null elimination warning for aggregates that
are optimized to use special index operations against SORTED indices, even when the dialect requests this
returned warning.

The null elimination warning is returned when using one of the following SQL dialects: SQL92, SQL99,
ORACLE LEVEL1, or ORACLE LEVEL2.

The list of affected aggregate functions are:

MAX (column)•
MAX (DISTINCT column)•
MIN (column)•
MIN (DISTINCT column)•

When these functions are encountered and the optimizer is able to apply "Max key lookup" or "Min key
lookup" then Rdb currently disables the return of null elimination warning in preference to improved query
performance.

In addition, COUNT(column) and COUNT(DISTINCT column) do not correctly return the null elimination
warning against SORTED RANKED indices.

9.1 Known Problems and Restrictions in All Interfaces 242

This restriction does not affect COUNT(*) which correctly reports the null elimination warning when "Index
count lookup" or "Index distinct lookup" is used.

9.1.3 RMU/BACKUP/AFTER_JOURNAL Ignores the Default
After Journal Compression Setting

The Oracle Rdb RMU/BACKUP/AFTER_JOURNAL command ignores the default compression setting to be
used for backing up Rdb database After Journal files. The default After Journal file compression setting can
be set in the Rdb database root file using the /BACKUP qualifier of the RMU/SET AFTER_JOURNAL
command. This problem has existed since the Oracle Rdb V7.3−1 release.

The compression setting for the backup of an After Journal file can be set by the /COMPRESSION qualifier
of the RMU/BACKUP/AFTER_JOURNAL command. But, due to this problem, if the /COMPRESSION
qualifier is not specified with the RMU/BACKUP/AFTER_JOURNAL command, the default After Journal
file backup compression setting, if it is set in the database root, is ignored and no compression is used for the
After Journal file backup file.

The following example shows this problem. A default compression setting to be used when backing up
database After Journal files is saved in the database root by the RMU/SET AFTER_JOURNAL command.
But, when the RMU/BACKUP/AFTER_JOURNAL command to backup After Journal files is executed
without specifying a compression setting for the backup, the default compression setting specified in the
database root is ignored, and the backup command does not compress the After Journal backup file.

$ rmu/set after_journal mf_personnel/backup=compression=ZLIB:5/log
%RMU−I−LOGMODVAL, modified AIJ backup compression level to 5
$ rmu/backup/after_journal/log mf_personnel mfp.aij_bck
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal RDB$JOURNAL at 13:50:15.35
%RMU−I−LOGCREBCK, created backup file DEVICE:[DIRECTORY]MFP.AIJ_BCK;10
%RMU−I−QUIETPT, waiting for database quiet point at 24−SEP−2014 13:50:15.38
%RMU−I−LOGAIJBCK, backed up 1 committed transaction at 13:50:15.38
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully
%RMU−I−LOGAIJJRN, backed up 1 after−image journal at 13:50:15.38
%RMU−I−LOGAIJBLK, backed up 3 after−image journal blocks at 13:50:15.38
%RMU−I−LOGAIJBCK, backed up 1 committed transaction at 13:50:15.38

To avoid this problem, specify the desired compression setting by using the /COMPRESSION qualifier with
the RMU/BACKUP/AFTER_JOURNAL command.

$ rmu/backup/after_journal/COMPRESSION=ZLIB:4/log mf_personnel mfp.aij_bck
%RMU−I−AIJBCKBEG, beginning after−image journal backup operation
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation started
%RMU−I−AIJBCKSEQ, backing up after−image journal sequence number 0
%RMU−I−LOGBCKAIJ, backing up after−image journal RDB$JOURNAL at 13:54:27.27
%RMU−I−LOGCREBCK, created backup file DEVICE:[DIRECTORY]MFP.AIJ_BCK;11
%RMU−I−QUIETPT, waiting for database quiet point at 24−SEP−2014 13:54:27.32
%RMU−I−LOGAIJBCK, backed up 1 committed transaction at 13:54:27.32
%RMU−I−AIJMODSEQ, next AIJ file sequence number will be 1
%RMU−I−OPERNOTIFY, system operator notification: AIJ backup operation completed
%RMU−I−AIJBCKEND, after−image journal backup operation completed successfully
%RMU−I−LOGAIJJRN, backed up 1 after−image journal at 13:54:27.32

Oracle® Rdb for OpenVMS

9.1.3 RMU/BACKUP/AFTER_JOURNAL Ignores the Default After Journal Compression Setting 243

%RMU−I−LOGAIJBLK, backed up 3 after−image journal blocks at 13:54:27.32
%RMU−I−LOGAIJBCK, backed up 1 committed transaction at 13:54:27.32

This problem will be corrected in a future release of Oracle Rdb V7.3. RMU Backup After_Journal will make
use of the default established by the RMU/SET AFTER_JOURNAL/BACKUPS=COMPRESSION attribute.

9.1.4 RMU /VERIFY /KEY_VALUES May Fail on Some Indices

In some cases, the RMU/VERIFY/KEY_VALUES functionality may be unable to perform key value
verification failing with an %RDMS−F−OUTLINE_FAILED error. This happens when the generated SQL
query and query outline can not be used to ensure index only retrieval from the specified index. This may
occur with multi−segment HASHED ORDERED or HASHED SCATTERED indices.

The following example shows the reported error.

$ rmu/verify/nolog/index=T5_IDENT_IMAGE_NDX /key_values VERIFY_KEY_VALUES_DB
%RDMS−F−OUTLINE_FAILED, could not comply with mandatory query outline directives
%RMU−I−NOTREQVFY, not all requested verifications have been performed
$

This problem is a known limitation in this release of Oracle Rdb.

9.1.5 REPLACE Statement Fails With Primary Key
Constraint Failure When Used on a View

The REPLACE statement does not show the correct semantics when used to insert into a view defined on a
table with a PRIMARY KEY constraint.

The following example shows the problem.

SQL> create table SAMPLE
cont> (ident integer
cont> ,prod_name char(20)
cont> ,primary key (ident) not deferrable
cont>);
SQL>
SQL> create view SAMPLE_VIEW
cont> (ident, prod_name)
cont> as select * from SAMPLE
cont> ;
SQL>
SQL> insert into SAMPLE values (1, 'Ajax');
1 row inserted
SQL> insert into SAMPLE_VIEW values (2, 'Mr Clean');
1 row inserted
SQL>
SQL> replace into SAMPLE values (1, 'Borox');
1 row replaced
SQL> replace into SAMPLE_VIEW values (2, 'Mr. Clean');
%RDB−E−INTEG_FAIL, violation of constraint SAMPLE_PRIMARY_IDENT caused operation to fail
−RDB−F−ON_DB, on database RDB$DEFAULT_CONNECTION
SQL>
SQL> select * from SAMPLE order by ident;
 IDENT PROD_NAME
 1 Borox

Oracle® Rdb for OpenVMS

9.1.4 RMU /VERIFY /KEY_VALUES May Fail on Some Indices 244

 2 Mr Clean
2 rows selected
SQL>

This will remain a restriction for this release. Only use REPLACE (or RMU/LOAD/REPLACE) on base
tables.

9.1.6 Possible Incorrect Results When Using Partitioned
Descending Indexes

Bug 6129797

In the current release of Oracle Rdb, it is possible for some queries using partitioned indexes with segments of
mixed ascending and descending order to return incorrect results either on Alpha or I64 systems.

The following examples show two problems when using partitioned index with segments of mixed ascending
and descending order:

create database file foo
 create storage area fooa
 create storage area foob;

create table mesa (id integer, m4 char (1), m5 integer);
create table rasa (id integer, r4 char (1), r5 integer);

insert into mesa (id, m4, m5) values (1, 'm', 1);

insert into rasa (id, r4, r5) values (1, 'm', 1);
insert into rasa (id, r4, r5) values (1, 'k', 1);
insert into rasa (id, r4, r5) values (1, 'e', 1);

create index x4 on mesa (id asc , m4 asc) ;

! The following index contains ascending segments followed by descending
! segments and thus causes the query to return the wrong result.
!
! Note that the query works if both segments are either ascending or descending.
!
create index y4 on rasa (id asc , r4 desc)
 store using (id, r4)
 in fooa with limit of (1, 'g')
 otherwise in foob ;
commit;

! Problem #1:
!
! the following query returns correctly 3 rows on Alpha but 1 row on IA64:

SQL> select m.id, m.m4, r.r4 from
 mesa m inner join rasa r on (m.id = r.id);
 1 m m
 1 m k
 1 m e
3 rows selected

SQL> select m.id, m.m4, r.r4 from mesa m inner join rasa r on (m.id = r.id);
 1 m e
1 row selected

Oracle® Rdb for OpenVMS

9.1.6 Possible Incorrect Results When Using Partitioned Descending Indexes 245

! Problem #2:
!
! The following query using reverse scan returns 2 rows incorrectly on Alpha
! but 3 rows correctly on IA64:
!

SQL> select id, r4 from rasa where id = 1 and r4 <= 'm' order by id, r4;
Tables:
 0 = RASA
Index only retrieval of relation 0:RASA
 Index name Y4 [2:1] Reverse Scan
 Keys: (0.ID = 1) AND (0.R4 <= 'm')
 ID R4
 1 k
 1 m
2 rows selected

SQL> select id, r4 from rasa where id = 1 and r4 <= 'm' order by id, r4;
Tables:
 0 = RASA
Index only retrieval of relation 0:RASA
 Index name Y4 [2:1] Reverse Scan
 Keys: (0.ID = 1) AND (0.R4 <= 'm')
 ID R4
 1 e
 1 k
 1 m
3 rows selected

This problem is related to the construction and comparison of the descending key values while processing the
index partitions.

The problem will be corrected in a future version of Oracle Rdb.

9.1.7 Remote Attach Stalls Before Detecting a Node is
Unreachable

Bug 7681548

A remote attach can stall for a noticeable period, typically 75 seconds, before detecting a node is unreachable.

The following example shows the expected error message when attempting to access a database on a node that
is not reachable. The problem is that when the value of the parameter
SQL_NETWORK_TRANSPORT_TYPE in the file RDB$CLIENT_DEFAULTS.DAT is not specifically set
to DECNET (in UPPER CASE), a stall of typically 75 seconds will happen before you get the expected error
message.

SQL> attach 'file 1::disk1:[dbdir]db';
%SQL−F−ERRATTDEC, Error attaching to database 1::disk1:[dbdir]db
−RDB−F−IO_ERROR, input or output error
−SYSTEM−F−UNREACHABLE, remote node is not currently reachable

Oracle® Rdb for OpenVMS

9.1.7 Remote Attach Stalls Before Detecting a Node is Unreachable 246

There are two possible ways to avoid the stall and get the error message after a user configurable period of
time or instantly: decrease the value of the TCPIP parameter TCP_KEEPINIT, or explicitly specify
SQL_NETWORK_TRANSPORT_TYPE as DECNET (in UPPER CASE).

