
Oracle TimesTen
In-Memory Database
Java Developer’s and

Reference Guide

Release 7.0

 B31681-03

Copyright ©1996, 2007, Oracle. All rights reserved.
ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.
The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.
Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.
The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.
September 2007
Printed in the United States of America

Contents
About this Guide

TimesTen documentation . 1
Background reading . 2
Conventions used in this guide 3
Technical Support . 5

1 Configuring the Java Development Environment
Installing TimesTen and the JDK 7
Setting the Java environment variables 8

Set CLASSPATH . 8
Set the shared library path variable 9
Set the THREADS_FLAG variable (UNIX only) 9
Set the PATH variable . 10

Compiling and executing Java applications 10
About the TimesTen Java demos 11

About the TimesTen demo schema 11
What the TimesTen demos do 12
Compiling the TimesTen Java demos 13
Executing the TimesTen Java demos 13

Executing the level demos 13
Executing the XlaLevel demos 14
Problems executing the TimesTen Java demo programs 19
Problems compiling the TimesTen Java demo program 19

2 Working with TimesTen Data Stores
Java classes. . 22
Connecting to a TimesTen data store 22

Load the TimesTen driver. 23
Create a connection URL for the data store 23

Specifying data store attributes in the connection URL 24
Connect to the data store . 24
Disconnect from the data store 24

Opening and closing a direct driver connection. 24
Managing TimesTen data . 26

Calling SQL statements within Java applications 26
Setting autocommit . 26
Specifying multibyte characters in SQL functions 26
Preparing SQL statements 27
Executing SQL statements 29
 iii

Using COMMIT and ROLLBACK SQL statements 30
Setting a timeout value for executing SQL statements 31
Putting it all together: preparing and executing SQL 32

Fetching multiple rows of data 33
Executing multiple SQL statements in a batch 35
Working with result sets . 36

Calling TimesTen built-in procedures. 37
Managing multiple threads . . 39
Handling errors . 40

About fatal errors, non-fatal errors, and warnings 40
Handling fatal errors and recovery 40
Handling non-fatal errors 41
About warnings . 41

Reporting errors and warnings 42
Detecting and responding to specific errors 44
Rolling back failed transactions 45

3 Using JMS/XLA for Event Management
JMS/XLA concepts . . 47

How XLA reads records from the transaction log 48
XLA and materialized views. 50
XLA configuration file and topics 50
XLA updates . . 51
XLA bookmarks . 52
XLA acknowledgement modes 53

Prefetching updates . 53
Acknowledging updates 54

XLA demos . . 54
JMS/XLA and Oracle GDK dependency 54
Connecting to XLA. . 54
Monitoring tables for updates 55
Receiving and processing updates 56

Processing updates . 57
Terminating an XLA application 58

Closing the connection . 58
Deleting bookmarks . 58
Unsubscribing from a table 59

Using XLA as a replication mechanism 59
TargetDataStore error recovery 61

4 Application Tuning
Tuning Java applications. . 63
iv Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Turn off autocommit mode 63
Choose a timeout interval 64
Reduce contention . . 64
Choose the best method of locking 65

Choose an appropriate lock level 65
Choose an appropriate isolation level 65

Choose the appropriate logging options 66
Prepare statements in advance 67
Avoid unnecessary prepare operations 67
Use the batch update facility for executing multiple statements 68
Bulk fetch rows of TimesTen data. 69
Size transactions appropriately 69
Use durable commits appropriately 70
Use the ResultSet.getString method sparingly 70
Avoid data type conversions 71
Avoid transaction rollback 71
Avoid frequent checkpoints 71

Tuning JMS/XLA applications 72
Configure xlaPrefetch parameter 72
Batch calls to ttXlaAcknowledge 72
Increase log buffer size . . 72
Handling high event rates 72

5 JDBC Reference
Supported JDBC interfaces. . 75

Support for interfaces in java.sql package 75
CallableStatement . 76
Connection . 76
DatabaseMetaData . 76
Driver . 76
ParameterMetaData . 77
PreparedStatement . 77
ResultSet . . 77
ResultSetMetaData . . 77
Statement . 77

Support for interfaces in javax.sql package 78
DataSource . . 78
ConnectionPoolDataSource 78
PooledConnection . 78
XADataSource . 78

TimesTen extensions to JDBC 79
TimesTenConnection class 79

getTtPrefetchClose() . 79
v

getTtPrefetchCount() . 79
isDataStoreValid() . 79
setTtPrefetchClose(boolean) 80
setTtPrefetchCount(int) 80

TimesTenVendorCode interface 80

6 JMS/XLA Reference
XLA MapMessage contents . 81

Update type . . 81
XLA flags . 83

DML event data formats . . 84
Table data . 84
Row data . 85

Context information . 85
DDL event data formats . . 85

CREATE_TABLE . . 85
DROP_TABLE . . 87
CREATE_INDEX . . 87
DROP_INDEX . . 88
ADD_COLUMNS. . 89
DROP_COLUMNS . 90
CREATE_VIEW . 91
DROP_VIEW . 92
CREATE_SEQ . 92
DROP_SEQ . 92
TRUNCATE . . 93

Data type mapping . 93
Internationalization support . 96
JMS classes for event handling 96
JMS/XLA replication API . 97

TargetDataStore interface 97
TargetDataStoreImpl class. 98

JMS message header fields . . 98

Index
vi Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

About this Guide
Oracle Oracle TimesTen In-Memory Database In-Memory Database is a high-
performance, in-memory data manager that supports the ODBC and JDBC
interfaces. The examples and procedures in this guide use the JDBC interface.

This guide is for application developers who use and administer Oracle
TimesTen In-Memory Database JDBC and for system administrators who
configure and manage the Oracle TimesTen In-Memory Database daemon.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language) and JDBC
(Java Database Connectivity). See “Background reading” on page 2 if you are
not familiar with these interfaces.

TimesTen documentation
TimesTen documentation is available on the product distribution media and on
the Oracle Technology Network:
http://www.oracle.com/technology/documentation/timesten_doc.html.

Including this guide, the TimesTen documentation set consists of these
documents:

Book Titles Description

Oracle TimesTen In-Memory
Database Installation Guide

Contains information needed to install and configure
Oracle TimesTen In-Memory Database on all
supported platforms.

Oracle TimesTen In-Memory
Database Introduction

Describes all the available features in the Oracle
TimesTen In-Memory Database.

Oracle TimesTen In-Memory
Database Operations Guide

Provides information on configuring TimesTen and
using the ttIsql utility to manage a data store. This
guide also provides a basic tutorial for TimesTen.

Oracle TimesTen In-Memory
Database C Developer’s and
Reference Guide
and the
Oracle TimesTen In-Memory
Database Java Developer’s
and Reference Guide

Provide information on how to use the full set of
available features in Oracle TimesTen In-Memory
Database to develop and implement applications that
use Oracle TimesTen In-Memory Database.
 1

http://www.oracle.com/technology/documentation/timesten_doc.html

Background reading
For a Java reference, see:
• Horstmann, Cay and Gary Cornell. Core Java(TM) 2, Volume I--

Fundamentals (7th Edition) (Core Java 2). Prentice Hall PTR; 7 edition
(August 17, 2004).

A list of books about ODBC and SQL is in the Microsoft ODBC manual
included in your developer’s kit. Your developer’s kit includes the appropriate
ODBC manual for your platform:

Oracle TimesTen In-Memory
Database API Reference
Guide

Describes all TimesTen utilities, procedures, APIs and
provides a reference to other features of TimesTen.

Oracle TimesTen In-Memory
Database SQL Reference
Guide

Contains a complete reference to all TimesTen SQL
statements, expressions and functions, including
TimesTen SQL extensions.

Oracle TimesTen In-Memory
Database Error Messages
and SNMP Traps

Contains a complete reference to the TimesTen error
messages and information on using SNMP Traps with
TimesTen.

Oracle TimesTen In-Memory
Database TTClasses Guide

Describes how to use the TTClasses C++ API to use
the features available in Oracle TimesTen In-Memory
Database to develop and implement applications.

TimesTen to TimesTen
Replication Guide

Provides information to help you understand how
Oracle TimesTen In-Memory Database Replication
works and step-by-step instructions and examples that
show how to perform the most commonly needed
tasks.
This guide is for application developers who use and
administer Oracle TimesTen In-Memory Database and
for system administrators who configure and manage
Oracle TimesTen In-Memory Database Replication.

TimesTen Cache Connect to
Oracle Guide

Describes how to use Cache Connect to cache Oracle
data in TimesTen data stores. This guide is for
developers who use and administer TimesTen for
caching Oracle data.

Oracle TimesTen In-Memory
Database Troubleshooting
Procedures Guide

Provides information and solutions for handling
problems that may arise while developing applications
that work with TimesTen, or while configuring or
managing TimesTen.
2 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

• Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide provides all
relevant information on ODBC for Windows developers.

• Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, included
online in PDF format, provides information on ODBC for UNIX developers.

For a conceptual overview and programming how-to of ODBC, see:
• Kyle Geiger. Inside ODBC. Redmond, WA: Microsoft Press. 1995.

For a review of SQL, see:
• Melton, Jim and Simon, Alan R. Understanding the New SQL: A Complete

Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.
• Groff, James R. / Weinberg, Paul N. SQL: The Complete Reference, Second

Edition. McGraw-Hill Osborne Media. 2002.

For information about Unicode, see:
• The Unicode Consortium, The Unicode Standard, Version 5.0,

Addison-Wesley Professional, 2006.
• The Unicode Consortium Home Page at http://www.unicode.org

Conventions used in this guide
TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.

TimesTen documentation uses these typographical conventions:
If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the .odbc.ini. or ttconnect.ini file.

italic code
font

A variable in a code example that you must replace.

For example:
Driver=install_dir/lib/libtten.sl
Replace install_dir with the path of your Oracle
TimesTen In-Memory Database installation directory.
About this Guide 3

TimesTen documentation uses these conventions in command line examples and
descriptions:

TimesTen documentation uses these variables to identify path, file and user
names:

If you see... It means...

fixed width
italics

Variable; must be replaced with an appropriate value. In
some cases, such as for parameter values in built-in
procedures, you may need to single quote (' ') the value.

[] Square brackets indicate that an item in a command line
is optional.

{ } Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

... An ellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.

If you see... It means...

install_dir The path that represents the directory where the current
release of Oracle TimesTen In-Memory Database is
installed.

TTinstance The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

release or rr Two digits that represent the first two digits of the current
Oracle TimesTen In-Memory Database release number,
with or without a dot. For example, 60 or 7.0 represents
Oracle TimesTen In-Memory Database Release 7.0.
4 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Technical Support
For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html

jdk_version Two digits that represent the version number of the
major JDK release. Specifically, 14 represent JDK 1.4;
5 represents JDK 5.

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.
About this Guide 5

http://www.oracle.com/support/contact.html

6 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

1
Configuring the Java Development
Environment

This chapter describes how to install, configure, and test your TimesTen
application development environment. It includes the following topics:
• Installing TimesTen and the JDK
• Setting the Java environment variables
• Compiling and executing Java applications
• About the TimesTen Java demos

Installing TimesTen and the JDK
Install and configure TimesTen for your environment, as described in Oracle
TimesTen In-Memory Database Installation Guide, and the Java JDK, as
described in your Java installation guide. The topics of particular interest in
Oracle TimesTen In-Memory Database Installation Guide when setting up a Java
development environment include:
• Access Control
• JDK support
• Client/Server configurations
• Environment modifications

After you have installed and configured TimesTen, create a data store DSN as
described in Oracle TimesTen In-Memory Database Operations Guide. The
topics of particular interest include:
• TimesTen JDBC driver
• User and system DSNs
• Data Manager and Client DSNs
• Thread programming with TimesTen
• Creating a DSN on UNIX or Creating a DSN on Windows
 7

Setting the Java environment variables
The environment variable settings for TimesTen are explained in “Environment
modifications” in the Oracle TimesTen In-Memory Database Installation Guide.
This section provides more detail on those that impact the environment for
TimesTen Java applications.

