
Oracle TimesTen
In-Memory Database

TTClasses Guide

Release 7.0

 B31691-03

Copyright ©1996, 2007, Oracle. All rights reserved.
ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.
The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.
Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.
The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.
September 2007
Printed in the United States of America

Contents
About this Guide

TimesTen documentation . 1
Background reading . 2
Conventions used in this guide 3
Technical Support . 5

1 Introduction to TTClasses
Overview of TTClasses . 7
Scope of TTClasses. . 7

2 Compiling TTClasses
 Compiling TTClasses on UNIX. 9
Compiling TTClasses on Windows 9
Compilation options . 10

Compiling TTClasses for client/server mode 10
Installing TTClasses after compilation (UNIX only) 11
TTClasses compiler macros . 11

TTEXCEPT: Throw C++ exceptions 11
USE_OLD_CPP_STREAMS: Use old C++ iostream code 11
TTDEBUG:Generate additional debugging and error checking logic . . . 12
TT_64BIT: Use TTClasses with 64-bit TimesTen 12
Platform-specific compiler macros 12

3 Class Descriptions
Commonly used TTClasses . 14

TTStatus . 15
TTConnection . 19
TTCmd . 25
TTConnectionPool . 44
TTGlobal (logging) . 47

System catalog classes . 50
TTCatalog . . 51
TTCatalogTable. . 54
TTCatalogColumn. . 56
TTCatalogIndex . 58

XLA classes . 60
TTXlaPersistConnection . 61
TTXlaRowViewer . . 65
iii

TTXlaTableHandler . 69
TTXlaTableList . . 72

Internal classes . 74

4 Using TTClasses
Using TTCmd, TTConnection, and TTStatus. 75
TTClasses logging . 77
Using XLA classes . . 78
Acknowledging XLA updates at transaction boundaries 78

Index
iv Oracle TimesTen In-Memory Database TTClasses Guide

About this Guide
Oracle TimesTen In-Memory Database is a high-performance, in-memory
database that supports the ODBC and JDBC interfaces. The TimesTen C++
Interface Classes (TTClasses) library was written to provide an easy-to-use,
high-performance interface to Oracle TimesTen In-Memory Database. This C++
class library provides wrappers around the most common ODBC functionality.

This guide is for application developers who use and administer TimesTen
ODBC.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language) and ODBC.

TimesTen documentation
TimesTen documentation is available on the product distribution media and on
the Oracle Technology Network:
http://www.oracle.com/technology/documentation/timesten_doc.html.

Including this guide, the TimesTen documentation set consists of these
documents:

Book Titles Description

Oracle TimesTen In-Memory
Database Installation Guide

Contains information needed to install and configure
TimesTen on all supported platforms.

Oracle TimesTen In-Memory
Database Introduction

Describes all the available features in the Oracle
TimesTen In-Memory Database.

Oracle TimesTen In-Memory
Database Operations Guide

Provides information on configuring TimesTen and
using the ttIsql utility to manage a data store. This
guide also provides a basic tutorial for TimesTen.

Oracle TimesTen In-Memory
Database C Developer’s and
Reference Guide
and the
Oracle TimesTen In-Memory
Database Java Developer’s
and Reference Guide

Provide information on how to use the full set of
available features in TimesTen to develop and
implement applications that use TimesTen.

Oracle TimesTen In-Memory
Database API Reference
Guide

Describes all TimesTen utilities, procedures, APIs and
provides a reference to other features of TimesTen.
About this Guide 1

http://www.oracle.com/technology/documentation/timesten_doc.html

Background reading
For a Java reference, see:
• Horstmann, Cay and Gary Cornell. Core Java(TM) 2, Volume I--

Fundamentals (7th Edition) (Core Java 2). Prentice Hall PTR; 7 edition
(August 17, 2004).

A list of books about ODBC and SQL is in the Microsoft ODBC manual
included in your developer’s kit. Your developer’s kit includes the appropriate
ODBC manual for your platform:
• Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide provides all

relevant information on ODBC for Windows developers.
• Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, included

online in PDF format, provides information on ODBC for UNIX developers.

For a conceptual overview and programming how-to of ODBC, see:

Oracle TimesTen In-Memory
Database SQL Reference
Guide

Contains a complete reference to all TimesTen SQL
statements, expressions and functions, including
TimesTen SQL extensions.

Oracle TimesTen In-Memory
Database Error Messages
and SNMP Traps

Contains a complete reference to the TimesTen error
messages and information on using SNMP Traps with
TimesTen.

Oracle TimesTen In-Memory
Database TTClasses Guide

Describes how to use the TTClasses C++ API to use
the features available in TimesTen to develop and
implement applications.

TimesTen to TimesTen
Replication Guide

Provides information to help you understand how
TimesTen Replication works and step-by-step
instructions and examples that show how to perform
the most commonly needed tasks.
This guide is for application developers who use and
administer TimesTen and for system administrators
who configure and manage TimesTen Replication.

TimesTen Cache Connect to
Oracle Guide

Describes how to use Cache Connect to cache Oracle
data in TimesTen data stores. This guide is for
developers who use and administer TimesTen for
caching Oracle data.

Oracle TimesTen In-Memory
Database Troubleshooting
Procedures Guide

Provides information and solutions for handling
problems that may arise while developing applications
that work with TimesTen, or while configuring or
managing TimesTen.
2 Oracle TimesTen In-Memory Database TTClasses Guide

• Kyle Geiger. Inside ODBC. Redmond, WA: Microsoft Press. 1995.

For a review of SQL, see:
• Melton, Jim and Simon, Alan R. Understanding the New SQL: A Complete

Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.
• Groff, James R. / Weinberg, Paul N. SQL: The Complete Reference, Second

Edition. McGraw-Hill Osborne Media. 2002.

For information about Unicode, see:
• The Unicode Consortium, The Unicode Standard, Version 5.0,

Addison-Wesley Professional, 2006.
• The Unicode Consortium Home Page at http://www.unicode.org

Conventions used in this guide
TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.

TimesTen documentation uses these typographical conventions:

TimesTen documentation uses these conventions in command line examples and
descriptions:

If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the .odbc.ini. or ttconnect.ini file.

italic code
font

A variable in a code example that you must replace.

For example:
Driver=install_dir/lib/libtten.sl
Replace install_dir with the path of your TimesTen
installation directory.

If you see... It means...

fixed width
italics

Variable; must be replaced with an appropriate value. In
some cases, such as for parameter values in built-in
procedures, you may need to single quote (' ') the value.

[] Square brackets indicate that an item in a command line
is optional.
About this Guide 3

TimesTen documentation uses these variables to identify path, file and user
names:

{ } Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

... An ellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.

If you see... It means...

install_dir The path that represents the directory where the current
release of TimesTen is installed.

TTinstance The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

release or rr Two digits that represent the first two digits of the current
TimesTen release number, with or without a dot. For
example, 51 or 7.0 represents TimesTen Release 7.0.

jdk_version Two digits that represent the version number of the
major JDK release. Specifically, 14 represent JDK 1.4;
5 represents JDK 5.

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.
4 Oracle TimesTen In-Memory Database TTClasses Guide

Technical Support
For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html
About this Guide 5

http://www.oracle.com/support/contact.html

6 Oracle TimesTen In-Memory Database TTClasses Guide

1
Introduction to TTClasses

This chapter includes the following topics:
• Overview of TTClasses
• Scope of TTClasses

Overview of TTClasses
The Oracle TimesTen In-Memory Database provides high performance through a
standard ODBC and SQL interface. Unlike other RDBMS implementations of
ODBC, access to TimesTen row ODBC is extremely fast. The TimesTen C++
Interface Classes (TTClasses) was developed to meet the demand for an API that
is easier to use than ODBC, but does not sacrifice performance. This C++ class
library provides wrappers around the most common ODBC functionality. Using
this library allows easier interaction with TimesTen data stores.

In addition, the TTClasses library is intended to promote best practices when
writing application software that uses the TimesTen Data Manager. The library
uses TimesTen in an optimal manner. For example, autocommit is disabled by
default. Parameterized SQL is strongly encouraged, and its use is greatly
simplified when compared to hand-coded ODBC.

TimesTen includes demos for TTClasses in the install_dir/demo/ttclasses
directory.

Scope of TTClasses
TTClasses is a wrapper around all major ODBC functionality.

In addition to providing a C++ interface to TimesTen’s ODBC interface,
TTClasses also provides an interface to TimesTen’s Transaction Log API (XLA).
XLA allows an application to monitor one or more tables in a TimesTen data
store. When other applications change that table, the changes are reported
through XLA to the monitoring application. TTClasses provides an easy-to-use
interface to the most commonly used aspects of XLA functionality. For more
information about XLA, see Chapter 3, “XLA and TimesTen Event
Management” in Oracle TimesTen In-Memory Database C Developer’s and
Reference Guide.
Introduction to TTClasses 7

Note: TTClasses has been integrated with TimesTen since release 6.0. Previous
versions of TTClasses were distributed separately from TimesTen, so earlier
versions of TTClasses were compatible with multiple TimesTen versions.
Starting with TimesTen 6.0, TTClasses is no longer tested or supported in
combination with any other TimesTen release besides the release that it ships
with.
8 Oracle TimesTen In-Memory Database TTClasses Guide

2
Compiling TTClasses

TTClasses comes preconfigured during TimesTen installation. To compile
TTClasses, use the make (UNIX) or nmake (Windows) command.

 Compiling TTClasses on UNIX
To build TTClasses and run the TTClasses demo programs, ensure that your shell
environment variables are set correctly. Assume your TimesTen 7.0 instance is
named tt70 and is installed at the following location:
/opt/TimesTen/tt70

Run one of the following scripts or add a call to one of these scripts in your login
initialization script (.profile or .cshrc):
/opt/TimesTen/tt70/bin/ttenv.sh (sh/ksh/bash)

/opt/TimesTen/tt70/bin/ttenv.csh (csh/tcsh)

If you choose an instance name other than tt70, use that name in place of tt70 in
the above directory paths.

After your PATH and shared library load path are configured properly, change to
the TTClasses directory and compile TTClasses:
$ cd /opt/TimesTen/tt70/ttclasses
$ make

Compiling TTClasses on Windows
Change to the TTClasses installation directory. The default location is:
C:\TimesTen\tt70\ttclasses

To compile this Makefile, ensure that the PATH, INCLUDE, and LIB
environment variables point to the correct Visual Studio directories. There is a
batch file named “VCVARS32.BAT” (Visual C++ 6.0) or “VSVARS32.BAT”
(Visual Studio .NET) in the Visual Studio directory tree that will set up your
PATH, INCLUDE, and LIB environment variables correctly. Run this batch file.
 9

If you are using Visual Studio .NET:
C:\TimesTen\tt70\ttclasses> nmake /f Makefile.vsdotnet

If you are using VC++ 6.0:
C:\TimesTen\tt70\ttclasses> nmake

Compilation options
The following “make target” options are available when you compile TTClasses:
• all: Build a shared optimized library
• shared_opt: Build a shared optimized library
• shared_debug: Build a shared debug library
• static_opt: Build a static optimized library
• static_debug: Build a static debug library
• opt: Build the optimized libraries (shared and static)
• debug: Build the debug libraries (shared and static)
• clean: Delete the TTClasses libraries and object files

Note: If you do not specify an option when you compile, the default is all.

To specify a make target, use the name of the make target on the command line.

To build a shared, debug version of TTClasses:

(Unix)
$ make clean shared_debug

(Windows)
C:\TimesTen\tt70\ttclasses> nmake clean shared_debug

Compiling TTClasses for client/server mode
To compile TTClasses for client/server mode, use the “MakefileCS” makefile.

Example 2.1 To build a client/server version of TTClasses:

(Unix)
$ make -f MakefileCS clean all

(Windows)
10 Oracle TimesTen In-Memory Database TTClasses Guide

C:\TimesTen\tt70\ttclasses> nmake /f MakefileCS clean all

Installing TTClasses after compilation (UNIX only)
After compilation, install the library so all users of the TimesTen instance can use
TTClasses. This step is not part of compilation because different privileges are
required for installing TTClasses than for compiling TTClasses.

Note that installation occurs automatically after compilation on Windows.

Example 2.2 $ cd /opt/TimesTen/tt70/ttclasses
$ make install

TTClasses compiler macros
Most users do not need to manipulate the TTClasses Makefile. If you need to
modify the TTClasses Makefile manually, you can add flags for the TTClasses
compiler macros to the Makefile. For Unix, add –D<flagname>; for Windows,
add /D<flagname>.

This section includes information about the following compiler macros:
• TTEXCEPT: Throw C++ exceptions
• USE_OLD_CPP_STREAMS: Use old C++ iostream code
• TTDEBUG:Generate additional debugging and error checking logic
• TT_64BIT: Use TTClasses with 64-bit TimesTen

See also “Platform-specific compiler macros” on page 12.

TTEXCEPT: Throw C++ exceptions
Compile TTClasses with the -DTTEXCEPT flag to make TTClasses throw C++
exceptions. All of the TTClasses demo programs assume that exceptions are
turned on, and all TTClasses testing is done with exceptions turned on.

If you use exceptions, put try/catch blocks around all TTClasses function calls
and catch exceptions of type “TTStatus”.

If you do not use exceptions, you must check the TTStatus::rc value after every
TTClasses function call (checking for != SQL_SUCCESS). See “TTStatus” on
page 15.

USE_OLD_CPP_STREAMS: Use old C++ iostream code
There are at least two major types of C++ streams, and they are not compatible
with each other. Do not use both stream implementations inside a program.

If your program uses old C++ streams (your code has #include <iostream.h>),
then you must compile TTClasses with the
Compiling TTClasses 11

-DUSE_OLD_CPP_STREAMS flag to be compatible with the rest of your program
code.

If your program uses new C++ streams (your code has #include <iostream>),
then you must not use this compiler macro.