The default behavior when attempting to connect to an unreachable node via TCPIP is to stall 75
seconds before returning an error. The stall time is configurable in TCPIP via the parameter
TCP_KEEPINIT which is expressed in units of 500 ms. The default value of TCP_KEEPINIT is 150
which corresponds to a 75 second stall.

•

When connecting via DECnet, the error message is typically returned instantly so a significant stall
will not be seen in this case. However, the value of the parameter
SQL_NETWORK_TRANSPORT_TYPE is case sensitive so for DECnet to be selected as the
transport, "DECNET" must be specified in UPPER CASE. Failing to do so will result in connecting
via the DEFAULT method which is to first try connecting via DECnet and if that fails attempt to
connect via TCPIP and hence a 75 second stall will take place unless TPC_KEEPINIT is set to a
value lower than 150.

•

9.1.8 Application and Oracle Rdb Both Using SYS$HIBER

In application processes that use Oracle Rdb and the SYS$HIBER system service (possibly via RTL routines
such as LIB$WAIT), it is very important that the application ensures that the event being waited for has
actually occurred. Oracle Rdb utilizes $HIBER/$WAKE sequences for interprocess communication and
synchronization.

Because there is just a single process−wide "hibernate" state along with a single process−wide "wake
pending" flag, Oracle Rdb must assume that it "shares" use of the hibernate/wake state with the user's
application code. To this end, Oracle Rdb generally will re−wake the process via a pending wake request after
using a hibernate sequence.

Oracle Rdb's use of the $WAKE system service will interfere with other users of $HIBER (such as the routine
LIB$WAIT) that do not check for event completion, possibly causing a $HIBER to be unexpectedly resumed
without waiting at all.

To avoid these situations, applications that use HIBER/WAKE facilities must use a code sequence that avoids
continuing without a check for the operation (such as a delay or a timer firing) being complete.

The following pseudo−code shows one example of how a flag can be used to indicate that a timed−wait has
completed correctly. The wait does not complete until the timer has actually fired and set TIMER_FLAG to
TRUE. This code relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
 BEGIN
 ! Clear the timer flag
 TIMER_FLAG = FALSE

 ! Schedule an AST for sometime in the future
 STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

 ! Hibernate. When the $HIBER completes, check to make
 ! sure that TIMER_FLAG is set indicating that the wait
 ! has finished.
 WHILE TIMER_FLAG = FALSE

Oracle® Rdb for OpenVMS

9.1.8 Application and Oracle Rdb Both Using SYS$HIBER 247

 DO SYS$HIBER()
 END

ROUTINE TIMER_AST:
 BEGIN
 ! Set the flag indicating that the timer has expired
 TIMER_FLAG = TRUE

 ! Wake the main−line code
 STAT = SYS$WAKE ()
 IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
 END

Starting with OpenVMS V7.1, the LIB$WAIT routine includes a FLAGS argument (with the
LIB$K_NOWAKE flag set) to allow an alternate wait scheme (using the $SYNCH system service) that can
avoid potential problems with multiple code sequences using the $HIBER system service. See the OpenVMS
RTL Library (LIB$) Manual for more information about the LIB$WAIT routine.

In order to prevent application hangs, inner−mode users of SYS$HIBER must take explicit steps to ensure
that a pending wake is not errantly " consumed ". The general way of accomplishing this is to issue a
SYS$WAKE to the process after the event is complete if a call to SYS$HIBER was done. Rdb takes this step
and therefore application programs must be prepared for cases where a wakeup might appear unexpectedly.

9.1.9 Unexpected RCS Termination

It has been observed in internal testing of Rdb Release 7.2.2 that if the Record Cache Server (the RCS)
terminates in an uncontrolled fashion this may, under some conditions, cause corruption of the database
and/or the After Image Journal file.

When the RCS terminates, the database is shut down and a message like the following is written to the
monitor log:

6−DEC−2007 15:04:17.02 − Received Record Cache Server image termination from
22ED5144:1
 − database name "device:[directory]database.RDB;1" [device] (1200,487,0)
 − abnormal Record Cache Server termination detected
 − starting delete−process shutdown of database:
 − %RDMS−F−RCSABORTED, record cache server process terminated abnormally
 − sending process deletion to process 22ED10F9
 − sending process deletion to process 22ECED59
 − sending process deletion to process 22EC0158
 − sending process deletion to process 22EB9543 (AIJ Log server)
 − database shutdown waiting for active users to terminate

A future attempt to roll forward the AIJ following a restore of a database backup might fail with a bugcheck
dump if this problem has happened.

The only currently known situation where this problem has been observed is if the logical name
RDM$BIND_RCS_VALIDATE_SECS is defined to some value and the logical name
RDM$BIND_RCS_LOG_FILE at the same time is undefined or defined incorrectly.

To prevent this problem, Oracle recommends any customer using the Row Cache feature to either avoid
defining the logical name RDM$BIND_RCS_VALIDATE_SECS or if this logical name for any reason needs
to be defined, to make sure RDM$BIND_RCS_LOG_FILE is correctly defined (i.e. defined with the

Oracle® Rdb for OpenVMS

9.1.9 Unexpected RCS Termination 248

/SYSTEM and /EXECUTIVE qualifiers and is pointing to a valid file name in an existing directory on a
cluster accessible device with sufficient free space).

This recommendation applies to all versions of Oracle Rdb.

9.1.10 Changes for Processing Existence Logical Names

Oracle Rdb Release 7.2.1.1 changed the handling of so called "existence" logical names used to tune the Rdb
environment. These existence logical names could in past versions be defined to any value to enable their
effect. The Rdb documentation in most cases described using the value 1 or YES as that value and this change
is upward compatible with the documentation.

Rdb now treats these logical names (see the list below) as Boolean logicals and accepts a string starting with
"Y", "y", "T", "t" or "1" to mean TRUE. All other values will be considered to be FALSE. This change allows
process level definitions to override definitions in higher logical name tables which was not possible
previously.

Oracle recommends that customers examine all procedures that define the following logical names to ensure
that their values conform to these rules prior to upgrading to Oracle Rdb V7.2.1.1 or later to avoid unexpected
changes in behavior.

RDMS$AUTO_READY•
RDMS$DISABLE_HIDDEN_KEY•
RDMS$DISABLE_MAX_SOLUTION•
RDMS$DISABLE_REVERSE_SCAN•
RDMS$DISABLE_TRANSITIVITY•
RDMS$DISABLE_ZIGZAG_BOOLEAN•
RDMS$ENABLE_BITMAPPED_SCAN•
RDMS$ENABLE_INDEX_COLUMN_GROUP•
RDMS$MAX_STABILITY•
RDMS$USE_OLD_COST_MODEL•
RDMS$USE_OLD_COUNT_RELATION•
RDMS$USE_OLD_SEGMENTED_STRING•
RDMS$USE_OLD_UPDATE_RULES•

9.1.11 Patch Required When Using VMS V8.3 and Dedicated
CPU Lock Manager

During qualification testing of Oracle Rdb on OpenVMS V8.3 systems, a problem with the use of Extended
Lock Value Blocks and the OpenVMS Dedicated CPU Lock Manager feature was discovered.

To avoid this problem, Oracle strongly recommends that customers wishing to use Oracle Rdb and the
OpenVMS Dedicated CPU Lock Manager feature with OpenVMS V8.3 install one of the following
architecture−specific patch kits (or subsequent replacement, if superseded) prior to using Oracle Rdb on
OpenVMS V8.3 systems:

VMS83I_SYS−V0200 (I64)•
VMS83A_SYS−V0100 (Alpha)•

Oracle® Rdb for OpenVMS

9.1.10 Changes for Processing Existence Logical Names 249

9.1.12 SQL Module or Program Fails with
%SQL−F−IGNCASE_BAD

Bug 2351248

A SQL Module or Pre−compiled SQL program built with Rdb 6.1 or earlier may fail when running under Rdb
7.3 if the program submits queries that involve certain kinds of character operations on parameters in the
queries. For example, a LIKE operator in the WHERE clause of a SQL statement requires SQL to look for
character− or string−matching wildcard characters. Another example is the use of IGNORE CASE which
causes SQL to equivalence upper and lower case characters for the character set in use.

The following example shows a portion of a SQL module language program that queries a PERSONNEL
database.

DECLARE MANL_NAME_LIST CURSOR FOR
 SELECT DISTINCT E.LAST_NAME,E.FIRST_NAME,J.JOB_CODE,J.DEPARTMENT_CODE,E.CITY
FROM DB1_HANDLE.EMPLOYEES E,DB1_HANDLE.JOB_HISTORY J
 WHERE J.EMPLOYEE_ID = E.EMPLOYEE_ID
 AND E.STATUS_CODE = STATUS_CODE
 AND E.CITY LIKE CITYKEY IGNORE CASE
 ORDER BY E.EMPLOYEE_ID DESC, E.LAST_NAME DESC

PROCEDURE SQL_OPN_NAME_LIST
SQLCODE
CITYKEY CHAR(20)
STATUS_CODE CHAR(1);
OPEN MANL_NAME_LIST;

If the SQL Module containing the code above is compiled and linked into an executable using a pre−7.0
version of Rdb, it will run properly against that version. However if the same program is run in an Rdb 7.3 or
later environment, a call to the SQL_OPN_NAME_LIST procedure will return a SQLCODE of −1. The
RDB$MESSAGE_VECTOR will contain a code associated with the following message:

%SQL−F−IGNCASE_BAD, IGNORE CASE not supported for character set

To workaround this problem, re−link the program using a 7.3 or later version of SQL$INT.EXE and/or
SQL$USER.OLB.

9.1.13 External Routine Images Linked with PTHREAD$RTL

The OpenVMS Guide to the POSIX Threads Library describes that it is not supported to dynamically activate
the core run−time library shareable image PTHREAD$RTL. Oracle has found in testing that a shareable
image supplied for use as an External Routine that is linked with PTHREAD$RTL can be expected to cause a
hang during dynamic image activation on OpenVMS I64 systems. This problem has not been observed on
OpenVMS Alpha systems.

To avoid this problem, in any case where the shareable image used for an Rdb External Routine is linked with
PTHREAD$RTL, the main program image must likewise be linked with PTHREAD$RTL. This requirement
applies to customer built application main programs as well as the main interactive SQL image.

The shareable image RDB$NATCONN_FUNC73.EXE supplied with OCI Services for Oracle Rdb (part of
SQL/Services) is one such shareable image that is linked with PTHREAD$RTL. Customer built applications

Oracle® Rdb for OpenVMS

9.1.12 SQL Module or Program Fails with %SQL−F−IGNCASE_BAD 250

that utilize External Routines from the RDB$NATCONN_FUNC73.EXE image must ensure that the main
image is linked with PTHREAD$RTL. The external routines that a user may call that use functions from
RDB$NATCONN_FUNC73.EXE include:

TO_CHAR•
TO_NUMBER•
TO_DATE•

You can use the OpenVMS command ANALYZE/IMAGE to determine whether an image depends upon
PTHREAD$RTL. For more information, see the OpenVMS documentation.

