
Oracle Rdb

Oracle SQL/Services Server Configuration Guide

Release 7.3.1

March 2011

This document contains configuration information specific to Oracle SQL/Services and
OCI Services for Oracle Rdb release 7.3.1 for OpenVMS Alpha and HP OpenVMS
Industry Standard 64 for Integrity Servers.

ii

Oracle SQL/Services Server Configuration Guide, Release 7.3.1 for OpenVMS Alpha and HP OpenVMS
Industry Standard 64 for Integrity Servers

Copyright © 1995, 2011, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these Programs,
no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial techincal data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement,
and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer
Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Oracle SQL/Services, Oracle Rdb7, and SQL*Net are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality
of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services.
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

 iii

Contents

List of ExamplesList of TablesList of Figures

Send Us Your Comments .. xiii

Preface... xv

Intended Audience ... xv
Operating System Information .. xv
Structure.. xvi
Related Documentation .. xvi
Conventions .. xvi

1 Overview

1.1 Oracle SQL/Services .. 1-1
1.1.1 Server Management Utility ... 1-5
1.1.2 Privileges Needed to Manage a Server ... 1-5
1.1.3 Running the SQLSRV_MANAGE Utility.. 1-6
1.2 Online Versus Offline Server Management ... 1-6
1.3 OCI Services for Oracle Rdb ... 1-9
1.3.1 Oracle Call Interface ... 1-10
1.3.2 Server-Side Solution ... 1-10
1.3.3 Common Application Development ... 1-11

2 Managing an Oracle SQL/Services System

2.1 Getting Started.. 2-1

iv

2.2 Planning an Oracle SQL/Services Server Configuration ... 2-2
2.3 Setting Shared Memory Size .. 2-3
2.4 Managing Server Components ... 2-6
2.4.1 Managing a Server .. 2-6
2.4.2 Managing a Dispatcher.. 2-10
2.4.3 Managing a Service ... 2-13
2.5 Setting Up Dispatchers and Transport Selection.. 2-16
2.6 Setting Up Services and Types of Reuse.. 2-17
2.6.1 Session Reusable Universal Services .. 2-20
2.6.2 Session Reusable Database Services ... 2-21
2.6.3 Transaction Reusable Database Services .. 2-21
2.6.4 When to Use Session Reusable Versus Transaction Reusable Database Services 2-23
2.7 Setting Database Access Authorization.. 2-24
2.7.1 Specify a Default Connect User Name for the SQL/Services Protocol 2-27
2.7.2 Grant or Restrict Access to a Service.. 2-28
2.7.3 Provide Arbitrary or Predefined Access to Data ... 2-28
2.8 Setting Up Security on Servers... 2-29
2.8.1 Client Identification and Authentication ... 2-30
2.8.2 Service Access Authorization ... 2-31
2.8.3 Database and Data Access Authorization ... 2-32
2.8.4 How Server Security Tiers Work Together for the SQL/Services Protocol 2-32
2.9 Understanding Database Access Authorization Models for Oracle SQL/Services 2-35
2.9.1 Accessing an Oracle Rdb Database... 2-35
2.9.2 Setting the Process User Name and the Oracle Rdb System User Name 2-38
2.10 Considering Security for Selecting the Service Owner User Name....................................... 2-39
2.10.1 Execution Environment for Database Requests .. 2-39
2.10.2 Execution Environment for External Functions and Procedures 2-41
2.11 Setting the Attributes for Number of Executors... 2-43
2.11.1 Configuring a Fixed Number of Executors for a Service.. 2-43
2.11.2 Configuring a Variable Number of Executors for a Service ... 2-43
2.12 Using a SQL Initialization File... 2-44
2.13 Using SQL/Services Logical Names .. 2-44
2.13.1 RDB$DDTM_XG_INFO Logical.. 2-46
2.13.2 SQLNET_BLOB or SQLNET_BLOB_DATA_TYPES Logicals 2-46
2.13.3 SQLNET_BUGCHECK_FILE Logical .. 2-46

v

2.13.4 SQLNET_DEBUG_FLAGS Logical.. 2-46
2.13.5 SQLNET_DOMAIN Logical.. 2-46
2.13.6 SQLNET_MAXLONGRAW Logical .. 2-47
2.13.7 SQLNET_RECO_USER Logical ... 2-47
2.13.8 SQLNET_STRUCTURED_DATE_TYPES Logical ... 2-47
2.13.9 SQLNET_TIMESTAMP_DATE_TYPE Logical .. 2-47
2.13.10 SQLNET_VALIDATE_PROGRAM Logical .. 2-48
2.13.11 SQLSRV_DISP_LOGPATH and SQLSRV_DISP_DUMPPATH Logicals 2-48
2.13.12 SQLSRV_EXEC_LOG Logical ... 2-49
2.13.13 SQLSRV$ALLOW_CAPTIVE Logical... 2-49
2.13.14 SQLSRV$CHECK_EXPIRED_PASSWORDS Logical.. 2-49
2.13.15 SQLSRV$LOG_CONNECTIONS Logical.. 2-50
2.13.16 SQLSRV$MAX_EXECUTOR_FAILURES Logical .. 2-50
2.13.17 SQLSRV$UPDATE_LOGIN_FREQUENCY Logical .. 2-50

3 Maintaining an Oracle SQL/Services Server

3.1 Monitoring Server Activity .. 3-1
3.2 Monitoring Client Connections.. 3-2
3.2.1 Client Connection States for Session Reusable Services.. 3-2
3.2.2 Client Connection States for Transaction Reusable Database Services 3-3

4 OCI Services for Oracle Rdb Features

4.1 OCI Message Mapping... 4-1
4.2 Cursor Management ... 4-2
4.3 Data Types.. 4-2
4.4 Data Definition Language .. 4-2
4.5 SQL Cursor Semantics ... 4-2
4.6 Oracle SQL ALTER SESSION Statement... 4-2
4.7 Data Formatting.. 4-2
4.8 Statement Parsing ... 4-3
4.9 Data Type Descriptions .. 4-4
4.10 Oracle Data Dictionary... 4-5
4.11 Multischema Emulation ... 4-6
4.12 Handling 31-Character Object Names ... 4-7

vi

5 Configuring OCI Services for Oracle Rdb

5.1 Preparing Your Database for OCI Services for Oracle Rdb... 5-2
5.1.1 Defining Oracle Functions and the Emulated Oracle Data Dictionary 5-2
5.1.2 How to Determine If a Database Requires a Data Dictionary Upgrade............................ 5-4
5.1.3 Granting privileges .. 5-4
5.1.4 Adding Users... 5-4
5.2 Defining Oracle SQL/Services Dispatchers and Services.. 5-5
5.2.1 Creating OCI Dispatchers ... 5-5
5.2.2 Creating OCI Services... 5-6
5.3 Configuring OCI Connections.. 5-8
5.3.1 Configuring LISTENER.ORA .. 5-9
5.3.2 Configuring LISTENER.ORA for an OpenVMS Cluster... 5-11
5.3.3 Configuring TNSNAMES.ORA ... 5-13
5.3.4 Configuring SQLNET.ORA.. 5-17
5.3.5 Configuring for the Oracle Connect Timeout Feature .. 5-19
5.4 Starting Up and Testing the Environment .. 5-20
5.4.1 Starting Dispatchers and Services ... 5-20
5.4.2 OCI Services for Oracle Rdb Server Configuration Test Tool 5-21
5.4.3 Connecting Using OCI Services for Oracle Rdb .. 5-22
5.5 Using the RDB_NATCONN Command File ... 5-22
5.5.1 Preparing a Database ... 5-23
5.5.2 Upgrading a Database ... 5-23
5.5.3 Removing OCI Services for Oracle Rdb... 5-24
5.5.4 Adding Users and Passwords .. 5-24
5.5.5 Modifying Passwords.. 5-25
5.5.6 Removing a User ... 5-27
5.5.7 Showing Users... 5-27
5.6 Using Stored Procedures to Add, Modify and Drop Users .. 5-28
5.6.1 ORA_CREATE_USER... 5-28
5.6.2 ORA_DROP_USER.. 5-28
5.6.3 ORA_CREATE_USER Program Example... 5-29
5.6.4 ORA_CREATE_USER Rdb SQL Example ... 5-29
5.6.5 ORA_CREATE_USER SQL*Plus Example .. 5-30
5.7 Defining Character Sets.. 5-30
5.7.1 Defining Character Sets on Server Systems.. 5-32

vii

5.7.2 Defining Character Sets on Client Systems .. 5-33
5.7.3 Rules and Recommendations .. 5-33
5.8 Referencing an Oracle Rdb Database as a Database Link ... 5-33
5.8.1 CREATE DATABASE LINK Example ... 5-34
5.8.2 Database Link Restrictions ... 5-35

6 SQL ALTER SESSION Statement

ALTER SESSION Statement... 6-2

7 Management Commands

7.1 Syntax Conventions.. 7-1
7.2 How SQLSRV_MANAGE Commands Work ... 7-4

–input Switch.. 7-9

–output Switch.. 7-10

@ Command... 7-11

ALTER DISPATCHER Command.. 7-12

ALTER SERVER Command ... 7-17

ALTER SERVICE Command.. 7-21

CLOSE Command.. 7-30

CONNECT TO SERVER Command... 7-31

COPY SERVICE Command.. 7-34

CREATE DISPATCHER Command ... 7-43

CREATE SERVER Command .. 7-47

CREATE SERVICE Command ... 7-51

DISCONNECT SERVER Command... 7-59

DROP Command.. 7-60

DROP SERVER Command ... 7-62

EXIT Command ... 7-63

EXTRACT Command.. 7-64

GRANT USE ON SERVICE Command ... 7-67

HELP Command .. 7-69

KILL EXECUTOR Command... 7-70

viii

OPEN Command .. 7-72

RESTART SERVER Command .. 7-74

REVOKE USE ON SERVICE Command ... 7-76

SET CONFIGURATION_FILE Command ... 7-78

SET CONFIRM Command .. 7-80

SET CONNECTION Command .. 7-81

SET OUTPUT Command... 7-83

SET VERIFY Command.. 7-84

SHOW CLIENTS Command ... 7-85

SHOW CONNECTIONS Command ... 7-89

SHOW DISPATCHER Command ... 7-90

SHOW SERVER Command .. 7-93

SHOW SERVICE Command ... 7-95

SHOW SETTINGS Command... 7-98

SHOW VERSION Command .. 7-99

SHUTDOWN DISPATCHER Command.. 7-100

SHUTDOWN SERVER Command ... 7-101

SHUTDOWN SERVICE Command.. 7-102

START DISPATCHER Command .. 7-103

START SERVER Command ... 7-104

START SERVICE Command .. 7-106

8 Logging and Troubleshooting

8.1 Problem Reporting.. 8-1
8.2 Error Messages ... 8-2
8.3 Log Files on the Server... 8-2
8.3.1 Oracle SQL/Services Monitor Log File .. 8-3
8.3.2 Oracle SQL/Services Dispatcher Log Files .. 8-3
8.3.3 Oracle SQL/Services Executor Log Files ... 8-4
8.3.4 Enabling Executor Logging for OCI Services for Oracle Rdb ... 8-5
8.3.5 Enabling Logging from SQL and Oracle Rdb .. 8-6
8.3.6 Disabling Logging in SQL/Services ... 8-6

ix

8.4 Inspecting SQL/Services API Log Files .. 8-7
8.4.1 Client and Driver Logging .. 8-7
8.4.2 Winsock Logging .. 8-8
8.4.3 Oracle Net Logging... 8-8
8.4.4 ODBC Tracing .. 8-9
8.5 Process Failures .. 8-9
8.5.1 Monitor Process Failures .. 8-9
8.5.2 Dispatcher Process Failures .. 8-9
8.5.3 Executor Process Failures ... 8-10
8.6 Investigating Different Types of Problems .. 8-10
8.6.1 Network Transport Problems .. 8-10
8.6.2 User Authentication and Authorization Problems .. 8-11
8.6.3 Executor Failures During Service Startup .. 8-11
8.6.4 Executor Problems During Client Connect... 8-11
8.6.5 Executor Problems During Client Request Execution .. 8-12
8.6.6 Server Failed Due to an Internal Error.. 8-12
8.6.7 Connections from Clients No Longer Work After Installing Oracle SQL/Services....... 8-13
8.6.8 Network Errors.. 8-13
8.7 Error Messages Returned to OCI Client Applications ... 8-14
8.7.1 Logon Error... 8-14
8.7.2 Database Setup Error .. 8-14
8.7.3 SQL Initialization File Error ... 8-15
8.7.4 Errors Attaching to an Rdb Database or with Oracle SQL/Services Database Service.. 8-15
8.7.5 Errors When Oracle SQL/Services Server or OCI Dispatcher Is Not Available............ 8-16
8.7.6 Error When Oracle Net Service Name Is Not Defined ... 8-16

Index

x

List of Examples

2–1 Default Universal Service with Database Access Authorization Set to Connect User Name 2-24
2–2 Universal Service with Database Access Authorization Set to Service Owner 2-25
2–3 Session Reusable Database Service with Access Authorization Set to Connect User Name 2-26
2–4 Transaction Reusable Database Service with Access Authorization Set to Service Owner .. 2-27
4–1 Inserting an Oracle Date Literal into an ANSI Date Column .. 4-3
4–2 Inserting the Word CALL into a Procedure Call.. 4-4
5–1 Creating an OCI Dispatcher ... 5-6
5–2 Creating an OCI Database Service ... 5-6
5–3 Creating an OCI Universal Service .. 5-7
5–4 LISTENER.ORA Entry .. 5-10
5–5 LISTENER.ORA on Cluster: Shared Dispatcher & One Listener Port 5-11
5–6 LISTENER.ORA on Cluster: Shared Dispatcher & Multiple Listener Ports 5-12
5–7 OCI Dispatcher on Cluster: Shared Dispatcher & Multiple Listeners 5-12
5–8 LISTENER.ORA on Cluster: Shared Dispatcher & Multiple Listeners 5-13
5–9 Database Service Example ... 5-14
5–10 Simple File Specification Universal Service Example... 5-16
5–11 SQL ATTACH Statement Universal Service Example.. 5-16
5–12 @File_Spec Universal Service Example.. 5-17
5–13 SQLNET.ORA Entry Example .. 5-18
5–14 Executing OCI Configuration Test Tool .. 5-21
5–15 SQLSRV_NATCONN_DBS.DAT Example ... 5-25
5–16 Program Using ORA_CREATE_USER... 5-29
5–17 Rdb SQL Script Using ORA_CREATE_USER... 5-29
5–18 SQL*Plus Script Using ORA_CREATE_USER ... 5-30

xi

List of Tables

1–1 Oracle SQL/Services Server Management Online and Offline Commands 1-7
1–2 OCI Services for Oracle Rdb Processing Features... 1-11
2–1 Default Settings for Server Object Attributes .. 2-9
2–2 Default Settings for Dispatcher Object Attributes ... 2-11
2–3 Default Settings for Service Object Attributes... 2-14
2–4 Oracle SQL/Services Service Attributes .. 2-19
2–5 When to Use Session Reusable Versus Transaction Reusable Database Services 2-23
2–6 SQL/Services Logical Names .. 2-45
2–7 Valid SQLSRV$UPDATE_LOGIN_FREQUENCY Logical Values 2-50
5–1 Steps to Configure for OCI Services for Oracle Rdb... 5-2
5–2 Valid Parameters for Enabling SQLNET.ORA Tracing .. 5-18
5–3 Supported Character Sets ... 5-31
7–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a Command............. 7-5
7–2 SQLSRV_MANAGE Environment Commands and Switches.. 7-7
8–1 Error Code Files for DECnet.. 8-14
8–2 Error Code Files for TCP/IP... 8-14

xii

List of Figures

1–1 Simplest Client/Server Architecture... 1-1
1–2 Oracle SQL/Services Server System .. 1-2
1–3 Oracle SQL/Services Client/Server Architecture ... 1-3
1–4 Client/Server Processing .. 1-10
2–1 Oracle SQL/Services Session Reusable Universal Services .. 2-20
2–2 Oracle SQL/Services Session Reusable Database Services ... 2-21
2–3 Oracle SQL/Services Transaction Reusable Database Services .. 2-23
2–4 Oracle SQL/Services Server Security .. 2-33
3–1 Client Connection States for Session Reusable Services ... 3-2
3–2 Client Connection States for Transaction Reusable Database Services 3-4

xiii

Send Us Your Comments

Oracle SQL/Services Server Configuration Guide, Release 7.3.1.0

Oracle welcomes your comments and suggestions on the quality and usefulness of this document. Your input is
an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document title and
part number, and the chapter, section, and page number (if available). You can send comments to us in the fol-
lowing ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle Rdb
■ Postal service:

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) electronic mail
address.

 If you have problems with the software, please contact your local Oracle Support Services.

xiv

xv

Preface

Oracle Rdb is a general-purpose database management system based on the relational data
model.

Oracle SQL/Services, a client/server component of Oracle Rdb, enables a client application
program, invoked on a remote client computer running on a supported operating system or
transport, to access Oracle Rdb databases.

OCI Services for Oracle Rdb (previously known as SQL*Net for Oracle Rdb) allows you to
run existing OCI applications to access Rdb databases.

This manual describes how to maintain and tune Oracle SQL/Services and OCI Services for
Oracle Rdb server systems.

Intended Audience
This manual is written for the system manager responsible for maintaining and fine-tuning
Oracle SQL/Services and OCI Services for Oracle Rdb. System managers should refer to the
installation guide, which provides important information about the installation of an Oracle
SQL/Services system.

Operating System Information
You can find information about the versions of the operating system and optional software
that are compatible with this release of Oracle Rdb and Oracle SQL/Services in the
installation guides and release notes for Oracle Rdb and Oracle SQL/Services.

Contact your Oracle representative if you have other questions about compatibility.

xvi

Structure
This manual contains the following chapters:

Related Documentation
For more information, see the other manuals in this documentation set, especially the
following:

■ New and Changed Features for Oracle Rdb, Release 7.2

■ Oracle Rdb Guide to SQL Programming

■ Oracle Rdb SQL Reference Manual

■ Guide to Using the Oracle SQL/Services Client API

■ The release notes and installation documents for Oracle Rdb release 7.2 and Oracle
SQL/Services release 7.3.1.0. As part of the installation, the Oracle SQL/Services
Release Notes are provided as a PostScript file in the SYS$HELP directory.

■ Oracle Rdb7 Guide to Database Maintenance

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS software. Release 7.2 of
Oracle Rdb software is often referred to as V7.2.

HP OpenVMS Industry Standard 64 for Integrity Servers is often referred to as OpenVMS
I64.

OpenVMS means both the OpenVMS Alpha and the OpenVMS I64 operating systems.

Chapter 1 Introduces the Oracle SQL/Services system.

Chapter 2 Describes how to manage an Oracle SQL/Services system.

Chapter 3 Describes how to maintain an Oracle SQL/Services server.

Chapter 4 Explains in detail the features and benefits of OCI Services for Oracle
Rdb.

Chapter 6 Explains how to use the ALTER SESSION command for OCI Services for
Oracle Rdb.

Chapter 7 Describes the Oracle SQL/Services system management commands.

Chapter 8 Describes how to troubleshoot and enable logging for Oracle SQL/Services
and OCI Services for Oracle Rdb.

xvii

The SQL interface to Oracle Rdb is referred to as SQL. This interface is the Oracle Rdb
implementation of the SQL standard adopted in 1999, in general referred to as the
ANSI/ISO SQL standard or SQL:1999. See the Oracle Rdb Release Notes for additional
information about this SQL standard.

Oracle SQL/Services is a multiversion-only kit. The installation installs files using a variant
naming convention. That is, variant file names and names of utilities may have a two-digit
version number appended as the last two characters of its name. For example, the
management client is SQLSRV_MANAGE73 and its log files are *73.log, and so forth.

The following conventions are also used in this manual:

See Section 7.1 for more information on syntax conventions used by the SQLSRV_
MANAGE utility.

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not directly related to
the example has been omitted.

$ The dollar sign represents the DIGITAL Command Language prompt in
OpenVMS.

boldface text Boldface type in text indicates a term defined in the text.

monospaced
boldface
text

Monospaced boldface type in text indicates user input.

xviii

Overview 1-1

1
Overview

This chapter describes the components of Oracle SQL/Services and OCI Services for Oracle
Rdb (formerly known as SQL*Net for Oracle Rdb) systems, and provides an overview of
managing a SQL/Services system.

1.1 Oracle SQL/Services
A client/server system in its simplest form consists of a client, a network, and a server
system. A client is a software program that uses a database application programming
interface (API) to make database requests of a server, as shown in Figure 1–1. The client
may reside on the same platform as the server. Typically, however, the client application
runs on a workstation or PC and accesses a database on a large server platform using a
network that supports several transport protocols.

Figure 1–1 Simplest Client/Server Architecture

An Oracle SQL/Services server is a collection of cooperating processes on one node that
includes a dispatcher process and a pool of executor processes that work on behalf of a
service, as shown in Figure 1–2. The dispatcher process handles all network
communication between the client and the server. It reads client requests, queues these

Client

Client Application

Server

Database API
Server

Oracle SQL/Services

1-2 Oracle SQL/Services Server Configuration Guide

requests for the executors of a service, and returns the responses from the executors of a
service back to the client. An executor process works on behalf of a service and accepts the
client requests from the dispatcher's queue, invokes the database engine to process the
requests, and returns the results to the dispatcher. A service is a set of attributes that
describes how clients access a database.

Figure 1–2 Oracle SQL/Services Server System

The Oracle SQL/Services server system also includes a monitor process to manage and
control the server, a SQLSRV_MANAGE utility that runs on an OpenVMS local or remote
system, and a configuration file in which to store server component definitions, as shown in
Figure 1–3.

Client

DispatcherClient Application

Server

Oracle Rdb or
other databases

Database API

Executor

Executor Pool

 Service

Executor

Oracle SQL/Services

Overview 1-3

Figure 1–3 Oracle SQL/Services Client/Server Architecture

An Oracle SQL/Services client is a software program that accesses data by selecting a
service provided by a server using an agreed upon interface such as the Oracle SQL/Services
API (which includes Microsoft ODBC connections), the Oracle OCI interface, the Oracle
RMU interface, or the Oracle Rdb JDBC interface. The server responds by receiving and
processing client requests and sending the results back to the client.

A network is made up of communications hardware and software through which the client
APIs communicate with the Oracle SQL/Services server. Request messages from the client
and response messages from the server travel over a DECnet, Transmission Control
Protocol/Internet Protocol (TCP/IP), or Oracle Net communications link.

Server
An Oracle SQL/Services server describes the attributes of a collection of cooperating
processes on one node that provides one or more services. The server in general includes all
server component attribute definitions, which are contained in a configuration file. See
Service and Dispatcher topics, included in this list, for more information about these server
components. For the server object specifically, the attributes include information such as the
version of the server, the configuration file specification, the size of shared memory, and
what network transports are supported for server management.

Client Application
Client Application

Monitor

Desktop Systems

Client

Dispatcher

Client Application

Server

Oracle ODBC
Driver for Rdb

Oracle Rdb or
other databases

SQLSRV_MANAGE

management connections

Configuration File

Executor

Executor Pool

Service C

Executor
Executor

Executor Pool

Service B

Executor
Executor

Executor Pool

Service A

Executor
SQL/Services Manager

Oracle SQL/Services

1-4 Oracle SQL/Services Server Configuration Guide

There can be only one server defined per configuration file. You can have only one server
per version of Oracle SQL/Services started on a node at any given time.

Monitor
An Oracle SQL/Services monitor process provides overall management and control for the
server, such as server startup and shutdown, reading and writing the configuration database,
monitoring functions, and other management operations.

SQLSRV_MANAGE Client
The Oracle SQL/Services server management command-line interface lets you manage an
Oracle SQL/Services server from an OpenVMS system.

Configuration file
A configuration file contains all defined attributes for one server and its components, which
include all service definitions, dispatcher definitions, and the list of users that are authorized
to access the services provided by that server. This is also known as an Oracle
SQL/Services server configuration, in that it represents one set of component definitions
that are managed together for a server. Only one server can be defined in a configuration
file. Typically, each server node has its own configuration file; however, it is possible to
share a configuration file among multiple nodes in an OpenVMS cluster.

Dispatcher
An Oracle SQL/Services dispatcher is a process that is responsible for handling network
communications for the clients and for the routing and scheduling of client requests to
executors of a service. A dispatcher supports all services defined for a server. A single
dispatcher typically supports more than one network transport, but can support only one
service protocol. All clients except system management clients connect directly to a
dispatcher.

Service
An Oracle SQL/Services service is a set of attributes that describe how clients access a
database. Oracle SQL/Services accommodates the needs of different clients by supporting a
range of service attributes that you tailor for each service provided by a server. The
definition of a service includes information such as who can use the service, the database
that is accessed by the service, the database engine version used by the service, how many
clients can simultaneously use the service, and the number of executors that will be working
on behalf of the service.

Oracle SQL/Services

Overview 1-5

Executor
An Oracle SQL/Services executor is the process that works on behalf of a service.

An executor accepts client requests from dispatchers, calls SQL to process the requests, and
returns the results to dispatchers. There is a pool of executor processes for each service that
is started.

1.1.1 Server Management Utility
You can manage an Oracle SQL/Services server using the SQLSRV_MANAGE utility. You
can use the SQLSRV_MANAGE utility from a local or remote node on an OpenVMS
system and manage the server online or offline (you must be on a local node to manage the
server offline).

Usually, you use the SQLSRV_MANAGE utility to manage a server configuration online by
establishing a system management connection to a running server, then performing system
management functions that operate on the running server as well as on the configuration file.
In addition, you can use the SQLSRV_MANAGE utility to manage a server configuration
offline by directly manipulating server component attributes in a configuration file. The only
system management functions that you must perform offline are creating a new server
configuration and starting a server. The SQLSRV_MANAGE utility accepts commands
from the standard input device or from script files, and can be run interactively or in a batch
job on an OpenVMS system.

Usually, you will use this utility interactively to manage the server and its components
online. See Section 2.4 for more information about managing a server using the SQLSRV_
MANAGE utility.

1.1.2 Privileges Needed to Manage a Server
To start a server using the SQLSRV_MANAGE utility, you must use an account that has
been granted the SETPRV privilege or that has been granted all privileges. To make offline
modifications to a server using the SQLSRV_MANAGE utility, you must use an account
that has been granted the NETMBX, SYSLCK, and SYSPRV privileges. To make online
modifications to a server using the SQLSRV_MANAGE utility, you must use an account
that has been granted use of the SQLSRV_MANAGE system management service for that
server and has been granted the SYSPRV privilege.

These privilege requirements are either less restrictive or identical to those needed to install
Oracle SQL/Services on the OpenVMS platform. For more information, see the installation
documentation for Oracle Rdb and Oracle SQL/Services.

Online Versus Offline Server Management

1-6 Oracle SQL/Services Server Configuration Guide

1.1.3 Running the SQLSRV_MANAGE Utility
To run the SQLSRV_MANAGE utility, you first define a symbol to invoke the utility as
follows:

sqlsrv_manage73 :== SYSSYSTEM:sqlsrv_manage73

You then enter the command sqlsrv_manage73 to invoke the SQLSRV_MANAGE utility.
To use the SQLSRV_MANAGE utility interactively, invoke the utility, then enter system
management commands in response to the SQLSRV> command-line prompt. To manage a
server online, the first command you use is usually the CONNECT TO SERVER command.
To manage a server offline, you first use a SET CONFIGURATION_FILE command to
specify the name of the server configuration file, if the file is not stored in the default
location (see the SET CONFIGURATION_FILE Command for more information).

You can also use scripts with the SQLSRV_MANAGE utility. A SQLSRV_MANAGE script
is a file containing the same commands that you would enter at the SQLSRV> prompt. You
can invoke a SQLSRV_MANAGE script interactively at the SQLSRV> prompt using the @
command. Alternatively, you can invoke the SQLSRV_MANAGE utility to read system
management commands directly from a script. See the –input Switch in Chapter 7 for more
information.

Scripts are a practical tool for making changes to a server on a regular basis. For example,
suppose you want to increase the minimum and maximum number of executors for a service
to meet a peak load condition. You can use one script to increase the values and another to
decrease the values. You can automate the execution of the scripts using batch jobs.

1.2 Online Versus Offline Server Management
You can manage a server either online or offline using the SQLSRV_MANAGE utility.

Online Server Management
Typically, you manage the server online. To manage a server online, you always connect to
the server using the CONNECT TO SERVER command. Once connected, any changes you
make to the server are written to the configuration file. If you alter a dynamic attribute, the
change is also made to the running server. See Section 2.4.1, Section 2.4.2, and Section 2.4.3
for a list of dynamic attributes. If you alter a nondynamic attribute of an object that is
started, the system management utility displays a message that the object must be restarted
for the change to take effect. The only time you need to restart the server is if the change to
the server is to a nondynamic attribute of the server object itself, in which case changes take
effect upon a server restart operation.

Online Versus Offline Server Management

Overview 1-7

Offline Server Management
On occasion, you may need to manage a server offline to recover from an alteration that
rendered the server unusable, such as setting too low a value for shared memory. To manage
a server offline, use the SQLSRV_MANAGE utility. If the configuration file is not stored in
the default location (see the SET CONFIGURATION_FILE Command for more
information), you must first select the configuration file by using the SET
CONFIGURATION_FILE command before issuing any system management commands.
Usually, you will manage a server offline only when the server is not running. However, you
can manage a server offline even if the server is running. Any changes you make to the
server configuration are written to the configuration file but do not affect the running server
until the objects that have been changed are restarted. You must restart the entire server for a
change to an attribute of the server object itself to take effect. You need only shut down and
start the particular dispatcher or service for a change to an attribute of a dispatcher or service
object to take effect. The only exception is that if you grant or revoke use of a service to or
from a user name or identifier, then the change takes effect immediately.

Table 1–1 summarizes which Oracle SQL/Services server management commands can be
performed online, offline, or both and any restrictions that may apply.

Table 1–1 Oracle SQL/Services Server Management Online and Offline Commands

Command Online Offine Comments

ALTER DISPATCHER X X Offline changes do not affect a running
dispatcher.

ALTER SERVER X X Offline changes do not affect a running
server.

ALTER SERVICE X X Offline changes do not affect a running
service.

CONNECT TO SERVER X – For online server management only.

COPY SERVICE X X Can copy a service either online or offline.

CREATE DISPATCHER X X Can create a dispatcher either online or
offline.

CREATE SERVER – X Can only create a server offline.

CREATE SERVICE X X Can create a service either online or offline.

DISCONNECT SERVER X – For online server management only.

DROP DISPATCHER X X Can delete a dispatcher either online or
offline.

DROP SERVER – X Can only delete a server offline.

Online Versus Offline Server Management

1-8 Oracle SQL/Services Server Configuration Guide

Chapter 2 and Chapter 3 describe managing and maintaining the server. Chapter 7 contains
reference material that describes SQLSRV_MANAGE commands. These chapters are
provided primarily for the Oracle SQL/Services system administrator who is using the
SQLSRV_MANAGE utility and its command-line interface.

DROP SERVICE X X Can delete a service either online or offline.

GRANT USE ON SERVICE X X Offline changes affect running server.

KILL EXECUTOR X – Can only kill an executor online.

RESTART SERVER X – Can only restart a server online.

REVOKE USE ON SERVICE X X Offline changes affect running server.

SET CONFIGURATION_
FILE

– X For offline server management only.

SET CONNECTION X – For online server management only.

SHOW DISPATCHER X X Can display definitional attributes of a
dispatcher online or offline; can only show
the run-time attributes of a dispatcher (such
as its state) online.

SHOW SERVER X X Can display definitional attributes of a
server online or offline; can only show the
run-time attributes of a server (such as its
state) online.

SHOW SERVICE X X Can display definitional attributes of a
service object online or offline; can only
show the run-time attributes of an object
(such as its state) online.

SHUTDOWN DISPATCHER X – Can only shut down a dispatcher online.

SHUTDOWN SERVER X – Can only shut down a server online.

SHUTDOWN SERVICE X – Can only shut down a service online.

START DISPATCHER X – Can only start a dispatcher online.

START SERVER – X Can only start a server offline.

START SERVICE X – Can only start a service online.

Table 1–1 Oracle SQL/Services Server Management Online and Offline Commands

Command Online Offine Comments

OCI Services for Oracle Rdb

Overview 1-9

1.3 OCI Services for Oracle Rdb
OCI Services for Oracle Rdb (formerly known as SQL*Net for Oracle Rdb) provides an
environment in which you can run existing OCI applications to access data in Oracle Rdb
databases. The OCI applications use the Oracle Call Interface (OCI) to access and manage
data in a database.

OCI Services for Oracle Rdb connects Oracle clients to Oracle Rdb servers. The unique
advantage offered by OCI Services for Oracle Rdb is the ability to use Oracle SQL seman-
tics to access data in Oracle Rdb databases.

OCI Services for Oracle Rdb:

■ Identifies itself to the client applications as an Oracle database server

■ Emulates many of the Oracle SQL semantics

■ Uses Oracle SQL/Services for network communications

OCI Services for Oracle Rdb broadens the range of your client applications by letting you
build a single source code stream that runs against either an Oracle Rdb or Oracle RDBMS
database instance.

For example, you can substitute the Oracle Rdb server for the Oracle RDBMS server when
your application requires functions supplied by an Oracle Rdb database. If you use only the
Oracle Rdb server, OCI Services for Oracle Rdb provides many of the capabilities of the
OCI architecture to your Oracle Rdb applications.

Figure 1–4 shows the client/server relationships in a OCI Services for Oracle Rdb environ-
ment.

OCI Services for Oracle Rdb

1-10 Oracle SQL/Services Server Configuration Guide

Figure 1–4 Client/Server Processing

1.3.1 Oracle Call Interface
The unique capabilities of OCI Services for Oracle Rdb are made possible through the Ora-
cle Call Interface (OCI), a key, open technology.

OCI applications and tools run in the OCI services client/server environment, enabling
diverse combinations of server and client hardware and operating system environments.
Because the OCI architecture separates the client user interface from the server implementa-
tion, it is possible to add new and different user interfaces to existing servers, and change the
server implementation without any effect on the user interface.

1.3.2 Server-Side Solution
OCI Services for Oracle Rdb capitalizes on the flexibility of OCI by connecting your Oracle
client applications directly to an Oracle Rdb server.

Because OCI Services for Oracle Rdb is designed as a server-side solution, it is as easy and
cost-effective to use with a diverse set of client platforms as it is to use the Oracle server
with a diverse set of client platforms.

Rdb DatabaseOracle Database

OCI Client

Oracle Rdb
Server

NU-3650A-RA

Oracle Net

Oracle
Server

OCI Services

SQL/Services

Oracle Net

OCI Services for Oracle Rdb

Overview 1-11

The application programming interface (API) software that you use on client systems is dis-
tinctly separate from your OCI Services for Oracle Rdb server-side implementation. Any
API software that you use to code client applications, including OCI or any of the Pro* com-
pilers, must be separately purchased and installed for each client system.

To build new OCI applications, you must install the particular OCI software needed to
develop and build new OCI applications. Your existing OCI applications will run without
the need to purchase, install, configure, or manage additional client software to use OCI Ser-
vices for Oracle Rdb.

OCI Services for Oracle Rdb appears as an Oracle server to the client, and the client
interacts with OCI Services for Oracle Rdb in the same way it interacts with the Oracle
RDBMS server. The client typically queries the Oracle data dictionary to obtain metadata
information about the target database, and performs a number of other OCI calls to query
and manipulate the data in the database.

1.3.3 Common Application Development
OCI Services for Oracle Rdb was built to help SQL programmers create software that can
run against both the Oracle Rdb server and the Oracle RDBMS server.

To help you to run OCI Services for Oracle Rdb client applications and tools against an Ora-
cle Rdb server, OCI Services for Oracle Rdb augments the features of Oracle Rdb SQL with
the processing features described in Table 1–2.

Note: The metadata for the Oracle Rdb SQL dialect is very different
from that of the Oracle server. The Oracle data dictionary you create using
the supplied Oracle Rdb SQL program allows OCI Services for Oracle
Rdb to emulate most aspects of the Oracle data dictionary that are
important to client software.

Table 1–2 OCI Services for Oracle Rdb Processing Features

Function Description

Cursor management Manages OCI cursors for each statement, then ties the cursors to Ora-
cle Rdb SQL statements.

OCI message mapping Maps OCI calls to Oracle Rdb dynamic SQL calls.

Oracle data types Describes and converts Oracle Rdb data types as Oracle data types.

Data formatting Performs Oracle style formatting in which the Oracle server formats
data for the client or receives formatted data from the client. Format-
ted information is described to the server by the Oracle SQL ALTER
SESSION statement.

OCI Services for Oracle Rdb

1-12 Oracle SQL/Services Server Configuration Guide

All these features allow for common application development between the Oracle RDBMS
server and the Oracle Rdb server (using OCI Services for Oracle Rdb).

Chapter 4 describes OCI Services for Oracle Rdb processing in more detail.

Statement changes Reprocesses a failed SQL statement after performing the necessary
modifications to make the statement comply with Oracle Rdb syntax.
This processing is done for a limited number of syntax differences
between Oracle and Oracle Rdb. This reprocessing usually allows the
SQL statement to succeed.

Statement type Obtains the type of SQL statement being parsed from Oracle Rdb
SQL and returns it to the client.

Data definition language
(DDL)

Provides some DDL and SQL cursor semantics that provide behavior
similar to what you get from an Oracle server. For example, before
and after each DDL request, a COMMIT statement is issued.

Data dictionary Provides a collection of views and stored procedures that emulate the
Oracle data dictionary to provide the style of metadata tables typical
to Oracle.

Multischema emulation Emulates a multischema environment that is similar to what you get
with Oracle multischema databases (all Oracle databases are multi-
schema databases, while most Oracle Rdb databases are not). A table
name cannot be used in more than one schema, but the data dictio-
nary provides a multischema appearance.

Table 1–2 OCI Services for Oracle Rdb Processing Features(Cont.)

Function Description

Managing an Oracle SQL/Services System 2-1

2
Managing an Oracle SQL/Services System

Managing an Oracle SQL/Services system requires knowledge of the client and network
components, together with dispatchers, services, and a server, as described in Chapter 1. You
should have a general understanding of how each component works with other components
in the client/server architecture and how the components within the server system operate.
This chapter describes how to create and manage the server components.

Unless otherwise indicated, the information in this chapter applies to SQL/Services and OCI
Services for Oracle Rdb protocols.

2.1 Getting Started
After you install and start the default Oracle SQL/Services server, you may want to perform
some additional tasks to ensure its optimum performance and to troubleshoot problems.
These tasks include:

■ Planning an Oracle SQL/Services server configuration

■ Setting shared memory size

■ Managing server components

■ Setting up dispatchers and transport selection

■ Setting up services and types of reuse

■ Setting database access authorization

■ Setting up security on servers

■ Understanding database access authorization models for Oracle SQL/Services

■ Considering security for selecting the service owner user name

■ Setting executor attributes

Planning an Oracle SQL/Services Server Configuration

2-2 Oracle SQL/Services Server Configuration Guide

■ Using a SQL initialization file

■ Using SQL/Services logical names

Each topic is discussed in the sections that follow.

2.2 Planning an Oracle SQL/Services Server Configuration
Your initial working Oracle SQL/Services server is defined by a configuration file. That file
contains object definitions and characteristics for the server, dispatchers, services, and a set
of authorized users for each service. You can display the current definition of each object
with a SHOW command, read through the attribute settings, and from this basic
understanding, take the following steps to plan your server configuration:

1. Determine your own requirements for your server system.

2. Learn about each object and how best to manage it.

3. Apply what you learned toward meeting your server system requirements.

Determining Server System Requirements
As the Oracle SQL/Services system administrator, you must determine the requirements for
your server system. You should investigate the following:

■ Is Oracle SQL/Services installed on a single node or in a cluster? Do different nodes
require different dispatchers and services?

■ What do you know about your user community? How many clients are there in total?
How many clients will use the system at peak periods?

■ What transports are available for client/server communication? How many ports are
available for each transport?

■ What version of Oracle Rdb do you have installed?

■ What are the specific applications users want to run? Are users attaching to the same
database or many different databases? What kinds of transactions will be run?

These are the most important questions to answer. As you proceed, other questions may arise
that will help you to understand your own server requirements. You should also begin to
devise a plan for how to best meet the server needs of your user community and how to tune
your server system to achieve maximum performance.

Learning About Server Objects
To start, ask the following questions about each server object:

Setting Shared Memory Size

Managing an Oracle SQL/Services System 2-3

■ Which attributes do I need to monitor?

■ Which attributes should I be most concerned about managing?

To answer these questions, it is important to understand the meaning of the default value of
each attribute and then determine which attributes need to be monitored and adjusted. In
general, all default settings of attributes for the default server system are sufficient to get
started. Table 2–1, Table 2–2, and Table 2–3 provide a summary of the default values for the
server, dispatcher, and service objects. Following each table is a brief description of which
attributes to monitor and adjust.

Achieving Server System Requirements
By answering specific questions about the most important attributes for each server
component, you can determine what modifications you may need to make to your server
system. As you implement your plan, you learn how to create and alter server component
objects and apply these changes toward meeting your server system requirements.

As you learn how to monitor and tune each object, you can begin to optimize the
performance of the server and tailor your Oracle SQL/Services server to make it ideal for
your database client/server environment. For example, once you know what applications
your users want to run, you can decide on the kinds of services to provide for these client
applications.

The most important items that you should consider for establishing a running server are
discussed in Section 2.4 through Section 2.8.

After you tailor an Oracle SQL/Services server to meet your client/server requirements, the
next task is to understand more about maintaining the server (see Chapter 3 for more
information).

2.3 Setting Shared Memory Size
You can set the size of shared memory that the server uses by specifying a value for the
MAX_SHARED_MEMORY_SIZE argument of the ALTER SERVER command. By
default, the server uses 8000 kilobytes (8 megabytes) of shared memory.

Setting the MAX_SHARED_MEMORY_SIZE argument is important for optimizing the
resource usage of the server system. The goal is to use the smallest amount of shared
memory possible to provide the required services. This section explains how the Oracle
SQL/Services server uses shared memory and how to set the MAX_SHARED_MEMORY_
SIZE argument for the best resource usage.

Setting Shared Memory Size

2-4 Oracle SQL/Services Server Configuration Guide

You can change the value for shared memory using the ALTER SERVER command.
However, this is not a dynamic attribute and requires that you restart the server. For
example, to set the value to 10000 kilobytes:

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;
Disconnected from Server

The following are the two main costs associated with allocating shared memory:

■ Disk space for the system page file

You must ensure that you have sufficient system page file space available to
accommodate an increase in the size of shared memory. You must also ensure that the
GBLPAGFIL SYSGEN parameter is set high enough to accommodate an increase in the
size of shared memory.

■ Virtual memory for each component process of the server

Mapping shared memory makes each component process of the server use more virtual
memory, and thus consumes incremental operating system resources.

Internally, Oracle SQL/Services manages shared memory in units of 65,536 bytes. The
actual size of shared memory may be less than the MAX_SHARED_MEMORY_SIZE
attribute because the size is rounded down to the nearest even 65,536-byte unit.

The server shared memory does not shrink or grow as the server runs. More or less of it may
be in use at a given time. When you issue a SHOW SERVER command in the SQLSRV_
MANAGE application for the server that you are connected to, SQLSRV_MANAGE will
show three values:

■ Total memory

This number is static for a given run of the server. You can alter the MAX_SHARED_
MEMORY_SIZE argument for a server, and it takes effect when you issue a RESTART
SERVER command. Total memory is the number of shared memory units mapped by
the server.

■ Free memory

This is the number of shared memory units that are completely unused by the Oracle
SQL/Services server.

■ Partly allocated memory

Setting Shared Memory Size

Managing an Oracle SQL/Services System 2-5

A shared memory unit may not be completely used in one piece. It is often subdivided
into smaller pieces. Shared memory units that are subdivided and partly used are
reported as partly allocated memory. It is currently not practical to display the usage
within the subdivided unit.

Free memory and partly allocated memory describe the shared memory units that can still be
allocated. By subtracting those units from the total units, you can determine the shared
memory units that are entirely used.

The minimum value for MAX_SHARED_MEMORY_SIZE is 132 KB, which provides two
shared memory units. This is sufficient to start the monitor, connect to it from the
SQLSRV_MANAGE application, and run one or two executors serving one or two clients.

The maximum value for MAX_SHARED_MEMORY_SIZE is 2,000,000 KB. Lower values
should suffice for all applications.

In general, plan for the following shared memory usage:

■ For each executor and dispatcher that you plan to run, allow about 3 KB.

■ For each Oracle SQL/Services client connection that you plan to support, you need to
take into account the base shared memory usage for a client and add to that the memory
used for communication buffers.

The base shared memory usage is about 11 KB.

An Oracle SQL/Services application minimally consumes two communication buffers.
The default buffer size is 1.3 KB, so the minimum size for an Oracle SQL/Services
client is 15 KB (11 KB base + 4 KB for messages buffers).

If you use a 5 KB message buffer size, the minimum size is about 21 KB (11 KB base +
2 * 5 KB for message buffers).

However, not all Oracle SQL/Services applications use only two buffers. When a
multi-tuple fetch or insert operation is initiated, you may get additional buffers for the
client. How many additional buffers you get is based on the application. The dispatcher
imposes a limit of 11 buffers that can be used at any one time.

A strategy for determining optimal shared memory size is as follows:

1. Pick a generous size for your shared memory based on the rough sizing method
mentioned previously.

2. Run your system under normal load.

3. Occasionally issue a SHOW SERVER command from SQLSRV_MANAGE on the
server that you are managing. It will show you the memory usage.

4. Adjust your shared memory size:

Managing Server Components

2-6 Oracle SQL/Services Server Configuration Guide

– Downward, if you see a constant number of free memory units.

– Upward, if you see no free memory units. You may also see client connections
terminated by the server due to a lack of shared memory. This is reported in the log
files. In certain rare situations, the entire server can fail due to insufficient shared
memory.

As you add new users and applications to the server, review the shared memory usage.

2.4 Managing Server Components
Managing server components consists of managing the server, dispatchers, and services and
performing tasks such as creating these objects, starting, shutting down, and restarting these
objects, altering object attributes, and deleting these objects. Section 2.4.1 through
Section 2.4.3 describe managing each of these objects.

2.4.1 Managing a Server
Managing a server involves knowing how to create a server; how to start, stop, and restart a
server; and how to tailor the attributes of a server to suit the specific requirements of your
client/server configuration.

Creating a Server
When you install Oracle SQL/Services, the installation procedure automatically creates and
starts a server on that node. Unless you encounter a nonrecoverable error condition that
renders the configuration file unusable, you normally will not have to create or re-create a
server on a node on which you performed the Oracle SQL/Services installation. However,
you should periodically save a backup copy of your configuration file. See Copying a
Configuration File in this section for details of how to make a copy of a configuration file.

If your configuration file becomes corrupted, due perhaps to a disk failure, and you do not
have a backup copy, you can delete the corrupted file and re-create your initial server
configuration using the SYS$MANAGER:SQLSRV_CREATE73.COM command
procedure.

In an OpenVMS cluster environment, the installation procedure creates and starts a server
only for the node on which you perform the installation. If you plan to use Oracle
SQL/Services on other nodes in the cluster, you must create and start a server on each of
those nodes or make a single configuration file available to the other nodes, then start the
server on those nodes.

There are two ways to create and start a server on other nodes in an OpenVMS cluster:

Managing Server Components

Managing an Oracle SQL/Services System 2-7

■ Use the SYS$MANAGER:SQLSRV_CREATE73.COM procedure provided by the
installation

The preferred method to create and start a server on another node in a cluster is to
invoke the SYS$MANAGER:SQLSRV_CREATE73.COM DCL command procedure
provided by the Oracle SQL/Services installation procedure (see the Oracle
SQL/Services Installation Guide for more information). This procedure is used by the
installation procedure itself and so will create and start a server that is identical to the
one created on the node where the original installation was performed.

■ Copy a configuration file from another node in the cluster

Another way to create a server on another node in a cluster is to copy a configuration
file to that node, make any necessary changes for the node, then start the server on that
node. This approach is more difficult because it can be error-prone, but nevertheless is
an option. See Copying a Configuration File in this section for more information.

Alternatively, you may choose to share a single configuration file among multiple nodes in a
cluster. The simplest way to make a single configuration file available to all nodes in a
cluster is to shut down the server on the node on which you performed the installation, then
rename the SQLSRV_CONFIG_FILE73.DAT file from the SYS$SPECIFIC:[SYSMGR]
directory to the SYS$COMMON:[SYSMGR] directory. If you choose to share a single
configuration file among multiple nodes in a cluster, you must take care not to delete an
object on one node if you intend to continue to use it on other nodes.

You do not need to perform additional tasks if you want to provide exactly the same
dispatchers and services on each node in the cluster. However, if you need to support
different network protocols or provide specific services on different nodes in the cluster,
then you must tailor your configuration accordingly. To provide different dispatchers or
services on different nodes, you must set the AUTOSTART attribute to OFF for any services
and dispatchers that should not be started on all nodes, then write a SQLSRV_MANAGE
script for each node that starts only the required dispatchers and services for that node. Note
that you cannot configure a service or dispatcher object in a shared configuration file to have
different attributes for different nodes.

Managing Server Components

2-8 Oracle SQL/Services Server Configuration Guide

Starting, Shutting Down, and Restarting a Server
Oracle recommends that you add the Oracle SQL/Services startup command to the system
startup file:

$ @SYS$STARTUP:SQLSRV$STARTUP73
 or
$ @SYS$STARTUP:SQLSRV$STARTUP73 "" "/RESIDENT"

Place the command after the Oracle Rdb startup command file RMONSTART. After you
add this command, the server is started whenever the system boots. If P2 is specified as
"/RESIDENT", a number of the SQL/Services images will be installed resident, which will
improve performance.

Oracle also recommends that you add the shutdown command to the system shutdown
command procedure:

$ @SYS$STARTUP:SQLSRV$SHUTDOWN73

Place the command before the Oracle Rdb shutdown procedure RMONSTOP. After you add
this command, the server is stopped whenever the system is shut down.

Generally, the only time you will need to restart a server is if you alter a nondynamic
attribute of the server object, in which case you must restart the server for the change to take
effect.

Altering a Server
Once you create a server, you may need to alter some server attributes, such as the
maximum amount of shared memory available to the server. Table 2–1 lists all of the

Caution: Oracle recommends that you do not make offline
modifications to a configuration file if there is a server running that is
using the same file. In this situation, the SQLSRV_MANAGE utility does
not prevent you from deleting a dispatcher or service object offline while
the dispatcher or service is running.