TTDEBUG:Generate additional debugging and error
checking logic
Compile TTClasses with -DTTDEBUG to generate extra debugging information.
This extra information reduces performance slightly, so use this flag only in
development (not production) systems.

TT_64BIT: Use TTClasses with 64-bit TimesTen
Compile TTClasses with -DTT_64BIT if you are writing a 64-bit TimesTen
application.

Note that 64-bit TTClasses has been tested on AIX, HP-UX, Solaris, Red Hat
Linux, and Tru64.

Platform-specific compiler macros
The following compiler macros are specific to a particular platform or compiler
combination. You should not have to specify these compiler macros manually.
Their use is determined by the Makefile chosen by the “configure” program.

GCC
Compile TTClasses with the -DGCC flag when using gcc on any platform.

HPUX
Compile TTClasses with the -DHPUX flag when compiling on HP-UX.

MERANT
Compile TTClasses with the -DMERANT flag when using the Merant ODBC
Driver Manager.
12 Oracle TimesTen In-Memory Database TTClasses Guide

3
Class Descriptions

This chapter contains descriptions of all classes in the external interface to
TTClasses and brief descriptions of some of the internal TTClasses. It is divided
into the following sections:
• Commonly used TTClasses
• System catalog classes
• XLA classes
• Internal classes
Class Descriptions 13

Commonly used TTClasses
This section includes the following classes:
• TTStatus
• TTConnection
• TTCmd
• TTConnectionPool
• TTGlobal (logging)
14 Oracle TimesTen In-Memory Database TTClasses Guide

TTStatus
The TTStatus class is used by other classes in the TTClasses collection to report
errors and warnings. You can think of TTStatus as a value-added C++ wrapper
around the SQLError ODBC function.

Subclasses
TTStatus has the following subclasses:
• TTError
• TTWarning

TTError
TTError is a subclass of TTStatus and is used to encapsulate ODBC errors (return
codes: SQL_ERROR, SQL_INVALID_HANDLE).

TTWarning
TTWarning is a subclass of TTStatus and is used to encapsulate ODBC warnings
(return code: SQL_SUCCESS_WITH_INFO).

ODBC warnings are usually not as serious as ODBC errors and should be
handled with different logic. Logging ODBC warnings to an application’s log is
usually appropriate, but ODBC errors usually need to be programmatically
handled.

Public Members

Member Description

rc Return code from the failing ODBC call. Typical values
for this field are SQL_SUCCESS,
SQL_SUCCESS_WITH_INFO, SQL_ERROR,
SQL_NO_DATA_FOUND, and
SQL_INVALID_HANDLE.

native_error TimesTen native error number (if any) for the failing
ODBC call.

odbc_error ODBC error code for the failing ODBC call.

err_msg ASCII printable error message for the failing ODBC
call.
Class Descriptions 15

Public Methods

ostream
friend ostream& operator<<(ostream&, TTStatus&)

Example 3.1 This method can be used to print the error to a stream.
TTStatus stat;
// ...
cerr << "Error fetching data: " << stat << endl;

Usage
TTStatus objects are used in one of two different ways, depending on whether the
library was built with the TTEXCEPT preprocessor variable defined. Defining
TTEXCEPT is the default and recommended use of TTClasses.

If the library was built with the TTEXCEPT preprocessor variable defined,
TTStatus objects are thrown as exceptions whenever an error occurs. This allows
C++ applications to use {try/catch} in C++ to detect and recover from failure,
resulting in very readable source code.

Example 3.2 This example shows how to use TTStatus with TTEXCEPT defined.
try {
 cmd1.Prepare(&conn, "select * from foo", stat);
 cmd2.Prepare(&conn, "insert into foo values(?,?,?)",
 stat);
 cmd3.Prepare(&conn, "update foo set x = ? where y=?",
 stat);
 conn.Commit(stat);
}
catch (TTStatus st) {
 cerr << "Error preparing statements: " << st << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}

If you build TTClasses without the TTEXCEPT preprocessor variable defined,
TTStatus objects are returned by reference from most method calls. The caller
must explicitly check for errors after each method call, as demonstrated in the
next example.

Example 3.3 This example shows how to use TTStatus without TTEXCEPT defined.

Method Description

ostream Prints errors to a stream.
16 Oracle TimesTen In-Memory Database TTClasses Guide

TTStatus stat;
[...]
cmd1.Prepare(&conn, "select * from foo", stat);
if (stat.rc) {
 cerr << "Error preparing statement: " << stat << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}
cmd2.Prepare(&conn, "insert into foo values(?,?,?)",
 stat);
if (stat.rc) {
 cerr << "Error preparing statement: " << stat << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}
cmd3.Prepare(&conn, "update foo set x = ? where y = ?",
 stat);
if (stat.rc) {
 cerr << "Error preparing statement: " << stat << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}
conn.Commit(stat) ;
if (stat.rc) {
 cerr << "Error in commit: " << stat << endl;
 // Rollback, exit(), throw -- whatever is appropriate
}

Note that with exceptions enabled, TTError objects are thrown for ODBC errors,
and TTWarnings are thrown for ODBC warnings.

Example 3.4 This example illustrates how TTError and TTWarning relate to TTStatus. The
two code fragments shown have identical behavior.
// first code fragment: using TTStatus
try {
 // some TTClasses method calls
}
catch (TTStatus st) {
 if (st.rc == SQL_SUCCESS_WITH_INFO) {
 cerr << "Warning encountered: " << st << endl;
 }
 else {
 cerr << "Error encountered: " << st << endl;
 }
}

// second code fragment: using TTError & TTWarning
try {
 // some TTClasses method calls
}
catch (TTWarning warn) {
Class Descriptions 17

 cerr << "Warning encountered: " << warn << endl;
}
catch (TTError err) {
 cerr << "Error encountered: " << st << endl;
}

18 Oracle TimesTen In-Memory Database TTClasses Guide

TTConnection
The TTConnection class encapsulates the concept of a connection to a TimesTen
database. You can think of TTConnection as a value-added C++ wrapper around
the ODBC HDBC handle.

Public Members
None.

Public Methods

Method Description

Connect Opens a new connection to a TimesTen data
store.

Disconnect Closes a connection to a TimesTen data store.

Rollback Rolls back changes made to the database
through this connection since the last call to
Commit() or Rollback() methods.

isConnected Returns true if the object is connected to
TimesTen.

getHdbc Returns the ODBC level “HDBC” associated
with this connection.

SetIsoReadCommitted Sets the transaction isolation level of the
connection to be TXN_READ_COMMITTED.

SetIsoSerializable Sets the transaction isolation level of the
connection to be TXN_SERIALIZABLE.

CheckpointBlocking Performs a blocking checkpoint operation on
the data store by calling the TimesTen built-in
procedure ttCkptBlocking.

CheckpointNonBlocking Performs a “true fuzzy” checkpoint operation
on the data store by calling the TimesTen built-
in procedure ttCkpt.

DurableCommit Performs a durable commit operation on the
data store.

SetLockWait Sets the lock timeout interval for the connection
by calling the TimesTen built-in procedure
ttLockWait.
Class Descriptions 19

Connect
void Connect (const char* connStr, TTStatus&)

Opens a new connection to a TimesTen data store. The connection string
specified in the connStr parameter is used to create the connection.

Example 3.5 TTConnection conn;
TTStatus stat;
conn.Connect("DSN=mydsn", stat);
// Now this connection can be used to interact with
// TimesTen

If exceptions are enabled, a TTStatus object is thrown as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method contains information about errors upon return from the
method.

Calling this method sometimes results in warnings that can often be safely
ignored. The following logic is preferred when using ::Connect().
try {
 conn.Connect(stat);
}
catch (TTWarning warn) {
 // warnings from ::Connect() are usually informational
 cerr << ‘’Warning while connecting to TimesTen: ‘’
 << warn << endl;
}
catch (TTError err) {
 // handle the error; this could be a serious problem

SetPrefetchCloseOn Turns on the TT_PREFETCH_CLOSE
connection option. This is useful for optimizing
SELECT query performance for client/server
connections to TimesTen.

SetPrefetchCloseOff Turns off the TT_PREFETCH_CLOSE
connection option.

SetPrefetchCount Turns off the TT_PREFETCH_CLOSE
connection option.

SetAutocommitOff Sets AUTOCOMMIT off for the connection.

SetAutoCommitOn Sets AUTOCOMMIT on for the connection.

GetTTContext Returns the connection’s context value.

Method Description
20 Oracle TimesTen In-Memory Database TTClasses Guide

}

Disconnect
void Disconnect (TTStatus&)

Closes a connection to a TimesTen data store.

If exceptions are enabled, a TTStatus object is thrown as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method contains information about errors upon return from the
method.

Commit
void Commit (TTStatus&)

Commits a transaction to the TimesTen database. All other operations performed
on this connection since the last call to the Commit() or Rollback() methods will
be committed.

If exceptions are enabled, a TTStatus object is thrown as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method contains information about errors upon return from the
method.

Rollback
void Rollback (TTStatus&)

Abandons a transaction. Any changes made to the database through this
connection since the last call to Commit() or Rollback() methods will be undone.

If exceptions are enabled, a TTStatus object is thrown as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method contains information about errors upon return from the
method.

isConnected
bool isConnected()

Returns true if the object is connected to TimesTen (using the Connect method)
or false if not.

getHdbc
HDBC getHdbc()

Returns the ODBC level “HDBC” associated with this connection.

SetIsoReadCommitted
void SetIsoReadCommitted (TTStatus &)

Sets the transaction isolation level of the connection to be
TXN_READ_COMMITTED. Read-committed isolation offers the best
Class Descriptions 21

combination of single-transaction performance and good multiconnection
concurrency.

SetIsoSerializable
void SetIsoSerializable (TTStatus &)

Sets the transaction isolation level of the connection to be
TXN_SERIALIZABLE. In general, serializable isolation offers fair individual
transaction performance but extremely poor concurrency. READ_COMMITTED
isolation level (see method SetIsoReadCommitted()) should be preferred over
SERIALIZABLE isolation level in almost all situations.

CheckpointBlocking
void CheckpointBlocking (int timeout, int retries, TTStatus &)

Performs a blocking checkpoint operation on the data store by calling the
TimesTen ttCkptBlocking built-in procedure with the timeout and retries
parameters.

See Oracle TimesTen In-Memory Database API Reference Guide for more
information about ttCkptBlocking.

CheckpointNonBlocking
void CheckpointNonBlocking (TTStatus &)

Note: This is the preferred type of checkpoint.

Performs a “true fuzzy” checkpoint operation on the data store by calling the
TimesTen ttCkpt built-in procedure.

See Oracle TimesTen In-Memory Database API Reference Guide for more
information about ttCkpt.

DurableCommit
void DurableCommit (TTStatus &)

Performs a durable commit operation on the data store. A durable commit
operation flushes the in-memory log buffer to disk. It calls the TimesTen
ttDurableCommit built-in procedure. See Oracle TimesTen In-Memory
Database API Reference Guide for more information about ttDurableCommit.

SetLockWait
void SetLockWait (int secs, TTStatus &)

Sets the lock timeout interval for the connection by calling the TimesTen built-in
procedure ttLockWait with the secs parameter. In general, a 2 or 3 second lock
timeout is sufficient for most applications. The default lock timeout interval is 10
seconds.
22 Oracle TimesTen In-Memory Database TTClasses Guide

See Oracle TimesTen In-Memory Database API Reference Guide for more
information about ttLockWait.

SetPrefetchCloseOn
void SetPrefetchCloseOn (TTStatus &)

Turns on the TT_PREFETCH_CLOSE connection option, which is useful for
optimizing SELECT query performance for client/server connections to
TimesTen. Note that this method provides no benefit for directly connected
TimesTen applications (for example, non-client/server programs).

See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory
Database C Developer’s and Reference Guide for more information about
TT_PREFETCH_CLOSE.

SetPrefetchCloseOff
void SetPrefetchCloseOff (TTStatus &)

Turns off the TT_PREFETCH_CLOSE connection option.

SetPrefetchCount
void SetPrefetchCount (int numrows, TTStatus &)

Allows a user application to tune the number of rows that the TimesTen ODBC
driver internally fetches at a time for a SELECT statement. numrows must be
between 1 and 128, inclusive.

Note: This method is not equivalent to executing TTCmd::FetchNext() multiple
times. Instead, proper use of this parameter reduces the amount of time for each
call to TTCmd::FetchNext.

See "Bulk fetch rows of TimesTen data" in Oracle TimesTen In-Memory
Database C Developer’s and Reference Guide for more information about
TT_PREFETCH_COUNT.

SetAutocommitOff
void SetAutoCommitOff (TTStatus &)

Sets AUTOCOMMIT off for the connection.

Note that this method is automatically called by TTConnection::Connect()
because TimesTen runs with optimal performance only with AUTOCOMMIT
turned off.

SetAutoCommitOn
void SetAutoCommitOn (TTStatus &)

Sets AUTOCOMMIT on for the connection, which means that every SQL
statement now occurs in its own transaction.

Note that TimesTen generally runs much faster with AUTOCOMMIT turned off.
Class Descriptions 23

When AUTOCOMMIT is off, committing SELECT statements requires explicit
calls to TTCmd::Close().

GetTTContext
void GetTTContext (char * output, TTStatus &)

Returns the connection’s context value, which is unique to each connection to a
TimesTen data store. The context of a connection can be used to correlate
TimesTen connections with PIDs using the TimesTen ttStatus utility, for
example.

The context value is returned through the output parameter. This method must
be called with an array of CHAR[17] or larger for the output parameter.

This method calls the TimesTen ttContext built-in procedure. See Oracle
TimesTen In-Memory Database C Developer’s and Reference Guide for more
information about ttContext.

Usage
All applications that use TimesTen must create at least one TTConnection object.