9.1.14 Using Databases from Releases Earlier than V7.0

You cannot convert or restore databases earlier than the Oracle Rdb V7.0 format directly to Oracle Rdb V7.3
format. The RMU Convert command for Oracle Rdb V7.3 supports conversions from Oracle Rdb V7.0, V7.1
and V7.2 format databases only. If you have an Oracle Rdb V3.0 through V6.1 format database, you must
convert it to at least Oracle Rdb V7.0 format and then convert it to Oracle Rdb V7.3 format. For example, if
you have a V4.2 format database, you must convert it first to at least Oracle Rdb V7.0 format, then convert it
to Oracle Rdb V7.3 format.

If you attempt to convert or restore a database that is prior to Oracle Rdb V7.0 format directly to Oracle Rdb
V7.3 format, Oracle RMU generates an error.

9.1.15 ILINK−E−INVOVRINI Error on I64

When linking an application with multiple modules, the following error message may be returned:

%ILINK−E−INVOVRINI, incompatible multiple initializations for overlaid section
 section: VMSRDB
 module: M1
 file: DKA0:[BLD]M1.OBJ;1
 module: M2
 file: DKA0:[BLD]SYS.OLB;1

On I64 systems, it is not allowed to have a program section that attempts to be initialized a subsequent time
where the non−zero portions of the initializations do not match. This is a difference from OpenVMS Alpha
and VAX systems where the linker permitted such initializations.

If the modules specified are SQL module language or precompiler produced, the application build procedures
usually need to be modified. Typically, the solution is to initialize the database handles in only one of the
modules. The SQLMOD command line qualifiers /NOINITIALIZE_HANDLES and
/INITIALIZE_HANDLES are used to specify whether or not alias definitions are coerced into alias
references.

9.1.16 New Attributes Saved by RMU/UNLOAD Incompatible
With Prior Versions

Bug 2676851

Oracle® Rdb for OpenVMS

9.1.14 Using Databases from Releases Earlier than V7.0 251

To improve the behavior of unloading views, Oracle Rdb Release 7.1.2 changed the way view columns were
unloaded so that attributes for view computed columns, COMPUTED BY and AUTOMATIC columns were
saved. These new attributes are not accepted by prior releases of Oracle Rdb.

The following example shows the reported error trying to load a file from V7.1.2 under V7.1.0.4.

%RMU−F−NOTUNLFIL, Input file was not created by RMU UNLOAD
%RMU−I−DATRECSTO, 0 data records stored.
%RMU−F−FTL_LOAD, Fatal error for LOAD operation at 21−OCT−2003 16:34:54.20

You can workaround this problem by using the /RECORD_DEFINITION qualifier and specifying the
FORMAT=DELIMITED option. However, this technique does not support LIST OF BYTE VARYING
column unloading.

9.1.17 SYSTEM−F−INSFMEM Fatal Error With SHARED
MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in
Galaxy Environment

When using the GALAXY SUPPORT IS ENABLED feature in an OpenVMS Galaxy environment, a
%SYSTEM−F−INSFMEM, insufficient dynamic memory error may be returned when mapping record caches
or opening the database. One source of this problem specific to a Galaxy configuration is running out of
Galaxy Shared Memory regions. For Galaxy systems, GLX_SHM_REG is the number of shared memory
region structures configured into the Galaxy Management Database (GMDB).

While the default value (for OpenVMS versions through at least V7.3−1) of 64 regions might be adequate for
some installations, sites using a larger number of databases or row caches, when the SHARED MEMORY IS
SYSTEM or LARGE MEMORY IS ENABLED features are enabled, may find the default insufficient.

If a %SYSTEM−F−INSFMEM, insufficient dynamic memory error is returned when mapping record caches or
opening databases, Oracle Corporation recommends that you increase the GLX_SHM_REG parameter by 2
times the sum of the number of row caches and number of databases that might be accessed in the Galaxy at
one time. As the Galaxy shared memory region structures are not very large, setting this parameter to a higher
than required value does not consume a significant amount of physical memory. It also may avoid a later
reboot of the Galaxy environment. This parameter must be set on all nodes in the Galaxy.

Galaxy Reboot Required

Changing the GLX_SHM_REG system parameter requires that the OpenVMS Galaxy
environment be booted from scratch. That is, all nodes in the Galaxy must be shut down
and then the Galaxy reformed by starting each instance.

9.1.18 Oracle Rdb and OpenVMS ODS−5 Volumes

OpenVMS Version 7.2 introduced an Extended File Specifications feature, which consists of two major
components:

A new, optional, volume structure, ODS−5, which provides support for file names that are longer and
have a greater range of legal characters than in previous versions of OpenVMS.

•

Oracle® Rdb for OpenVMS

9.1.17 SYSTEM−F−INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment252

Support for "deep" directory trees.•

ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of Advanced Server
for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as well as DCOM and JAVA
applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly requires ODS−2
(the traditional OpenVMS volume structure) file and directory name conventions to be followed. Because of
this knowledge, Oracle does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files, database backup files, after image
journal backup files, etc.) that utilize any non−ODS−2 file naming features. For this reason, Oracle
recommends that Oracle Rdb database components not be located on ODS−5 volumes.

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that all of these files
and directories used by Oracle Rdb strictly follow the ODS−2 file and directory name conventions. In
particular, all file names must be specified entirely in uppercase and "special" characters in file or directory
names are forbidden.

9.1.19 Optimization of Check Constraints

Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the optimizer than
when the same or similar constraint is phrased using referential integrity (PRIMARY and FOREIGN KEY)
constraints.

For example, a user has two tables T1 and T2, both with one column, and wishes to ensure that all values in
table T1 exist in T2. Both tables have an index on the referenced field. The user could use a PRIMARY KEY
constraint on T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2 alter column f2 primary key not deferrable;
SQL> alter table t1 alter column f1 references t2 not deferrable;

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the FOREIGN KEY table
where the FOREIGN KEY has the deleted value. This can be seen as an index lookup on T1 in the retrieval
strategy.

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Index only retrieval of relation T1
 Index name I1 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail

The failure of the constraint is not important. What is important is that Rdb efficiently detects that only those
rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This could be
necessary because the presence of NULL values in the table T2 precludes the definition of a primary key on
that table. This could be done with a CHECK constraint of the form:

SQL> alter table t1 alter column f1

Oracle® Rdb for OpenVMS

9.1.19 Optimization of Check Constraints 253

cont> check (f1 in (select * from t2)) not deferrable;
SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [0:0]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

The cross block is for the constraint evaluation. This retrieval strategy indicates that to evaluate the constraint,
the entire index on table T1 is being scanned and for each key, the entire index in table T2 is being scanned.
The behavior can be improved somewhat by using an equality join condition in the select clause of the
constraint:

SQL> alter table t1 alter column f1
cont> check (f1 in (select * from t2 where f2=f1)) not deferrable;

or:

SQL> alter table t1 alter column f1
cont> check (f1=(select * from t2 where f2=f1)) not deferrable;

In both cases, the retrieval strategy will look like this:

SQL> delete from t2 where f2=1;
Get Temporary relation Retrieval by index of relation T2
 Index name I2 [1:1]
Cross block of 2 entries
 Cross block entry 1
 Index only retrieval of relation T1
 Index name I1 [0:0]
 Cross block entry 2
 Conjunct Aggregate−F1 Conjunct
 Index only retrieval of relation T2
 Index name I2 [1:1]
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail

While the entire T1 index is scanned, at least the value from T1 is used to perform an index lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS" operators with
respect to null handling, and the complexity of dealing with non−equality join conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to use a series of
triggers to perform the constraint check. The following triggers perform a similar check to the constraints
above.

SQL> create trigger t1_insert after insert on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> create trigger t1_update after update on t1
cont> when (not exists (select * from t2 where f2=f1))
cont> (error) for each row;
SQL> ! A delete trigger is not needed on T1.

Oracle® Rdb for OpenVMS

9.1.19 Optimization of Check Constraints 254

SQL> create trigger t2_delete before delete on t2
cont> when (exists (select * from t1 where f1=f2))
cont> (error) for each row;
SQL> create trigger t2_modify after update on t2
cont> referencing old as t2o new as t2n
cont> when (exists (select * from t1 where f1=t2o.f2))
cont> (error) for each row;
SQL> ! An insert trigger is not needed on T2.

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1;
Aggregate−F1 Index only retrieval of relation T1
 Index name I1 [1:1]
Temporary relation Get Retrieval by index of relation T2
 Index name I2 [1:1]
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for
trigger
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error

The trigger strategy is the index only retrieval displayed first. You will note that the index on T1 is used to
examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the operation of the
triggers, the use of "IN" and "EXISTS", and the use of referential integrity constraints.

This workaround is useful where the form of the constraint is more complex, and cannot be phrased using
referential integrity constraints. For example, if the application is such that the value in table T1 may be
spaces or NULL to indicate the absence of a value, the above triggers could easily be modified to allow for
these semantics.

9.1.20 Carryover Locks and NOWAIT Transaction
Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the blocking user to
receive the BLAST signal, the requesting user must request the locked resource with WAIT (which a
NOWAIT transaction does not do). Oracle Rdb defines a resource called NOWAIT, which is used to indicate
that a NOWAIT transaction has been started. When a NOWAIT transaction starts, the user requests the
NOWAIT resource. All other database users hold a lock on the NOWAIT resource so that when the NOWAIT
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes blocking users to
release any carryover locks. There can be a delay before the transactions with carryover locks detect the
presence of the NOWAIT transaction and release their carryover locks. You can detect this condition by
examining the stall messages. If the "Waiting for NOWAIT signal (CW)" stall message appears frequently,
the application is probably experiencing a decrease in performance, and you should consider disabling the
carryover lock behavior.

9.1.21 Unexpected Results Occur During Read−Only
Transactions on a Hot Standby Database

When using Hot Standby, it is typical to use the standby database for reporting, simple queries, and other
read−only transactions. If you are performing these types of read−only transactions on a standby database, be

Oracle® Rdb for OpenVMS

9.1.20 Carryover Locks and NOWAIT Transaction Clarification 255

sure you can tolerate a READ COMMIT level of isolation. This is because the Hot Standby database might be
updated by another transaction before the read−only transaction finishes, and the data retrieved might not be
what you expected.

Because Hot Standby does not write to the snapshot files, the isolation level achieved on the standby database
for any read−only transaction is a READ COMMITED transaction. This means that nonrepeatable reads and
phantom reads are allowed during the read−only transaction:

Nonrepeatable read operations: Allows the return of different results within a single transaction when
an SQL operation reads the same row in a table twice. Nonrepeatable reads can occur when another
transaction modifies and commits a change to the row between transactions. Because the standby
database will update the data when it confirms a transaction has been committed, it is very possible to
see an SQL operation on a standby database return different results.

•

Phantom read operations: Allows the return of different results within a single transaction when an
SQL operation retrieves a range of data values (or similar data existence check) twice. Phantoms can
occur if another transaction inserted a new record and committed the insertion between executions of
the range retrieval. Again, because the standby database may do this, phantom reads are possible.