Similarly, the SQLSRV_MANAGE utility does not prevent you from
deleting a dispatcher or service object online while the dispatcher or
service is running on a different node in an environment where two or
more nodes share the same configuration file. If this happens, then the
SQLSRV_MANAGE utility displays a warning message if you show a
dispatcher or service that has been deleted but that is still running.

Managing Server Components

Managing an Oracle SQL/Services System 2-9

attributes of a server, their default values, and indicates if an attribute can be modified
dynamically. Following the table is a brief description of the major server attributes.

Oracle SQL/Services uses shared memory for interprocess communications. The
MAX_SHARED_MEMORY_SIZE attribute is the only server attribute you need to monitor
on a periodic basis using the SHOW SERVER Command. Section 2.3 describes what to look
for and when to make adjustments. The server uses network ports to listen to system
management clients. These network ports must be unique in a multiversion environment
because you can only have one version of Oracle SQL/Services using the default network
ports. During a multiversion installation, you must specify what alternate network ports you
want the server to use. You need not make any further changes to these network ports unless
you decide to make the current version of Oracle SQL/Services the default, and you want to
use the default system management network ports. If system management clients are having
problems connecting, use the SHOW SERVER command to monitor these network ports
and to ensure each is running.

See the ALTER SERVER Command for more information about altering server attributes.

If you alter a dynamic attribute of a running server online, the change takes effect
immediately. However, if you alter a nondynamic attribute of a running server online, you
must restart the server for the change to take effect.

If you alter a nondynamic attribute of a running server, SQLSRV_MANAGE displays a
success status indicating that you must restart the server for the change to take effect. For
example:

SQLSRV> ALTER SERVER MAXIMUM_SHARED_MEMORY_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV>

Table 2–1 Default Settings for Server Object Attributes

Attribute Default Setting
Dynamic
Attribute

MAX_SHARED_MEMORY_SIZE 8000 kilobytes

Configuration File SYS$MANAGER: SQLSRV_CONFIG_FILE73.DAT

DUMP_PATH SYS$MANAGER:

PROCESS_STARTUP_TIMEOUT 0 Yes

PROCESS_SHUTDOWN_TIMEOUT 0 Yes

Network ports DECnet - SQLSRV_SERVER

Network ports TCP/IP - 2199

Managing Server Components

2-10 Oracle SQL/Services Server Configuration Guide

The SQLSRV_MANAGE utility displays the values of any altered nondynamic attributes
that will take effect when the server is restarted. For example:

** The Server will be updated as follows when it is restarted **
 Max Shared memory size: 10000

When you restart a server, all dispatchers and services of the server are also restarted, and all
client network connections to the server are disconnected. Therefore, you should schedule
alterations to the server object when few or no clients will be using the server.

Copying a Configuration File
You can use the DCL COPY command to make a copy of a configuration file only if there
is no running server using the file. To make a copy of a configuration file currently being
used by a running server, you must use the DCL BACKUP/IGNORE=INTERLOCK
command.

Deleting a Server
The only time you need to delete a server is when the configuration file has become corrupt,
due perhaps to a disk failure, and is completely unusable. Deleting a server is an offline
operation and deletes the configuration file (see the DROP SERVER Command).
Alternatively, you can use the DCL DELETE command.

If you must delete a running server, first shut it down online (see the SHUTDOWN
SERVER Command) and then delete it offline using the DROP SERVER command.

2.4.2 Managing a Dispatcher
Managing a dispatcher involves knowing how to create a dispatcher; how to start, stop, and
restart a dispatcher; and how to tailor the attributes of a dispatcher to suit the specific
requirements of your client/server configuration.

Creating a Dispatcher
The Oracle SQL/Services installation procedure and the SYS$MANAGER:SQLSRV_
CREATE73.COM command procedure create and start three dispatchers named SQLSRV_
DISP for use by Oracle SQL/Services (ODBC for Oracle Rdb) clients, OCI_DISP for use by
OCI clients, and RMU_DISP for use by Oracle RMU clients.

If you plan to use the Oracle Net network transport, then you will create another dispatcher
after you decide which network ports you will use. You might also create other dispatchers if
you decide to provide individual dispatcher processes for each transport available on your
network. When you create a new dispatcher, you must ensure that the network ports that you

Managing Server Components

Managing an Oracle SQL/Services System 2-11

specify are not used by any other dispatchers on the node. If a dispatcher is unable to listen
on any of its network ports, it writes an error message to its log file and terminates.

Starting, Shutting Down, and Restarting a Dispatcher
Dispatchers that have the AUTOSTART attribute set to ON are automatically started when
you install Oracle SQL/Services and whenever a server is started. If necessary, you can
disable this action by starting a server with the START SERVER AUTOSTART OFF
command. Dispatchers are automatically shut down when the server shuts down. One of the
few times you must shut down a dispatcher is if it failed to start. A failed dispatcher is
always left in a failed state. The reason for failure, which can be due to an incorrectly
specified argument value in its definition, can be corrected using an ALTER DISPATCHER
command. You can either shut down the dispatcher, make the correction, and start the
dispatcher using the START DISPATCHER command, or you can make the change while
the service is in a failed state, and then you must shut down and restart the dispatcher after
you make the change.

 Generally, the only time you will need to restart a dispatcher is if you alter a nondynamic
attribute of a dispatcher object, in which case you have to restart the dispatcher for the
change to take effect.

Altering a Dispatcher
As circumstances change, you may find it necessary to alter some dispatcher attributes. For
example, to support additional users, you may need to increase the maximum number of
connections allowed to a dispatcher. To provide better performance, you may want to
increase the maximum client buffer size.

If you run multiple versions of the Oracle SQL/Services server, you may want to alter the
network port specifications to use the default network ports when you stop using one version
of Oracle SQL/Services.

Table 2–2 lists all of the attributes of a dispatcher and their default values, and indicates if an
attribute can be modified dynamically. Following the table is a brief description of the major
dispatcher attributes.

Table 2–2 Default Settings for Dispatcher Object Attributes

Attribute Default Setting
Dynamic
Attribute

AUTOSTART ON

MAX_CONNECTIONS 100

IDLE_USER_TIMEOUT 0 Yes

MAX_CLIENT_BUFFER_SIZE 5000

Managing Server Components

2-12 Oracle SQL/Services Server Configuration Guide

Set a higher value for the MAX_CONNECTIONS argument if you expect more than 100
clients to connect to the dispatcher at the same time.

Set a higher value for the MAX_CLIENT_BUFFER_SIZE argument if you know certain
applications will benefit by using a larger buffer size.

The dispatcher uses network ports to listen to Oracle SQL/Services, Oracle ODBC Driver
for Oracle Rdb, Oracle RMU, Oracle OCI, and Oracle Rdb JDBC clients. These network
ports must be unique in a multiversion environment because you can have only one version
of Oracle SQL/Services using the default network ports for a dispatcher on a node. During a
multiversion installation, you must specify which alternate network ports you want the
dispatcher to use. You need not make any further changes to these network ports unless you
want to create one dispatcher listening exclusively on DECnet network ports and another
dispatcher listening exclusively on TCP/IP network ports, and so forth, because of the
network traffic. If clients are having problems connecting to dispatchers, use the SHOW
DISPATCHER command to monitor these network ports and to ensure each is running.

See the ALTER DISPATCHER Command for more information about altering dispatcher
attributes. See the Oracle Rdb JDBC documentation for information on creating and
managing a JDBC dispatcher.

If you alter a dynamic attribute of a running dispatcher online, the change takes effect
immediately. However, if you alter a nondynamic attribute of a running dispatcher online,
you must restart the dispatcher for the change to take effect.

If you alter a nondynamic attribute of a running dispatcher, SQLSRV_MANAGE displays a
success status indicating that you must restart the dispatcher for the change to take effect.
For example:

SQLSRV> ALTER DISPATCHER sqlsrv_disp MAX_CLIENT_BUFFER_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect

Log File SYS$MANAGER:<dispatcher-name>.LOG

Dump File SYS$MANAGER:<dispatcher-name>.DMP

Message Protocol SQLSERVICES

Network ports DECnet - 81

Network ports TCP/IP - 118

Network ports Oracle Net - no default, see listener.ora file for a list of
listener objects you can use

Table 2–2 Default Settings for Dispatcher Object Attributes

Attribute Default Setting
Dynamic
Attribute

Managing Server Components

Managing an Oracle SQL/Services System 2-13

The SQLSRV_MANAGE utility displays the values of any altered nondynamic attributes
that will take effect when the dispatcher is restarted. For example:

** This Dispatcher will be updated as follows when it is restarted **
 Max client buffer size: 10000 bytes

When you restart a dispatcher, all client network connections to the dispatcher are
disconnected. Therefore, you should schedule alterations to a dispatcher when few or no
clients will be using the network ports managed by that dispatcher.

Deleting a Dispatcher
To delete a dispatcher as an online operation, you must first shut it down (see the
SHUTDOWN DISPATCHER Command and the DROP Command in Chapter 7). The only
time you want to delete a dispatcher is if it is no longer needed.

2.4.3 Managing a Service
Managing a service involves knowing how to create a service; how to start, stop, and restart
a service; and how to tailor the attributes of a service to suit the specific requirements of
your client/server configuration.

Creating a Service
The Oracle SQL/Services installation procedure and the SYS$MANAGER:SQLSRV_
CREATE73.COM command procedure create and start three services: a universal service
named GENERIC for use by Oracle SQL/Services (ODBC for Oracle Rdb) clients, a
database service named OCI_SAMPLE for use by Oracle OCI clients, and an Oracle RMU
service named RMU_SERVICE for use by Oracle RMU clients.

As the server administrator, you may need to create other services for different versions of
Oracle Rdb. Similarly, you may want to create one or more database services for specific
Oracle Rdb databases on your system. When you create a service, you must decide who will
be authorized to access the service, how many executors will be needed to support clients
who will use the service, and so forth. Also see Section 2.6 for more information about
universal and database services.

Starting, Shutting Down, and Restarting a Service
Services that have the AUTOSTART attribute set to ON are automatically started when you
install Oracle SQL/Services and whenever a server is started. If necessary, you can disable
this action by starting a server with the START SERVER AUTOSTART OFF command.

Managing Server Components

2-14 Oracle SQL/Services Server Configuration Guide

Usually, you set the AUTOSTART attribute to ON for most services you create so that they
are available to clients all of the time.

However, you may decide to start certain services manually. For example, you may create a
transaction reusable service for a particular database to determine if you can achieve better
performance than using a session reusable service. In this situation, you might choose to set
the AUTOSTART attribute to OFF while you test the new service.

One reason to shut down a service is if you must prevent clients from accessing the database
provided by a service. For example, you would shut down a service while you restored a
database after encountering a disk failure. Another reason you must shut down a service is if
it failed to start. A failed service is always left in a failed state. The reason for failure, which
can be due to an incorrectly specified argument value in its definition, can be corrected using
an ALTER SERVICE command. You can either shut down the service, make the correction,
and start the service using the START SERVICE command, or you can make the change
while the service is in a failed state, and then you must shut down and restart the service
after you make the change. Services are automatically shut down when the server shuts
down.

Generally, the only time you will need to restart a service is if you alter a nondynamic
attribute of a service object, in which case you have to restart the service for the change to
take effect.

Altering a Service
After you create a service, you may need to tune the performance of your system by
adjusting the number of executors or the number of clients per executor for a service. If new
users are added to the network, you may need to authorize access to a service to those users.
If you upgrade a database to a later version of Oracle Rdb, you will need to alter a service to
specify a new SQL version to be used by the executors of the service. Table 2–3 lists all of
the attributes of a service, their default values, and indicates if an attribute can be modified
dynamically. Following the table is a brief description of the major service attributes.

Table 2–3 Default Settings for Service Object Attributes

Attribute Default Setting
Dynamic
Attribute

AUTOSTART ON

DEFAULT_CONNECT_USERNAME None Yes

REUSE_SCOPE SESSION

SQL_VERSION STANDARD

PROTOCOL SQL/Services

PROCESS_INITIALIZATION None

Managing Server Components

Managing an Oracle SQL/Services System 2-15

Create as many service objects as you need to accommodate the databases accessed by
applications that your user community intends to run. See Section 2.6, Section 2.8, and
Section 2.9 for more information.

Set the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_EXECUTOR_TIMEOUT
attributes for each service based on user activity over time to provide efficient services to
your clients. See Section 2.11 for more information.

You may need to adjust the CLIENTS_PER_EXECUTOR attribute value to attain the best
performance when tuning a transaction reusable service.

Giving users or identifiers access to services or modifying their current access is another
task you need to perform on a continual basis. Use the GRANT USE ON SERVICE and
REVOKE USE ON SERVICE commands to perform these tasks. Use the SHOW SERVICE
command to determine the users or identifiers who currently have access to a particular
service.

See the ALTER SERVICE Command for more information about altering service attributes.

If you alter a dynamic attribute of a running service online, the change takes effect
immediately. However, if you alter a nondynamic attribute of a running service online, you
must restart the service for the change to take effect.

ATTACH None

OWNER None

SCHEMA None

SQL_INIT_FILE None

DATABASE_AUTHORIZATION CONNECT USERNAME

APPLICATION_TRANSACTION_USAGE SERIAL Yes

IDLE_USER_TIMEOUT 0 Yes

IDLE_EXECUTOR_TIMEOUT 1800 Yes

MIN_EXECUTORS 0 Yes

MAX_EXECUTORS 1 Yes

CLIENTS_PER_EXECUTOR 1 Yes

Table 2–3 Default Settings for Service Object Attributes

Attribute Default Setting
Dynamic
Attribute

Setting Up Dispatchers and Transport Selection

2-16 Oracle SQL/Services Server Configuration Guide

If you alter a nondynamic attribute of a running service, SQLSRV_MANAGE displays a
success status indicating that you must restart the service for the change to take effect. For
example:

SQLSRV> ALTER SERVICE payroll SQL_INIT_FILE PAYROLL_DIR:PAYROLL.SQLINIT;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect

The SQLSRV_MANAGE utility displays the values of any altered nondynamic attributes
that will take effect when the dispatcher is restarted. For example:

** This Service will be updated as follows when it is restarted **
 SQL init file: payroll_dir:payroll.sqlinit

When you restart a service, all client network connections from applications using the
service are disconnected. Therefore, you should schedule alterations to a service when few
or no clients will be using the service.

Deleting a Service
The only time you may need to delete a universal service is when there are no more
databases for that specific version of Oracle Rdb in use. Similarly, you may want to delete a
database service if it is no longer used or if there are too few users using it to justify this type
of service. In either case, to delete the service online, you must first shut it down (see the
SHUTDOWN SERVICE Command and the DROP Command in Chapter 7).

2.5 Setting Up Dispatchers and Transport Selection
A client communicates with the server and dispatcher by using a network transport
supported on your system. Oracle SQL/Services server supports the TCP/IP, DECnet, and
Oracle Net transports.

When you create a dispatcher object, you can specify whether you want the dispatcher to
support one or more transports. If you want a dispatcher to support only one transport, you
must create additional dispatchers to support each of the transports that your Oracle
SQL/Services clients use. For Oracle SQL/Services, you can use one or more dispatchers for
each server configuration. Each dispatcher defined must be listening on one or more unique
network port IDs or objects.

The following example illustrates how to create a dispatcher that supports the Oracle Net
transport:

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> CREATE DISPATCHER sqlnet_disp NETWORK_PORT SQLNET LISTENER_NAME 'LISTENER';

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-17

SQLSRV> START DISPATCHER sqlnet_disp;

See the Guide to Using the Oracle SQL/Services Client API for more information on using
the Oracle Net transport.

The following example illustrates how to shut down and delete a dispatcher that supports
two transports, and create two other dispatchers, each supporting just a single transport.
First, ensure that no clients are using any transports supported by the dispatcher that you
plan to delete. Shutting down a dispatcher will disconnect the network connections from any
clients that are using the dispatcher. If no clients are using the dispatcher, then shut down
and delete the dispatcher. Finally, create and start the new dispatchers.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CLIENTS;

Service: SQLSRV_MANAGE

 Connect Client Executor
 Username Node State PID
Application
 root 127.0.0.1 RUNNING BOUND 00000ec3
SQLSRV_MANAGE
SQLSRV> SHUTDOWN DISPATCHER sqlsrv_disp;
SQLSRV> DROP DISPATCHER sqlsrv_disp;
SQLSRV> CREATE DISPATCHER sqlsrv_tcpip NETWORK_PORT TCPIP;
SQLSRV> CREATE DISPATCHER sqlsrv_decnet NETWORK_PORT DECNET;
SQLSRV> START DISPATCHER sqlsrv_tcpip;
SQLSRV> START DISPATCHER sqlsrv_decnet;

2.6 Setting Up Services and Types of Reuse
The Oracle SQL/Services server provides universal services and database services. Unless
otherwise specified, the information in this section applies to Oracle SQL/Services and OCI
Services for Oracle Rdb protocols. For information about RMU Services, refer to the RMU
Backup command in the Oracle RMU Reference Manual.

Note: In order to use OCI Services for Oracle Rdb, you must define the
listener in the LISTENER.ORA file. Refer to Chapter 4 in Oracle
SQL/Services Installation Guide for more information.

Setting Up Services and Types of Reuse

2-18 Oracle SQL/Services Server Configuration Guide

Universal Service
A universal service allows a client application to determine which database is to be
accessed. An executor process for a universal service, therefore, is not preattached to a
specific database. Each time a client application connects to a universal service, it must issue
one or more database attach statements before performing any data access operations.

You can use universal services with Oracle Rdb to provide access to local and remote Oracle
Rdb databases.

Database Service
A database service allows a client application to access data within a specific database. An
executor process for a database service is preattached to a single database. When a client
connects to a database service, it can immediately begin to access data in the preattached
database.

You can use database services with Oracle Rdb to provide access to local and remote
databases with the restriction that you must set the database authorization attribute to the
service owner to access remote databases (see Section 2.7 for more information).

The following SQL statements cannot be prepared:

■ ATTACH

■ DECLARE DATABASE

■ CREATE DATABASE

■ ALTER DATABASE

■ DROP DATABASE

■ CONNECT

■ SET CONNECT

■ DISCONNECT

Types of Reuse
The Oracle SQL/Services server provides services that have either a session reuse or
transaction reuse attribute.

Note: A client connected to a database service can access data only from
the preattached database; it cannot access data from any other database.

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-19

Session Reuse An executor for a session reusable service processes requests for one
client session at a time. A session begins when a client connects to the service using either a
sqlsrv_associate call, an ODBC connect function, or an OCI connect, and the connection is
bound to an executor process. A session ends when a client disconnects from the service and
the connection is unbound from the executor process. A session reusable service is so named
because an executor does not begin to process a new session until the current session ends.
The session reuse attribute may be applied to either universal or database services; this
attribute is the only one that may be applied to a universal service. See Section 2.6.1 and
Section 2.6.2 for more information.

Transaction Reuse An executor for a transaction reusable service processes requests for
one transaction for a client at a time; however, the executor is shared by many concurrent
client sessions. A transaction begins when a client issues a SQL statement that either
implicitly or explicitly starts a transaction. A transaction ends when the client issues a
successful SQL COMMIT or ROLLBACK statement or executes a stored procedure that
commits or rolls back a transaction. A transaction reusable service is so named because an
executor does not begin to process a new transaction until the current transaction ends. The
transaction reuse attribute may be applied only to database services. See Section 2.6.3 for
more information.

Table 2–4 summarizes the attributes and settings associated with each service.

Note: Transaction reusable database services are not supported for OCI
Services for Oracle Rdb.

Table 2–4 Oracle SQL/Services Service Attributes

Service

Service Definition
Attribute

Session
Reusable
Universal

Session
Reusable
Database

Transaction
Reusable
Database

Prestarted Yes Yes Yes

Preattached No Yes Yes

Execute ATTACH statement Yes No No

Execute multiple attachments Yes No No

Number of clients per executor 1 1 >1

Setting Up Services and Types of Reuse

2-20 Oracle SQL/Services Server Configuration Guide

2.6.1 Session Reusable Universal Services
An executor for a session reusable universal service processes requests for a single client
session at one time and is not preattached to a specific database.

You use a universal service when one of the following conditions apply:

■ you want to allow client applications to determine which database to use

■ you have a node with a large number of infrequently accessed databases for which it
would be impractical to provide individual database services

■ you have legacy or third-party applications that can select the database to be used only
by connecting to a universal service and executing a SQL ATTACH statement

■ the application developers need full control over the database they are using

Executor processes for universal services may be prestarted or started on demand. By
prestarting a sufficient number of executor processes for a universal service, you enable
clients to avoid the process startup delay when they connect to the service. Clients will
always incur the overhead of attaching to the required database when using a universal
service.

Figure 2–1 illustrates how a universal service works. When a client connects to a universal
service, the client connection is assigned and bound to an executor process. Once bound, the
client attaches to one or more databases, accesses data, and finally disconnects from any
attached databases. When the client releases the connection, the executor process unbinds
from the client connection. The executor process is then available for use by another client.

Figure 2–1 Oracle SQL/Services Session Reusable Universal Services

Associate ReleaseAttach to
Database Associate ReleaseAttach to

Database

Time Session Session

Data
Access

Data
Access

Transactions*Transactions*

Client 1 Client 2

* can be single or multiple

Disconnect
Database

Disconnect
Database

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-21

2.6.2 Session Reusable Database Services
An executor for a session reusable database service processes requests for a single client
session at one time and is preattached to a single database.

You use a session reusable database service when you want to provide clients with a service
that accesses a specific database whose transactions are of long or unknown duration.
Executor processes for session reusable database services may be prestarted or started on
demand. By prestarting a sufficient number of executor processes for a session reusable
database service, you enable clients to avoid process startup and database attach delays when
they connect to the service.

Figure 2–2 illustrates how a session reusable database service works. When a client connects
to a session reusable database service, the client connection is assigned and bound to an
executor process. Once bound, because the executor is preattached to a database, the client
can immediately access data in the database. When the client releases the connection, the
executor process unbinds from the client connection. The executor process is then available
for use by another client.

Figure 2–2 Oracle SQL/Services Session Reusable Database Services

2.6.3 Transaction Reusable Database Services

Note: Transaction reusable database services are not supported for OCI
Services for Oracle Rdb.

AssociateAttach to
Database

Time

Session Session

Data
Access

Associate ReleaseData
AccessRelease

Transactions* Transactions*

Client 1 Client 2

* can be single or multiple

Disconnect
Database

Setting Up Services and Types of Reuse

2-22 Oracle SQL/Services Server Configuration Guide

An executor for a transaction reusable database service is preattached to a single database,
processes requests for the transaction of one client at one time, and is shared by many
concurrent client sessions. Once assigned to a particular executor process, a specific client
connection remains assigned to that executor process until the client application disconnects
from the service.

You use a transaction reusable database service to provide clients with a service that
accesses a specific database where the database workload consists of transactions of known,
relatively short duration. When used in the appropriate situations, transaction reusable
database services can improve performance by reducing system resource usage and database
contention. This is because multiple clients share a single executor process, thus reducing
the total number of executor processes required on the system.

Transaction reusable database services are not well suited to situations where transactions
are of long or varying duration. If transaction reusable database services are employed in
such a situation, users will tend to experience unpredictable response times because a client
executing a long transaction will tie up an executor process, making it unavailable for other
users.

Executor processes for transaction reusable database services are always prestarted so that
the server can distribute client connections evenly across the set of executor processes
started for the service. Because multiple client connections share a single transaction
reusable executor process, you need not prestart as many executor processes as when using
session reusable executors. Fewer executor processes, with a high number of clients per
executor, are required when the workload consists of very short transactions. More executor
processes, with a lower number of clients per executor, are required as the transaction
duration increases.

On long-running queries, users may expect that forcing a disconnect by rebooting the PC
would cause the transaction to be aborted and the query to be terminated. This is not the case
for transaction reusable services. The query will continue until it is ready to send a response
to the client. For session reusable services, the query will terminate.

Figure 2–3 illustrates how a transaction reusable database service works. When a client
connects to a transaction reusable database service, the client connection is assigned to an
executor process; however, the client connection does not stay bound to the executor process
after the executor has processed the initial connection. Multiple client connections may be
assigned to a single executor process. A client connection is bound to an executor process
when a transaction is started, at which time the client accesses data in the database. When
the client ends the transaction, by using a SQL COMMIT or ROLLBACK statement or by
executing a stored procedure that commits or rolls back a transaction, the executor process
unbinds from the client connection. The executor process then becomes available for use by
another client connection. When the client releases the connection, the client connection is
deassigned from the executor process.

Setting Up Services and Types of Reuse

Managing an Oracle SQL/Services System 2-23

Figure 2–3 Oracle SQL/Services Transaction Reusable Database Services

2.6.4 When to Use Session Reusable Versus Transaction Reusable Database
Services

 Table 2–5 summarizes the factors to consider in deciding whether to use session reusable
database services or transaction reusable database services.

Note: This section does not apply to OCI Services for Oracle Rdb
because transaction reusable database services are not available for that
protocol.

Table 2–5 When to Use Session Reusable Versus Transaction Reusable Database
Services

Database Service

Attribute Session Reusable Transaction Reusable

If client transactions are: Long duration
Unknown length

Short duration
Known length

If service use frequency is: Infrequent
 Set no. executors:
 Min=0
 Max=high value

 Set number of executors:
 Min=Max (required)

Frequent
 Set no. executors:
 Min=Max

Set number of executors:
 Min=Max (required)

C1C1 C2C2

AssociateAttach to
Database

Access
Data Associate Release

Time

Access
Data

Access
Data ReleaseAccess

Data

Client 1 (C1) Client 2 (C2)

Transactions

Disconnect
Database

Setting Database Access Authorization

2-24 Oracle SQL/Services Server Configuration Guide

2.7 Setting Database Access Authorization
Caution

For the SQL/Services protocol, the following guidelines can help you understand and decide
what type of service to provide to clients and whether or not to set database access
authorization to the connect user name or the service owner.

Universal Services

Database Access Authorization Set to Connect User Name For clients using a
universal service, set database access authorization to the connect user name if you want
client applications to attach to and access databases by using the client-supplied user name,
the DECnet proxy user name, or the default connect user name. With database access
authorization set to the connect user name, client access to databases is based on the use
granted to individual users or groups of users using the underlying database security
mechanisms.

Example 2–1 illustrates how to create the universal service named GENERIC. Note that
GENERIC is the service name that an Oracle SQL/Services or Oracle ODBC Driver for
Oracle Rdb client will use by default if no service name is supplied. This universal service
has database access authorization set to the connect user name, access granted to all users, a
minimum of 1 executor process, and a maximum of 20 executor processes.

Example 2–1 Default Universal Service with Database Access Authorization Set to
Connect User Name

SQLSRV> CREATE SERVICE GENERIC

If number of clients per
executor is:

1 (required) >1
If short transactions, set to a
higher number.

If longer transactions, set to a
lower number.

Caution: For OCI Services for Oracle Rdb, database access
authorization must be the connect user name.

Table 2–5 When to Use Session Reusable Versus Transaction Reusable Database
Services

Database Service

Attribute Session Reusable Transaction Reusable

Setting Database Access Authorization

Managing an Oracle SQL/Services System 2-25

_SQLSRV> OWNER 'SQLSRV$DEFLT'
_SQLSRV> DATABASE_AUTHORIZATION CONNECT USERNAME
_SQLSRV> MIN_EXECUTORS 1
_SQLSRV> MAX_EXECUTORS 20;
SQLSRV> GRANT USE ON SERVICE GENERIC TO PUBLIC;
SQLSRV> START SERVICE GENERIC;

Database Access Authorization Set to Service Owner For clients using a universal
service, set database access authorization to the service owner only if you need client
applications to attach to and access databases by using a single, fixed user name, the service
owner user name. You can use the GRANT USE ON SERVICE command to restrict the
users that can access such a service.

Usually, you will not set database authorization to service owner for a universal service.

Example 2–2 illustrates how to create a universal service that might be used for testing
purposes that has database access authorization set to the service owner. Authorization to use
the service is granted to only two development accounts in addition to the service owner
user name account.

Example 2–2 Universal Service with Database Access Authorization Set to Service
Owner

SQLSRV> CREATE SERVICE GEN_DEVEL OWNER 'noprivs'
_SQLSRV> DATABASE_AUTHORIZATION SERVICE OWNER
_SQLSRV> MIN_EXECUTORS 0
_SQLSRV> MAX_EXECUTORS 5;
SQLSRV> GRANT USE ON SERVICE GEN_DEVEL TO 'develop', 'test';
SQLSRV> START SERVICE GEN_DEVEL;

Database Services

Database Access Authorization Set to Connect User Name For clients using a
database service, set database access authorization to the connect user name if you want
clients to access the database by using the client-supplied user name, the DECnet proxy user
name, or the default connect user name. With database access authorization set to the

Caution: If you set database access authorization to the service owner
for a universal service, be sure that the service owner user name does not
have access to any databases containing secure or sensitive data that
would otherwise be protected against access from unauthorized users.

Setting Database Access Authorization

2-26 Oracle SQL/Services Server Configuration Guide

connect user name, client access to the database is based on the use granted to individual
users or groups of users using the underlying database security mechanisms.

Example 2–3 illustrates how to create a database service to access the policies and
procedures database of a company where the database is accessed under the client's user
name. Access to the service is granted to all users, while access to data in the database is
based on the underlying database security mechanisms. Unknown users are authorized to use
the service under the default connect user name 'readpp', which has read-only access to data
in the database. The service is owned by the 'ppdb' account, which will be used to attach to
the database when an executor process is started.

Example 2–3 Session Reusable Database Service with Access Authorization Set to
Connect User Name

SQLSRV> CREATE SERVICE P_AND_P
_SQLSRV> ATTACH 'FILENAME pp_disk:[pp]pp_database'
_SQLSRV> OWNER ppdb
_SQLSRV> DATABASE_AUTHORIZATION CONNECT USERNAME
_SQLSRV> DEFAULT_CONNECT_USERNAME readpp
_SQLSRV> MIN_EXECUTORS 0
_SQLSRV> MAX_EXECUTORS 10;
SQLSRV> GRANT USE ON SERVICE P_AND_P TO PUBLIC;
SQLSRV> START SERVICE P_AND_P;

Database Access Authorization Set to Service Owner For clients using a database
service, set database access authorization to service owner if you want client applications to
access the database by using the service owner user name. Use this approach when you want
to grant access to specific data within the database and to specific database operations to a
single user name by using the underlying database security mechanisms, and then grant use
of the service to a restricted set of user names by using the GRANT USE ON SERVICE
command.

Example 2–4 illustrates how to create a database service to access the order-entry database
of a company where the database is accessed under the service owner user name, 'ordent'.

Access to the service is granted only to the 'ordent1', 'ordent2', 'ordent3', and 'ordmgr' users,
in addition to the service owner and privileged users with SYSPRV privilege. The database
name OE_DISK:[OE]OE_DATABASE is defined as a logical name 'oe_database', so the
database can be physically moved if necessary without having to modify the service
definition.

The transaction workload characteristics of the database allow the service to be transaction
reusable, support up to 100 users distributed over five executor processes, and have up to 20
users per process.

Setting Database Access Authorization

Managing an Oracle SQL/Services System 2-27

Example 2–4 Transaction Reusable Database Service with Access Authorization Set
to Service Owner

SQLSRV> CREATE SERVICE ORD_ENT REUSE SCOPE IS TRANSACTION
_SQLSRV> ATTACH 'FILENAME OE_DATABASE'
_SQLSRV> OWNER ordent
_SQLSRV> DATABASE_AUTHORIZATION SERVICE OWNER
_SQLSRV> MIN_EXECUTORS 5
_SQLSRV> MAX_EXECUTORS 5
_SQLSRV> CLIENTS_PER_EXECUTOR 20;
SQLSRV> GRANT USE ON SERVICE ORD_ENT TO ordent1,
_SQLSRV> ordent2,
_SQLSRV> ordent3,
_SQLSRV> ordmgr;
SQLSRV> START SERVICE ORD_ENT;

2.7.1 Specify a Default Connect User Name for the SQL/Services Protocol
The following guidelines can help you decide whether or not to specify the default connect
user name to authorize unknown users' access to databases on your system through either a
universal service or a database service.

Using Universal Services
Specify a default connect user name for a universal service only if you need to allow
unknown users access to databases on your system. You may choose this approach in a
development environment to allow simple access to databases used for testing and
debugging.

Usually, you will not specify a default connect user name to authorize use of a universal
service to unknown users.

Using Database Services
Specify a default connect user name to authorize use of a database service to unknown users
if you want to allow access to data in a particular database without requiring a user name
and password. For example, you may consider providing access to nonsensitive,

Caution: If you specify a default connect user name to authorize use of
a universal service to unknown users, ensure that any databases containing
secure or sensitive data are protected with the appropriate access
restrictions at the database level.

Setting Database Access Authorization

2-28 Oracle SQL/Services Server Configuration Guide

public-access data in a database by using this mechanism in combination with database
access authorization set to the connect user name (see Example 2–3).

2.7.2 Grant or Restrict Access to a Service
The following guidelines can help you decide whether to grant access to a service to all
users or restrict access to a service to a specified list of users.

Grant Access to a Service to All Users If:
■ You have universal or database services where database access authorization is set to the

connect user name and you want to provide all users with the most flexible method of
access to data in databases on your system, subject to underlying database security in
individual databases.

■ You have a database service where database access authorization is set to the service
owner, but access to the database by using the service owner user name is restricted to
nonsensitive, public-access data that you want to make available to all users.

Restrict Access to a Service to a Specified List of Users If:
■ You have a universal service with database access authorization set to the service owner

in order to access a set of databases using a fixed user name.

■ You have a database service with database access authorization set to the service owner
where you want to grant access to data in a database to a single user name by using the
underlying database security mechanisms, and then control access to that data by using
Oracle SQL/Services security mechanisms.

2.7.3 Provide Arbitrary or Predefined Access to Data
The following guidelines can help you decide whether to provide arbitrary access to data or
predefined access to data.

Caution: Restricting access to services to a specified list of user names
by using Oracle SQL/Services does not prevent other users from trying to
log in to your system and attempting to access the same databases (using a
tool such as interactive SQL) provided by those services. Even if you
restrict access to a service to a specified list of user names, you should still
protect secure and sensitive data in databases by using underlying database
security mechanisms.

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-29

Arbitrary Access to Data
You restrict the tables that users can access and the operations that they can perform on
those tables by using either underlying database security mechanisms alone or in
combination with Oracle SQL/Services security mechanisms. However, once access to data
has been granted, users can then execute arbitrary SQL statements against that data, subject
to the access they have been granted. For example, if users have INSERT access to a table,
they can insert any data they wish into that table. In some situations, allowing arbitrary
access to data in a database may not be desirable.

Predefined Access to Data
In some situations, it is desirable to restrict users' ability to manipulate data to a set of
predefined operations. You do this as part of the database setup by creating a set of definer's
rights stored procedures. The procedures provide all of the necessary access to data in one or
more tables. By restricting access to the tables to the user name of the stored procedures'
definer, you prevent access from all other users. You then grant access to the stored
procedures by using either underlying database security mechanisms alone or in
combination with Oracle SQL/Services security mechanisms.

2.8 Setting Up Security on Servers
Oracle SQL/Services, in combination with the underlying database engine, provides various
security mechanisms that you can employ to control the services and data that users are
allowed to access. An Oracle SQL/Services server environment can be viewed as having
three tiers where security is checked. The tiers are as follows:

■ Tier 1: Client identification and authentication

The Oracle SQL/Services server first checks the identification and authentication of
users requesting access to the server. This occurs when the client first connects to the
server.

■ Tier 2: Service access authorization

The Oracle SQL/Services server next checks that each user requesting access to a
particular service has been authorized to use that service.

■ Tier 3: Database and data access authorization

Finally, the underlying database engine checks each database access request made by an
executor process.

Each of these security tiers is discussed in the sections that follow.

Setting Up Security on Servers

2-30 Oracle SQL/Services Server Configuration Guide

2.8.1 Client Identification and Authentication
The first server security tier is client identification and authentication. This occurs when the
client application first connects to the server. The result of the successful completion of the
first tier is a connect user name that is used for authorization checks in subsequent tiers.

Verification of user name and password are accomplished in one of the following ways:

■ OCI Services for Oracle Rdb

For OCI Services for Oracle Rdb, the client supplies the user name which must be
located in the USER$ table in the database. The USER$ table also contains the
encrypted password. The password is returned to the client which returns the key to
decrypt the password. User name and password are then given to Oracle SQL/Services
for authorization. Access to an OCI service must be by connect user name.

■ Oracle SQL/Services

For Oracle SQL/Services, a user supplies a user name and password when accessing a
service. When a client connects to an Oracle SQL/Services server, the server ensures
that the user's account exists on the system and that the password is valid. Following
successful authentication, the client-supplied user name is used as the connect user
name. If the user name and password check fails or if the password has expired, then the
connection is rejected and an error message is returned to the client. If the user does not
supply a user name and password, the server then checks the network transport of the
connection.

If the client selected the DECnet transport, then the server checks to see if a proxy exists
for the node name or user name of the client or both. The server first looks up the
client’s DECnet node name and DECnet user name, if any, in the Oracle SQL/Services
proxy file, SYS$STARTUP:SQLSRV$PROXY.DAT. If a match is found, then the local
proxy user name is used as the connect user name. If no match is found, but the client is
on the same node as the server, then the user name of the client process is used as the
connect user name.

For the system management client only, the server uses the user name of the client
process as the connect user name, if the user:

■ Selected the TCP/IP transport

■ Logged in to the server node

■ Has SYSPRV or BYPASS privileges

As a system administrator, you can choose to allow access to a service without requiring
a user name and password by specifying a default connect user name. If the user does
not supply a user name and password and a default connect user name is not specified

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-31

(unknown users are not authorized to access the service), then the connection is rejected
and an error message is returned to the client. If the client does not supply a user name
and password and a default connect user name has been specified (unknown users are
authorized to access the service), then the connect user name is set to the default
connect user name. If the client does supply a user name, then the user name is used as
the connect user name, regardless of whether or not a default connect user name is
specified.

When a system administrator connects to a system management service of a server, the
server performs the same user name and password check as when a client connects to a
service. If the user name and password checks fail, then the connection is rejected and
an error message is returned to the system management application. You cannot specify
a default connect user name for the system management service; therefore, you cannot
authorize unknown users to access the system management service.

2.8.2 Service Access Authorization
The second server security tier verifies that the user is authorized to access the selected
service.

Each service has a list of user names and identifiers that are authorized to access the service.
When you create a new service, only the service owner is authorized to access the service.
As a system administrator, you are responsible for granting appropriate users access to
services provided by the server. You can grant access to a service based on an individual
user name, an identifier, or you can grant access to a service to all users (for example,
GRANT USE ON SERVICE GENERIC TO PUBLIC).

When a user connects to a service, the server checks to see if the connect user name or an
identifier held by the connect user name has been authorized to use the service, or if access
to use the service has been granted to all users. If the user is not authorized to access the
service, then the connection is rejected and an error message is returned to the client.

A system management service of a server also has a list of user names and identifiers that
are authorized to access the service and thus manage the server. When you create a server,
typically done as part of the installation, only the privileged user with SYSPRV privilege is
authorized to manage the server. As a system administrator, you are responsible for granting
access to any additional users who will manage the server. If an unauthorized user attempts
to connect to a system management service of a server, then the connection is rejected and
an error message is returned to the system management application.

Setting Up Security on Servers

2-32 Oracle SQL/Services Server Configuration Guide

2.8.3 Database and Data Access Authorization
The third and final server security tier occurs at the database level in an executor process.
Whenever an executor process executes a SQL statement, the underlying database engine
performs a security check to determine if the user name executing the request is authorized
to do so. Oracle SQL/Services allows database requests to be executed using either the
connect user name or the service owner, depending on the type of service you are providing
and the version of Oracle Rdb specified for the service. As a system administrator, you
determine which user name is authorized by the database engine by specifying the database
access authorization attribute of each service to be either the connect user name or service
owner.

■ Database access authorization set to connect user name

If you set the database access authorization to connect user name, then the underlying
database uses the connect user name to determine if a client is authorized to execute a
database request. The connect user name is the client-specified user name, a DECnet
proxy user name, or the default connect user name.

■ Database access authorization set to service owner

If you set the database access authorization to service owner, then the underlying
database uses the service owner's user name to determine if a client is authorized to
execute a database request. The service owner account must have SELECT access to the
database to which you are attaching. The executor process inherits the OpenVMS
privileges from the service owner userid. NETMBX and TMPMBX are all that is
needed as AUTHORIZED privileges. Oracle SQL/Services uses the AUTHORIZED
privileges list instead of the DEFAULT privilege list.

2.8.4 How Server Security Tiers Work Together for the SQL/Services Protocol
Figure 2–4 illustrates how the three server security tiers work together for three connect
examples in which a client logs in to the system. Each example shows client identification
and authentication, service access authorization, and the resulting database and data access
authorization based on the service definition for each service.

Note: You cannot use database services with database access
authorization set to the connect user name to provide access to remote
Oracle Rdb databases. However, Oracle SQL/Services does allow you to
provide a database service for a remote Oracle Rdb database if you create
the service with database access authorization set to the service owner.

Setting Up Security on Servers

Managing an Oracle SQL/Services System 2-33

Figure 2–4 Oracle SQL/Services Server Security

First Connect Example
In the first connect example, a user requests access to service X. The user specifies a user
name and a password, so these are authenticated by the server in the first security tier and

Connect 1 Connect 2 Connect 3

Service

Client Connect

De f in i t ion

to Server

Tier 3:

Tier 2:

Tier 1:

Service Access
Authorization

Database and
Data Access
Authorization

fication and
Authentication

Client Identi-

Service name=X
Owner=’fred’
Attach=’payroll_db’

User name=’ned’
Password=’pwned’

Service name=Y
Owner=’bert’
No attach argument

Grant use to PUBLIC

User name=’holly’
Password=’pwholly’

Grant use to ’freda’,
 ’ned’

User name =’holly’

Authenticated using

set to ’holly’

’holly’ authorized

using PUBLIC

using connect
user name ’holly’

’holly’

Database attached

User name=’ned’

Service name=Z

 password ’pwned’

Owner=’joe’
Attach=’account_db’

set to ’ned’

’ned’ authorized
access to service X
using ’ned’

 user name ’fred’

Default connect

set to ’jane’

’jane’ authorized

using ’jane’

 using service owner
 user name ’joe’

’jane’

No user name
No password

Grant use to ’janet’,
 ’jane’

Service name=X Service name=Y Service name=Z

Connect user name

Database attached Database attached

Data accessed using

 using service owner

access to service Y access to service Z

Data accessed using Data accessed using
connect user name

password ’pwholly’

service owner
No default connect

username argument

Database authorization=
connect username

username=’jane’

Database authorization= Database authorization=
connect username

Default connect

Connect user name Connect user name

Connect user nameConnect user nameConnect user name

connect user name
user name ’fred’
service owner

username=’jane’

No default connect
username argument

Authenticated using

Setting Up Security on Servers

2-34 Oracle SQL/Services Server Configuration Guide

the connect user name is set to 'ned'. No default connect user name is specified, so unknown
users are not allowed to access service X; therefore, all users requesting access to service X
must supply a valid user name and password. In the second security tier, the server checks
that the connect user name, 'ned' in this example, is authorized to access the service. Users
'freda' and 'ned', as well as a privileged user with SYSPRV privilege, have been granted the
right to use service X. So user 'ned' is authorized to access the service. Service X is a
database service; therefore, the executor process attaches to the 'payroll_db' database by
using the service owner's user name, 'fred'. Database access authorization for service X is set
to the service owner, so all database attaches and data access requests are also made under
the service owner's user name, 'fred' in this example.

Second Connect Example
In the second connect example, a user requests access to service Y. The user specifies a user
name and a password, so these are authenticated by the server in the first security tier and
the connect user name is set to 'holly'. No default connect user name is specified, so
unknown users are not allowed to access service Y; therefore, all users requesting access to
service Y must supply a valid user name and password. In the second security tier, the server
checks that the connect user name, 'holly' in this example, is authorized to access the service.
All users have been granted the right to use service Y, so user 'holly' is authorized to access
the service. Service Y is a universal service; therefore, an executor is not preattached to a
specific database. Database access authorization for service Y is set to the connect user
name, so all database attachments and data access requests are made under the connect user
name, 'holly' in this example.

Third Connect Example
In the third connect example, a user requests access to service Z. The user does not specify a
user name and a password, so the server checks if unknown users are authorized to access
the requested service. A default connect user name is specified, so unknown users are
allowed to access service Z as user 'jane'; therefore, the connect user name is set to 'jane'. In
the second security tier, the server checks that the connect user name, 'jane' in this example,
is authorized to access the service. Users 'janet' and 'jane', as well as a privileged user with
SYSPRV privilege have been granted the right to use service Z, so user 'jane' is authorized to
access the service. Service Z is a database service; therefore, the executor process attaches to
the 'account_db' database by using the service owner's user name, 'joe'. However, database
access authorization for service Z is set to the connect user name, so all data access requests
are made under the connect user name, 'jane' in this example.

Understanding Database Access Authorization Models for Oracle SQL/Services

Managing an Oracle SQL/Services System 2-35

2.9 Understanding Database Access Authorization Models for Oracle
SQL/Services

In Section 2.7, you learned that Oracle SQL/Services allows you to authorize database
access using the service owner user name or the connect user name. You also learned how
these models affect the environment within which database requests and external functions
are executed. This section describes in detail how Oracle SQL/Services implements database
authorization by connect user and by service owner.

2.9.1 Accessing an Oracle Rdb Database
To understand how Oracle SQL/Services implements database authorization by connect user
name and by service owner, it is first necessary to understand that four user names are
involved in accessing an Oracle Rdb database in the Oracle SQL/Services environment:

■ Operating system process user name

■ Oracle Rdb system user name

■ Oracle Rdb session user name

■ Oracle Rdb current user name

Following is an explanation of the four user names.

2.9.1.1 Operating System Process User Name
The process user name is the user name under which an Oracle SQL/Services executor
process runs a local attach, or the user name of the Oracle Rdb remote server process in a
remote attach.

The process user name is set based on the SERVICE OWNER service attribute for local
attaches, whereas it is based on the ATTACH statement and the configuration of the remote
Oracle Rdb server node for remote attaches. Associated with the process user name are a
number of process attributes. These attributes include:

■ UIC

■ Privileges

■ Rights list

Note: Access to an OCI service must be by connect user name.

Understanding Database Access Authorization Models for Oracle SQL/Services

2-36 Oracle SQL/Services Server Configuration Guide

■ Account name

■ Default directory

■ Logical names, including

– SYS$DISK

– SYS$LOGIN_DEVICE

– SYS$LOGIN

– SYS$SCRATCH

– LNM$GROUP (for group logical name table)

2.9.1.2 Oracle Rdb System User Name
Each attached database in an executor process has a value for the system user name. The
Oracle Rdb system user name is used to determine if the process is authorized to attach to
the database and also serves as the default value for the Oracle Rdb session user name.

The Oracle Rdb system user name for an attached database defaults to the process user name
but may be overridden by the SQL ATTACH statement attribute of a database service or by
a client application accessing a universal service, depending on the type of service being
provided, the attributes of that service, and the version of Oracle Rdb being used.

The Oracle Rdb system user name for an attached database is established at the time of
attachment to the database and remains fixed for the life of the attachment. You can override
the default value for the system user name by specifying a user name and a password in the
attach-string argument of a SQL ATTACH statement or in the connect-string argument of a
SQL CONNECT statement. See the Oracle Rdb SQL Reference Manual for more
information on the SQL ATTACH and CONNECT statements.

The number of attached databases in an executor process providing a universal service is
determined by the client application. Different attached databases may have different system
user names.

An executor process providing a database service has only one attached database.

2.9.1.3 Oracle Rdb Session User Name
All database requests are executed within the context of a SQL connect. Each SQL connect
in an executor process has a value for the session user name. The session user name for a
SQL connect defaults to the Oracle Rdb system user name, but may be overridden by Oracle
SQL/Services or by a client application, depending on the type of service being provided,
the attributes of that service, and the version of Oracle Rdb being used.

Understanding Database Access Authorization Models for Oracle SQL/Services

Managing an Oracle SQL/Services System 2-37

The session user name for a SQL connect is determined at the time the SQL connect is
established and remains fixed for the life of the SQL connect. You can override the default
value for the session user name when using a universal service by specifying a user name
and a password as arguments to the SQL CONNECT statement. See the Oracle Rdb SQL
Reference Manual for more information on the SQL CONNECT statement.

The number of SQL connects in an executor process providing a universal service is
determined by the client application. Different SQL connects may have different session
user names. A SQL connect in an executor process providing a universal service can
reference one or more database attaches.

The number of SQL connects in an executor process providing a database service is
determined by the service reuse attribute. See Section 2.6 for information on reuse attributes.

The ATTACH statement of a database service is always executed in the context of the
default SQL connect. You cannot use a SQL CONNECT statement to attach to a database
using a database service. The session user name for the default connect defaults to the
system user name. If a SQL initialization file is specified for the service, then the statements
contained therein are executed in the context of the default SQL connect after the SQL
ATTACH statement.

A new SQL connect is created for each client application that connects to the service. If the
service is defined with database authorization by the service owner, then the session user
name for each SQL connect of a client application defaults to the system user name. If the
service is defined with database authorization by connect user, then each SQL connect of a
client application is created using the connect user name for each individual client
connection. When a client application disconnects from the service, the SQL connect of the
client application is deleted. For a session reusable database service, there is a maximum of
one client application SQL connect per executor. For a transaction reusable database service,
there is one client application SQL connect for each concurrent client connection.

2.9.1.4 Oracle Rdb Current User Name
The current user name is always set to the value of the session user name except during the
execution of a definer's rights stored procedure, in which case, the current user name is set to
the definer's user name.

Whenever a database request is started, Oracle Rdb must determine if the process issuing the
request is authorized to execute the request. To perform this check, Oracle Rdb first merges
the system privileges of the process accessing the database with the database privileges of
the current user name. For a local attach, the process accessing the database is the Oracle
SQL/Services executor process. For a remote attach, the process accessing the database is
the Oracle Rdb server process.

Understanding Database Access Authorization Models for Oracle SQL/Services

2-38 Oracle SQL/Services Server Configuration Guide

The process privilege mask of the operating system is used as the system privileges for the
executor process.