Multithreaded applications that wish to use TimesTen from multiple threads
simultaneously must create more than one TTConnection object. Use one of the
following strategies:
• Create one TTConnection object for each thread when the thread is created.
• Create a pool of TTConnection objects when the application process starts.

They are shared by the threads in the process. See the TTConnectionPool
class for additional information about this option.

It is not desirable for an application to be constantly connecting to and
disconnecting from TimesTen because it degrades performance. Instead,
establish database connections at the beginning of the application process and
reuse them for the life of the process.
24 Oracle TimesTen In-Memory Database TTClasses Guide

TTCmd
Encapsulates a single SQL statement that will be used multiple times in an
application program. You can think of TTCmd as a value-added C++ wrapper
around the ODBC HSTMT handle.

Public Members
None.

TTCmd has three kinds of public methods:
• Public Methods
• Public Methods for Obtaining Properties of a TTCmd Object
• Public Methods for Batch Operations

Public Methods

Method Description

Prepare Associates a SQL statement with TTCmd.

RePrepare Allows a statement to be reprepared.

Execute Invokes a SQL statement that has been prepared
for execution.

ExecuteImmediate Invoke a SQL statement that has not been
previously prepared.

FetchNext Fetches rows from the answer set, one at a time. It
returns 0 when a row was successfully fetched,
and 1 when no more rows are available.

Close Closes the answer set when the application has
finished fetching rows.

Drop Frees a prepared SQL statement and all resources
associated with it.

setQueryTimeout Sets a timeout value for a query.

setMaxRows Sets a limit on the number of rows returned by a
SELECT statement.

getMaxRows Returns the current limit on the number of rows
returned by a SELECT statement.

getRowCount Returns the number of rows that were affected by
the recently executed SQL operation.

setParam Sets the value of parameters before executing a
prepared SQL statement.
Class Descriptions 25

Public Methods for Obtaining Properties of a TTCmd Object

setParamNull Sets the value of a parameter to NULL before
executing a prepared SQL statement.

getParamPrecision Returns the precision of the specified parameter in
a prepared statement.

getParamScale Returns the scale of the specified parameter in a
prepared statement.

getParamNull Indicates whether the specified parameter can be
NULL.

getColumn Returns the values associated with a particular
column.

isColumnNull Indicates whether the specified column’s value is
NULL.

getColumnLength Returns the length of the specified column.

getColumnNullable Returns the values for columns of the current row
of the answer set and indicates whether a
column’s value is NULL.

getNextColumn Returns the values for columns of the next row of
the answer set.

getNextColumnNullable Returns the values for columns of the next row of
the answer set and indicates whether a column’s
value is NULL.

printColumn Prints a specified column to an output stream.

Method Description

Method Description

getNParameters Returns the number of input parameters.

getNColumns Returns the number of output columns.

getParamType Returns the ODBC data type of the specified
parameter.

getColumnName Returns the name of the specified column.

getColumnType Returns the ODBC data type of the specified
column.
26 Oracle TimesTen In-Memory Database TTClasses Guide

Public Methods for Batch Operations

Prepare
void Prepare (TTConnection*, const char* sqlP, TTStatus&)

This method associates a SQL statement with TTCmd. It takes three parameters:
• A pointer to a TTConnection object, which should be already connected to the

database by a call to TTConnection::Connect
• A const char * parameter, which is the SQL string being prepared
• A TTStatus object

Before TTCmd can be used, a SQL statement (such as SELECT, INSERT,
UPDATE or DELETE) must be associated with it. The association is
accomplished by using the Prepare method. The Prepare method also compiles
and optimizes the SQL statement to ensure that it will be executed in an efficient
manner. The Prepare method does not execute the statement.

With TimesTen, statements are typically parameterized for better performance.
Consider the following SQL statements:

getColumnPrecision Returns the precision of the specified column.

getColumnScale Returns the scale of the specified column.

Method Description

Method Description

PrepareBatch Prepares batch INSERT, UPDATE, and DELETE
statements.

BindParameter Binds an array of values for a statement compiled
using PrepareBatch.

setParamLength Sets the length of one of the bound parameter
values before execution of the prepared statement.

setParamNull Sets one of the bound parameters to NULL before
execution of the prepared statement.

ExecuteBatch Invokes a SQL statement that has been prepared
for execution by PrepareBatch. It returns the
number of rows in the batch that were updated.
Class Descriptions 27

SELECT col1 FROM table1 WHERE C = 10

SELECT col1 FROM table1 WHERE C = 11

It is more efficient to prepare a single parameterized statement and execute it
multiple times:
SELECT col1 FROM table1 WHERE C = ?

The value for “?” is specified at runtime by using the TTCmd::setParam
methods.

There is no need to explicitly bind columns or parameters to a SQL statement, as
is necessary when you use ODBC directly. TTCmd automatically defines and
binds all necessary columns and parameters at prepare time.

Note that prepare is a relatively expensive operation. When an application
establishes a connection to TimesTen (using TTConnection::Connect), the
application should prepare all TTCmd objects associated with the connection.

If exceptions are enabled, a TTStatus object is returned if an error occurs. If
exceptions are disabled, the TTStatus& object passed as the last parameter to the
method contains information about errors upon return from the method.

RePrepare
void RePrepare (TTConnection *cP, TTStatus & stat)

This method allows a statement to be reprepared. It is useful only when a
statement handle in a prepared statement has been invalidated.

Execute
void Execute (TTStatus&)

This method invokes a SQL statement that has been prepared for execution.

Use Execute to invoke a SQL statement previously prepared with the Prepare
method, after any necessary parameter values are defined using setParam
methods.

If the SQL statement is a SELECT statement, this method executes the query but
does not return any rows from the result set. Use the FetchNext method to fetch
rows from the result set one at a time. Use the Close method to close the result set
when all appropriate rows have been fetched. For SQL statements other than
SELECT, no cursor is opened, and the Close method does not need to be called.

If exceptions are enabled, a TTStatus object is returned as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about errors upon return from
the method.
28 Oracle TimesTen In-Memory Database TTClasses Guide

ExecuteImmediate
int ExecuteImmediate (TTConnection*, const char * sqlP,

TTStatus& stat)

This method invokes a SQL statement that has not been previously prepared.

ExecuteImmediate is a convenient alternative to using Prepare and Execute when
a SQL statement is only executed a few times. Use ExecuteImmediate for DDL
statements such as CREATE TABLE and DROP TABLE and infrequently used
DML statements that do not return a result set (for example, DELETE FROM
table_name).

ExecuteImmediate is incompatible with SQL statements that return a result set.
In addition, statements executed through ExecuteImmediate cannot subsequently
be queried by getRowCount to get the number of rows affected by a DML
operation. Because of this, ExecuteImmediate calls getRowCount automatically,
and its value is the integer return value of this method.

FetchNext
int FetchNext (TTStatus& stat)

After executing a prepared SQL SELECT statement using the Execute method,
use the FetchNext method to fetch rows from the answer set, one at a time.

After fetching a row of the answer set, use one of the overloaded versions of the
getColumn method to fetch values from the current row.

If no more rows remain in the answer set, FetchNext returns 1. If a row is
returned, FetchNext returns 0.

After executing a SELECT using the Execute method, the answer set must be
closed using the Close method after all desired rows have been fetched. Note that
after the Close method is called, the FetchNext method cannot be used to fetch
additional rows from the answer set.

If exceptions are enabled, a TTStatus object is returned as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about errors upon return from
the method.

Close
void Close (TTStatus&)

If a SQL SELECT statement is executed using the Execute method, a cursor is
opened which may be used to fetch rows from the answer set. When the
application is finished fetching rows from the answer set, it must be closed with
the Close method.

Failure to close the answer set may result in locks being held on rows for too
long, causing concurrency problems as well as memory leaks and other errors.
Class Descriptions 29

If exceptions are enabled, a TTStatus object is returned as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about errors upon return from
the method.

Drop
void Drop (TTStatus&)

If a prepared SQL statement will not be used in the future, the statement and
resources associated with it can be freed by calling the Drop method. The
TTCmd object may be reused for another statement by calling Prepare again.

It is more efficient to use multiple TTCmd objects to execute multiple SQL
statements. Use the Drop method only if it is certain that a particular SQL
statement will not be used again.

If exceptions are enabled, a TTStatus object is returned as an exception if an error
occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about errors upon return from
the method.

setQueryTimeout
void setQueryTimeout (const int nSecs, TTStatus&)

This method allows applications to stop long running queries as needed by
setting a timeout value on the query. nSecs is number of seconds of the timeout.

Note that there is no default query timeout value.

setMaxRows
void setMaxRows (const int nRows, TTStatus &stat)

This method sets a limit on the number of rows returned by a SELECT statement.
If the number of rows in the result set exceeds the set limit, fetching beyond the
max number of rows set will cause the statement to return
SQL_NO_DATA_FOUND. The TTCmd object will TRUE if the eof() method is
called. The default is to return all rows. To reset a limit to again return all rows,
call setMaxRows with nRows set to 0. The limit is only meaningful for SELECT
statements.

getMaxRows
int getMaxRows (TTStatus &stat)

This method returns the current limit of number of rows returned by a SELECT
statement from this TTCmd call. A return value of 0 means all rows are returned.

getRowCount
int getRowCount()

This method can be called immediately after Execute to return the number of
rows that were affected by the recently executed SQL operation. For example,
30 Oracle TimesTen In-Memory Database TTClasses Guide

after execution of a DELETE statement that deletes 10 rows, getRowCount
returns 10.

setParam
void setParam (int pno, ...)

All overloaded setParam methods are described in this section.

The setParam methods are used to set the value of parameters before executing a
prepared SQL statement. SQL statements are prepared before use with the
Prepare method and are executed with the Execute method. If the SQL statement
contains any parameter markers (the “?” character used where a literal constant
would be legal), values must be assigned to these parameters before the SQL
statement can be executed. The setParam method is used to define a value for
each parameter before executing the statement. See "Dynamic parameters" in
Oracle TimesTen In-Memory Database SQL Reference Guide.

The first argument passed to setParam is the position of the parameter to be set.
The first (left-most) parameter in a SQL statement is parameter 1. The second
argument passed to setParam is the value of the parameter. Several overloaded
versions of setParam take different data types for the second argument.

This version of the TTClasses library does not support a large set of data type
conversions. The appropriate overloaded version of setParam must be called for
each parameter in the prepared SQL. Calling the wrong version (attempting to set
an integer parameter to a char* value, for example) may result in program failure.

Values passed to setParam are copied into internal buffers maintained by the
TTCmd object. These buffers are statically allocated and bound by the Prepare
method. The parameter value is the value passed into setParam at the time of the
setParam call, not the value at the time of a subsequent Execute method call.

Table 3.1 shows the supported SQL data types and the appropriate versions of
setParam to use for each parameter type. Note that SQL data types not mentioned
are not supported in this version of TTClasses.

Table 3.1 TTCmd::setParam Variants for Supported Data Types

Data Type setParam Variants Supported

TT_TINYINT setParam (int, unsigned char)

TT_SMALLINT setParam (int, SQLSMALLINT)

TT_INTEGER setParam (int, SQLINTEGER)

TT_BIGINT setParam (int, SQLBIGINT)

BINARY_FLOAT setParam (int, float)
Class Descriptions 31

setParamNull
void setParamNull (int pno)

This method can be used to indicate that the value for parameter number pno
should be the SQL NULL value.

See “setParam” on page 31.

getParamPrecision
int getParamPrecision(int pno)

This method returns the precision of parameter number pno.

BINARY_DOUBLE setParam (int, double)

NUMBER
TT_DECIMAL

setParam (int, char*)
setParam (int, const char*)
setParam (int, SQLTINYINT)
setParam (int, SQLSMALLINT)
setParam (int, SQLINTEGER)
setParam (int, SQLBIGINT)

Note: The integer type methods are appropriate
only for columns declared with the scale
parameter set to zero, such as NUMBER(8) or
NUMBER(8,0).

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

setParam (int, char*)
setParam (int, const char*)

TT_NCHAR
NCHAR
NVARCHAR2

setParam (int, SQLWCHAR*, int len)

BINARY
VARBINARY

setParam (int, const void*, int len)

DATE
TT_TIMESTAMP
TIMESTAMP

setParam (int, TIMESTAMP_STRUCT*)

TT_DATE setParam (int, DATE_STRUCT*)

TT_TIME setParam (int, TIME_STRUCT*)
32 Oracle TimesTen In-Memory Database TTClasses Guide

getParamScale
int getParamScale(int pno)

This method returns the scale of parameter number pno.

getParamNull
bool getParamNull(int pno);

This method indicates whether parameter number pno can be NULL.

getColumn
void getColumn (int cno, ...)

The getColumn and getColumnNullable methods can be used to fetch the values
for columns of the current row of the answer set. Before the getColumn and
getColumnNullable methods can be used, the FetchNext method must be used to
fetch the first (or next) row from the answer set of a SELECT statement. SQL
statements are executed using the Execute method.

The getColumn method returns the value associated with a particular column.
Columns are referred to by ordinal number, with “1” indicating the first column
specified in the SELECT statement. In all cases the first argument passed to the
getColumn method is the ordinal number of the column whose value is to be
fetched. The second argument passed to the getColumn method is a pointer to a
variable which is to receive the value of the specified column. The type of this
argument varies depending on the type of the column being returned.

This version of the TTClasses library does not support a large set of data type
conversions. The appropriate overloaded version of getColumn must be called
for each output column in the prepared SQL. Calling the wrong version
(attempting to fetch an integer column into a char* value, for example) may
result in program failure.