•

Thus, you cannot rely on any data read from the standby database to remain unchanged. Be sure your
read−only transactions can tolerate a READ COMMIT level of isolation before you implement procedures
that read and use data from a standby database.

9.1.22 Row Cache Not Allowed While Hot Standby
Replication is Active

The row cache feature may not be enabled on a hot standby database while replication is active. The hot
standby feature will not start if row cache is enabled.

This restriction exists because rows in the row cache are accessed via logical dbkeys. However, information
transferred to the standby database via the after image journal facility only contains physical dbkeys. Because
there is no way to maintain rows in the cache via the hot standby processing, the row cache must be disabled
when the standby database is open and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU Open command. To
open the hot standby database prior to starting replication, use the ROW_CACHE=DISABLED qualifier on
the RMU Open command.

9.1.23 Excessive Process Page Faults and Other
Performance Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. One factor contributing
to Oracle Rdb process page faulting is sorting operations. Common causes of sorts include the SQL GROUP
BY, ORDER BY, UNION, and DISTINCT clauses specified for a query, and index creation operations.
Defining the logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle Rdb sort
operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb images and does not
generally call the routines in the OpenVMS run−time library. A copy of the SORT32 code is used to provide
stability between versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort routines from

Oracle® Rdb for OpenVMS

9.1.22 Row Cache Not Allowed While Hot Standby Replication is Active 256

executive processor mode which is difficult to do using the SORT32 shareable image. SQL IMPORT and
RMU/LOAD operations do, however, call the OpenVMS SORT32 run−time library.

At the beginning of a sort operation, the SORT code allocates memory for working space. The SORT code
uses this space for buffers, in−memory copies of the data, and sorting trees.

SORT does not directly consider the process' quotas or parameters when allocating memory. The effects of
WSQUOTA and WSEXTENT are indirect. At the beginning of each sort operation, the SORT code attempts
to adjust the process working set to the maximum possible size using the $ADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum possible). SORT then uses a
value of 75% of the returned working set for virtual memory scratch space. The scratch space is then
initialized and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly added to the
working set. Pages that were in the working set already may be faulted out as the new pages are faulted in.
Once the sort operation completes and SORT returns back to Oracle Rdb, the pages that may have been
faulted out of the working set are likely to be faulted back into the working set.

When a process working set is limited by the working set quota (WSQUOTA) parameter and the working set
extent (WSEXTENT) parameter is a much larger value, the first call to the sort routines can cause many page
faults as the working set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help reduce
the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_MWSEXTENT equal to the
WSMAX parameter. This means that all processes on the system end up with WSEXTENT the same as
WSMAX. Since that might be quite high, sorting might result in excessive page faulting. You may want to
explicitly set PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort operations. When the operation
can not be done in the available memory, SORT uses temporary disk files to hold the data as it is being sorted.
The Oracle Rdb7 Guide to Database Performance and Tuning contains more detailed information about sort
work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort is to use if work
files are required. The default is 2 and the maximum number is 36. The work files can be individually
controlled by the SORTWORKn logical names (where n ranges from "0" through "Z"). You can increase the
efficiency of sort operations by assigning the location of the temporary sort work files to different disks.
These assignments are made by using up to 36 logical names, "SORTWORK0" through "SORTWORKZ".

Normally, SORT places work files in the SYS$SCRATCH directory. By default, SYS$SCRATCH is the
same device and directory as the SYS$LOGIN location. Spreading the I/O load over multiple disks and/or
controllers improves efficiency as well as performance by taking advantage of more system resources and
helps prevent disk I/O bottlenecks. Specifying that your work files reside on separate disks permits overlap of
the SORT read/write cycle. You may also encounter cases where insufficient space exists on the
SYS$SCRATCH disk device (for example, while Oracle Rdb builds indexes for a very large table). Using the
"SORTWORK0" through "SORTWORKZ" logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the sorted runs into larger
groups. If the source data is mostly sorted, then not every sort work file may need to be accessed. This is a
possible source of confusion because, even with 36 sort work files, it is possible to exceed the capacity of the
first SORT file device and the sort operation fails never having accessed the remaining 35 sort work files.

Oracle® Rdb for OpenVMS

9.1.22 Row Cache Not Allowed While Hot Standby Replication is Active 257

At this time, more than 10 sort work files will only be used by the Oracle Rdb sort interface as used by the
CREATE INDEX, ALTER INDEX and the clauses UNION DISTINCT, ORDER BY, GROUP BY and
SELECT DISTINCT. The RMU and SQL IMPORT interfaces use the OpenVMS SORT interface which does
not currently support more than 10 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE do not affect or
control the operation of sort. These logical names are used to control other temporary space allocation within
Oracle Rdb.

9.1.24 Control of Sort Work Memory Allocation

Oracle Rdb uses a built−in SORT32 package to perform many sort operations. Sometimes, these sorts exhibit
a significant performance problem when initializing work memory to be used for the sort. This behavior can
be experienced, for example, when a very large sort cardinality is estimated, but the actual sort cardinality is
small.

In rare cases, it may be desirable to artificially limit the sort package's use of work memory. Two logicals
have been created to allow this control. In general, there should be no need to use either of these logicals and
misuse of them can significantly impact sort performance. Oracle recommends that these logicals be used
carefully and sparingly.

The logical names are:

Table 9−1 Sort Memory Logicals

Logical Definition

RDMS$BIND_SORT_MEMORY_WS_FACTOR

Specifies a percentage of the process's working set limit
to be used when allocating sort memory for the built−in
SORT32 package. If not defined, the default value is 75
(representing 75%), the maximum value is 75
(representing 75%), and the minimum value is 2
(representing 2%). Processes with very large working set
limits can sometimes experience significant page faulting
and CPU consumption while initializing sort memory.
This logical name can restrict the sort work memory to a
percentage of the processes maximum working set.

RDMS$BIND_SORT_MEMORY_MAX_BYTES

Specifies an absolute limit to be used when allocating
sort memory for the built−in SORT32 package. If not
defined, the default value is unlimited (up to 1GB), the
maximum value is 2147483647 and the minimum value
is 32768.

9.1.25 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate query can interfere
with the retrieval of the cursor by modifying the index columns key values used by the cursor.

Oracle® Rdb for OpenVMS

9.1.24 Control of Sort Work Memory Allocation 258

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that the query will
use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an update occurs during the
processing of the cursor which changes the LAST_NAME of an employee from "Mason" to "Rickard", then it
is possible that that employee row will be processed twice. First when it is fetched with name "Mason", and
then later when it is accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies which optimize the
I/O requirements, such as Index Retrieval, can be subject to this problem. Interference from queries by other
sessions are avoided by locking and are controlled by the ISOLATION LEVEL options in SQL, or the
CONCURRENCY/CONSISTENCY options in RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For example, if the
SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates of target rows, or the
RDO/RDML MODIFY statement uses the context variable for the stream. Then the optimizer will choose an
alternate access strategy if an update can occur which may cause the Halloween problem. This can be seen in
the access strategy in Example 2−2 as a "Temporary relation" being created to hold the result of the cursor
query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or DELETE ... WHERE
CURRENT OF statements will not be seen until after the cursor is declared and opened. In these
environments, you must use the FOR UPDATE clause to specify that columns selected by the cursor will be
updated during cursor processing. This is an indication to the Rdb optimizer so that it protects against the
Halloween problem in this case. This is shown in Example 2−1 and Example 2−2.

The following example shows that the EMP_LAST_NAME index is used for retrieval. Any update performed
will possibly be subject to the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp cursor for
cont> select * from employees where last_name >= 'M' order by last_name;
SQL> open emp;
Conjunct Get Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp;

The following example shows that the query specifies that the column LAST_NAME will be updated by
some later query. Now the optimizer protects the EMP_LAST_NAME index used for retrieval by using a
"Temporary Relation" to hold the query result set. Any update performed on LAST_NAME will now avoid
the Halloween problem.

SQL> set flags 'strategy';
SQL> declare emp2 cursor for
cont> select * from employees where last_name >= 'M'
cont> order by last_name for update of last_name;
SQL> open emp2;
Temporary relation Conjunct Get
Retrieval by index of relation EMPLOYEES
 Index name EMP_LAST_NAME [1:0]
SQL> close emp2;

When you use the SQL precompiler or the SQL module language compiler, it can be determined from usage
that the cursor context will possibly be updated during the processing of the cursor because all cursor related
statements are present within the module. This is also true for the RDML/RDBPRE precompilers when you
use the DECLARE_STREAM and START_STREAM statements and use the same stream context to perform

Oracle® Rdb for OpenVMS

9.1.24 Control of Sort Work Memory Allocation 259

all MODIFY and ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or RDO stream),
not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor then the actual
rows fetched will depend upon the access strategy chosen by the Rdb optimizer. As the query is separate from
the cursors query (i.e. doesn't reference the cursor context), then the optimizer does not know that the cursor
selected rows are potentially updated and so cannot perform the normal protection against the Halloween
problem.

Oracle® Rdb for OpenVMS

9.1.24 Control of Sort Work Memory Allocation 260

9.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface.

9.2.1 Single Statement LOCK TABLE is Not Supported for
SQL Module Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single statement within the module
language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use BEGIN... END around the
statement as shown in the following example. This format provides all the syntax and flexibility of LOCK
TABLE.

This restriction does not apply to interactive or dynamic SQL.

The following extract from the module language listing file shows the reported error if you use LOCK
TABLE as a single statement procedure. The other procedure in the same module is acceptable because it uses
a compound statement that contains the LOCK TABLE statement.

1 MODULE sample_test
2 LANGUAGE C
3 PARAMETER COLONS
4
5 DECLARE ALIAS FILENAME 'mf_personnel'
6
7 PROCEDURE a (SQLCODE);
8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
%SQL−F−WISH_LIST, (1) Feature not yet implemented − LOCK TABLE requires compound
statement
9
10 PROCEDURE b (SQLCODE);
11 BEGIN
12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE;
13 END;

To workaround this problem of using LOCK TABLE for SQL module language or embedded SQL
application, use a compound statement in an EXEC SQL statement.

9.2.2 Multistatement or Stored Procedures May Cause
Hangs

Long−running multistatement or stored procedures can cause other users in the database to hang if the
procedures obtain resources needed by those other users. Some resources obtained by the execution of a
multistatement or stored procedure are not released until the multistatement or stored procedure finishes.
Thus, any−long running multistatement or stored procedure can cause other processes to hang. This problem
can be encountered even if the statement contains SQL COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop; the second session
attempts to backup the database but hangs forever.