After Oracle Rdb merges the privileges, it then determines if the combination of these
privileges is sufficient to execute the request. Because Oracle Rdb combines the privileges
in this way, you must carefully choose the service owner user name for a database service.
See Section 2.10 for more information.

For example, consider a database service called PAYROLL that is defined with a service
owner user name of SYSTEM and with database authorization set to the connect user name.
User SMITH might not normally be authorized to update a table called EMPLOYEE_PAY
in the payroll database. However, if user SMITH accesses the payroll database using the
PAYROLL service, the database privileges for user name SMITH, when combined with the
system privileges for the SYSTEM user name, which include SYSPRV and BYPASS, allow
this user full access to the EMPLOYEE_PAY table and all other tables in the database.

2.9.2 Setting the Process User Name and the Oracle Rdb System User Name
To set the Oracle Rdb system user name, Oracle SQL/Services uses a process user name
impersonation mechanism to set the process user name and all associated process attributes
of an executor process. By setting the process user name, Oracle SQL/Services
automatically establishes the correct default for the Oracle Rdb system user name.
Furthermore, by setting the process user name, Oracle SQL/Services also establishes the
correct environment for the consistent execution of external functions and procedures that
execute within the context of the executor process.

Oracle SQL/Services sets the process user name at different times, based on the type of
service you provide:

■ Universal service

Oracle SQL/Services sets the process user name every time a new client connect is
assigned to an executor process for a universal service. This ensures the correct
environment at all times for the execution of external functions and procedures that
execute within the context of the executor process.

■ Database service

Oracle SQL/Services sets the process user name once for an executor process for a
database service at the time the executor process is first started. However, to ensure the
correct and successful execution of database requests once an executor is attached to a
database, Oracle SQL/Services cannot and does not reset the process user name when a
new client connect is assigned to an executor process. This behavior provides a
consistent environment for the execution of external functions and procedures that
execute within the context of the executor process. However, it means that all such

Considering Security for Selecting the Service Owner User Name

Managing an Oracle SQL/Services System 2-39

functions and procedures are executed under the service owner user name, rather than
the connect user name for a service with the database authorization attribute set to
connect user. See Section 2.10.2 for more information on using external functions and
procedures with Oracle SQL/Services, including information on how to define external
functions and procedures to execute within the context of an independent server process
with the rights and privileges of the connect user name.

When Oracle SQL/Services creates an executor process, the Oracle SQL/Services monitor
process merges the authorized and default privileges of the service owner account. The
combination of these privileges becomes the authorized privilege mask of the executor
process. When Oracle SQL/Services resets the process user name of an executor process, it
sets the process privilege mask and current privilege mask of the executor process by
merging the authorized and default privileges of the new process user name. However,
Oracle SQL/Services cannot set the authorized privilege mask of an executor process.
Therefore, you must ensure that a service owner account does not have excess authorized or
default privileges. Typically, you will grant only the TMPMBX and NETMBX privileges to
a service owner account.

2.10 Considering Security for Selecting the Service Owner User Name
The security criteria that you use to select and configure an account for use as a service
owner account is based on the type of services you are providing and the database
authorization attribute of the services.

2.10.1 Execution Environment for Database Requests
The following guidelines can help you select and configure an account for use as a service
owner account on OpenVMS systems based on the service type and the database
authorization attribute of the service.

Universal Services

Database Access Authorization Set to Connect User Name For a universal service
with database authorization set to connect user name, you should select an account with a
nonsystem user identification code (UIC) that has minimal privileges. The Oracle
SQL/Services installation procedure creates a nonprivileged account named
SQLSRV$DEFLT that may be used for all universal services with database authorization set
to connect user name.

Database Access Authorization Set to Service Owner For a universal service with
database authorization set to service owner, you should select an account with a nonsystem

Considering Security for Selecting the Service Owner User Name

2-40 Oracle SQL/Services Server Configuration Guide

UIC that has minimal privileges and that has been granted the necessary database access to
only those databases that are designed to be accessed by the service. To ensure the security
and integrity of your data, the account you select will usually be severely restricted in the
access it has to databases on your system and the data contained therein.

Database Services

Database Access Authorization Set to Connect User Name For a database service
with database authorization set to connect user name, you should select an account with a
nonsystem UIC that has minimal privileges. Because all database requests are executed
using the connect user name, the account you select as the service owner user name need
only be granted the right to attach to the database. For example, by granting to the
SQLSRV$DEFLT account the right only to attach to the database, you can use the
nonprivileged account created by the Oracle SQL/Services installation procedure.

Database Access Authorization Set to Service Owner For a database service with
database authorization set to service owner, you should select an account with a nonsystem
UIC that has minimal privileges and that has been granted the right to access certain specific
data within the database and that has been granted the right to execute certain specific
operations against that data. The amount of access you grant to the service owner account
will be specific to each database for which you provide a database service with database
authorization set to service owner.

You must configure each service owner account with these minimum privileges and quotas:

■ TMPMBX and NETMBX privileges

■ Default account quota values suffice, with the following exceptions:

– ENQLM - set quota of 2000

– JTQUOTA - set quota of 4096

If your database has hundreds of storage areas, you might also need to increase the
PGFLQUOTA (paging file limit) for the process, using AUTHORIZE, or the PAGFILCNT
and VIRTUALPAGECNT system parameter values, using the System Generation
(SYSGEN) utility. Allow 60 pages per storage area.

You use AUTHORIZE to verify and change user accounts. You must have system privileges
to use AUTHORIZE. At the AUTHORIZE prompt (UAF>), enter the SHOW command
with an account name to check that particular account. For example:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF> SHOW SMITH

Considering Security for Selecting the Service Owner User Name

Managing an Oracle SQL/Services System 2-41

To change quotas and privileges, use the MODIFY command:

MODIFY account-name /quota-name=NNN /PRIVILEGE=(priv-name) /DEFPRIV=(priv-name)

The following example changes the FILLM quota for the SMITH account, and gives it the
TMPMBX and NETMBX privileges:

UAF> MODIFY SMITH /FILLM=300 -
_UAF> /PRIVILEGE=(TMPMBX,NETMBX) /DEFPRIV=(TMPMBX,NETMBX)

Users must log out and log in again for changes made in AUTHORIZE to take effect. For
more information on modifying account quotas, see the description of the OpenVMS
Authorize utility in the OpenVMS system management documentation.

See the Oracle Rdb Installation and Configuration Guide for more information on Oracle
Rdb requirements.

2.10.2 Execution Environment for External Functions and Procedures
You can define external functions and procedures to execute within the context of the
executor process or in an independent server process that Oracle Rdb creates specifically to
execute external functions and procedures.

To define an external function or procedure to execute within the context of the executor
process, use the SQL BIND ON CLIENT SITE syntax. From the perspective of the Oracle
Rdb database engine, the database client is the Oracle SQL/Services executor process, not
the Oracle SQL/Services client. To define an external function or procedure to execute in an
independent server process, use the SQL BIND ON SERVER SITE syntax.

See Section 2.7 for a complete, in-depth discussion of how Oracle SQL/Services implements
the database access authorization models. See the Oracle Rdb SQL Reference Manual and
the Oracle Rdb7 Guide to SQL Programming for more information on defining external
functions and procedures.

2.10.2.1 External Functions and Procedures Executing in the Context of the
Executor Process
Because you can define external functions and procedures to execute within the context of
the executor process, you should consider this when you configure service owner accounts.

Considering Security for Selecting the Service Owner User Name

2-42 Oracle SQL/Services Server Configuration Guide

Universal Services

Database Access Authorization Set to Connect User Name External functions and
procedures defined to execute in the context of the executor process always execute with the
rights and privileges of the connect user name using this type of service.

Database Access Authorization Set to Service Owner External functions and
procedures defined to execute in the context of the executor process always execute with the
rights and privileges of the service owner user name under this type of service.

Database Services

Database Access Authorization Set to Connect User Name External functions and
procedures defined to execute in the context of the executor process always execute with the
rights and privileges of the service owner user name under this type of service. This is
because Oracle SQL/Services cannot reconfigure an executor process once it has attached to
the database. To have external functions and procedures execute with the rights and
privileges of the connect user name, you must define the external functions and procedures
to execute in an independent server process using the SQL BIND ON SERVER SITE
syntax.

Database Access Authorization Set to Service Owner External functions and
procedures defined to execute in the context of the executor process always execute with the
rights and privileges of the service owner user name under this type of service.

2.10.2.2 External Functions and Procedures Executing in the Context of an
Independent Process
You can define external functions and procedures to execute within the context of an
independent server process. With this model, the execution environment for external
functions and procedures is based on the database authorization attribute regardless of
whether you are using universal or database services.

Universal and Database Services

Database Access Authorization Set to Connect User Name
External functions and procedures defined to execute in the context of an independent server
process always execute with the rights and privileges of the connect user name with this type
of authorization.

Database Access Authorization Set to Service Owner

Setting the Attributes for Number of Executors

Managing an Oracle SQL/Services System 2-43

External functions and procedures defined to execute in the context of independent server
process always execute with the rights and privileges of the service owner user name with
this type of authorization.

2.11 Setting the Attributes for Number of Executors
The use of some services on your system may be fairly constant over time, whereas the use
of other services may vary over time with peaks and lulls in the user activity. By setting
appropriate values for the MIN_EXECUTORS, MAX_EXECUTORS, and IDLE_
EXECUTOR_TIMEOUT attributes for a service, you can provide an efficient service to
your clients.

You must always set the MIN_EXECUTORS attribute to the same value as the MAX_
EXECUTORS attribute for a transaction reusable service. This is to allow Oracle
SQL/Services to distribute new client connections evenly over the pool of available executor
processes for a service.

2.11.1 Configuring a Fixed Number of Executors for a Service
For a service that has a fairly constant number of users connected to it over time, Oracle
recommends that you set the MIN_EXECUTORS attribute to the same value as the MAX_
EXECUTORS attribute. This ensures that a constant number of executors are prestarted and
are always available to client applications. This avoids the delay while an executor process
is started for a new client connection.

2.11.2 Configuring a Variable Number of Executors for a Service
For a service where the number of connected users varies over time, with more users at peak
times and fewer users at less busy times, you can choose to adjust the number of executors
to suit any load. To do this, you can choose to have the Oracle SQL/Services server
automatically start new executor processes as they are needed, or you can prestart new
executor processes in anticipation of increased demand at peak times.

2.11.2.1 Starting New Executor Processes as They Are Needed
The simple approach to handling peaks and lulls in the demand for a service is to set the
MIN_EXECUTORS attribute to a value that supports the activity for the service at normal
times, set the MAX_EXECUTORS attribute to a value that supports the activity for the
service at peak times, then let Oracle SQL/Services create new executor processes as
demand increases during peak periods of use. By choosing a suitable value for the IDLE_
EXECUTOR_TIMEOUT attribute, you can ensure that executors remain active once they
have been started, even if demand might decrease for a little while. Although this approach

Using a SQL Initialization File

2-44 Oracle SQL/Services Server Configuration Guide

is very easy to configure and manage, a disadvantage with this approach is that new users
who connect to the service at the beginning of a peak period will encounter a slight delay if
new executor processes must be created.

2.11.2.2 Prestarting New Executor Processes Ahead of Increased Demand
A more complex approach to handling peaks and lulls in the demand for a service is to set
the MAX_EXECUTORS attribute to a value that supports the activity for the service at peak
times, then create SQLSRV_MANAGE scripts that can be used to increase the value of the
MIN_EXECUTORS attribute for the service at peak times and decrease the value of the
MIN_EXECUTORS attribute for the service at a time when demand for the service starts to
decrease.

You can automatically invoke the SQLSRV_MANAGE scripts to increase the MIN_
EXECUTORS attribute value in anticipation of the increase in the number of users of a
service and decrease the MIN_EXECUTORS attribute value at the end of a peak period by
writing command procedures for batch jobs. The advantage of this approach of prestarting
executors ahead of demand is that new users who connect to the service at the beginning of a
peak period will not encounter delays as executor processes are created. A disadvantage of
this approach is that it is more complex to manage.

2.12 Using a SQL Initialization File
You can use the SQL_INIT_FILE argument of the CREATE SERVICE or ALTER
SERVICE command to specify a file containing SQL statements that tailor the SQL
environment for a client connection. For example, you can set the SQL dialect and default
character set by using a SQL initialization file. The statements in a SQL initialization file are
executed every time a client connects to a service.

See Section 7.1 for more information about syntax conventions used in a SQL initialization
file.

2.13 Using SQL/Services Logical Names
There are several logical names available to configure your server system.

Using SQL/Services Logical Names

Managing an Oracle SQL/Services System 2-45

Table 2–6 summarizes logical names that you can use with Oracle SQL/Services and OCI
Services for Oracle Rdb.

The preceding RDB and SQLNET logicals are typically defined in the process initialization
file for a service, while the SQLSRV logicals must be defined as system logicals.

Table 2–6 SQL/Services Logical Names

Logical Name Description

RDB$DDTM_XG_INFO Used to specify the XA Gateway for two-phase commit
transactions.

SQLNET_BLOB or

SQLNET_BLOB_DATA_TYPE

Used to treat segmented strings as Oracle LOBs.

SQLNET_BUGCHECK_FILE Used to specify the name of the bugcheck dump file.

SQLNET_DEBUG_FLAGS Used to enable logging in the executor log file.

SQLNET_DOMAIN Used to change the domain name for OCI services.

SQLNET_MAXLONGRAW Used to create blobs larger than 100,000 bytes.

SQLNET_RECO_USER Used to specify a recovery user for two-phase commit
when not using XA Gateway.

SQLNET_STRUCTURED_DATE_TYPES Used to turn structured date types on.

SQLNET_TIMESTAMP_DATE_TYPE Used to turn on timestamp data types.

SQLNET_VALIDATE_PROGRAM Used to enable validation of user names and programs
during logon.

SQLSRV_DISP_DUMPPATH Used to specify the directory for dispatcher dump file.

SQLSRV_DISP_LOGPATH Used to specify the directory for the dispatcher log file.

SQLSRV_EXEC_LOG Used to disable the service log for all services.

SQLSRV$ALLOW_CAPTIVE Used to allow access when using captive accounts.

SQLSRV$CHECK_EXPIRED_
PASSWORDS

Deprecated feature

SQLSRV$LOG_CONNECTIONS Used to disable logging of successful connections in the
dispatcher log file.

SQLSRV$MAX_EXECUTOR_FAILURES Used to change the maximum number of failures
allowed before an executor fails.

SQLSRV$UPDATE_LOGIN_
FREQUENCY

Used to configure the frequency that the last
non-interactive login is updated in SYSUAF.

Using SQL/Services Logical Names

2-46 Oracle SQL/Services Server Configuration Guide

2.13.1 RDB$DDTM_XG_INFO Logical
When the logical RDB$DDTM_XG_INFO is defined to be a string denoting the name specified when
creating the XA Gateway log, it specifies that the XA Gateway is to be used for two-phase commit
transactions made through OCI Services for Oracle Rdb connections. For more information, see
Section 5.8.2.

2.13.2 SQLNET_BLOB or SQLNET_BLOB_DATA_TYPES Logicals
By default, Oracle Rdb segmented strings were treated as long character strings by the Oracle tools.
Much of the OCI LOB interface is now implemented, so it is possible to treat segmented strings as
Oracle LOBs. To enable this, you must define this logical to be "Y" or "y". For example:

$ DEFINE SQLNET_BLOB Y

or

$ DEFINE SQLNET_BLOB_DATA_TYPES Y

If you define the logical as anything else, or if you do not define it, segmented strings in Oracle Rdb
will be treated like long character strings when connecting through OCI Services for Oracle Rdb. It is
also possible to enable and disable blob functionality by executing an ALTER SESSION SET
SQLNET_BLOB ON/OFF or ALTER SESSION SET SQLNET_BLOB_DATA_TYPE ON/OFF
command

2.13.3 SQLNET_BUGCHECK_FILE Logical
You can define the logical SQLNET_BUGCHECK_FILE to specify the name of the OCI Services for
Oracle Rdb bugcheck dump file. For example:

$ DEFINE SQLNET_BUGCHECK_FILE DKA300:[BUGCHECKS]OCI_SRV.DMP

The default filespec is SYS$LOGIN:OCISERV_BUGCHECK.DMP.

2.13.4 SQLNET_DEBUG_FLAGS Logical
This logical enables additional information to be logged by OCI Services for Oracle Rdb in the
SQL/Services executor log file. For more information, see Section 8.3.4.

2.13.5 SQLNET_DOMAIN Logical
OCI Services for Oracle Rdb assumes that the default domain name is .WORLD. You can define the
logical SQLNET_DOMAIN to change the domain name. This is especially relevant for people
accessing OCI Services for Oracle Rdb using dblinks from an Oracle database. The logical can be
defined in the process initialization file for the service. See the Oracle Database documentation for
more information on the use of domain names.

Using SQL/Services Logical Names

Managing an Oracle SQL/Services System 2-47

2.13.6 SQLNET_MAXLONGRAW Logical
When connected through OCI Services for Oracle Rdb, the default maximum size for
segmented strings is 100,000 bytes. If you are creating blobs larger than 100,000 bytes, you
must define the logical SQLNET_MAXLONGRAW to be the size of the largest blob you
are creating. For example:

$ DEFINE SQLNET_MAXLONGRAW 500000

2.13.7 SQLNET_RECO_USER Logical
If you are using OCI Services for Oracle Rdb from a database link, you are doing two-phase commit
and you are not using the XA Gateway, if either the Oracle system or the Oracle Rdb system fail while
in the middle of a transaction, the Oracle Transaction Manager tries to reconnect to the Oracle Rdb
database to verify the results of the transaction. In order for OCI Services for Oracle Rdb to be able to
make this connection, it needs a user name and password. The user needs access only to the ORA_
COMM_TRANS table which records the results of transactions as they are in progress. This logical is
defined as a string specifying that user name and password. For example:

$ DEFINE SQLNET_RECO_USER "SMITH SECRETPSWD"

If the XA Gateway is enabled, this logical is not required.

2.13.8 SQLNET_STRUCTURED_DATE_TYPES Logical
This logical is used to turn structured date types on and return true data types to the OCI client from
OCI Services for Oracle Rdb. See Section 4.9 for the actual data types that are returned by OCI
Services for Oracle Rdb. When this logical is set to ’Y’ or ’y’, structured date types are turned on. For
example:

$ DEFINE SQLNET_STRUCTURED_DATE_TYPES Y

This functionality can also be enabled or disabled by executing an ALTER SESSION SET SQLNET_
STRUCTURED_DATA_TYPES ON/OFF command.

2.13.9 SQLNET_TIMESTAMP_DATE_TYPE Logical
This logical is used to turn on timestamp data typeswhen connecting through OCI Services for Oracle
Rdb. When this logical is set to ’Y’ or ’y’, TIME and TIMESTAMP data types are returned as
TIMESTAMP; otherwise, the data types are returned as DATE. Timestamp functionality can also be
enabled or disabled by executing an ALTER SESSION SET SQLNET_TIMESTAMP_DATE_TYPE
ON/OFF command. For example:

$ DEFINE SQLNET_TIMESTAMP_DATE_TYPE Y

Using SQL/Services Logical Names

2-48 Oracle SQL/Services Server Configuration Guide

For more information, see Section 4.9.

2.13.10 SQLNET_VALIDATE_PROGRAM Logical
You can restrict which programs are allowed to access each database through OCI Services
for Oracle Rdb. When the database is prepared or upgraded for OCI Services for Oracle
Rdb, a table, ORA_VALID_PROGRAMS, is created. It has two columns, USERNAME and
PROGRAM. These columns are used in a LIKE comparison to validate the user and
program that are connecting.

To activate this functionality, define logical SQLNET_VALIDATE_PROGRAM as ’Y’ or
’y’ in the process initialization file for the service. The table ORA_VALID_PROGRAMS
allows select access to public but insert, update, and delete only to SQLNET4RDB.
Therefore, a user must have the SQLNET4RDB identifier or SYSPRIV or BYPASS
privilege to insert rows into the table. If the logical is defined, OCI Services for Oracle Rdb
checks at connection time that there is an entry in the ORA_VALID_PROGRAMS table that
matches the user and program that are connecting and rejects any that do not have matching
entries.

Entries in the table must use the syntax of a LIKE comparison; that means that an entry of
'%' in the USERNAME column would allow any user. An entry of %SQLPLUS% in the
PROGRAM column would allow SQL*Plus from any platform. Both columns of ORA_
VALID_PROGRAMS must contain data for each row. An entry of '%' in both columns
would allow any user from any program to connect; not defining the logical SQLNET_
VALIDATE_PROGRAM has the same effect. All other validation and security checking is
still done; this will NOT allow anyone access to the database without all required privileges.
It can only restrict usage by some or all users to a particular program or set of programs.

If you define the logical SQLNET_VALIDATE_PROGRAM, validation allows clients that
do not send their program name to connect. In order to disallow null program names, define
the logical as ’NONULL’ or ’nonull’. Then OCI Services for Oracle Rdb will reject
connections where the client program name is not specified. The program name check is
case sensitive, so it may be necessary to include an entry for %SQLPLUS% and %sqlplus%
in the ORA_VALID_PROGRAMS table.

The program name that is sent by the client can be retrieved by connecting to the database
and executing the SQL query "SELECT PROGRAM FROM V$SESSION". The program
name can also be found towards the beginning of an executor log in the line that starts with
">>>>> new session user".

2.13.11 SQLSRV_DISP_LOGPATH and SQLSRV_DISP_DUMPPATH Logicals
The following example shows how you can specify the location of the dispatcher log file directory:

Using SQL/Services Logical Names

Managing an Oracle SQL/Services System 2-49

$ DEFINE/SYSTEM/EXEC SQLSRV_DISP_LOGPATH DKA100:[USER1.LOG]

The following example shows how you can specify the location of the dispatcher dump file
directory:

$ DEFINE/SYSTEM/EXEC SQLSRV_DISP_DUMPPATH DKA100:[USER1.DUMP]

The SQLSRV_DISP_LOGPATH and SQLSRV_DISP_DUMPPATH logical names must be
defined as system logical names. If you do not define the SQLSRV_DISP_LOGPATH
logical name or the SQLSRV_DISP_DUMPPATH logical name, the default directory for
dispatcher log and dump files is the SYS$MANAGER directory. This default can also be
overridden for individual dispatchers using the LOG_PATH and DUMP_PATH arguments
for the SQLSRV_MANAGE ALTER and CREATE DISPATCHER commands.

Once you define either the SQLSRV_DISP_LOGPATH or SQLSRV_DISP_DUMPPATH
logical name, you must restart the dispatcher.

2.13.12 SQLSRV_EXEC_LOG Logical
If you want to disable the service log for all services, you must define the SQLSRV_EXEC_
LOG logical before a service is started, as shown in the following example:

$ DEFINE/SYSTEM SQLSRV_EXEC_LOG NOLOG

Oracle recommends that you do not disable the service log because it is needed if a problem
occurs.

2.13.13 SQLSRV$ALLOW_CAPTIVE Logical
SQL/Services rejects all access to accounts that have been designated as captive
(/FLAG=CAPTIVE). To allow SQL/Services access when using CAPTIVE accounts, define
the SQLSRV$ALLOW_CAPTIVE system logical name as any word beginning with ’Y’,
’y’, ’T’, or ’t’. For example:

$ DEFINE SQLSRV$ALLOW_CAPTIVE YES

 This logical name must be defined when the SQL/Services server starts.

2.13.14 SQLSRV$CHECK_EXPIRED_PASSWORDS Logical
Support for this logical name has been deprecated in Oracle SQL/Services release 7.3.0.3.

Using SQL/Services Logical Names

2-50 Oracle SQL/Services Server Configuration Guide

2.13.15 SQLSRV$LOG_CONNECTIONS Logical
You can define the system logical SQLSRV$LOG_CONNECTIONS to "NO" so that successful
connections are not logged to dispatcher log files, and the size of the dispatcher log files is reduced. If
the logical is undefined or assigned to any other value, the successful connections are logged. For
example:

$ DEFINE/SYSTEM SQLSRV$LOG_CONNECTIONS NO

Because this logical is evaluated when a dispatcher is started, the dispatcher must be restarted if the
logical is changed, in order for the logical to take effect.

2.13.16 SQLSRV$MAX_EXECUTOR_FAILURES Logical
You can define the system logical SQLSRV$MAX_EXECUTOR FAILURES to change the maximum
number of failures allowed before an executor fails. The logical is expressed as a positive integer
value.

$ DEFINE/SYSTEM SQLSRV$MAX_EXECUTOR_FAILURES 10

The value assigned to the logical overrides the default value of two. In this way, you can control how
often executors and services shut down during routine database maintenance. For more information,
see Section 8.5.3.

2.13.17 SQLSRV$UPDATE_LOGIN_FREQUENCY Logical
Oracle SQL/Services updates the last non-interactive login information in the system
authorization file whenever a user makes a connection. To configure how frequently the last
non-interactive login is updated in the SYSUAF, define the system logical
SQLSRV$UPDATE_LOGIN_FREQUENCY. After the logical is defined, executors must be
restarted in order for the logical to take effect. The default update frequency is DAILY.

The supported values for this logical are listed in the following table.

Table 2–7 Valid SQLSRV$UPDATE_LOGIN_FREQUENCY Logical Values

Setting Description

ALWAYS Update the non-interactive login information in the SYSUAF for every
connect.

DAILY Update the SYSUAF, if the last recorded non-interactive login was
more than a day ago.

WEEKLY Update the SYSUAF, if the last recorded non-interactive login was
more than a week ago.

Using SQL/Services Logical Names

Managing an Oracle SQL/Services System 2-51

For example, the following will cause Oracle SQL/Services to update the SYSUAF if a
user's non-interactive login information has not been updated in the past month.

$ DEFINE/SYSTEM SQLSRV$UPDATE_LOGIN_FREQUENCY MONTHLY

MONTHLY Update the SYSUAF, if the last recorded non-interactive login was
more than a month ago.

YEARLY Update the SYSUAF, if the last recorded non-interactive login was
more than a year ago.

NEVER Never update the SYSUAF non-interactive login information.

Setting Description

Using SQL/Services Logical Names

2-52 Oracle SQL/Services Server Configuration Guide

 Maintaining an Oracle SQL/Services Server 3-1

3
Maintaining an Oracle SQL/Services Server

After you set up the Oracle SQL/Services environment and configure one or more servers,
you should periodically perform maintenance tasks, which include:

■ Monitoring server activity

■ Monitoring client connections

Each of these topics is described in the sections that follow.

3.1 Monitoring Server Activity
Monitoring server activity consists in part of using the SHOW commands to show the
operational state of objects. For example, for service and dispatcher objects, a SHOW
command will inform you if the object is running. If you find that a service or dispatcher
object is not running and should be running, you should check the log and dump files to
determine why the object stopped running. After resolving the problem, issue either a
START SERVICE or START DISPATCHER command and specify the service or dispatcher
name of the object you want to start up. Perform another SHOW command to confirm that
the service or dispatcher object is running.

Using the SHOW SERVICES command, you can also monitor client activity during peak
load periods for all services provided on that server. For example, if the number of active
clients approaches the maximum number allowed, you should consider increasing the
maximum number of clients allowed to reduce the chances of client connection failures. You
can dynamically increase the MAX_EXECUTORS value for a particular service by using
the ALTER SERVICE command.

Monitoring Client Connections

3-2 Oracle SQL/Services Server Configuration Guide

3.2 Monitoring Client Connections
You can use the SHOW CLIENTS command to show the state of clients as each connects to
a service, submits requests, and releases the connection. The occurrence, sequence, and
duration of connection states are different for each type of service. The client state can help
you determine what each connection is doing and if connections are being serviced
normally. However, the connection state information by itself may not be sufficient for
troubleshooting all problems. For more information on troubleshooting problems, see
Section 8.6.

Section 3.2.1 and Section 3.2.2 describe the states that a client connection can display, the
sequences that can occur, and the relative duration of each state when serviced by either a
session reusable service or a transaction reusable database service.

3.2.1 Client Connection States for Session Reusable Services
Figure 3–1 shows the three possible connection states that a SHOW CLIENTS command
can display for a client connection when serviced by an executor process for a session
reusable service relative to client and executor events.

Figure 3–1 Client Connection States for Session Reusable Services

The connection from a client attempting to connect to a session reusable service is in a
Running Binding state while it waits for an executor to accept the connection. A connection
is in the Running Binding state only momentarily if a free executor process is available to

Client connects

Client application
terminates abnormally Executor accepts connection

Client submits requests

Client not
connected

Client application releases connection
or terminates abnormally

Running
Binding

Running
Bound

Canceling

Monitoring Client Connections

 Maintaining an Oracle SQL/Services Server 3-3

accept the connection. However, a connection remains in the Running Binding state for a
longer period of time if a new executor process must be created for the connection, which
may take several seconds.

When an executor process accepts a connection, the connection state transitions from
Running Binding to Running Bound. Once an executor for a session reusable service accepts
a connection, the executor remains bound to that connection for the duration of the
connection.

A connection transitions to the Canceling state when the application releases the connection
normally, or if the application terminates abnormally. A connection typically remains in the
Canceling state only momentarily. However, a connection may remain in the Canceling state
for a longer period of time if other database activity delays the cleanup of an outstanding
database transaction.

3.2.2 Client Connection States for Transaction Reusable Database Services
An executor for a transaction reusable service processes requests for one transaction for one
client at a time; however, the executor is shared by many concurrent client connections. A
transaction begins when a client issues a SQL statement that either implicitly or explicitly
starts a transaction. A transaction ends when the client issues a successful SQL COMMIT or
ROLLBACK statement or executes a stored procedure that commits or rolls back a
transaction. Once assigned to an executor process, a client connection remains tied to that
process for the life of the connection; no other executor process can be used to process
transactions on behalf of a particular connection. A new client connection is normally
assigned to the executor with the least number of existing connections; however, for certain
applications, it may be necessary to change this behavior using the ALTER SERVICE
APPLICATION TRANSACTION USAGE CONCURRENT attribute.

Figure 3–2 shows the five possible connection states that a SHOW CLIENTS command can
display for a client connection when serviced by executors for a transaction reusable
database service relative to client and executor events.

Monitoring Client Connections

3-4 Oracle SQL/Services Server Configuration Guide

Figure 3–2 Client Connection States for Transaction Reusable Database Services

 The connection from a new client attempting to connect to a transaction reusable service is
in a Running Binding state while it waits for the assigned executor to accept the connection.
Likewise, when an existing client begins a new transaction, the connection is in a Running
Binding state while it waits for the assigned executor to process the new transaction. For
well-designed applications that are executing short transactions, connections remain in the
Running Binding state for short periods of time. However, this time increases as the rate at
which clients execute transactions increases and as the average length of transactions
increases.

When an executor process binds to a new or an existing connection, the connection state
transitions from Running Binding to Running Bound. Once bound to a connection, the
executor remains bound to that connection until the end of the transaction. In a new
connection, the executor remains bound to the connection only for the time necessary to
establish a new database session for the new connection. At the end of a transaction, or after
accepting a new connection, the executor unbinds from the connection, and the connection
state transitions from Running Bound to Running Unbound.

A connection in the Running Binding or Running Unbound state transitions to the Canceling
Binding state when the application releases the connection normally or when the application
terminates abnormally. When the executor completes the transaction for the currently bound

Client connects Running
Binding

Running
Bound

Canceling

Running
Unbound

Canceling
Binding

Canceling
Binding

Executor accepts
connection
Client submits request

Transaction in
progress

Transaction ends

Client submits
another request

Client application
terminates abnormally

Client application
terminates abnormally

Client not
connected

Client application
releases connection
or terminates
abnormally

Monitoring Client Connections

 Maintaining an Oracle SQL/Services Server 3-5

connection, plus any other transactions for connections that may be queued up already
waiting for the executor, the Canceling Binding connection transitions from the Canceling
Binding state to the Canceling state. A connection in the Running Bound state transitions
directly to the Canceling state when the application releases the connection normally or
when the application terminates abnormally. When in the Canceling state, the executor
cleans up the database session of the connection, then unbinds from the connection for the
last time.

Monitoring Client Connections

3-6 Oracle SQL/Services Server Configuration Guide

OCI Services for Oracle Rdb Features 4-1

4
OCI Services for Oracle Rdb Features

OCI Services for Oracle Rdb (formerly known as SQL*Net for Oracle Rdb) provides an
environment in which you can run existing OCI applications to access data in Oracle Rdb
databases. The unique advantage offered by OCI Services for Oracle Rdb is the ability to
use Oracle SQL semantics to access data in Oracle Rdb databases.

Within Oracle Rdb SQL, the Oracle Level1 dialect, the Oracle Level2 dialect, and the Oracle
functions were built specifically with OCI Services for Oracle Rdb in mind. The Oracle Rdb
SQL features help SQL programmers create client applications that can run against both the
Oracle Rdb server and the Oracle server.

This chapter describes how OCI Services for Oracle Rdb augments Oracle Rdb SQL with
many processing features to allow common application development between the Oracle
RDBMS server and the Oracle Rdb server.

4.1 OCI Message Mapping
With OCI, you can open and fetch a number of rows with a single call. To emulate this
capability, OCI Services for Oracle Rdb implicitly performs a number of steps to achieve the
same result:

1. Opens a cursor

2. Fetches the specified number of rows

3. Responds with the data

The order in which a cursor is opened and described is different when using OCI compared
to using Oracle Rdb dynamic SQL statements. OCI Services for Oracle Rdb hides the
differences by manipulating the message order and presenting the OCI message order to the
client.

Cursor Management

4-2 Oracle SQL/Services Configuration Guide

4.2 Cursor Management
Because OCI uses a cursor for every statement, OCI Services for Oracle Rdb manages a
virtual OCI cursor for each statement. OCI Services for Oracle Rdb then ties these virtual
OCI cursors to Oracle Rdb dynamic SQL statement IDs for most statements or to Oracle
Rdb dynamic SQL cursors for SELECT statements.

4.3 Data Types
OCI Services for Oracle Rdb fetches data in machine native data types, and then converts
the data to Oracle portable data types prior to sending it to the client.

Conversely, OCI Services for Oracle Rdb receives data in portable data types, and then
converts and passes them to Oracle Rdb dynamic SQL as machine native data types.

4.4 Data Definition Language
Before and after each DDL request, OCI Services for Oracle Rdb mimics Oracle behavior
by issuing a COMMIT statement, except where a 2pc transaction is in progress.

4.5 SQL Cursor Semantics
For all dynamic SQL declare cursor statements, OCI Services for Oracle Rdb adds the
WITH HOLD PRESERVE ALL clause. The benefit of this action is that cursors stay open
across transactions. This behavior mimics the Oracle server behavior.

4.6 Oracle SQL ALTER SESSION Statement
The ALTER SESSION statement, as documented by the Oracle Server SQL Language
Reference Manual, is processed by OCI Services for Oracle Rdb to provide a variety of
information. OCI Services for Oracle Rdb supports only the ALTER SESSION statement
syntax described in Chapter 6.

4.7 Data Formatting
The Oracle server formats data for the client and receives formatted data from the client. The
formatted information is passed to the server using the default data formats set by the
ALTER SESSION statement. This enables three important Oracle features:

■ The correct processing of the TO_DATE, TO_CHAR, and TO_NUMBER functions.

Statement Parsing

OCI Services for Oracle Rdb Features 4-3

■ The correct handling of date literals in the format specified by the ALTER SESSION
statement.

■ The correct formatting of date and numeric data when fetched as text according to the
information specified in the ALTER SESSION statement.

See Chapter 6 for more information about the SQL ALTER SESSION statement.

4.8 Statement Parsing
Oracle Rdb SQL provides Oracle Level1 and Oracle Level2 dialects. However, even with
these dialects, there are a number of Oracle constructs that Oracle Rdb SQL does not accept.
If Oracle Rdb SQL rejects a statement for specific reasons, such as a date conversion error,
OCI Services for Oracle Rdb examines the statement and replaces the Oracle format date
literal with an equivalent statement that Oracle Rdb SQL accepts.

The following examples demonstrate statement parsing.

Example 4–1 Inserting an Oracle Date Literal into an ANSI Date Column

This example attempts to insert an Oracle date literal into an ANSI date column:

INSERT INTO ATABLE VALUES (‘3-AUG-46’);

Because this statement is rejected by Oracle Rdb SQL, OCI Services for Oracle Rdb
replaces it with the following:

INSERT INTO ATABLE VALUES (CAST (TO_DATE(‘3-AUG-46’) AS DATE
ANSI));

The TO_DATE function supplied by OCI Services for Oracle Rdb is similar to the Oracle
TO_DATE function used to format strings into dates. Because the TO_DATE function
supplied by OCI Services for Oracle Rdb returns a DATE VMS date, you must use the
CAST function to match the DATE ANSI format.

Note: Parsing does not occur unless the statement fails. For example, if you
provide a valid OpenVMS date literal, it will be processed without the assistance of
OCI Services for Oracle Rdb.

Data Type Descriptions

4-4 Oracle SQL/Services Configuration Guide

Example 4–2 Inserting the Word CALL into a Procedure Call

This example shows an Oracle procedure call:

BEGIN UPDATE_EMPLOYEE_NAME(’FIRST_NAME’, ’LAST_NAME’); END;

Because this statement is not recognized by Oracle Rdb, it returns an error. OCI Services for
Oracle Rdb recognizes the statement as a procedure call and inserts the word CALL into the
statement. The resulting statement can be executed correctly by Oracle Rdb.

BEGIN CALL UPDATE_EMPLOYEE_NAME(’FIRST_NAME’, ’LAST_NAME’); END;

To see how OCI Services for Oracle Rdb modifies SQL statements, you can turn on logging
with the ALTER SESSION LOG BRIEF statement (described in Chapter 6). To make them
readily identifiable, the modified statements have the comment "-- GTW Fixed up" added to
them.

4.9 Data Type Descriptions
OCI Services for Oracle Rdb describes all the Oracle Rdb data types in terms of Oracle data
types:

■ You can request that true data types be returned to the OCI client by setting the
SQLNET_STRUCTURED_DATE_TYPES logical to "Y" or "ON" or by issuing the
ALTER SESSION SET SQLNET_STRUCTURED_DATE_TYPES command. For
details on the data types returned to the client, see the table in chapter 5 for SET
SQLNET_STRUCTURED_DATE_TYPES.

Milliseconds are supported, if structured date types are turned on. You must also issue
the following command:

ALTER SESSION SET NLS_TIMESTAMP_FORMAT = "yyyy-mm-dd hh24:mi:ss.ff"

■ You can turn on timestamp data types by using the DCL command:

 $ DEFINE SQLNET_TIMESTAMP_DATE_TYPE "Y"

 or by issuing the following SQL statement:

ALTER SESSION SET SQLNET_TIMESTAMP_DATE_TYPE ON

Note: Oracle recommends the use of DATE VMS dates whenever possible.
DATE VMS most closely resembles the Oracle DATE data type.

Oracle Data Dictionary

OCI Services for Oracle Rdb Features 4-5

 If you have enabled the TIMESTAMP data type, TIME and TIMESTAMP data types
are returned as TIMESTAMP. If the TIMESTAMP data type has not been turned on, the
data types are returned as DATE.

■ All CHAR data types greater than 2000 bytes and VARCHAR data types greater than
4000 bytes are described as LONG.

■ The LIST OF BYTE VARYING column is described as LONG, or BLOB if the logical
SQLNET_BLOB is defined as Y.

■ All the numeric data types are described as Oracle numbers:

– An INTEGER is described as a NUMBER(10,0).

– A BIGINT(2) is described as a NUMBER(19,2).

Data type precision is described as one more place of precision than can actually be
represented. This is because Oracle Rdb uses native binary data types whose range
does not map directly to a decimal range. Oracle numbers use decimal
representation. So, when OCI Services for Oracle Rdb describes an Oracle Rdb
TINYINT column as NUMBER(3,0), the column cannot hold the number 999, but
it can hold the number 111.

4.10 Oracle Data Dictionary
When you prepare an Oracle Rdb database for OCI Services for Oracle Rdb, you install a
number of database objects used to help OCI Services for Oracle Rdb emulate the Oracle
data dictionary that can be used by OCI clients. These objects include:

■ The Oracle metadata tables (or data dictionary) provided as views over the Oracle Rdb
metadata tables. For OCI Services for Oracle Rdb releases prior to release 7.1.6, these
metadata objects appeared to be user tables and were included in the list of tables
displayed by a SHOW TABLES command. Beginning with release 7.1.6, these objects
are created using the Oracle Rdb functionality HIDE_OBJECTS. They appear in a
SHOW SYSTEM TABLES list but not in a SHOW TABLES list. If you upgrade from a
prior version, some of the objects still appear as user objects and some appear as system
objects. This does not impact any of the OCI Services for Oracle Rdb functionality.

■ Function TO_DATE (DATA, FORMAT, NLS_parameters)—Data is a string literal and
uses either the provided format string or the default format string to convert the string to
a DATE VMS data type. With Oracle Rdb, you cannot combine DATE VMS and ANSI
date-time data types without using a CAST function. In the Oracle Level1 dialect the
DATE VMS data type can be used with mathematical operators, so use it whenever
possible.

Multischema Emulation

4-6 Oracle SQL/Services Configuration Guide

■ Function TO_NUMBER (DATA, FORMAT, NLS_parameters)—Data is a string literal
and uses either the provided format string or the default format string to convert the
string to a DOUBLE PRECISION data type. The TO_NUMBER function is restricted
by the DOUBLE PRECISION data type, so integers with a precision 16 or greater
cannot be represented precisely.

■ Function TO_CHAR (DATA, FORMAT, NLS_parameters)—Data is a number or date
literal and creates a formatted character string. When using TO_CHAR with an
unscaled integer of precision 18, a format string must be provided. Use a format string
when using TO_CHAR with unscaled BIGINT data. TO_CHAR assumes an 18-digit
number is a date if no format string is provided.

■ Function USERENV—Given one input string, the function USERENV supplies details
about the current session as a VARCHAR data type. Only the ‘TERMINAL’,
‘LANGUAGE’, and ‘ENTRYID’ input values return any meaningful information.
Input strings ‘LABEL’, ‘SESSIONID’, and ’USERMODE’ return valid fixed values.

■ Function CHARTOROWID (DATA)—Data is a string literal that is converted to a
rowid or dbkey.

■ Function ROWIDTOCHAR (DATA)—Data is a rowid or dbkey that is converted to a
string.

Refer to the Oracle documentation for more information about the referenced functions,
domains, and data types.

These objects are created in the database as hidden objects. They will not appear in the
output of an SQL SHOW TABLES command. If you want to see them, you must enter the
command SHOW SYSTEM TABLES, or SHOW SYSTEM MODULES, etc.

4.11 Multischema Emulation
Because most Oracle Rdb databases are not multischema databases and because all Oracle
databases are multischema, OCI Services for Oracle Rdb provides a form of multischema
emulation. Multischema emulation uses the Oracle data dictionary and hooks into the SQL
compiler.

Multischema emulation is enabled by default. If you do not require multischema emulation,
OCI Services for Oracle Rdb provides the ALTER SESSION SET SCHEMA
EMULATION RELAXED statement to allow you to disable it. See Chapter 6 for additional
information about this statement.

Handling 31-Character Object Names

OCI Services for Oracle Rdb Features 4-7

4.12 Handling 31-Character Object Names
OCI Services for Oracle Rdb supports 31-character object names. However, because it is
unclear if all client applications support 31-character names, Oracle recommends that you
use a maximum of 30-character object names.

To determine whether or not you have names with more than 30 characters, use the
following queries:

In order to support 31-character names, the Oracle data dictionary (metadata tables)
provided with OCI Services for Oracle Rdb defines the domain ORA_OBJECT_NAME as
VARCHAR(31) instead of VARCHAR(30) data type. Names that are 31 characters long may
not be shown correctly when you use Oracle metadata views.

Object Query

Constraint SELECT RDB$CONSTRAINT_NAME FROM RDB$RELATION_CONSTRAINTS
WHERE CHARACTER_LENGTH(TRIM(RDB$CONSTRAINT_NAME)) > 30;

Field SELECT RDB$FIELD_NAME FROM RDB$RELATION_FIELDS
WHERE CHARACTER_LENGTH(TRIM(RDB$FIELD_NAME)) > 30;

Index SELECT RDB$INDEX_NAME FROM RDB$INDICES
WHERE CHARACTER_LENGTH(TRIM(RDB$INDEX_NAME)) > 30;

Module SELECT RDB$MODULE_NAME FROM RDB$MODULES
WHERE CHARACTER_LENGTH(TRIM(RDB$MODULE_NAME)) > 30;

Routine SELECT RDB$ROUTINE_NAME FROM RDB$ROUTINES
WHERE CHARACTER_LENGTH(TRIM(RDB$ROUTINE_NAME)) > 30;

Table SELECT RDB$RELATION_NAME FROM RDB$RELATIONS
WHERE CHARACTER_LENGTH(TRIM(RDB$RELATION_NAME)) > 30;

Trigger SELECT RDB$TRIGGER_NAME FROM RDB$TRIGGERS
WHERE CHARACTER_LENGTH(TRIM(RDB$TRIGGER_NAME)) > 30;

Handling 31-Character Object Names

4-8 Oracle SQL/Services Configuration Guide

Configuring OCI Services for Oracle Rdb 5-1

5
Configuring OCI Services for Oracle Rdb

OCI Services for Oracle Rdb (formerly known as SQL*Net for Oracle Rdb) provides an
environment in which you can run existing OCI applications to access data in Oracle Rdb
databases.

This chapter provides information about configuring OCI Services for Oracle Rdb:

■ Section 5.1 describes how to prepare your database for use with OCI Services for
Oracle Rdb.

■ Section 5.2 describes how to define Oracle SQL/Services dispatchers and services for
an OCI Services for Oracle Rdb environment.

■ Section 5.3 describes how to configure .ORA files for OCI Services for Oracle Rdb
connections.

■ Section 5.4 describes how to start up and test your OCI Services for Oracle Rdb
environment.

■ Section 5.5 describes how to use the RDB_NATCONN command file to prepare or
upgrade an Oracle Rdb database, drop OCI-associated tables and functions from an
Oracle Rdb database, or to add, remove, modify, or show users with encrypted
passwords in a prepared Oracle Rdb database.

■ Section 5.6 describes how to use the ORA_CREATE_USER and ORA_DROP_USER
stored procedures to add, modify and remove users with encrypted passwords in a
prepared Oracle Rdb database.

■ Section 5.7 describes character set usage.

■ Section 5.8 describes how to reference an Oracle Rdb database as a database link from
an Oracle Rdb database.

Preparing Your Database for OCI Services for Oracle Rdb

5-2 Oracle SQL/Services Configuration Guide

Table 5–1 lists the tasks you must perform in order to use OCI Services for Oracle Rdb.

5.1 Preparing Your Database for OCI Services for Oracle Rdb
Although you need to install OCI Services for Oracle Rdb software only once on each server
system, you must prepare each Oracle Rdb database that you want to serve with OCI Ser-
vices for Oracle Rdb by defining the Oracle functions and the emulated Oracle data dictio-
nary and adding users to the database. The following sections provide more information.

If your database needs to be converted from an older to newer Oracle Rdb release, Oracle
recommends that you convert your database using the Oracle Rdb RMU CONVERT func-
tionality and then upgrade the converted database using the RDB_NATCONN command
file.

5.1.1 Defining Oracle Functions and the Emulated Oracle Data Dictionary
To install the Oracle functions, perform the following steps:

1. Enter the following command at the DCL prompt.

$ @SYS$LIBRARY:RDB$SETVER nn

Table 5–1 Steps to Configure for OCI Services for Oracle Rdb

Step Task

1 Prepare your Rdb database for use with OCI Services for Oracle Rdb

1a Install SQL functions, if needed

1b Prepare emulated Oracle Data Dictionary

1c Grant any required privileges

1d Add users to USER$ table

2 Define Oracle SQL/Services Dispatchers and Services

3 Configure .ORA files for OCI Services for Oracle Rdb

3a Configure LISTENER.ORA

3b Configure TNSNAMES.ORA

3c Optionally configure SQLNET.ORA

4 Start OCI Dispatchers and OCI Service

5 Test configuration and access database using OCI Services for Oracle Rdb

Preparing Your Database for OCI Services for Oracle Rdb

Configuring OCI Services for Oracle Rdb 5-3

For nn in the command line, substitute the Oracle Rdb release number (for example,
@SYS$LIBRARY:RDB$SETVER 72).

2. Using the Oracle Rdb interactive SQL utility, attach to the database.

3. Install the SQL functions, if needed. The SQL functions are recommended but not
required for OCI Services. Skip this step if you have previously installed the SQL func-
tions. There is no need to reinstall the functions.

After attaching to the database, install the SQL functions by running the
SQL_FUNCTIONSnn.SQL script. For example:

SQL> @SYS$LIBRARY:SQL_FUNCTIONSnn

where nn is the Oracle Rdb release number, such as 72.

4. For new installations or for new databases that have not been previously prepared for
OCI Services for Oracle Rdb, the prepare program must be run on each database that is
to be accessed by OCI Services for Oracle Rdb. Run the prepare program using the
RDB_NATCONN command file (which was copied with the OCI Services for Oracle
Rdb software during the installation procedure) to create the emulated Oracle data dic-
tionary. For example:

$ @SYS$LIBRARY:RDB_NATCONNnn PREPARE database

where nn is the OCI Services for Oracle Rdb release number. If the database name is not
specified, the program prompts for the information. See Section 5.5.1 for more informa-
tion on preparing a database.

5. If your database has been previously prepared for an earlier release of OCI Services for
Oracle Rdb, you must run the upgrade program. This program upgrades all tables,
views, and modules of the emulated Oracle data dictionary to the latest release. For
example:

$ @SYS$LIBRARY:RDB_NATCONNnn UPGRADE database

Note: You must include the Rdb release number when you run the SQL_FUNC-
TIONS.SQL script. Make sure you include the Rdb release number, not the Oracle
SQL/Services release number.

Preparing Your Database for OCI Services for Oracle Rdb

5-4 Oracle SQL/Services Configuration Guide

where nn is the OCI Services for Oracle Rdb release number. If the database name is
not specified, the program prompts for the information. The program prompts you for a
database name and optional parameters.

See Section 5.5.2 for more information on upgrading a database.

5.1.2 How to Determine If a Database Requires a Data Dictionary Upgrade
It is imperative that any database being used with OCI Services for Oracle Rdb is prepared
with the Oracle data dictionary matching the installed release of OCI Services for Oracle
Rdb. If they don’t match, an upgrade is required. To check the current data dictionary release
defined in a given database, using SQL*Plus, connect to the Rdb database and execute the
following:

SQL> select * from v$version;

 BANNER
 --
 .
 .
 .
 Metadata Views Version 7.3.0.2 - Production

The Metadata Views Version specified should be the release of OCI Services for Oracle Rdb
currently installed on the server. If not, an upgrade is required.