Integer type methods include one of the following functions: SQLTINYINT,
SQLSMALLINT, SQLINTEGER, and SQLBIGINT. They are appropriate only
for columns with the scale parameter set to zero, such as NUMBER(p) or
NUMBER(p,0). The functions have the following range of precision:

Function Precision Range

SQLTINYINT 0<=p<=2

SQLSMALLINT 0<=p<=4

SQLINTEGER 0<=p<=9

SQLBIGINT 0<=p<=18
Class Descriptions 33

To ensure that all values in the column will fit into the variable that the
application uses to retrieve information from the database, you can use
SQLBIGINT for all table columns of data type NUMBER(p), where 0 <= p <=
18. For example:
getColumn(int cno, SQLBIGINT*)

Table 3.2 shows the supported SQL data types and the appropriate versions of
getColumn and getColumnNullable to use for each parameter type.

Table 3.2 TTCmd::getColumn[Nullable] Variants for Supported Data Types

Data Type getColumn Variants Supported

TT_TINYINT getColumn (int cno, unsigned char*)
getColumnNullable (int cno, SQLTINYINT*)

TT_SMALLINT getColumn (int cno, SQLSMALLINT*)
getColumnNullable (int cno, SQLSMALLINT*)

TT_INTEGER getColumn (int cno, SQLINTEGER*)
getColumnNullable (int cno, SQLINTEGER*)

TT_BIGINT getColumn (int cno, SQLBIGINT*)
getColumnNullable (int cno, SQLBIGINT*)

BINARY_FLOAT getColumn (int cno, float*)
getColumnNullable (int cno, float*)

BINARY_DOUBLE getColumn (int cno, double*)
getColumnNullable (int cno, double*)

NUMBER
TT_DECIMAL

getColumn (int cno, char**)
getColumn(int cno, SQLTINYINT*)
getColumn (int cno, SQLSMALLINT*)
getColumn (int cno, SQLINTEGER*)
getColumn (int cno, SQLBIGINT*)
getColumnNullable (int cno, char**)
getColumnNullable (int cno, SQLTINYINT*)
getColumnNullable (int cno, SQLSMALLINT*)
getColumnNullable (int cno, SQLINTEGER*)
getColumnNullable (int cno, SQLBIGINT*)

Note: The integer type methods are appropriate
only for columns declared with the scale parameter
set to zero.
34 Oracle TimesTen In-Memory Database TTClasses Guide

Other SQL data types are not supported in this release of the TTClasses library.

isColumnNull
bool isColumnNull (int cno)

This method provides another way to determine whether the value of column
number cno is NULL.

See “getColumnNullable” on page 35.

getColumnLength
int getColumnLength (int cno)

This method returns the length of column number cno. This is generally useful
only when accessing columns of type VARBINARY or NVARCHAR2. The
value returned is between 0 and the column’s precision, inclusive. See
“getColumnPrecision” on page 38.

getColumnNullable
bool getColumnNullable (int cno, ...)

The getColumnNullable method is similar to the getColumn method. However,
in addition to the behavior of getColumn, the getColumnNullable method also
returns an indication of whether the column’s value is the SQL “NULL” pseudo-
value. If the column’s value is NULL, the second parameter’s value is set to an

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

getColumn (int cno, char**)
getColumnNullable (int cno, char**)

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

getColumn (int cno, SQLWCHAR*)
getColumnNullable (int cno, SQLWCHAR*)

BINARY
VARBINARY

void getColumn (int cno, void** binPP, int* lenP)
void getColumnNullable (int cno, void** binPP,
int* lenP)

DATE
TT_TIMESTAMP
TIMESTAMP

getColumn (int cno, TIMESTAMP_STRUCT*)
getColumnNullable (int cno,
TIMESTAMP_STRUCT*)

TT_DATE getColumn (int cno, DATE_STRUCT*)
getColumnNullable (int cno, DATE_STRUCT*)

TT_TIME getColumn (int cno, TIME_STRUCT*)
getColumnNullable (int cno, TIME_STRUCT*)
Class Descriptions 35

distinctive value (for example, -9999), and the return value from the method is
true. If the column’s value is not NULL, it is returned in the variable pointed to
by the second parameter and the getColumnNullable method returns false.

See “getColumn” on page 33.

getNextColumn
void getNextColumn (int iP, ...)

The getNextColumn and getNextColumnNullable methods can be used to fetch
the values for columns of the next row of the answer set. Before the
getNextColumn and getNextColumnNullable methods can be used, the
FetchNext method must be used to fetch the first row from the answer set of a
SELECT statement. iP represents a pointer to an internal column number. When
you use getNextColumn, the columns are fetched in order. You cannot change the
fetch order.

See Table 3.2 on page 34 for the supported SQL data types and the appropriate
versions of getColumn to use for each parameter type. This information can be
used for getNext Column.

getNextColumnNullable
bool getColumnNullable (int iP, ...)

The getNextColumnNullable method is similar to the getNextColumn method.
However, in addition to the behavior of getColumn, the getNextColumnNullable
method also returns an indication of whether the column’s value is the SQL
“NULL” pseudo-value. If the column’s value is NULL, the second parameter’s
value is set to an distinctive value (for example, -9999), and the return value from
the method is true. If the column’s value is not NULL, it is returned in the
variable pointed to by the second parameter and the getColumnNullable method
returns false.

iP represents a pointer to an internal column number. When you use
getNextColumn, the columns are fetched in order. You cannot change the fetch
order.

See Table 3.2 on page 34 for the supported SQL data types and the appropriate
versions of getColumn to use for each parameter type. This information can be
used for getNextColumnNullable.

printColumn
void printColumn (int cno, STDOSTREAM & os,

const char * nullString) const

This method prints column number cno to an output stream. Use this method for
debugging or for demo programs.
36 Oracle TimesTen In-Memory Database TTClasses Guide

Usage
Each SQL statement executed multiple times in a program should have its own
TTCmd object. During program initialization each of these TTCmd objects
should be prepared once and then executed with the Execute method multiple
times as the program runs.

Only database operations that need to be executed only once should use the
ExecuteImmediate method. Note that ExecuteImmediate is not compatible with
any type of SELECT statement (all queries must use Prepare plus Execute
instead). ExecuteImmediate is also incompatible with insert/update/delete
statements which are subsequently queried using getRowcount to see how many
rows were inserted, updated or deleted. These limitations have been placed on
ExecuteImmediate to discourage its use except in a few situations (for example,
creating or dropping a table).

Methods for obtaining properties of a prepared TTCmd object
There are several useful methods for asking questions about properties of the
bound input parameters and output columns of a prepared TTCmd object. These
methods generally provide meaningful results only when a statement has
previously been prepared.

getNParameters
int getNParameters ()

This method returns the number of input parameters.

getNColumns
int getNColumns ()

This method returns the number of output columns.

getParamType
int getParamType (int pno)

This method returns the data type of parameter number pno. The value returned
is the parameter’s ODBC type (for example, SQL_INTEGER, SQL_REAL,
SQL_BINARY, SQL_CHAR) as found in sql.h. Additional TimesTen types
(SQL_WCHAR, SQL_WVARCHAR) can be found in the TimesTen header file
timesten.h.

getColumnName
const char * getColumnName (int cno)

This method returns the name of column number cno.
Class Descriptions 37

getColumnType
int getColumnType (int cno)

This method returns the data type of column number cno. The value returned is
the parameter’s ODBC type (for example, SQL_INTEGER, SQL_REAL,
SQL_BINARY, SQL_CHAR) as found in sql.h. Additional TimesTen types
(SQL_WCHAR, SQL_WVARCHAR) can be found in the TimesTen header file
timesten.h.

getColumnPrecision
int getColumnPrecision (int cno)

This method returns the precision of column number cno. This value is generally
interesting only when generating output from table columns of type CHAR,
VARCHAR2, BINARY, VARBINARY, NCHAR and NVARCHAR2.

getColumnScale
int getColumnScale(int cno)

This method returns the scale of column number cno.

Batch operations
TimesTen supports the ODBC function SQLBindParams for batch insert, update
and delete operations. TTClasses provides an interface to SQLBindParams.

Performing batch operations with TTClasses is similar to performing non-batch
operations. SQL statements are first compiled using PrepareBatch. Then each
parameter in that statement is bound to an array of values using BindParameter.
Finally, the statement is executed using ExecuteBatch. Note the similarity to
normal TTClasses (non-batch) operations, where a statement is compiled using
Prepare, which also performs the binding of all parameters automatically, and
then executed using Execute.

See the TTClasses bulktest.cpp sample program in install_dir/demo/
ttclasses for an example of using the batch operation functionality.

This section describes the TTCmd methods which expose the batch INSERT/
UPDATE/DELETE functionality to TTClasses users.

PrepareBatch
void PrepareBatch(TTConnection*, const char * sqlP,

TTCmd::TTCMD_USER_BIND_LEVEL level,
unsigned short batchSize, TTStatus&)

PrepareBatch is the analog of the Prepare method for batch insert/update/delete
statements. The TTConnection* and const char* sqlP and TTStatus& parameters
are used the same as in the Prepare method.

There is only one valid value for the level parameter. This value is:
38 Oracle TimesTen In-Memory Database TTClasses Guide

TTCmd::TTCMD_USER_BIND_PARAMS

The batchSize parameter specifies the maximum number of insert/update/delete
operations that will be performed using subsequent calls to ExecuteBatch.

BindParameter
void BindParameter(int pno, unsigned short batchSize,

TYPE*, [SQLLEN*], TTStatus&)

The overloaded BindParameter methods are described in this section.

The BindParameter methods are used to bind an array of values (one for each
parameter) for a statement compiled using PrepareBatch. The batchSize
parameter of this call must match the value of batchSize specified in
PrepareBatch. Similarly, the bound arrays should contain at least as many values
as the bound arrays in PrepareBatch. The user must determine the correct data
type to bind to each parameter. Note that if the wrong type is bound, a runtime
error will be written to the TTClasses global logging facility at the
TTLog::TTLOG_ERR logging level.

Before each invocation of ExecuteBatch, the user application should fill these
arrays with valid parameter values.

For four SQL types (SQL)_[VAR]BINARY and SQL_W[VAR]CHAR), an
additional SQLLEN* parameter, an array of parameter lengths, is required. This
additional array must be at least batchSize in length and filled with valid length
values before ExecuteBatch is called.

Table 3.3 shows the supported SQL data types and the appropriate versions of
BindParameter to use for each parameter type.

Table 3.3 TTCmd::BindParameter Variants for Supported Data Types

SQL Data Type BindParameter variants supported

TT_TINYINT BindParameter (... SQLTINYINT*...)

TT_SMALLINT BindParameter (...SQLSMALLINT*...)

TT_INTEGER BindParameter (...SQLINTEGER*...)

TT_BIGINT BindParameter (...SQLBIGINT*...)

BINARY_FLOAT BindParameter (...float*...)

BINARY_DOUBLE BindParameter (...double*...)

NUMBER
TT_DECIMAL

BindParameter (...char**...)
Class Descriptions 39

setParamLength
setParamLength(int pno, unsigned short rowno, int len)

This method sets the length of one of the bound parameter values before a call to
ExecuteBatch. pno specifies which parameter in the statement will be set. rowno
specifies for which row the length will be set. len specifies the length being set.

For types apart from SQL_[VAR]BINARY and SQL_W[VAR]CHAR, this is the
only method available to explicitly set the length of a parameter before an
ExecuteBatch call. For SQL_[VAR]BINARY and SQL_W[VAR]CHAR types,
the length can also be explicitly set through manipulation of the SQLLEN* array,
which is the fourth parameter to the BindParameter call.

setParamNull
setParamNull(int pno, unsigned short rowno)

This method sets one of the bound parameter values to NULL before a call to
ExecuteBatch. The first parameter, pno, specifies which parameter in the
statement will be set. The second parameter, rowno, specifies for which row the
length will be set.

For types apart from SQL_[VAR]BINARY and SQL_W[VAR]CHAR, this is the
only method available to explicitly set the NULL value of a parameter before an
ExecuteBatch call. For SQL_[VAR]BINARY and SQL_W[VAR]CHAR types,
nullability can also be explicitly set through manipulation of the SQLLEN*
array, which is the fourth parameter to the BindParameter call.

TT_CHAR
CHAR
TT_VARCHAR
VARCHAR2

BindParameter (...char**...)

TT_NCHAR
NCHAR
TT_NVARCHAR
NVARCHAR2

BindParameter (...SQLWCHAR**, SQLLEN*...)

BINARY
VARBINARY

BindParameter (...const void**, SQLLEN*...)

DATE
TT_TIMESTAMP
TIMESTAMP

BindParameter (... TIMESTAMP_STRUCT*...)

TT_DATE BindParameter (...DATE_STRUCT*...)

TT_TIME BindParameter (...TIME_STRUCT*...)
40 Oracle TimesTen In-Memory Database TTClasses Guide

ExecuteBatch
void ExecuteBatch(unsigned short numRows, TTStatus&)

This method returns the number of rows in a batch that have been updated. The
number represents *pirow from the ODBC SQLSetParams call.

After preparing a SQL statement with PrepareBatch and calling BindParameter
for each parameter (“?”) in the SQL statement, use ExecuteBatch to execute the
statement numRows times. The value of numRows must be no more than the
batchSize specified in the PrepareBatch and BindParameter calls. numRows can
be less than batchSize, as required by the application logic.

Before calling ExecuteBatch, the application should fill the arrays of parameters
bound using BindParameter with valid values. Null values can be specified as
necessary using by using setParamNull.

The bulktest.cpp demo in install_dir/demo/ttclasses shows how to use
ExecuteBatch. Example 3.6 also shows how to use ExecuteBatch.