9.2 SQL Known Problems and Restrictions 261

Session 1:

SQL> attach 'filename MF_PERSONNEL';
SQL> create function LIB$WAIT (in real by reference)
cont> returns integer;
cont> external name LIB$WAIT location 'SYS$SHARE:LIBRTL.EXE'
cont> language general general parameter style variant;
SQL> commit;
 .
 .
 .
$ SQL
SQL> attach 'filename MF_PERSONNEL';
SQL> begin
cont> declare :LAST_NAME LAST_NAME_DOM;
cont> declare :WAIT_STATUS integer;
cont> loop
cont> select LAST_NAME into :LAST_NAME
cont> from EMPLOYEES where EMPLOYEE_ID = '00164';
cont> rollback;
cont> set :WAIT_STATUS = LIBWAIT (5.0);
cont> set transaction read only;
cont> end loop;
cont> end;

Session 2:

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session, you can see that the backup process is waiting for a lock held in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
 .
 .
 .
Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−−
20204383 RMU BACKUP..... 5600A476 00010001 CW NL
2020437B SQL............ 3B00A35C 00010001 PR PR

There is no workaround for this restriction. When the multistatement or stored procedure finishes execution,
the resources needed by other processes are released.

9.2.3 Use of Oracle Rdb from Shareable Images

If code in the image initialization routine of a shareable image makes any calls into Oracle Rdb, through SQL
or any other means, access violations or other unexpected behavior may occur if Oracle Rdb images have not
had a chance to do their own initialization.

To avoid this problem, applications must take one of the following steps:

Do not make Oracle Rdb calls from the initialization routines of shareable images.•
Link in such a way that the RDBSHR.EXE image initializes first. You can do this by placing the
reference to RDBSHR.EXE and any other Oracle Rdb shareable images last in the linker options file.

•

Oracle® Rdb for OpenVMS

9.2.3 Use of Oracle Rdb from Shareable Images 262

This is not a bug; it is a restriction resulting from the way OpenVMS image activation works.

Oracle® Rdb for OpenVMS

9.2.3 Use of Oracle Rdb from Shareable Images 263

9.3 Oracle RMU Known Problems and Restrictions
This section describes known problems and restrictions for the RMU interface.

9.3.1 RMU/CONVERT Fails When Maximum Relation ID is
Exceeded

If, when relation IDs are assigned to new system tables during an RMU/CONVERT to a V7.2 database, the
maximum relation ID of 8192 allowed by Oracle Rdb is exceeded, the fatal error
%RMU−F−RELMAXIDBAD is displayed and the database is rolled back to the prior database version.
Contact your Oracle support representative if you get this error. Note that when the database is rolled back,
the fatal error %RMU−F−CVTROLSUC is displayed to indicate that the rollback was successful but caused
by the detection of a fatal error and not requested by the user.

This condition only occurs if there are an extremely large number of tables defined in the database or if a large
number of tables were defined but have subsequently been deleted.

The following example shows both the %RMU−F−RELMAXIDBAD error message, if the allowed database
relation ID maximum of 8192 is exceeded, and the %RMU−F−CVTROLSUC error message when the
database has been rolled back to V7.0 since it cannot be converted to V7.2:

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
 %RMU−I−LOGCONVRT, database root converted to current structure level
 %RMU−F−RELMAXIDBAD, ROLLING BACK CONVERSION − Relation ID exceeds maximum
 8192 for system table RDB$RELATIONS
 %RMU−F−CVTROLSUC, CONVERT rolled−back for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0

The following example shows the normal case when the maximum allowed relation ID is not exceeded:

$rmu/convert mf_personnel
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.2
Are you satisfied with your backup of
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of
 any associated .aij files [N]? Y
%RMU−I−LOGCONVRT, database root converted to current structure level
%RMU−S−CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1
 successfully converted from version V7.0 to V7.2
%RMU−I−CVTCOMSUC, CONVERT committed for
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.2

9.3.2 RMU/UNLOAD/AFTER_JOURNAL Requires Accurate
AIP Logical Area Information

The RMU/UNLOAD/AFTER_JOURNAL command uses the on−disk area inventory pages (AIPs) to
determine the appropriate type of each logical area when reconstructing logical dbkeys for records stored in

9.3 Oracle RMU Known Problems and Restrictions 264

mixed−format storage areas. However, the logical area type information in the AIP is generally unknown for
logical areas created prior to Oracle Rdb release 7.0.1. If the RMU/UNLOAD /AFTER_JOURNAL command
cannot determine the logical area type for one or more AIP entries, a warning message is displayed for each
such area and may ultimately return logical dbkeys with a 0 (zero) area number for records stored in
mixed−format storage areas.

In order to update the on−disk logical area type in the AIP, the RMU Repair utility must be used. The
INITIALIZE=LAREA_PARAMETERS=optionfile qualifier option file can be used with the TYPE qualifier.
For example, to repair the EMPLOYEES table of the MF_PERSONNEL database, you would create an
options file that contains the following line:

EMPLOYEES /TYPE=TABLE

For partitioned logical areas, the AREA=name qualifier can be used to identify the specific storage areas that
are to be updated. For example, to repair the EMPLOYEES table of the MF_PERSONNEL database for the
EMPID_OVER storage area only, you would create an options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

TABLE
Specifies that the logical area is a data table. This would be a table created using the SQL CREATE
TABLE syntax.

•

B−TREE
Specifies that the logical area is a B−tree index. This would be an index created using the SQL
CREATE INDEX TYPE IS SORTED syntax.

•

HASH
Specifies that the logical area is a hash index. This would be an index created using the SQL
CREATE INDEX TYPE IS HASHED syntax.

•

SYSTEM
Specifies that the logical area is a system record that is used to identify hash buckets. Users cannot
explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas. This type does
NOT identify system relations.

•

BLOB
Specifies that the logical area is a BLOB repository.

•

There is no explicit error checking of the type specified for a logical area. However, an incorrect type may
cause the RMU Unload /After_Journal command to be unable to correctly return valid, logical dbkeys.

9.3.3 Do Not Use HYPERSORT with
RMU/OPTIMIZE/AFTER_JOURNAL Command

The OpenVMS Alpha V7.1 operating system introduced the high−performance Sort/Merge utility (also

Oracle® Rdb for OpenVMS

9.3.3 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL Command 265

known as HYPERSORT). This utility takes advantage of the OpenVMS Alpha architecture to provide better
performance for most sort and merge operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines. Unfortunately, the
high−performance Sort/Merge utility does not support several of the interfaces used by the
RMU/OPTIMIZE/AFTER_JOURNAL command. In addition, the high−performance Sort/Merge utility
reports no error or warning when being called with the unsupported options used by the
RMU/OPTIMIZE/AFTER_JOURNAL command.

Because of this, the use of the high−performance Sort/Merge utility is not supported for the RMU Optimize
After_Journal command. Do not define the logical name SORTSHR to reference HYPERSORT.EXE.

9.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for
RMU/BACKUP

The RMU/BACKUP command no longer accepts both the INCLUDE and EXCLUDE qualifiers in the same
command. This change removes the confusion over exactly what gets backed up when INCLUDE and
EXCLUDE are specified on the same line, but does not diminish the capabilities of the RMU Backup
command.

To explicitly exclude some storage areas from a backup, use the EXCLUDE qualifier to name the storage
areas to be excluded. This causes all storage areas to be backed up except for those named by the EXCLUDE
qualifier.

Similarly, the INCLUDE qualifier causes only those storage areas named by the qualifier to be backed up.
Any storage area not named by the INCLUDE qualifier is not backed up. The NOREAD_ONLY and
NOWORM qualifiers continue to cause read−only storage areas and WORM storage areas to be omitted from
the backup even if these areas are explicitly listed by the INCLUDE qualifier.

Another related change is in the behavior of EXCLUDE=*. In previous versions, EXCLUDE=* caused all
storage areas to be backed up. Beginning with V7.1, EXCLUDE=* causes only a root backup to be done. A
backup created by using EXCLUDE=* can be used only by the RMU/RESTORE/ONLY_ROOT command.

9.3.5 RMU/BACKUP Operations Should Use Only One Type
of Tape Drive

When using more than one tape drive for an RMU/BACKUP command, all of the tape drives must be of the
same type (for example, all the tape drives must be TA90s or TZ87s or TK50s). Using different tape drive
types (for example, one TK50 and one TA90) for a single database backup operation may make database
restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a backup operation, but is not able
to detect all invalid cases and expects that all tape drives for a backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the same type of tape drive during a
restore operation, the backup is likely valid. This may be the case, for example, when using a TA90 and a
TA90E.

Oracle® Rdb for OpenVMS

9.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU/BACKUP 266

Oracle Corporation recommends that, on a regular basis, you test your backup and recovery procedures and
environment using a test system. You should restore the database and then recover using AIJs to simulate
failure recovery of the production system.

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide to Database Design and
Definition, and the Oracle RMU Reference Manual for additional information about Oracle Rdb backup and
restore operations.

9.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST
Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying storage areas.
These errors indicate that the Space Area Management (SPAM) page fullness threshold for a particular data
page does not match the actual space usage on the data page. For a further discussion of SPAM pages, consult
the Oracle Rdb7 Guide to Database Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database. There is potential
for space on the data page to not be totally utilized, or for a small amount of extra I/O to be expended when
searching for space in which to store new rows. But unless there are many of these errors then the impact
should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle Rdb. When those cases are
discovered, Oracle Rdb is corrected to prevent the introduction of the inconsistencies. It is also possible for
these errors to be introduced during the normal operation of Oracle Rdb. The following scenario can leave the
SPAM pages inconsistent:

A process inserts a row on a page, and updates the threshold entry on the corresponding SPAM page
to reflect the new space utilization of the data page. The data page and SPAM pages are not flushed to
disk.

1.

Another process notifies the first process that it would like to access the SPAM page being held by the
process. The first process flushes the SPAM page changes to disk and releases the page. Note that it
has not flushed the data page.

2.

The first process then terminates abnormally (for example, from the DCL STOP/IDENTIFICATION
command). Since that process never flushed the data page to disk, it never wrote the changes to the
Recovery Unit Journal (RUJ) file. Since there were no changes in the RUJ file for that data page then
the Database Recovery (DBR) process did not need to roll back any changes to the page. The SPAM
page retains the threshold update change made above even though the data page was never flushed to
disk.

3.

While it would be possible to create mechanisms to ensure that SPAM pages do not become out of synch with
their corresponding data pages, the performance impact would not be trivial. Since these errors are relatively
rare and the impact is not significant, then the introduction of these errors is considered to be part of the
normal operation of Oracle Rdb. If it can be proven that the errors are not due to the scenario above, then
Oracle Product Support should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following operations:

Recreate the database by performing:
SQL EXPORT1.
SQL DROP DATABASE2.

•

Oracle® Rdb for OpenVMS

9.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 267

SQL IMPORT3.
Recreate the database by performing:

RMU/BACKUP1.
SQL DROP DATABASE2.
RMU/RESTORE3.

•

Repair the SPAM pages by using the RMU/REPAIR command. Note that the RMU/REPAIR
command does not write its changes to an after−image journal (AIJ) file. Therefore, Oracle
recommends that a full database backup be performed immediately after using the RMU/REPAIR
command.

•

Oracle® Rdb for OpenVMS

9.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors 268

9.4 Known Problems and Restrictions in All
Interfaces for Release 7.0 and Earlier
The following problems and restrictions from release 7.0 and earlier still exist.