5.1.3 Granting privileges
The prepare and upgrade programs provide a secure database where users only need
SELECT privileges on the database. SELECT is the only privilege granted to user PUBLIC.

The required rights identifier, SQLNET4RDB, is created as part of the SQL/Services
installation. SQLNET4RDB is granted the required privileges for OCI Services for Oracle
Rdb tables that require UPDATE, INSERT, or DELETE privileges.

If you intend to use two-phase commit, Oracle recommends that DISTRIBTRAN access be
granted to all users on databases that may participate in a two-phase commit transaction
using an OCI service.

5.1.4 Adding Users
Most Oracle tools require that users and their passwords be stored in the database to allow
the tools to connect. There are two methods you can use to add users to the database. You

Defining Oracle SQL/Services Dispatchers and Services

Configuring OCI Services for Oracle Rdb 5-5

can either use the RDB_NATCONN command procedure or the ORA_CREATE_USER
stored procedure.

Run the RDB_NATCONN command file to add users and their encrypted passwords to an
Oracle Rdb database. This command file allows a DBA, or someone with access to the
database, to add users. See Section 5.5.4 for more information on adding users to a database
using RDB_NATCONN.

Alternatively, you can use the ORA_CREATE_USER stored procedure to add new users to
an Oracle Rdb database. You can use the stored procedure via a program, from interactive
SQL or SQL*Plus. See Section 5.6 for more information on adding users to a database using
the ORA_CREATE_USER stored procedure.

5.2 Defining Oracle SQL/Services Dispatchers and Services
OCI Services for Oracle Rdb databases are served through Oracle SQL/Services. This sec-
tion describes how to create Oracle SQL/Services dispatchers and services to use the OCI
protocol.

The items to be configured are:

■ An OCI service describes how OCI clients access a specified Oracle Rdb database.

■ An OCI dispatcher uses a TCP/IP network protocol for communications with OCI cli-
ents. OCI Services for Oracle Rdb requires that the network transport use the OCI mes-
sage protocol.

Use the SQLSRV_MANAGE client utility to create and manage an OCI service, dispatcher,
and other configuration data. This utility provides a command line interface to help you
manage an Oracle SQL/Services server from an OpenVMS system.

5.2.1 Creating OCI Dispatchers
To enable an Oracle SQL/Services OCI service to which Oracle clients can connect, you
need an OCI dispatcher that listens for messages using the Oracle Net transport and the OCI
message protocol. The OCI_DISP dispatcher created during the Oracle SQL/Services instal-
lation is such a dispatcher and can serve all your OCI dispatcher needs for OCI Services for
Oracle Rdb. However, you can create your own OCI dispatchers to satisfy any unusual
requirements in your environment.

Use SQLSRV_MANAGE to create your own dispatcher, using the commands in
SYS$MANAGER:SQLSRV_CREATE_OCI73.SQS as an example. See the definition of the
CREATE DISPATCHER command in Chapter 7 for more detailed information.

Defining Oracle SQL/Services Dispatchers and Services

5-6 Oracle SQL/Services Configuration Guide

In the following example, the dispatcher is using listener OCI_LISTENER, which must be
defined in the LISTENER.ORA file. For more information on creating entries in
LISTENER.ORA, see Section 5.3.1. Note that the network_port is defined as SQLNET and
the protocol is OCI, both of which are required for dispatchers defined for use with OCI
Services for Oracle Rdb.

Example 5–1 Creating an OCI Dispatcher

SQLSRV> create dispatcher OCI_DISP
_SQLSRV> autostart on
_SQLSRV> network_port sqlnet
_SQLSRV> listener OCI_LISTENER
_SQLSRV> protocol oci;

5.2.2 Creating OCI Services
Use SQLSRV_MANAGE to create your own services. See the definition of the CREATE
SERVICE command in Chapter 7 for more detailed information. In order to use a service,
you need an entry in TNSNAMES.ORA on your client machine to describe the connect
name, node and port to be used for communications to this service. See Section 5.3.3 for
more information on creating entries in TNSNAMES.ORA. Note that the protocol must be
defined as OCI and the database authorization must be CONNECT USERNAME for ser-
vices defined for use with OCI Services for Oracle Rdb. A sample service named OCI_
SAMPLE is created during the installation of SQL/Services.

The following attribute values are not supported for OCI Services for Oracle Rdb databases:

■ TRANSACTION for Reuse Scope

■ Service Owner for Database Access Authorization

■ Grant Use

All users have access to OCI services. However, the database still is protected because
access to the database must be through the connect (client) user name.

The following example creates the OCI_SRV service, which is a database service using the
OCI protocol. Database services are always defined with an attach command. Entries in
TNSNAMES.ORA specifying this service cannot specify an attach database name, since the
attach statement is already specified in the service.

Example 5–2 Creating an OCI Database Service

SQLSRV> create service OCI_SRV
_SQLSRV> protocol oci
_SQLSRV> autostart off

Defining Oracle SQL/Services Dispatchers and Services

Configuring OCI Services for Oracle Rdb 5-7

_SQLSRV> owner SQLSRV$DEFLT
_SQLSRV> database authorization connect username
_SQLSRV> attach 'filename dka300:[my_dir]oci_srv'
_SQLSRV> sql version 7.2
_SQLSRV> min_executors 1
_SQLSRV> max_executors 10;

The following example creates a universal service named OCI_SRVU. Note that the
universal service does not define an attach statement. This service can be used to attach to
any database. Entries in TNSNAMES.ORA, defined as using this service, will specify the
attach information.

Example 5–3 Creating an OCI Universal Service

SQLSRV> create service OCI_SRVU
_SQLSRV> protocol oci
_SQLSRV> autostart off
_SQLSRV> owner SQLSRV$DEFLT
_SQLSRV> database authorization connect username
_SQLSRV> sql version 7.2
_SQLSRV> min_executors 1
_SQLSRV> max_executors 10;

5.2.2.1 Initializing Your Server Environment
OCI Services for Oracle Rdb databases are served by Oracle SQL/Services. To initialize the
execution environment, Oracle SQL/Services allows you to specify a SQL initialization file
for the service. The initialization file executes SQL statements that set specific session
parameters (for example, locking defaults or character set defaults).

You can execute most initialization statements:

■ Directly in the SQL initialization file defined for the service

■ Indirectly using the ORA_INIT stored procedure

The advantage to using the ORA_INIT stored procedure is that it allows you to conditionally
enable data definition language (DDL) statements such as the ALTER SESSION statement
in an IF block. Although Oracle Rdb SQL does not allow DDL statements in a compound
statement such as an IF block, the ORA_INIT stored procedure allows you to store DDL and
other statements for subsequent execution by OCI Services for Oracle Rdb. Initialization
statements that you stipulate with ORA_INIT are executed in the order you specify them
after the SQL initialization file defined for the service has completed.

For example, you might want to enable full server logging with connections from the Oracle
Net client application. Even though you can query the ORA_SESSION table to determine

Configuring OCI Connections

5-8 Oracle SQL/Services Configuration Guide

the client program name, you cannot form a query in the SQL initialization file that
conditionally enables full server logging depending upon the client program name. This is
because the ALTER SESSION LOG FULL statement is a DDL statement, and cannot occur
in a compound statement such as an IF block. However, you can use the ORA_INIT stored
procedure in your SQL initialization file to achieve the same effect, as follows:

1. Define a stored procedure, SQLPLUS_LOG, that you can use to determine if the client
program is a SQL*Plus application.

The stored procedure might be similar to the following:

create module SQLPLUS_LOG_MODULE language sql
 procedure SQLPLUS_LOG;
 begin
 declare :A integer;
 select count(*) into :A from ORA_SESSION
 where (INFO_TYPE = 'PROGRAM' and INFO containing 'SQLPLUS');
 if :A > 0 then call ORA_INIT ('ALTER SESSION LOG FULL'); end if;
 end;
end module;

2. Call the SQLPLUS_LOG procedure from your service SQL initialization file, as
follows:

call SQLPLUS_LOG();

3. If the client program is an Oracle Net application, call the ORA_INIT procedure to store
an ALTER SESSION LOG FULL statement for subsequent execution by OCI Services
for Oracle Rdb.

5.3 Configuring OCI Connections
An Oracle SQL/Services dispatcher that uses Oracle Net as its network transport requires
OCI network and connection definitions. They will be defined in LISTENER.ORA,
TNSNAMES.ORA and SQLNET.ORA. You must take care to preserve any existing OCI
network and connection definitions when you define new definitions required by OCI Ser-

Note: Even though querying the client program name or client terminal name can
be a convenient and powerful method of tailoring the server environment to the
client, Oracle does not recommend that you use this method for security purposes.
OCI Services for Oracle Rdb cannot guarantee that the client application has
accurately reported the client program name or client terminal name.

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-9

vices for Oracle Rdb. The following sections describe how to create the OCI network and
connection definitions with any OpenVMS text editor.

The installation of OCI Services for Oracle Rdb creates sample .ORA files to be used as
templates for configuring OCI connections. The sample files described in the following
sections are located on the OpenVMS server in one of two locations.

The default location is:

SYS$COMMON:[SQLSRVnn.SQLNET.NETWORK.ADMIN]

where nn indicates the version of SQL/Services. This is the location used when Oracle is not
installed on the system.

When Oracle is installed on a system, use the existing Oracle Net configuration in:

ORA_ROOT:[NETWORK.ADMIN]

During installation, the location of the configuration and sample files is stored in:

SYS$MANAGER:SQLSRV_SQLNETnn.DAT

where nn indicates the version of SQL/Services. Simply type this file to determine the
location of the configuration and sample files.

Creation of the .ORA files is required for new installations only. Existing installations can
continue to use existing definitions. LISTENER.ORA is created on server nodes and
TNSNAMES.ORA is created on client nodes. SQLNET.ORA is optional and can be defined
on both client and server configurations.

5.3.1 Configuring LISTENER.ORA
OCI Services for Oracle Rdb requires that an Oracle SQL/Services dispatcher process be
running on the OpenVMS server to listen for OCI network traffic. A sample OCI dispatcher
object called OCI_DISP is automatically created during the installation of OCI Services for
Oracle Rdb. Before the dispatcher can be started, there must be a file called
LISTENER.ORA in the directory described in Section 5.3. If the server system currently
uses a LISTENER.ORA file, this same file should be used for Oracle Rdb access as well.

Note: If both Oracle and Oracle SQL/Services co-exist on a system,
Oracle Corporation recommends that you add OCI network and connec-
tion objects used by Oracle SQL/Services (such as listeners for Oracle
SQL/Services dispatchers and Rdb databases) to an existing OCI network
configuration.

Configuring OCI Connections

5-10 Oracle SQL/Services Configuration Guide

Oracle SQL/Services expects to find the LISTENER.ORA file during the startup of a
dispatcher. The listener is automatically started when the dispatcher is started. The listener is
not controlled by the Oracle LSNRCTL utility.

Oracle 10gR2 and later require that LISTENER.ORA be a STREAM_LF format file. For
new installations, the SQL/Services installation procedure creates a new LISTENER.ORA
file with the STREAM_LF format. For existing installations, the file format must be
modified before OCI dispatchers can be started, using the following steps.

■ If Oracle RDBMS is not installed on the system, then:

$ set default SYS$COMMON:[SQLSRVnn.SQLNET.NETWORK.ADMIN]

where nn is the Oracle SQL/Services release number.

■ If Oracle RDBMS is installed on the system, then:

$ set default ORA_ROOT:[NETWORK.ADMIN]

■ In either case, modify the file format with the following procedure.

$ convert/fdl=SYS$INPUT listener.ora listener.ora
RECORD
 CARRIAGE_CONTROL CARRIAGE_RETURN
 FORMAT STREAM_LF

You can use any OpenVMS text editor to modify LISTENER.ORA. OpenVMS node names
or TCPIP addresses may be used for the HOST parameter. If the HOST parameter is omit-
ted, the default is the current system where LISTENER.ORA is being invoked. The default
TCPIP Port is 1527.

Example 5–4 LISTENER.ORA Entry

USE_PLUG_AND_PLAY_OCI_LISTENER = OFF
USE_CKPFILE_OCI_LISTENER = OFF
OCI_LISTENER =
(ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (HOST = NODE_A)
 (PORT = 1527)))
STARTUP_WAIT_TIME_OCI_LISTENER = 0
CONNECT_TIMEOUT_OCI_LISTENER = 10
TRACE_LEVEL_OCI_LISTENER = OFF

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-11

Note that OCI_LISTENER is defined as using port 1527. The port must be unique and
cannot be used for any other listener on the host machine. The listener name must be unique
and must match the listener name used in the corresponding dispatcher definition.
Dispatcher OCI_DISP uses the listener OCI_LISTENER, as defined by the installation
procedure. You can verify the listener name specified for a dispatcher by using the SHOW
DISPATCHERS command within SQLSRV_MANAGE.

5.3.2 Configuring LISTENER.ORA for an OpenVMS Cluster
When using OCI Services for Oracle Rdb on an OpenVMS cluster, there are several ways in
which dispatchers and listeners can be configured. Either each node is configured separately
with the Oracle SQL/Services configuration file (SQLSRV_CONFIG_FILEnn.DAT) placed
in SYS$SYSROOT:[SYSMGR] or the configuration is shared across the cluster with the
configuration file placed in SYS$COMMON:[SYSMGR]. If the Oracle SQL/Services
configuration file is in both SYS$SYSROOT and SYS$COMMON on a given node in the
cluster, the file in SYS$SYSROOT will be used.

 Assume that you have a cluster consisting of NODE_A and NODE_B. The following
sections show several examples of dispatcher and listener configurations. They all assume
that the Oracle SQL/Services configuration file is in SYS$COMMON.

5.3.2.1 One Shared Dispatcher and One Listener Port Used
The simplest case would be where the same port number is used on each node of the cluster
for a given OCI dispatcher. For example, assume that you are creating dispatcher OCI_DISP
and listener OCI_LISTENER listening on port 1527 on all nodes of the cluster.

In this case, the OCI dispatcher OCI_DISP would be defined as specified in Section 5.2.1
and the listener would be defined in LISTENER.ORA as:

Example 5–5 LISTENER.ORA on Cluster: Shared Dispatcher & One Listener Port

 OCI_LISTENER =
 (ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (PORT = 1527)))

When the dispatcher is started on any given node of the cluster, it will listen on port 1527 of
that same node.

Configuring OCI Connections

5-12 Oracle SQL/Services Configuration Guide

5.3.2.2 One Shared Dispatcher and Multiple Listener Ports Used
In this example, different port numbers are used on each node of the cluster for a given OCI
dispatcher. For example, assume that you are creating dispatcher OCI_DISP and listener
OCI_LISTENER listening on port 1527 on NODE_A and port 1528 on NODE_B.

In this case, the OCI dispatcher OCI_DISP would again be defined as specified in
Section 5.2.1 and the listener would be defined in LISTENER.ORA as:

Example 5–6 LISTENER.ORA on Cluster: Shared Dispatcher & Multiple Listener Ports

 OCI_LISTENER =
 (ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (HOST = NODE_A)
 (PORT = 1527))
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (HOST = NODE_B)
 (PORT = 1528))
)

When the dispatcher is started on NODE_A, it will listen on port 1527. When the dispatcher
is started on NODE_B, it will listen on port 1528. If it is started on any other node of the
cluster, the startup will fail because there is no listener address specified for any other node.

5.3.2.3 One Shared Dispatcher and Multiple Listeners Used
This example is essentially the same as the previous example. The only difference is that a
different listener name will be associated with the dispatcher on each node and multiple
listeners will need to be defined in LISTENER.ORA.

Assume that you are creating dispatcher OCI_DISP with listener OCI_LISTENER_1
listening on port 1527 on NODE_A and OCI_LISTENER_2 listening on port 1528 on
NODE_B. In this case, the OCI dispatcher would be defined as:

Example 5–7 OCI Dispatcher on Cluster: Shared Dispatcher & Multiple Listeners

SQLSRV> create dispatcher OCI_DISP
SQLSRV_ autostart on
SQLSRV_ network_port sqlnet listener "OCI_LISTENER_1" protocol oci
SQLSRV_ network_port sqlnet listener "OCI_LISTENER_2" protocol oci
SQLSRV_ ;

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-13

and the listeners would be defined in LISTENER.ORA as:

Example 5–8 LISTENER.ORA on Cluster: Shared Dispatcher & Multiple Listeners

 OCI_LISTENER_1 =
 (ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (HOST = NODE_A)
 (PORT = 1527)))

 OCI_LISTENER_2 =
 (ADDRESS_LIST =
 (ADDRESS =
 (COMMUNITY = TCP_COM.world)
 (PROTOCOL = TCP)
 (HOST = NODE_B)
 (PORT = 1528)))

When the dispatcher is started on NODE_A, it will listen on port 1527. When the dispatcher
is started on NODE_B, it will listen on port 1528. If it is started on any other node of the
cluster, the startup will fail because there is no listener address specified for any other node.

5.3.3 Configuring TNSNAMES.ORA
The sample file TNSNAMES.ORA_SAMPLE is provided to serve as a template for the
mandatory client-side TNSNAMES.ORA file. If the client system currently uses a
TNSNAMES.ORA file, this same file should be used for Oracle Rdb access as well.
TNSNAMES.ORA should be located in the directory described in Section 5.3. Any
OpenVMS editor can be used to create and maintain this file.

There must be an entry in TNSNAMES.ORA on each client making use of a given service.
Each entry in TNSNAMES.ORA must include:

1. A unique alias name for the Oracle Rdb connection parameters.

2. A SID or SERVICE keyword which contains the name of the Oracle SQL/Services OCI
service. Both keywords are interchangable.

3. A valid HOST node name or TCPIP address that defines the OpenVMS system node
name or TCPIP address.

Configuring OCI Connections

5-14 Oracle SQL/Services Configuration Guide

4. The PORT parameter that contains the TCPIP port number for the OCI dispatcher as
defined in LISTENER.ORA on the server system (1527 by default).

If the client does not already have an existing TNSNAMES.ORA file, edit
TNSNAMES.ORA_SAMPLE and follow the above instructions regarding keyword
parameters. The resulting file from the edit session must be called TNSNAMES.ORA and
must reside on the client system. The location for TNSNAMES.ORA on the client is
platform specific. See the documentation for your Oracle client software for more
information. For example, on Windows systems the location is oracle_home/network/admin.
Note that Oracle OCI client software must also be installed on the client system before the
client application can connect to Oracle Rdb on the server.

Before any connection can be established, the OCI dispatcher and the OCI service must be
in running states on the server. Users can then test their OCI applications (for example,
SQL*Plus and Oracle Forms) by supplying the username, password, and unique alias name
during the connection.

There are two classes of Oracle SQL/Services services: database and universal.

5.3.3.1 Configuring for Database Service
A database class service includes the SQL ATTACH statement in the service definition. The
attach is to a specific Oracle Rdb database.

Example 5–9 Database Service Example

The following is an example of a TNSNAMES.ORA entry for an Oracle Rdb connection to
a database class service:

rdb_72 =
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (PORT=1527)
 (HOST=NODE_A))
 (CONNECT_DATA=
 (SERVICE=oci_srv)))

In the above example, RDB_72 is the user-defined alias name. This name must be unique
within the TNSNAMES.ORA file. The HOST parameter is either the OpenVMS node name
or the TCPIP address of the server. Either keyword SID or SERVICE may be used to define
the Oracle SQL/Services OCI service name. In this case the Oracle SQL/Services service
name is OCI_SRV. The PORT number must match the port number of the OCI listener
running on the server. In this case it is port 1527, which is specified (in prior examples) on

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-15

the server for listener OCI_LISTENER, used by dispatcher OCI_DISP. Therefore,
dispatcher OCI_DISP will handle communications for this service.

An example of a SQL*Plus connection using this definition is:

$ SQLPLUS jones/secret@rdb_72

5.3.3.2 Configuring for Universal Service
A universal class service does not include an SQL ATTACH statement in the service
definition and may be used to access several Oracle Rdb databases. When you create a
TNSNAMES entry for a universal class service, an additional keyword, RDB_DATABASE,
must be included in the TNSNAMES.ORA entry. The RDB_DATABASE keyword is used
to specify the database or databases to which a universal service should attach when the
given alias name is used in the connection. The RDB_DATABASE keyword must
immediately follow the SID or SERVICE definition.

The RDB_DATABASE parameter can be specified as one of the following:

■ A simple file specification

(RDB_DATABASE = dev:[dir]file.RDB)

The parameter contains the location of the Oracle Rdb database, including device and
directory names. An ATTACH statement is implicitly built around this file specification.

■ A full Oracle Rdb SQL ATTACH statement, delimited by double quotes (")

(RDB_DATABASE = "ATTACH ’FILENAME dev:[dir]file.RDB’")

The ATTACH and FILENAME keywords cannot be abbreviated.

■ An @file_spec

(RDB_DATABASE = @dev:[dir]file.ext)

The file specified can contain SQL statements that tailor the SQL environment for a
client connection. The SQL ATTACH statements are defined in the script file. Also, the
use of a file specification is a way for the the client application to execute multiple
ATTACH statements. The first ATTACH statement cannot contain the ALIAS clause, as
the first ATTACH statement must set up the default alias RDB$DBHANDLE.

OCI Services for Oracle Rdb uses the following syntax conventions when executing a
script file:

– Leading and trailing spaces on a line are ignored.

Configuring OCI Connections

5-16 Oracle SQL/Services Configuration Guide

– Comments start with two consecutive hyphens (- -). The comment lines must start
at the beginning of a line and continue to the next new line.

– Each SQL statement must be able to be dynamically prepared, executed, and
released by the SQL EXECUTE IMMEDIATE statement. Therefore, keywords
cannot be abbreviated.

– SQL statements cannot span multiple lines.

– A trailing semicolon (;) at the end of the SQL statement is ignored to allow SQL
files to be invoked and verified using interactive SQL.

Example 5–10 Simple File Specification Universal Service Example

The following is an example of a universal service entry in TNSNAMES.ORA, using the
simple file specification for the RDB_DATABASE parameter:

rdb_u_72a =
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (PORT=1527)
 (HOST=NODE_A))
 (CONNECT_DATA=
 (SERVICE=oci_srvu)
 (RDB_DATABASE=dka300:[my_dir]oci_srv)))

Example 5–11 SQL ATTACH Statement Universal Service Example

The following is an example of a universal service entry in TNSNAMES.ORA, using an
SQL ATTACH statement for the RDB_DATABASE parameter:

rdb_u_72b =
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (PORT=1527)
 (HOST=NODE_A))
 (CONNECT_DATA=
 (SERVICE=oci_srvu)
 (RDB_DATABASE="ATTACH ’FILENAME dka300:[my_dir]oci_srv’")))

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-17

Example 5–12 @File_Spec Universal Service Example

The following is an example of a universal service entry in TNSNAMES.ORA, using the
@file_spec specification for the RDB_DATABASE parameter. In this example, an
OpenVMS file called MULTI.SQL is created and contains the following lines:

-- MULTI.SQL
ATTACH 'FILENAME dka300:[my_dir]oci_srv';
ATTACH 'ALIAS a FILENAME dka500:[dir1.dir2]rdb_prod';
-- END OF FILE

The TNSNAMES.ORA entry would look like the following:

rdb_u_72c =
 (DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (PORT=1527)
 (HOST=NODE_A))
 (CONNECT_DATA=
 (SERVICE=oci_srvu)
 (RDB_DATABASE=@dka300:[my_dir]multi.sql)))

Whenever the objects from the second database are accessed, the alias name is required:

SELECT last_name FROM emp@a WHERE employee_id='00164';

Note that all of the universal examples reference the same universal service, OCI_SRVU.
This is possible because there is no SQL ATTACH statement associated with the OCI_
SRVU service definition.

5.3.4 Configuring SQLNET.ORA
The SQLNET.ORA_SAMPLE file is provided as a template in the event that the DBA
wants to create a SQLNET.ORA file. The SQLNET.ORA file is not necessary for
connecting to Oracle Rdb. It is an optional file that can be used for either specifying a
default domain name other than WORLD or to enable Oracle Net or SQL/Services logging.

The SQLNET.ORA file can reside on either the client or the server. On the client, it is used
by Oracle Net. On the server, SQLNET.ORA is used by both Oracle Net and Oracle
SQL/Services. If using SQLNET.ORA on the OpenVMS server, make sure that the
AUTOMATIC_IPC parameter is set to OFF. For example:

AUTOMATIC_IPC = OFF

To specify a default domain name, other than WORLD, specify the following:

Configuring OCI Connections

5-18 Oracle SQL/Services Configuration Guide

NAMES.DEFAULT_DOMAIN = <domain_name>

When tracing is enabled using the SQLNET.ORA file, the level of tracing is interpreted
differently by Oracle Net and Oracle SQL/Services.

The valid parameters for enabling SQLNET.ORA tracing, depending on where the tracing
occurs (client or server, or both) and whether Oracle Net or Oracle SQL/Services is doing
the tracing, are shown in Table 5–2. Oracle SQL/Services tracing only occurs on the server.

For example:

Example 5–13 SQLNET.ORA Entry Example

AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF
TRACE_LEVEL_SERVER = PKT
NAMES.DEFAULT_DOMAIN = world
NAME.DEFAULT_ZONE = world
SQLNET.CRYPTO_SEED = "-1539479755-321296364"
NAMES.DIRECTORY_PATH = (TNSNAMES,ONAMES)

Table 5–2 Valid Parameters for Enabling SQLNET.ORA Tracing

Parameter Values

TRACE_LEVEL_CLIENT OFF The default. No trace output for Oracle Net
USER User trace information for Oracle Net
ADMIN Administration trace information for Oracle Net
SUPPORT Customer Support trace info. for Oracle Net

TRACE_LEVEL_SERVER OFF The default. No trace output
USER User trace information for Oracle Net
 Routine trace information for SQL/Services
ADMIN Administration trace information for Oracle Net
 Routine trace information for SQL/Services
SUPPORT Customer Support trace info. for Oracle Net
 Routine trace information for SQL/Services
MSG Message and routine trace info. for SQL/Services
PKT Packet and routine trace info. for SQL/Services

TRACE_FILE_CLIENT Default is SQLNET.TRC for Oracle Net

TRACE_FILE_SERVER Default is SVR_PID.TRC for Oracle Net
SQL/Services ignores value; always set to DBS_OSN.TRC

TRACE_DIRECTORY_CLIENT
TRACE_DIRECTORY_SERVER

Operating system specific; must be a valid directory

Configuring OCI Connections

Configuring OCI Services for Oracle Rdb 5-19

For more information on the SQLNET.ORA parameters, see the Oracle Net documentation.

5.3.5 Configuring for the Oracle Connect Timeout Feature
Unauthorized access to the listener can result in denial-of-service attacks, when an
unauthorized client attempts to block authorized users' ability to access and use the system.
Malicious clients may attempt to flood the listener with connect requests that have the sole
purpose of consuming resources. To mitigate these types of attacks, configure limits that
constrain the time in which resources can be held prior to authentication. Client attempts to
exceed the configured limits will result in connection terminations.

To limit resource consumption by unauthorized users, set time-limit values for the following
parameters. These parameters do not have default values.

INBOUND_CONNECT_TIMEOUT_listener_name parameter in LISTENER.ORA

Specify the time, in seconds, for the client to complete its connect request to the listener
after the network connection has been established. If the listener does not receive the client
request in the time specified, then it terminates the connection.

SQLNET.INBOUND_CONNECT_TIMEOUT parameter in SQLNET.ORA

Specify the time, in seconds, for a client to connect and provide the necessary authentication
information.

If the client fails to establish a connection and complete authentication in the time specified,
then the connection is terminated.

Oracle recommends the following, when setting values for these parameters:

■ Set both parameters to an initial low value.

■ Set the value of INBOUND_CONNECT_TIMEOUT_listener_name to a lower value
than SQLNET.INBOUND_CONNECT_TIMEOUT.

For example, you can set INBOUND_CONNECT_TIMEOUT_listener_name to 2 seconds
and SQLNET.INBOUND_CONNECT_TIMEOUT to 3 seconds. If clients are unable to
complete connections within the specified time, due to system or network delays that are
normal for the particular environment, then increase the time as needed.

In this example, add the following parameter to LISTENER.ORA for the OCI_LISTENER
listener:

INBOUND_CONNECT_TIMEOUT_OCI_LISTENER = 2

and add the following parameter to SQLNET.ORA:

Starting Up and Testing the Environment

5-20 Oracle SQL/Services Configuration Guide

SQLNET.INBOUND_CONNECT_TIMEOUT = 3

5.4 Starting Up and Testing the Environment

5.4.1 Starting Dispatchers and Services
Whether you are using the supplied OCI_DISP dispatcher or have defined your own dis-
patcher, the OCI dispatcher cannot be started until you have set up the connection configura-
tion files as described in the previous step. You can now start your OCI dispatcher. The
dispatcher must be running before you can connect to your database with OCI Services for
Oracle Rdb.

You can start the OCI dispatcher by using SQLSRV_MANAGE to connect to the server and
typing:

SQLSRV> CONNECT SERVER;
SQLSRV> START DISPATCHER <disp_name>;
SQLSRV> SHOW DISPATCHER <disp_name>;

The state of the dispatcher will change from starting to running. Once in a running state, the
dispatcher is listening for OCI network traffic. In the rare case where the dispatcher does not
start, the default location for the OCI dispatcher log file is SYS$MANAGER:SQS_*.LOG
where the asterisks depict the OpenVMS node name and version-specific naming
convention for the process and log file. Issue the SHOW DISPATCHER command to
determine the fully-qualified file name and location. Examine this log file for errors. The
Oracle Net management utilities are not used to start, stop, or reconfigure an OCI Services
for Oracle Rdb dispatcher. OCI Services for Oracle Rdb dispatchers must be started,
stopped, and configured using the SQLSRV_MANAGE utility.

If you did not already start your OCI service, you can start it now by using
SQLSRV_MANAGE to connect to the server, and typing:

SQLSRV> START SERVICE <service_name>;
SQLSRV> SHOW SERVICE <service_name>;

Once in a running state, the service is ready to process client requests. If the service fails to
start, examine the log file created in the SYS$LOGIN directory of the service owner.

Starting Up and Testing the Environment

Configuring OCI Services for Oracle Rdb 5-21

5.4.2 OCI Services for Oracle Rdb Server Configuration Test Tool
The OCI Services for Oracle Rdb server configuration test tool can be used to validate that
the server configuration has been set up correctly. This tool can be used once the system has
been configured.

One would not typically create an entry for a service in TNSNAMES.ORA on the server
where Oracle SQL/Services and OCI Services for Oracle Rdb is installed. However, an entry
is required on the server in order to test the server environment setup. Create a sample entry
on the server in the same directory where LISTENER.ORA was created and, once validated
as correct, that entry can be copied to any client systems that will be accessing the service.

The server configuration test tool is automatically installed as part of the OCI Services for
Oracle Rdb installation. The tool is installed in SYS$COMMON:[SYSTEST.SQLSRVnn],
where nn is the OCI Services for Oracle Rdb release number. A system-wide logical
"SQLSRV$IVP_DIR" is defined during SQL/Services startup to point to that directory.

To test that the OCI Services for Oracle Rdb server configuration has been correctly set up
for a given service, execute command procedure SQLSRV$IVP_DIR:RDB$NATCONN_
CHECK_SETUP.COM on your server node, specifying the following parameters. The
procedure will prompt for parameters, if they are not specified.

P1 = service name (as specified in TNSNAMES.ORA)
P2 = username (to connect to service)
P3 = password (to connect to service)
P4 = oci_dispatcher name

For example:

Example 5–14 Executing OCI Configuration Test Tool

$ SET DEFAULT SYS$COMMON:[SYSTEST.SQLSRV73]
$ @RDB$NATCONN_CHECK_SETUP "OCI_SERVICE" "SMITH" "SECRET" "OCI_DISP"

The server configuration test tool checks the following on the server node:

1. Confirms that OCI Services for Oracle Rdb was properly installed. More
specifically, it checks that SYS$MANAGER:SQLSRV_SQLNETnn.DAT exists.

2. Confirms that TNSNAMES.ORA was created in the directory specified by
SYS$MANAGER:SQLSRV_SQLNETnn.DAT, with [.NETWORK.ADMIN] appended.

3. Confirms that LISTENER.ORA was created in the directory specified by
SYS$MANAGER:SQLSRV_SQLNETnn.DAT, with [.NETWORK.ADMIN] appended.

4. Confirms that the service is defined in TNSNAMES.ORA.

5. Confirms that the HOST specified for the service is the current node.

Using the RDB_NATCONN Command File

5-22 Oracle SQL/Services Configuration Guide

6. Confirms that a PORT and SID have been defined for the service.

7. Confirms that the service is defined in the Oracle SQL/Services
configuration file.

8. Confirms that the service is currently running.

9. Confirms that a database has been associated with the service in
TNSNAMES.ORA (for a universal service) or the configuration file (for a
database service), but not both locations.

10. Confirms that the database has been created.

11. Confirms that the dispatcher is defined in the Oracle SQL/Services
configuration file.

12. Confirms that the dispatcher is configured using the OCI protocol.

13. Confirms that the dispatcher is currently running.

14. Confirms that at least one listener associated with the dispatcher is
defined in LISTENER.ORA for the current node, using the port specified for
the service.

15. Confirms that the database has been prepared for use with OCI Services for
Oracle Rdb and upgraded for the current release.

16. Confirms that a connection can be made for the service, if Oracle client is
available on the server node.

5.4.3 Connecting Using OCI Services for Oracle Rdb
Once your installation is complete and your database has been prepared, you can access the
database in exactly the same way you would access an Oracle database. On a PC, you can
invoke a SQL*Plus application by entering a command similar to the following at the DOS
prompt:

$ sqlplus username/password@RDB_72

The user name and password must be a valid OpenVMS user name and password on your
server system and must be a user identified in the database via the RDB_NATCONN com-
mand procedure’s ADD_USER command. The variable RDB_72 defines the TNS name that
accesses the OCI service on your server.

5.5 Using the RDB_NATCONN Command File
The SYS$LIBRARY:RDB_NATCONNnn.COM command file, where nn is the OCI
Services for Oracle Rdb release number, allows you to prepare or upgrade an Oracle Rdb
database for use by OCI Services for Oracle Rdb, or to remove OCI-associated tables and

Using the RDB_NATCONN Command File

Configuring OCI Services for Oracle Rdb 5-23

functions from an Oracle Rdb database. You can also use the command file to add, modify,
remove, or show users with encrypted passwords in a prepared Oracle Rdb database.

A privileged user is defined as an OpenVMS user who has either SYSPRV, SECURITY, or
BYPASS privilege in the account’s current process settings.

5.5.1 Preparing a Database
The PREPARE command in the RDB_NATCONN command file is designed for the initial
configuration of the emulated Oracle data dictionary. Use this operation for databases that
have not been prepared for OCI Services for Oracle Rdb. The PREPARE operation must be
run on each database that is to be accessed by OCI Services for Oracle Rdb.

$ @SYS$LIBRARY:RDB_NATCONNnn PREPARE database

where nn is the OCI Services for Oracle Rdb release number. The program prompts you for
a database name, if it is not supplied.

5.5.2 Upgrading a Database
Use the UPGRADE command in the RDB_NATCONN command file to upgrade the
required metadata objects created in a prior release with the PREPARE operation.

$ @SYS$LIBRARY:RDB_NATCONNnn UPGRADE database

where nn is the OCI Services for Oracle Rdb release number. The program prompts you for
a database name, if it is not supplied.

This command must be used after you upgrade OCI Services for Oracle Rdb to a new
release if the database was already prepared with a prior release.

 Note: The PREPARE operation supercedes the use of SQL prepare
scripts that were used with prior releases of OCI Services for Oracle Rdb.

 Note: The UPGRADE operation supercedes the use of SQL upgrade
scripts that were used with prior releases of OCI Services for Oracle Rdb.

Using the RDB_NATCONN Command File

5-24 Oracle SQL/Services Configuration Guide

5.5.3 Removing OCI Services for Oracle Rdb
If you need to remove the OCI Services for Oracle Rdb objects after you have completed a
PREPARE or UPGRADE operation, use the following command to remove the definitions:

$ @SYS$LIBRARY:RDB_NATCONNnn DROP database

where nn is the OCI Services for Oracle Rdb release number. The program prompts you for
a database name, if it is not supplied.

This command deletes all the tables, views, domains, stored procedures and external
procedures installed in your database for OCI Services for Oracle Rdb. If you have
user-defined references to any of these objects, the DROP command will fail.

5.5.4 Adding Users and Passwords
Most Oracle tools require that user names and their passwords be stored in the database
(USER$ table) in order for the tools to properly connect to the database. The ADD_USER
command used in the RDB_NATCONN command file allows a DBA, or someone with
SELECT privilege on the database, to add users and their associated passwords to the
USER$ table of a database. This command cannot be used to add VMS users to the system
User Authorization File (SYSUAF). The username must already exist in the SYSUAF.

$ @SYS$LIBRARY:RDB_NATCONNnn ADD_USER username new_password database

where nn is the OCI Services for Oracle Rdb release number.

There are three parameters associated with the ADD_USER operation:

■ The new user name

■ The password associated with the new user name

■ The database to which you want to attach

For privileged users, the <username> parameter can be any valid OpenVMS user on the
system. For a non-privileged user, <username> must be the current user who is running the
RDB_NATCONN command procedure.

When a new password is supplied, a privileged user issuing the command will cause the
password of the OpenVMS account for the user being added to the database to be updated.
A non-privileged user must specify a password that matches the current OpenVMS account
password of the user. In addition to OpenVMS restrictions, the password is limited to 30
characters. If a value is not specified for <new_password>, the user is added with an invalid
password, allowing that user to subsequently modify the password. If you do not specify the
remaining parameters, the command file prompts for them.

Using the RDB_NATCONN Command File

Configuring OCI Services for Oracle Rdb 5-25

5.5.5 Modifying Passwords
Use the MODIFY_USER command in the RDB_NATCONN command file to modify the
password for a given user in a list of databases specified in a previously created file.

$ @SYS$LIBRARY:RDB_NATCONNnn MODIFY_USER username new_password -
$!_ old_password database

where nn is the OCI Services for Oracle Rdb release number.

Either the database parameter must be specified or a data file containing a list of all Oracle
Rdb databases on the system must be created prior to executing the MODIFY_USER
operation in the RDB_NATCONN command file. The command file reads the file and
updates the user's password in each database where the user has previously been entered.
The default specification for the file is :

SYS$MANAGER:SQLSRV_NATCONN_DBS.DAT.

The logical SQLSRV_NATCONN_DBS can be defined to override the location and name
of the data file. If the file does not exist in SYS$MANAGER, or the logical does not point
to a valid file, the program looks in the current directory for a file named SQLSRV_
NATCONN_DBS.DAT.

The data file is a text file with one line for each database name. It must contain the fully
qualified database file specification. An exclamation point (!) can be used to designate a
comment; the remainder of the line after the exclamation point will be ignored.

SQLSRV_NATCONN_DBS.DAT is displayed in the following example:

Example 5–15 SQLSRV_NATCONN_DBS.DAT Example

$ TYPE SQLSRV_NATCONN_DBS.DAT
disk1:[hr.db]mf_personnel
disk3:[shipping.db]shipping

There are four parameters associated with the MODIFY_USER operation:

■ The user name

■ The new password to be associated with the existing user name

■ The old password for the user name

■ The database in which the user password is to be updated

Both privileged and non-privileged users can update the password in the USER$ table.
Non-privileged users can only update their own user password. For non-privileged users, the
new password must conform to the password policy set up on the OpenVMS system (i.e.

Using the RDB_NATCONN Command File

5-26 Oracle SQL/Services Configuration Guide

password length, character requirements, and password history). For privileged users, there
is no restricton on the new password. In addition to OpenVMS restrictions, the password is
limited to 30 characters.

There are four scenarios under which the MODIFY_USER operation can be invoked. The
first two apply to the current user, who is executing the program, and require no privileges.
The last two scenarios apply to the system manager or database administrator and require
special privileges.

 Scenario 1: Current user updates SYSUAF, then uses MODIFY_USER to update
database

$ @SYS$LIBRARY:RDB_NATCONNnn MODIFY_USER " " new_password

where nn is the OCI Services for Oracle Rdb release number.

Use this scenario when a user's OpenVMS password has been changed, but the new
password has not yet been stored in the databases the user accesses. When the command file
is called with only the new_password parameter, the user name for the current process is
assumed. The new password is checked against the system User Authorization File
(SYSUAF). If it is valid, then the password is modified in each database listed in the
SQLSRV_NATCONN_DBS data file where this user has already been entered.

Scenario 2: Current user executes MODIFY_USER to update SYSUAF and database

$ @SYS$LIBRARY:RDB_NATCONNnn MODIFY_USER " " new_password old_password

where nn is the OCI Services for Oracle Rdb release number.

Use this combination of parameters to update a user's password in both the OpenVMS
SYSUAF and in the databases the user accesses. When you do not specify the user name,
the user name for the current process is assumed. The old password is checked against the
system UAF. If it is valid, then the OpenVMS account password is set to the new password.
If security auditing is turned on, each old password mismatch will trigger an intrusion count
and subsequently may lead to a user lockout condition. The password is then modified in
each database listed in the SQLSRV_NATCONN_DBS data file where the user has already
been entered.

Scenario 3: Privileged user executes MODIFY_USER to update SYSUAF and
database using old password

$ @SYS$LIBRARY:RDB_NATCONNnn MODIFY_USER username new_password old_password

where nn is the OCI Services for Oracle Rdb release number.

This scenario can used by a system manager or database administrator to update another
user's password both in the OpenVMS system UAF and in the databases that the user

Using the RDB_NATCONN Command File

Configuring OCI Services for Oracle Rdb 5-27

accesses. The manager must possess the appropriate privileges (for example, BYPASS or
SYSPRV) in order to make this change.

The old password is checked against the system UAF. If the old password is valid, the
OpenVMS account password for the given user name is updated using the new password. If
security auditing is turned on, each old password mismatch will trigger an intrusion count
and subsequently may lead to a user lockout condition. The password is then modified in
each database listed in the SQLSRV_NATCONN_DBS data file where this user has already
been entered.

Scenario 4: Privileged user executes MODIFY_USER to update SYSUAF and
database without old password

$ @SYS$LIBRARY:RDB_NATCONNnn MODIFY_USER username new_password ““

where nn is the OCI Services for Oracle Rdb release number.

This scenario can be used by a system manager or database administrator to update another
user's password both in the OpenVMS system UAF and in the databases that the user
accesses, without verifying the old password. The OpenVMS account password for the
given user name is updated using the new password. The manager must have the appropriate
privileges for the password to be changed in this scenario (for example, BYPASS or
SYSPRV). The password is then modified in each database listed in the SQLSRV_
NATCONN_DBS data file where this user has already been entered.

5.5.6 Removing a User
Use the REMOVE_USER command in the RDB_NATCONN command file to remove a
user name from the USER$ table of the specified database.

$ @SYS$LIBRARY:RDB_NATCONNnn REMOVE_USER username database

where nn is the OCI Services for Oracle Rdb release number.

A privileged user can remove any user name from the USER$ table in a database. A
non-privileged user can only remove his own user name from the USER$ table in a
database.

5.5.7 Showing Users
Use the SHOW_USERS command in the RDB_NATCONN command file to display all user
names in the USER$ table of the specified database.

$ @SYS$LIBRARY:RDB_NATCONNnn SHOW_USERS database

Using Stored Procedures to Add, Modify and Drop Users

5-28 Oracle SQL/Services Configuration Guide

where nn is the OCI Services for Oracle Rdb release number.

Both privileged and non-privileged users can show all users in the USER$ table of a
database.

5.6 Using Stored Procedures to Add, Modify and Drop Users
OCI users can be added, modified and dropped in a database using the RDB_NATCONN
command procedure or by using the ORA_CREATE_USER and ORA_DROP_USER stored
procedures. These stored procedures are defined when the database is prepared for use with
OCI Services for Oracle Rdb. The stored procedures can be executed in many ways, such as
via a user-defined program, interactive SQL, or SQL*Plus. These procedures will not
change the VMS system User Authorization File password for the user.

5.6.1 ORA_CREATE_USER
The ORA_CREATE_USER procedure has two parameters: user_name and password. Both
are input parameters and both are defined as VARCHAR(30). The ORA_CREATE_USER
procedure encrypts the password. If the user does not exist in the USER$ table in the Rdb
database, it adds the user name and encrypted password to the USER$ table. If the user
already exists in the USER$ table, it updates the password with the new encrypted password.
The procedure is defined as follows:

PROCEDURE ORA_CREATE_USER (IN :user_name VARCHAR(30),

 IN :password VARCHAR(30));

When executing this procedure, be sure to check the values of SQLCODE and SQLSTATE
for insufficient privilege failures.

5.6.2 ORA_DROP_USER
The ORA_DROP_USER procedure has one parameter: user_name. The user_name is
defined as VARCHAR(30). The ORA_DROP_USER procedure removes the user name and
encrypted password from the USER$ table in the database. The procedure is defined as
follows:

PROCEDURE ORA_DROP_USER(IN :user_name VARCHAR(30));

When executing this procedure, be sure to check the values of SQLCODE and SQLSTATE
for insufficient privilege failures.

Using Stored Procedures to Add, Modify and Drop Users

Configuring OCI Services for Oracle Rdb 5-29

5.6.3 ORA_CREATE_USER Program Example
The following portion of an Oracle Rdb SQLPRE program demonstrates how ORA_
CREATE_USER can be executed from a program to add or modify a user in the USER$
table.

Example 5–16 Program Using ORA_CREATE_USER

EXEC SQL include sqlca;
char SQLSTATE[6];
.
.
.
/*
 * Call the stored procedure ORA_CREATE_USER to add or change a
 * user name and password
 */
EXEC SQL BEGIN CALL ORA_CREATE_USER(:name, :pass); END;

/*
 * Check the return status from ORA_CREATE_USER.
 */
if ((SQLCA.SQLCODE == -1042) &&
 (strcmp(SQLSTATE, "O1031") == 0))
 /*
 * Insufficient privileges to change user.
 */
 status = SS$_NOPRIV;

5.6.4 ORA_CREATE_USER Rdb SQL Example
The following example demonstrates how ORA_CREATE_USER can be executed from
interactive SQL to add or modify a user in the USER$ table.

Example 5–17 Rdb SQL Script Using ORA_CREATE_USER

$ DEFINE RDB$NATCONN_FUNC SYS$LIBRARY:RDB$NATCONN_FUNCnn.EXE
 (where nn is the OCI Services for Oracle Rdb release number)
$ MCR SQL$
SQL> set dialect ’oracle level1’;
SQL> attach ’filename dka300:[my_dir]oci_srv.rdb’;
SQL> begin
cont> call ORA_LOGIN();
cont> call V$NLS_SET_FUNC();
cont> call ORA_CREATE_USER(’username’, ’password’);

Defining Character Sets

5-30 Oracle SQL/Services Configuration Guide

cont> end;
SQL>

5.6.5 ORA_CREATE_USER SQL*Plus Example
The following example demonstrates how ORA_CREATE_USER can be executed from
SQL*Plus to add or modify a user in the USER$ table.

Example 5–18 SQL*Plus Script Using ORA_CREATE_USER

$ SQLPLUS jones/secret@oci_srv
SQL> begin
 2 call ORA_CREATE_USER(’username’, ’password’);
 3 end;
SQL>

5.7 Defining Character Sets
OCI Services for Oracle Rdb supports several character sets, including some multibyte
character sets. The character sets shown in Table 5–3 are supported by OCI Services for
Oracle Rdb and Oracle Rdb on your server system. To determine which character sets are
supported on your client system, refer to your client-specific documentation.

Defining Character Sets

Configuring OCI Services for Oracle Rdb 5-31

Table 5–3 Supported Character Sets

Languages Supported Oracle Character Set
Oracle Rdb
Character Set

Brazilian Portuguese
Canadian French
Czechoslovakian
Danish
Dutch
Finnish
French
German
Greek
Hungarian
Icelandic
Italian
Mexican Spanish
Norwegian
Polish
Portuguese
Russian
Slovak
Spanish
Swedish
Turkish

.WE8DEC DEC_MCS

DEC-Hanzi ZHS16CGB2312-80 HANZI

Kanji JA16VMS KANJI

Super-Dec-Kanji JA16EUC DEC_KANJI

Korean KO16KSC5601 KOREAN

Extended European WE8ISO8859P1 ISOLATIN1

Extended European WE8ISO8859P15 ISOLATIN9

Japanese Shift-JIS JA16SJIS SHIFT_JIS

Latin/Arabic (ISO) AR8ISO8859P6 ISOLATINARABIC

Latin/Cyrillic (ISO) CL8ISO8859P5 ISOLATINCYRILLIC

Latin/Greek (ISO) EL8ISO8859P7 ISOLATINGREEK

Latin/Hebrew (ISO) IW8ISO8859P8 ISOLATINHEBREW

Thai TH8TISASCII THAI

Traditional Chinese ZHT16BIG5 BIG5

Defining Character Sets

5-32 Oracle SQL/Services Configuration Guide

By default, OCI Services for Oracle Rdb supports the US7ASCII character set (defined as
US7ASCII using the NLS_LANG logical name).

5.7.1 Defining Character Sets on Server Systems
On your server system, use the NLS_LANG logical name to define a character set other than
the default US7ASCII character set. The format of the NLS_LANG logical name is as
follows:

$ define NLS_LANG “[<language>][_<territory>].<character_set>”

Note that you cannot change the character set for the session once the session is started.

For example, to specify DEC_MCS, which provides all characters for the Western European
languages, define the NLS_LANG logical name to be “.WE8DEC” in the process
initialization file for the service.

The following example specifies only the Western European character set.

$ define NLS_LANG “.WE8DEC”

The following example specifies the French language and territory and the Western
European character set.

$ define NLS_LANG “FRENCH_FRANCE.WE8DEC”

Unicode UTF8 UTF8

GB18030 ZHS32GBI1030 GB18030

Latin/Arabic (8-bit) AR8MSWIN1256 WIN_ARABIC

Latin/Cyrillic (8-bit) CL8MSWIN1251 WIN_CYRILLIC

Latin/Greek (8-bit) EL8MSWIN1253 WIN_GREEK

Latin/Hebrew (8-bit) IW8MSWIN1255 WIN_HEBREW

West European (8-bit) WE8MSWIN1252 WIN_LATIN1

Note: You must specify a language or territory on the client system.