Example 3.6 Create a table with two columns:
CREATE TABLE batch_table (a TT_INTEGER, b VARCHAR2(100));

Populate the rows of the table in batches of 50:
#define BATCH_SIZE 50
#define VARCHAR_SIZE 100

int int_array[BATCH_SIZE];
char char_array[BATCH_SIZE][VARCHAR_SIZE];

// Prepare the statement

TTCmd insert;
TTConnection connection;
TTStatus stat;

// (assume a connection has already been established)

try {

insert.PrepareBatch (&connection,
(const char*)"insert into batch_table
values (?,?)",
TTCmd::TTCMD_USER_BIND_PARAMS,
BATCH_SIZE
stat);

// Commit the prepared statement

connection.Commit(stat);
Class Descriptions 41

// Bind the arrays of parameters

insert.BindParameter(1, BATCH_SIZE, int_array, stat);
insert.BindParameter(2, BATCH_SIZE, char_array, stat);

// Execute 5 batches, inserting 5 * BATCH_SIZE rows into
// the database

for (int iter = 0; iter < 5; iter++)
{

// Populate the value arrays with values.
// (A better way of putting meaningful data into
// the database is to read values from a file,
// rather than generating them arbitrarily.)

for (int i = 0; i < BATCH_SIZE; i++)
{

int_array[i] = i * iter + i;
sprintf(char_array[i], "varchar value # %d", i*iter+ i);

}

// Execute the batch insert statement,
// which inserts the entire contents of the
// integer and char arrays in one operation.

int num_ins = insert.ExecuteBatch(BATCH_SIZE, stat);

cerr << "Inserted " << num_ins << " rows." << endl;

connection.Commit(stat);

} // for iter

The number of rows (num_ins in the example) can be less than BATCH_SIZE if,
for example, there is a uniqueness constraint on one of the columns. In this case,
roll back the transaction and use code similar to the following:

Example 3.7 for (int iter = 0; iter < 5; iter++)
{

// Populate the value arrays with values.
// (A better way of putting meaningful data into
// the database is to read values from a file,
// rather than generating them arbitrarily.)

for (int i = 0; i < BATCH_SIZE; i++)
42 Oracle TimesTen In-Memory Database TTClasses Guide

{
int_array[i] = i * iter + i;
sprintf(char_array[i], "varchar value # %d", i*iter+i);

}

// now we execute the batch insert statement,
// which does the work of inserting the entire
// contents of the integer and char arrays in
// one operation

int num_ins = insert.ExecuteBatch(BATCH_SIZE, stat);

cerr << "Inserted " << num_ins << " rows (expected " <<
<< BATCH_SIZE << " rows)." << endl;

if (num_ins == BATCH_SIZE) {
cerr << "Committing batch" << endl;
connection.Commit(stat);

}
else {
cerr << "Some rows were not inserted as expected,

rolling back "
<< "transaction." << endl;

connection.Rollback(stat);
break; // jump out of batch insert loop

}

} // for iter

See the ODBC documentation for SQLParamOptions. The integer output of
TTCmd::ExecuteBatch is *pirow, the third parameter for SQLParamOptions.
Class Descriptions 43

TTConnectionPool
The TTConnectionPool class is used by multithreaded applications to manage a
pool of connections.

In general, multithreaded applications can be written using one of two basic
strategies:
• If there is a relatively small number of threads and the threads are long-lived,

each thread can be assigned to a different connection, which is used for the
duration of the application. In this scenario, the TTConnectionPool class is not
necessary.

• If there is a large number of threads in the process, or if the threads are short-
lived, a pool of idle connections can be established which are used for the
duration of the application. When a thread needs to perform a database
transaction, it checks out an idle connection from the pool, performs its
transaction, and then returns the connection to the pool. This is the scenario
that the TTConnectionPool class assists with.

Note: For best overall performance, TimesTen recommends having one or two
concurrent direct-memory database connections for each CPU of the database
server. For no reason should your number of concurrent direct-memory database
connections (the size of your connection pool) be more than twice as many CPUs
on the database server. In client/server mode, however, TimesTen supports many
more connections per CPU efficiently.

To use the TTConnectionPool class, an application creates a single instance of
the class. It then creates a number of TTConnection objects, but does not call
their Connect method (which would actually connect them to TimesTen). The
application then uses the TTConnectionPool::AddConnectionToPool method to
put the connection objects into the pool. It then calls
TTConnectionPool::ConnectAll to connect all the connections to TimesTen.
Threads wanting to use TimesTen then use getConnection and freeConnection
methods to get and return idle connections.

Public Members
None.
44 Oracle TimesTen In-Memory Database TTClasses Guide

Public Methods

AddConnectionToPool
int AddConnectionToPool (TTConnection*)

This method is used to add a TTConnection object, or an object of a class derived
from TTConnection, to the connection pool.

ConnectAll
void ConnectAll (const char* connStr, TTStatus&)

After TTConnection objects have been added to the connection pool by
AddConnectionToPool, the ConnectAll method can be used to connect all of the
TTConnection objects to TimesTen simultaneously.

If exceptions are enabled, a TTStatus object will be thrown as an exception if an
error occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about any error upon return
from the method.

getConnection
TTConnection* getConnection (int timeout_millis=0)

Checks out an idle connection from the connection pool for a thread. A pointer to
an idle TTConnection object is returned. The thread should then perform a
transaction, ending with either Commit or Rollback, and then should return the
connection to the pool using the freeConnection method.

Method Description

AddConnectionToPool Adds a TTConnection object, or an object of a
class derived from TTConnection, to the
connection pool.

ConnectAll Connects all of the TTConnection objects to
TimesTen simultaneously

getConnection Checks out an idle connection from the
connection pool for a thread.

freeConnection Returns a connection to the pool for
reassignment to another thread.

DisconnectAll Disconnects all connections in the connection
pool from TimesTen.

getStats Queries the TTConnectionPool for status
information.
Class Descriptions 45

If no idle connections are in the pool, the thread calling getConnection will block
until a connection is returned to the pool by a call to freeConnection. An optional
timeout, in milliseconds, can be provided. If specified, getConnection will wait
for a free connection for no more than timeout milliseconds; if no connection is
available in that time then getConnection will return NULL to the caller.

freeConnection
void freeConnection (TTConnection*)

Returns a connection to the pool for reassignment to another thread. Applications
should not free connections that are in the midst of a transaction.
TTConnection::Commit or TTConnection::Rollback should be called
immediately prior to calling freeConnection.

DisconnectAll
void DisconnectAll (TTStatus&)

Disconnects all connections in the connection pool from TimesTen.

Applications must call DisconnectAll prior to termination in order to avoid
overhead associated with process failure analysis and recovery.

If exceptions are enabled, a TTStatus object will be thrown as an exception if an
error occurs. If exceptions are disabled, the TTStatus& object passed as the last
parameter to the method will contain information about any error upon return
from the method.

getStats
void getStats(int *nGets, int *nFrees, int *nWaits, int *nTimeouts,

int *maxInUse, int *nForcedCommits)

Queries the TTConnectionPool for status information. Data returned is:
• nGets: number of calls to getConnection()
• nFrees: number of calls to freeConnection()
• nWaits: number of times a call to getConnection() had to wait before returning

a connection
• nTimeouts: number of calls to getConnection() that timed out
• maxInUse: High water mark for the most number of connections in use at one

time
• nForcedCommits: The number of times that freeConnection() had to call

Commit() on a connection before checking it into the pool. If this counter is
non-zero then the user application is not calling TTConnection::Commit() or
Rollback() before returning a connection to the pool.
46 Oracle TimesTen In-Memory Database TTClasses Guide

TTGlobal (logging)
The TTGlobal class provides a logging facility within TTClasses.

Public Members
None.

Public Methods

setLogStream
static void setLogStream (ostream & str)

Specifies where TTClasses logging information should be sent. By default, if
TTClasses logging is enabled, TTClasses logs to stderr. Using this method, a
user application can log to a file (or any other ostream &).

Example 3.8 This example shows how an application can log to a text file called
app_log.txt.
ofstream log_file ("app_log.txt") ;
TTGlobal::setLogStream (log_file) ;

setLogLevel
static void setLogLevel (TTLog::TTLOG_LEVEL level)

This method specifies the verbosity level of TTClasses logging. Table 3.4
describes TTClasses logging levels. The levels are cumulative.

Table 3.4 TTClasses logging levels

Method Description

setLogStream Specifies where TTClasses logging information
should be sent.

setLogLevel Specifies the verbosity level of TTClasses logging.

disableLogging Disables TTClasses logging.

Logging Level Description

TTLog::TTLOG_NIL No logging

TTLog::TTLOG_FATAL_ERR Logs fatal errors (serious misuse of
TTClasses methods)

TTLog::TTLOG_ERR +Logs all errors, such as
SQL_ERROR return codes
Class Descriptions 47

To set the logging level to TTLog::TTLOG_ERR, for example, add the following
line to your program:
TTGlobal::setLogLevel (TTLog::TTLOG_ERR) ;

disableLogging
static void disableLogging()

This method disables all TTClasses logging. Note that the following two
statements are identical:
TTGlobal::disableLogging() ;

TTGlobal::setLogLevel (TTLog::TTLOG_NIL) ;

Using TTGlobal
The TTGlobal logging facility can be very useful for debugging problems inside
a TTClasses program. Note, however, that the most verbose logging levels
(TTLog::TTLOG_INFO and TTLog::TTLOG_DEBUG) can generate an
extremely large amount of output. Use these logging levels during development
or when trying to diagnose a bug instead of during production.

When logging from a multithreaded program, you may encounter the problem
where log output from different program threads gets mixed up when being
written to disk. To alleviate this problem, disable ostream buffering with the
ios_base::unitbuf iostream manipulator.

Example 3.9 shows how to send TTClasses logging to the app_log.txt file at
logging level TTLog::TTLOG_ERR. The example ensures that logging to this
file is not buffered, so the output of different threads is not mixed together:

TTLog::TTLOG_WARN +Logs warnings and all calls to
TTCmd::Prepare, including the SQL
string being prepared. Prints all
database optimizer query plans.
(Default logging level)

TTLog::TTLOG_INFO +Logs informational messages, such
as calls to most TTCmd and
TTConnection methods, including the
SQL string where appropriate

TTLog::TTLOG_DEBUG +Logs additional debugging
information, such as all bound
parameter values for each call to
TTCmd::Execute

Logging Level Description
48 Oracle TimesTen In-Memory Database TTClasses Guide

Example 3.9 ofstream log_file ("app_log.txt") ;
log_file << std::ios_base::unitbuf ;
TTGlobal::setLogStream (log_file) ;
TTGlobal::setLogLevel (TTLog::TTLOG_ERR) ;

See “TTClasses logging” on page 77 for more information about using
TTGlobal.
Class Descriptions 49

System catalog classes
TTCatalog is included in the TimesTen C++ Interface Classes to facilitate
reading metadata from the database system catalog.

The TTCatalog class is different from using the other classes in the TimesTen
C++ Interface Classes. After connecting to the database and reading its system
catalogs, the TTCatalog constructor disconnects from the database, and no
further direct database interaction is done. The resulting object contains data
structures that contains all of the information that was read from the database
catalog, and which is easily accessible to a user program.

Each TTCatalog internally contains an array of TTCatalogTable objects. Each
TTCatalogTable contains an array of TTCatalogColumn objects and an array of
TTCatalogIndex objects. When accessing by index, access to these arrays is zero-
based.

The following ODBC functions are used inside TTCatalog:
• SQLTables()
• SQLColumns()
• SQLSpecialColumns()
• SQLStatistics

This section includes the following classes:
• TTCatalog
• TTCatalogTable
• TTCatalogColumn
• TTCatalogIndex
50 Oracle TimesTen In-Memory Database TTClasses Guide

TTCatalog
The TTCatalog class is the top-level class used for programmatically accessing
metadata information about tables in a database. A TTCatalog object has an
internal array of TTCatalogTable objects inside it. Apart from the constructor, all
public methods of TTCatalog are used to gain read-only access to that
TTCatalogTable array.

Public Members
None.

Public Methods

TTCatalog
(constructor) TTCatalog (TTConnection*)

The TTCatalog constructor caches the TTConnection* parameter and initializes
all the internal data structures appropriately. To use the TTCatalog object, you
must first call fetchCatalogData.

Method Description

TTCatalog Caches the TTConnection* parameter and
initializes the internal data structures.

fetchCatalogData Reads the catalogs in the data store for information
about tables and indexes as it constructs itself and
stores this information into its internal data
structures

getNumTables Returns the total number of tables in the database,
both user and system tables.

getNumUserTables Returns the number of user tables in the database.

getNumSysTables Returns the number of system tables in the database.

getTable(const) Returns a constant reference to the TTCatalogTable
object corresponding to the specified database table.

getTable(int) Returns a constant reference to the TTCatalogTable
corresponding to the ith table in the system.

getUserTable Returns a constant reference to the TTCatalogTable
corresponding to the ith user table in the system.

getTableIndex Returns the index in the TTCatalog object for the
specified table.
Class Descriptions 51

fetchCatalogData
fetchCatalogData (TTStatus &)

This method is the only one that interacts with the data store. The connection to
the data store was cached by the constructor, so the only parameter is a TTStatus
object. This method reads the catalogs in the database for information about
tables and indexes as it constructs itself and stores this information into its
internal data structures.

Subsequent use of the constructed TTCatalog object is completely offline after it
is constructed. It is no longer attached to the database.

You must call this method before you use any of the other TTCatalog accessor
methods. Otherwise they will not return useful information.

Example 3.10 This example demonstrates the use of TTCatalog. It does not check stat.rc
after the two database calls.
TTConnection conn;
TTStatus stat;
conn.Connect(DSN=TptbmData37, stat);
TTCatalog cat (&conn);
cat.fetchCatalogData(stat);
// TTCatalog cat is no longer connected to the database;
// you can now query it through its read-only methods.
cerr << "There are " << cat.getNumTables()
 << " tables in this database:" << endl;
for (int i=0; i < cat.getNumTables(); i++)
cerr << cat.getTable(i).getTableOwner() << “.”
<< cat.getTable(I).getTableName() << endl;

getNumTables
int getNumTables()

Returns the total number of tables in the database, both user and system tables.

getNumUserTables
int getNumUserTables()

Returns the number of user tables in the database.

getNumSysTables
int getNumSysTables()

Returns the number of system tables in the database.