9.4.1 Converting Single−File Databases

Because of a substantial increase in the database root file information for V7.0, you should ensure that
you have adequate disk space before you use the RMU/CONVERT command with single−file
databases and V7.0 or higher.

The size of the database root file of any given database increases a maximum of about 600 disk
blocks. The actual increase depends mostly on the maximum number of users specified for the
database.

9.4.2 Row Caches and Exclusive Access

If a table has a row−level cache defined for it, the Row Cache Server (RCS) may acquire a shared
lock on the table and prevent any other user from acquiring a Protective or Exclusive lock on that
table.

9.4.3 Exclusive Access Transactions May Deadlock
with RCS Process

If a table is frequently accessed by long running transactions that request READ/WRITE access
reserving the table for EXCLUSIVE WRITE and if the table has one or more indexes, you may
experience deadlocks between the user process and the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE♦
Close the database and disable row cache for the duration of the exclusive transaction♦
Change the checkpoint interval for the RCS process to a time longer than the time required to
complete the batch job and then trigger a checkpoint just before the batch job starts. Set the
interval back to a smaller interval after the checkpoint completes.

♦

9.4.4 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator and a value that is
the same as the boundary value of a storage map, Oracle Rdb scans extra partitions. A boundary value
is a value specified in the WITH LIMIT OF clause. The following example illustrates the behavior:

SQL> create table T1
cont> (id integer
cont> ,last_name char(12)
cont> ,first_name char(12)
cont>);
SQL> create storage map M for T1

9.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier 269

cont> partitioning not updatable
cont> store using (id)
cont> in EMPIDS_LOW with limit of (200)
cont> in EMPIDS_MID with limit of (400)
cont> otherwise in EMPIDS_OVER;
SQL> insert into T1 values (150,'Boney','MaryJean');
1 row inserted
SQL> insert into T1 values (350,'Morley','Steven');
1 row inserted
SQL> insert into T1 values (300,'Martinez','Nancy');
1 row inserted
SQL> insert into T1 values (450,'Gentile','Russ');
1 row inserted
SQL>
SQL> set flags 'EXECUTION(100),STRATEGY,DETAIL(2),INDEX_PARTITIONS';
SQL>
SQL> select * from T1 where ID > 400;
~S#0001
Tables:
 0 = T1
Conjunct: 0.ID > 400
Get Retrieval sequentially of relation 0:T1 (partitioned scan#1)
~E#0001.1: Strict Partitioning using 2 areas
 partition 2 (larea=60) "EMPIDS_MID"
 partition 3 (larea=61) "EMPIDS_OVER" otherwise
 ID LAST_NAME FIRST_NAME
 450 Gentile Russ
1 row selected
SQL>

In this example, partition 2 does not need to be scanned but is still accessed due to the structure of the
generated key values. This does not affect the correctness of the result. Users can avoid the extra scan
by using values other than the boundary values.

9.4.5 Restriction When Adding Storage Areas with
Users Attached to Database

If you try to interactively add a new storage area where the page size is less than the smallest existing
page size and the database has been manually opened or users are active, the add operation fails with
the following errors:

%RDMS−F−NOEUACCESS, unable to acquire exclusive access to database

or

%RDB−F−SYS_REQUEST, error from system services request
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
−SYSTEM−W−ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and, if the database is set
to OPEN IS MANUAL, the database is closed. Several internal Oracle Rdb data structures are based
on the minimum page size and these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ, any recovery scenario fails.
Note also that if you use .aij files, you must backup the database and restart after−image journaling
because this change invalidates the current AIJ recovery.

Oracle® Rdb for OpenVMS

9.4.5 Restriction When Adding Storage Areas with Users Attached to Database 270

9.4.6 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk becomes
inconsistent, and is detected immediately during failover. (Failover is the recovery of an application
by restarting it on another computer.) The problem is rare, and occurs because only single−block I/O
operations are guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not compromised, but the
affected area is not available until the restore operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock atomic write
operations. Cluster failovers will automatically cause the recovery of multiblock pages, and no
manual intervention will be required.

9.4.7 Replication Option Copy Processes Do Not
Process Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data Distributor)
begins running after an application has begun modifying the database, the copy processes catch up to
the application and are not able to process database pages that are logically ahead of the application in
the RDB$CHANGES system relation. The copy processes all align waiting for the same database
page and do not move on until the application has released it. The performance of each copy process
degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates the
RDB$TRANSFERS system relation and then tries to delete any RDB$CHANGES rows not needed
by any transfers. During this process, the RDB$CHANGES table cannot be updated by any
application process, holding up any database updates until the deletion process is complete. The
application stalls while waiting for the RDB$CHANGES table. The resulting contention for
RDB$CHANGES SPAM pages and data pages severely impacts performance throughput, requiring
user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as latches. These latches
are held only for the duration of an action on the page and not to the end of transaction. The page
locks also have blocking asynchronous system traps (ASTs) associated with them. Therefore,
whenever a process requests a page lock, the process holding that page lock is sent a blocking AST
(BLAST) by OpenVMS. The process that receives such a blocking AST queues the fact that the page
lock should be released as soon as possible. However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle Rdb verb is an
Oracle Rdb query that executes atomically, within a transaction. Therefore, verbs that require the scan
of a large table, for example, can be quite long. An updating application does not release page locks
until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental to the database
management system.

Oracle® Rdb for OpenVMS

9.4.6 Multiblock Page Writes May Require Restore Operation 271

9.5 SQL Known Problems and Restrictions for
Oracle Rdb Release 7.0 and Earlier
The following problems and restrictions from Oracle Rdb Release 7.0 and earlier still exist.

9.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE
IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2 and V5.1, but run
under higher versions of Oracle Rdb, may result in incorrect results or %RDB−E−ARITH_EXCEPT
exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE or recompile and relink under a
higher version (V6.0 or higher.)

9.5.2 Different Methods of Limiting Returned Rows from
Queries

You can establish the query governor for rows returned from a query by using either the SQL SET
QUERY LIMIT statement or a logical name. This note describes the differences between the two
mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value, the query often fails
with no rows returned regardless of the value assigned to the logical. The following example
demonstrates setting the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH 'FILENAME MF_PERSONNEL';
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can process the SELECT
statement. In this example, interactive SQL loads its metadata cache to allow it to check that the
column EMPLOYEE_ID really exists for the table. The queries on the Oracle Rdb system relations
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the limit to a
number less than 100 (the cardinality of EMPLOYEES) but more than the number of columns in
EMPLOYEES (that is, the number of rows to read from the RDB$RELATION_FIELDS system
relation) is sufficient to read each column definition.

To see an indication of the queries executed against the system relations, define the
RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same query, it returns the
number of rows specified by the SQL SET QUERY statement before failing:

9.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier 272

 SQL> ATTACH 'FILENAME MF_PERSONNEL';
 SQL> SET QUERY LIMIT ROWS 10;
 SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
 EMPLOYEE_ID
 00164
 00165
 .
 .
 .
 00173
 %RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded
 −RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows. Therefore, the queries
used to load the metadata cache are not restricted in any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and module processor command line
qualifiers (QUERY_MAX_ROWS and SQLOPTIONS=QUERY_MAX_ROWS) only limit user
queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other interfaces that
read the Oracle Rdb system relations as part of query processing.

9.5.3 Suggestions for Optimal Use of SHARED DATA
DEFINITION Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1.
Lock the index name.
Because new metadata (which includes the index name) is not written to disk until the end of
the index process, Oracle Rdb must ensure index name uniqueness across the database during
this time by taking a special lock on the provided index name.

2.

Read the table for sorting by selected index columns and ordering.3.
Sort the key data.4.
Build the index (includes partitioning across storage areas).5.
Write new metadata to disk.6.

Step 6 is the point of conflict with other index definers because the system relation and indexes are
locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING table_name FOR
SHARED DATA DEFINITION clause of the SET TRANSACTION statement. For optimal usage of
this capability, Oracle Rdb suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX statement so that
locks on the table are released. This avoids lock conflicts with other index definers and
improves overall concurrency.

♦

By assigning the location of the temporary sort work files SORTWORK0, SORTWORK1, ...
, SORTWORK9 to different disks for each parallel process that issues the SHARED DATA
DEFINITION statement, you can increase the efficiency of sort operations. This minimizes

♦

Oracle® Rdb for OpenVMS

9.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation273

any possible disk I/O bottlenecks and allows overlap of the SORT read/write cycle.
If possible, enable global buffers and specify a buffer number large enough to hold a
sufficient amount of table data. However, do not define global buffers larger than the
available system physical memory. Global buffers allow sharing of database pages and thus
result in disk I/O savings. That is, pages are read from disk by one of the processes and then
shared by the other index definers for the same table, reducing the I/O load on the table.

♦

If global buffers are not used, ensure that enough local buffers exist to keep much of the index
cached (use the RDM$BIND_BUFFERS logical name or the NUMBER OF BUFFERS IS
clause in SQL to change the number of buffers).

♦

To distribute the disk I/O load, store the storage areas for the indexes on separate disk drives.
Note that using the same storage area for multiple indexes results in contention during the
index creation (Step 5) for SPAM pages.

♦

Consider placing the .ruj file for each parallel definer on its own disk or an infrequently used
disk.

♦

Even though snapshot I/O should be minimal, consider disabling snapshots during parallel
index creation.

♦

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to determine the
appropriate working set values for each process to minimize excessive paging activity. In
particular, avoid using working set parameters where the difference between WSQUOTA and
WSEXTENT is large. The SORT utility uses the difference between these two values to
allocate scratch virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page faulting.

♦

The performance benefits of using SHARED DATA DEFINITION can best be observed
when creating many indexes in parallel. The benefit is in the average elapsed time, not in
CPU or I/O usage. For example, when two indexes are created in parallel using the SHARED
DATA DEFINITION clause, the database must be attached twice, and the two attaches each
use separate system resources.

♦

Using the SHARED DATA DEFINITION clause on a single−file database or for indexes
defined in the RDB$SYSTEM storage area is not recommended.

♦

The following table displays the elapsed time benefit when creating multiple indexes in parallel with
the SHARED DATA DEFINITION clause. The table shows the elapsed time for ten parallel process
index creations (Index1, Index2, ... Index10) and one process with ten sequential index creations
(All10). In this example, global buffers are enabled and the number of buffers is 500. The longest
time for a parallel index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
ten indexes sequentially with an elapsed time of 00:03:26.66. The longest single parallel create index
elapsed time is shorter than the elapsed time of creating all ten of the indexes serially.