On UNIX platforms, you can set all of the environment variables described in
this section by sourcing one of the following scripts:
install_dir/bin/ttSetEnv.sh

install_dir/bin/ttSetEnv.csh

On Windows, you can either set the environment variables during installation or
run:
install_dir\bin\ttenv.bat

The rest of this section describes values the environment variables are set to, as
well as how to set them manually, if necessary.

Set CLASSPATH
Java classes and class libraries are found on CLASSPATH. Before executing a
Java program that loads any of the TimesTen JDBC drivers, the CLASSPATH
environment variable must contain the class library file:
install_dir/lib/classesjdk_ver.jar

jdk_ver indicates the version of the JDK that you are using. For example, for
JDK 1.4, jdk_ver is 14. For JDK 5.0, jdk_ver is 5.

Note: If more than one jar file is listed in the CLASSPATH, make sure the
TimesTen jar file is listed first.

On UNIX, CLASSPATH elements are separated by colon. For example:
set CLASSPATH .:/opt/TimesTen/tt70/lib/ttjdbc14.jar

or
setenv CLASSPATH .:/opt/TimesTen/tt70/lib/ttjdbc14.jar

On Windows, CLASSPATH elements are separated by semicolons. Also, on
Windows, do not use quotes when setting the CLASSPATH environment variable
even if a directory pathname contains spaces.

For example, this is correct:
set CLASSPATH=.;C:/TimesTen/tt70/lib/ttjdbc14.jar

This is incorrect:
set CLASSPATH=.;"C:/TimesTen/tt70/lib/ttjdbc14.jar"

If in doubt about the JDK version you have installed on your system, enter:
8 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

> java -version

If you are going to use the JMS/XLA interface described in Chapter 3, “Using
JMS/XLA for Event Management”, then you also need to add the following to
your CLASSPATH:
install_dir/lib/timestenjmsxla.jar
install_dir/3rdparty/jms1.1/lib/jms.jar

For example, your CLASSPATH would look like:
.:C:/TimesTen/tt70/lib/ttjdbc14.jar:C:/TimesTen/tt70/lib/
timestenjmsxla.jar:C:/TimesTen/tt70/3rdparty/jms1.1/lib/jms.jar

By default, JMS/XLA looks for a configuration file called jmsxla.xml in the
current working directory. If you want to use another name or location for the
file, you need to specify it as part of the environment variable in the
InitialContext class and add the location to CLASSPATH. See “XLA
configuration file and topics” on page 50 for more information about the
jmsxla.xml configuration file.

Set the shared library path variable
Before running a java program that loads the TimesTen JDBC driver, the shared
library path for your system environment variable must be set to include
the TimesTen install_dir/lib directory. The name of the variable used
for the shared library path depends on the system used:

See “Shared library path environment variable” in Oracle TimesTen In-Memory
Database Installation Guide for details on setting the shared library path.

Set the THREADS_FLAG variable (UNIX only)
The TimesTen JDBC driver uses native threads. Green threads are not supported.

On some UNIX platforms, in order to use the native threads package, you must
set the environment variable THREADS_FLAG to native. How you set the flag
depends on your shell.

System Name of Variable

Linux LD_LIBRARY_PATH

Solaris LD_LIBRARY_PATH

HPUX SHLIB_PATH or LD_LIBRARY_PATH

AIX LIBPATH

Windows PATH
Configuring the Java Development Environment 9

In csh, the syntax is:
setenv THREADS_FLAG native

In sh, the syntax is:
THREADS_FLAG=native
export THREADS_FLAG

Set the PATH variable
Make sure the executables javac and java are both on your executable search
path, or will need to invoke them using absolute paths.

Compiling and executing Java applications
To compile a Java program, at your shell or command prompt use the command:
javac SourceFile.java

The command generates the bytecode file SourceFile.class if the .java file
contains a public class. A .class file is generated for all classes defined in
SourceFile.java. By default the .class files reside in the same directory as
the .java source files. To specify a different target directory for the .class files,
use the command:
javac -d Directory SourceFile.java

The class name is the same as the filename prefix of its corresponding .class
file. To execute a Java program, at your shell or command prompt use the
command:
java ClassName

ClassName is the name of a class that contains a main method. This command
starts the Java Virtual Machine (JVM) that will interpret and execute the Java
bytecode in the .class file and any other bytecode files that it is dependent
upon.

Example 1.1 To compile the level1.java demo and execute it using the demo data store,
enter:
> cd install_dir/demo/tutorial/java

> javac level1.java

> ttIsql -f ../datfiles/input0.dat demo

> java level1 demo
10 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

About the TimesTen Java demos
After you have configured your Java environment, you can confirm that
everything is set up correctly by compiling and running the TimesTen Java demo
applications in the install_dir/demo/tutorial/java directory.

About the TimesTen demo schema
The TimesTen Java demos are designed to work with the TimesTen demo
schema, which simulates a simple order-processing database. You can populate a
data store with the TimesTen demo schema by running the install_dir/demo/
tutorial/datfiles/input0.dat, as described in “Executing the TimesTen
Java demos” on page 13. The input0.dat file creates the following tables:
• xyz.product
• xyz.inventory
• xyz.customer
• xyz.orders
• xyz.order_item

The tables in the demo schema are organized and populated with data, as shown
in Figure 1.1.

Figure 1.1 TimesTen Demo Schema
xyz.customer

ord_num cust_num when_placed when_shipped

xyz.orders

ord_num prod_num quantity

xyz.order_Item

xyz.product

1
2
3
3
4

1001
1002
1003
1008
1009

sysdate
2003-04-11 09:17:32.148000
2003-03-09 08:15:12.100000
sysdate
sysdate

NULL
NULL
NULL
NULL
NULL

1002
1002
1003
1003
1008
1009

addressnamecust_num region

1
2
3
4

Fiberifics
Natural Foods Co.
Happy Food Inc.
Nakamise

123 any street
5150 Johnson Rd
4004 Happy Lane
6-6-2 Nishi Shinjuku

South
West
North
East

prod_num name price ship_weight description

100
101
102
103

$4.50
$1.94
$2.76
$1.50

0.25
0.25
0.22
5.055

Beef Flavor
Chicken Flavor
Garlic extract
Oat bran

Tasty artificial beef flavor crystals
Makes everything taste like chicken
Pure essence of garlic
All natural oat bran

xyz.inventory
prod_num warehouse quantity

100
101
102
103

10000
5000
1000
4000

London
New York
Gilroy
Gilroy

Not for use in soft drinks
Not for use in soft drinks
Keeps vampires away
May reduce cholesterol

picture notes

NULL
NULL
NULL
NULL

notes

NULL
NULL
NULL
NULL
NULL

102
103
101
102
102
103

6000
500
40
500
300
79
Configuring the Java Development Environment 11

What the TimesTen demos do
The TimesTen Java demos are named level1.java, level2.java,
level3.java, level4.java, XlaLevel1.java, XlaLevel2.java, and
XlaLevel3.java. All of the level demos support both direct and client
connections to the data store.

The level1 demo uses the DriverManager interface to connect to a data store
and forms a prepared INSERT and SELECT statement to insert new customer
data into the xyz.customer table and then view the contents of the table. It
executes the INSERT until all of the data in the input1.dat file is loaded into
the table, executes the SELECT, fetches and prints the result set to stdout and
disconnects from the data store.

The level2 demo uses the DataSource interface to connect to a data store and
forms prepared INSERT, UPDATE, DELETE, and SELECT statements to insert,
update, delete, and view product data in the xyz.product table. It executes the
INSERT until all of the data in the input2.dat file is loaded into the table. It
executes the DELETE to delete any duplicate product data and then the UPDATE
to increase the price of the products in the table by 10%. It executes a ttCkpt
procedure to checkpoint the data store to disk, executes the SELECT, fetches and
prints the result set to stdout and then disconnects from the data store.

The level3 demo uses the DataSource interface to connect to a data store and
forms prepared statements to perform order processing operations on the order
data in the input3.dat file. For each order item in the data file, the demo
performs the following transaction:
• INSERT the new order into the xyz.orders and xyz.order_item tables.
• SELECT from the xyz.inventory table to check the available quantity of the

ordered item in the inventory.
• UPDATE the xyz.inventory table to debit the ordered item from the

inventory.

If there are not enough items in the inventory, the demo rolls back the entire
transaction and reports that there is insufficient inventory for the order. Finally,
the demo checkpoints the data store to disk and disconnects.

The level4 demo processes the same orders as level3, only it uses multiple
threads and multiple connections to increase throughput.

Both the level1 and level2 demos call the TimesTen ttOptUpdateStats built-
in procedure to update the statistics for the customer and product tables. The
ttOptUpdateStats procedure stores the statistics in the SYS.COL_STATS and
SYS.TBL_STATS tables for use by the TimesTen query optimizer to enable
more efficient query execution.

The XlaLevel1.java, XlaLevel2.java, and XlaLevel3.java demos use the
JMS/XLA API described in Chapter 3, “Using JMS/XLA for Event
Management” to monitor and report on specific updates to the data store. The
12 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html

XlaLevel1.java and XlaLevel2.java demos monitor updates to the
xyz.customer table. The XlaLevel3.java demo monitors updates to a user-
specified table.

Compiling the TimesTen Java demos
To compile the Java demos, go to the Java demo directory and run ANT on the
build.xml file. If you do not want to use ANT, use the javac command to
compile each demo. For example:
> cd /TimesTen/tt70/demo/tutorial/java
> javac *.java

Executing the TimesTen Java demos
Prior to executing any of the Java demos, you must execute the SQL statements
in the input0.dat file, as shown below, to build or rebuild the demo schema.
Each demo requires that you specify a DSN name. The DSN can be for either a
direct connection or client connection to the data store.

Executing the level demos
All of the level demos have the following command syntax:
demoname [-t] [-d | -c] {DSN}
demoname -h | -help

-h | -help print usage and exit
-d connect using direct driver (default)
-c connect using client driver
-t enable JDBC tracing
DSN name of the data store

Example 1.2 In this example, we execute the level1 and level2 demos using a direct driver
connection to the DMdemo data store. We enable JDBC tracing when executing
the level2 demo. Last, we execute the level3 demo using a client connection to
the CSdemo data store.

Note: Before executing each demo, you must execute the input0.dat file to
rebuild the demo schema on the data store.

> ttIsql -f ../datfiles/input0.dat DMdemo
...... output
> java level1 DMdemo
...... output
> ttIsql -f ../datfiles/input0.dat DMdemo
...... output
> java level2 -t DMdemo
...... output
Configuring the Java Development Environment 13

> ttIsqlCS -f ../datfiles/input0.dat CSdemo
...... output
> java level3 -c CSdemo
...... output

If you cannot connect to the data store, you may not have configured the DSN
name that you are specifying. See “Data source names” in Oracle TimesTen In-
Memory Database Operations Guide.

Executing the XlaLevel demos

Note: You need to look at the XlaLevel demos only if you are going to use the
JMS/XLA API described in Chapter 3, “Using JMS/XLA for Event
Management.”

In JMS/XLA, the name of the data store and other parameters used by XLA
applications are specified in the form of XLA topics, as described in “XLA
configuration file and topics” on page 50. The XlaLevel demos obtain their XLA
topics from the jmsxla.xml file located in the install_dir/demo/tutorial/
java directory. The topics in the jmsxla.xml file are configured so that the
XlaLevel demos use the predefined RunData_TTinstance data store and other
default parameters. You can edit the jmsxla.xml file to specify other topics or
change the settings in the exiting topics.