There is no corresponding getSysTable(int) method.

getTable(const)
const TTCatalogTable & getTable (const char * owner,

 const char * tblname)
52 Oracle TimesTen In-Memory Database TTClasses Guide

Returns a constant reference to the TTCatalogTable object corresponding to the
database table named tblname owned by owner. See “TTCatalogTable” on page
54.

getTable(int)
const TTCatalogTable & getTable (int tno)

Returns a constant reference to the TTCatalogTable corresponding to table
number tno in the system. This method is intended to facilitate iteration through
all of the tables in the system; the order of the tables in this array is arbitrary.

Note that the following relationship is asserted to hold:
0 <= tno <= getNumTables().

getUserTable
const TTCatalogTable & getUserTable (int tno)

Returns a constant reference to the TTCatalogTable corresponding to user table
number tno in the system. This method is intended to facilitate iteration through
all of the user tables in the system; the order of the user tables in this array is
arbitrary.

 Note that the following relationship is asserted to hold:
0 <= tno <= getNumUserTables().

getTableIndex
int getTableIndex (const char * owner, const char * tblname) const

This method fetches the index in the TTCatalog object for the specified
owner.tblname object. It returns -2 if the owner.tblname does not exist. It returns
-1 if the catalog did not call TTCatalog::fetchCatalogData before calling
TTCatalog::getTableIndex.

Example 3.11 This example retrieves information about the TTUSER.MYDATA table from a
TTCatalog object. You can then call the TTCatalogTable functions to get
information about the TTUSER.MYDATA table.
TTConnection conn;
TTStatus stat;
conn.Connect(...);
TTCatalog cat (&conn);
cat.fetchCatalogData(stat);

int idx = cat.getTableIndex("TTUSER", "MYDATA");
if (idx < 0) {
 cerr << "Table TTUSER.MYDATA does not exist." << endl;
 return;
}

TTCatalogTable &table = cat.getTable(idx);
Class Descriptions 53

TTCatalogTable
Used to store all metadata information about a table’s columns and indexes.

Public Members
None.

Public Methods

getTableOwner
const char * getTableOwner()

Returns the owner of the table.

getTableName
const char * getTableName()

Returns the name of the table.

getNumColumns
int getNumColumns()

Returns the number of columns in the table.

getNumIndexes
int getNumIndexes()

Returns the number of indexes on the table.

Method Description

getTableOwner Returns the owner of the table.

getTableName Returns the name of the table.

getNumColumns Returns the number of columns in the table.

getNumIndexes Returns the number of indexes on the table.

getColumn Returns a constant reference to the
TTCatalogColumn corresponding to the ith column in
the table.

getIndex Returns a constant reference to the TTCatalogIndex
corresponding to the ith index in the table.

isSystemTable Returns true if the table is a system table.

isUserTable Returns true if the table is a user table.
54 Oracle TimesTen In-Memory Database TTClasses Guide

getColumn
const TTCatalogColumn & getColumn (int i)

Returns a constant reference to the TTCatalogColumn corresponding to column
number i in the table. This method is intended to facilitate iteration through all of
the user tables in the system.

Note that the following relationship is asserted to hold:
0 <= i <= getNumColumns().

getIndex
const TTCatalogIndex & getIndex (int i)

Returns a constant reference to the TTCatalogIndex corresponding to index
number i in the table. This method is intended to facilitate iteration through all of
the user tables in the system; the order of a table’s indexes in this array is
arbitrary.

Note that the following relationship is asserted to hold:
0 <= i <= getNumColumns().

isSystemTable
bool isSystemTable()

Returns true if the table is a system table (owned by SYS or TTREP). It returns
false otherwise.

isUserTable
bool isUserTable

Returns true if this is a user table. It returns false otherwise. Note that the
definition of a user table is one that is not a system table. Thus isUserTable()
returns the opposite of isSystemTable() for any table.

isSystemTable() and isUserTable() are useful for applications that iterate over all
tables in a database after a call to TTCatalog::fetchCatalogData, so that you can
filter or annotate tables to differentiate the system and user tables. See the
TTClasses demo program (catalog.cpp) for an example of how this can be
done.
Class Descriptions 55

TTCatalogColumn
The TTCatalogColumn class is used to store all metadata information about a
single table column of the TTCatalogTable it is associated with.

Public Members
None.

Public Methods

getColumnName
const char * getColumnName()

Return the name of the column.

getDataType
int getDataType()

Returns an integer representing the data type of the column. This is the standard
ODBC SQL Type.

getTypeName
const char * getTypeName()

Returns the database-dependent name that corresponds to the type returned by
getdata type().

Method Description

getColumnName Return the name of the column.

getDataType Returns an integer representing the ODBC SQL data
type of the column.

getTypeName Returns the database-dependent name that
corresponds to the type returned by getdata type().

getNullable Returns SQL_NO_NULLS, SQL_NULLABLE, or
SQL_NULLABLE_UNKNOWN.

getPrecision Returns the precision of the column.

getLength Returns the length of the column.

getScale Returns the scale of the column.

getRadix Returns the radix of the column.
56 Oracle TimesTen In-Memory Database TTClasses Guide

getNullable
int getNullable()

Returns SQL_NO_NULLS, SQL_NULLABLE, or
SQL_NULLABLE_UNKNOWN.

getPrecision
int getPrecision()

Returns the precision of the column.

getLength
int getLength()

Returns the length of the column.

getScale
int getScale()

Returns the scale of the column.

getRadix
int getRadix()

Returns the radix of the column.
Class Descriptions 57

TTCatalogIndex
Used to store all information about an index of the TTCatalogTable it is
associated with.

Public Members
None.

Public Methods

getIndexName
const char * getIndexName()

Returns the name of the index.

getIndexOwner
const char * getIndexOwner()

Returns the owner of the index.

getTableName
const char * getTableName()

Returns the name of the table for which the index was created.

getType
int getType()

Returns the type of the index. For TimesTen, the allowable values are
PRIMARY_KEY, HASH_INDEX (the same as PRIMARY_KEY), and

Method Description

getIndexName Returns the name of the index.

getIndexOwner Returns the owner of the index.

getTableName Returns the name of the table for which the index
was created.

getType Returns the type of the index.

isUnique Returns whether the index is a unique index.

getNumColumns Returns the number of columns in the index.

getColumnName Returns the column name of the specified column in
the index.

getCollation Returns the collation of the specified column in the
index.
58 Oracle TimesTen In-Memory Database TTClasses Guide

TTREE_INDEX. For other databases, allowable values are
SQL_INDEX_HASHED and SQL_INDEX_CLUSTERED.

isUnique
bool isUnique()

Returns whether the index is a unique index. True means it is unique. False
means it is not unique.

getNumColumns
int getNumColumns()

Returns the number of columns in the index.

getColumnName
const char * getColumnName (int i)

Returns the column name of column number i in the index.

getCollation
char getCollation (int i)

Returns the collation of column number i in the index. Values returned are ‘A’ for
ascending and ‘D’ for descending index order.
Class Descriptions 59

XLA classes
TTClasses provides a set of C++ classes that make it easy to write applications
that use the TimesTen Transaction Log API (XLA).

XLA is a set of C callable functions that allow an application to monitor changes
made to one or more tables in a TimesTen data store. Whenever another
application changes a monitored tables, the application using XLA is informed of
the changes. For more information about XLA, see Chapter 3, “XLA and
TimesTen Event Management” in Oracle TimesTen In-Memory Database C
Developer’s and Reference Guide.

The XLA classes supports as many XLA columns as the maximum number of
columns supported by TimesTen. For more information, see "System Limits" in
Oracle TimesTen In-Memory Database API Reference Guide.

Table 3.5 lists the TTClasses XLA classes and their descriptions.

Table 3.5 TTClasses XLA Classes

Class Description

TTXlaPersistConnection Defines a persistent connection to a TimesTen data store.

TTXlaRowViewer Fetches column values from a particular update record.

TTXlaTableHandler Provides methods that enable and disable change tracking for a
table. Methods are also provided to handle update notification
records from XLA.

TTXlaTableList Provides a list of TTXlaTableHandler objects. This class is
used to route a particular change to the appropriate method for
processing. Incoming update notification records are routed to
the appropriate method of the appropriate TTXlaTableHandler
object for processing.
60 Oracle TimesTen In-Memory Database TTClasses Guide

TTXlaPersistConnection
TTXlaPersistConnection defines a persistent connection to a TimesTen data
store.

Public Members
None

Public Methods

Connect(createBookmark)
virtual void Connect (const char* connStr, const char * bookmark,

bool createBookmark, TTStatus&);

Each persistent XLA connection has a name (or bookmark) associated with it, so
that upon disconnect and reconnect, the same place in the transaction log can be
found. The name for a connection’s bookmark is specified in the bookmark
parameter.

Note: Only one XLA connection can connect with a given bookmark name. An
error will be returned if multiple connections try to connect to the same
bookmark.

Method Description

Connect(createBookmark) Connects with the specified bookmark.

Connect Connects with the specified bookmark. It
creates a bookmark if one does not exist.

DeleteBookmarkAndDisconnect Deletes the bookmark and disconnects
from the data store.

Disconnect Closes an XLA connection to a TimesTen
data store.

ackUpdates Advances the bookmark to the next set of
updates.

getBookmarkIndex Stores the current place in the transaction
log.

setBookmarkIndex Returns to the saved transaction log index.

fetchUpdatesWait Fetches updates to the transaction log
within the specified wait period.
Class Descriptions 61

Whether this is a new bookmark, or a previously created bookmark, is specified
by the “createBookmark” boolean parameter. If you specify that a bookmark is
new (createBookmark==true) and it already exists, an error will be returned.
Similarly, if you specify that a bookmark already exists
(createBookmark==false) and it does not already exist, an error will be returned.

Connect
virtual void Connect (const char* connStr, const char * bookmark,

TTStatus&);

This second connect method first tries to connect using the supplied bookmark,
reusing it (implicit value of createBookmark==false). If that bookmark does not
exist, the method then tries to connect and create a new bookmark with the name
bookmark (implicit value of createBookmark==true).

This method is provided as a convenience, to simplify XLA connection logic in
case the developer does not wish to worry about whether the XLA bookmark
exists.

DeleteBookmarkAndDisconnect
void DeleteBookmarkAndDisconnect (TTStatus&)

This method deletes the bookmark that is currently associated with the
connection, so that the data store no longer keeps records relevant to that
bookmark. It then disconnects from the data store.

Disconnect
virtual void Disconnect (TTStatus&)

This method closes an XLA connection to a TimesTen data store. The XLA
bookmark persists after you call this method. If you want to delete the bookmark
and disconnect from the data store, then use
TTXlaPersistConnection::DeleteBookmarkAndDisconnect.

ackUpdates
void ackUpdates (TTStatus &)

This method is used to advance the bookmark to the next set of updates. After
you have acknowledged a set of updates, the updates cannot be viewed again. See
“getBookmarkIndex” on page 63 and “setBookmarkIndex” on page 63 for
information about replaying a set of updates.

Applications should acknowledge updates when a batch of XLA records have
been read and processed so that transaction log files do not fill up the disk where
they are stored. Do not call ackUpdates too frequently, because it is a relatively
expensive operation.

If an application uses XLA to read a batch of records and then a failure occurs,
the records can be retrieved when the application reconnects using XLA.
62 Oracle TimesTen In-Memory Database TTClasses Guide

getBookmarkIndex
void getBookmarkIndex (TTStatus &)

This method acquires the current bookmark location.

setBookmarkIndex
void setBookmarkIndex (TTStatus &)

This method restores the bookmark to the previously acquired bookmark
location. Use this method to replay a batch of records multiple times.

Note that ackUpdates invalidates the stored transaction log placeholder. After
ackUpdates, a call to setBookmarkIndex returns an error because it is no longer
possible to go back to the previously acquired bookmark location.

fetchUpdatesWait
void fetchUpdatesWait (ttXlaUpdateDesc_t*** arry, int maxrecs,

int* recsP, int seconds, TTStatus&)

This method is used by an XLA application to fetch a set of records describing
changes to a data store. A list of ttXlaUpdateDesc_t structures is returned. If
there are no XLA updates to be fetched, this method waits the specified number
of seconds before returning.

The caller specifies the maximum number of records it is willing to receive.
When the method returns, the caller receives the number of records actually
returned, as well as an array of pointers which point to structures defining the
changes.

The ttXlaUpdateDesc_t structures that are returned by this method are defined
in the XLA specification. No C++ object-oriented encapsulation of these
methods is provided.

Usage
A persistent XLA application can create multiple TTXlaPersistConnection
objects. Each TTXlaPersistConnection object must be associated with its own
bookmark, which is specified at ::Connect time and must be maintained through
the ::ackUpdates and ::deleteBookmark methods.

After a persistent XLA connection is made, the application should enter a loop in
which the fetchUpdates[Wait] method is called repeatedly until application
termination. This loop should fetch updates from XLA as rapidly as possible, to
prevent the transaction log from overfilling disk. After processing a batch of
updates, the application should call ackUpdates in order to acknowledge those
updates and get ready for the next call to fetchUpdates. A batch of updates can be
replayed using the setBookmarkIndex and getBookmarkIndex methods. Also, if
the persistent XLA application disconnects after fetchUpdates[Wait], but before
ackUpdates, the next connection (with the same bookmark name) which calls
fetchUpdates[Wait] will see that same batch of updates.
Class Descriptions 63

Updates that occur while a TTXlaPersistConnection object is disconnected to the
data store are not lost, but are stored in the transaction log until another
TTXlaPersistConnection object connects with the same bookmark name.
64 Oracle TimesTen In-Memory Database TTClasses Guide

TTXlaRowViewer
The TTXlaRowViewer class is a powerful class that allows application
developers to examine XLA change notification record structures to fetch old and
new column values.