Table 9−2 Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Oracle® Rdb for OpenVMS

9.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation274

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

9.5.4 Side Effect When Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate argument values by a
stored function. For example, if the routine being called is also called by a stored function during the
calculation of an argument value, passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the calculation of the
arguments for another invocation of the stored procedure P:

SQL> create module M
cont> language SQL
cont>
cont> procedure P (in :a integer, in :b integer, out :c integer);
cont> begin
cont> set :c = :a + :b;
cont> end;
cont>
cont> function F () returns integer
cont> comment is 'expect F to always return 2';
cont> begin
cont> declare :b integer;
cont> call P (1, 1, :b);
cont> trace 'returning ', :b;
cont> return :b;
cont> end;
cont> end module;
SQL>
SQL> set flags 'TRACE';
SQL> begin
cont> declare :cc integer;
cont> call P (2, F(), :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written to the called routine's
parameter area before complex expression values are calculated. These calculations may (as in the
example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the stored function F) to
a temporary variable and pass this variable as the input for the routine. The following example shows
the workaround:

SQL> begin
cont> declare :bb, :cc integer;
cont> set :bb = F();
cont> call P (2, :bb, :cc);
cont> trace 'Expected 4, got ', :cc;
cont> end;
~Xt: returning 2

Oracle® Rdb for OpenVMS

9.5.4 Side Effect When Calling Stored Routines 275

~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb.

9.5.5 Considerations When Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or ROLLBACK statement is
executed, the result set selected by the cursor may not remain stable. That is, rows may be inserted,
updated, and deleted by other users because no locks are held on the rows selected by the holdable
cursor after a commit or rollback occurs. Moreover, depending on the access strategy, rows not yet
fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a concurrent user
environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read and cached may
be stale by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2 deletes rows read by
user 1 (this is possible because the read locks are released). It is possible for user 1 to report
data now deleted and committed.

♦

If the access strategy uses indexes that allow duplicates, updates to the duplicates chain may
cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the data that was
fetched. However, the duplicates chain could be revised by the time Oracle Rdb returns to
using it.

♦

Holdable cursors are a very powerful feature for read−only or predominantly read−only
environments. However, in concurrent update environments, the instability of the cursor may not be
acceptable. The stability of holdable cursors for update environments will be addressed in future
versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to the value 1 to force all
hold cursors to fetch the result set into a cached data area. (The cached data area appears as a
"Temporary Relation" in the optimizer strategy displayed by the SET FLAGS 'STRATEGY'
statement or the RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor to
some degree.

9.5.6 AIJSERVER Privileges

For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created with only NETMBX
and TMPMBX privileges. These privileges are sufficient to start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate to ensure continued
replication in all environments and workload situations. Therefore, Oracle recommends that the DBA
provide the following additional privileges for the AIJSERVER account:

ALTPRI − This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

♦

PSWAPM − This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

♦

Oracle® Rdb for OpenVMS

9.5.5 Considerations When Using Holdable Cursors 276

SETPRV − This privilege allows the AIJSERVER to temporarily set any additional privileges
it may need to access the standby database or its server processes.

♦

SYSPRV − This privilege allows the AIJSERVER to access the standby database rootfile, if
necessary.

♦

WORLD − This privilege allows the AIJSERVER to more accurately detect standby database
server process failure and handle network failure more reliably.

♦

| Contents

Oracle® Rdb for OpenVMS

9.5.5 Considerations When Using Holdable Cursors 277

	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	October 2014
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Access to Oracle Support
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.3.1.2
	1.1 Oracle Rdb on HP OpenVMS Industry Standard 64
	1.2 Requirements
	1.2.1 Ensure No Processes Have RDMSHRP Image Activated

	1.3 Intel Itanium Processor 9300 "Tukwila" Support
	1.4 Maximum OpenVMS Version Check
	1.5 Database Format Changed
	1.6 Using Databases from Releases Earlier than V7.0
	1.7 Invoking the VMSINSTAL Procedure
	1.8 Stopping the Installation
	1.9 After Installing Oracle Rdb
	1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required
	1.11 Installation, Configuration, Migration, Upgrade Suggestions
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.3.1.2
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Ranked Index Bugchecks - PSII2REMOVEDUPBBC & PSII2INSERTDUPBBC
	2.1.2 Wrong Result From a Nested UNION Query With OR Predicate
	2.1.3 Dialect SQL99 Does Not Use Max Key Lookup
	2.1.4 Inner Join Query With NOT LIKE Predicate Slows Down
	2.1.5 Unable to Call External Routine When Attached Remotely to a Database
	2.1.6 RDMDBRBUG Bugcheck at RUJUTL$BIJBL_GET_FORWARD + 1E0
	2.1.7 Join Query Returns Wrong Result With Index Counts Lookup Using Ranked Index
	2.1.8 Unexpected Zero Cardinality Set for Some Tables
	2.1.9 Query With Aggregate Bugchecks Using Match Strategy

	2.2 SQL Errors Fixed
	2.2.1 Unexpected Zero Result From COUNT Aggregate
	2.2.2 Unexpected -RDMS-F-ACTQUERY Error During ALTER TABLE
	2.2.3 Unexpected SQL Bugcheck With Malformed INSERT or UPDATE Column Target
	2.2.4 Incorrect Evaluation of DEFAULT Expression During INSERT Statement

	2.3 RMU Errors Fixed
	2.3.1 RMU Unload Not Generating Oracle Style INTERVAL DAY Values
	2.3.2 Full Backup No Longer Required After Altering the Snapshot Area Page Allocation
	2.3.3 RMU Unload After_Journal Did Not Correctly Unload Oracle Database Format Date/Time Values
	2.3.4 RMU Convert Leaves After Image Journal SUPPRESSED

	2.4 RMU Show Statistics Errors Fixed
	2.4.1 RMU/SHOW STATISTICS Playback Zeroed Final Transaction Duration Screen
	2.4.2 Field Help Missing for Some RMU Show Statistics Fields

	Chapter 3Software Errors Fixed in Oracle Rdb Release 7.3.1.1
	3.1 Software Errors Fixed That Apply to All Interfaces
	3.1.1 Memory Leak Corrected in Queries That Use Sorting
	3.1.2 Wrong Result Using Match Strategy on EXISTS Subquery
	3.1.3 Bugcheck at DIOFETCH$FETCH_SNAP_SEG
	3.1.4 Performance Improvement for OJ Query With Temporary TTBL and Sort
	3.1.5 In Some Cases System User Audited Instead of Session User
	3.1.6 Using BEGIN/END Around Set Transaction Leads to Memory Leak
	3.1.7 Excessive Alignment Faults on Client Side Using RDB$REMOTE
	3.1.8 Ranked Index Bugchecks - PSII2REMOVEDUPBBC & PSII2INSERTDUPBBC

	3.2 SQL Errors Fixed
	3.2.1 Memory Leak Possible in DESCRIBE Dynamic SQL Statement
	3.2.2 Changes to Date/Time Literal Processing
	3.2.3 Unexpected Bugcheck From Invalid DBKEY Use
	3.2.4 Not Equals Operator Causes BITMAPPED SCAN Strategy to be Rejected
	3.2.5 Data Dictionary Tables Now Use Key Suffix Compression
	3.2.6 Unexpected Bugcheck When Using NUMBER OF SWEEP ROWS Clause
	3.2.7 Memory Leak Possible When Using BITMAPPED SCAN Queries

	3.3 RMU Errors Fixed
	3.3.1 RMU/CONVERT/ROLLBACK From V7.3 May Prevent Access to Some Tables
	3.3.2 Bugcheck from RMU/VERIFY/ALL After Constraint Verification
	3.3.3 Unexpected Bugcheck During Large RMU Load When Using /Defer_Index_Updates Qualifier
	3.3.4 RMU/BACKUP/AFTER_JOURNAL Returned a Success Status if %RMU-F-AIJJRNBSY
	3.3.5 Unexpected Failure of RMU/SET AIP and RMU/SHOW AIP
	3.3.6 RMU/SET AUDIT Ignoring "*" Wildcard for the IDENTIFIERS Option

	Chapter 4Software Errors Fixed in Oracle Rdb Release 7.3.1.0
	4.1 Software Errors Fixed That Apply to All Interfaces
	4.1.1 Make Values in RDB$CLIENT_DEFAULTS.DAT Case Insensitive
	4.1.2 Query Ignores Potentially Useful BgrNdx
	4.1.3 Query Runs Slow Executing BGRNDX2 With Full Index Scan
	4.1.4 Filter Predicates are Ignored in Aggregate Query
	4.1.5 Parallel Index Build Name Restriction Relaxed
	4.1.6 EXQUOTA Caused Inaccessible AIJ
	4.1.7 Query Bugchecks with MAX, MIN or COUNT

	4.2 SQL Errors Fixed
	4.2.1 NULL Elimination Semantics Now Supported by COUNT Function
	4.2.2 Unexpected FOREIGN KEY Constraint Failure Due to Mismatched Evaluating Time
	4.2.3 Unexpected RDB-E-OBSOLETE_METADA Error During ALTER TABLE
	4.2.4 Unexpected RDMS-F-ACTQUERY Query Error From ALTER TABLE ... DROP COLUMN

	4.3 RMU Errors Fixed
	4.3.1 Unexpected Definitions in RMU Extract Output
	4.3.2 RMU BACKUP GROUP_SIZE Default Value Increased
	4.3.3 RMU Parallel Backup Fails With /PROTECTION Qualifier
	4.3.4 Improvements to RMU/COLLECT OPTIMIZER_STATISTICS

	4.4 RMU Show Statistics Errors Fixed
	4.4.1 RMU/SHOW/STATISTICS Avoids VASFULL Errors By Moving to P2 Address Space

	Chapter 5Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2
	5.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.2
	5.1.1 New FULBCKREQ Message Output When a Full Backup is Required
	5.1.2 New TRACE Option for EXPORT DATABASE Statement
	5.1.3 New /NOAFTER_JOURNAL Qualifier to Disable AIJ File Creation by RMU/RECOVER
	5.1.4 Enhance Dumper of Merge Range List
	5.1.5 RMU Extract Now Extracts SYS_GET_DIAGNOSTIC Function
	5.1.6 Alter Index Now Supports REVERSE and NOREVERSE Clauses
	5.1.7 SQL Precompiler Now Generates C++ Compatible Intermediate C Source
	5.1.8 New RMU/RECOVER Feature to Alter Storage Areas, After_Journal and Record_Cache Directories
	5.1.9 RMU Unload Record_Definition File Can Include Offset and Length Comment
	5.1.10 New RMU/DUMP/BACKUP Enhanced Error Handling Features
	5.1.11 New REVERSE Attribute for CREATE SEQUENCE Statement and IDENTITY Clause

	Chapter 6Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1
	6.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.1
	6.1.1 New LIMIT_TO Qualifier Added to RMU Load Command
	6.1.2 New BEFORE and SINCE Qualifiers Added to RMU Load Audit
	6.1.3 New RMU/SHOW/STATISTICS Output File Periodic Buffer Flushes
	6.1.4 New Error and Log Messages Added for Segmented String Verification