Note: The demos in this document use the predefined data store RunData_tt70.

All of the XlaLevel demos accept an optional topic name.

The syntax for executing XlaLevel1 is:
XlaLevel1 [topic]

where topic defaults to the Level1Demo topic that is prespecified in the
jmsxla.xml file.

The syntax for executing XlaLevel2 is:
XlaLevel2 [topic [bookmark]]

where topic defaults to Level2Demo and bookmark defaults to bookmark.

The syntax for executing XlaLevel3 is:
XlaLevel3 [topic [bookmark [table]]]

where topic defaults to Level3Demo, bookmark defaults to bookmark, and table
defaults to tbl.

Before executing any of the XlaLevel1 and XlaLevel2 demos, you must execute
the SQL statements in the input0.dat file to build or rebuild the demo schema.
Both the XlaLevel1 and XlaLevel2 demos monitor changes to the
xyz.customer table.
14 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

When running the XlaLevel1 demo, you can update the xyz.customer table by
running the level1.java demo in a separate shell.

Example 1.3 To run the XlaLevel1.java demo with its default topic, in one shell enter:
> ttIsql -f ../datfiles/input0.dat RunData_tt70
...... output
> java XlaLevel1
...... detected changes to the xyz.customer table

In another shell, enter:
> java level1 RunData_tt70
...... output

The output from the XlaLevel1 demo shows the detected changes to the
xyz.customer table.

If you create a new topic in the jmsxla.xml file, you can specify that when you
enter run the XlaLevel1.java demo. For example, if you created a new topic,
named MyTopic, you would start the XlaLevel1.java demo with:
> java XlaLevel1 MyTopic

The XlaLevel2 demo prompts you to enter changes to the xyz.customer table in
the form of SQL from the command line. It then displays the detected changes to
the table after you commit the transaction.

Example 1.4 To run the XlaLevel2.java demo with its default topic and bookmark, enter:
> ttIsql -f ../datfiles/input0.dat RunData_tt70
...... output
> java XlaLevel2
+++ Using default topic Level2Demo and default bookmark bookmark
+++ create session
+++ create topic
+++ createDurableSubscriber
+++ using connection string 'DSN=RunData_tt70'
+++ connecting to jdbc:timesten:direct:DSN=RunData_tt70
+++ turning off autocommit
You can now enter SQL commands. You should enter either DML (such as inserts,
updates, or deletes), or DDL (such as CREATE SEQUENCE).
For instance, try:
 create sequence s minvalue 1000
 insert into xyz.customer values(s.nextVal,'us','Bob','nowhere')
 commit
After each SQL command you enter, the demo tries to get and display any JMS/XLA
updates.
Type "quit" to exit the demo, or "help" to see this message again.
autocommit is turned off, so you will have to enter "commit" to see your
updates.
Configuring the Java Development Environment 15

Note: The SQL statements after the “Enter SQL” prompt are user input.

Enter SQL: create sequence s minvalue 1000
+++ create sequence s minvalue 1000
Enter SQL: insert into xyz.customer values(s.nextVal,'us','Bob','nowhere')
+++ insert into xyz.customer values(s.nextVal,'us','Bob','nowhere')
Enter SQL: insert into xyz.customer values(s.nextVal,'us','Bob','nowhere')
+++ insert into xyz.customer values(s.nextVal,'us','Bob','nowhere')
Enter SQL: commit
+++ commit
>>> got a CREATE SEQUENCE message
 CYCLE=true INCREMENT=1 MAX_VALUE=9223372036854775807 MIN_VALUE=1000
 NAME=S OWNER=USER1 __COMMIT=false __CONTEXT=(null) __FIRST=true
 __REPL=false __TYPE=16 __mtyp=null __mver=1144080
>>> got a INSERT message
 ADDRESS=nowhere CUST_NUM=1000 NAME=Bob REGION=us __NULLS=
 __TYPE=10 __mtyp=null __mver=1146360
>>> got a INSERT message
 ADDRESS=nowhere CUST_NUM=1001 NAME=Bob REGION=us __COMMIT=true
 __NULLS= __TYPE=10 __mtyp=null __mver=1147248
Enter SQL: quit
+++ cleaning up
+++ Subscriber close
+++ Producer.close
+++ done
+++ shutting down...

The XlaLevel3 demo prompts you to specify the table you wish to make changes
to and to monitor. If the table does not exist in the RunData_tt70 data store, it is
created.

Example 1.5 To run the XlaLevel3.java demo with its default topic, Level3Demo; a
bookmark named bkmk, and to create a new table, named tbl, enter:

> java XlaLevel3 Level3Demo bkmk tbl
+++ topic=Level3Demo, bookmark=bkmk, table=tbl
May 11, 2007 3:32:26 PM
com.timesten.dataserver.jmsxla.SimpleInitialContextFactory getInitialContext
INFO: Using configuration file jmsxla.xml
+++ create session
+++ create topic
May 11, 2007 3:32:27 PM com.timesten.dataserver.jmsxla.DestinationImpl <init>
FINE: Properties for topic Level3Demo:{xlaPrefetch=100, name=Level3Demo,
connectionString=DSN=RunData_tt70}
+++ createDurableSubscriber
May 11, 2007 3:32:27 PM com.timesten.dataserver.jmsxla.XlaSubscriber <init>
16 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

FINE: Making XLA subscription, connstr=DSN=RunData_tt70, bookmark=bkmk,
prefetch=100, ackMode=1 May 11, 2007 3:32:27 PM
com.timesten.dataserver.jmsxla.MessageConsumerImpl createXlaSubscriber
FINE: Creating MessageConsumer with connection string=DSN=RunData_tt70,
bookmark=bkmk May 11, 2007 3:32:27 PM
com.timesten.dataserver.jmsxla.XlaSubscriber start
FINE: Starting XLA subscription
+++ using connection string 'DSN=RunData_tt70'
+++ connecting to jdbc:timesten:direct:DSN=RunData_tt70
+++ turning off autocommit
table tbl already exists
+++ {call ttXlaSubscribe('tbl', 'bkmk')}
You can now enter SQL commands. You should enter either DML (such as inserts,
updates, or deletes), or DDL (such as CREATE SEQUENCE).
For instance, try:
 create sequence s minvalue 1000
 insert into tbl values(s.nextVal)
 call ttApplicationContext('inserted something')
 commit
After each SQL command you enter, the demo tries to get and display any JMS/XLA
updates.
Type "quit" to exit the demo, or "help"
to see this message again.
NOTE: autocommit is turned off, so you will have to enter "commit" to see your
updates.

Note: The SQL statements after the “Enter SQL” prompt are user input.

Enter SQL: create sequence s minvalue 1000
+++ create sequence s minvalue 1000
Enter SQL: insert into tbl values(s.nextVal)
+++ insert into tbl values(s.nextVal)
Enter SQL: call ttApplicationContext('inserted something')
+++ call ttApplicationContext('inserted something')
Enter SQL: commit
+++ commit
>>> got a CREATE TABLE message
 NAME=TBL OWNER=USER1 _A_INPRIMARYKEY=null _A_NULLABLE=null
 _A_OUTOFLINE=null _A_PRECISION=null _A_SCALE=null _A_SIZE=null
 __COMMIT=null __FIRST=null __TYPE=null __mtyp=null __mver=null
>>> got a CREATE SEQUENCE message
 CYCLE=true INCREMENT=1 MAX_VALUE=9223372036854775807 MIN_VALUE=1000
 NAME=S OWNER=USER1 __COMMIT=false __CONTEXT=(null) __FIRST=true
 __REPL=false __TYPE=16 __mtyp=null __mver=385368
>>> got a INSERT message
 A=1000 __NULLS=B __TYPE=10 __mtyp=null __mver=386576
>>> got a COMMIT ONLY message
 __COMMIT=true __CONTEXT=inserted something __FIRST=false
Configuring the Java Development Environment 17

 __REPL=false __TYPE=13 __mtyp=null __mver=386880 Enter SQL: create index ix
on tbl(a)
+++ create index ix on tbl(a)

Note: The SQL statement after the “Enter SQL” prompt is user input.

Enter SQL: commit
+++ commit
>>> got a CREATE INDEX message
 COLUMNS=A HASH_PAGES=0 INDEX_METHOD=T INDEX_TYPE=R IXNAME=IX
 TBLNAME=TBL TBLOWNER=USER1 UNIQUE=false __COMMIT=true
 __CONTEXT=(null) __FIRST=true __REPL=false __TYPE=3 __mtyp=null
 __mver=392904

Note: The SQL statements after the “Enter SQL” prompt are user input.

Enter SQL: drop index ix
+++ drop index ix
Enter SQL: insert into tbl values(s.nextVal)
+++ insert into tbl values(s.nextVal)
Enter SQL: insert into tbl values(s.nextVal)
+++ insert into tbl values(s.nextVal)
Enter SQL: update tbl set a=a+10
+++ update tbl set a=a+10
Enter SQL: commit
+++ commit
>>> got a DROP INDEX message
 INDEX_NAME=IX OWNER=USER1 TABLE_NAME=TBL __COMMIT=false
 __CONTEXT=(null) __FIRST=true __REPL=false __TYPE=4 __mtyp=null
 __mver=398776
>>> got a INSERT message
 A=1001 __NULLS=B __TYPE=10 __mtyp=null __mver=399472
>>> got a INSERT message
 A=1002 __NULLS=B __TYPE=10 __mtyp=null __mver=400112
>>> got a UPDATE message
 A=1010 _A=1000 __NULLS=_B;B __TYPE=11 __UPDCOLS=A __mtyp=null
 __mver=400712
>>> got a UPDATE message
 A=1011 _A=1001 __NULLS=_B;B __TYPE=11 __UPDCOLS=A __mtyp=null
 __mver=401256
>>> got a UPDATE message
 A=1012 _A=1002 __COMMIT=true __NULLS=_B;B __TYPE=11 __UPDCOLS=A
 __mtyp=null __mver=401800
Enter SQL: quit
+++ cleaning up
+++ Subscriber close
May 11, 2007 3:35:04 PM com.timesten.dataserver.jmsxla.XlaSubscriber
tableUnsubscribe
FINE: Unsubscribing from table TBL
18 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

+++ Producer.close
+++ done
+++ shutting down...

Problems executing the TimesTen Java demo programs
If you receive an error message like:
java.lang.UnsatisfiedLinkError:no ttJdbcCS

or
java.lang.UnsatisfiedLinkError: no ttJdbc in java.library.path

then you do not have LD_LIBRARY_PATH set properly. Find libttJdbc.so
and put that directory on the LD_LIBRARY_PATH:

setenv LD_LIBRARY_PATH install_dir/lib

Problems compiling the TimesTen Java demo program
If you receive the error message:
java.lang.ClassNotFoundException:com.timesten.jdbc.TimesTenDriver

CLASSPATH is not set properly. Find the classes archive file and make sure that
it is on the CLASSPATH, for example:
setenv CLASSPATH install_dir/lib/ttjdbc14.jar

If you get a ClassNotFoundException for a class defined in one of the demos
(such as ‘level1’), make sure the current directory is included in your
CLASSPATH. For example:
setenv CLASSPATH install_dir/lib/ttjdbc14.jar:.
Configuring the Java Development Environment 19

20 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

2
Working with TimesTen Data Stores

This chapter describes the basic procedures for writing a Java application to
access data in a TimesTen data store. Before attempting to write a TimesTen
application, be sure you have completed the following prerequisite tasks:

After you have successfully executed the TimesTen Java demos, your
development environment is set up correctly and ready for you to create
applications that accesses a TimesTen data store.