Before a row can be examined, the TTXlaRowViewer object must be associated
with a table (using the settable method) and a row (using the setTuple method).
The table is a TTXlaTable object previously defined. The row is part of a
ttXlaUpdateDesc_t structure as returned by XLA using the
TTXlaPersistConnection::fetchUpdateWait method.

Public Members
None

Public Methods

setTable
void setTable (TTXlaTable*)

This associates this TTXlaRowViewer with a particular table.

setTuple
void setTuple (ttXlaUpdateDesc_t*, int whichTuple)

This method associates this TTXlaRowViewer object with a particular row
image.

The ttXlaUpdateDesc_t structures that are returned by
TTConnection::fetchUpdates contain either zero, one or two rows.
• Structures that define a row that was inserted into a table contain the row

image of the inserted row.
• Structures that define a row that was deleted from a table contain the row

image of the deleted row.
• Structures that define a row that was updated in a table contain the images of

the row before and after the update.

Method Description

setTable Associates TTXlaRowViewer with the specified table.

setTuple Associates the TTXlaRowViewer object with the specified
row image.

isNull Indicates whether the specified column in a row image is
NULL.

Get Fetches the value of the specified column in a row image.
Class Descriptions 65

• Structures that define other changes to the table or the data store contain no
row images. For example, structures reporting that an index was dropped
contain no row images.

The setTuple method takes two arguments:
• A pointer to a particular ttXlaUpdateDesc_t structure defining a database

change.
• An integer specifying which of row images in the update structure should be

examined. Values for this parameter are:
– INSERTED_TUP: Examine the newly inserted row
– DELETED_TUP: Examine the deleted row
– UPDATE_OLD_TUP: Examine the row before it was updated
– UPDATE_NEW_TUP: Examine the row after it was updated

After the setTable and setTuple methods are called, the following methods can be
used to fetch information about row images in the update records.

isNull
bool isNull (int whichCol)

Indicates whether a particular column in a row image is NULL (returns true) or
not (returns false).

The whichCol parameter is the column number for the column to be interrogated.

Get
void Get (int col, ...)

Fetches the value of a particular column in a row image.

These methods are very similar to the TTCmd::getColumn() methods.

The col parameter is the column number for the column to be interrogated.

Table 3.6 shows the supported SQL data types and the appropriate versions of
Get to use for each parameter type. There are six variants for the NUMBER data
type and two variants for the FLOAT data type. Design the application according
to the kind of data that is stored. For example, data of type NUMBER(9,0) can be
accessed by Get(int, int*) without loss of data.

Table 3.6 TTXlaRowViewer::Get Variants for Supported Data Types

XLA Data Type Database Data
Type

Get Variant

TTXLA_CHAR_TT TT_CHAR Get(int, char**)

TTXLA_NCHAR_TT TT_NCHAR Get(int, SQLWCHAR**, int*len)
66 Oracle TimesTen In-Memory Database TTClasses Guide

TTXLA_VARCHAR_TT TT_VARCHAR Get(int, char**)

TTXLA_NVARCHAR_TT TT_NVARCHAR Get(int, SQLWCHAR**, int*len)

TTXLA_TINYINT TT_TINYINT Get(int, unsigned char*)

TTXLA_SMALLINT TT_SMALLINT Get(int, short*)

TTXLA_INTEGER TT_INTEGER Get(int, int*)

TTXLA_BIGINT TT_BIGINT Get(int, SQLBIGINT*)

TTXLA_BINARY_FLOAT BINARY_FLOAT Get(int, float*)

TTXLA_BINARY_DOUBLE BINARY_DOUBLE Get(int, double*)

TTXLA_DECIMAL_TT TT_DECIMAL Get(int, char**)

TTXLA_TIME TT_TIME Get(int, TIME_STRUCT*)

TTXLA_DATE_TT TT_DATE Get(int, DATE_STRUCT*)

TTXLA_TIMESTAMP_TT TT_TIMESTAMP Get(int, TIMESTAMP_STRUCT*)

TTXLA_BINARY BINARY Get(int, const void**, int*len)

TTXLA_VARBINARY VARBINARY Get(int, const void**, int*len)

TTXLA_NUMBER NUMBER Get(int, double*)
Get(int, char**)
Get(int, char*)
Get(int, short*)
Get(int, int*)
Get(int, SQLBIGINT*)

TTXLA_DATE DATE Get(int, TIMESTAMP_STRUCT*)

TTXLA_TIMESTAMP TIMESTAMP Get(int, TIMESTAMP_STRUCT*)

TTXLA_CHAR CHAR Get(int, char**)

TTXLA_NCHAR NCHAR Get(int, SQLWCHAR**, int*len)

TTXLA_VARCHAR VARCHAR2 Get(int, char**)

TTXLA_NVARCHAR NVARCHAR2 Get(int, SQLWCHAR**, int*len)

TTXLA_FLOAT FLOAT Get(int, double*)
Get(int, char**)

XLA Data Type Database Data
Type

Get Variant
Class Descriptions 67

Usage
It is used to fetch column values from row images contained in change
notification records.
68 Oracle TimesTen In-Memory Database TTClasses Guide

TTXlaTableHandler
The TTXlaTableHandler class is intended as a base class from which application
developers write customized classes to process changes to a particular table.

Public Members
None

Protected Members

Public Methods

Member Description

TTXlaTable tbl; The object associated with the table
being handled.

TTXlaRowViewer row; Used to view the row being inserted
or deleted, or the old image of the row
being changed.

TTXlaRowViewer row2; Used to view the new image of the
row being updated.

Method Description

TTXlaTableHandler Associates TTXlaRowViewer with the specified
table.

EnableTracking Enables XLA update tracking for the underlying
table.

DisableTracking Disables XLA update tracking for the underlying
table.

HandleChange Dispatches a record from ttXlaUpdateDesc_t to
the appropriate handling routine for processing.

HandleDelete Invoked when the HandleChange method is
called to process a delete operation.

HandleInsert Invoked when the HandleChange method is
called to process an insert operation

HandleUpdate Invoked when the HandleChange method is
called to process an update operation.

generateSQL Returns the SQL associated with a given XLA
record.
Class Descriptions 69

TTXlaTableHandler
TTXlaTableHandler (TTXlaConnection& conn, const char* ownerP,

const char* nameP)

Associates this TTXlaRowViewer with a particular table. It initializes the
TTXlaTable object contained within this object.

EnableTracking
virtual void EnableTracking (TTStatus&);

Enables XLA update tracking for the underlying table. Until this method is
called, XLA will not return information about changes to this table.

DisableTracking
virtual void DisableTracking (TTStatus&);

Disables XLA update tracking for the underlying table. After this method is
called, XLA will not return information about changes to this table.

HandleChange
virtual void HandleChange (ttXlaUpdateDesc_t*, void* pData = 0);

Dispatches a ttXlaUpdateDesc_t to the appropriate handling routine for
processing. The update description is analyzed to determine if it is a delete, insert
or update. The appropriate virtual method (HandleDelete, HandleInsert or
HandleUpdate) is then called.

See “Acknowledging XLA updates at transaction boundaries” on page 78 for
information about how to use the pData parameter.

HandleDelete
virtual void HandleDelete (ttXlaUpdateDesc_t*) = 0;

This method will be invoked whenever the HandleChange method is called to
process a delete operation.

This method is not implemented in the TTXlaTableHandler base class, but must
be provided by any classes derived from it. Application developers should put
their logic to handle deleted rows in this method.

The row that was deleted from the table is available through the RowViewer
named “row”.

HandleInsert
virtual void HandleInsert (ttXlaUpdateDesc_t*) = 0;

This method will be invoked whenever the HandleChange method is called to
process a insert operation.

This method is not implemented in the TTXlaTableHandler base class, but must
be provided by any classes derived from it. Application developers should put
their logic to handle inserted rows in this method.
70 Oracle TimesTen In-Memory Database TTClasses Guide

The row that was inserted from the table is available through the RowViewer
named “row”.

HandleUpdate
virtual void HandleUpdate (ttXlaUpdateDesc_t*) = 0;

This method will be invoked whenever the HandleChange method is called to
process an update operation.

This method is not implemented in the TTXlaTableHandler base class, but must
be provided by any classes derived from it. Application developers should put
their logic to handle updated rows in this method.

The “old” version of the row that was updated from the table is available through
the RowViewer named “row”; the “new” version of the row is available row
“row2”.

generateSQL
void generateSQL (ttXlaUpdateDesc_t*, char * buffer,

SQLINTEGER maxLen, SQLINTEGER *actualLen, TTStatus &);

This method can be used to print out the SQL associated with a given XLA
record. The SQL string is returned through the buffer parameter, which the caller
of this method has allocated space for and specified its length in the maxLen
parameter. The actualLen parameter returns information about the actual length
of the SQL string returned.

If maxLen is less than the generated SQL string, a TTStatus error will be
returned, and the contents of buffer and actualLen will be unmodified.

The TTClasses install_dir/demo/ttclasses/xlademo.cpp demo program
shows how to use this method.

Usage
Application developers can derive one or more classes from TTXlaTableHandler,
and can put most of the application’s logic in the HandleInsert, HandleDelete,
and HandleUpdate methods of that class.

One strategy is to derive multiple classes from TTXlaTableHandler, one for each
table. Business logic to handle changes to customers might be implemented in a
CustomerTableHandler class, while business logic to handle changes to orders
might be implemented in a OrderTableHandler class.

Another strategy is to derive one or more generic classes from
TTXlaTableHandler to handle various scenarios. For example, a generic class
derived from TTXlaTableHandler could be used to publish changes using a
publish/subscribe system.
Class Descriptions 71

TTXlaTableList
The TTXlaTableList class is used to dispatch update notification events to the
appropriate TTXlaTableHandler. A list of TableHandler objects is maintained in
the class. As update notifications are received from XLA, the appropriate Handle
methods of the appropriate TableHandler is called to process each record.

For example, if an object of type CustomerTableHandler is handling changes to
table CUSTOMER, and an object of type OrderTableHandler is handling changes
to table ORDERS, the application should include both of these objects in a
TTXlaTableList. As XLA update notification records are fetched from XLA,
they can be dispatched to the correct handler by simply calling
TTXlaTableList::HandleChange.

Public Members
None

Public Methods

TTXlaTableList
This method creates a table list. It has two constructor forms.
(constructor) TTXlaTableList (TTXlaConnection *, unsigned int i)

i is the number of database objects to monitor.
(constructor) TTXlaTableList (TTXlaConnection* cP);

cP references the database connection to be used for XLA operations. This form
of the constructor can monitor up to 150 database objects.

add
void add (TTXlaTableHandler* h);

Adds a TableHandler to the list.

del
void del (TTXlaTableHandler* h);

Deletes a TableHandler from the list.

Method Description

TTXlaTableList Creates a table list.

add Adds a TableHandler to the list.

del Deletes a TableHandler from the list.

HandleChange Processes a record obtained from
ttXlaUpdateDesc_t.
72 Oracle TimesTen In-Memory Database TTClasses Guide

HandleChange
void HandleChange (ttXlaUpdateDesc_t* p, TTStatus&);

When a ttXlaUpdateDesc_t is received from XLA, it can be processed by
calling this method. This method determines which table the record references
and calls the HandleChange method of the appropriate TableHandler.

Usage
By registering TableHandler objects in a TableList, the process of fetching update
notification records from XLA and dispatching them to the appropriate methods
for processing can be accomplished using a very simple loop.
Class Descriptions 73

Internal classes
These classes are provided in the C++ class library and are used internally in
other classes. Their implementation may change.
• TTCommand: The base class of TTCmd, the TTCommand class provides a

low level C++ mapping for ODBC statements (SQLHSTMTs) and ODBC
function calls.

• TTParameter: TTCmd implements self-defining parameters through the
TTParameter class.

• TTColumn: TTCmd implements self-defining columns through the
TTColumn class.

• TTXlaTable: TTXlaTable objects define information about tables which are
being monitored for changes.

• TTXlaColumn: TTXlaRowViewer uses this function to define a single
column in a table.
74 Oracle TimesTen In-Memory Database TTClasses Guide

4
Using TTClasses

This chapter contains brief descriptions of the recommended way to use
TTClasses. It includes the following topics:
• Using TTCmd, TTConnection, and TTStatus
• TTClasses logging
• Using XLA classes
• Acknowledging XLA updates at transaction boundaries

See also the sample programs included in install_dir/demo/ttclasses.

Using TTCmd, TTConnection, and TTStatus
While TTClasses can be used in a number of ways, the following general
approach has been successful in numerous projects and can easily be adapted to a
variety of applications.

To achieve optimal performance, real-time applications should use prepared SQL
statements. Ideally, all SQL statements that will be used by an application are
prepared when the application begins, using separate TTCmd objects for each
statement. In ODBC (and thus in the C++ classes), statements are bound to a
particular connection, so a full set of all statements used by the application will
often be associated with every connection to the TimesTen database.

An easy way to accomplish this is to develop an application-specific class that is
derived from TTConnection. For an application called XYZ, you can create a
class called XYZConnection, derived from TTConnection. The XYZConnection
class contains private TTCmd members representing the prepared SQL
statements that can be used in the application. In addition, the XYZConnection
class provides new public methods to implement the application-specific
database functionality, which can be implemented using the private TTCmd
members.

Example 4.1 This is an example of a class that inherits its functionality from TTConnection.
class XYZConnection : public TTConnection {
private:
 TTCmd updateData;
 TTCmd insertData;
Using TTClasses 75

 TTCmd queryData;

public:
 XYZConnection();
 ~XYZConnection();
 virtual void Connect (const char* connStr,TTStatus&);
 void updateUser (TTStatus&);
 void addUser (char* nameP, TTStatus&);
 void queryUser (const char* nameP, int* valueP,
 TTStatus&);
};

In this example, an XYZConnection object is a connection to TimesTen that can
be used to perform three application-specific operations: addUser, updateUser
and queryUser. These operations are specific to the application (storing account
balances, for example). The implementation of these three methods can use the
updateData, insertData and queryData TTCmd objects provided in the class to
implement the specific functionality of the application.