Table 5–3 Supported Character Sets

Languages Supported Oracle Character Set
Oracle Rdb
Character Set

Referencing an Oracle Rdb Database as a Database Link

Configuring OCI Services for Oracle Rdb 5-33

Alternatively, you can specify the language and territory using the Oracle SQL ALTER
SESSION statement in your SQL initialization file, for example:

ALTER SESSION SET NLS_LANGUAGE=<language> NLS_TERRITORY=<territory>

5.7.2 Defining Character Sets on Client Systems
Because of the wide variety of client systems and operating system platforms available, this
section cannot describe all the possibilities for defining character sets on client systems. For
information about specifying character sets on your client system, see your platform-specific
documentation.

5.7.3 Rules and Recommendations
Note the following rules and recommendations when you specify a character set:

■ The character set is specific to the session.

■ You can specify only one character set for a given session.

All character data that is sent to the database or requested from the database is assumed
to be in the defined character set.

■ If you use a character set other than US7ASCII, specify the desired character set on
both the client and server systems.

If the character set on your client system is not compatible with the character set on the
server, OCI Services for Oracle Rdb attempts to translate the character set. However, the
results of the translation may not be as you expect.

5.8 Referencing an Oracle Rdb Database as a Database Link
You can use Oracle SQL to establish a connection to a remote Oracle Rdb database. To
define the database link, use the Oracle SQL CREATE DATABASE LINK statement. Once
the database link is created, you can reference any table or tables in the Oracle Rdb database,
including data dictionary tables. You can join tables from the Oracle Rdb database with each
other and with tables in the Oracle database. The following sections describe how to define a
database link and list restrictions for using this feature.

Referencing an Oracle Rdb Database as a Database Link

5-34 Oracle SQL/Services Configuration Guide

5.8.1 CREATE DATABASE LINK Example
To define a database link to an Oracle Rdb database, connect to your Oracle database server
and use the CREATE DATABASE LINK statement. The following line shows the syntax for
the CREATE DATABASE LINK statement:

CREATE DATABASE LINK <link-name>
 [CONNECT TO username IDENTIFIED BY password]
 USING <connect-name>;

In the command line, supply the <link-name> and <connect-name> as follows:

■ The <link-name> parameter must be the service name of the Oracle SQL/Services
service.

■ The <connect-name> parameter must be the OCI Services for Oracle Rdb connect string
from the TNSNAMES.ORA file. The connect string specifies the database or databases
to which you want to attach.

For example, assume that your service name is my_serv and the connect string is my_conn
as shown in the TNSNAMES.ORA file in the following example.

my_conn = (DESCRIPTION = (ADDRESS =
 (PROTOCOL = TCP) (HOST = sqs_node) (PORT = 1527))
 (CONNECT_DATA = (SERVICE = my_serv))

The following example shows the CREATE DATABASE LINK statement for establishing a connection to
the Oracle Rdb my_serv database service.

CREATE DATABASE LINK my_serv
 [CONNECT TO username IDENTIFIED BY password]
 USING ‘my_conn’;

If the service name you supply is incorrect, the following error message is returned when
you attempt to use the database link:

ORA-2085: database link <link_name> connects to <other_name>
In the error message, the variable <other_name> is the service name of the database that you
tried to connect to, but the variable does not match the name specified in <link_name>.

Note: The SERVICE entry in the TNSNAMES.ORA file might be
shown instead as SID (service identifier). For example:

(CONNECT_DATA = (SID = my_serv)

Referencing an Oracle Rdb Database as a Database Link

Configuring OCI Services for Oracle Rdb 5-35

5.8.2 Database Link Restrictions
This section describes restrictions for the database links feature:

■ The database link name must be the same as the service name to which it is connecting.

■ Starting with release 7.1.6, OCI Services for Oracle Rdb provides two-phase commit
support with the following capabilities:

– Oracle Rdb databases can fully participate in Oracle RDBMS-managed distributed
transactions.

– Multiple Oracle server DBLINKs to Rdb databases can participate in a transaction.

– The DECdtm XA Gateway provides an interface between the Oracle distributed
transaction protocol and DECdtm distributed transaction protocol.

– Perform the following steps to enable the two-phase commit protocol:

* Define the following logical in your service process initialization file:

$ DEFINE RDB$DDTM_XG_INFO gateway-name

where gateway-name is the name specified in the CREATE_LOG
/GATEWAY_NAME command in XGCP, the XA Gateway control program.

* Add the following command to the SQL initialization file specified by the
CREATE SERVICE and ALTER SERVICE commands:

ALTER SESSION SET TX_MODE NOWARN_1PC

■ When an OCI service is set up with a non-privileged service owner such as
SQLSRV$DEFLT, two-phase commit transactions from OCI clients like Oracle
SQL*Plus may be restricted to ReadOnly. Because all OCI two-phase commit
transactions are considered by Oracle Rdb as distributed transactions, the service owner
must have DISTRIBTRAN access on the database service. Oracle recommends that
DISTRIBTRAN access be granted to all users on databases that may participate in a
two-phase commit transaction using an OCI database service, as shown in the following
example:

SQL> GRANT DISTRIBTRAN ON DATABASE ALIAS RDB$DBHANDLE TO PUBLIC;

■ You cannot use standard DML and database links to update the Oracle Rdb database
with data from an Oracle database. However, you can use PL/SQL statements in the
Oracle database server to update the Oracle Rdb database.

Referencing an Oracle Rdb Database as a Database Link

5-36 Oracle SQL/Services Configuration Guide

■ There is a restriction on Oracle SQL UPDATE and DELETE statements that contain
subqueries. All tables referenced in an UPDATE or DELETE statement for the Oracle
Rdb database must belong to the Oracle Rdb database.

The following example shows a valid update statement.

UPDATE emp@rdb SET sal = sal * 1.1
 WHERE deptno=(SELECT deptmp FROM emp@rdb WHERE dname = ‘RESEARCH’);

The following example shows an update statement that will not work.

UPDATE emp@rdb SET sal = sal * 1.1
 WHERE deptno=(SELECT deptno FROM depts WHERE dname = ‘RESEARCH’);

The statement fails because it attempts to update the emp table on the Oracle Rdb database
by selecting from the Oracle database. When you try to execute the statement in this
example, Oracle server returns the following error:

ORA-2025: all tables in the SQL statement must be at the remote database

The following example shows how you can work around this problem, using PL/SQL when
DML does not work:

SQL>
SQL> DECLARE CURSOR acur IS SELECT * FROM dept WHERE dname = 'RESEARCH';
 2 BEGIN
 3 FOR rec IN acur LOOP
 4 UPDATE emp@rdb SET sal = sal * 1.1 WHERE deptno = rec.deptno;
 5 END LOOP;
 6 END;
 7 /

PL/SQL procedure successfully completed.

SQL>

 SQL ALTER SESSION Statement 6-1

6
SQL ALTER SESSION Statement

This chapter explains how to use the Oracle SQL ALTER SESSION statement to control
specific aspects of OCI Services for Oracle Rdb operations.

ALTER SESSION Statement

6-2 Oracle SQL/Services Server Configuration Guide

ALTER SESSION Statement

Use the Oracle SQL ALTER SESSION statement with OCI Services for Oracle Rdb to:

■ Change the values of National Language Support (NLS) parameters

■ Change the server logging level

■ Change the schema emulation mode

OCI Services for Oracle Rdb supports a subset of the ALTER SESSION SET NLS controls
that are supported by the Oracle server. In addition, the ALTER SESSION statement
supports controls that are unique to the OCI Services for Oracle Rdb environment.

Environment
You can use the ALTER SESSION statement:

■ In an Oracle SQL/Services SQL initialization file

■ On the command line if the OCI client has a SQL command line interface

Format
ALTER SESSION

SET ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE}
SET NLS_LANGUAGE=nls_value
SET NLS_TERRITORY=nls_value
SET NLS_DATE_FORMAT=nls_value
SET NLS_DATE_LANGUAGE=nls_value
SET NLS_NUMERIC_CHARACTERS=nls_value
SET NLS_ISO_CURRENCY=nls_value
SET NLS_CURRENCY=nls_value
SET NLS_SORT=nls_value
SET SCHEMA EMULATION {STRICT | RELAXED}
SET SQLNET_STRUCTURED_DATE_TYPES {ON | OFF}
SET CONSTRAINTS {IMMEDIATE | DEFERRED}
SET SQLNET_TIMESTAMP_DATE_TYPE {ON | OFF}
SET TX_MODE NOWARN_1PC
LOG {BRIEF | FULL | OFF | CONNECT | DATA | HEADERS | TIMESTAMP | TRANSACTION}
SET SQLNET_DEBUG_FLAGS flag...

flag :== B | F | O | C | D | H | T | X

ALTER SESSION Statement

 SQL ALTER SESSION Statement 6-3

Arguments

SET ISOLATION LEVEL READ COMMITTED
SET ISOLATION LEVEL SERIALIZABLE
Defines the degree to which the read operations of one transaction can be affected by the
update operations of other concurrently executing transactions. Isolation levels affect only
read/write transactions. Read-only transactions always read from the snapshot file if it is
enabled.

For example, you implement the SET ISOLATION LEVEL control in the ALTER SESSION
statement, as follows:

ALTER SESSION SET ISOLATION_LEVEL SERIALIZABLE
ALTER SESSION SET ISOLATION_LEVEL READ COMMITTED

The SET ISOLATION LEVEL argument is a synonym for the Oracle Rdb SQL DECLARE
TRANSACTION ISOLATION LEVEL statement. Refer to the Oracle Server SQL
Language Reference Manual for more information about isolation levels in Oracle and to the
Oracle Rdb Guide to SQL Programming for more information about isolation levels in
Oracle Rdb.

SET NLS keyword = nls_value
Changes the values of NLS parameters. All the SET NLS keywords are identical in syntax
and meaning to Oracle SQL statements. Refer to the Oracle Server SQL Language
Reference Manual for complete information.

SET SCHEMA EMULATION RELAXED
SET SCHEMA EMULATION STRICT
Allows you to choose between a relaxed or strict schema emulation layer. The schema
emulation control is unique to OCI Services for Oracle Rdb.

The schema emulation layer is mostly transparent. However, because it is an emulation layer
and not an exact implementation of the Oracle multischema model, you may encounter
compatibility problems with some OCI clients. For this reason, OCI Services for Oracle Rdb
provides two schema emulation modes, STRICT and RELAXED:

■ STRICT schema emulation mode

This is the default mode in which tables and views that you create using an explicit
schema that differs from the current schema are recorded in the ORA_OBJECTS table.
Each row in the ORA_OBJECTS table defines a database object and the schema to
which it belongs. In order to create a table or view outside your schema in STRICT

ALTER SESSION Statement

6-4 Oracle SQL/Services Server Configuration Guide

schema emulation mode, you must have write access to the ORA_OBJECTS table,
because Oracle requires such privileges to create database objects outside your schema
in an Oracle environment.

In addition, OCI Services for Oracle Rdb verifies references to tables and views that
include a schema other than the current schema while in STRICT schema emulation
mode. If the specified object does not belong to the specified schema, OCI Services for
Oracle Rdb generates an error condition.

By default, tables are in the schema which is named after the user who created it.

■ RELAXED schema emulation mode

OCI Services for Oracle Rdb does not record created tables and views in the ORA_
OBJECTS table. All tables and views are created in your current schema and write
access to ORA_OBJECTS is not required. OCI Services for Oracle Rdb does not verify
references to tables and views that include a schema.

By default, tables are in the RDB_SCHEMA schema.

SET SQLNET_STRUCTURED_DATE_TYPES ON | YES
SET SQLNET_STRUCTURED_DATE_TYPES OFF | NO
Allows true data types to be returned to the OCI client. The following table shows the data
types that are returned to the client.

When this argument is set to ON or YES and the OCI client specifies structured data types,
structured data types are returned to the client.

SET CONSTRAINTS IMMEDIATE
SET CONSTRAINTS DEFERRED
Sets the constraint setting.

Oracle Rdb Data Type Data Types Returned to Client

SQLNET_STRUCTURED_
DATE_TYPES = ON or YES

SQLNET_STRUCTURED_
DATE_TYPES = OFF or NO

DATE DATE DATE

TIME DATE DATE

TIMESTAMP TIMESTAMP DATE

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH CHAR

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND CHAR

ALTER SESSION Statement

 SQL ALTER SESSION Statement 6-5

If IMMEDIATE is specified, during this transaction all constraints defined as
DEFERRABLE INITALLY DEFERRED are evaluated as though defined as
DEFERRABLE INITIALLY IMMEDIATE.

If DEFERRED is specified, all constraints defined as DEFERRABLE INITIALLY
DEFERRED are evaluated as originally specified in the constraint definition.

SET SQLNET_TIMESTAMP_DATE_TYPE YES | ON
SET SQLNET_TIMESTAMP_DATE_TYPE NO | OFF
Allows you to use a TIMESTAMP data type on OpenVMS. A value of YES or ON means
that an Oracle Rdb data type of TIME or TIMESTAMP is returned as a TIMESTAMP value.
If the default of OFF is retained, or if the argument has been set to OFF or NO, a DATE data
type is returned.

SET TX_MODE NOWARN_1PC
Allows two-phase commit from a dblink in an Oracle database to a single Oracle Rdb
database. This argument instructs OCI Services for Oracle Rdb to join the distributed
transaction and to allow the Oracle database to coordinate the transaction. This argument is
also required if you are using XA to allow two-phase commit with more than one Oracle
Rdb database.

SET SQLNET_DEBUG_FLAGS flag...
Allows the interactive ability to set the debug flag values for debug logging purposes. The
result is the same as setting the SQLNET_DEBUG_FLAGS logical. Flag is the one letter
abbreviation of each LOG option, specified as a string of characters with no punctuation, for
example "HTD". See Section 7.3.4 for more information on the SQLNET_DEBUG_FLAGS
logical.

LOG BRIEF
LOG FULL
LOG OFF
LOG CONNECT
LOG DATA
LOG HEADERS
LOG TIMESTAMP
LOG TRANSACTION
Enables or disables logging of information in the Oracle SQL/Services log file. You can use
OCI Services for Oracle Rdb logging to see which Oracle SQL statements are being sent
from the client to the server. This ALTER SESSION argument is unique to OCI Services for
Oracle Rdb.

ALTER SESSION Statement

6-6 Oracle SQL/Services Server Configuration Guide

The default mode is to perform FULL logging during logon processing. Logging is turned
OFF by default for the remainder of the session. When logging is OFF, OCI Services for
Oracle Rdb does not record processing information in the server log.

The following list describes the logging options:

■ BRIEF logging mode provides only the most critical information needed to diagnose
problems and understand how OCI Services for Oracle Rdb interacts with the client.
Brief logging records the following information in the server log:

– All SQL statements requested by the client

– Client SQL statements after OCI Services for Oracle Rdb has performed
modifications

– Server error messages

– Row fetch count

BRIEF logging is usually sufficient to diagnose user problems or to better understand
which Oracle SQL statements are generated by client applications.

■ FULL logging provides a great quantity of information in the OCI Services for Oracle
Rdb log file. FULL logging includes all the information included with BRIEF logging
and in addition:

– All internal SQL statements generated and executed by OCI Services for Oracle
Rdb

– OCI protocol events, such as parse, describe ,and execute

– Reloading of OCI Services for Oracle Rdb internal cache

– Schema emulation information, including schema_name.object_name references

– SQLDA information used to communicate between OCI Services for Oracle Rdb
and Oracle Rdb SQL

FULL logging is the best source of information when you need to diagnose a client-side
problem occurring with OCI Services for Oracle Rdb. Also, if you need to submit a
problem report to Oracle, you should include a full session log file with your problem
report.

Note: The form and content of the server log file is subject to change.

ALTER SESSION Statement

 SQL ALTER SESSION Statement 6-7

Usage Notes
■ Use of OCI Services for Oracle Rdb with multischema Oracle Rdb databases is not

supported at this time.

■ Debug flags can be used to log additional information in the SQL/Services executor log
file. Enable debug flags by defining the logical SQLNET_DEBUG_FLAGS in your
SQL Services service process initialization file.

■ While Oracle Rdb supports the ANSI multischema database model, the majority of
Oracle Rdb databases that might be accessed with OCI applications through OCI
Services for Oracle Rdb exist in single schema form. Moreover, the minority of Oracle
Rdb databases that do exist in multischema form are unlikely to contain a schema
configuration that is compatible with the typical Oracle environment. Therefore, OCI
Services for Oracle Rdb provides a strict or relaxed schema emulation layer.

– The schema emulation layer allows OCI client applications to operate with single
schema Oracle Rdb databases as though the Oracle Rdb database contained a
schema configuration typical of that found in an Oracle database. The schema
emulation layer provides a virtual schema environment similar to that of Oracle.

– In addition, the OCI Services for Oracle Rdb data dictionary provides views and
tables that emulate the predefined Oracle schemas and schema objects. However,
you cannot use the same name for two different database objects in different
schemas as you can with Oracle.

To present this restriction to OCI clients in a way that is most like an Oracle
environment, the schema emulation layer implicitly defines a private synonym
within the current schema to each object in the database. If you were to define
private synonyms in the current schema in an Oracle environment, you would
encounter the same unique name requirement as with OCI Services for Oracle Rdb.

■ If you choose the STRICT schema emulation mode, when you create or delete a table or
view, OCI Services for Oracle Rdb inserts a row into or deletes a row from ORA_
OBJECTS.

– If you do not have write access to ORA_OBJECTS (similar to not having the
Oracle privileges to delete objects outside your schema), OCI Services for Oracle
Rdb generates an error condition and rolls back the current transaction.

– If you were attempting to delete a table or view, the effect of the rollback is to
restore the table or view because you do not have sufficient privilege to delete it.

– If the ORA_OBJECTS table or database objects are manipulated outside OCI
Services for Oracle Rdb, the ORA_OBJECTS table may include tables that have
been dropped from the database. Oracle recommends that the stored procedure

ALTER SESSION Statement

6-8 Oracle SQL/Services Server Configuration Guide

ORA_DELETE_PHANTOMS be run occasionally to delete rows in ORA_
OBJECTS which define tables or views that no longer exist.

Management Commands 7-1

7
Management Commands

This chapter describes the syntax and semantics of the SQLSRV_MANAGE utility of
Oracle SQL/Services. This utility is used to manage the Oracle SQL/Services server and its
components. See Section 7.1 for a description of syntax conventions.

The SQLSRV_MANAGE commands include management commands, environment
commands, and switches. Section 7.2 describes how the SQLSRV_MANAGE management
commands work.

7.1 Syntax Conventions
The SQLSRV_MANAGE utility uses the following syntax conventions and semantics for
both its environment and management commands:

[] Brackets enclose optional clauses from which you can choose none, one, or more
of the enclosed options. Do not include brackets in your option.

{ } Braces indicate that you must choose at least one of the enclosed options. Do not
include braces in your option.

| The vertical bar means that you can select only one of the options shown.

, The comma means that you can choose as many of the options shown as you like,
separating your choices with commas to be typed as part of the command.

< > Angle brackets enclose user-supplied names.

::= An argument followed by a double colon and equal sign represents the definition
of the argument.

White space
and new
lines

White space and new lines (carriage returns) are not significant in the syntax
diagram.

Syntax Conventions

7-2 Oracle SQL/Services Server Configuration Guide

The following syntax and semantics are also used.

<identifier>
An <identifier> is a string starting with a letter and composed of letters (a to z, A to Z),
numbers (0 to 9), hyphens (-), and underscores (_). For example:

AARDVARK_1-1101

<quoted-string>
A <quoted-string> can use either single or double quotation marks containing any characters
within it except a new line character. For example:

'user1'
"Today is 9/6/08"

Single-quoted strings can contain embedded double quotation marks, and double quoted
strings can contain embedded single quotation marks. For example:

'Contestant number three said, "My name is Data"'
"Today's beach report is 'sunny and warm'"

A new line character inside a string is assumed to be a syntax error; that is, an unterminated
quoted string.

Quoted strings are also useful for representing strings that start with a number. For example:

'73_user'

<number>
A <number> is an integer. It can start with a plus or minus sign and can consist of one or
more numbers from 0 to 9. Numbers can be represented either in decimal or hexadecimal
format. To represent a number in hexadecimal format, precede the numeric value with the
value '0x' or '0X'. For example:

0x0000088a

Keywords Keywords are not case sensitive. Keywords are presented in uppercase characters
and are underlined.

 . . . Horizontal ellipsis points in commands mean that parts of the command not
directly related to the example have been omitted.

; All statements must be terminated with a semicolon (;) with the exception of the
EXIT and HELP commands, in which the semicolon is optional.

Syntax Conventions

Management Commands 7-3

<version-data-type>
A <version-data-type> is a software version number with a major and minor version number
consisting of one or more numbers from 0 to 9, separated by a decimal point. The major
version number is to the left of the decimal point and the minor version number is to the
right of the decimal point. The syntax is as follows:

n[nnn...].n[nnn...]

For example:

7.1
6.10

Comments
Comments start with two consecutive hyphens (– –) and continue to the next new line. For
example:

-- This is a comment line.

Order of Command Arguments
The order of the command arguments of the management commands is not important. If you
enter a command that contains two or more arguments, the arguments do not need to be in
the order presented in the format description of that command.

Use of Underscores Between Keywords in Arguments
On the command-line interface, a space can replace the underscore between any keywords in
arguments. For example, rather than enter the two keywords NETWORK_PORT (with the
underscore separator), you can enter NETWORK PORT (with a space separator) on the
command line, and the SQLSRV_MANAGE utility correctly parses these two keywords
without returning an error.

Command Line Recall
The SQLSRV_MANAGE utility recalls up to 20 prior commands. Simply use the up and
down arrow keys to scroll through the recalled commands.

SQL Initialization Files
SQL initialization files use the following syntax conventions:

■ Leading and trailing white space on a line is ignored.

■ Comments start with two consecutive hyphens (– –), must start at the beginning of a
line, and continue to the next new line.

How SQLSRV_MANAGE Commands Work

7-4 Oracle SQL/Services Server Configuration Guide

■ Each SQL initialization statement must be able to be dynamically prepared, executed,
and released by the SQL EXECUTE IMMEDIATE statement. Refer to the EXECUTE
IMMEDIATE statement in the Oracle Rdb SQL Reference Manual for more
information.

■ Multiline statements are supported in the SQL initialization file. A hyphen must be used
as a continuation character at the end of a line in the initialization file to indicate that the
SQL statement continues on the following line. The limit of length for one line in the
initialization file is 512 characters, so if the SQL statement exceeds 512 characters, you
must use additional lines.

■ A trailing semicolon (;) at the end of a SQL statement is ignored to allow SQL
initialization files to be invoked and verified using interactive SQL.

The following example illustrates a sample SQL initialization file:

--
-- This SQL initialization file sets the SQL dialect and default
-- character set for an executor process.
--
SET DIALECT 'SQL89';
SET DEFAULT CHARACTER SET 'KANJI';

7.2 How SQLSRV_MANAGE Commands Work
This section describes how SQLSRV_MANAGE commands work.

Server Configuration Commands
The following commands operate on the server, dispatcher, and service objects in a server
configuration:

■ ALTER SERVER, CONNECT TO SERVER, CREATE SERVER, DISCONNECT
SERVER, DROP SERVER, EXTRACT SERVER, RESTART SERVER, SET
CONFIG_FILE, SET CONNECTION, SHOW SERVER, SHOW SETTINGS, SHOW
VERSION, SHUTDOWN SERVER, START SERVER

■ ALTER DISPATCHER, CREATE DISPATCHER, DROP DISPATCHER, EXTRACT
DISPATCHER, SHOW DISPATCHER, SHUTDOWN DISPATCHER, START
DISPATCHER

■ ALTER SERVICE, COPY SERVICE, CREATE SERVICE, DROP SERVICE,
EXTRACT SERVICE, GRANT USE ON SERVICE, KILL EXECUTOR, REVOKE
USE ON SERVICE, SHOW CLIENTS FOR SERVICE, SHOW SERVICE,
SHUTDOWN SERVICE, START SERVICE

How SQLSRV_MANAGE Commands Work

Management Commands 7-5

Environment Use Commands and Switches
The following commands operate on the SQLSRV_MANAGE system management
environment:

■ –input and –output switches

■ SHOW CONNECT[ION], SHOW SETTINGS

■ CONNECT [TO] SERVER, DISCONNECT SERVER, SET CONFIG_FILE, SET
CONNECTION

■ @ , CLOSE, EXIT, HELP, OPEN, SET CONFIRM, SET OUTPUT, SET VERIFY

Table 7–1 describes the three different groups of Oracle SQL/Services objects and shows
how each object is acted upon by a set of command verbs.

Table 7–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a
Command

Object Command Description

Dispatcher ALTER Change a dispatcher object definition in
the configuration file and dynamically
change selected attributes for a running
server.

CREATE Create a dispatcher object for the current
server and add the definition to the
configuration file.

DROP Delete a dispatcher object definition for
an inactive dispatcher for the current
server from the configuration file.

EXTRACT Extract the definitions for dispatchers and
write them to a SQL/Services command
script.

SHOW Show a dispatcher object definition.

SHUT[DOWN] Shut down the specified dispatcher object.

START Start a dispatcher process for the defined
dispatcher object for the current server.

Server ALTER Change a server object definition in the
configuration file and dynamically change
selected attributes for a running server.

CONNECT Connect to a running server.

How SQLSRV_MANAGE Commands Work

7-6 Oracle SQL/Services Server Configuration Guide

CREATE Create a configuration file and a server
object.

DISCONNECT Disconnect from a running server.

DROP Delete a server object definition and
delete the configuration file for an
inactive server.

EXTRACT Extract the definition for a server and
write it to a SQL/Services command
script.

RESTART Restart the server including all
automatically started dispatchers and
services for the current server object.

SET CONFIG_FILE Set the current configuration so
subsequent commands can modify a
server's configuration file.

SET CONNECTION Set the connection to the server object
with the specified connection name.

SHOW Show the server object definition.

SHOW SETTINGS Show the current configuration file.

SHOW VERSION Show the version of the SQLSRV_
MANAGE management client.

SHUT[DOWN] Shut down the current server object.

START Start the server, including all
automatically started dispatcher and
executor processes for the current server
object.

Service ALTER Change a service object definition in the
configuration file and dynamically change
selected attributes for a running service.

COPY Create a new service object and add the
definition to the configuration file,
copying the attributes from the definition
of an existing service.

CREATE Create a service object and add the
definition to the configuration file.

Table 7–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a
Command

Object Command Description

How SQLSRV_MANAGE Commands Work

Management Commands 7-7

Table 7–2 describes the SQLSRV_MANAGE environment commands and switches.

DROP Delete a service object definition from the
configuration file for an inactive service.

EXTRACT Extract the definitions for services and
write them to a SQL/Services command
script.

GRANT USE ON Grant the USE privilege descriptor for a
service object to a user name or identifier.

KILL EXECUTOR Kill an executor process.

REVOKE USE ON Revoke the USE privilege descriptor for a
service object from a user name or
identifier.

SHOW CLIENTS Show the active users of a service.

SHOW Show a service object definition including
the USE privilege descriptor for a service
object for all user names and identifiers.

SHUT[DOWN] Shut down the specified service object.

START Start the specified service object.

Table 7–2 SQLSRV_MANAGE Environment Commands and Switches

Command or Switch Description

–input switch Specify the name of an input file from which the SQLSRV_MANAGE
utility reads input.

–output switch Specify the name of an output file to which the SQLSRV_MANAGE
utility writes output.

@ Run an indirect command file.

CLOSE Close an output file.

CONNECT [TO] SERVER Connect to a running server.

DISCONNECT SERVER Disconnect from a running server.

EXIT Exit the SQLSRV_MANAGE utility.

Table 7–1 Oracle SQL/Services Objects and How Each Object Is Acted Upon by a
Command

Object Command Description

How SQLSRV_MANAGE Commands Work

7-8 Oracle SQL/Services Server Configuration Guide

HELP Get help on a topic.

OPEN Open an output file.

SET CONFIG_FILE Set the current configuration so that subsequent commands can modify
a server's configuration file.

SET CONFIRM Require confirmation for certain management operations.

SET CONNECTION Change the current connection to a server to another connection from
among a group of established connections.

SET OUTPUT Direct output to the default device when enabled.

SET VERIFY Display command file input on the default output device as it is read.

SHOW CONNECT[ION] Show information about the current server object and all of the active
connections that SQLSRV_MANAGE has to servers.

SHOW SETTINGS Show information about the verify and output settings.

SHOW VERSION Show the version of the SQLSRV_MANAGE management client.

Table 7–2 SQLSRV_MANAGE Environment Commands and Switches

Command or Switch Description

–input Switch

Management Commands 7-9

–input Switch

Specifies the name of the input file from which the SQLSRV_MANAGE utility reads input.

Format

Arguments

<file-spec>
The input file name. The file name is expressed either as an identifier or as a quoted string.

Usage Notes
■ –i and –in are synonyms for the –input command.

■ The SQLSRV_MANAGE utility does not prompt for input, and exits when the specified
file is completely read.

■ You cannot enter the –input switch at the SQLSRV prompt.

Examples
Example 1: Specify an input file from which the SQLSRV_MANAGE utility reads input.

$ sqlsrv_manage :== SYSSYSTEM:sqlsrv_manage73
$ sqlsrv_manage -input sqlsrv_create.sqs

–i[n[put]] <file-spec>

<file-spec> ::=<identifier> or <quoted-string>

–output Switch

7-10 Oracle SQL/Services Server Configuration Guide

–output Switch

Specifies the name of the output file to which the SQLSRV_MANAGE utility writes output.

Format

Arguments

<file-spec>
The output file name. The file name is expressed either as an identifier or as a quoted string.

Usage Notes
■ –o and –out are synonyms for the –output switch.

■ The SQLSRV_MANAGE utility writes all output to the specified file until a CLOSE or
OPEN command is executed. If a CLOSE command is issued, subsequent output is sent
to standard output. If an OPEN command is issued, output is sent to the new output file.

■ You cannot enter the –output switch at the SQLSRV prompt.

Examples
Example 1: Specify an output file to which the SQLSRV_MANAGE utility writes output.

$ sqlsrv_manage -output out_testfile

–o[ut[put]] <file-spec>

<file-spec> ::=<identifier> or <quoted-string>

@ Command

Management Commands 7-11

@ Command

Runs an indirect command file in the SQLSRV_MANAGE environment.

Format

Arguments

<file-spec>
The indirect command file name. The file name is expressed as either an identifier or as a
quoted string.

Usage Notes
When executed, the indirect command file is opened and input is taken from that file until
either a syntax error occurs or there are no more characters in the file.

Examples
Example 1: Run an indirect script named test_file.sqs. Use a quoted string if it is important
to preserve case.

SQLSRV> @ 'test_file.sqs';

@ <file-spec>;

<file-spec> ::=<identifier> or <quoted-string>

ALTER DISPATCHER Command

7-12 Oracle SQL/Services Server Configuration Guide

ALTER DISPATCHER Command

Changes a dispatcher object definition for the current server only. Changes to a dispatcher
definition are stored in the configuration file. Offline dispatcher changes do not affect a
running server. Online dispatcher changes affect the running server if the change is to a
dynamic attribute; otherwise, the dispatcher must be shut down and started again or the
server restarted for dispatcher changes to take effect.

Format

ALTER DISPATCHER <disp-name>

–>[AUTOSTART { ON | OFF}]

–>[MAX_CONNECTIONS <number>]

–>[IDLE_USER_TIMEOUT <number-in-seconds>]

–>[MAX_CLIENT_BUFFER_SIZE <number>]

–>[DUMP PATH <directory-specification>]

–>[LOG PATH <directory-specification>]

–>[<network-port-spec>] ...;

<disp-name> ::=<identifier>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

 PROTOCOL {NATIVE | OCI | SQLSERVICES | JDBC}

<transport-spec> ::={ <tcp-spec> | <decnet-spec>

 | <sqlnet-spec> }

<tcp-spec> ::=TCPIP [PORT_ID <number>]

<decnet-spec> ::=DECNET [OBJECT {<number> | <identifier>
 | <quoted-string> }]

<sqlnet-spec> ::=SQLNET LISTENER_NAME { <identifier>
 | <quoted-string> }

ALTER DISPATCHER Command

Management Commands 7-13

Arguments

<disp-name>
The dispatcher name. The dispatcher name is expressed as an identifier.

AUTOSTART {ON | OFF}
Determines whether or not the dispatcher object automatically starts up when you issue a
START SERVER or RESTART SERVER command. If the argument is specified as ON, the
dispatcher object automatically starts when you issue a START SERVER or RESTART
SERVER command. The default is ON.

MAX_CONNECTIONS <number>
Specifies the maximum number of network connections from clients that the dispatcher
accepts. The maximum number of connections is expressed as an integer. The default is 100.
There is no upper limit other than the operating system configuration, the network
configuration, and the server’s shared memory.

IDLE_USER_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that a client (user) can remain idle before the
dispatcher disconnects the client. The <number-in-seconds> value is expressed as an integer.
The default value is 0, which displays as "<none>" in a SHOW DISPATCHER command
and means that the idle timeout value is infinite. A value specified other than 0 is rounded to
the next higher multiple of 90 seconds. This is a dynamic attribute that, when changed, takes
effect immediately.

MAX_CLIENT_BUFFER_SIZE <number>
Specifies the maximum client buffer size permitted. The maximum allowed client buffer size
is 32,000 bytes. If a client application specifies a buffer size larger than the maximum, then
the Oracle SQL/Services client API adjusts the buffer size to the maximum size specified for
the dispatcher. The default and minimum value allowed for the MAX_CLIENT_BUFFER_
SIZE attribute is 5000 bytes.

DUMP PATH <directory-specification>
Specifies a directory name for bugcheck dump files. The default directory is
SYS$MANAGER.

LOG PATH <directory-specification>
Specifies a directory name for log files. The default directory is SYS$MANAGER.

If you specify NOLOG instead of a directory name for the LOG PATH argument, no log file
is written.

ALTER DISPATCHER Command

7-14 Oracle SQL/Services Server Configuration Guide

<network-port-spec>
Lists network ports that the dispatcher should use for communications with clients. The
network port specification is any one or any combination of the following: TCP/IP, DECnet,
and Oracle Net. The default port ID for TCP/IP is 118, and the default DECnet object is 81.
If the network port is not specified, the dispatcher will use the default ports. The
<network-port-spec> argument can be repeated to include multiple OCI Services for Oracle
Rdb listener names. The maximum number of times that the <network-port-spec> argument
can be specified in the ALTER DISPATCHER command is five.

This argument also determines the message protocol that each dispatcher network port can
support. A dispatcher network port can support only one message protocol. Specify a
message protocol that matches the type of client you want a dispatcher network port to
support:

■ NATIVE

Oracle RMU Parallel Backup clients

■ OCI

Oracle clients using the Oracle Call Interface (OCI) or Oracle Enterprise Manager
clients

■ SQLSERVICES

Oracle SQL/Services clients using the Oracle ODBC Driver for Rdb or other clients
using the Oracle SQL/Services client API

■ JDBC

JDBC for Oracle Rdb clients

Note: Ensure that you have a dispatcher network port defined with a
dispatcher message protocol that supports each service API you want to
use. For example, if you define a service that supports the OCI API and
another service that supports the SQLSERVICES API, you must define at
least one dispatcher network port that supports the OCI dispatcher
message protocol and the Oracle Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

ALTER DISPATCHER Command

Management Commands 7-15

Usage Notes
■ In general, any specified clauses in the ALTER DISPATCHER definition replace the

specification of items in the previous dispatcher definition. That is, if a clause is
specified in the ALTER DISPATCHER command, then the specification of items for
that clause is changed in the definition. If no clause is specified, the specification of
items remains unchanged for that clause.

■ If a network port is altered, the entire network port specification is replaced. Thus, you
can add a network port to the existing list with the ALTER DISPATCHER command,
but you must respecify all other network port specifications to retain them in the
configuration file. The protocol must also be specified or it will default to the
SQLSERVICES protocol. If a dispatcher defined with the SQLSERVICES protocol is
accessed from an OCI client, the connect attempt fails and the following errors are
logged in the dispatcher log file:

---EVENT BEG: EVENT_LOG ------------------------ Thu Jul 17 11:30:34.120 2008---
%SQLSRV-I-EVENT_LOG, event logged at line 889 in file SRVUTL.C;1
%SQLSRV-F-INTERR, Internal error -2007 in Oracle SQL/Services dispatcher version
V7.3-010 at line 1917 in module SRVPRSMS
%SQLSRV-E-ERROR_TEXT, Error text: invalid packet ID tag 1 or data type 6 message
data 04050601 flag 0
---EVENT END: EVENT_LOG ------------------------ Thu Jul 17 11:30:34.130 2008---

---EVENT BEG: EVENT_LOG ------------------------ Thu Jul 17 11:30:34.130 2008---
%SQLSRV-I-EVENT_LOG, event logged at line 1086 in file MSG_COM_SQS.C;1
%SQLSRV-E-SQSMSGERROR, Oracle SQL/Services MSG-layer error, client:
%SQLSRV-E-SQSBADPKTHDR, Bad Oracle SQL/Services packet header
---EVENT END: EVENT_LOG ------------------------ Thu Jul 17 11:30:34.140 2008---

■ To use the Oracle Net transport option, specify the Oracle Net transport option as
<sqlnet-spec> in the <transport-spec> argument and specify the OCI Services for
Oracle Rdb listener name as its <identifier> argument.

■ The word LISTENER is a synonym for the keyword LISTENER_NAME.

■ SQLSRV_MANAGE lets you create two or more dispatchers listening on the same port
ID or object, but only the first dispatcher with a unique port ID or object is allowed to
start. If you attempt to start a second dispatcher listening on the same port ID or object,
it fails to start if it cannot listen on any of the specified network ports.

■ Oracle recommends that you create a log file for troubleshooting purposes unless you
have a problem with excessive I/O entries in the log file.

ALTER DISPATCHER Command

7-16 Oracle SQL/Services Server Configuration Guide

■ If values are assigned to existing logicals SQLSRV_DISP_LOGPATH and SQLSRV_
DISP_DUMPPATH, they override log path and dump path values specified by the LOG
PATH and DUMP PATH arguments.

Examples
Example 1: Dynamically alter the idle user timeout value.

SQLSRV> ALTER DISPATCHER tcpip_disp IDLE_USER_TIMEOUT 180;

Example 2: Alter a dispatcher to use the OCI Services for Oracle Rdb protocol. This
command removes all other ports for this dispatcher. You must respecify all existing
network ports to prevent the loss of previously defined network ports for this dispatcher.

SQLSRV> ALTER DISPATCHER OCI_disp NETWORK_PORT SQLNET LISTENER_NAME
"OCI-LISTENER" PROTOCOL OCI;
%SQLSRV-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> SHUTDOWN DISPATCHER OCI_disp;
SQLSRV> START DISPATCHER OCI_disp;

Example 3: Specifying log path and dump path.

SQLSRV> ALTER DISPATCHER SQLSRV_DISP1 LOG PATH ’USER1:[SQLSRV_TEST1.AAA]’
_SQLSRV> DUMP PATH ’USER1:[SQLSRV_TEST2.BBB]’;
%SQLSRV-S-ALTER_RESTART, Restart object to have altered settings take effect

ALTER SERVER Command

Management Commands 7-17

ALTER SERVER Command

Changes a server object definition. Changes to a server definition are stored in the
configuration file. Offline server changes do not affect a running server. Online server
changes affect the running server if the change is to a dynamic attribute; otherwise, the
server must be shut down and started again or restarted for changes to take effect.

Format

Arguments

MAX_SHARED_MEMORY_SIZE <number>
Specifies the size in kilobytes of the maximum shared memory the server should use. If the
value is changed, that value becomes the maximum shared memory size when the monitor
starts up. The default value is 8000 kilobytes or 8 megabytes. Oracle SQL/Services allocates
the maximum shared memory size when the monitor starts up.

DUMP PATH <directory-specification>
Specifies a directory name for bugcheck dump files. The default directory is
SYS$MANAGER.

ALTER SERVER

–>[MAX_SHARED_MEMORY_SIZE <number>]

–>[DUMP_PATH <directory-specification>]

–>[PROCESS_STARTUP_TIMEOUT <number-in-seconds>]

–>[PROCESS_SHUTDOWN_TIMEOUT <number-in-seconds>]

–>[<network-port-spec>]...;

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [PORT_ID <number>]

<decnet-spec> ::=DECNET [OBJECT {<number> | <identifier>
 | <quoted-string> }]

ALTER SERVER Command

7-18 Oracle SQL/Services Server Configuration Guide

PROCESS_STARTUP_TIMEOUT <number-in-seconds>
Specifies the length of time in seconds to wait before deciding that a dispatcher or executor
process is not going to start up before the monitor takes action and terminates the process.
The default value is 0 seconds, which means that no process startup timer value is set. This
is a dynamic attribute that, when changed, takes effect immediately. See the Usage Notes for
more information.

PROCESS_SHUTDOWN_TIMEOUT <number-in-seconds>
Specifies the length of time to wait in seconds before deciding that a dispatcher or executor
process is not going to shut down before the monitor takes action and terminates the process.
The default value is 0 seconds, which means that no process shutdown timer value is set; the
process shutdown timer value is infinite. This is a dynamic attribute that, when changed,
takes effect immediately. See the Usage Notes for more information.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services SQLSRV_MANAGE clients. The network port specification is TCP/IP or
DECnet. The default port ID for TCP/IP is 2199 and the default DECnet object name is
SQLSRV_SERVER. If no network ports are specified, the monitor of the server uses the
default ports. The maximum number of times that the <network-port-spec> argument can be
specified in the ALTER SERVER command is five. If a network port is altered, the entire
network port specification is replaced.

DECnet or TCP/IP must be available on the node for which the ALTER SERVER definition
is used. If none of these are available, then the server will not run.

Usage Notes
■ The server definition can be altered online using the CONNECT [TO] SERVER

command or offline if you select its configuration file using the SET CONFIG_FILE
command. Online changes for dynamic attributes take effect immediately. When you
make an online change of a nondynamic attribute, a status message is returned
indicating that you must restart the server to have altered settings take effect. Oracle
recommends that you immediately restart the running server after you complete your
management session to ensure the overall consistency of the Oracle SQL/Services
server. (To restart the running server, issue the RESTART SERVER command.)

■ In general, any specified clauses in the ALTER SERVER definition replace the
specification of items in the previous server definition. That is, if a clause is specified in
the ALTER SERVER command, then the specification of items for that clause is
changed in the definition. If no clause is specified, the specification of items remains
unchanged for that clause.

ALTER SERVER Command

Management Commands 7-19

■ If you want to set process startup and shutdown timers, follow these guidelines:

– Usually dispatcher and executor processes start up and shut down in a reasonable
period of time. Only during an unusual situation would you need to specify nonzero
values for the PROCESS_STARTUP_TIMEOUT and PROCESS_SHUTDOWN_
TIMEOUT arguments.

– In heavily loaded systems, it often takes longer for a particular operation to
complete. If either process startup or process shutdown is set to a value other than
zero and fails for no apparent reason (you have checked other possible causes and
have not isolated the problem), set a higher value for the PROCESS_STARTUP_
TIMEOUT argument or the PROCESS_SHUTDOWN_TIMEOUT argument to see
if that solves the problem.

■ The SQLSRV_MANAGE utility attempts to connect to the monitor of the server using
the default TCP/IP or DECnet ports. If you change the network port of the server, you
must also specify that port explicitly when connecting from the SQLSRV_MANAGE
utility.

■ If a network port is altered, the entire network port specification is replaced. Thus, you
can add a network port to the existing list with the ALTER SERVER command, but you
must respecify all other network port specifications to retain them in the configuration
file.

■ If the same port ID is specified more than once, an error is returned.

Examples
Example 1: Alter a server definition online.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;
Disconnected from Server
SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

Example 2: Alter a server definition offline.

SQLSRV> SET CONFIG_FILE ‘my_config_file’;
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 10000;
SQLSRV> RESTART SERVER;

ALTER SERVER Command

7-20 Oracle SQL/Services Server Configuration Guide

Connecting to server ...
Connected

ALTER SERVICE Command

Management Commands 7-21

ALTER SERVICE Command

Changes a service object definition for the current server only. Changes to a service
definition are stored in the configuration file. Offline service changes do not affect a running
server. Online service changes affect the running server if the change is to a dynamic
attribute; otherwise, the service must be shut down and started again or the server restarted
for service changes to take effect.

Format

ALTER SERVICE <service-name>

–> [PROTOCOL { OCI | RMU | SQLSERVICES }]

–>[AUTOSTART { ON | OFF }]

–>[DEFAULT_CONNECT_USERNAME { <quoted-string> | <identifier> }]

–>[DEFAULT_CONNECT_PASSWORD <quoted-string>]

–>[REUSE [SCOPE] [IS] { SESSION | TRANSACTION }]

–>[SQL_VERSION { <version-number> | S[TANDARD] }]

–>[PROCESS_INITIALIZATION { <quoted-string> | LOGIN }]

–>[ATTACH <quoted-string>]

–>OWNER { <quoted-string> | <identifier> }

–>[OWNER PASSWORD <quoted-string>]

–>[SCHEMA <quoted-string>]

–>[SQL_INIT_FILE <quoted-string>]

–>[DATABASE_AUTHORIZATION { [SERVICE] OWNER

 | [CONNECT] USERNAME }]

–>[APPLICATION_TRANSACTION_USAGE { SERIAL | CONCURRENT }]

–>[IDLE_USER_TIMEOUT <number-in-seconds>]

–>[IDLE_EXECUTOR_TIMEOUT <number-in-seconds>]

–>[MIN_EXECUTORS <number>]

–>[MAX_EXECUTORS <number>]

ALTER SERVICE Command

7-22 Oracle SQL/Services Server Configuration Guide

Arguments

<service-name>
The service name. The service name is expressed as an identifier.

PROTOCOL {OCI | RMU | SQLSERVICES}
Determines the application programming interface (API) that each service can support. A
service can support only one API. Specify an API that matches the type of client you want a
service to support:

■ OCI

Oracle or third-party clients using the Oracle Call Interface (OCI)

■ RMU

Oracle RMU Parallel Backup clients

■ SQLSERVICES

Oracle SQL/Services clients using the Oracle ODBC Driver for Rdb or other clients
using the Oracle SQL/Services client API. This is the default.

AUTOSTART {ON | OFF}
Determines whether or not the service object automatically starts up when you issue a
START SERVER or RESTART SERVER command. If the argument is specified as ON, the
service object automatically starts when you issue a START SERVER or RESTART
SERVER command. The default is ON.

–>[CLIENTS_PER_EXECUTOR <number>] ;

<service-name> ::=<identifier>

Note: Ensure that you have a dispatcher network port defined with a
dispatcher message protocol that supports each service API you want to
use. For example, if you define a service that supports the OCI API and
another service that supports the SQLSERVICES API, you must define at
least one dispatcher network port that supports the OCI dispatcher
message protocol and the Oracle Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

ALTER SERVICE Command

Management Commands 7-23

DEFAULT_CONNECT_USERNAME {<quoted-string> | <identifier>}
Specifies the user name as a quoted-string or identifier under which unknown users will be
allowed to connect to the service. This argument can be applied only to database services
that support the SQLSERVICES protocol. See Section 2.7.1 and Section 2.8 for more
information about using this argument. This is a dynamic attribute that, when changed, takes
effect immediately.

DEFAULT_CONNECT_PASSWORD <quoted-string>
Specifies the password associated with the connect user name as a quoted string.

REUSE SCOPE IS {SESSION | TRANSACTION}
■ SESSION

An executor for a session reusable service processes requests for one client session at a
time. A session begins when a client connects to the service and the connection is bound
to an executor process. A session ends when a client disconnects from the service and
the connection is unbound from the executor process. This is the default.

■ TRANSACTION

An executor for a transaction reusable service processes requests for one transaction at a
time; however, it supports many concurrent client sessions. A transaction begins when a
client issues a SQL statement that either implicitly or explicitly starts a transaction. A
transaction ends when a client issues a successful SQL COMMIT or ROLLBACK
statement. The REUSE SCOPE IS TRANSACTION argument may be applied only to
database services that use the SQLSERVICES protocol.

See Section 2.6 for more information.

SQL_VERSION {<version-number>| STANDARD}
Specifies the version of SQL to use for the service. It is expressed as either a version number
data type (for example, 7.1) for selecting a version of SQL in an Oracle Rdb multiversion
environment or by the keyword STANDARD (or S) for running a standard version of SQL
in an Oracle Rdb single version environment. Either value is used as the first parameter
argument for the Oracle Rdb RDB$SETVER command procedure when it runs, as described
in the installation information. The version number resolves to an "n.n" parameter argument
and the word STANDARD or S resolves to an S parameter argument. When no value is
specified, the default is the keyword STANDARD. The Oracle Rdb standard configuration
is obsolete and Oracle does not recommend that you use it.

PROCESS_INITIALIZATION {<quoted-string> | LOGIN}
The process initialization file can be either a special process initialization file specified as a
<quoted-string> or the keyword LOGIN. The process initialization or login file is used to

ALTER SERVICE Command

7-24 Oracle SQL/Services Server Configuration Guide

help define some of the attributes of the executor process for this service. This file is
executed once for each executor, during executor startup.

When LOGIN is specified for the process initialization file, Oracle SQL/Services uses the
file specified by the LGICMD qualifier for the service owner in AUTHORIZE as returned
by the OpenVMS SYS$GETUAI system service. If you specify process initialization as
LOGIN, make sure LGICMD qualifier is defined for the service owner account.

If this file specification is not fully qualified, the file will not be found and the executor will
fail.

If no process initialization argument is specified, the default is not to run any initialization
file. Maintenance is easier if a service is always created with a process initialization file. If
no commands are initially required, the file can be empty. If you need to add process
initialization commands later, you only need to modify this file and add the commands.
When new executor processes are created after these changes, they will use these new
commands. Otherwise, the service must be stopped and restarted in order to activate a new
process initialization file and requires that all connections be stopped, which is not always
easy and acceptable.

ATTACH <quoted-string>
The SQL ATTACH statement.

If you do not specify a SQL ATTACH statement, you create a universal service that is not
preattached to a specific database.

If you specify a SQL ATTACH statement, you create a database service that is preattached
to the specified database.

This argument is a single-quoted string and is exactly the same format as the
attach-string-literal used in dynamic SQL. The FILENAME keyword in this string cannot be
abbreviated.

See the Oracle Rdb SQL Reference Manual for more information on the ATTACH
statement.