Topics in this chapter are:
• Java classes
• Connecting to a TimesTen data store
• Managing TimesTen data
• Calling TimesTen built-in procedures
• Managing multiple threads
• Handling errors

Prerequisite Task What you do

Create a TimesTen data store Follow the procedures described in
Chapter 1, “Creating TimesTen Data
Stores” in Oracle TimesTen In-Memory
Database Operations Guide.

Configure Java environment Follow the procedures described in
“Setting the Java environment variables”
on page 8.

Compile and execute the
TimesTen Java demos

Follow the procedures described in
“About the TimesTen Java demos” on
page 11.
 21

Java classes
Most TimesTen applications can be written using the supported Java classes and
interfaces listed in Chapter 5, “JDBC Reference.”

You must import the standard JDBC packages in any java program that use
JDBC:

import java.sql.*;

If you are going to make use of the DataSource interface, you must also import
the optional JDBC packages:

import javax.sql.*;

Though you can accomplish most operations with the standard Java interfaces,
TimesTen provides the following extensions to the Java standard.

To use the TimesTen implementation of the javax.sql.DataSource interface,
import:

import com.timesten.jdbc.DataSource;

To use the TimesTen implementation of the javax.sql.XADataSource interface,
import:

import com.timesten.jdbc.xa.TimesTenVendorCode interface;

To use the TimesTen connection-based prefetch feature described in “Fetching
multiple rows of data” on page 33, import:

import com.timesten.sql.TimesTenConnection class;

See “TimesTen extensions to JDBC” on page 79 for more information on these
TimesTen extensions.

Connecting to a TimesTen data store
The Oracle TimesTen In-Memory Database Operations Guide describes how to
create a DSN to define a connection to a TimesTen data store. The type of DSN
you create depends on whether your application connects directly to the data
store or connects by a client. If you intend to connect directly to the data store,
create a DSN as described in “Creating a DSN on UNIX” or “Creating a DSN on
Windows” in Oracle TimesTen In-Memory Database Operations Guide. If you
intend to create a client connection to the data store, create a DSN as described in
“Creating and configuring Client DSNs on Windows” or “Creating and
configuring Client DSNs on UNIX” in Oracle TimesTen In-Memory Database
Operations Guide.

After you have created a DSN, the application can connect to the data store. This
section describes how to create a JDBC connection to a data store using either the
JDBC direct driver or the JDBC client driver.

The operations described in this section are based on the level1.java demo.
22 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/DataSource.html

The procedures for connecting to a TimesTen data store are:
• Load the TimesTen driver
• Create a connection URL for the data store
• Connect to the data store
• Disconnect from the data store
• Putting it all together: preparing and executing SQL

Load the TimesTen driver
The TimesTen JDBC driver must be loaded before it is available for making
connections with a TimesTen data store. The TimesTen JDBC driver is:
com.timesten.jdbc.TimesTenDriver

If you are using the DriverManager interface to connect to TimesTen, call the
Class.forName() method to load the TimesTen JDBC driver. This method
creates an instance of the TimesTen Driver and registers it with the driver
manager.

If you are using the TimesTenDataSource interface, you do not need to call
Class.forName().

Example 2.1 To identify and load the TimesTen driver:

Class.forName("com.timesten.jdbc.TimesTenDriver");

Note: If the TimesTen JDBC driver is not loaded, an error is returned when the
application attempts to connect to a TimesTen data store.

Create a connection URL for the data store
To create a JDBC connection, you need to specify a TimesTen connection URL
for the data store. The format of a TimesTen connection URL is:
jdbc:timesten:{direct | client}:dsn=DSNname;[DSNattributes;]

For example, to create a direct connection to the demo data store, the URL looks
similar to the following:
String URL = "jdbc:timesten:direct:dsn=demo";
Working with TimesTen Data Stores 23

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Class.html#forName(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/DataSource.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Class.html#forName(java.lang.String)

Specifying data store attributes in the connection URL
You can programmatically set or override the connection attributes in the DSN
description by specifying attributes in the connection URL.

For example, to set the LockLevel DSN attribute to ‘1’, you could create a URL
like:
String URL = "jdbc:timesten:direct:dsn=demo;LockLevel=1";

Connect to the data store
After you have defined a URL, you can use either the
DriverManager.getConnection() or TimesTenDataSource.getConnection()
method to connect to the TimesTen data store.

If you use the DriverManager.getConnection() method, specify the driver URL
to connect to the data store:
import java.sql.*;
Connection con = DriverManager.getConnection(URL);

To use the DataSource.getConnection() method, first create a DataSource.
Then use the DataSource.setUrl() method to set the URL and
DataSource.getConnection() to connect:
import com.timesten.jdbc.TimesTenDataSource;

TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl(URL);
con = ds.getConnection();

Either method returns a Connection object (con in this example) that you can use
as a handle to the data store. See the level1 demo for an example on how to use
DriverManager.getConnection() and the level2 and level3 demos for
examples of using DataSource.getConnection().

Disconnect from the data store
When you are finished accessing the TimesTen data store, call the
Connection.close() method to close the connection to the data store.

If an error has occurred, you may want to roll back the transaction before
disconnecting from the data store. See “Handling non-fatal errors” on page 41
and “Rolling back failed transactions” on page 45 for more information.

Opening and closing a direct driver connection
Example 2.2 shows the general framework for an application that uses the
DriverManager to create a direct driver connection to the demo data store;
execute some SQL, and then close the connection. See the level1.java demo
for a working example.
24 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html#getConnection(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html#getConnection(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html#getConnection(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html

Example 2.2 String URL = "jdbc:timesten:dsn=demo";
Connection con = null;

try {
Class.forName("com.timesten.jdbc.TimesTenDriver");

} catch (ClassNotFoundException ex) {
// See “Handling errors” on page 40

}

try {
// Open a connection to TimesTen
con = DriverManager.getConnection(URL);

// Report any SQLWarnings on the connection
// See “Reporting errors and warnings” on page 42

// Do SQL operations
// See “Managing TimesTen data” on page 26

// Close the connection to TimesTen
con.close();

// Handle any errors
} catch (SQLException ex) {

// See “Handling errors” on page 40
}

Working with TimesTen Data Stores 25

Managing TimesTen data
This section provides detailed information on working with data in a TimesTen
data store. It includes the following topics:
• Calling SQL statements within Java applications
• Fetching multiple rows of data
• Executing multiple SQL statements in a batch
• Working with result sets

Calling SQL statements within Java applications
This section includes the following topics:
• Setting autocommit
• Specifying multibyte characters in SQL functions
• Preparing SQL statements
• Executing SQL statements
• Using COMMIT and ROLLBACK SQL statements
• Setting a timeout value for executing SQL statements
• Putting it all together: preparing and executing SQL

Setting autocommit
A TimesTen Connection has autocommit enabled by default. You can use
Connection.setAutoCommit() to enable or disable autocommit. If autocommit
is disabled (set to false), you must use Connection.commit() to manually
commit transactions.

For example, to set autocommit to off:
con.setAutoCommit(false);

// Report any SQLWarnings on the connection
// See “Reporting errors and warnings” on page 42

Specifying multibyte characters in SQL functions
When using SQL in JDBC, pay special care to Java escape syntax. SQL
functions such as UNISTR use the backslash (\) character. You should escape the
backslash character. For example, using the following SQL syntax in a Java
application may not produce the intended results:
INSERT INTO table1 SELECT UNISTR('\00E4') FROM dual;

Escape the backslash character as follows:
INSERT INTO table1 SELECT UNISTR('\\00E4') FROM dual;
26 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#setAutoCommit(boolean)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#commit()

Preparing SQL statements
SQL statements that are to be executed more than once should be prepared in
advance by calling the Connection.prepareStatement() method.

For maximum performance, prepare parameterized statements. In TimesTen,
SQL statements containing duplicate parameters are parsed such that only
distinct parameter names are considered as separate parameters. Binding is based
on the position of the first occurrence of a parameter name. Each duplicate
parameter occurrence is bound to the same value.

Example 2.3 shows how four separate INSERT statements can be substituted
with a single parameterized statement.

Example 2.3 Rather than execute a similar INSERT statement with different values:
Statement.execute("insert into t1 values (1, 2)");
Statement.execute("insert into t1 values (3, 4)");
Statement.execute("insert into t1 values (5, 6)");
Statement.execute("insert into t1 values (7, 8)");

It is much more efficient to prepare a single parameterized INSERT statement
and use PreparedStatement.set...() methods to set the row values before each
execute:
PreparedStatement pIns =

con.PreparedStatement("insert into t1 values (?,?)");

con.commit();

pIns.setInt(1, Integer.parseInt(1));
pIns.setInt(2, Integer.parseInt(2));
pIns.executeUpdate();

pIns.setInt(1, Integer.parseInt(3));
pIns.setInt(2, Integer.parseInt(4));
pIns.executeUpdate();

pIns.setInt(1, Integer.parseInt(5));
pIns.setInt(2, Integer.parseInt(6));
pIns.executeUpdate();

pIns.setInt(1, Integer.parseInt(7));
pIns.setInt(2, Integer.parseInt(8));
pIns.executeUpdate();

con.commit();
pIns.close();

Note: After preparing SQL statements, call Connection.commit() in order to
release the locks held by the prepare and to allow the query plan to persist. When
Working with TimesTen Data Stores 27

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#prepareStatement(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#commit()

you have finished executing a prepared statement, call the
PreparedStatement.close() method to release the resources associated with the
statement.

TimesTen shares prepared statements automatically after they have been
committed. For example, if two or more separate connections to the data store
each prepare the same statement, then the second, third, and nth prepare returns
very quickly because TimesTen remembers the first prepared statement.

Example 2.4 In this example, we prepare three identical parameterized INSERT statements for
three separate connections. The first prepared INSERT for connection con1 is
shared with the con2 and con3 connections and speeds up the pIns2 and pIns3
prepare operations:
Connection con1;
Connection con2;
Connection con3;
.....
PreparedStatement pIns1 = con1.prepareStatement

("insert into t1 values (?,?)");
con1.commit();

PreparedStatement pIns2 = con2.prepareStatement
("insert into t1 values (?,?)");

con2.commit();

PreparedStatement pIns3 = con3.prepareStatement
("insert into t1 values (?,?)");

con3.commit();

Note: All tuning options, such as join ordering, indexes and locks must match
for the statement to be shared. Also, if the prepared statement references a temp
table, it will only be shared within a single connection.

Note: TimesTen also supports prepared statement pooling for
PooledConnections, as specified in the JDBC 3.0 specification. You can
configure the maximum size of the pool by setting
ObservableConnectionDS.setMaxStatements(). Once set, this value should not
be changed.

See “Prepare statements in advance” on page 67 for a general discussion of the
performance benefits of preparing SQL statements in advance.
28 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#close()

Executing SQL statements
Chapter 6, “Working with Data in a TimesTen Data Store” in the Oracle
TimesTen In-Memory Database Operations Guide describes how to use SQL to
manage data in a TimesTen data store. This section describes how to use the
Connection.createStatement(), Statement.executeUpdate(), and
Statement.executeQuery() methods to execute a SQL statement within a Java
application.

Unless statements are prepared in advance, as described in “Preparing SQL
statements” on page 27, use the Statement execute methods, such as
Statement.execute(), Statement.executeUpdate(), or
Statement.executeQuery(), depending on the nature of your SQL statement and
any returned result set.

For SQL statements that are a prepared in advance, use the PreparedStatement
execute methods, such as PreparedStatement.execute(),
PreparedStatement.executeUpdate(), or PreparedStatement.executeQuery().

The execute() method returns True if there is a result set (for example, on. a
SELECT) or False if there is no result set (for example, on an INSERT,
UPDATE, or DELETE). The executeUpdate() method returns the number of
rows affected. For example, when executing an INSERT statement, the
executeUpdate() method returns the number of rows inserted. The
executeQuery() method returns a result set, so it should only be called when a
result set is expected (for example, when executing a SELECT).