To cause the SQL statements used by the application to be prepared, the
XYZConnection class overloads the Connect method provided by the
TTConnection base class. The XYZConnection::Connect() method will call the
Connect method of the base class to establish the database connection, and also
calls the Prepare method for each TTCmd object to cause the SQL statements to
be prepared for later use.

Example 4.2 This example shows the XYZConnection::Connect() method.
void
XYZConnection::Connect(const char* connStr, TTStatus&
 stat)
{
 TTStatus stat2;

 try {
 TTConnection::Connect(connStr, stat);
 updateData.Prepare(this,
 "update mydata v
 "set foo = ? where bar = ?",
 stat);
 insertData.Prepare(this,
 "insert into mydata "
 "values(?,0)", stat);
 queryData.Prepare(this,
 "select i from mydata where name "
 " = ?", stat);
 Commit(stat);
 }
 catch (TTStatus st) {
76 Oracle TimesTen In-Memory Database TTClasses Guide

 cerr << "Error in XYZConnection::Connect: " << st
 << endl;
 Rollback(stat2);
 }
 return;
}

This Connect method causes the XYZConnection to be made fully operational.
The application-specific methods are fully functional after Connect has been
called.

This approach to application design works well with the design of the
TTConnectionPool class. The application can create numerous objects of type
XYZConnection and can add them to TTConnectionPool. By calling
TTConnectionPool::ConnectAll(), the application can cause all connections in
the pool to be connected to the database, as well as causing all SQL statements to
be prepared, in a single line of code.

This approach to application design allows the database components of an
application to be separated from the remainder of the application; only the
XYZConnection class contains database-specific code.

An example of this type of design can be found in several of the sample programs
that are included with TTClasses. The simplest example is
install_dir/demo/ttclasses/sample.cpp.

Note that other configurations are possible. Some customers have extended this
scheme further, so that SQL statements to be used in an application are listed in a
table in the database, rather than being hard-coded in the application itself. This
allows changes to database functionality to be implemented by making database
changes rather than application changes.

TTClasses logging
TTClasses has a logging facility that allows applications to capture useful
debugging information about running TTClasses programs. TTClasses logging is
done on at the process level. You can enable logging for a specific process and
produce a single output log stream for the process. TTClasses logging is disabled
by default.

TTClasses supports different levels of logging information. See Table 3.4 on
page 47 for more information about what is printed at each log level.

Log level WARN is very useful while developing a TTClasses application and
can also be appropriate for production applications because in this log level
database query plans are generated.
Using TTClasses 77

Note that at the more verbose log levels (INFO and DEBUG), so much log data is
generated that application performance is adversely affected. We strongly
discourage using these log levels in a production environment.

Although TTClasses logging can print to either stdout or stderr, the best
approach is to write directly to a TTClasses log file. Example 4.3 demonstrates
how to print TTClasses log information at log level WARN into the
/tmp/ttclasses.log output file.

Example 4.3 ofstream output;
output.open("/tmp/ttclasses.log");
TTGlobal::setLogStream(output);
TTGlobal::setLogLevel(TTLog::TTLOG_WARN);

First-time users of TTClasses should spend a little time experimenting with
TTClasses logging. You can change the sample.cpp program in
install_dir/demo/ttclasses to use different log levels so you can see how
errors are printed at log level ERROR and how huge amounts of logs are
generated at log levels INFO and DEBUG.

See “TTGlobal (logging)” on page 47 for more information about using the
TTGlobal class for logging.

Using XLA classes
See the following demos in install_dir/demo/ttclasses for examples of
how to use the TTClasses XLA classes:
• The changemon.cpp demo shows how to monitor changes to a table.
• The changemon_multi.cpp demo shows how to monitor multiple tables.
• The xlademo.cpp demo shows additional ways to use the TTClasses XLA

classes.

Acknowledging XLA updates at transaction boundaries
XLA returns notification of changes to specific tables in the database, as well as
information about the transaction boundaries for those database changes. This
section describes how to acknowledge updates only at transaction boundaries,
which is a common requirement for XLA applications.

Example 4.4 This example shows a typical main loop of a TTClasses/XLA program.
TTXlaPersistConnection conn; // XLA connection
TTXlaTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // ptr to returned XLA recs
TTStatus stat;
int records_fetched;
// ...
78 Oracle TimesTen In-Memory Database TTClasses Guide

loop {
 // fetch the updates
 // could also be conn.fetchUpdates(...);
 conn.fetchUpdatesWait(&arry, MAX_RECS_TO_FETCH,

&records_fetched, ...);

 // Interpret the updates
 for(j=0;j < records_fetched;j++){
 ttXlaUpdateDesc_t *p;
 p = arry[j];
 list.HandleChange(p, stat);
 } // end for each record fetched

 // periodically call ackUpdates()
 if (some condition is reached) {
 conn.ackUpdates(stat) ;
 }
} // loop

Inside the HandleChange() method, depending on whether the record is an insert/
update/delete, one of < HandleInsert(), HandleUpdate(), HandleDelete() > is
called.

It is inside HandleChange() that you can access the flag that indicates whether
the XLA record is the last record in a particular transaction.

Thus there is no way in the example loop for the HandleChange() method to pass
the information about the transaction boundary to the loop, so that this
information can influence when to call conn.ackUpdates().

Under typical circumstances of only a few records per transaction, this is not an
issue. When you ask XLA to return at most 1000 records with the fetchUpdates()
or fetchUpdatesWait() method, usually only a few records are returned. XLA
returns records as quickly as it can, and even if huge numbers of transactions are
occurring in the database, you usually can pull the XLA records out quickly, a
few at a time. When you pull the XLA records out a few at a time, XLA usually
makes sure that the last record returned is on a transaction boundary.

In summary: if you ask for 1000 records from XLA, and XLA returns only 15, it
is highly probable that the 15th record is at the end of a transaction.

XLA guarantees that:
• Either a batch of records will end with a completed transaction (perhaps

multiple transactions in a single batch of XLA records)
• Or a batch of records will contain a partial transaction, with no completed

transactions in the same batch, and that subsequent batches of XLA records
will be returned for that single transaction until its transaction boundary has
been reached.
Using TTClasses 79

Careful XLA applications need to verify whether the last record in a batch of
XLA records has a transaction boundary and call ackUpdates() only on this
transaction boundary. This is especially important when operations involve a
large number of rows. If a bulk insert/update/delete operation has been
performed on the database and the XLA application asks for 1000 records, it
might receive all 1000 records (or fewer than 1000). The last record returned
through XLA will probably not have the end-of-transaction flag. In fact, if the
transaction has made changes to 10,000 records, then clearly a minimum of 10
blocks of 1000 XLA records must be fetched before reaching the transaction
boundary.

Calling ackUpdates() for every transaction boundary is not recommended,
because ackUpdates() is a relatively expensive operation. Careful XLA
applications should make sure to call this method only on a transaction boundary,
so that when the application or system or database fails, the XLA bookmark is at
the start of a transaction after the system recovers.

The HandleChange() method has a third parameter to allow passing information
between HandleChange() and the main XLA loop. Compare Example 4.4 with
Example 4.5.

Example 4.5 In this example, ackUpdates() is called only when the do_acknowledge flag
indicates that this batch of XLA records is at a transaction boundary.
TTXlaPersistConnection conn; // XLA connection
TTXlaTableList list(&conn); // tables being monitored
ttXlaUpdateDesc_t ** arry; // ptr to returned XLA recs
TTStatus stat;
int records_fetched;
int do_acknowledge;
// ...
loop {
 // fetch the updates
 // could also be conn.fetchUpdates(...);
 conn.fetchUpdatesWait(&arry, MAX_RECS_TO_FETCH,

 &records_fetched, ...);

 do_acknowledge = FALSE;

 // Interpret the updates
 for(j=0;j < records_fetched;j++){
 ttXlaUpdateDesc_t *p;
 p = arry[j];
 list.HandleChange(p, stat, &do_acknowledge);
 } // end for each record fetched

 // periodically call ackUpdates()
 if (do_acknowledge == TRUE

/* and some other conditions ... */) {
80 Oracle TimesTen In-Memory Database TTClasses Guide

 conn.ackUpdates(stat) ;
 }
} // loop

In addition to this change to the XLA main loop, the HandleChange() method
needs to be overwritten to use ttXlaUpdateDesc_t.

The TTClasses demo install_dir/demo/ttclasses/xlademo.cpp
demonstrates rewriting the HandleChange() method. Review this demo program
and run it to see how the XLA end-of-transaction flag can be monitored and
acted upon.
Using TTClasses 81

82 Oracle TimesTen In-Memory Database TTClasses Guide

Index
B
batch operations 38
BindParameter method 39

C
catalog class (TTCatalog) 51
CheckpointBlocking 22
client/server mode

compiling TTClasses 10
column metadata 56
compiler macros

GCC 12
HPUX 12
MERANT 12
TT_64BIT 12
TTDEBUG 12
TTEXCEPT 11
USE_OLD_CPP_STREAMS 11

Connect method
example 76

connection class (TTConnection) 19
connection pool 44
connection pooling class (TTConnection) 44
creating classes

example 75

D
data types

using TTCmd

BindParameter 39
getColumn 34, 36
setParam 31

using TTXlaRowViewer

Get 66
debugging 12
deriving classes

example 75

E
error reporting class (TTStatus) 15
exceptions

C++ 11

ExecuteBatch method 41

G
global logging class (TTGlobal) 47

H
HDBC abstraction class (TTConnection) 19
HSTMT abstraction class (TTCmd) 25

I
index metadata 58
install TTClasses library (UNIX) 11

L
logging 47

TTClasses 77
logging class (TTGlobal) 47
logging levels

TTClasses 47

M
macros

64-bit TimesTen 12
C++ streams 11
gcc 12
HP-UX 12
Merant ODBC driver manager 12
TT_64BIT 12
TTClasses compiler 11
TTDEBUG 12
TTEXCEPT 11
USE_OLD_CPP_STREAMS 11

make
debug libraries 10
delete libraries and files 10
optimized libraries 10
shared debug library 10
shared optimized library 10
static debug library 10

multithreaded applications 44

P
Prepare method 27

example 76
Index 83

PrepareBatch method 38

S
setParamLength method 40
setParamNull method 40
setQueryTimeout method 30
SQLBindParams ODBC function 38
SQLError ODBC function 15
statement class (TTCmd) 25
static optimized library 10

T
table metadata 54
TimesTen C++ Interface Classes

definition 7
TTCatalog class 51
TTCatalogColumn class 56
TTCatalogIndex class 58
TTCatalogTable class 54
TTClasses

compiling for client/server mode 10
compiling on Windows 9
definition 7
logging 77
logging levels 47

TTClassses
compiling on UNIX 9

TTCmd class 25
TTColumn internal class 74
TTCommand internal class 74
TTConnection class 19
TTConnectionPool class 44
TTError class 15
TTGlobal class 47
TTParameter internal class 74
TTStatus class 15
TTWarning class 15
TTXlaColumn internal class 74
TTXlaPersistConnection function 61
TTXlaRowViewer class 65
TTXlaTable internal class 74
TTXlaTableHandler class 69
TTXlaTableList class 72

X
XLA classes 60

using 78
XLA row viewer class (TTXlaRowViewer) 65
XLA table handler class (TTXlaTableHandler) 69
XLA table list class (TTXlaTableList) 72
XLA updates

acknowledging 78
transaction boundaries 78
84 Oracle TimesTen In-Memory Database TTClasses Guide

	Contents
	About this Guide
	TimesTen documentation
	Background reading
	Conventions used in this guide
	Technical Support

	Introduction to TTClasses
	Overview of TTClasses
	Scope of TTClasses

	Compiling TTClasses
	Compiling TTClasses on UNIX
	Compiling TTClasses on Windows
	Compilation options
	Compiling TTClasses for client/server mode

	Installing TTClasses after compilation (UNIX only)
	TTClasses compiler macros
	TTEXCEPT: Throw C++ exceptions
	USE_OLD_CPP_STREAMS: Use old C++ iostream code
	TTDEBUG:Generate additional debugging and error checking logic
	TT_64BIT: Use TTClasses with 64-bit TimesTen
	Platform-specific compiler macros
	GCC
	HPUX
	MERANT

	Class Descriptions
	Commonly used TTClasses
	TTStatus
	Subclasses
	Public Members
	Public Methods
	Usage

	TTConnection
	Public Members
	Public Methods
	Usage

	TTCmd
	Public Members
	Public Methods
	Public Methods for Obtaining Properties of a TTCmd Object
	Public Methods for Batch Operations
	Usage
	Methods for obtaining properties of a prepared TTCmd object
	Batch operations

	TTConnectionPool
	Public Members
	Public Methods

	TTGlobal (logging)
	Public Members
	Public Methods
	Using TTGlobal

	System catalog classes
	TTCatalog
	Public Members
	Public Methods

	TTCatalogTable
	Public Members
	Public Methods

	TTCatalogColumn
	Public Members
	Public Methods

	TTCatalogIndex
	Public Members
	Public Methods

	XLA classes
	TTXlaPersistConnection
	Public Members
	Public Methods
	Usage

	TTXlaRowViewer
	Public Members
	Public Methods
	Usage

	TTXlaTableHandler
	Public Members
	Protected Members
	Public Methods
	Usage

	TTXlaTableList
	Public Members
	Public Methods
	Usage

	Internal classes

	Using TTClasses
	Using TTCmd, TTConnection, and TTStatus
	TTClasses logging
	Using XLA classes
	Acknowledging XLA updates at transaction boundaries

	Index