OWNER {<quoted-string | <identifier>}
Specifies the user name of the owner of the service. Every service has an owner name. The
owner name must be specified as a quoted string or an identifier; otherwise, an error
message is returned.

If the service is a database service, then the service owner’s privileges are used for access
checks when an executor attaches to the specified database. See Section 2.6 for more
information on database services.

ALTER SERVICE Command

Management Commands 7-25

If the database access authorization is by service owner, then the service owner’s privileges
are used for all database access operations. See the DATABASE_AUTHORIZATION
argument, later in this argument list, for more information on database access authorization.

Executors are created with the privileges and quotas from the account of the service owner.
See Section 2.10.1 for more information.

OWNER PASSWORD <quoted-string>
Specifies the password for the owner of the service.

SCHEMA <quoted-string>
Provides a way to specify the default schema that you want to use when an executor attaches
to a multischema database.

If a schema name is not specified in the service definition, the schema name defaults to the
service owner account name if the database access authorization is service owner, or to the
connect user name if the database access authorization is connect user name (see Section 2.9).

The schema argument allows the default to be overridden. This argument is ignored if it is
supplied on a service that supports OCI connections.

SQL_INIT_FILE <quoted-string>
Specifies a file containing SQL statements that tailor the SQL environment for a client
connection. For example, you can set the SQL dialect and default character set by using a
SQL initialization file. The statements in a SQL initialization file are executed every time a
client connects to a service.

If no SQL initialization argument is specified, the default is not to run any initialization file.
Maintenance is easier if a service is always created with a SQL initialization file. If no SQL
statements are initially required, the file can be empty. If you need to add SQL statements
later, you only need to modify this file and add the statements. When new executor
processes are created after these changes, they will use these new statements. Otherwise, the
service must be stopped and restarted in order to activate a new SQL initialization file and
requires that all connections be stopped, which is not always easy and acceptable.

 See Section 7.1 for more information about using a SQL initialization file.

DATABASE_AUTHORIZATION {[SERVICE] OWNER | [CONNECT] USERNAME}
Determines the user name under which access to the database is made. The default is
CONNECT USERNAME.

■ SERVICE OWNER

For a database service, all access to the database is made by using the service owner
user name. This option is not supported by OCI Services for Oracle Rdb.

ALTER SERVICE Command

7-26 Oracle SQL/Services Server Configuration Guide

■ CONNECT USERNAME

Access to the database is made by using the client-specified user name, the DECnet
proxy user name, or the user name specified in the DEFAULT_CONNECT_
USERNAME argument.

For more information on database access authorization, see Section 2.7 and Section 2.8.

APPLICATION_TRANSACTION_USAGE {SERIAL | CONCURRENT}
Applies only to transaction reusable database services. Some applications make only a single
connection to a service to perform their work, while other applications make multiple
connections to the same service. Connections created to transaction reusable database
services are tied to the same executor for the life of the session.

If a client application makes multiple connections to a service and these are assigned to the
same executor, a deadlock occurs if the client application attempts to start a new transaction
on one connection before ending an existing transaction on another connection. When you
specify the CONCURRENT keyword, Oracle SQL/Services ensures that multiple
connections from the same client application on the same node are never assigned to the
same executor process.

When you specify the SERIAL keyword, Oracle SQL/Services assumes that client
applications do not start concurrent transactions on multiple connections. Oracle
SQL/Services assigns connections to executor processes on a least busy basis (the executor
process with the fewest client connections already assigned). Thus, if a client application
made more than one connection to the same service and the keyword SERIAL was
specified, the second connection may or may not have gone to the same executor process as
the first connection, depending on how many connections were assigned to that executor
process versus how many connections were assigned to the other executor processes for that
service.

The default for the APPLICATION_TRANSACTION_USAGE argument is SERIAL. This
is a dynamic attribute that, when changed, takes effect immediately.

Some applications, such as Microsoft Access, make multiple connections to the same service
to perform their work and require that you specify the CONCURRENT keyword. If set to
CONCURRENT, Oracle SQL/Services considers the node, user name, and application name
of the client when choosing an executor to which to tie the connection and ensures that
multiple connections from the same client application are never assigned to the same
executor process.

This argument is used only by SQLSERVICES services.

ALTER SERVICE Command

Management Commands 7-27

IDLE_USER_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that a client (user) can remain idle before the server
disconnects the client. This value is expressed as an integer. The default value is 0, which
displays as "<none>" in a SHOW SERVICE command and means that the idle timeout value
is infinite. A specified value other than 0 is rounded to the next higher multiple of 90
seconds. This is a dynamic attribute that, when changed, takes effect immediately.

IDLE_EXECUTOR_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that an executor process for a session reusable
service can remain inactive (not bound to a client connection) before being deleted. The
value is expressed as an integer. The default timeout value is 1800 seconds (30 minutes).
This is a dynamic attribute that, when changed, takes effect immediately.

MIN_EXECUTORS <number>
Sets the minimum value to which the number of executor processes is allowed to decrease.
This is also the number of executor processes started at startup using a START SERVICE or
START SERVER command. The value is expressed as an integer. The default minimum
number of executors for a session reusable service is 0. A service with MIN_EXECUTORS
set to 0 will never show the Starting state when the service starts up. The state will either
display as Running or Failed. This is a dynamic attribute that, when changed, takes effect
immediately.

If you use transaction reusable executors, you must set the value for the minimum number of
executors so that it is equal to the value for the maximum number of executors. The default
value is 1 for a transaction reusable service.

For a database service, if MIN_EXECUTORS is not set to 0, you will always have an
executor attached to the database. Therefore, you should shut down the service before
shutting down the database.

MAX_EXECUTORS <number>
Sets the maximum value to which the number of executor processes is allowed to increase.
The value is expressed as an integer. The default maximum number of executors is 1. This is
a dynamic attribute that, when changed, takes effect immediately.

If you use transaction reusable executors, you must set the value for the minimum number of
executors so that it is equal to the value for the maximum number of executors. The default
value is 1 for a transaction reusable service.

CLIENTS_PER_EXECUTOR <number>
Specifies the number of clients allowed per executor. The number of clients allowed is
dependent upon whether the service is session reusable or transaction reusable. The default
number of clients per executor for session reusability is 1 and cannot be greater than 1. The

ALTER SERVICE Command

7-28 Oracle SQL/Services Server Configuration Guide

default number of clients per executor for transaction reusability is 1 but can be greater than
1. The CLIENTS_PER_EXECUTOR value is expressed as an integer. This is a dynamic
attribute that, when changed, takes effect immediately.

Usage Notes
■ When a service other than an OCI service is created, only a privileged user with

SYSPRV privilege is authorized to use the service. You must grant privileges to any
other users.

■ When a client connects to a server, the Oracle SQL/Services executor does not execute
the LOGIN.COM DCL command procedure located in the client user name’s default
directory. Therefore, client applications should not use logical names defined in
LOGIN.COM login procedures. Process logical names for Oracle SQL/Services
executors can be defined only by a service’s process initialization file.

■ Many popular desktop tools make two connections to the Oracle SQL/Services server to
do their work. For example, MS Access makes one connection initially and returns the
list of tables. When the first request to reference a table is made, MS Access makes
another connection to the Oracle SQL/Services server. If no executor is available, MS
Access returns an error and suggests that you have a problem with your disk or network.
Oracle Corporation recommends that you configure maximum executors of at least 2.

■ Values specified for parameters in an ALTER SERVICE command replace values
defined in the configuration file and in the running server. However, changes to the
running server are not immediate and are as described in the following items:

– If the value for the minimum number of executors for a session reusable service is
decreased, the actual number of executor processes does not decrease until
individual executors time out using their current timeout settings.

– If the value for the minimum number of executors for a transaction reusable service
is decreased, the actual number of executor processes does not decrease until the
service is shut down and started again.

– If the value for the maximum number of executors for a session reusable service is
decreased, the actual number of executor processes does not decrease until
individual executors time out using their current timeout settings.

– If the value for the maximum number of executors for a transaction reusable
service is decreased, the actual number of executor processes does not decrease
until the service is shut down and started again.

– If the value for the maximum number of executors is increased, newly created
executor processes succeed where they might have previously reached the limit.

ALTER SERVICE Command

Management Commands 7-29

– If the value for the minimum number of executors is increased, new executors are
created until the new minimum number of executors is active.

– If the value for the idle executor timeout parameter is changed, the new idle
timeout value is used beginning with the next timeout cycle of a given executor.

Examples
Example 1: Alter a transaction reusable database service online to increase the number of
clients per executor to 20 and raise the minimum and maximum number of executors to 10.
Because these attributes are dynamic attributes, the service need not be shut down and
started up again.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVICE database4
_SQLSRV> MIN_EXECUTORS 10
_SQLSRV> MAX_EXECUTORS 10
_SQLSRV> CLIENTS_PER_EXECUTOR 20;

Example 2: Alter a service online to change the SQL_INIT_FILE attribute. Because this
attribute is not a dynamic attribute, the service must be restarted for the change to take
effect.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVICE database4
_SQLSRV> SQL_INIT_FILE 'sql710';
%DBS-S-ALTER_RESTART, Restart object to have altered settings take affect
SQLSRV> SHUTDOWN SERVICE database4;
SQLSRV> START SERVICE database4;

CLOSE Command

7-30 Oracle SQL/Services Server Configuration Guide

CLOSE Command

Closes an output file in the SQLSRV_MANAGE environment.

Format

Usage Notes
Upon closing an output file, output is directed to standard output. An output file can be
opened by use of the SQLSRV_MANAGE OPEN command.

Examples
Example 1: Close an output file.

SQLSRV> CLOSE;

CLOSE;

CONNECT TO SERVER Command

Management Commands 7-31

CONNECT TO SERVER Command

Connects to a server online so that you can begin managing it.

Format

Arguments

<connect-name>
The connection name. The identifier that uniquely identifies the connection to a server on a
particular node. The connection name is most useful when connecting to more than one
server at a time. If you are going to manage only one server, a connection name is not
needed. Whenever you create a new connection, it becomes the current connection. To
switch to a server that you want to manage among those that you are connected to, use the
SET CONNECTION command and specify the connection name of the server.

The connection name is expressed as an identifier.

USER <user-name> USING <password>
Specifies the user name and password of an account that is authorized to manage the server.
The user name and password are expressed as either quoted strings or identifiers.

CONNECT [TO] SERVER [AS <connect-name>]

–>[USER { <user-name> USING { <password>]

–>[NODE { <quoted-string> | <identifier> }]

–>[<network-port-spec>];

<connect-name> ::=<identifier>

<user-name> ::={ <quoted-string> | <identifier> }

<password> ::=<quoted-string>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [PORT_ID <number>]

<decnet-spec> ::=DECNET [OBJECT { <number> | <identifier>
 | <quoted-string> }]

CONNECT TO SERVER Command

7-32 Oracle SQL/Services Server Configuration Guide

If you are using DECnet or TCP/IP with sufficient privileges to manage a server on the local
node, you do not need to enter a user name and password when connecting to the server on a
local node. See the Usage Notes for more information on connecting to a server on a local
node without specifying a user name and password.

NODE <quoted-string | identifier>
The node where the server is located. By default the node name is the local host name. The
node-name is expressed as a quoted string or identifier. It can be used to connect to a remote
server.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services SQLSRV_MANAGE client. The <network-port-spec> argument is TCPIP or
DECNET. The network port specification defaults to TCP/IP with a default port ID of 2199.
The default DECnet object is named SQLSRV_SERVER.

Usage Notes
■ You must either connect to a server before you can begin managing it online or select

the configuration file of the server (SET CONFIG_FILE command) to manage it
offline.

■ When you establish a new connection to a server using the CONNECT TO SERVER
command, the new connection becomes the current connection. All subsequent online
system management commands operate on the current connection. Use the SET
CONNECT command to switch between connections to multiple servers. Use the
DISCONNECT command to disconnect from a server.

■ A local user can connect to a server using DECnet without specifying a user name or
password. You must have either the SYSPRV or BYPASS privilege to omit the user
name and password when connecting to a server using TCP/IP.

■ If you are connecting to a local server using the configuration file you currently have
open, SQLSRV_MANAGE attempts to connect to any network port defined for the
server. It tries each network port in a round-robin fashion up to three times each to
establish a management connection. The network port used for the management
connection is the first one that is successful.

Examples
Example 1: Connect to a server on the local node as a privileged local user using TCP/IP.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

CONNECT TO SERVER Command

Management Commands 7-33

Example 2: Connect to a server (user name and password are quoted strings).

SQLSRV> CONNECT SERVER USER 'system' USING 'password';
Connecting to server ...
Connected

COPY SERVICE Command

7-34 Oracle SQL/Services Server Configuration Guide

COPY SERVICE Command

Copies a service object definition from the current server only. The copied service definition
is stored in the configuration file. Specifying an attribute for the service overrides the
existing definition of that attribute in the service being copied.

Format

COPY SERVICE <service-name> FROM_SERVICE <existing-service-name>

–> [PROTOCOL { OCI | RMU | SQLSERVICES }]

–>[AUTOSTART { ON | OFF }]

–>[DEFAULT_CONNECT_USERNAME { <quoted-string> | <identifier> }]

–>[DEFAULT_CONNECT_PASSWORD <quoted-string>]

–>[REUSE [SCOPE] [IS] { SESSION | TRANSACTION }]

–>[SQL_VERSION { <version-number> | S[TANDARD] }]

–>[PROCESS_INITIALIZATION { <quoted-string> | LOGIN }]

–>[ATTACH <quoted-string>]

–>OWNER { <quoted-string> | <identifier> }

–>[OWNER PASSWORD <quoted-string>]

–>[SCHEMA <quoted-string>]

–>[SQL_INIT_FILE <quoted-string>]

–>[DATABASE_AUTHORIZATION { [SERVICE] OWNER

 | [CONNECT] USERNAME }]

–>[APPLICATION_TRANSACTION_USAGE { SERIAL | CONCURRENT }]

–>[IDLE_USER_TIMEOUT <number-in-seconds>]

–>[IDLE_EXECUTOR_TIMEOUT <number-in-seconds>]

–>[MIN_EXECUTORS <number>]

–>[MAX_EXECUTORS <number>]

–>[CLIENTS_PER_EXECUTOR <number>] ;

COPY SERVICE Command

Management Commands 7-35

Arguments

<service-name>
The service name. The service name is expressed as an identifier.

<existing-service-name>
The name of the existing service to be copied. The existing service name is expressed as an
identifier.

PROTOCOL {OCI | RMU | SQLSERVICES}
Determines the application programming interface (API) that each service can support. A
service can support only one API. Specify an API that matches the type of client you want a
service to support:

■ OCI

Oracle or third-party clients using the Oracle Call Interface (OCI)

■ RMU

Oracle RMU Parallel Backup clients

■ SQLSERVICES

Oracle SQL/Services clients using the Oracle ODBC Driver for Rdb or other clients
using the Oracle SQL/Services client API. This is the default.

AUTOSTART {ON | OFF}
Determines whether or not the service object automatically starts up when you issue a
START SERVER or RESTART SERVER command. If the argument is specified as ON, the

<service-name> ::=<identifier>

<existing-service-name> ::=<identifier>

Note: Ensure that you have a dispatcher network port defined with a
dispatcher message protocol that supports each service API you want to
use. For example, if you define a service that supports the OCI API and
another service that supports the SQLSERVICES API, you must define at
least one dispatcher network port that supports the OCI dispatcher
message protocol and the Oracle Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

COPY SERVICE Command

7-36 Oracle SQL/Services Server Configuration Guide

service object automatically starts when you issue a START SERVER or RESTART
SERVER command. The default is ON.

DEFAULT_CONNECT_USERNAME {<quoted-string> | <identifier>}
Specifies the user name as a quoted-string or identifier under which unknown users will be
allowed to connect to the service. This argument can be applied only to database services
that support the SQLSERVICES protocol. See Section 2.7.1 and Section 2.8 for more
information about using this argument.

DEFAULT_CONNECT_PASSWORD <quoted-string>
Specifies the password associated with the connect user name as a quoted string.

REUSE SCOPE IS {SESSION | TRANSACTION}
■ SESSION

An executor for a session reusable service processes requests for one client session at a
time. A session begins when a client connects to the service and the connection is bound
to an executor process. A session ends when a client disconnects from the service and
the connection is unbound from the executor process. This is the default.

■ TRANSACTION

An executor for a transaction reusable service processes requests for one transaction at a
time; however, it supports many concurrent client sessions. A transaction begins when a
client issues a SQL statement that either implicitly or explicitly starts a transaction. A
transaction ends when a client issues a successful SQL COMMIT or ROLLBACK
statement. The REUSE SCOPE IS TRANSACTION argument may be applied only to
database services that use the SQLSERVICES protocol.

See Section 2.6 for more information.

SQL_VERSION {<version-number>| STANDARD}
Specifies the version of SQL to use for the service. It is expressed as either a version number
data type (for example, 7.2) for selecting a version of SQL in an Oracle Rdb multiversion
environment or by the keyword STANDARD (or S) for running a standard version of SQL
in an Oracle Rdb single version environment. Either value is used as the first parameter
argument for the Oracle Rdb RDB$SETVER command procedure when it runs, as described
in the installation information. The version number resolves to an "n.n" parameter argument
and the word STANDARD or S resolves to an S parameter argument. When no value is
specified, the default is the keyword STANDARD.

PROCESS_INITIALIZATION {<quoted-string> | LOGIN}
The process initialization file can be either a special process initialization file specified as a
<quoted-string> or the keyword LOGIN. The process initialization or login file is used to

COPY SERVICE Command

Management Commands 7-37

help define some of the attributes of the executor process for this service. This file is
executed once for each executor, during executor startup.

When LOGIN is specified for the process initialization file, Oracle SQL/Services uses the
file specified by the LGICMD qualifier for the service owner in AUTHORIZE as returned
by the OpenVMS SYS$GETUAI system service. If you specify process initialization as
LOGIN, make sure LGICMD qualifier is defined for the service owner account.

If this file specification is not fully qualified, the file will not be found and the executor will
fail.

If no process initialization argument is specified, the default is not to run any initialization
file. Maintenance is easier if a service is always created with a process initialization file. If
no commands are initially required, the file can be empty. If you need to add process
initialization commands later, you only need to modify this file and add the commands.
When new executor processes are created after these changes, they will use these new
commands. Otherwise, the service must be stopped and restarted in order to activate a new
process initialization file and requires that all connections be stopped, which is not always
easy and acceptable.

ATTACH <quoted-string>
The SQL ATTACH statement.

If you do not specify a SQL ATTACH statement, you create a universal service that is not
preattached to a specific database.

If you specify a SQL ATTACH statement, you create a database service that is preattached
to the specified database.

This argument is a single-quoted string and is exactly the same format as the
attach-string-literal used in dynamic SQL. The FILENAME keyword in this string cannot be
abbreviated.

See the Oracle Rdb SQL Reference Manual for more information on the ATTACH
statement.

OWNER {<quoted-string | <identifier>}
Specifies the user name of the owner of the service. Every service has an owner name. The
owner name must be specified as a quoted string or an identifier; otherwise, an error
message is returned.

If the service is a database service, then the service owner’s privileges are used for access
checks when an executor attaches to the specified database. See Section 2.6 for more
information on database services.

COPY SERVICE Command

7-38 Oracle SQL/Services Server Configuration Guide

If the database access authorization is by service owner, then the service owner’s privileges
are used for all database access operations. See the DATABASE_AUTHORIZATION
argument, later in this argument list, for more information on database access authorization.

Executors are created with the privileges and quotas from the account of the service owner.
See Section 2.10.1 for more information.

OWNER PASSWORD <quoted-string>
Specifies the password for the owner of the service.

SCHEMA <quoted-string>
Provides a way to specify the default schema that you want to use when an executor attaches
to a multischema database.

If a schema name is not specified in the service definition, the schema name defaults to the
service owner account name if the database access authorization is service owner, or to the
connect user name if the database access authorization is connect user name (see Section 2.9).

The schema argument allows the default to be overridden. This argument is ignored if it is
supplied on a service that supports OCI connections.

SQL_INIT_FILE <quoted-string>
Specifies a file containing SQL statements that tailor the SQL environment for a client
connection. For example, you can set the SQL dialect and default character set by using a
SQL initialization file. The statements in a SQL initialization file are executed every time a
client connects to a service.

If no SQL initialization argument is specified, the default is not to run any initialization file.
Maintenance is easier if a service is always created with a SQL initialization file. If no SQL
statements are initially required, the file can be empty. If you need to add SQL statements
later, you only need to modify this file and add the statements. When new executor
processes are created after these changes, they will use these new statements. Otherwise, the
service must be stopped and restarted in order to activate a new SQL initialization file and
requires that all connections be stopped, which is not always easy and acceptable.

 See Section 7.1 for more information about using a SQL initialization file.

DATABASE_AUTHORIZATION {[SERVICE] OWNER | [CONNECT] USERNAME}
Determines the user name under which access to the database is made. The default is
CONNECT USERNAME.

■ SERVICE OWNER

For a database service, all access to the database is made by using the service owner
user name. This option is not supported by OCI Services for Oracle Rdb.

COPY SERVICE Command

Management Commands 7-39

■ CONNECT USERNAME

Access to the database is made by using the client-specified user name, the DECnet
proxy user name, or the user name specified in the DEFAULT_CONNECT_
USERNAME argument.

For more information on database access authorization, see Section 2.7 and Section 2.8.

APPLICATION_TRANSACTION_USAGE {SERIAL | CONCURRENT}
Applies only to transaction reusable database services. Some applications make only a single
connection to a service to perform their work, while other applications make multiple
connections to the same service. Connections created to transaction reusable database
services are tied to the same executor for the life of the session.

If a client application makes multiple connections to a service and these are assigned to the
same executor, a deadlock occurs if the client application attempts to start a new transaction
on one connection before ending an existing transaction on another connection. When you
specify the CONCURRENT keyword, Oracle SQL/Services ensures that multiple
connections from the same client application on the same node are never assigned to the
same executor process.

When you specify the SERIAL keyword, Oracle SQL/Services assumes that client
applications do not start concurrent transactions on multiple connections. Oracle
SQL/Services assigns connections to executor processes on a least busy basis (the executor
process with the fewest client connections already assigned). Thus, if a client application
made more than one connection to the same service and the keyword SERIAL was
specified, the second connection may or may not have gone to the same executor process as
the first connection, depending on how many connections were assigned to that executor
process versus how many connections were assigned to the other executor processes for that
service.

The default for the APPLICATION_TRANSACTION_USAGE argument is SERIAL. This
is a dynamic attribute that, when changed, takes effect immediately.

Some applications, such as Microsoft Access, make multiple connections to the same service
to perform their work and require that you specify the CONCURRENT keyword. If set to
CONCURRENT, Oracle SQL/Services considers the node, user name, and application name
of the client when choosing an executor to which to tie the connection and ensures that
multiple connections from the same client application are never assigned to the same
executor process.

This argument is used only by SQLSERVICES services.

COPY SERVICE Command

7-40 Oracle SQL/Services Server Configuration Guide

IDLE_USER_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that a client (user) can remain idle before the server
disconnects the client. This value is expressed as an integer. The default value is 0, which
displays as "<none>" in a SHOW SERVICE command and means that the idle timeout value
is infinite. A specified value other than 0 is rounded to the next higher multiple of 90
seconds.

IDLE_EXECUTOR_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that an executor process for a session reusable
service can remain inactive (not bound to a client connection) before being deleted. The
value is expressed as an integer. The default timeout value is 1800 seconds (30 minutes).

MIN_EXECUTORS <number>
Sets the minimum value to which the number of executor processes is allowed to decrease.
This is also the number of executor processes started at startup using a START SERVICE or
START SERVER command. The value is expressed as an integer. The default minimum
number of executors for a session reusable service is 0. A service with MIN_EXECUTORS
set to 0 will never show the Starting state when the service starts up. The state will either
display as Running or Failed.

If you use transaction reusable executors, you must set the value for the minimum number of
executors equal to the value for the maximum number of executors. The default value is 1
for a transaction reusable service.

For a database service, if MIN_EXECUTORS is not set to 0, you will always have an
executor attached to the database. Therefore, you should shut down the service before
shutting down the database.

MAX_EXECUTORS <number>
Sets the maximum value to which the number of executor processes is allowed to increase.
The value is expressed as an integer. The default maximum number of executors is 1.

If you use transaction reusable executors, you must set the value for the minimum number of
executors equal to the value for the maximum number of executors. The default value is 1
for a transaction reusable service.

CLIENTS_PER_EXECUTOR <number>
Specifies the number of clients allowed per executor. The number of clients allowed is
dependent upon whether the service is session reusable or transaction reusable. The default
number of clients per executor for session reusability is 1 and cannot be greater than 1. The
default number of clients per executor for transaction reusability is 1 but can be greater than
1. The CLIENTS_PER_EXECUTOR value is expressed as an integer.

COPY SERVICE Command

Management Commands 7-41

Usage Notes
■ If you reference a new user with this command, the user name is added to the grant list.

If you define a default connect user name, it is also added to the grant list.

■ When a client connects to a server, the Oracle SQL/Services executor does not execute
the LOGIN.COM DCL command procedure located in the client user name’s default
directory. Therefore, client applications should not use logical names defined in
LOGIN.COM login procedures. Process logical names for Oracle SQL/Services
executors can be defined only by a service’s process initialization file.

■ Many popular desktop tools make two connections to the Oracle SQL/Services server to
do their work. For example, MS Access makes one connection initially and returns the
list of tables. When the first request to reference a table is made, MS Access makes
another connection to the Oracle SQL/Services server. If no executor is available, MS
Access returns an error and suggests that you have a problem with your disk or network.
Oracle Corporation recommends that you configure maximum executors of at least 2.

Examples
Example 1: The following example copies the SA_MCS72 service definition to one named
SA_MCS72 and stores the new service definition in the configuration file. It replaces the
previous values for the OWNER, SQL_VERSION, and IDLE_EXECUTOR_TIMEOUT
arguments.

SQLSRV> SHOW SERVICE sa_mcs72 FULL;
Service SA_MCS72
 State:UNKNOWN
 Owner: smith
 Owner Password: <not specified>
 Protocol: OCI clients
 Default Connect Username: <not specified>
 Default Connect Password: <not specified>
 SQL version: 7.2
 Autostart: off
 Process init: DISK1:[SMITH]proc_init.com
 Attach: ATTACH 'filename DISK1:[SMITH]mf_personnel'
 Schema: <not specified>
 Reuse: SESSION
 Database Authorization: CONNECT USERNAME
 dbsrc file: <not specified>
 SQL init file: DISK1:[SMITH]SA_MCS72.SQL
 Appl Transaction Usage: SERIAL
 Idle User Timeout: <none>
 Idle Exec Timeout: 1800 seconds
 Min Executors: 1
 Max Executors: 10

COPY SERVICE Command

7-42 Oracle SQL/Services Server Configuration Guide

 Clients Per Executor: 1
 Active Clients: 0

Access to service SA_MCS72
 Granted to users:
 PUBLIC PRIVILEGED_USER 'AAA' 'smith'
SQLSRV> COPY SERVICE sa_mcs72_new FROM_SERVICE sa_mcs72
_SQLSRV> OWNER ’new_owner’
_SQLSRV> SQL VERSION 7.2
_SQLSRV> IDLE EXECUTOR TIMEOUT 200;
SQLSRV> SHOW SERVICE sa_mcs72_new FULL;
Service SA_MCS72_NEW
 State: UNKNOWN
 Owner: new_owner
 Owner Password: <not specified>
 Protocol: OCI clients
 Default Connect Username: <not specified>
 Default Connect Password: <not specified>
 SQL version: 7.2
 Autostart: off
 Process init: DISK1:[SMITH]proc_init.com
 Attach: ATTACH 'filename DISK1:[SMITH]mf_personnel'
 Schema: <not specified>
 Reuse: SESSION
 Database Authorization: CONNECT USERNAME
 dbsrc file: <not specified>
 SQL init file: DISK1:[SMITH]SA_MCS72.SQL
 Appl Transaction Usage: SERIAL
 Idle User Timeout: <none>
 Idle Exec Timeout: 200 seconds
 Min Executors: 1
 Max Executors: 10
 Clients Per Executor: 1
 Active Clients: 0

Access to service SA_MCS72_NEW
 Granted to users:
 PUBLIC PRIVILEGED_USER ’new_owner’ 'AAA' 'smith'

CREATE DISPATCHER Command

Management Commands 7-43

CREATE DISPATCHER Command

Creates a dispatcher object definition for the current server. The definition is stored in the
configuration file. New dispatcher objects must be started online to be part of a running
server. Each dispatcher defined must be listening on a unique set of network ports or objects.

Format

CREATE DISPATCHER <disp-name>

–>[AUTOSTART { ON | OFF }]

–>[MAX_CONNECTIONS <number>]

–>[IDLE_USER_TIMEOUT <number-in-seconds>]

–>[MAX_CLIENT_BUFFER_SIZE <number>]

–>[DUMP PATH <directory-specification>]

–>[LOG PATH <directory-specification>]

–>[<network-port-spec>] ... ;

<disp-name> ::=<identifier>

<network-port-spec> ::=NETWORK_PORT <transport-spec>

 PROTOCOL { NATIVE | OCI | SQLSERVICES | JDBC }

<transport-spec> ::={ <tcp-spec> | <decnet-spec>

 | sqlnet-spec> }

<tcp-spec> ::=TCPIP [PORT_ID <number>]

<decnet-spec> ::=DECNET [OBJECT { <number> | <identifier>
 | <quoted-string> }]

<sqlnet-spec> ::=SQLNET LISTENER_NAME { <identifier>
 | <quoted-string> }

CREATE DISPATCHER Command

7-44 Oracle SQL/Services Server Configuration Guide

Arguments

<disp-name>
The dispatcher name. The dispatcher name is expressed as an identifier. The dispatcher
name must be unique.

AUTOSTART {ON | OFF}
Determines whether or not the dispatcher object automatically starts up when you issue a
START SERVER or RESTART SERVER command. If the argument is specified as ON, the
dispatcher object automatically starts when you issue a START SERVER or RESTART
SERVER command. The default is ON.

MAX_CONNECTIONS <number>
Specifies the maximum number of network connections from clients that the dispatcher will
accept. The maximum number of connections is expressed as an integer. The default is 100.
There is no upper limit other than the operating system configuration, the network
configuration, and shared server memory.

IDLE_USER_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that a client (user) can remain idle before the
dispatcher disconnects the client. This value is expressed as an integer. The default value is
0, which displays as "<none>" in a SHOW DISPATCHER command and means that the idle
timeout value is infinite. A specified value other than 0 is rounded to the next higher
multiple of 90 seconds.

MAX_CLIENT_BUFFER_SIZE <number>
Specifies the maximum client buffer size permitted. The maximum allowed client buffer size
is 32,000 bytes. If a client application specifies a buffer size larger than the maximum, then
the Oracle SQL/Services client API adjusts the buffer size to the maximum size specified for
the dispatcher. The default and minimum value allowed for the MAX_CLIENT_BUFFER_
SIZE attribute is 5000 bytes.

DUMP PATH <directory-specification>
Specifies a directory name for bugcheck dump files. The default directory is
SYS$MANAGER.

LOG PATH <directory-specification>
Specifies a directory name for log files. The default directory is SYS$MANAGER.

If you specify NOLOG instead of a directory name for the LOG PATH argument, no log file
is written.

CREATE DISPATCHER Command

Management Commands 7-45

<network-port-spec>
Lists network ports that the dispatcher should use for communications with clients. The
network port specification is any one or any combination of the following: TCP/IP, DECnet,
and Oracle Net. The default port ID for TCP/IP is 118, and the default DECnet object is 81.
If no network port is specified, the dispatcher uses the default ports. The
<network-port-spec> argument can be repeated to include multiple OCI Services for Oracle
Rdb listener names. The maximum number of times that the <network-port-spec> argument
can be specified in the CREATE DISPATCHER command is five.

This argument also determines the message protocol that each dispatcher network port can
support. A dispatcher network port can support only one message protocol. Specify a
message protocol that matches the type of client you want a dispatcher network port to
support:

■ NATIVE

Oracle RMU Parallel Backup clients

■ OCI

Oracle clients using the Oracle Call Interface (OCI) or Oracle server clients

■ SQLSERVICES

Oracle SQL/Services clients using the Oracle ODBC Driver for Rdb or other clients
using the Oracle SQL/Services client API.

■ JDBC

JDBC for Oracle Rdb clients.

Usage Notes
■ To use the Oracle Net transport option, specify the Oracle Net transport option as

<sqlnet-spec> in the <transport-spec> argument and specify the OCI Services for
Oracle Rdb listener name as its <identifier> argument.

Note: Ensure that you have a dispatcher network port defined with a
dispatcher message protocol that supports each service API you want to
use. For example, if you define a service that supports the OCI API and
another service that supports the SQLSERVICES API, you must define at
least one dispatcher network port that supports the OCI dispatcher
message protocol and the Oracle Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

CREATE DISPATCHER Command

7-46 Oracle SQL/Services Server Configuration Guide

■ The word LISTENER is a synonym for the keyword LISTENER_NAME.

■ SQLSRV_MANAGE lets you create two or more dispatchers listening on the same port
ID or object, but only the first dispatcher with a unique port ID or object is allowed to
start. If you attempt to start a second dispatcher listening on the same port ID or object,
it fails to start if it cannot listen on any of the specified network ports.

■ Oracle recommends that you create a log file for troubleshooting purposes unless you
have a problem with excessive I/O entries in the log file.

■ If values are assigned to existing logicals SQLSRV_DISP_LOGPATH and SQLSRV_
DISP_DUMPPATH, they override log path and dump path values specified by the LOG
PATH and DUMP PATH arguments.

Examples
Example 1: Create a dispatcher that uses the TCP/IP protocol.

SQLSRV> CREATE DISPATCHER tcpip_disp NETWORK_PORT TCPIP;
SQLSRV> START DISPATCHER tcpip_disp;

Example 2: Create a dispatcher that uses the SQL*Net protocol.

SQLSRV> CREATE DISPATCHER sqlnet_disp
_SQLSRV> NETWORK_PORT SQLNET LISTENER_NAME LISTENER;
SQLSRV> START DISPATCHER sqlnet_disp;

Example 3: Specifying the NOLOG argument. If you specify NOLOG instead of a directory
name for the LOG PATH argument, no log file is written, for example:

SQLSRV> CREATE DISPATCHER SQLSRV_DISP1 LOG PATH ’NOLOG’
_SQLSRV> DUMP PATH ’SYS$MANAGER’;

CREATE SERVER Command

Management Commands 7-47

CREATE SERVER Command

Creates the server object definition and the configuration file. The definition is stored in the
configuration file. The new server must be started offline.

Format

Arguments

MAX_SHARED_MEMORY_SIZE <number>
Sets the size in kilobytes of the maximum shared memory that the server should use. The
default is 8000 kilobytes (8 megabytes). The server allocates the maximum shared memory
size when the monitor starts up.

DUMP PATH <directory-specification>
Specifies a directory name for bugcheck dump files. The default directory is
SYS$MANAGER.

PROCESS_STARTUP_TIMEOUT <number-in-seconds>
Specifies the length of time to wait before deciding that a dispatcher or executor process is
not going to start up before the monitor takes action and terminates the process. This

CREATE SERVER

–>[MAX_SHARED_MEMORY_SIZE <number>]

–>[DUMP_PATH <directory-specification>]

–>[PROCESS_STARTUP_TIMEOUT <number-in-seconds>]

–>[PROCESS_SHUTDOWN_TIMEOUT <number-in-seconds>]

–>[<network-port-spec>] ... ;

<network-port-spec> ::=NETWORK_PORT <transport-spec>

<transport-spec> ::={ <tcp-spec> | <decnet-spec> }

<tcp-spec> ::=TCPIP [PORT_ID <number>]

<decnet-spec> ::=DECNET [OBJECT { <number> | <identifier>
 | <quoted-string> }]

CREATE SERVER Command

7-48 Oracle SQL/Services Server Configuration Guide

argument is an integer expressed in seconds. The default value is 0 seconds, which means
that no process startup timer value is set. See the Usage Notes for more information.

PROCESS_SHUTDOWN_TIMEOUT <number-in-seconds>
Specifies the length of time to wait before deciding that a dispatcher or executor process is
not going to shut down before the monitor takes action and terminates the process. This
argument is an integer expressed in seconds. The default value is 0 seconds, which means
that no process shutdown timer value is set; the process shutdown timer value is infinite. See
the Usage Notes for more information.

<network-port-spec>
Lists network ports that the monitor should use for communications with Oracle
SQL/Services SQLSRV_MANAGE client. The network port specification is TCP/IP or
DECnet. The default port ID for TCP/IP is 2199 and the default DECnet object name is
SQLSRV_SERVER. If no network ports are specified, the monitor of the server uses the
default ports. The maximum number of times that the <network-port-spec> argument can be
specified in the CREATE SERVER command is five.

DECnet or TCP/IP must be available on the node for which the create server definition is
defined. If none of these are available, the server will not start.

Usage Notes
■ The CREATE SERVER command is typically used only during an Oracle

SQL/Services installation. The installation procedure uses the SQLSRV_
CREATE73.COM procedure to create a configuration file containing a server and a
default set of dispatchers and services, and to start the server.

If you accidentally delete the configuration file or if the file becomes corrupted, you
need to re-create the server if you do not have a backup. First, delete the original
configuration file if it still exists. However, be sure to retain a copy of the file if it was
corrupted by an Oracle SQL/Services component, so you can submit it with a software
problem report. See Section 8.1 for information on how to report a software problem.
There are two ways to re-create the server.

– Run the SQLSRV_CREATE73.COM procedure.

Execute the SYS$MANAGER:SQLSRV_CREATE73.COM command procedure,
which re-creates the server using the SYS$MANAGER:SQLSRV_
CREATE73.SQS SQLSRV_MANAGE script.

CREATE SERVER Command

Management Commands 7-49

– Issue the SET CONFIG_FILE command and specify a configuration file
specification that does not exist. When you do this, you are prompted if you want to
create one now; answer YES. The default is NO. If the SET CONFIRM command
is set to OFF, then you are not prompted. A SHOW SETTINGS command displays
the current settings and the file specification for this new configuration file. Issue a
CREATE SERVER command to create a server using this configuration file.

■ If the configuration file already exists and you issue a CREATE SERVER command, an
error message displays and the CREATE SERVER command fails.

■ The SQLSRV_MANAGE utility attempts to connect to the monitor of the server using
the default TCP/IP or DECnet ports. If you change the network port of the server, you
must also specify that port explicitly when connecting from the SQLSRV_MANAGE
utility.

■ If you want to set process startup and shutdown timers, follow these guidelines:

– Usually dispatcher and executor processes start up and shut down in a reasonable
period of time. Only during an unusual situation would you need to specify nonzero
values for the PROCESS_STARTUP_TIMEOUT and PROCESS_SHUTDOWN_
TIMEOUT arguments.

– In heavily loaded systems, it often takes longer for a particular operation to
complete. If either process startup or process shutdown is set to a value other than
zero and fails for no apparent reason (you have checked other possible causes and
have not isolated the problem), set a higher value for the PROCESS_STARTUP_
TIMEOUT argument or the PROCESS_SHUTDOWN_TIMEOUT argument to see
if that solves the problem.

Examples
Example 1: Create a server definition for a local node on which there is currently no Oracle
SQL/Services server.

SQLSRV> SET CONFIG_FILE 'my_config_file';
SQLSRV> CREATE SERVER MAX_SHARED_MEMORY_SIZE 9000;
SQLSRV> START SERVER;
Server started
Connecting to server ...

Note: This is the recommended method of re-creating a server. Execute
the SQLSRV_CREATE73.SQS file to re-create just the Oracle RMU
dispatcher and Oracle RMU service objects.

CREATE SERVER Command

7-50 Oracle SQL/Services Server Configuration Guide

Connected

CREATE SERVICE Command

Management Commands 7-51

CREATE SERVICE Command

Creates a service object definition for the current server only. The definition is stored in the
configuration file. New service objects must be started online to be part of a running server.

Format

CREATE SERVICE <service-name>

–>[PROTOCOL { OCI | RMU | SQLSERVICES }]

–>[AUTOSTART { ON | OFF }]

–>[DEFAULT_CONNECT_USERNAME { <quoted-string> | <identifier> }]

–>[DEFAULT_CONNECT_PASSWORD <quoted-string>]

–>[REUSE [SCOPE] [IS] { SESSION | TRANSACTION }]

–>[SQL_VERSION { <version-number> | S[TANDARD] }]

–>[PROCESS_INITIALIZATION { <quoted-string> | LOGIN }]

–>[ATTACH <quoted-string>]

–> OWNER { <quoted-string> | <identifier> }

–>[OWNER PASSWORD <quoted-string>]

–>[SCHEMA <quoted-string>]

–>[SQL_INIT_FILE <quoted-string>]

–>[DATABASE_AUTHORIZATION { [SERVICE] OWNER

 | [CONNECT] USERNAME }]

–>[APPLICATION_TRANSACTION_USAGE

 { SERIAL | CONCURRENT }]

–>[IDLE_USER_TIMEOUT <number-in-seconds>]

–>[IDLE_EXECUTOR_TIMEOUT <number-in-seconds>]

–>[MIN_EXECUTORS <number>]

–>[MAX_EXECUTORS <number>]

–>[CLIENTS_PER_EXECUTOR <number>] ;

CREATE SERVICE Command

7-52 Oracle SQL/Services Server Configuration Guide

Arguments

<service-name>
The service name. The service name is expressed as an identifier. The service name must be
unique.

PROTOCOL {OCI | RMU | SQLSERVICES}
Determines the application programming interface (API) that each service can support. A
service can support only one API. Specify an API that matches the type of client you want
the service to support:

■ OCI

Oracle or third-party clients using the Oracle Call Interface (OCI)

■ RMU

Oracle RMU Parallel Backup clients

■ SQLSERVICES

Oracle SQL/Services clients using the Oracle ODBC Driver for Rdb or other clients
using the Oracle SQL/Services client API. This is the default.

AUTOSTART {ON | OFF}
Determines whether or not the service object automatically starts up when you issue a
START SERVER or RESTART SERVER command. If the argument is specified as ON, the
service object automatically starts when you issue a START SERVER or RESTART
SERVER command. The default is ON.

<service-name> ::=<identifier>

Note: Ensure that you have a dispatcher network port defined with a
dispatcher message protocol that supports each service API you want to
use. For example, if you define a service that supports the OCI API and
another service that supports the SQLSERVICES API, you must define at
least one dispatcher network port that supports the OCI dispatcher
message protocol and the SQL*Net transport and another dispatcher
network port that supports the SQLSERVICES dispatcher message
protocol and any available transport, respectively.

CREATE SERVICE Command

Management Commands 7-53

DEFAULT_CONNECT_USERNAME {<quoted-string> | <identifier>}
Specifies the user name as either a quoted string or an identifier under which unknown users
are allowed to connect to the service. See Section 2.7.1 and Section 2.8 for more
information about using this argument. The DEFAULT_CONNECT_USERNAME
argument can be applied only to database services that support the SQLSERVICES protocol.

DEFAULT_CONNECT_PASSWORD <quoted-string>
Specifies the password associated with the connect user name as a quoted string.

REUSE SCOPE IS {SESSION | TRANSACTION}
■ SESSION

An executor for a session reusable service processes requests for one client session at a
time. A session begins when a client connects to the service and the connection is bound
to an executor process. A session ends when a client disconnects from the service and
the connection is unbound from the executor process. SESSION is the default.

■ TRANSACTION

An executor for a transaction reusable service processes requests for one transaction at a
time; however, it supports many concurrent client sessions. A transaction begins when a
client issues a SQL statement that either implicitly or explicitly starts a transaction. A
transaction ends when a client issues a successful SQL COMMIT or ROLLBACK
statement. The REUSE SCOPE IS TRANSACTION argument can be applied only to
database services that support the SQLSERVICES protocol.

See Section 2.6 for more information.

SQL_VERSION {<version-number> | STANDARD}
Specifies the version of SQL to use for the service. It is expressed as either a version number
data type (for example, 7.2) for selecting a version of SQL in an Oracle Rdb multiversion
environment or by the keyword STANDARD (or S) for running a standard version of SQL
in an Oracle Rdb single version environment. Either value is used as the first parameter
argument for the Oracle Rdb RDB$SETVER command procedure when it runs, as described
in the installation information. The version number resolves to an "n.n" parameter argument
and the word STANDARD or S resolves to an S parameter argument. When no value is
specified, the default is to use the keyword STANDARD.

PROCESS_INITIALIZATION {<quoted-string> | LOGIN}
The process initialization file can be either a special process initialization file specified as a
<quoted-string> or the keyword LOGIN. The process initialization or login file is used to
help define some of the attributes of the executor process for this service. This file is
executed once for each executor, during executor startup.

CREATE SERVICE Command

7-54 Oracle SQL/Services Server Configuration Guide

When LOGIN is specified for the process initialization file, Oracle SQL/Services uses the
file specified by the LGICMD qualifier for the service owner in AUTHORIZE as returned
by the OpenVMS SYS$GETUAI system service. If you specify process initialization as
LOGIN, make sure LGICMD qualifier is defined for the service owner account.

If this file specification is not fully qualified, the file will not be found and the executor will
fail.

If no process initialization argument is specified, the default is not to run any initialization
file. Maintenance is easier if a service is always created with a process initialization file. If
no commands are initially required, the file can be empty. If you need to add process
initialization commands later, you only need to modify this file and add the commands.
When new executor processes are created after these changes, they will use these new
commands. Otherwise, the service must be stopped and restarted in order to activate a new
process initialization file and requires that all connections be stopped, which is not always
easy and acceptable.

ATTACH <quoted-string>
The SQL ATTACH statement.

If you do not specify a SQL ATTACH statement, you create a universal service that is not
preattached to a specific database.

If you specify a SQL ATTACH statement, you create a database service that is preattached
to the specified database.

This argument is a single-quoted string and is exactly the same format as the
attach-string-literal used in dynamic SQL. The FILENAME keyword in this string cannot be
abbreviated.

See the Oracle Rdb SQL Reference Manual for more information on the ATTACH
statement.

OWNER {<quoted-string | <identifier>}
Specifies the user name of the owner of the service. Every service has an owner name. The
owner name must be specified as a quoted-string or identifier; otherwise, an error message is
returned.

If the service is a database service, then the service owner's privileges are used for access
checks when an executor attaches to the specified database. See Section 2.6 for more
information on database services.

If database access authorization is by service owner, then the service owner’s privileges are
used for all database access operations. See the DATABASE_AUTHORIZATION argument
for more information on database access authorization.

CREATE SERVICE Command

Management Commands 7-55

Executors are created with the privileges and quotas from the service owner's account. See
Section 2.10.1 for more information.

OWNER PASSWORD <quoted-string>
Specifies the password for the owner of the service.

SCHEMA <quoted-string>
Provides a way to specify the default schema that you want to use when an executor attaches
to a multischema database.

If a schema name is not specified in the service definition, the schema name defaults to the
service owner account name if the database access authorization is service owner, or to the
connect user name if the database access authorization is connect user name (see Section 2.9).

The schema argument allows the default to be overridden. If this argument is supplied to
OCI Services for Oracle Rdb, it is ignored.

SQL_INIT_FILE <quoted-string>
Specifies a file containing SQL statements that tailor the SQL environment for a client
connection. For example, you can set the SQL dialect and default character set by using a
SQL initialization file. The statements in a SQL initialization file are executed every time a
client connects to a service.

If no SQL initialization argument is specified, the default is not to run any initialization file.
Maintenance is easier if a service is always created with a SQL initialization file. If no SQL
statements are initially required, the file can be empty. If you need to add SQL statements
later, you only need to modify this file and add the statements. When new executor
processes are created after these changes, they will use these new statements. Otherwise, the
service must be stopped and restarted in order to activate a new SQL initialization file and
requires that all connections be stopped, which is not always easy and acceptable.

See Section 7.1 for more information about using a SQL initialization file.

DATABASE_AUTHORIZATION {[SERVICE] OWNER | [CONNECT] USERNAME}
Determines the user name under which access to the database is made. The default is
CONNECT USERNAME.

■ SERVICE OWNER

For a database service, all access to the database is made by using the service owner
user name. This option is not supported by OCI Services for Oracle Rdb.

■ CONNECT USERNAME

CREATE SERVICE Command

7-56 Oracle SQL/Services Server Configuration Guide

Access to the database is made by using the client-specified user name, the DECnet
proxy user name, or the user name specified in the DEFAULT_CONNECT_
USERNAME argument.

For more information on database access authorization, see Section 2.7 and Section 2.8.

APPLICATION_TRANSACTION_USAGE {SERIAL | CONCURRENT}
The APPLICATION_TRANSACTION_USAGE argument is applicable only to transaction
reusable database services. Some applications make only a single connection to a service to
perform their work, while other applications make multiple connections to the same service.
Connections created to transaction reusable database services are tied to the same executor
for the life of the session. Refer to Section 2.6.3, "Transaction Reusable Database Services",
for more information.

If a client application makes multiple connections to a service and these are assigned to the
same executor, a deadlock occurs if the client application attempts to start a new transaction
on one connection before ending an existing transaction on another connection. When you
specify the CONCURRENT keyword, Oracle SQL/Services ensures that multiple
connections from the same client application on the same node are never assigned to the
same executor process.

When you specify the SERIAL keyword, Oracle SQL/Services assumes that client
applications do not start concurrent transactions on multiple connections. Oracle
SQL/Services assigns connections to executor processes on a least busy basis (the executor
process with the fewest client connections already assigned). Thus, if a client application
made more than one connection to the same service and the keyword SERIAL was
specified, the second connection may or may not have gone to the same executor process as
the first connection, depending on how many connections were already assigned to that
executor process versus how many connections were assigned to the other executor
processes for that service.

The default for the APPLICATION_TRANSACTION_USAGE argument is SERIAL.

Some applications, such as Microsoft Access, make multiple connections to the same service
to perform their work and require that you specify the CONCURRENT keyword. If set to
CONCURRENT, Oracle SQL/Services considers the node, user name, and application name
of the client when choosing an executor to which to tie the connection and ensures that
multiple connections from the same client application are never assigned to the same
executor process.

This argument is used only by Oracle SQLSERVICES services.

IDLE_USER_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that a client (user) can remain idle before the server
disconnects the client. This value is expressed as an integer. The default value is 0, which

CREATE SERVICE Command

Management Commands 7-57

displays as "<none>" in a SHOW SERVICE command and means that the idle timeout value
is infinite. A specified value other than 0 is rounded to the next higher multiple of 90
seconds.