Note: See “Working with result sets” on page 36 for details about what you need
to know when working with result sets generated by TimesTen.

Example 2.5 to use the Statement.executeUpdate() method to execute an INSERT into the
xyz.customer table, enter:
Connection con;
Statement stmt;
.
try {

stmt = con.createStatement();
int numRows = stmt.executeUpdate("insert into xyz.customer

values" + "(40, 'West', 'Big Dish', '123 Signal St.');");
}
catch (SQLException ex) {

}

Example 2.6 In this example, we use a Statement.executeQuery() method to execute a
SELECT on the xyz.customer table and display the returned ResultSet:
Working with TimesTen Data Stores 29

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#createStatement()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeUpdate(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeQuery(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeQuery(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeUpdate(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeUpdate(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeQuery(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeQuery(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#execute()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#executeUpdate()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#executeQuery()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeUpdate(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#executeQuery(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

Statement stmt;
.
try {
ResultSet rs = stmt.executeQuery("select cust_num, region, " +

"name, address from xyz.customer;");

System.out.println("Fetching result set...");
while (rs.next()) {

System.out.println("\n Customer number: " + rs.getInt(1));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));
System.out.println(" Address: " + rs.getString(4));
}

}
catch (SQLException ex) {
 ex.printStackTrace();
}

Example 2.7 In this example, we use a PreparedStatement.executeQuery() method to
execute a prepared SELECT statement and display the returned ResultSet:
PreparedStatement pSel = con.prepareStatement("select cust_num, " +

"region, name, address " +
"from xyz.customer;");

con.commit();

try {
ResultSet rs = pSel.executeQuery();

while (rs.next()) {
System.out.println("\n Customer number: " + rs.getInt(1));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));
System.out.println(" Address: " + rs.getString(4));

}
}
catch (SQLException ex) {
 ex.printStackTrace();
}

Using COMMIT and ROLLBACK SQL statements
You can prepare and execute COMMIT and ROLLBACK SQL statements the
same way as other SQL statements. Using COMMIT and ROLLBACK SQL
statements has the same result as using the Connection.commit() and
Connection.rollback() calls.
30 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html#executeQuery()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

Setting a timeout value for executing SQL statements
In TimesTen you can set the DSN attribute SqlQueryTimeout to specify the
query timeout period for all connections. If you set SqlQueryTimeout in the
DSN specification, its value becomes the default value for all subsequent
connections to the data store.

You can override the SqlQueryTimeout value for the current connection by
calling the Statement.setQueryTimeout() method to set the time limit in
seconds for which the data store should execute SQL queries. In TimesTen, once
the timeout trigger fires it indicates to the executing query that it must timeout.
Since there can be a lag in the time that it takes the timeout message to get to the
query, the actual time it takes for the query to end is approximately the time it
takes for the time out message to get to the query plus the timeout value
specified.

The Statement.setQueryTimeout() method works only when the SQL statement
is actively executing. A timeout does not occur during the commit or rollback
phase of the operation. For those transactions that do a large number of updates,
deletes, or inserts, the commit or rollback phases may take a long time to
complete. During that time the timeout value is ignored.

Note: The LockWait and SqlQueryTimeout settings in TimesTen are separate
features and can have separate values. TimesTen checks for both lock timeout
and SQLQueryTimeout values. TimesTen examines all threads and wakes up any
sleeping process that has either a lock timeout or a SQL query timeout, and
indicates the appropriate SqlQueryTimeout value to any executing thread. If
both a LockWait timeout value and a SqlQueryTimeout value are specified, the
lesser of the two values causes a timeout first.
Working with TimesTen Data Stores 31

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#setQueryTimeout(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#setQueryTimeout(int)

Putting it all together: preparing and executing SQL
In this example, we prepare INSERT and SELECT statements; execute the
INSERT twice; execute the SELECT, and print the returned result set. For a
working example, see the level1.java demo.
Connection con;
Statement stmt;

// Disable auto-commit
con.setAutoCommit(false);

// Report any SQLWarnings on the connection
// See “Reporting errors and warnings” on page 42

// Prepare a parameterized INSERT and a SELECT Statement
PreparedStatement pIns = con.prepareStatement("insert into
xyz.customer values (?,?,?,?)");

PreparedStatement pSel = con.prepareStatement
("select cust_num, region, name, " +
"address from xyz.customer");

// Prepare is a transaction; must commit to release locks
con.commit();

// Data for first INSERT statement
pIns.setInt(1, Integer.parseInt(100));
pIns.setString(2, ’N’);
pIns.setString(3, ’Fiberifics’);
pIns.setString(4,’123 any street’);

// Execute the INSERT statement
pIns.executeUpdate();

// Data for second INSERT statement
pIns.setInt(1, Integer.parseInt(101));
pIns.setString(2, ’N’);
pIns.setString(3,’Natural Foods Co.’);
pIns.setString(4,’5150 Johnson Rd’);

// Execute the INSERT statement
pIns.executeUpdate();

// Commit the inserts
con.commit();

// Done with INSERTs, so close the prepared statement
pIns.close();
32 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

// Report any SQLWarnings on the connection
reportSQLWarnings(con.getWarnings());
CheckIfStopIsRequested();

// Execute the prepared SELECT statement
ResultSet rs = pSel.executeQuery();

System.out.println("Fetching result set...");
while (rs.next()) {

System.out.println("\n Customer number: " + rs.getInt(1));
System.out.println(" Region: " + rs.getString(2));
System.out.println(" Name: " + rs.getString(3));
System.out.println(" Address: " + rs.getString(4));

}

// Close the result set.
rs.close();

// Commit the select - yes selects need to be committed too
con.commit();

// Close the select statement - we're done with it
pSel.close();

Fetching multiple rows of data
Fetching multiple rows of data from a TimesTen data store can increase the
performance of an application that connects to a data store set with read
committed isolation.

You can specify the number of rows to be prefetched by:
• Calling the Statement.setFetchSize() and ResultSet.setFetchSize methods.

These are the standard JDBC calls, but the limitation is that they only affect
one statement at a time.

• Calling the TimesTenConnection.setTtPrefetchCount(int)() method or by
using the ttIsql prefetchcount command. These enable a TimesTen
extension that establishes prefetch on a connection level so that all of the
statements on the connection use the same prefetch setting.

This section describes the connection-level prefetch implemented in TimesTen.

Note: You can use the TimesTen prefetch count extension only with direct-
linked applications.
Working with TimesTen Data Stores 33

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html#setFetchSize(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#setFetchSize(int)

When the prefetch count is set to 0, TimesTen uses a default value, depending on
the Isolation level you have set for the data store. In read committed isolation
mode, the default prefetch value is 5. In serializable isolation mode, the default is
128. The default prefetch value is the optimum setting for most applications.
Generally, a higher value may result in better performance for larger result sets,
at the expense of slightly higher resource use.

To disable prefetch, set the prefetch count to 1.

Call TimesTenConnection.getTtPrefetchCount()() to check the current
prefetch value.

Example 2.8 In this example, we use the ttIsql prefetchcount command to set the prefetch
count for the connection to 6:
> ttIsql RunData_tt51
Command > prefetchcount 6;

Example 2.9 In this example, we use setTtPrefetchCount(int)() to set the prefetch count to
10 and then use getTtPrefetchCount()() to return the prefetch count in the count
variable.
TimesTenConnection con =

(TimesTenConnection) DriverManager.getConnection(url);

// set prefech count to 10 for this connection
con.setTtPrefetchCount(10);

// Return the prefetch count to the ’count’ variable.
int count = con.getTtPrefetchCount();
34 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Executing multiple SQL statements in a batch

You can improve performance by calling the addBatch() and executeBatch()
methods for the Statement and PreparedStatement objects.

For Statement objects, a batch typically consists of a set of INSERT or UPDATE
statements. Statements that return result sets are not allowed in a batch. A SQL
statement is added to a batch by calling the addBatch() method. The set of SQL
statements associated with a batch are executed through the executeBatch()
method. For example:

Example 2.10 // turn off autocommit
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe
Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For PreparedStatement objects, a batch consists of a set of prepared statement
input parameters. Prepared statement parameters are added to the batch by
executing set calls followed by the addBatch() call. The batch is executed by the
executeBatch() method. For example:

Example 2.11 // turn off autocommit
conn.setAutoCommit(false);

PreparedStatement stmt = conn.prepareStatement(
"INSERT INTO employees VALUES (?, ?)");

// first set of parameters
stmt.setInt(1, 2000);
stmt.setString(2, "Kelly Kaufmann");
stmt.addBatch();

// second set of parameters
stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution. Check update counts
int[] updateCounts = stmt.executeBatch();
conn.commit ();

Both Statement.executeBatch() and PreparedStatement.executeBatch() return
an array (updateCounts in Example 2.10 and Example 2.11) that contains the
update counts.
Working with TimesTen Data Stores 35

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html

Working with result sets
In addition to queries, some methods and built-in procedures return TimesTen
data in the form of a ResultSet object. This section describes what you need to
know when using ResultSet objects from TimesTen.
• TimesTen does not support multiple open ResultSet objects per statement.

TimesTen cannot return multiple ResultSet objects from a single Statement
object without first closing the current result set.

• TimesTen does not support holdable cursors. You cannot specify the
holdability of a result set, i.e. whether a cursor can remain open after it has
been committed.

• ResultSet objects are not scrollable or updatable, so you cannot specify
ResultSet.TYPE_SCROLL_SENSITIVE or
ResultSet.CONCUR_UPDATABLE.

• Use the ResultSet.close method to close ResultSet objects as soon as you are
done with them.

• Calling ResultSet.getString is more costly with regard to performance if the
underlying data type is not a string. Because Java strings are immutable,
ResultSet.getString must allocate space for a new string each time it is called.
This makes ResultSet.getString one of the costlier calls in JDBC. Do not use
ResultSet.getString to retrieve primitive numeric types, like Byte or Integer,
unless it is absolutely necessary. For example, it is much faster to call
ResultSet.getInt on an integer column.

• JDBC ignores the setting for the ConnectionCharacterSet attribute. It
returns data in UTF-16 encoding.
36 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#close()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#TYPE_SCROLL_SENSITIVE
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#CONCUR_UPDATABLE
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getInt(int)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html

Calling TimesTen built-in procedures
Chapter 2, “Built-In Procedures” in the Oracle TimesTen In-Memory Database
API Reference Guide describes the TimesTen built-in procedures that extend
standard ODBC functionality. You can execute a TimesTen built-in procedure
using the CallableStatement interface.

To execute the built-in procedure, use the format:
CallableStatement.execute("{ Call Procedure }")

To prepare and execute a built-in procedure, use the format:
CallableStatement cStmt;
cStmt = con.prepareCall("{ Call Procedure }");
cStmt.execute();

For built-in procedures that return results, you can use the ResultSet get*()
methods to retrieve the data from the returned ResultSet, as demonstrated in
Example 2.13.

Note: See “Working with result sets” on page 36 for details about what you need
to know when working with result sets generated by TimesTen.

Example 2.12 To call the ttCkpt procedure to initiate a fuzzy checkpoint, enter:
Connection con;
CallableStatement cStmt;
.......
cStmt = con.prepareCall("{ Call ttCkpt }");
cStmt.execute();
con.commit(); // commit the transaction

Example 2.13 This example calls the ttDataStoreStatus procedure and prints out the returned
result set.