	Chapter 7Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0
	7.1 Enhancements And Changes Provided in Oracle Rdb Release 7.3.1.0
	7.1.1 Changes to Default and Limits Behavior in Oracle Rdb
	7.1.2 New /ERROR_LIMIT Qualifier Added as the Default to RMU/VERIFY
	7.1.3 RMU /VERIFY Root Displays the Corrupt Page Table Entries
	7.1.4 DECLARE LOCAL TEMPORARY TABLE Supports COMMENT IS Clause
	7.1.5 Temporary Tables Now Support LARGE MEMORY Option
	7.1.6 COUNT Now Returns BIGINT Result
	7.1.7 Aggregate Functions Now Use BIGINT Counters
	7.1.8 /[NO]KEY_VALUES Qualifier Added to RMU/VERIFY/INDEX
	7.1.9 The /LOCK_TIMEOUT Qualifier Now Allows the Database Default
	7.1.10 Compression of AIJ Backup Files for Automatic AIJ Backups
	7.1.11 Global Statistics Sections for Better Performance
	7.1.12 RMU/SET AUDIT Supports Wildcard Table and Column Names
	7.1.13 RMU/BACKUP Database Root Verification Performance Enhancement
	7.1.14 RMU /UNLOAD /AFTER_JOURNAL New Qualifier /DELETES_FIRST
	7.1.15 Add Option to Pass Values to /CONFIRM During RESTORE Operation
	7.1.16 Table Names Can Now Be Specified For Index Verification
	7.1.17 New RMU/VERIFY Feature to Detect Orphan Hash Index Buckets
	7.1.18 New COMPILE Clause for ALTER TRIGGER Statement
	7.1.19 New COMPILE ALL TRIGGERS Clause for ALTER TABLE Statement
	7.1.20 New RETRY Clause for ACCEPT Statement
	7.1.21 New Character Sets ISOLATIN2 and WIN_LATIN2 Supported
	7.1.22 Changes and Enhancements to Trigger Support
	7.1.23 New RMU BACKUP RBF File BRHK_ROOT1, BRHK_ROOT2, BRH$K_ROOT3 Records /kroot_records
	7.1.24 New Functions NUMTODSINTERVAL, NUMTOYMINTERVAL Supported
	7.1.25 RMU Dump Audit Command
	7.1.26 New BIN_TO_NUM Numeric Function
	7.1.27 RMU /PROGRESS_REPORT and Control-T for RMU Backup and Restore
	7.1.28 /[NO]SNAPSHOTS, /[NO]DATA_FILE Added to RMU/MOVE_AREA
	7.1.29 Enhancements for Compression Support in SQL EXPORT DATABASE Command
	7.1.30 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/INDEXES
	7.1.31 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE Storage Statistics
	7.1.32 /[NO]PARTITIONS Qualifier Added to RMU/ANALYZE/PLACEMENT
	7.1.33 New RMU/[NO]ASSIST Qualifier for Commands Using Tape Drives
	7.1.34 New RMU/ALTER Feature to Modify the Area Header Root File Specification
	7.1.35 REVERSE Index
	7.1.36 Support for New Syntax for Sequence Generator Statements
	7.1.37 RMU/SET AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW
	7.1.38 RMU/SHOW AUDIT Supports MODULE, ROUTINE, SEQUENCE and VIEW
	7.1.39 SQL Now Supports SQL Standard Syntax for SET CONSTRAINTS ALL Statement
	7.1.40 Support ANSI and ISO SQL Standard Length Units
	7.1.41 New SET FLAGS Clause Supported by CREATE and ALTER PROFILE
	7.1.42 New Support for SAVEPOINT Syntax and Semantics
	7.1.42.1 SAVEPOINT Statement
	7.1.42.2 RELEASE SAVEPOINT Statement
	7.1.42.3 ROLLBACK TO SAVEPOINT Statement

	7.1.43 New OPTIMIZE OUTLINE Clause Allows Outline Specification
	7.1.44 RMU/DUMP/HEADER=ROW_CACHE Now Displays Whether Row Cache is Enabled
	7.1.45 RMU/LOAD Now Supports CSV Formatted Files
	7.1.46 RMU/UNLOAD Now Supports CSV Formatted Files
	7.1.47 RMU/UNLOAD Supports BITMAPPED_SCAN Optimize Option
	7.1.48 New EDIT STRING Clause for CREATE FUNCTION and CREATE MODULE Functions
	7.1.49 Changes to RMU/VERIFY/CONSTRAINTS and ALTER TABLE Statement
	7.1.50 New SQRT Numeric Function
	7.1.51 New MOD Numeric Function
	7.1.52 New Data Types BINARY and BINARY VARYING
	7.1.53 PERSONA SUPPORT is Enabled For All New Databases
	7.1.54 New Dialects Support in SQL
	7.1.55 New WITH Clause Provides Subquery Factoring
	7.1.56 DECLARE LOCAL TEMPORARY VIEW Statement
	7.1.57 Enhancements for Buffered Read Support in SQL EXPORT DATABASE Command
	7.1.58 New BITMAPPED SCAN Clauses Added to OPTIMIZE Clause
	7.1.59 New Support for Allocations Specified Using Quantified Numeric Literal
	7.1.60 New SQL Functions Added
	7.1.61 Changes and Improvements to the Rdb Optimizer and Query Compiler
	7.1.62 Optimized NOT NULL Constraint Execution
	7.1.63 New RMU/LOAD Option CHARACTER_ENCODING_XML
	7.1.64 New MEMORY ALLOCATION Clause for the GLOBAL BUFFERS Definition
	7.1.65 New REPLACE Statement

	Chapter 8Documentation Corrections, Additions and Changes
	8.1 Documentation Corrections
	8.1.1 Oracle Rdb Release 7.3.x.x New Features Document Added
	8.1.2 Oracle Rdb Position on NFS Devices
	8.1.3 RDM$BIND_STAREA_EMERGENCY_DIR Logical Name
	8.1.4 RDMS-F-FULLAIJBKUP, Partially-Journaled Changes Made
	8.1.5 Undocumented Hot Standby Logical Names
	8.1.6 Clarification on Using the RMU/VERIFY SEGMENTED_STRINGS Qualifier
	8.1.7 Missing Documentation for the TRANSACTION_TYPE Keyword for GET DIAGNOSTICS
	8.1.8 Clarification on Using the RMU/UNLOAD TRIM=TRAILING Option
	8.1.9 Corrections to the EDIT STRING Documentation
	8.1.10 Revised SUBSTRING Description
	8.1.11 New OVERLAY Built-in Function
	8.1.12 Changes and Improvements to the Rdb Optimizer and Query Compiler
	8.1.13 Missing or Incorrect Documentation for SET AUTOMATIC TRANSLATION Command
	8.1.14 Required Privileges for AUTHORIZATION Clause of CREATE MODULE
	8.1.15 Missing Documentation for CREATE OUTLINE Statement
	8.1.16 Sorting Capabilities in Oracle Rdb
	8.1.17 RMU /SET ROW_CACHE Command Updates
	8.1.18 Documentation for the DEBUG_OPTIONS Qualifier of RMU/Unload
	8.1.19 Revised Example for SET OPTIMIZATION LEVEL Statement
	8.1.20 RMU /VERIFY Process Quotas and Limits Clarification
	8.1.21 Online Backup Can Be Performed With Transfer Via Memory
	8.1.22 Missing Example for CREATE STORAGE MAP
	8.1.23 RDM$BIND_MAX_DBR_COUNT Documentation Clarification
	8.1.24 Database Server Process Priority Clarification
	8.1.25 Clarification of PREPARE Statement Behavior
	8.1.26 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	8.1.27 Missing Tables Descriptions for the RDBEXPERT Collection Class
	8.1.28 Missing Columns Descriptions for Tables in the Formatted Database

	8.2 Address and Phone Number Correction for Documentation
	8.3 Online Document Format and Ordering Information
	Chapter 9Known Problems and Restrictions
	9.1 Known Problems and Restrictions in All Interfaces
	9.1.1 Known Problems With REVERSE Indices
	9.1.2 Null Elimination Warning Not Generated for Some Aggregates
	9.1.3 RMU/BACKUP/AFTER_JOURNAL Ignores the Default After Journal Compression Setting
	9.1.4 RMU /VERIFY /KEY_VALUES May Fail on Some Indices
	9.1.5 REPLACE Statement Fails With Primary Key Constraint Failure When Used on a View
	9.1.6 Possible Incorrect Results When Using Partitioned Descending Indexes
	9.1.7 Remote Attach Stalls Before Detecting a Node is Unreachable
	9.1.8 Application and Oracle Rdb Both Using SYS$HIBER
	9.1.9 Unexpected RCS Termination
	9.1.10 Changes for Processing Existence Logical Names
	9.1.11 Patch Required When Using VMS V8.3 and Dedicated CPU Lock Manager
	9.1.12 SQL Module or Program Fails with %SQL-F-IGNCASE_BAD
	9.1.13 External Routine Images Linked with PTHREAD$RTL
	9.1.14 Using Databases from Releases Earlier than V7.0
	9.1.15 ILINK-E-INVOVRINI Error on I64
	9.1.16 New Attributes Saved by RMU/UNLOAD Incompatible With Prior Versions
	9.1.17 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment
	9.1.18 Oracle Rdb and OpenVMS ODS-5 Volumes
	9.1.19 Optimization of Check Constraints
	9.1.20 Carryover Locks and NOWAIT Transaction Clarification
	9.1.21 Unexpected Results Occur During Read-Only Transactions on a Hot Standby Database
	9.1.22 Row Cache Not Allowed While Hot Standby Replication is Active
	9.1.23 Excessive Process Page Faults and Other Performance Considerations During Oracle Rdb Sorts
	9.1.24 Control of Sort Work Memory Allocation
	9.1.25 The Halloween Problem

	9.2 SQL Known Problems and Restrictions
	9.2.1 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL Precompiler
	9.2.2 Multistatement or Stored Procedures May Cause Hangs
	9.2.3 Use of Oracle Rdb from Shareable Images

	9.3 Oracle RMU Known Problems and Restrictions
	9.3.1 RMU/CONVERT Fails When Maximum Relation ID is Exceeded
	9.3.2 RMU/UNLOAD/AFTER_JOURNAL Requires Accurate AIP Logical Area Information
	9.3.3 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL Command
	9.3.4 Changes in EXCLUDE and INCLUDE Qualifiers for RMU/BACKUP
	9.3.5 RMU/BACKUP Operations Should Use Only One Type of Tape Drive
	9.3.6 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

	9.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier
	9.4.1 Converting Single-File Databases
	9.4.2 Row Caches and Exclusive Access
	9.4.3 Exclusive Access Transactions May Deadlock with RCS Process
	9.4.4 Strict Partitioning May Scan Extra Partitions
	9.4.5 Restriction When Adding Storage Areas with Users Attached to Database
	9.4.6 Multiblock Page Writes May Require Restore Operation
	9.4.7 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application

	9.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier
	9.5.1 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	9.5.2 Different Methods of Limiting Returned Rows from Queries
	9.5.3 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation
	9.5.4 Side Effect When Calling Stored Routines
	9.5.5 Considerations When Using Holdable Cursors
	9.5.6 AIJSERVER Privileges