IDLE_EXECUTOR_TIMEOUT <number-in-seconds>
Specifies the amount of time in seconds that an executor process for a session reusable
service can remain inactive (not bound to a client connection) before being deleted. The
value is expressed as an integer. The default timeout value is 1800 seconds (30 minutes).

MIN_EXECUTORS <number>
Sets the minimum value to which the number of executor processes is allowed to decrease.
This is also the number of executor processes started at startup using a START SERVICE or
START SERVER command. The value is expressed as an integer. The default minimum
number of executors for a session reusable service is 0. A service with MIN_EXECUTORS
set to 0 never shows the Starting state when the service starts up. The state displays as either
Running or Failed.

If you use transaction reusable executors, you must set the value for the minimum number of
executors equal to the value for the maximum number of executors. The default value is 1
for a transaction reusable service.

For a database service, if MIN_EXECUTORS is not set to 0, you will always have an
executor attached to the database. Therefore, you should shut down the service before
shutting down the database.

MAX_EXECUTORS <number>
Sets the maximum value to which the number of executor processes is allowed to increase.
The value is expressed as an integer. The default maximum number of executors is 1.

If you use transaction reusable executors, you must set the value for the minimum number of
executors equal to the value for the maximum number of executors. The default value is 1
for a transaction reusable service.

CLIENTS_PER_EXECUTOR <number>
Specifies the number of clients allowed per executor. The number of clients allowed is
dependent upon whether the service is session reusable or transaction reusable. The default
number of clients per executor for session reusability is 1 and cannot be greater than 1. The
default number of clients per executor for transaction reusability is 1 but can be greater than
1. The CLIENTS_PER_EXECUTOR value is expressed as an integer.

CREATE SERVICE Command

7-58 Oracle SQL/Services Server Configuration Guide

Usage Notes
■ When a service other than an OCI service is created, only a privileged user with

SYSPRV privilege is authorized to use the service. Use the GRANT command to enable
other users.

■ When a client connects to a server, the Oracle SQL/Services executor does not execute
the LOGIN.COM DCL command procedure located in the client user name’s default
directory. Therefore, client applications should not use logical names defined in
LOGIN.COM login procedures. Process logical names for Oracle SQL/Services
executors can be defined only by a service’s process initialization file.

■ If you use the default minimum number of 0 executors, the default maximum number of
executors is 1. If the minimum number of executors defined is greater than 0, the default
maximum number of executors equals the defined minimum value. For example, if the
defined minimum number of executors is 5, the default maximum number of executors
is also 5.

■ Many popular desktop tools make two connections to the Oracle SQL/Services server to
do their work. For example, MS Access makes one connection initially and returns the
list of tables. When the first request to reference a table is made, MS Access makes
another connection to the Oracle SQL/Services server. If no executor is available, MS
Access returns an error and suggests that you have a problem with your disk or network.
Oracle Corporation recommends that you configure maximum executors of at least 2.

Examples
Example 1: Create a universal service named V73.

SQLSRV> CREATE SERVICE V73 OWNER 'SQLSRV$DEFLT' SQL VERSION 7.2
_SQLSRV> MIN_EXECUTORS 5
_SQLSRV> MAX_EXECUTORS 10;
SQLSRV> START SERVICE V73;

DISCONNECT SERVER Command

Management Commands 7-59

DISCONNECT SERVER Command

Disconnects a connection to a server.

Format

Arguments

<connect-name>
The connection name. This identifier uniquely identifies the connection to a server on a
particular node. The connection name is expressed as an identifier.

Usage Notes
The DISCONNECT SERVER command works in the opposite way as the CONNECT TO
SERVER command. It disconnects the named connection if a connection name is specified
or disconnects the current connection if no connection name is specified.

Examples
Example 1: Disconnect from the server whose connection name is eagle.

SQLSRV> CONNECT TO SERVER AS eagle;
Connecting to server ...
Connected
SQLSRV> DISCONNECT SERVER eagle;

DISCONNECT SERVER [<connect-name>] ;

<connect-name> ::=<identifier>

DROP Command

7-60 Oracle SQL/Services Server Configuration Guide

DROP Command

Deletes the specified object for the current server.

Format

Arguments

<obj-type>
Specifies dispatcher or service using the keyword DISPATCHER or SERVICE object type,
respectively.

<obj-name>
The name of the object to be deleted. The object name is expressed as an identifier.

Usage Notes
■ For online deletions, the object to be deleted cannot be currently active or running; that

is, the object must first be shut down online. You may want to issue a SHOW CLIENTS
command to determine if there are any client applications using the service you are
going to shut down and delete and to ensure that no clients are connected to that service.

The SQLSRV_MANAGE utility does not prevent you from deleting a dispatcher or
service object online while the dispatcher or service is running on a different node in an
environment where two or more nodes share the same configuration file. If this
happens, the SQLSRV_MANAGE utility displays a warning message if you show the
dispatcher or service that has been deleted but is still running, for example:

SQLSRV> SHOW service <obj_name>;
**
** This Service has been deleted from the config file. **
** It will not exist after it is shut down. **
**

DROP <obj-type> <obj-name>;

<obj-type> ::=DISPATCHER | SERVICE

<obj-name> ::= <identifier>

DROP Command

Management Commands 7-61

■ Oracle recommends that you do not make offline modifications to a configuration file if
there is a server running that is using the same file. In this situation, the SQLSRV_
MANAGE utility, for example, does not prevent you from deleting a dispatcher or
service object offline while the dispatcher or service is running.

A client application using a service or dispatcher that has been deleted offline continues
to have use of that object until it disconnects from the server object. However, once the
client application disconnects from the server, it cannot reconnect to the dispatcher or
service that was deleted. Before the object that was deleted is shut down, a SHOW
command displays a message for the deleted object as shown in the previous list item.

■ The DROP command removes the specified object from the configuration file.

Examples
Example 1: Delete the database_3 service object.

SQLSRV> SHUTDOWN SERVICE database_3;
SQLSRV> DROP SERVICE database_3;

Example 2: Delete the disp_tcpip dispatcher object.

SQLSRV> SHUTDOWN DISPATCHER disp_tcpip;
SQLSRV> DROP DISPATCHER disp_tcpip;

DROP SERVER Command

7-62 Oracle SQL/Services Server Configuration Guide

DROP SERVER Command

Deletes the current server, including the configuration file.

Format

Usage Notes
■ The server to be deleted cannot currently be active; it must first be shut down online and

then deleted offline.

■ The DROP SERVER command is an offline operation; you cannot be connected to the
server.

■ The DROP SERVER command deletes the configuration file.

Examples
Example 1: Delete the current server object.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHUTDOWN SERVER;
SQLSRV> DISCONNECT SERVER;
SQLSRV> SET CONFIG_FILE 'my_config_file';
SQLSRV> DROP SERVER;
Configuration file will be deleted, continue? (N) y
Configuration file deleted

DROP SERVER;

EXIT Command

Management Commands 7-63

EXIT Command

Exits the SQLSRV_MANAGE environment.

Format

Usage Notes
■ You can exit the SQLSRV_MANAGE environment or utility in the following two ways:

– Using the EXIT command

– When an end-of-file is encountered on the last input source

If you are using the SQLSRV_MANAGE utility interactively, you can enter Ctrl/Z
to exit the SQLSRV_MANAGE utility.

If you specify an input file on the command line with the –input file switch, and the
file is the last input source, and an end-of-file is reached, SQLSRV_MANAGE
exits.

■ Use of the terminating semicolon (;) is optional.

Examples
Example 1: Exit the SQLSRV_MANAGE environment.

SQLSRV> EXIT

EXIT[;]

EXTRACT Command

7-64 Oracle SQL/Services Server Configuration Guide

EXTRACT Command

Extracts server object definitions from the active configuration file and writes them to a
SQL/Services command script if an output file has been defined, or to the current output
device. The script can be used to re-create servers, dispatchers, and services.

Format

Argument

keyword [option]
Keyword can be one of the following:

■ SERVER

Extracts the definition for the server. There is no option for this keyword.

■ DISPATCHER [disp_name]

If the disp_name is omitted or represented by an asterisk (*), definitions for all
dispatchers are extracted. If the disp_name is specified, the definition for just that
dispatcher is extracted.

■ SERVICE [service_name]

If the service_name is omitted or represented by an asterisk (*), definitions for all
services are extracted. If the service_name is specified, the definition for just that
service is extracted.

Usage Notes
To extract definitions to a file, use the -output switch on the SQLSRV_MANAGE command,
or issue an OPEN command before issuing the EXTRACT command.

Examples
Example 1: Extract the definition for the service OCI_AAA and display the information on
the output device that is currently defined for the session.

$ SQLSRV_MANAGE73

EXTRACT keyword [option];

EXTRACT Command

Management Commands 7-65

SQLSRV> EXTRACT SERVICE OCI_AAA;
Create Service OCI_AAA
 Owner 'AAA'
 Protocol OCI
 SQL version 7.2
 Autostart off
 Process_initialization 'DBD_USER6:[JONES]INIT_OCI_ENG70.COM'
 ATTACH 'filename DBD_USER6:[JONES]mf_personnel'
 Reuse scope is SESSION
 Database Authorization CONNECT USERNAME
 SQL_init_file 'DBD_USER6:[JONES]init.sql'
 Application Transaction Usage SERIAL
 Idle Executor Timeout 1800
 Min Executors 1
 Max Executors 10
 Clients Per Executor 1
 ;
Grant use on service OCI_AAA
 To 'AAA'
 ;
SQLSRV>

Example 2: Extract definitions for all dispatchers and write them to an output file.

$ SQLSRV_MANAGE73 -OUTPUT A.SQL
SQLSRV> EXTRACT DISP;
SQLSRV> EXIT

$TYPE A.SQL
Create Dispatcher SQLSRV_DISP
 Autostart on
 Max connects 101
 Idle User Timeout 0
 network_port DECnet object 81 protocol SQLServices
 network_port tcpip port_id 118 protocol SQLServices
 Log path 'SYS$MANAGER:'
 Dump path 'SYS$MANAGER:'
 ;
Create Dispatcher RMU_DISP
 Autostart on
 Max connects 100
 Idle User Timeout 0
 network_port tcpip port_id 1571 protocol Native
 Log path 'SYS$MANAGER:'
 Dump path 'SYS$MANAGER:'

EXTRACT Command

7-66 Oracle SQL/Services Server Configuration Guide

 ;
Create Dispatcher OCI_DISP
 Autostart on
 Max connects 35
 Idle User Timeout 0
 network_port sqlnet listener oci_listener protocol OCI
 Log path 'SYS$MANAGER:'
 Dump path 'SYS$MANAGER:'
 ;
Create Dispatcher SQLSRV_MANAGE
 Autostart off
 Max connects 100
 Idle User Timeout 0
 network_port DECnet object 81 protocol SQLServices
 network_port tcpip port_id 118 protocol SQLServices
 Log path 'SYS$MANAGER:'
 Dump path 'SYS$MANAGER:'
 ;

Example 3: Extract definitions to an output file using the OPEN command.

$ SQLSRV_MANAGE73
SQLSRV> OPEN aaa.sql;
SQLSRV> EXTRACT SERVICE OCI_AAA;
SQLSRV> CLOSE;

GRANT USE ON SERVICE Command

Management Commands 7-67

GRANT USE ON SERVICE Command

Grants the USE privilege for a service to a user, group or rights identifier. Use this command
to grant USE to a rights identifier and permit access to the specified service to a user who
holds that specific identifier.

Format

Arguments

<service-name-list>
Lists service names on which the GRANT USE ON SERVICE command operates. The
service name is expressed as an identifier.

<grant-element-list>
Lists grant elements on which the GRANT USE ON SERVICE command acts. A grant list
element can be the keyword PUBLIC or PRIVILEGED_USER, a list of user names, a list
of identifier names, or a list of group names. A PRIVILEGED_USER is defined as a user
with SYSPRV privilege (either default or granted privilege). A user name, identifier name,
or group name is expressed as either a quoted string or an identifier.

GRANT USE ON SERVICE <service-name-list> TO <grant-element-list> ;

<service-name-list> ::=<service-name> [, <service-name>] ...

<service-name> ::=<identifier>

<grant-element-list> ::=<grant-element> [, <grant-element>] ...

<grant-element> ::={ PUBLIC | PRIVILEGED_USER

 | [USER[S]] <user-name> [, <user-name>] ...

 | IDENTIFIER[S] <identifier-name> [, <identifier-name>] ...

 | GROUP[S] <group-name> [,<group-name>] ...}

<user-name> ::={ <quoted-string> | <identifier> }

<identifier-name> ::={ <quoted-string> | <identifier> }

<group-name> ::={ <quoted-string> | <identifier> }

GRANT USE ON SERVICE Command

7-68 Oracle SQL/Services Server Configuration Guide

Usage Notes
■ Oracle SQL/Services grants a single privilege, USE.

■ Granting a new user the USE privilege takes effect upon the user's next attempt to use
Oracle SQL/Services after the privilege change is complete. For example, a new user,
once granted the USE privilege, can use Oracle SQL/Services on the next attempt.

■ If you use the keyword IDENTIFIER[S] or GROUP[S], the specified rights identifier is
added to the list of granted identifiers and permits a user who holds that specific
identifier to access the specified service. If the IDENTIFIER[S] or GROUP[S] keyword
is omitted, then the specified user name is granted access to use the service.

Examples
Example 1: Grant the USE privilege for the general service to PUBLIC.

SQLSRV> GRANT USE ON SERVICE general TO PUBLIC;

Example 2: Grant the USE privilege for the database_2 service to fred and wilma.

SQLSRV> GRANT USE ON SERVICE database_2 TO fred,wilma;

Example 3: Grant the USE privilege for the system management SQLSRV_MANAGE
service to fred and wilma.

SQLSRV> GRANT USE ON SERVICE sqlsrv_manage TO fred,wilma;

Example 4: Grant the USE privilege for the system management SQLSRV_MANAGE
service to the identifiers payroll_dba and operator.

SQLSRV> GRANT USE ON SERVICE sqlsrv_manage
_SQLSRV> TO IDENTIFIERS payroll_dba,operator;

HELP Command

Management Commands 7-69

HELP Command

Gets help on a topic within the SQLSRV_MANAGE environment.

Format

Arguments

<help-keyword>
A help keyword. The help keyword is expressed as an identifier.

Usage Notes
Use of the terminating semicolon (;) is optional.

Examples
Example 1: Get help on a topic within the SQLSRV_MANAGE environment.

SQLSRV> HELP

HELP [<help-keyword>] ... [;]

<help-keyword> ::=<identifier>

KILL EXECUTOR Command

7-70 Oracle SQL/Services Server Configuration Guide

KILL EXECUTOR Command

Kills the specified executor.

Format

Arguments

{PID <process-id> | <executor-name>}
The process ID or executor name. The process ID is expressed as an integer and can be
represented either in decimal or hexadecimal format. The executor name is expressed as an
identifier. To determine the executor name, perform a SHOW CLIENTS FULL command.

Usage Notes
■ The process ID can be represented in either decimal or hexadecimal format. To

represent a process ID in hexadecimal format, precede the process ID value with the
value '0x' or '0X' (for example, 0x0000088a).

■ You can kill an executor only as an online operation; that is, you must be connected to a
running server (CONNECT TO SERVER command) to kill an executor running on that
server.

Examples
Example 1: Kill an executor by process ID (represented in hexadecimal format).

SQLSRV> KILL EXECUTOR PID 0x0000072a;

Example 2: Kill an executor by process ID (represented in decimal format).

SQLSRV> KILL EXECUTOR PID 324693;

KILL EXECUTOR { PID <process-id> | <executor-name> } ;

<process-id> ::=<number>

<executor-name> ::=<identifier>

KILL EXECUTOR Command

Management Commands 7-71

Example 3: Kill an executor by name.

SQLSRV> KILL EXECUTOR generi004000280;

OPEN Command

7-72 Oracle SQL/Services Server Configuration Guide

OPEN Command

Opens an output file in the SQLSRV_MANAGE environment. Subsequent output by
SQLSRV_MANAGE, including error messages, is written to this file.

Format

Arguments

<file-spec>
The output file name. The file name is expressed either as an identifier or as a quoted string.

Usage Notes
The OPEN command creates the specified file and writes all subsequent output to that file. If
you enter the OPEN command, the OPEN command does an implicit close of the current
output file if an output file was already open. The file can be subsequently closed using the
SQLSRV_MANAGE CLOSE command.

Examples
Example 1: Open an output file.

SQLSRV> OPEN test_file;

Example 2: Open an output file and extract dispatcher definitions to that file.

SQLSRV> OPEN ocidisp.lis;
SQLSRV> EXTRACT disp oci_disp;
SQLSRV> CLOSE;
SQLSRV> EXIT;
$ TY ocidisp.lis;
Create Dispatcher OCI_DISP
 Autostart on
 Max connects 35
 Idle User Timeout 0
 network_port sqlnet listener oci_listener protocol OCI

OPEN <file-spec>;

<file-spec> ::={ <identifier> | <quoted-string> }

OPEN Command

Management Commands 7-73

 Log path ’SYS$MANAGER:’
 Dump path ’SYS$MANAGER:’

RESTART SERVER Command

7-74 Oracle SQL/Services Server Configuration Guide

RESTART SERVER Command

Restarts the current server.

Format

Arguments

AUTOSTART {ON | OFF}
Determines whether or not other server objects (dispatchers and services) automatically start
up again when you issue a RESTART SERVER command. ON is the default. If the
argument is specified as ON, other server objects automatically restart (shut down and start
again) if each object's AUTOSTART argument value is also set as ON. If you do not want to
restart other server objects, specify the AUTOSTART attribute value as OFF in the
RESTART SERVER command. The AUTOSTART OFF attribute setting overrides each
object's AUTOSTART attribute setting and allows you to individually start each object after
restarting just the server object.

Usage Notes
■ You can restart a server only as an online operation; that is, you must be connected to

the server (CONNECT TO SERVER command) to restart it.

■ Use the RESTART SERVER command to restart the server. By default, all server
components (dispatchers and services) for the current server will also restart unless
these server objects have the AUTOSTART argument specified as OFF in their
definitions.

Examples
Example 1: Restart the current server.

SQLSRV> CONNECT TO SERVER;
Connecting to server ...
Connected
SQLSRV> ALTER SERVER MAX_SHARED_MEMORY_SIZE 10000;
%DBS-S-ALTER_RESTART, Restart object to have altered settings take effect
SQLSRV> RESTART SERVER;
Disconnected from Server

RESTART SERVER [AUTOSTART { ON | OFF }] ;

RESTART SERVER Command

Management Commands 7-75

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected

REVOKE USE ON SERVICE Command

7-76 Oracle SQL/Services Server Configuration Guide

REVOKE USE ON SERVICE Command

Revoke the USE privilege for a service from a user, group or rights identifier. You can
revoke USE from a rights identifier to remove access to the specified service by users who
hold that identifier.

Format

Arguments

<service-name-list>
Lists service names on which the REVOKE USE ON SERVICE command operates. The
service name is expressed as an identifier.

<grant-element-list>
Lists grant elements on which the REVOKE USE ON SERVICE command acts. A grant list
element can be the keyword PUBLIC or PRIVILEGED_USER, a list of user names, a list of
OpenVMS rights identifier names, or a list of group names. A PRIVILEGED_USER is
defined as a user with SYSPRV privilege (either default or granted privilege). A user name,
identifier name, or group name is expressed as either a quoted string or an identifier.

REVOKE USE ON SERVICE <service-name-list> FROM <grant-element-list> ;

<service-name-list> ::=<service-name> [, <service-name>] ...

<service-name> ::=<identifier>

<grant-element-list> ::=<grant-element> [, <grant-element>] ...

<grant-element> ::={ PUBLIC | PRIVILEGED_USER

 | [USER[S]] <user-name> [, <user-name>] ...

 | IDENTIFIER[S] <identifier-name> [, <identifier-name>] ...

 | GROUP[S] <group-name> [,<group-name>] ...}

<user-name> ::={ <quoted-string> | <identifier> }

<identifier-name> ::={ <quoted-string> | <identifier> }

<group-name> ::={ <quoted-string> | <identifier> }

REVOKE USE ON SERVICE Command

Management Commands 7-77

Usage Notes
■ Oracle SQL/Services revokes a single privilege, USE.

■ Revoking the USE privilege descriptor from an existing user takes effect upon the user's
next attempt to use Oracle SQL/Services after the privilege change is complete. For
example, a user whose USE privilege is revoked but who is still using Oracle
SQL/Services, will not be able to use Oracle SQL/Services after disconnecting and then
attempting to reconnect to the service.

■ If you use the keyword IDENTIFIER[S] or GROUP[S], any specified identifier is
removed from the service's list of granted identifiers. If you omit the IDENTIFIER[S]
or GROUP[S] keyword, the specified user name is removed from the service's list of
granted user names.

If you revoke use of a service by a specific user name, that user is still able to access the
service if the user holds an identifier that has been granted use of the service. Likewise,
if you revoke use of a service by a specific identifier, a user who holds that identifier is
still able to access the service if the user's name has been granted use of the service.

Examples
Example 1: Remove the USE privilege for the general service from PUBLIC.

SQLSRV> REVOKE USE ON SERVICE general FROM PUBLIC;

Example 2: Remove the USE privilege for the database_3 service from fred and wilma.

SQLSRV> REVOKE USE ON SERVICE database_3 FROM fred,wilma;

Example 3: Remove the USE privilege for the system management SQLSRV_MANAGE
service from fred and wilma.

SQLSRV> REVOKE USE ON SERVICE sqlsrv_manage FROM fred,wilma;

Example 4: Remove the USE privilege for the system management SQLSRV_MANAGE
service from the identifier names payroll_dba and operator.

SQLSRV> REVOKE USE ON SERVICE sqlsrv_manage
_SQLSRV> FROM IDENTIFIERS payroll_dba,operator;

SET CONFIGURATION_FILE Command

7-78 Oracle SQL/Services Server Configuration Guide

SET CONFIGURATION_FILE Command

Enables you to select a server configuration file with which to start a server or to make
server changes offline. Any subsequent management commands are written to the
configuration file only and do not affect the running server except for GRANT USE and
REVOKE USE commands and any restarted dispatchers and services.

Format

Arguments

<file-name>
The configuration file name. The file name is expressed either as an identifier or as a quoted
string.

Usage Notes
■ CONFIG_FILE is a synonym for the keyword CONFIGURATION_FILE.

■ When the SQLSRV_MANAGE utility starts up, it establishes a default configuration
file name, as follows:

SYS$MANAGER:SQLSRV_CONFIG_FILE73.DAT

To override the default, set the SQLSRV_CONFIG_FILE73 logical name or supply a
different file name to the SET CONFIGURATION_FILE command.

■ The SHOW SETTINGS command shows the configuration file that offline
modifications act upon. The SHOW SERVER command shows the configuration file
that online modifications act upon.

■ If you issue the SET_CONFIG_FILE command and specify a configuration file
specification that does not exist, you are prompted whether or not you want to create
one now. The default is NO. If the SET CONFIRM command is set to OFF, then you
are not prompted. A SHOW SETTINGS command displays the current settings and file
specification for this new configuration file. If you issue a CREATE SERVER
command, a server using this configuration file is created.

SET CONFIG[URATION]_FILE <file-name>;

<file-name> ::={ <identifier> | <quoted-string> }

SET CONFIGURATION_FILE Command

Management Commands 7-79

■ When you make modifications to a configuration file using the SET CONFIG_FILE
command, all changes are made offline and do not affect the running server, except
GRANT and REVOKE command changes. Changes made to a server's configuration
file can be applied to the running server by restarting the object changed.

Examples
Example 1: Set the configuration file.

SQLSRV> SET CONFIG_FILE 'my_config_file';

SET CONFIRM Command

7-80 Oracle SQL/Services Server Configuration Guide

SET CONFIRM Command

Displays a confirmation prompt on the default output device when it is set as ON in the
SQLSRV_MANAGE environment.

Format

Arguments

{ON | OFF}
When confirm is set as ON, a confirmation prompt is displayed on the default output device
requiring confirmation for certain management operations. When confirm is set as OFF, a
confirmation prompt is no longer displayed and no longer requires confirmation for certain
management operations. ON is the default.

Usage Notes
■ If the SET CONFIRM command is set as ON (the default) and you issue a SQLSRV_

MANAGE command that in turn presents a confirmation prompt, this prompt is
displayed on the default output device. For example, if you shut down and delete a
server and then issue a SET_CONFIG_FILE command, and specify a configuration file
that does not exist, you are prompted whether or not you want to create one now. The
default is NO or not to create one now. If the SET CONFIRM command is set as OFF,
you are not prompted to confirm this operation.

■ A SHOW SETTINGS command displays, among other things, the current setting for
the SET CONFIRM command.

Examples
Example 1: No longer display a confirmation prompt on the default output device.

SQLSRV> SET CONFIRM OFF;

SET CONFIRM { ON | OFF } ;

SET CONNECTION Command

Management Commands 7-81

SET CONNECTION Command

Enables you to establish the specified connection as the current connection so that you can
manage that server.

Format

Arguments

<connect-name>
The name of the connection. The identifier that uniquely identifies the connection to a server
on a particular node. The connection name is expressed as an identifier.

Usage Notes
The SET CONNECT command allows you to manage multiple servers from a single
SQLSRV_MANAGE session by switching between connections to the servers you are
managing.

To manage a server online, you must first connect to the server using the CONNECT TO
SERVER command. When you establish a new connection to a server using the CONNECT
TO SERVER command, the new connection becomes the current connection. All online
system management commands operate on the current connection. You can establish
connections to multiple servers by issuing multiple CONNECT TO SERVER commands.
You then use the SET CONNECT command to select the server that you wish to manage.
Use the DISCONNECT SERVER command to disconnect from a server, at which time one
of the remaining connections, if any, becomes the current connection.

Examples
Example 1: Manage two servers on nodes EAGLE and FALCON from node EAGLE.

SQLSRV> CONNECT SERVER AS EAGLE;
Connecting to server ...
Connected
SQLSRV> CONNECT SERVER AS FALCON NODE FALCON

SET CONNECT[ION] [<connect-name>] ;

<connect-name> ::=<identifier>

SET CONNECTION Command

7-82 Oracle SQL/Services Server Configuration Guide

_SQLSRV> USER 'dbsmgr' USING 'password';
Connecting to server ...
Connected
SQLSRV> SHOW CONNECT;
Active connections:
CURRENT: FALCON
 Service: SQLSRV_MANAGE
 User: dbsmgr Node: FALCON Local: No
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024
 EAGLE
 Service: SQLSRV_MANAGE
 User: <unknown> Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
RMU_SERVICE RUNNING 1 100 0 4 100 4
GENERIC RUNNING 1 10 0 2 10 2
SQLSRV_MANAGE RUNNING 100 0 1 0 0 0

SQLSRV> SET CONNECT EAGLE;
SQLSRV> SHOW CONNECT;
Active connections:
 FALCON
 Service: SQLSRV_MANAGE
 User: dbsmgr Node: FALCON Local: No
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024
CURRENT: EAGLE
 Service: SQLSRV_MANAGE
 User: <unknown> Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
V73 RUNNING 1 20 2 5 20 5
RMU_SERVICE RUNNING 1 100 3 4 100 4
GENERIC RUNNING 1 50 5 20 50 20
SQLSRV_MANAGE RUNNING 100 0 1 0 0 0

SET OUTPUT Command

Management Commands 7-83

SET OUTPUT Command

Directs output to the default device if set as ON in the SQLSRV_MANAGE environment.

Format

Arguments

{ON | OFF}
When output is set as ON, it is directed to the default output device. When output is set as
OFF it is suppressed. The default setting is ON.

Usage Notes
None.

Examples
Example 1: Set the output to the default device.

SQLSRV> SET OUTPUT ON;

SET OUTPUT { ON | OFF } ;

SET VERIFY Command

7-84 Oracle SQL/Services Server Configuration Guide

SET VERIFY Command

Displays command file input on the default output device as it is read in the SQLSRV_
MANAGE environment.

Format

Arguments

{ON | OFF}
When verify is set as ON, command file input is displayed on the default output device.
When verify is set as OFF, command file input is no longer displayed on the default output
device. The default setting is OFF.

Usage Notes
None.

Examples
Example 1: Display command file input on the default output device as it is read.

SQLSRV> SET VERIFY ON;

SET VERIFY { ON | OFF } ;

SHOW CLIENTS Command

Management Commands 7-85

SHOW CLIENTS Command

Shows the active users for services for a configuration.

Format

Arguments

<name-spec>
The name specification. You can show:

■ The clients connected to one or more services

■ All clients for a specific executor PID

■ All clients connected to a server using a specific user name or list of user names

■ Clients connected to a particular executor

The default is "*", which displays all clients for all services.

FULL
Displays a full description of information for each client. The default is to display brief
information (one line of output) for each client. When no service name is specified,
SQLSRV_MANAGE displays clients grouped by service name.

Usage Notes
■ To show all clients for all services, you can either use the SHOW CLIENTS command

and not specify the [FOR] keyword, or specify an asterisk (*). Either method displays
all clients for all services. For example:

SHOW CLIENTS [[FOR] <name-spec> [FULL]] ;

<name-spec> ::={ * | [SERVICE] <service-name-list>

 | [USERNAME] <username-list> | [PID] <executor-pid> }

<service-name-list> ::=<identifier> [, <identifier>] ...

<user-name-list> ::=<identifier> [, <identifier>] ...

<executor-pid> ::=<number>

SHOW CLIENTS Command

7-86 Oracle SQL/Services Server Configuration Guide

SQLSRV> SHOW CLIENTS;
SQLSRV> SHOW CLIENTS *;

■ To show all clients for a specific executor PID, specify the SHOW CLIENTS FOR PID
command and specify the executor PID.

■ The executor PID can be represented in either decimal or hexadecimal format. To
represent an executor PID in hexadecimal format, precede the executor PID value with
the value '0x' or '0X' (for example, 0x0000088a).

■ Client connections serviced by a session reusable service can be in one of three possible
states (see Section 3.2 for more information):

– Running Binding – The client is running and in the process of binding to an
executor.

– Running Bound – The client is running and is bound to an executor.

– Canceling – The client connection is in the process of being disconnected.

■ Client connections serviced by a transaction reusable database service can be in one of
five possible states (see Section 3.2 for more information):

– Running Binding – The client is running and in the process of binding to an
executor.

– Running Bound – The client is running and is bound to an executor.

– Running Unbound – The client is not submitting requests, therefore is not bound to
an executor, but it is still connected to its executor.

– Canceling Binding – The client is in the process of informing the executor that the
bound connect is going away (this operation precedes the Canceling operation).

– Canceling – The client connection is in the process of being disconnected.

■ This command also shows the management clients that are using the management
service. The SHOW CLIENTS command allows server system managers to determine
if other server system managers are connected to the server and using the management
service.

■ This command shows the actual location of executor log and error files and the location
of an executor dump file should one be created.

Examples
Example 1: Show the clients for the universal service named generic and display a brief
description.

SHOW CLIENTS Command

Management Commands 7-87

SQLSRV> SHOW CLIENTS FOR SERVICE generic;
Service: GENERIC

 Connect Client Executor
 Username Node State PID Application
 User1 123.0.0.1 RUNNING BOUND 28c0c4e6 Personnel
 User2 121.0.0.1 RUNNING BOUND 30b0a4d5 Personnel

Example 2: Show the clients for all user names for all services and display a brief
description.

SQLSRV> SHOW CLIENTS;
Service: SS_SERV

 Connect Client Executor
 Username Node State PID Application
 123.0.0.1 RUNNING BINDING 00000000
 123.0.0.1 RUNNING BINDING 00000000
Service: MMS

 Connect Client Executor
 Username Node State PID Application
 Rdbuser1 NODE1 RUNNING BOUND 00001045 Personnel

Service: SQLSRV_MANAGE

 Connect Client Executor
 Username Node State PID Application
 User1 NODE2 RUNNING BOUND 00000af2 SQLSRV_MANAGE

Example 3: Show the clients for the universal service named generic and display a full
description.

SQLSRV> SHOW CLIENTS FOR SERVICE generic FULL;
Client Connect Username sqsapim1
 Service: GENERIC
 Application: Personnel
 State: RUNNING BOUND
 Node: 12.34.567.89
 Executor: GENERI0050002
 Executor PID: 543173877 0X20602cf5
 Log File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0050002.LOG
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0050002.DMP

Client Connect Username sqsapim2

SHOW CLIENTS Command

7-88 Oracle SQL/Services Server Configuration Guide

 Service: GENERIC
 Application: Personnel
 State: RUNNING BOUND
 Node: LOCAL:.mypc
 Executor: GENERI0080004
 Executor PID: 543173877 0X20602cf5
 Log File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0080004.LOG
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_EAGLES_GENERI0080004.DMP

SHOW CONNECTIONS Command

Management Commands 7-89

SHOW CONNECTIONS Command

Shows information about the current server.

Format

Usage Notes
■ CONNECTS is a synonym for the keyword CONNECTIONS.

■ The SHOW CONNECT[ION]S command shows you information about all of the active
management connections that the SQLSRV_MANAGE utility has to each server. Use
the SHOW CONNECT[ION] command first to determine the current connection before
issuing additional server management commands.

Examples
Example 1: Show information about the current server and connections to other servers.

SQLSRV> SHOW CONNECT;
Active connections:
CURRENT: SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: system Node: hawk Local: No
 Transport: TCP/IP Port-id: 2199
 Request bufsize: 1024 Response bufsize: 1024

 SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: system Node: falcon Local: Yes
 Transport: TCP/IP Port-id: 2199
 Request bufsize: 1024 Response bufsize: 1024

SHOW CONNECT[ION]S;

SHOW DISPATCHER Command

7-90 Oracle SQL/Services Server Configuration Guide

SHOW DISPATCHER Command

Shows the static definition of dispatcher objects and their operational state for the current
server.

Format

Arguments

<dispatcher-spec>
The dispatcher object specification. This can be one or more dispatcher object names or can
be specified with an asterisk (*). If an * is specified, information for all dispatcher object
names is displayed.

Usage Notes
■ If no dispatcher object is specified, then information for all dispatcher objects is

displayed.

■ The dispatcher state and network port states can be one of three possible states:

– Running – The dispatcher or dispatcher network port is running.

– Inactive – The dispatcher or dispatcher network port is shut down.

– Unknown – The management client is not connected to the server online so it
cannot determine the state of the dispatcher and its network ports. The management
client used the SET CONFIG_FILE command to manage the server offline. Use the
CONNECT TO SERVER command to connect to the server online to determine the
dispatcher state and the state of its network ports.

■ When a difference exists for an attribute between the running server and its
configuration file, the SHOW DISPATCHER command displays this difference at the
end of the show output and indicates that when the server is restarted, the running

SHOW DISPATCHER [<dispatcher-spec>] ;

<dispatcher-spec> ::={ * | <dispatcher-name-list> }

<dispatcher-name-list> ::=<identifier> [, <identifier>] ...

SHOW DISPATCHER Command

Management Commands 7-91

server's dispatcher is updated to match the server's dispatcher definition in the
configuration file.

■ This command shows the actual location of dispatcher log and error files and the
location of a dispatcher dump file if one was created.

Examples
Example 1: Show information for the sqlsrv_disp dispatcher.

SQLSRV> CONNECT TO SERVER NODE hawk USER system USING password;
Connecting to server ...
Connected
SQLSRV> SHOW DISPATCHER sqlsrv_disp;
Dispatcher SQLSRV_DISP
 State: RUNNING
 Autostart: on
 Max connects: 100 clients
 Idle user Timeout: <none>
 Max client buffer size: 5000 bytes
 Network Ports: (State) (Protocol)
 DECnet object 81 Running SQL/Services
 TCP/IP port 118 Running SQL/Services

 SQL*Net listener FUBAR Running SQL/Services
Log Path: USER1:[SQLSRV_TEST1]
Dump path: USER1:[SQLSRV_TEST1]

 Log File: USER1:[SQLSRV_TEST1]:SQS_EAGLE_SQLSRV_DIS100380.LOG
 Dump File: USER1:[SQLSRV_TEST1]:SQS_EAGLE_SQLSRV_DIS1003.DMP

Example 2: Show changed values for log path and dump path that will be in place after the
dispatcher is restarted.

SQLSRV> SHOW DISP SQLSRV_DISP;
Dispatcher SQLSRV_DISP

.

.

.
Log Path: USER1:[SQLSRV_TEST1]
Dump path: USER1:[SQLSRV_TEST1]
 .
 .
 .

** This Dispatcher will be updated as follows when it is restarted **

Log path: USER1:[SQLSRV_TEST1.AAA]

SHOW DISPATCHER Command

7-92 Oracle SQL/Services Server Configuration Guide

Dump path: USER1:[SQLSRV_TEST2.BBB]

SHOW SERVER Command

Management Commands 7-93

SHOW SERVER Command

Shows the static definition of the server object and its operational state.

Format

Usage Notes
■ The server network port state can be one of three possible states:

– Running – The server network port is running.

– Inactive – The server network port is shut down.

– Unknown – The management client is not connected to the server online so it
cannot determine the state of the server network ports. The management client used
the SET CONFIG_FILE command to manage the server offline. Use the
CONNECT TO SERVER command to connect to the server online to determine the
state of its network ports.

■ When a difference exists for an attribute between the running server and its
configuration file, the SHOW SERVER command displays these differences at the end
of the show output and indicates that when the server is restarted, the running server is
updated to match the server's definition in the configuration file.

■ Shows the actual location of server log and error files and the location of the server
dump file should one be created.

Examples
Example 1: Show information for the server defined in the configuration file.

SQLSRV> SHOW SERVER;
 Server Version: 7.3
 Server Platform: HP OpenVMS Alpha
 Max Shared Mem Size: 8000 Kb
 Config file: SYS$SYSROOT:[SYSMGR]SQLSRV_CONFIG_FILE73.DAT;1
 Log path: SYS$MANAGER:
 Dump path: SYS$MANAGER:
 Proc start time: <none>
 Proc shut time: <none>

SHOW SERVER;

SHOW SERVER Command

7-94 Oracle SQL/Services Server Configuration Guide

 Network Ports: (State) (Protocol)
 DECnet object SQLSRV_SERVER Running Native
 TCP/IP port 2199 Running Native
 Current shared memory usage:
 Allocation unit: 65536 bytes
 Total memory: 8192000 bytes (125 units)
 Free memory: 7929856 bytes (121 units)
 Partly allocated: 196608 bytes (3 units)
 Log File: SYS$SYSROOT:[SYSMGR]SQS_CRANES_SQLSRV_MON_0073.LOG;
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_CRANES_SQLSRV_73.DMP;

SHOW SERVICE Command

Management Commands 7-95

SHOW SERVICE Command

Shows the static definition of a service object or all service objects currently defined in the
configuration file.

Format

Arguments

<service-spec>
The service object specification. This can be one or more service object names or can be
specified with an asterisk (*). If one or more service object names are specified, then only
information for those named service objects is displayed. If an * is specified, information for
all service object names is displayed.

FULL
Displays a full description of information for each service. The default is to display brief
information (one line of output) for each service.

Usage Notes
■ SERVICE is a synonym for the keyword SERVICES.

■ If no service object is specified, then information for all service object names is
displayed.

■ The SHOW SERVICE * command and the SHOW SERVICE command both show you
all of the services currently defined.

■ The service state can be one of five possible states:

– Starting – The service is starting.

A service with MIN_EXECUTORS set to 0 never shows the Starting state when the
service starts up. The state displays as either Running or Failed.

SHOW SERVICE[S] [<service-spec>] [FULL] ;

<service-spec> ::={ * | <service-name-list> }

<service-name -list> ::={<identifier> [, <identifier>] ...}

SHOW SERVICE Command

7-96 Oracle SQL/Services Server Configuration Guide

– Failed – The service failed to start.

– Running – The service is running.

– Inactive – The service is shut down.

– Unknown – The management client is not connected to the server online so it
cannot determine the state of the service. The management client used the SET
CONFIG_FILE command to manage the server offline. Use the CONNECT TO
SERVER command to connect to the server online to determine the service state.

■ When a difference exists for an attribute between the running service and its
configuration file, the SHOW SERVICE command displays these differences at the end
of the show output and indicates that when the service is restarted, the running server's
service is updated to match the server's service definition in the configuration file.

■ If FULL is specified, this command shows the list of user names and identifiers granted
access to the specified services.

Examples
Example 1: Show the services defined for a configuration and display a brief description.

SQLSRV> SHOW SERVICES;
 C l i e n t s E x e c u t o r s
Name State Per-Exec Max Active Min Max Running
SQLSRV_MANAGE RUNNING 100 100 1 1 1 0
GENERIC RUNNING 1 10 0 2 10 1
RMU_SERVICE RUNNING 1 100 0 0 100 0

Example 2: Show the payroll service defined for a configuration and display a full
description.

SQLSRV> SHOW SERVICE payroll FULL;
Service PAYROLL
 State: RUNNING
 Owner: PAYROLLACCNT
 Protocol: SQL/Services
 Default Connect Username: <not specified>
 SQL version: 7.2
 Autostart: on
 Process init: <not specified>
 Attach: ATTACH 'FILENAME PAYROLL_DISK:PAYROLL_DB'
 Schema: <not specified>
 Reuse: SESSION
 Database Authorization: CONNECT USERNAME
 dbsrc file: <not specified>

SHOW SERVICE Command

Management Commands 7-97

 SQL init file: <not specified>
 Appl Transaction Usage: SERIAL
 Idle User Timeout: <none>
 Idle Exec Timeout: 1800 seconds
 Min Executors: 5
 Max Executors: 10
 Clients Per Executor: 1
 Active Clients: 0

Access to service PAYROLL
 Granted to users:
 PRIVILEGED_USER 'PAYROLLACCNT'
 Granted to identifiers:
 'PAYROLL_DBA' 'PAYROLLDEPT'

SHOW SETTINGS Command

7-98 Oracle SQL/Services Server Configuration Guide

SHOW SETTINGS Command

Shows information about the current SQLSRV_MANAGE settings.

Format

Usage Notes
After starting the server, use the SHOW SETTINGS command to determine the current
settings for the SQLSRV_MANAGE environment. Modify these SQLSRV_MANAGE
environment settings for your own use.

Examples
Example 1: Show information about the current settings for the SQLSRV_MANAGE
environment.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW SETTINGS;
Settings:
 version: V7.3
 verify: off
 output: on
 config-file: SYS$SYSROOT:[SYSMGR]SQLSRV_CONFIG_FILE73.DAT;1
 confirm: on

SHOW SETTINGS;

SHOW VERSION Command

Management Commands 7-99

SHOW VERSION Command

Shows the version of the SQLSRV_MANAGE management client.

Format

Usage Notes
Use the SHOW VERSION command to determine the version of the SQLSRV_MANAGE
management client.

Examples
Example 1: Show the version of the SQLSRV_MANAGE management client.

SQLSRV> SHOW VERSION;
Version: V7.3-010

SHOW VERSION;

SHUTDOWN DISPATCHER Command

7-100 Oracle SQL/Services Server Configuration Guide

SHUTDOWN DISPATCHER Command

Shuts down the specified dispatcher.

Format

Arguments

<dispatcher-name>
Specifies the dispatcher object name. The dispatcher object name is expressed as an
identifier.

Usage Notes
■ Use the SHOW CLIENTS command to ensure no clients are connected to a service

using a network transport being provided by the dispatcher that you are shutting down.

■ You can shut down a dispatcher only as an online operation; that is, you must be
connected to a running server (CONNECT TO SERVER command) to shut down a
dispatcher defined and running for that server.

■ A dispatcher that has failed to start is left in a failed state and must be shut down.
Correct the problem (usually an argument value is incorrectly specified), then start the
dispatcher again.

Examples
Example 1: Shut down the dispatcher named disp_tcpip.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CLIENTS;
SQLSRV> SHUTDOWN DISPATCHER disp_tcpip;

SHUTDOWN DISPATCHER <dispatcher-name> ;

<dispatcher-name> ::=<identifier>

SHUTDOWN SERVER Command

Management Commands 7-101

SHUTDOWN SERVER Command

Shuts down the current server.

Format

Usage Notes
■ Use the SHOW CONNECT[ION] command to ensure that you are shutting down the

correct server.

■ You can shut down a server only as an online operation; that is, you must be connected
to a running server (CONNECT TO SERVER command) to shut it down.

Examples
Example 1: Shut down the current server.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHOW CONNECT;
Active connections:
CURRENT: SQLSRV_MANAGE
 Service: SQLSRV_MANAGE
 User: run_username Node: EAGLE Local: Yes
 Transport: DECNET Object: SQLSRV_SERVER
 Request bufsize: 1024 Response bufsize: 1024
SQLSRV> SHUTDOWN SERVER;
Disconnected from Server

SHUTDOWN SERVER;

SHUTDOWN SERVICE Command

7-102 Oracle SQL/Services Server Configuration Guide

SHUTDOWN SERVICE Command

Shuts down the specified service.

Format

Arguments

<service-name>
Specifies the service object name. The service object name is expressed as an identifier.

Usage Notes
■ Use the SHOW CLIENTS command to ensure that no clients are connected to the

service that you are shutting down.

■ You can shut down a service only as an online operation; that is, you must be connected
to a running server (CONNECT TO SERVER command) to shut down a service defined
and running for that server.

■ A service that has failed to start is left in a failed state and must be shut down. Correct
the problem (usually an argument value is incorrectly specified), then start the service
again.

Examples
Example 1: Shut down the universal service named generic.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> SHUTDOWN SERVICE generic;

SHUTDOWN SERVICE <service-name> ;

<service-name> ::=<identifier>

START DISPATCHER Command

Management Commands 7-103

START DISPATCHER Command

Starts a dispatcher process for the defined dispatcher object with the specified name for the
current server.

Format

Arguments

<disp-name>
Specifies the dispatcher name. The dispatcher name is expressed as an identifier.

Usage Notes
You can start a dispatcher only as an online operation; that is, you must be connected to a
running server (CONNECT TO SERVER command) to start a dispatcher defined for that
server.

Examples
Example 1: Start the tcpip_disp dispatcher.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> START DISPATCHER tcpip_disp;

START DISPATCHER <disp-name> ;

<disp-name> ::=<identifier>

START SERVER Command

7-104 Oracle SQL/Services Server Configuration Guide

START SERVER Command

Starts the current server and optionally any defined dispatcher and service objects for the
current server when AUTOSTART is set as ON and then connects to the server after starting
it when AUTOCONNECT is set as ON.

Format

Arguments

USER {<user-name> USING <password>}
Specifies a user name and password with which to connect to the server after the server has
started. The user name and password are expressed as either quoted-strings or identifiers.
You need not specify a user name and password if you are starting a server running DECnet
or if you are starting a server running TCP/IP and you have SYSPRV or BYPASS privilege.

AUTOCONNECT {ON | OFF}
Determines whether or not to automatically connect to the server after you issue a START
SERVER command. If the argument is specified as ON, SQLSRV_MANAGE automatically
connects to the server after you issue a START SERVER command. A value of OFF starts
the server but does not attempt to connect to the server after it has started. The default is ON.

AUTOSTART {ON | OFF}
Determines whether all other server objects (dispatchers and services) automatically start up
when you issue a START SERVER command. If the argument is specified as ON, all other
server objects automatically start if each object's AUTOSTART argument value is also set as
ON. If you do not want to start all other server objects, specify the AUTOSTART attribute
value as OFF in the START SERVER command. The AUTOSTART OFF attribute setting

START SERVER

–>[USER { <user-name> } USING { <password>]

–>[AUTOCONNECT { ON | OFF }]

–>[AUTOSTART { ON | OFF }] ;

<user-name> ::={<quoted-string> | <identifier> }

<password> ::={<quoted-string> | <identifier> }

START SERVER Command

Management Commands 7-105

overrides each object's AUTOSTART attribute setting and allows you to individually start
each object after starting just the server object. The default is ON.

Usage Notes
■ You can start a server only as an offline operation; that is, you must use the SET

CONFIG_FILE command to select the configuration file of the server you want to start
or use the default.

■ After the server starts up with the AUTOCONNECT argument specified as ON,
SQLSRV_MANAGE attempts to connect to any network port defined for the server. It
tries each network port in a round-robin fashion up to three times each to establish the
connection.

■ You must have the SETPRV privilege or all privileges.

■ When SQLSRV_MANAGE starts up, it establishes a default configuration file name:

– The default configuration file is:

SYS$MANAGER:SQLSRV_CONFIG_FILE73.DAT

– To override the default, set the SQLSRV_CONFIG_FILE73 logical name or supply
a different file name to the SET CONFIGURATION_FILE command.

Examples
Example 1: Start the current server.

SQLSRV> SET CONFIG_FILE 'my_config_file';
SQLSRV> START SERVER;
Server started
Connecting to server ...
Connected

START SERVICE Command

7-106 Oracle SQL/Services Server Configuration Guide

START SERVICE Command

Starts the specified, defined service object for the current server.

Format

Arguments

<service-name>
Specifies the service name. The service name is expressed as an identifier.

Usage Notes
You can start a service only as an online operation; that is, you must be connected to a
running server (CONNECT TO SERVER command) to start a service defined for that
server.

Examples
Example 1: Start the universal service named V73.

SQLSRV> CONNECT SERVER;
Connecting to server ...
Connected
SQLSRV> START SERVICE v73;

START SERVICE <service-name> ;

<service-name> ::=<identifier>

Logging and Troubleshooting 8-1

8
Logging and Troubleshooting

This section describes how to enable logging for SQL/Services and OCI Services for Oracle
Rdb, and how to identify and fix some of the more common errors.

You can isolate problems that you might experience with an Oracle SQL/Services server
system by:

■ Inspecting log files

■ Investigating different types of problems

The following sections describe what log files are generated, what is contained in each type
of log file, a number of different error conditions that you may encounter, and how to
identify a particular problem.

8.1 Problem Reporting
If an error occurs while you are using Oracle SQL/Services or OCI Services for Oracle Rdb
and you believe that the error is caused by a problem with an Oracle product, contact your
Oracle support representative for technical assistance.

When you experience a reproducible problem, it is important to provide as much detailed
information as possible. Enable full logging to collect detailed information about the current
session. Include the following items along with your problem report:

■ Copies of the Oracle SQL/Services monitor log files, dispatcher log files, any applicable
executor log files, and any relevant client log files

■ A copy of the Oracle SQL/Services configuration file

■ Copies of any bugcheck dump files produced

Error Messages

8-2 Oracle SQL/Services Configuration Guide

8.2 Error Messages
The language you specify determines which language is used for Oracle error messages and
boilerplate text, including month and day names in dates. By default, Oracle Rdb error
messages are supplied in English, unless you use a specially translated error message file
and define the file to the Rdb database. Oracle error message files are provided in all of the
supported languages listed in Table 5–3.