Contrary to the advice given in “Working with result sets” on page 36, we use
ResultSet.getString in this example to retrieve the Context field, which is a
binary. This is because the data is output is printed, rather than used for
processing. If you were not to print the Context value, you could achieve better
performance using the ResultSet.getBytes method.
ResultSet rs;

cStmt = con.prepareCall("{ Call ttDataStoreStatus }");

if (cStmt.execute() == true) {

 rs = cStmt.getResultSet();
 System.out.println("Fetching result set...");
Working with TimesTen Data Stores 37

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getBytes(java.lang.String)

 while (rs.next()) {
System.out.println("\n Data store: " + rs.getString(1));
System.out.println(" PID: " + rs.getInt(2));
System.out.println(" Context: " + rs.getString(3));
System.out.println(" ConType: " + rs.getString(4));
System.out.println(" memoryID: " + rs.getString(5));
}

rs.close();
}

cStmt.close();

Note: You cannot pass parameters to CallableStatement by name. You must set
parameters by ordinal numbers. You cannot use the SQL escape syntax.
38 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/CallableStatement.html

Managing multiple threads
Note: On some UNIX platforms, it is necessary to set the THREADS_FLAG
variable, as described in “Set the THREADS_FLAG variable (UNIX only)” on
page 9.

The level4.java demo demonstrates the use of multiple threads.

When your application has a direct driver connection to the data store, TimesTen
functions share stack space with your application. In multithreaded
environments, it is important to avoid overrunning the stack allocated to each
thread because consequences can result that are unpredictable and difficult to
debug. The amount of stack space consumed by TimesTen calls varies depending
on the SQL functionality used. Most applications should set thread stack space to
at least 16 KB on 32-bit systems and between 34 KB to 72 KB on 64-bit systems.

The amount of stack space allocated for each thread is specified by the operating
system when threads are created. On Windows, you can use the TimesTen debug
driver and link your application against the Visual C++ debug C library to enable
“stack probes” that raise an identifiable exception if a thread attempts to grow its
stack beyond the amount allocated.

Note: In multithreaded applications, a thread that issues requests on different
connection handles to the same data store may encounter lock conflict with itself.
TimesTen resolves these conflicts with lock timeouts.
Working with TimesTen Data Stores 39

Handling errors
This section discusses how to check for, identify and handle errors in you
TimesTen Java application.

For a list of the errors that TimesTen returns and what to do if the error is
encountered, see Chapter 1, “Warnings and Errors” in the Oracle TimesTen In-
Memory Database Error Messages and SNMP Traps.

The topics are:
• About fatal errors, non-fatal errors, and warnings
• Reporting errors and warnings
• Detecting and responding to specific errors
• Rolling back failed transactions

About fatal errors, non-fatal errors, and warnings
TimesTen can return a fatal error, a non-fatal error, or a warning.

Handling fatal errors and recovery
Fatal errors are those that make the data store inaccessible until it can be
recovered. When a fatal error occurs, all data store connections are required to
disconnect. No further operations may complete. Fatal errors are indicated by
TimesTen error codes 846 and 994. Error handling for these errors should be
different from standard error handling. In particular, the code should rollback the
transaction and disconnect from the data store.

When fatal errors occur, TimesTen performs the full cleanup and recovery
procedure:
• Every connection to the data store is invalidated, a new memory segment is

allocated and applications are required to disconnect.
• The data store is recovered from the checkpoint and log files upon the first

subsequent initial connection.
– The recovered data store reflects the state of all durably committed

transactions and possibly some transactions that were committed non-
durably.

– No uncommitted or rolled back transactions are reflected.

If no checkpoint or log files exist and AutoCreate is set, TimesTen creates an
empty data store.
40 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Handling non-fatal errors
Non-fatal errors include simple errors such as an INSERT that violates unique
constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the normal error-handling process and
requires the application to check for and identify them.

When a data store is affected by a non-fatal error, an error may be returned and
the application should take appropriate action. In some cases, such as in the case
of a process crash, an error cannot be returned, so TimesTen automatically rolls
back the failed process' transactions.

An application can handle non-fatal errors by modifying its actions or, in some
cases, by rolling back one or more offending transactions, as described in
“Rolling back failed transactions” on page 45.

Note: If a ResultSet, Statement, PreparedStatement, CallableStatement or
Connection operation results in a data store error, it is a good practice to call the
close method for that object.

About warnings
TimesTen returns warnings when something unexpected occurs that you may
want to know about. Some examples of events that cause TimesTen to issue a
warning include:
• A checkpoint failure
• The use of a deprecated TimesTen feature
• The truncation of some data
• The execution of a recovery process upon connect

You should always include code that checks for warnings, as they can indicate
application problems.
Working with TimesTen Data Stores 41

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html

Reporting errors and warnings
You should check for and report all errors and warnings that can be returned on
every call. This saves considerable time and effort during development and
debugging. A SQLException object is generated in case of one or more data
store access errors and a SQLWarning object is generated in the case of one or
more warning messages. A single call may return multiple errors and/or
warnings, so your application should report all errors or warnings in the returned
SQLException or SQLWarning objects.

Multiple errors or warnings are returned in linked chains of SQLException or
SQLWarning objects. Example 2.14 and Example 2.15 demonstrate how you
might iterate through the lists of returned SQLException and SQLWarning
objects to report all of the errors and warnings, respectively.

Example 2.14 This method prints out the content of all exceptions in the linked SQLException
objects.
static int reportSQLExceptions(SQLException ex)
 {
 int errCount = 0;

 if (ex != null) {
 errStream.println("\n--- SQLException caught ---");
 ex.printStackTrace();

 while (ex != null) {
 errStream.println("SQL State: " + ex.getSQLState());
 errStream.println("Message: " + ex.getMessage());
 errStream.println("Error Code: " + ex.getErrorCode());
 errCount ++;
 ex = ex.getNextException();
 errStream.println();
 }
 }

 return errCount;
 }

Example 2.15 This method prints out the content of all warning in the linked SQLWarning
objects.
static int reportSQLWarnings(SQLWarning wn)
{

int warnCount = 0;

while (wn != null) {
errStream.println("\n--- SQL Warning ---");
errStream.println("SQL State: " + wn.getSQLState());
42 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html

errStream.println("Message: " + wn.getMessage());
errStream.println("Error Code: " + wn.getErrorCode());

// is this a SQLWarning object or a DataTruncation object?
if (wn instanceof DataTruncation) {

DataTruncation trn = (DataTruncation) wn;
errStream.println("Truncation error in column: " +

trn.getIndex());
}

warnCount++;
wn = wn.getNextWarning();
errStream.println();

}

return warnCount;
}

Working with TimesTen Data Stores 43

Detecting and responding to specific errors
In some situations it may be desirable to respond to a specific SQL state or
TimesTen error code. You can use SQLException.getSQLState to return the
SQL99 SQL state error string, and SQLException.getErrorCode to return
TimesTen error codes, as shown in Example 2.16.

Example 2.16 The TimesTen demos require that you load the demo schema before they are
executed. The following catch statement alerts the user that the demo schema has
not been loaded or has not been refreshed by detecting ODBC error S0002 and
TimesTen error 907:

catch (SQLException ex) {
if (ex.getSQLState().equalsIgnoreCase("S0002")) {

errStream.println("\nError: The table xyz.customer
does not exist.\n\t Please run ttIsql -f input0.dat
to initialize the database.");

} else if (ex.getErrorCode() == 907) {
errStream.println("\nError: Attempting to insert a row

with a duplicate primary key.\n\tPlease rerun ttIsql -f
input0.dat to reinitialize the database.");

}

You can use the TimesTenVendorCode interface interface to detect the errors
by their name, rather than their number.

For example:
ex.getErrorCode() ==
com.timesten.jdbc.TimesTenVendorCode.TT_ERR_KEYEXISTS

is the same as:
ex.getErrorCode() == 907

See “TimesTenVendorCode interface” on page 80 for the complete list of error
name-to-number mappings.
44 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html#getSQLState()
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html#getErrorCode()

Rolling back failed transactions
In some situations, such as recovering from a deadlock or time-out condition,
you may want to explicitly roll back the transaction using the
Connection.rollback() method.

For example:
try {
if (con != null && !con.isClosed()) {
 // Rollback any transactions in case of errors
 if (retcode != 0) {
 try {
 System.out.println("\nEncountered error.

Rolling back transaction");
 con.rollback();

 } catch (SQLException ex) {
 reportSQLExceptions(ex);

 }
}

System.out.println("\nClosing the connection\n");
con.close();

}

The XACT_ROLLBACKS column of the SYS.MONITOR table indicates the
number of transactions that were rolled back.

A transaction rollback consumes resources and the entire transaction is in effect
wasted. To avoid unnecessary rollbacks, design your application to avoid
contention (see “Choose the best method of locking” on page 65) and check
application or input data for potential errors before submitting it, whenever
possible.

Note: Should your application crash in the middle of an active transaction,
TimesTen automatically rolls back the transaction.
Working with TimesTen Data Stores 45

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#rollback()

46 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

3
Using JMS/XLA for Event
Management

You can use the TimesTen JMS/XLA API (JMS/XLA) to monitor TimesTen for
changes to specified tables in a local data store and receive real-time notification
of these changes. One of the purposes of JMS/XLA is to provide a high-
performance, asynchronous alternative to triggers.

You can also use JMS/XLA to build a custom data replication solution, if the
TimesTen replication solutions described in TimesTen to TimesTen Replication
Guide do not meet your needs.

JMS/XLA implements Sun Microsystems’ Java Message Service (JMS)
interfaces to make the functionality of the TimesTen Transaction Log API (XLA)
available to Java applications. For detailed information about the JMS API, refer
to the documentation published by Sun Microsystems at http://java.sun.com/
products/jms/docs.html. The Sun JMS documentation is installed with the Oracle
TimesTen In-Memory Database.

For information about tuning TimesTen JMS/XLA applications for improved
performance, see “Tuning JMS/XLA applications” on page 72.

This chapter includes the following topics:
• JMS/XLA concepts
• XLA demos
• Connecting to XLA
• Monitoring tables for updates
• Receiving and processing updates
• Terminating an XLA application
• Using XLA as a replication mechanism

JMS/XLA concepts
Java applications can use the JMS/XLA API to receive event notifications from
TimesTen. JMS/XLA uses the JMS publish-subscribe interface to provide access
to XLA updates.
 47

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

You subscribe to updates by establishing a JMS Session that provides a
connection to XLA and creating a durable subscriber (TopicSubscriber). You
can receive and process messages synchronously through the subscriber, or you
can implement a listener (MessageListener) to process the updates
asynchronously.

JMS/XLA is designed for applications that want to monitor a local data store.
TimesTen and the application receiving the notifications must reside on the same
machine.

Note: The JMS/XLA API supports persistent-mode XLA. In this mode, XLA
obtains update records directly from the transaction log buffer or log files, so the
records are available until they are read. Persistent-mode XLA also allows
multiple readers to access transaction log updates simultaneously.

This section includes the following topics:
• How XLA reads records from the transaction log
• XLA and materialized views
• XLA configuration file and topics
• XLA updates
• XLA bookmarks
• XLA acknowledgement modes

How XLA reads records from the transaction log
As applications modify a TimesTen data store, TimesTen generates log records
that describe the changes made to the data and other events such as transaction
commits.

New log records are always written to the end of the log buffer as they are
generated. When disk-based logging is enabled for the data store, log records are
periodically flushed in batches from the log buffer in memory to log files on disk.

Applications can use XLA to monitor the transaction log for changes to the
TimesTen data store. XLA reads through the transaction log, filters the log
records, and delivers XLA applications with a list of transaction records that
contain the changes to the tables and columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are
updating the data store simultaneously, log records from the different
applications will be interleaved in the log.

XLA transparently extracts all log records associated with a particular transaction
and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in
the order in which their final commit record appears in the transaction log. XLA
48 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSubscriber.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageListener.html

filters out records associated with changes to the data store that have not yet
committed.

If a change is made but then rolled back, XLA does not deliver the records for the
aborted transaction to the application.