For Oracle Rdb error messages, the language specified when you attach to the database is
used for the duration of the attach.

Sorting, collating, and comparisons are done according to the Oracle Rdb semantics. Refer
to the Oracle Rdb SQL Reference Manual for more information.

The server error message files contain all of the server errors with explanations of the error
and possible user actions. PostScript and text versions of the server error message files are
located in the following directories:

■ SYS$HELP:SQLSRV_MESSAGES73.PS - Oracle SQL/Services server error message
PostScript file

■ SYS$HELP:SQLSRV_MESSAGES73.TXT

8.3 Log Files on the Server
This section describes how to enable and disable logging on the server, and how to use the
log files.

There are several kinds of log files on the server side:

■ Oracle SQL/Services monitor log file

■ Oracle SQL/Services dispatcher log files

■ Oracle SQL/Services executor log files

Oracle SQL/Services uses the following convention to generate log file names for server
components, where nodename is the node name, component-id is the server component, and
version is the version number:

■ If the SCSNODE SYSGEN parameter is set

sqs_<nodename><component-id><instance><version>.log

■ If the SCSNODE SYSGEN parameter is blank

sqs_<component-id><instance><version>.log

Log Files on the Server

Logging and Troubleshooting 8-3

8.3.1 Oracle SQL/Services Monitor Log File
Oracle SQL/Services logs the following information in the monitor log file:

■ Dispatcher and executor process startup and shutdown informational messages

■ Dispatcher and executor process failure error messages, including names and locations
of component log files

■ Oracle SQL/Services authentication and authorization failures for Oracle
SQL/Services system management clients

■ Name and location of a monitor process bugcheck dump if the monitor encounters a
nonrecoverable error

Use the following command to list monitor log files:

$ DIRECTORY SYS$MANAGER:SQS*MON*.LOG

For example:

SYS$MANAGER:SQS_NODE1_SQLSRV_MON_0073.LOG

8.3.2 Oracle SQL/Services Dispatcher Log Files
Oracle SQL/Services logs the following information in a dispatcher log file:

■ Oracle SQL/Services authentication and authorization failures for Oracle
SQL/Services, OCI clients, and Oracle RMU clients

■ Server-side client network link disconnections due to executor process failures

■ Client-side client network link failures

■ Name and location of a dispatcher process bugcheck dump if the dispatcher encounters
a nonrecoverable error

Use the following command to display the location and file names for the dispatcher log
files:

SQLSRV> SHOW DISPATCHER <dispatcher_specification>

For example:

SQLSRV> SHOW DISPATCHER SQLSRV_DISP
Dispatcher SQLSRV_DISP
 State: RUNNING
 Autostart: on
 Max connects: 100 clients

Log Files on the Server

8-4 Oracle SQL/Services Configuration Guide

 Idle User Timeout: <none>
 Max client buffer size: 5000 bytes
 Network Ports: (State) (Protocol)
 DECnet object 81 Running SQL/Services
 TCP/IP port 119 Running SQL/Services
 Log path: SYS$MANAGER:
 Dump path: SYS$MANAGER:
 Log File: SYS$SYSROOT:[SYSMGR]SQS_NODE1_SQLSRV_DIS00373.LOG;
 Dump File: SYS$SYSROOT:[SYSMGR]SQS_NODE1_SQLSRV_DIS003.DMP;

The location and file name for the log file are shown in the line beginning with "Log File:."

Use the following command to list the log files:
$ DIRECTORY <directory_name>:<filename>

For example:

$ DIRECTORY SYS$SYSROOT:[SYSMGR]SQS*DIS*.LOG

SYS$SYSROOT:[SYSMGR]SQS_NODE1_SQLSRV_DIS00373.LOG

8.3.3 Oracle SQL/Services Executor Log Files
Oracle SQL/Services logs the following information in an executor log file:

■ Executor process startup errors

■ Oracle Rdb authentication and authorization failures for Oracle SQL/Services clients for
database services with database authorization set to connect user

■ Oracle Rdb and SQL error messages

■ Name and location of an executor process bugcheck dump if the executor encounters a
nonrecoverable error

■ For OCI services, log messages for OCI Services for Oracle Rdb as specified by the
ALTER SESSION LOG <log-option> command, or the SQLNET_DEBUG_FLAGS
logical name.

Executor log files are created in the default directory of the service owner account. For
example, use the following commands to list executor log files for a service named
GENERIC with a service owner account named SQLSRV$DEFLT that has a default
directory of SYS$SYSDEVICE:[SQLSRV$DEFLT].

$ DIRECTORY SYS$SYSDEVICE:[SQLSRV$DEFLT]SQS*GENERI*.LOG

SYS$SYSDEVICE:[SQLSRV$DEFLT]SQS_NODE1_GENERI004000173.LOG

Log Files on the Server

Logging and Troubleshooting 8-5

8.3.4 Enabling Executor Logging for OCI Services for Oracle Rdb
There are 3 ways to enable executor logging for OCI Services for Oracle Rdb:

1. Define logging options in the logical SQLNET_DEBUG_FLAGS in the SQL/Services
process initialization file.

2. Execute the statement ALTER SESSION LOG <log_option(s)>.

3. Execute the statement ALTER SESSION SET SQLNET_DEBUG_FLAGS
<log_option(s)>.

All logging options can be enabled using any of these methods. If you define the logical in
the process initialization file, the entire session will be logged (until you execute an ALTER
SESSION LOG OFF). If you execute either of the ALTER SESSION statements, logging
will begin from the point the statement is executed. If you include an ALTER SESSION
statement in the SQL initialization file of the service, logging will begin at that point in the
connection process. Logging may be stopped by executing the statement ALTER SESSION
LOG OFF.

If you define the SQLNET_DEBUG_FLAGS logical or if you execute the statement
ALTER SESSION SET SQLNET_DEBUG_FLAGS, logging options are specified by a
single uppercase letter for each option with no commas between options. For example, you
can define SQLNET_DEBUG_FLAGS "H" to log routine header information (see below for
definition of each logging option) or define SQLNET_DEBUG_FLAGS "HTF" to log
routine header information, timestamps, and full logging.

If you execute the ALTER SESSION LOG <log_option(s)> statement, the log_option
argument is a comma-separated list from among the following:

■ BRIEF (B): A limited amount of information about the session and the SQL statements
being executed.

■ CONNECT (C): Information about the connection and the attributes sent and received
during the connection to the client.

■ DATA (D): Extensive information about the SQL statements being processed, data type
conversions, and data formats received and sent.

■ FULL (F): Everything logged by BRIEF, CONNECT, DATA, and TRANSACTION.

■ HEADERS (H): Information about entrance into and exit from each routine.

Note: If the service does not have a process initialization file, the file must be
created and the service altered to specify the PROCESS_INITIALIZATION file;
the service must be restarted to enable the logging.

Log Files on the Server

8-6 Oracle SQL/Services Configuration Guide

■ TIME[STAMP] (T): Current time of entrance into and exit from each routine; must also
specify HEADERS.

■ TRANSACTION (X): Information about the start and end of each transaction.

Examples:

All three of the following examples will enable logging of routines entered and exited; the
time of the entrances and exits; and connection, data, and transaction information:

$ DEFINE SQLNET_DEBUG_FLAGS "HTF"

SQL> alter session set sqlnet_debug_flags "HTF"

SQL> alter session log headers,timestamp,full

The following examples will enable only transaction logging:

$ DEFINE SQLNET_DEBUG_FLAGS "X"

SQL> alter session set sqlnet_debug_flags "X"

SQL> alter session log transaction

8.3.5 Enabling Logging from SQL and Oracle Rdb
You can enable logging from SQL and Oracle Rdb either by defining the
RDMS$DEBUG_FLAGS logical either as a system logical or in the process initilization file
for a given service or by executing the SQL statement SET FLAGS. This logging will also
be written to the executor log file.

Refer to the Oracle Rdb Guide to Database Performance and Tuning for more information.

8.3.6 Disabling Logging in SQL/Services
You can disable logging at the dispatcher level or the executor level.

For dispatcher logging, use the CREATE or ALTER commands:

SQLSRV> CREATE DISPATCHER SQLSRV_DISP1 LOG PATH 'NOLOG'
 _SQLSRV> DUMP PATH 'SYS$MANAGER';

or

SQLSRV> ALTER DISPATCHER SQLSRV_DISP1 LOG PATH 'NOLOG'
_SQLSRV> DUMP PATH 'SYS$MANAGER';
 %SQLSRV-S-ALTER_RESTART

Inspecting SQL/Services API Log Files

Logging and Troubleshooting 8-7

Restart the object to have altered settings take effect.

For executor logging:

Define the SQLSRV_EXEC_LOG logical name at the system level. For example:

$DEFINE/SYSTEM SQLSRV_EXEC_LOG NOLOG

For OCI Services, you can disable logging by executing the statement ALTER SESSION
LOG OFF.

8.4 Inspecting SQL/Services API Log Files
When a problem arises, you can attempt to isolate the problem by inspecting the log files
generated on the client side as well as those generated on the server side.

There are up to four kinds of logging on the client side:

■ Client and driver logging

■ Winsock logging

■ Oracle Net logging

■ ODBC tracing

8.4.1 Client and Driver Logging
Client and driver logging is used by both Oracle SQL/Services and the Oracle ODBC Driver
for Oracle Rdb.

Enable Oracle SQL/Services client logging by using a parameter in the sqlsrv_associate
routine, or by using an sqsapiw.ini, sqsapi32.ini or sqsapi64.ini file for a Windows client.
The Oracle SQL/Services client API creates log files named clientxx.log in the application’s
default directory. A clientxx.log file records calls to Oracle SQL/Services, API services, data
values, and message protocol.

Check a clientxx.log file to see what SQL statements you are passing to the server, or what
error messages you are getting back from the server. See the Guide to Using the Oracle
SQL/Services Client API for more information.

If you are using the Oracle ODBC Driver for Rdb, you can turn on ODBC logging by
changing the default settings for client logging and driver logging in the oraodbc.ini file
(rdbodbc.ini for the Version 2 driver). The default value is 0, which turns off logging. All
valid values are described in the sqrdb.hlp help file that comes with the driver.

Inspecting SQL/Services API Log Files

8-8 Oracle SQL/Services Configuration Guide

The client logging traps the Oracle SQL calls that are passed from the client through the
Oracle SQL/Services API to the server. The information is written to log files named
clientxx.log where xx is a value from 01 to 99. Do not let the number exceed 99 because it is
not reset automatically.

The driver logging traps the driver calls that are made in the process of passing information
to the server. The information is written to the rdbodbc.log file that is located in the
application directory.

8.4.2 Winsock Logging
If you are using a Winsock transport, this logging option helps you diagnose network
problems. To enable this option, uncomment the line " ; Winsock Logging = 1" in the
sqsapi32.ini file. This logging traces the Winsock or network calls that are made when the
query is passed. The log file is named sqsapiw.log and is located in the working directory of
your application.

8.4.3 Oracle Net Logging
If you are using an OCI service, you can enable Oracle Net logging by defining the
TRACE_LEVEL_CLIENT or TRACE_LEVEL_SERVER in the SQLNET.ORA file in your
Oracle environment.

Follow these steps to set tracing parameters using component configuration files:

1. Execute or start the component to be traced.

Set the following trace parameters in the component configuration file: SQLNET.ORA
for client or server, LISTENER.ORA for listener:

TRACE_LEVEL_<CLIENT | LISTENER | SERVER> = (0 | 4 | 10 | 16)
TRACE_DIRECTORY_<CLIENT | LISTENER | SERVER> = <directory_name>
TRACE_FILE_<CLIENT | LISTENER | SERVER> = <file_name>

The following table describes the output for each trace level:

Trace Level Output

0 or OFF The default. No trace output

4 or USER User trace information

10 or ADMIN Administration trace information

Process Failures

Logging and Troubleshooting 8-9

The default directory is the login directory of the process owner on OpenVMS, or the
current directory of the executable image on Microsoft platforms. SQLNET.LOG and
SQLNET.TRC are the default file names. You can change both the file name and the
directory location through the Oracle Network Manager when you create or change an
Oracle Net configuration. Do this for any client process by editing the Logging and
Tracing tab of a client profile object.

2. If you modified the configuration files while the component was running, start or restart
the component to enable the changed parameters.

8.4.4 ODBC Tracing
To enable ODBC tracing, select the TRACING tab in the ODBC administrator’s application.
The default file name is SQL.LOG; you must specify where to create the file. Click on "Start
tracing now" to turn tracing on. This log captures the SQL that the ODBC driver is sending
to Oracle SQL/Services.

8.5 Process Failures
Oracle SQL/Services handles process failures in different ways depending on the type of
process that fails.

8.5.1 Monitor Process Failures
Oracle SQL/Services does not attempt to recover if the monitor process fails. If a monitor
process does fail, then all of the processes in the server configuration are shut down. In this
way, a monitor process failure does not leave the system in an inconsistent state.

8.5.2 Dispatcher Process Failures
Oracle SQL/Services does not automatically restart a failed dispatcher process; however, the
server will continue running unless the failure occurred during a critical operation in which
the integrity of the server might be compromised. Therefore, you must manually restart a
failed dispatcher process.

16 or SUPPORT WorldWide Customer Support trace information

Trace Level Output

Investigating Different Types of Problems

8-10 Oracle SQL/Services Configuration Guide

8.5.3 Executor Process Failures
Oracle SQL/Services automatically tries to restart a failed executor process unless the failure
occurred during a critical operation in which the integrity of the server might be
compromised. However, if an executor process fails more than twice during startup, then
Oracle SQL/Services shuts down the executor unless the SQLSRV$MAX_EXECUTOR_
FAILURES logical is defined. If there are no other active executors for the service, it also
shuts down the service and marks it as failed.

You can define the SQLSRV$MAX_EXECUTOR_FAILURES logical to change the
maximum number of failures from the default of two to any positive integer value. In this
way, you can control how often executors and services shut down during routine database
maintenance.

8.6 Investigating Different Types of Problems
As a system administrator, you may be called upon to investigate a number of different types
of problems. The following is a set of general error conditions with guidelines for each that
may help you track down and identify a particular problem.

8.6.1 Network Transport Problems
A problem sometimes experienced by new users or with a new server configuration is the
inability to connect to the server at all. In this situation, client applications receive network
errors from Oracle SQL/Services API routines and OCI Services for Oracle Rdb routines.

In the event of this type of error, first verify that the dispatcher supporting the selected
transport is running and that the specified network port or object is active. If you are using
alternate network ports or objects in a multiversion environment, verify that you specified
the correct network port or object at the client. The SHOW SERVER command in the
SQLSRV_MANAGE utility shows all network port numbers. Make sure that your client
application is using the correct port. If the dispatcher appears to be functioning correctly, use
a transport-specific tool, such as the TCP/IP Ping utility, to verify connectivity between the
client and server nodes.

If the dispatcher is not running or the selected network port or object is not active, check the
dispatcher log to determine the reason for the problem. If a dispatcher process fails
completely, then Oracle SQL/Services writes the name and location of the dispatcher log file
to the monitor log. Check the dispatcher log file to determine if a bugcheck dump was
produced when the dispatcher failed.

Investigating Different Types of Problems

Logging and Troubleshooting 8-11

8.6.2 User Authentication and Authorization Problems
Authentication and authorization errors are another class of problems that may be
experienced by new users. In this case, the server is functioning correctly. However, users
are unable to connect to the server or to a particular service provided by the server.

You should first check the dispatcher log file to determine the reason for the error.
Remember to check the appropriate dispatcher log if you have configured multiple
dispatchers for different transports.

For example, for SQLSRV executors, to resolve an authentication or authorization problem,
you may need to authorize network access or grant the SQLSRV$CLIENT identifier to a
user's account. Or perhaps you need to grant access to a particular service to a new user.

For OCI Services for Oracle Rdb executors, a problem could occur when a service owner
does not have attach privileges in the database (SELECT), a connect user is not included in
the USER$ table, or the user does not have required Oracle Rdb privileges to access the
database or tables.

All of these types of errors are logged in the dispatcher or executor log file.

If the user is connecting to a database service with database authorization set to connect
user, then you must also authorize the user's account to access the database. If a user is not
authorized to access the database, then Oracle Rdb returns a no privilege (-1008) error, the
text of which Oracle SQL/Services returns to the client application and writes to the
executor's log file.

8.6.3 Executor Failures During Service Startup
You may sometimes encounter errors when initially creating and starting a new service.
Whenever an executor process fails to start correctly, Oracle SQL/Services writes the name
of the executor's log file to the monitor log. From the executor log, you can then find the
reason for the error.

For example, to determine why a new service fails after you start it, display the contents of
the monitor log to determine the log file names of the failed service's executors. Then
display the contents of one of the executor log files to determine the reason for the failure.
You may have typed an invalid SQL ATTACH statement, mistyped the database file name,
or did not grant the right to attach to the database to the service owner account of a database
service. All problems such as these result in the service's SQL ATTACH statement failing.

8.6.4 Executor Problems During Client Connect
In some situations, a service may start successfully, but an executor process created for a
new client connection might fail during startup. This can happen if the MIN_EXECUTORS

Investigating Different Types of Problems

8-12 Oracle SQL/Services Configuration Guide

attribute of a service is set to 0, since any failures due to executor startup will not be
apparent until an executor is created. In this case, you can successfully start the service, but
the service eventually changes to the failed state as executors created for new client connects
fail during startup. This problem can also occur if a database is changed after a service is
started. For example, if the right to attach to the database is revoked from the service owner
account of a database service after the service is started and the minimum number of
executors has been created, then new executors that are created for the service will fail
trying to execute the service's ATTACH statement.

If a user tries to connect to a service and an executor created for the new connect fails during
startup, the monitor records the executor failure event in the monitor log together with the
name of the executor log. The dispatcher then logs a summary error message in the
dispatcher log and returns the executor failed (-2035) error code to the client application
along with an executor startup error message. If a user tries to connect to a service that
previously changed to the failed state, then the dispatcher logs the event in the dispatcher
and returns the executor failed (-2035) error code to the client application along with a
service failed error message.

To investigate problems of this nature, first check the dispatcher log to determine why new
client connects are being rejected. Then review the monitor log to find an entry detailing an
executor failure for the service. Finally, check the executor log to determine the reason for
the failure.

8.6.5 Executor Problems During Client Request Execution
You may experience a situation where most users are successfully accessing a service, but
the executor for one particular user fails. In this situation, the dispatcher returns the executor
failed (-2035) error to the client application and the monitor records the executor failure
event in the monitor log, together with the name of the executor log. You first check the
monitor log to determine the name of the log file for the failed executor, then check the log
of the executor to determine the reason for the failure. For example, perhaps data being
accessed by a particular user is located on a disk that is beginning to fail. Alternatively,
perhaps Oracle SQL/Services or Oracle Rdb or SQL encountered an internal error. In this
situation, check the executor log file to see if a bugcheck dump file was produced by one of
these components.

8.6.6 Server Failed Due to an Internal Error
In extremely rare circumstances, it is possible for an entire server to fail. For example,
perhaps a component encountered an internal error and failed while performing a critical
operation. In this situation, the entire server shuts down so as not to further compromise the
integrity of the server configuration.

Investigating Different Types of Problems

Logging and Troubleshooting 8-13

The Oracle SQL/Services monitor process manages all of the processes in an Oracle
SQL/Services server configuration. Therefore, the monitor log file is the best place to start.
In this situation, the monitor will always produce a bugcheck dump; however, the reason for
the error may have been the earlier failure of a dispatcher or executor process. Therefore,
your next step is to review the log files of any dispatchers and executors that failed just prior
to the server failure. Check these log files for references to any Oracle SQL/Services and
Oracle Rdb and SQL bugcheck dumps.

If you find a reference to a bugcheck dump file while isolating a problem, refer to
Section 8.1 for more information about submitting a problem report form to Oracle. The
bugcheck dump file is directed by default to SYS$MANAGER unless you specified another
location by using the CREATE SERVER, ALTER SERVER, CREATE DISPATCHER, or
ALTER DISPATCHER command. The only exception is that executor bugcheck dump files
are written to the default directory of the connect user or service owner, depending on the
database authorization.

8.6.7 Connections from Clients No Longer Work After Installing Oracle SQL/Services
When you install the Oracle SQL/Services client API in a multiversion environment, you are
asked to modify the network port numbers to something other than the default. These
non-default port numbers must be specified in an sqsapi32.ini file on each client accessing
this version of SQL/Services. Each client must modify the file by specifying:

■ The node to which they are connecting

■ The network transport they are using

■ The port on which the network is listening

For example, Node NODE1 has TCPIP configured for port 119. The sqsapi32.ini entry
looks like this:

[NODE1]
TCPIPPortNumber=119

8.6.8 Network Errors
When you receive the primary SQLSRV_NETERR error, look at the network error
documentation for the network error referred to in the secondary error message. For
example, Table 8–1 and Table 8–2 contain platform-specific error information for DECnet
and TCP/IP, respectively. You should also look at your own platform-specific documentation
for more information on the secondary error code resulting from a network error.

Information about DECnet error codes can be found at the locations listed in Table 8–1.

Error Messages Returned to OCI Client Applications

8-14 Oracle SQL/Services Configuration Guide

Information about TCP/IP error codes can be found at the locations listed in Table 8–2.

8.7 Error Messages Returned to OCI Client Applications
This section describes error messages that are frequently encountered and returned to OCI
client applications. Other error messages are described in the Oracle Database Error
Messages manual.

8.7.1 Logon Error
ERROR: ORA-01017: invalid username/password; logon denied

Cause: You supplied invalid logon information. This can also happen if there is no
entry in the USER$ table for the user name and password, or if program validation is
enabled and there is no corresponding entry in the ORA_VALID_PROGRAMS table.

Action: Log in again supplying the correct information. For more information, see the
Oracle SQL/Services executor log file.

8.7.2 Database Setup Error
ERROR: ORA-00904: invalid column name

Database not setup correctly for OCI Services for Oracle Rdb

Table 8–1 Error Code Files for DECnet

Operating
System File Specification Description

OpenVMS SYS$LIBRARY:SSDEF.H System service return status code
definitions for DECnet

Table 8–2 Error Code Files for TCP/IP

Operating System File Specification Description

OpenVMS SYS$LIBRARY:ERRNO.H System service return
status code definitions
for TCP/IP

Windows winsock.h TCP/IP error codes
(check Microsoft
Windows SDK or
Microsoft C++)

Error Messages Returned to OCI Client Applications

Logging and Troubleshooting 8-15

For details, look in Oracle SQL/Services executor log file
<...full file specification of the executor log...>
Cause: The database is not set up correctly for OCI Services for Oracle Rdb.

Action: For more information about this error, see the Oracle SQL/Services executor
log file. See the Oracle SQL/Services Installation Guide for instructions to help you
prepare your database.

8.7.3 SQL Initialization File Error
ERROR: ORA-00900: invalid SQL statement

Error in executing SQL initialization file
For details, look in Oracle SQL/Services executor log file
<...full file specification of the executor log...>
Cause: Error when executing SQL initialization file.

Action: For details, see the Oracle SQL/Services executor log file.

8.7.4 Errors Attaching to an Rdb Database or with Oracle SQL/Services Database
Service

ERROR: ORA-03113: end-of-file on communication channel
This error is returned due to a variety of reasons. See the Oracle SQL/Services executor
log file, the monitor log file, and the dispatcher log file for more information. See
Section 8.3 for information about inspecting these log files. The following descriptions
show some common reasons for this error. Inspect the log file for the actual cause.

Cause: The Oracle SQL/Services service did not start, or it is unavailable.

Action: Check to see if the service was started, and if not, start the service. If the
service failed, check the Oracle SQL/Services monitor log file for a pointer to the failed
executor log. Then, check the executor log file for more information.

Cause: The Oracle SQL/Services service name requested is invalid.

Action: Look in the Oracle SQL/Services dispatcher log file to see if there is an error
entry about the service being requested. If the Oracle SQL/Services service name
requested is invalid, modify the Oracle SQL/Services service name in the Oracle Net
configuration file TNSNAMES.ORA accordingly.

Cause: The protocol is not set to OCI.

Action: Alter your dispatcher and specify PROTOCOL OCI. Then, stop and restart
your Oracle SQL/Services dispatcher so the change can take effect.

Error Messages Returned to OCI Client Applications

8-16 Oracle SQL/Services Configuration Guide

8.7.5 Errors When Oracle SQL/Services Server or OCI Dispatcher Is Not Available
ERROR: ORA-12203: TNS:unable to connect to destination

Cause: Oracle SQL/Services and the OCI_DISP dispatcher are not started.

Action: Start Oracle SQL/Services and the OCI_DISP dispatcher.

Cause: The OCI_DISP dispatcher failed.

Action: If the dispatcher failed, look in the Oracle SQL/Services monitor log file for a
pointer to the failed dispatcher log. Then, look in the dispatcher log file for the failure
reason.

If you see the following entry in the dispatcher log file, the dispatcher cannot find the
definition of the listener name used in the Oracle SQL/Services dispatcher specification:

%SQLSRV-E-TNSFAILURE, Oracle SQL*Net TNS nlpagas() service has failed
%SQLSRV-E-ERROR_TEXT, Error text: listener

Check the Oracle Net configuration file LISTENER.ORA. The location of this file
varies depending on your installation. The subdirectory containing your Oracle Net
configuration file is stored in the following location:

SYS$MANAGER:SQLSRV_SQLNETnn.DAT

nn represents the Oracle SQL/Services version number.

The [.NETWORK.ADMIN] subdirectory under the location stored in this file contains
your LISTENER.ORA file.

8.7.6 Error When Oracle Net Service Name Is Not Defined
ERROR: ORA-12154: TNS:could not resolve service name

Cause: The Oracle Net service name might be defined improperly.

Action: Check the Oracle Net configuration files to see if the Oracle Net service name
is defined properly. If you are using a file-based Oracle Net configuration, look in the
TNSNAMES.ORA file. The location of this file varies depending on where your client
system is installed:

■ On an OpenVMS system, the subdirectory containing the location of your
configuration file is stored in the following location:

SYS$MANAGER:SQLSRV_SQLNETnn.DAT

nn represents the Oracle SQL/Services version number.

Error Messages Returned to OCI Client Applications

Logging and Troubleshooting 8-17

The [.NETWORK.ADMIN] subdirectory under the location stored in this file
contains your TNSNAMES.ORA file.

■ On any Microsoft Windows system, the location is

 <Oracle installation directory>\network\admin

For example

 c:\orawin\network\admin

Note: In some situations, Oracle clients are unable to interpret the error codes
returned by Oracle SQL/Services. Therefore, you should always check the Oracle
SQL/Services log files for accurate explanations.

Error Messages Returned to OCI Client Applications

8-18 Oracle SQL/Services Configuration Guide

Index-1

Index
Symbols
@

command, 7-11, 7-64
indirect command file, 7-11, 7-64

SQLSRV manage, 7-11
SQLSRV_MANAGE, 7-11, 7-64

A
Add users and passwords, 5-24
ALTER DISPATCHER command, 7-12
ALTER SERVER command, 7-17
ALTER SERVICE command, 7-21, 7-34
ALTER SESSION statement, 6-2

changing NLS parameters, 6-2
data formatting, 4-2
date and numeric data formatting, 4-3
format, 6-2
LOG clause, 6-5
logging with LOG BRIEF, 4-4
SCHEMA EMULATION clause, 4-6
SET ISOLATION LEVEL clause, 6-3
SET NLS clause, 6-3
SET SCHEMA EMULATION clause, 6-3
specifying character sets, 5-33
usage environment, 6-2

Altering
dispatcher, 2-11, 7-12 to 7-16
server, 2-8, 7-17 to 7-20
service, 2-14, 7-21 to 7-29, 7-34 to 7-42

Application development
common SQL programs, 1-11

Applications

executing multiple ATTACH statements, 5-15
AR8ISO8859P6 character set, 5-31
AR8MSWIN1256 character set, 5-32
Architecture

client/server, 1-3
server system, 1-2

ATTACH statement, 5-15
Authentication of clients, 2-30
Authorization

database and data access, 2-24, 2-32
to access services, 2-31

AUTHORIZE utility, 2-40
Authorizing unknown users, 2-27, 7-23, 7-36, 7-53

B
BIGINT(2) data type, 4-5
Bugcheck dump files, 8-4

C
CAST function

handling with TO_DATE object, 4-5
to match the DATE ANSI format, 4-3

Changes, 7-12, 7-17, 7-21
CHAR data types, 4-5
Character sets

default, 5-31
defining on the server, 5-30
error messages, 8-2
multibyte, 5-31
rules and recommendations, 5-33
specifying using the ALTER SESSION

statement, 5-33

Index-2

US7ASCII, 5-32
Choosing a service type, 2-23
CL8ISO8859P5 character set, 5-31
CL8MSWIN1251 character set, 5-32
Client applications

error messages returned to, 8-14
interacting with OCI Services for Oracle Rdb, 1-11
programming, 1-11
querying, 5-8
run against either Rdb or Oracle, 1-9

Client connection states
Session reusable services, 3-2
transaction reusable database services, 3-3

Client connections
monitoring, 3-2

Client system
error and trace messages, 8-9

Client systems
character set compatibility with server systems, 5-33
defining character sets, 5-30, 5-33
rules and recommendations for specifying character

sets, 5-33
Clients

definition, 1-1
identification and authentication, 2-30
SHOW CLIENTS command, 7-85 to 7-88
showing, 7-85 to 7-88

Client/server processing, 1-9
CLOSE command, 7-30
Closing an output file, 7-30
Commands

management commands, 7-1
Configuration

altering dispatcher, 2-11
altering server, 2-8
altering service, 2-14
copying, 2-10
creating dispatcher, 2-10
creating server, 2-6
creating service, 2-13
deleting dispatcher, 2-13
deleting server, 2-10
deleting service, 2-16
restarting dispatcher, 2-11
restarting service, 2-13

shutting down dispatcher, 2-11
shutting down service, 2-13

Configuration file
definition, 1-4
SET CONFIGURATION_FILE

command, 7-78 to 7-79
showing, 7-98

Configurations
OCI enables diverse combinations, 1-10

Configuring executor processes, 2-35
Confirmation prompt

providing, 7-80
CONNECT TO SERVER command, 7-31
Connect user name, 2-42

database access authorization, 2-24, 2-25, 2-39
default, 2-27
on OpenVMS, 2-39, 2-40, 2-42

Connecting to server, 7-31
Connection

establishing as current, 7-81
SET CONNECTION command, 7-81
SHOW CONNECTS command, 7-89

Copying a configuration, 2-10
CREATE DATABASE LINK statement

example, 5-34
CREATE DISPATCHER command, 7-43
CREATE SERVER command, 7-47
CREATE SERVICE command, 7-51
Creating

dispatcher, 2-10, 7-43 to 7-46
server, 2-6, 7-47 to 7-50
service, 2-13, 7-51 to 7-58

Cursor
management, 4-2
SQL semantics, 4-2

D
Data formatting, 4-2

logging information with ALTER SESSION
statement, 6-5

Data types
conversion, 4-2
decimal representation, 4-5
DOUBLE PRECISION, 4-6

Index-3

OCI Services for Oracle Rdb descriptions, 4-4
Database

accessing remote, 5-33
accessing with OCI applications, 1-11
connection using database links, 5-34
multischema, 4-6

Database access authorization, 2-32
connect user name, 2-24, 2-25, 2-42

on OpenVMS, 2-39, 2-40, 2-42
service owner, 2-25, 2-26, 2-42

on OpenVMS, 2-39, 2-40, 2-42, 2-43
universal service, 2-39

Database authorization, 2-32
Database links

restrictions, 5-35
Database objects

installed for Oracle Data Dictionary emulation, 4-5
Database service, 2-18, 2-27

recommendations, 2-23
session reusable, 2-21
setting database access authorization, 2-25, 2-26,

2-42
on OpenVMS, 2-40

transaction reusable, 2-21
DATE ANSI format, 4-3
DATE data type

mimicking with DATE VMS date, 4-4
Date literals

formatting, 4-3
DATE VMS data type

handling with TO_DATE object, 4-5
DATE VMS date, 4-3
DDL

enabling statements in an SQL initialization file, 5-7
Oracle Rdb mimics Oracle behavior, 4-2

Debug flags
executor log file, 8-5

Deciding
access to a service, 2-28
access to data, 2-28
database access authorization, 2-24
default connect user name, 2-27

Decimal representation, 4-5
DECnet software

error codes, 8-14

Default settings
dispatcher, 2-11
dispatcher objects, 2-11
server, 2-9
server objects, 2-9
service, 2-14

Deleting
dispatcher, 2-13
objects, 7-60 to 7-61
server, 2-10, 7-62
service, 2-16

Directing output, 7-83
Disabling logging, 8-6
DISCONNECT SERVER command, 7-59
Disconnecting from the server, 7-59
Dispatcher

altering, 7-12 to 7-16
attributes, 2-11
creating, 7-43 to 7-46
default settings, 2-11
definition

ALTER DISPATCHER command, 7-12 to 7-16
CREATE DISPATCHER command, 7-43 to 7-46

deleting, 2-13
log file, 8-3
restarting, 2-11
setting up, 2-16
SHOW DISPATCHER command, 7-90 to 7-92
SHUTDOWN DISPATCHER command, 7-100
START DISPATCHER command, 7-103
system management, 2-10
transport selection, 2-16

Display usernames, 5-27
Displaying command file output, 7-84
DOUBLE PRECISION data type, 4-6
DROP command, 7-60
DROP SERVER command, 7-62
Dump files

See Bugcheck dump files

E
Echoing confirmation prompt, 7-80
EL8ISO8859P7 character set, 5-31
EL8MSWIN1253 character set, 5-32

Index-4

Emulation
multischema database, 4-6
Oracle Data Dictionary, 4-5

Enables, 7-78
ENQLM account quota, 2-40
Environment commands, 7-1, 7-7
Environment switches, 7-1, 7-7
Error code file

location of DECnet, 8-14
location of TCP/IP, 8-14

Error handling
statement parsing, 4-3

Error log files
dispatcher, 8-3
executor, 8-4
monitor, 8-3

Error messages
logging with ALTER SESSION statement, 6-5
reporting problems to Oracle, 8-1
returned to OCI client applications, 8-14
when specifying character sets, 8-2

error messages
logged in the dispatcher log file, 7-15

Executor
definition, 1-2
kill, 7-70
log file, 8-4
process characteristics, 2-35
process configuration, 2-35

Executor failures and problems, 8-11
Executor processes

configuring mechanisms, 2-35
EXIT command, 7-63
Exiting

the SQLSRV_MANAGE environment, 7-63
External functions

using, 2-41
EXTRACT command, 7-64

F
Failure recovery, 8-9
Figure, 2-32
Files

bugcheck dump files, 8-4

dispatcher log file, 8-3
executor log file, 8-4
input, 7-9
monitor log file, 8-3
ODBC logging, 8-7
SQL initialization, 2-44
winsock logging, 8-8

Format
data, 4-2

Format string
providing with TO_CHAR function, 4-6

G
Getting started with SQL/Services, 2-1
GRANT USE ON SERVICE command, 7-67
Granting

access to a service, 2-28
privilege, 7-67

H
HELP command, 7-69

I
Identification of clients, 2-30
Initialization file

initializing the SQL execution environment, 5-7
syntax conventions when setting up universal

service, 5-15
Input

-input switch, 7-9
specifying an input file

SQLSRV_MANAGE, 7-9
-input switch, 7-9
installation

OCI_DISP dispatcher creation, 5-5
INTEGER data type, 4-5
Isolating problems

check in log files, 8-4
Isolation levels

setting with ALTER SESSION statement, 6-3
IW8ISO8859P8 character set, 5-31
IW8MSWIN1255 character set, 5-32

Index-5

J
JA16SJIS character set, 5-31
JA16VMS character set, 5-31
JTQUOTA account quota, 2-40

K
KILL EXECUTOR command, 7-70
Killing a specified

executor, 7-70 to 7-71
KO16KSC5601 character set, 5-31

L
Languages

supported character sets, 5-31
LIST OF BYTE VARYING column, 4-5
LOG clause

ALTER SESSION statement, 6-5
Log files, 8-2

dispatcher, 8-3
error, 8-3, 8-4
executor, 8-4
isolating problems, 8-4
monitor, 8-3

Logging
disabling, 8-6
enabling in an SQL initialization file, 5-7

Logical names, 2-45

M
management

SQLSRV_MANAGE client utility, 5-5
Management commands, 7-5
Mechanisms

security, 2-29
used to configure executor processes, 2-35
used to set user names, 2-35

Memory
setting size, 2-3

Message mapping with OCI, 4-1
Metadata

obtaining from Oracle Data Dictionary, 1-11
Oracle Data Dictionary emulation, 4-5

MODIFY command
AUTHORIZE utility, 2-41

Modify passwords, 5-25
Monitor

definition, 1-4
log file, 8-3
server activity, 3-1

Monitoring client connections, 3-2
MS Windows

network error codes, 8-14
Multibyte character sets, 5-31
Multischema databases, 4-6
Multischema emulation, 4-6

setting relaxed or strict emulation, 6-3

N
NATCONN.COM. See Rdb_NATCONN.COM
Native binary data types, 4-5
Native data types, 4-2
NETMBX privilege, 2-40
Network

DECnet error codes, 8-14
TCP/IP error codes, 8-14

Network errors, 8-13
Network transport problems, 8-10
network transports, 5-5
NLS parameters

changing with ALTER SESSION statement, 6-3
NLS_LANG logical name, 5-32
NUMBER data type, 4-5
Numeric data

formatting, 4-3
Numeric data types, 4-5

O
Objects

actions on (commands), 7-5
deleting, 7-60 to 7-61
DROP command, 7-60 to 7-61
DROP SERVER command, 7-62

OCI applications
configuring network communications, 5-5
cursor management, 4-2

Index-6

message mapping, 4-1
new and existing, 1-11
run against Oracle or Rdb, 1-9
using the emulated Oracle Data Dictionary, 4-5

OCI dispatcher
configuring, 5-5
OCI_DISP, 5-5

OCI message protocol, 5-5
OCI service

configuring, 5-5
OCI Services for Oracle Rdb

connect string, 5-34
processing features, 1-11, 5-7
translates character sets, 5-33

OCI technology, 1-10
connects client applications to Rdb, 1-10

OCI_DISP dispatcher, 5-5
starting, 5-20

OCI_SAMPLE variable, 5-22
ODBC logging, 8-7
Offline system management, 1-6
Online system management, 1-6
OPEN command, 7-72
Opening output file, 7-72
OpenVMS operating system

status code definitions, 8-14
Operating system process user name, 2-35
ORA_INIT stored procedure

execute SQL initialization statements, 5-7
storing DDL and other statements, 5-7

ORA-2025 error message, 5-36
ORA-2085 error message, 5-34
Oracle

DATABASE LINK clause, 5-33
error messages, 8-2

Oracle Call Interface (OCI), 1-10
Oracle Data Dictionary

client queries, 1-11
emulation, 4-5
multischema emulation, 4-6
preparing to serve the Rdb7 database, 5-2
supporting 31-character table names, 4-7
TO_CHAR object, 4-6
TO_DATE object, 4-5
TO_NUMBER object, 4-6

USERENV function, 4-6
Oracle Level1 dialect

DATE VMS data type, 4-5
SQL statement parsing, 4-3

Oracle Network Manager
changing error and trace file names, 8-9

Oracle Rdb
current user name, 2-37
session user name, 2-36
system user name, 2-36

Oracle SQL ALTER SESSION statement
See ALTER SESSION statement

Oracle SQL/Services
database service recommendations, 2-23
environment switches, 7-7
initialization file, 5-7
objects

actions on (commands), 7-5
using the GUI to define the OCI service, 5-6

Oracle System Identifier (SID)
used for database links, 5-34

Output
file

closing, 7-30
-output switch, 7-10
SET OUTPUT command, 7-83
specifying an output file, 7-10

-output switch, 7-10

P
PAGFILCNT system parameter, 2-40
Parsing

SQL statements, 4-3
PGFLQUOTA system parameter, 2-40
Planning a server, 2-2
PL/SQL statements

using over database links, 5-35
Portable data types, 4-2
Preface, 1-xv
Prepare a database, 5-23
Privilege

grant, 7-67 to 7-68
GRANT USE ON SERVICE

command, 7-67 to 7-68

Index-7

needed for system management, 1-5
revoke, 7-76 to 7-77
REVOKE USE ON SERVICE

command, 7-76 to 7-77
Pro* compilers

client applications access databases, 1-11
Problem Reporting, 8-1
Problems

check in log files, 8-4
Process failures

dispatcher, 8-9
executor, 8-10
monitor, 8-9

R
Rdb

referencing database tables from Oracle, 5-33
RDB$DBHANDLE alias

setting up in the ATTACH statement, 5-15
RDB$DDTM_XG_INFO, 2-45
RDB_NATCONN.COM, 5-22

DROP, 5-24
MODIFY_USER, 5-25
NEW_USER, 5-24
PREPARE, 5-23
REMOVE_USER, 5-27
SHOW_USERS, 5-27
UPGRADE, 5-23

Recovery, 8-9
Remove

database, 5-24
user name, 5-27

RESTART SERVER command, 7-74
Restarting

dispatcher, 2-11
server, 7-74
service, 2-13

Restricting access to a service, 2-28
REVOKE USE ON SERVICE command, 7-76
Revoking a privilege, 7-76

S
Security

client identification and authentication, 2-30
database and data access authorization, 2-32
how the tiers work, 2-32
mechanisms, 2-29
on servers, 2-32
service access authorization, 2-31

Selecting service owner user name, 2-39
Server

altering, 7-17 to 7-20
architecture, 1-3
attributes, 2-9
configuration_file, 7-78
CONNECT TO SERVER command, 7-31 to 7-34
connecting to, 7-31 to 7-34
creating, 7-47 to 7-50
default settings, 2-9
definition

ALTER SERVER command, 7-17 to 7-20
CREATE SERVER command, 7-47 to 7-50

deleting, 2-10, 7-62
DISCONNECT SERVER command, 7-59
disconnecting from, 7-59
management commands, 7-1
management utilities, 1-5
monitoring activity, 3-1
operating system independence, 1-10
passing information to with ALTER SESSION

statement, 4-2
planning, 2-2
RESTART SERVER command, 7-74 to 7-75
restarting, 7-74
SET CONNECTION command, 7-81 to 7-82
SHOW SERVER command, 7-93 to 7-94
showing, 7-93 to 7-94
SHUTDOWN SERVER command, 7-101
shutting down, 7-101
START SERVER command, 7-104 to 7-105
starting, 7-104 to 7-105
system, 1-2
system management, 2-6
system requirements, 2-2

Server object definitions
extracting, 7-64

Server systems
defining character sets, 5-30

Index-8

example of defining character sets, 5-32
rules and recommendations for specifying character

sets, 5-33
Server-side solution, 1-10
Service

access
authorization, 2-31, 2-32
restricting, 2-28
to data, 2-28

altering, 7-21 to 7-29, 7-34 to 7-42
attributes, 2-14
choosing a service type, 2-23
creating, 7-51 to 7-58
database, 2-27
database access authorization, 2-24
default connect user name, 2-27
default settings, 2-14
definition, 1-2

ALTER SERVICE command, 7-21 to 7-29,
7-34 to 7-42

CREATE SERVICE command, 7-51 to 7-58
deleting, 2-16
GRANT USE ON SERVICE command, 7-67
granting access, 2-28
owner, 2-42

database access authorization, 2-25, 2-26
on OpenVMS, 2-39, 2-40, 2-43

restarting, 2-13
session reusable database, 2-21
session reusable universal, 2-20
session reuse, 2-18
SHOW SERVICE command, 7-95 to 7-97
showing, 7-95 to 7-97
SHUTDOWN SERVICE command, 7-102
shutting down, 7-102
START SERVICE command, 7-106
starting, 7-106
system management, 2-13
transaction reusable database, 2-22, 2-23
transaction reuse, 2-19
universal, 2-18, 2-27

service, 7-34
Service owner

database access authorization, 2-25, 2-26, 2-39
Service owner user name

selecting, 2-39
Session reusable database service, 2-21
Session reusable universal service, 2-20
Session reuse service, 2-18
Sessions

recommendations for character set
specification, 5-33

SET CONFIGURATION_FILE command, 7-78
SET CONFIRM command, 7-80
SET CONNECTION command, 7-81
SET ISOLATION LEVEL

READ COMMITTED clause, 6-3
SERIALIZABLE clause, 6-3

SET NLS clause
ALTER SESSION statement, 6-3

SET OUTPUT command, 7-83
SET SCHEMA EMULATION

RELAXED clause, 6-3
STRICT clause, 6-3

SET VERIFY command, 7-84
Setting

configuration file, 7-78 to 7-79
confirm, 7-80
connection, 7-81 to 7-82
mechanisms used to set user names, 2-35
output, 7-83
SET VERIFY command, 7-84
shared memory size, 2-3
SHOW SETTINGS command, 7-98
showing, 7-98
verification, 7-84
verify, 7-84

Setting up
dispatchers, 2-16
security, 2-29

Shared memory size, 2-3
SHOW CLIENTS command, 7-85
SHOW commands

monitoring server activity, 3-1
SHOW CONNECTS command, 7-89
SHOW DISPATCHER command, 7-90
SHOW SERVER command, 7-93
SHOW SERVICE command, 7-95
SHOW SETTINGS command, 7-98
SHOW VERSION command, 7-99

Index-9

Showing
clients, 7-85 to 7-88
connections, 7-89
dispatcher, 7-90 to 7-92
server, 7-93 to 7-94
service, 7-95 to 7-97
settings, 7-98
usernames, 5-27
version, 7-99

SHUTDOWN DISPATCHER command, 7-100
SHUTDOWN SERVER command, 7-101
SHUTDOWN SERVICE command, 7-102
Shutting down

dispatcher, 2-11, 7-100
server, 7-101
service, 2-13, 7-102

SID parameter
used for database links, 5-34

SQL ALTER SESSION statement
See ALTER SESSION statement

SQL initialization file, 2-44, 5-7
syntax conventions, 5-15

SQL statements
cursor semantics, 4-2
emulating Oracle semantics, 1-9
in an SQL initialization file, 5-7
logging transfers between client and server, 6-5
modifications made by OCI Services for Oracle

Rdb, 4-3
parsing, 4-3
parsing failures, 4-3
run against either Oracle or Rdb databases, 1-11
using ALTER SESSION to specify character

sets, 5-33
SQL*Net

connects Oracle clients to Rdb servers, 1-9
SQL_FUNCTIONS command

invoking, 5-3
SQLNET_BLOB, 2-45
SQLNET_BUGCHECK_FILE, 2-45
SQLNET_DEBUG_FLAGS, 2-45
SQLNET_DOMAIN, 2-45
SQLNET_RECO_USER, 2-45
SQLNET_STRUCTURED_DATE_TYPES, 2-45
SQLNET_TIMESTAMP_DATE_TYPE, 2-45

SQLNET_VALIDATE_PROGRAM, 2-45
SQLSRV manage utility

@ indirect command file, 7-11
SQLSRV$LOG_CONNECTIONS, 2-45
SQLSRV$MAX_EXECUTOR_FAILURES, 2-45
SQLSRV_DISP_DUMPPATH, 2-45
SQLSRV_DISP_LOGPATH, 2-45
SQLSRV_EXEC_LOG, 2-45
SQLSRV_MANAGE client

definition, 1-4
SQLSRV_MANAGE utility

@ indirect command file, 7-11, 7-64
closing output file, 7-30
exiting, 7-63
getting help, 7-69
killing executor, 7-70
offline management, 1-7
online management, 1-6
opening output file, 7-72
privileges needed, 1-5
running, 1-6
specifying input file, 7-9
specifying output file, 7-10
system management, 1-6

standard kit
installing Oracle functions, 5-3

START DISPATCHER command, 7-103
START SERVER command, 7-104
START SERVICE command, 7-106
Starting

dispatcher, 7-103
server, 7-104 to 7-105
service, 7-106

Storage areas, 2-40
SYSGEN utility

using, 2-40
System management

copying a configuration, 2-10
dispatcher, 2-10
monitoring server activity, 3-1
offline, 1-6
online, 1-6
planning a server, 2-2
privileges needed, 1-5
server, 2-6

Index-10

server system requirements, 2-2
service, 2-13
setting shared memory size, 2-3
setting up

dispatchers, 2-16
security, 2-29

SQLSRV_MANAGE utility, 1-6
System user name for Oracle Rdb, 2-36

T
Table names

supporting 31 characters, 4-7
TCP/IP network transport, 5-5
TCP/IP software

error codes, 8-14
TH8TISASCII character set, 5-31
TINYINT column, 4-5
TMPMBX privilege, 2-40
TNSNAMES.ORA file, 5-34
TO_CHAR function

Oracle Data Dictionary emulation, 4-6
processing, 4-2
providing a format string, 4-6

TO_DATE function
Oracle Data Dictionary emulation, 4-5
processing, 4-2
statement parsing, 4-3

TO_NUMBER function
Oracle Data Dictionary emulation, 4-6
processing, 4-2

Transaction reusable database service, 2-22
Transaction reuse service, 2-19
Transport selection

dispatchers, 2-16

U
Universal service, 2-18, 2-27

session reusable, 2-20
setting database access authorization, 2-25, 2-39,

2-42
syntax conventions for SQL initialization files, 5-15

Unknown users
authorizing, 2-27, 7-23, 7-36, 7-53

Upgrade a database, 5-23
US7ASCII character set, 5-32
USE privilege

granting, 7-67
revoking, 7-76

User authentication and authorization problems, 8-11
User name

connect user name, 2-24, 2-25, 2-39
operating system process, 2-35
Oracle Rdb current, 2-37
Oracle Rdb session, 2-36
Oracle Rdb system, 2-36

USERENV function, 4-6
Using an SQL initialization file, 2-44
Using external functions, 2-41
UTF8 character set, 5-32
Utilities

system management, 1-5

V
VARCHAR data types, 4-5, 4-6
Verifying command file input, 7-84
Version

SHOW VERSION command, 7-99
VIRTUALPAGECNT system parameter, 2-40

W
.WE8DEC character set, 5-31
WE8ISO8859P1 character set, 5-31
WE8ISO8859P15 character set, 5-31
WE8MSWIN1252 character set, 5-32
Winsock logging, 8-8

Z
ZHS16CGB2312-80 character set, 5-31
ZHS32GBI1030 character set, 5-32
ZHT16BIG5 character set, 5-31