Most of these basic XLA concepts are demonstrated in Example 3.1 and
summarized in the bulleted list on the bottom.

Example 3.1 Consider the example transaction log illustrated in Figure 3.1.

Figure 3.1 Records extracted from the transaction log

In this example, the transaction log contains the following records:
CT1 - Application C updates row 1 of table W with value 7.7
BT1 - Application B updates row 3 of table X with value 2
CT2 - Application C updates row 9 of table W with value 5.6
BT2 - Application B updates row 2 of table Y with value XYZ
AT1 - Application A updates row 1 of table Z with value 3
AT2 - Application A updates row 3 of table Z with value 4
BT3 - Application B commits its transaction
AT3 - Application A rolls back its transaction
CT3 - Application C commits its transaction

An XLA application that is set up to detect changes to Tables W, Y, and Z would
see:
BT2 and BT3 - Update row 2 of table Y with value XYZ and commit
CT1 - Update row 1 of table W with value 7.7
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit

What this example demonstrates:
• Application B’s and C's transaction records all appear together.
• Though the records for Application C begin to appear in the transaction log

before those for Application B, the commit for Application B (BT3) appears in
the log before the commit for Application C (CT3). As a result, the records for
Application B are returned to the XLA application ahead of those for
Application C.

..........................
Transaction Log

Oldest NewestCT1 BT2 AT2 CT3CT2 AT1 AT3

BT2 BT3 CT2CT1 CT3

XLA Application

BT1 BT3
Using JMS/XLA for Event Management 49

• Application B’s update to Table X (BT1) are not presented because XLA is not
set up to detect changes to Table X.

• Application A's updates to Table Z (AT1 and AT2) are never presented because
it did not commit and was rolled back (AT3).

XLA and materialized views
You can use XLA to track changes to both tables and materialized views. A
materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view,
the XLA application would have to monitor and filter the update records from all
of the detail tables, including records reflecting updates to rows and columns of
no interest to the application.

In general, there are no operational differences between the XLA mechanisms
used to track changes to a table or a materialized view.

XLA configuration file and topics
To connect to XLA, you establish a connection to a JMS Topic that corresponds
to a particular data store. The JMS/XLA configuration file provides the mapping
between topic names and data stores.

By default, JMS/XLA looks for a configuration file called jmsxla.xml in the
current working directory. If you want to use another name or location for the
file, you need to specify it as part of the environment variable in the
InitialContext class and add the location to CLASSPATH. To specify it as part
of the environment variable in the InitialContext class, use code similar to
Example 3.2.

Example 3.2 Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.timesten.dataserver.jmsxla.SimpleInitialContextFactory");
env.put(XlaConstants.CONFIG_FILE_NAME, "/newlocation.xml");
InitialContext ic = new InitialContext(env);

The JMS/XLA API usually uses the class loader to locate the JMS/XLA
configuration file if XlaConstants.CONFIG_FILE_NAME is set. In Example 3.2,
the JMS/XLA API searches for the newlocation.xml file in the top directory in
both the location specified in the CLASSPATH environment variable and in the
jar files specified in the CLASSPATH environment variable.

The JMS/XLA configuration file can also be located in subdirectories, as shown
in Example 3.3.

Example 3.3 env.put(XlaConstants.CONFIG_FILE_NAME,
"/com/mycompany/myapplication/deepinside.xml");
50 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

In Example 3.3, the JMS/XLA API searches for the deepinside.xml file in the
com/mycompany/myapplication subdirectory in both the location specified in
the CLASSPATH environment variable and in the jar files specified in the
CLASSPATH environment variable.

The JMS/XLA API uses the first configuration file that it finds.

A topic definition in the configuration file consists of a name, a JDBC connection
string, and a prefetch value that specifies how many updates to retrieve at a time.

For example, the configuration file shown in Example 3.4 maps the
DemoDataStore topic to the TestDB DSN.

Example 3.4 <xlaconfig>
<topics>
<topic name="DemoDataStore"
connectionString="jdbc:timesten:direct:DSN=TestDB"
xlaPrefetch="100"

/>
</topics>

</xlaconfig>

XLA updates
Applications receive XLA updates as JMS MapMessage objects. The
MapMessage contains a set of typed name/value pairs that correspond to the fields
in an XLA update header.

You can access the message fields using the MapMessage get methods. The
getMapNames method returns an Enumeration that contains the names of all of
the fields in the message. You can retrieve individual fields from the message by
name. All reserved field names begin with two underscores, for example __TYPE.

All update messages have a __TYPE field that indicates what type of update the
message contains. The types are specified as integer values. As a convenience,
you can use the constants defined in
com.timesten.dataserver.jmsxla.XlaConstants to compare against the
integer types. The supported types are described in Table 3.1.

Table 3.1 XLA Update Types

Update Type Description

INSERT A row has been added.

UPDATE A row has been modified.

DELETE A row has been removed.

COMMIT_ONLY A transaction has been committed.
Using JMS/XLA for Event Management 51

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html

For more information about the contents of an XLA update message, see “XLA
MapMessage contents” on page 81.

XLA bookmarks
An XLA bookmark marks the read position of an XLA subscriber application in
the transaction log. Bookmarks facilitate durable subscriptions, enabling an
application to disconnect from a topic and then reconnect to continue receiving
updates where it left off.

When you create a message consumer for XLA, you always use a durable
TopicSubscriber. The subscription identifier you specify when you create the
subscriber is used as the XLA bookmark name. When you use the built-in
procedures ttXlaSubscribe and ttXlaUnsubscribe through JDBC to start and
stop XLA publishing for a table, you explicitly specify the name of the bookmark
to be used.

Bookmarks are reset to the last read position whenever an acknowledgement is
received. For more information about how update messages are acknowledged,
see “XLA acknowledgement modes” on page 53.

You can remove a durable subscription by calling unsubscribe on the JMS
Session. This deletes the corresponding XLA bookmark and forces a new

CREATE_TABLE A table has been created.

DROP_TABLE A table has been dropped.

CREATE_INDEX An index has been created.

DROP_INDEX An index has been dropped.

ADD_COLUMNS New columns have been added to the table.

DROP_COLUMNS Columns have been removed from the table.

CREATE_VIEW A materialized view has been created.

DROP_VIEW A materialized view has been dropped.

CREATE_SEQ A SEQUENCE has been created.

DROP_SEQ A SEQUENCE has been dropped.

TRUNCATE The table has been truncated and all rows in the table
have been deleted.

Table 3.1 XLA Update Types

Update Type Description
52 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSubscriber.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html

subscription to be created when you reconnect. For more information see
“Deleting bookmarks” on page 58.

XLA acknowledgement modes
XLA’s acknowledgement mechanism is designed to ensure that an application
has not only received a message, but has successfully processed it.
Acknowledging an update permanently resets the application’s XLA bookmark
to the last record that was read. This prevents previously returned records from
being re-read, ensuring that an application does not receive previously
acknowledged records if the bookmark is reused when an application reconnects
to XLA.

JMS/XLA can automatically acknowledge XLA update messages, or
applications can choose to acknowledge messages explicitly. You specify how
updates are to be acknowledged when you create the Session.

JMS/XLA supports three acknowledgement modes:
• AUTO_ACKNOWLEDGE—In this mode, updates are automatically

acknowledged as you receive them. Each message is delivered only once--
duplicate messages will not be sent and in the event of an application failure,
messages might be lost. In AUTO_ACKNOWLEDGE mode, messages are
always delivered and acknowledged individually, so JMS/XLA does not
prefetch multiple records. (The xlaprefetch attribute in the topic is ignored.)

• DUPS_OK_ACKNOWLEDGE—In this mode, updates are automatically
acknowledged, but duplicate messages might be delivered in the event of an
application failure. In DUPS_OK_ACKNOWLEDGE mode, JMS/XLA
prefetches records according to the xlaprefetch attribute specified for the
topic and sends an acknowledgement when the last record in a prefetched
block is read. If the application fails before reading all of the prefetched
records, all of the records in the block are presented to the application it
restarts.

• CLIENT_ACKNOWLEDGE—in this mode, applications are responsible for
acknowledging receipt of update messages by calling acknowledge on the
MapMessage. In CLIENT_ACKNOWLEDGE mode, JMS/XLA prefetches
records according to the xlaprefetch attribute specified for the topic.

Prefetching updates
Prefetching multiple update records at a time is more efficient than obtaining
each update record from XLA individually. Because updates are not prefetched
when you use AUTO_ACKNOWLEDGE mode, it can be slower than the other
modes. If possible, you should design the application to tolerate duplicate
updates so you can use DUPS_OK_ACKNOWLEDGE, or explicitly
acknowledge updates. Explicitly acknowledging updates usually yields the best
Using JMS/XLA for Event Management 53

performance, as long as you can avoid acknowledging each message
individually.

Acknowledging updates
To explicitly acknowledge an XLA update, you call acknowledge on the update
message. Acknowledging a message implicitly acknowledges all previous
messages. Typically, you receive and process multiple update messages between
acknowledgements. If you are using the CLIENT_ACKNOWLEDGE mode and
intend to reuse a durable subscription in the future, you should call acknowledge
to reset the bookmark to the last-read position before exiting.

XLA demos
The TimesTen JMS/XLA demos demonstrate how to use the JMS/XLA API to
subscribe to updates to a TimesTen table. The demo applications are located in
the install_dir/demo/tutorial/java directory.

The demos use the TimesTen demo schema, which simulates a simple order-
processing database. For information about compiling the TimesTen Java demos
and building the demo schema, see “About the TimesTen Java demos” on page
11.

The procedures demonstrated in the rest of this chapter are based on the
XlaLevel1.java demo application. This application reports on updates to the
xyz.customer table.

JMS/XLA and Oracle GDK dependency
The JMS/XLA API uses orai18n.jar, part of the Oracle Globalization
Development Kit (GDK) for translating from the database character set specified
by the DatabaseCharacterSet attribute to UTF-16 encoding. JMS/XLA API
supports a specific version of GDK with each TimesTen release. If JMS/XLA
API finds other versions of GDK already loaded in the JVM, it displays a severe
warning and continues processing. You can find out the version of GDK
supported by JMS/XLA API by entering the following commands:

cd install_dir/lib
$ java -cp ./orai18n.jar oracle.i18n.util.GDKOracleMetaData -version

Connecting to XLA
To connect to XLA so you can receive updates, you use the JMS
ConnectionFactory to create a Connection. You then use the Connection to
establish a Session. When you are ready to start processing updates, you call
start on the Connection to enable message dispatching.
54 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/ConnectionFactory.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Session.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

For example, in the XlaLevel1 demo, the JMS Session is set up by the
XLALevel1 subscribe method, as shown in Example 3.5. Note that the
acknowledgement mode is set when the session is created.

Example 3.5 ConnectionFactory connectionFactory;

Context messaging = new InitialContext();
connectionFactory = (ConnectionFactory)

messaging.lookup("ConnectionFactory");
Connection connection = connectionFactory.createConnection();

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

connection.start();

Monitoring tables for updates
Before you can start receiving updates, you need to tell XLA which tables you
want to monitor for changes.

To subscribe to changes and turn on XLA publishing for a table, call the
ttXlaSubscribe built-in procedure through JDBC.

When you use ttXlaSubscribe to enable XLA publishing for a table, you need to
specify two parameters, the name of the table and the name of the bookmark that
will be used to track the table:
ttXlaSubscribe(user.table, mybookmark)

For example, to call ttXlaSubscribe via the JDBC CallableStatement
interface:
Connection con;

CallableStatement cStmt;

...

cStmt = con.prepareCall(“{call ttXlaSubscribe(user.table,
mybookmark)}”);
cStmt.execute();

Use ttXlaUnsubscribe to unsubscribe from the table during shutdown. For more
information, see “Unsubscribing from a table” on page 59.

The application can verify table subscriptions by checking the
SYS.XLASUBSCRIPTIONS system table.

For more information about using TimesTen built-in procedures in a Java
application, see “Calling TimesTen built-in procedures” in Chapter 2. See Oracle
TimesTen In-Memory Database API Reference Guide for more information about
built-in procedures.
Using JMS/XLA for Event Management 55

Receiving and processing updates
You can receive XLA updates either synchronously or asynchronously.

To receive and process update for a topic synchronously, perform the following
tasks:

1. Create a durable TopicSubscriber to subscribe to a topic.

2. Call receive or receiveNoWait on your subscriber to get the next available
update.

3. Process the returned MapMessage.

To receive and process updates for a topic asynchronously, perform the following
tasks:

1. Create a MessageListener to process the updates.

2. Create a durable TopicSubscriber to subscribe to a topic.

3. Register the MessageListener with the TopicSubscriber.

4. Start the Connection.

Note: You must register the MessageListener before you start the Connection.
Otherwise, you can miss messages. If the Connection is already started, stop the
Connection, register MessageListener and then start the Connection.

5. Wait for messages to arrive. You can call Object.wait to wait for messages if
your application does not need to do anything else in its main thread.

When an update is published, the MessageListener onMessage method is
called and the message is passed in as a MapMessage.

The application can verify table subscriptions by checking the
SYS.XLASUBSCRIPTIONS system table.

The XlaLevel1 demo uses a listener to process updates asynchronously, as shown
in Example 3.6.

Example 3.6 MyListener myListener = new MyListener(outStream);

outStream.println("Creating consumer for topic " + topic);
Topic xlaTopic = session.createTopic(topic);
TopicSubscriber subscriber =

session.createDurableSubscriber(xlaTopic, “mybookmark”);

subscriber.setMessageListener(myListener);

Note that mybookmark must already exist. You can use JDBC and the
ttXlaBookmarkCreate built-in procedure to create a bookmark. Also, the
TopicSubscriber must be a durable subscriber. XLA connections are designed
56 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSubscriber.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageListener.html

to be durable. XLA bookmarks make it possible to disconnect from a topic and
then reconnect to start receiving updates where you left off. The String you pass
in as the subscription identifier when you create a durable subscriber is used as
the XLA bookmark name.

You can call unsubscribe on the JMS TopicSession to delete the XLA
bookmark used by the subscriber when the application shuts down. This causes a
new bookmark to be created when the application is restarted.

Processing updates
When you receive an update, you can use the MapMessage get methods to
extract information from the message and then perform whatever processing your
application requires. The TimesTen XlaConstants.java class defines constants
for the update types and special message fields to make it easier to process XLA
update messages.

The first step is typically to determine what type of update the message contains.
You can use the MapMessage.getInt method to get the contents of the __TYPE
field, and compare the value against the numeric constants defined in the
XlaConstants class.

In the XlaLevel1 demo, MySubscriber’s onMessage method extracts the update
type from the MapMessage and displays the action that the update signifies. This
is shown in Example 3.7.

Example 3.7 public void onMessage(Message message) {
 MapMessage mapMessage = (MapMessage) message;
 String messageType = null;
 if (message == null) {
 errStream.println("MyListener: update message is null");
 return;
 }

 try {
 // Get the update type(insert, update, delete, etc.).
 int type = mapMessage.getInt(XlaConstants.TYPE_FIELD);
 if (type == XlaConstants.INSERT) {
 System.out.println("A row was inserted.");
 } else if (type == XlaConstants.UPDATE) {
 System.out.println("A row was updated.");
 } else if (type == XlaConstants.DELETE) {
 System.out.println("A row was deleted.");
 } else {
 return;
 }

When you know what type of message you have received, you can process the
message according to the application’s needs. To get a list of all of the fields in a
Using JMS/XLA for Event Management 57

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/TopicSession.html
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html

message, you can call MapMessage.getMapNames. You can retrieve individual
fields from the message by name.

For example, the XlaLevel1 demo extracts the column values from insert, update,
and delete messages using the column names, as shown in Example 3.8.

Example 3.8 if (type == XlaConstants.INSERT
|| type == XlaConstants.UPDATE
|| type == XlaConstants.DELETE) {

 // Get the column values from the message.
 int cust_num = mapMessage.getInt("cust_num");
 String region = mapMessage.getString("region");
 String name = mapMessage.getString("name");
 String address = mapMessage.getString("address");

 System.out.println("New Column Values:");
 System.out.println("cust_num=" + cust_num);
 System.out.println("region=" + region);
 System.out.println("name=" + name);
 System.out.println("address=" + address);
 }

For detailed information about the contents of XLA update messages, see “XLA
MapMessage contents” on page 81. For information about how TimesTen
column types map to JMS data types and the get methods used to retrieve the
column values, see “Data type mapping” on page 93.

Terminating an XLA application
When the XLA application has finished reading from the transaction log, it
should gracefully exit by closing the XLA connection, deleting any unneeded
bookmarks, and unsubscribing from any tables to which you explicitly
subscribed.

Closing the connection
To close the connection to XLA, call close on the Connection object.

After a connection has been closed, any attempt to use it, its sessions, or its
subscribers will throw an IllegalStateException. You can continue to use
messages received through the connection, but you cannot call a received
message’s acknowledge method after the connection is closed.

Deleting bookmarks
Deleting XLA bookmarks during shutdown is optional. Deleting a bookmark
enables the disk space associated with any unread update records in the
transaction log to be freed.
58 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/Connection.html

If you do not delete the bookmark, it can be reused by a durable subscriber. As
long as the bookmark is available when a durable subscriber reconnects, the
subscriber will receive all unacknowledged updates published since the previous
connection was terminated. Keep in mind that as long as a bookmark exists with
no application reading from it, the transaction log will continue to grow and the
amount of disk space consumed by your database will increase.

To delete a bookmark, you can simply call unsubscribe on the JMS Session,
which invokes the ttXlaBookmarkDelete built-in procedure to remove the XLA
bookmark.

Unsubscribing from a table
To turn off XLA publishing for a table, use the ttXlaUnsubscribe built-in
procedure. If you use ttXlaSubscribe to enable XLA publishing for a table, you
should use ttXlaUnsubscribe to unsubscribe from the table when shutting down
your application.

Note: If you want to drop a table, you must unsubscribe from it first.

When you unsubscribe from a table, specify the name of the table and the name
of the bookmark used to track the table:
ttXlaUnsubscribe(user.table, mybookmark)

For example, to call ttXlaSubscribe via the JDBC CallableStatement
interface:
Connection con;

CallableStatement cStmt;

...

cStmt = con.prepareCall(“{call ttXlaUnSubscribe(user.table,
mybookmark)}”);
cStmt.execute();

For more information about using TimesTen built-in procedures in a Java
application, see “Calling TimesTen built-in procedures” in Chapter 2. See Oracle
TimesTen In-Memory Database API Reference Guide for more information about
built-in procedures.

Using XLA as a replication mechanism
If the TimesTen replication solutions described in TimesTen to TimesTen
Replication Guide do not meet your needs, you can use JMS/XLA to replicate
updates from a source data store to a target data store. The source data store
generates JMS/XLA messages. To apply the messages to a target data store, you
must extract the XLA descriptor from them. Use the MapMessage interface to
extract the update descriptor:
Using JMS/XLA for Event Management 59

MapMessage message;
/**
*...other code
*/
try {

byte[]updateMessage=
mapMessage.getBytes(XlaConstants.UPDATE_DESCRIPTOR_FIELD);

}
catch (JMSException jex){
/**
*...other code
*/
}

The target data store may reside on a different machine from the source data
store. The update descriptor is returned as a byte array and can be serialized for
network transmission.

You must create a target data store object that represents the target data store so
you can apply the objects from the source data store. You can create a target data
store object called myTargetDataStore by using the TargetDataStore interface
interface:
TargetDataStore myTargetDataStore=
new TargetDataStoreImpl("DSN=sampleDSN");

Apply messages to myTargetDataStore by using the TargetDataStore
interface::apply method:
myTargetDataStore.apply(updateDescriptor);

By default, TimesTen checks for conflicts on the target data store before applying
the update. If the target data store has information that is later than the update,
TargetDataStore interface throws an exception. If you do not want TimesTen to
check for conflicts, use the TargetDataStore
interface::setUpdateConflictCheckFlag method to change the behavior.

By default, TimesTen commits the update to the data store based on commit flags
and transaction boundaries contained in the update descriptor. If you want the
application to perform manual commits instead, use the setAutoCommitFlag
method to change the autocommit flag. To perform a manual commit on
myTargetDataStore, use the following command:
myTargetDataStore.commit();

You can perform a rollback if errors occur during the application of the update.
Use the following command for myTargetDataStore:
myTargetDataStore.rollback();

Close myTargetDataStore by using the following command:
60 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

myTargetDataStore.close;

See “JMS/XLA replication API” on page 97 for more information about
TargetDataStore interface.

TargetDataStore error recovery
Invoking TargetDataStore interface can yield transient and permanent errors.

TargetDataStore interface methods return a nonzero value when transient errors
occur. The application can retry the operation and is responsible for monitoring
update descriptors that need to be reapplied. For more information about
transient XLA errors, see “Handling XLA errors” in Oracle TimesTen In-Memory
Database C Developer’s and Reference Guide.

TargetDataStore interface methods return a JMSException for permanent
errors. If the application receives a permanent error, it should verify that the data
store is valid. If the data store is invalid, the target data store object should be
closed and a new one should be created. Other types of permanent errors may
require manual intervention.

The following sample code shows how to recover errors from TargetDataStore
interface:
TargetDataStore theTargetDataStore;
byte[] updateDescriptor;
int rc;

// Other code
try {
…
if ((rc = theTargetDataStore.apply(updateDescriptor)) == 0) {

// apply successful
}
else {

// Transient error. Retry later.
}
}
catch (JMSException jex) {
if (theTargetDataStore.isDataStoreValid()) {

// Data store is valid; permanent error that may need
Administrator intervention.
}
else {
try {

theTargetDataStore.close();
}
catch (JMSException closeEx) {
// Close errors are not usual. This may need Administrator

intervention.
Using JMS/XLA for Event Management 61

}
}

62 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

4
Application Tuning

This chapter describes how to tune a Java application to run optimally on a
TimesTen data store. For information about data store and SQL tuning, see
Chapter 8, “Data Store Performance Tuning” in Oracle TimesTen In-Memory
Database Operations Guide.

This chapter includes general principles to consider when tuning Java
applications for the Oracle TimesTen In-Memory Database and specific
performance tuning tips for applications that utilize the JMS/XLA API.

Tuning Java applications
This section describes general principles to consider when tuning Java
applications for TimesTen. It includes the following topics:
• Turn off autocommit mode
• Choose a timeout interval
• Choose the best method of locking
• Reduce contention
• Choose the appropriate logging options
• Prepare statements in advance
• Avoid unnecessary prepare operations
• Use the batch update facility for executing multiple statements
• Bulk fetch rows of TimesTen data
• Size transactions appropriately
• Use durable commits appropriately
• Use the ResultSet.getString method sparingly
• Avoid data type conversions
• Avoid transaction rollback
• Avoid frequent checkpoints

Turn off autocommit mode
By default, autocommit is enabled, which forces a commit after each statement.
Committing each statement after execution can have a significant negative
 63

impact on performance. For performance-sensitive applications, you may want to
set autocommit to off, as described in “Setting autocommit” on page 26.

The XACT_COMMITS column of the SYS.MONITOR table indicates the
number of transaction commits.

If you do not include explicit commits in your application, the application can use
up important resources unnecessarily, including memory and locks. All
applications should do periodic commits.

Choose a timeout interval
By default, connections wait 10 seconds to acquire a lock. To change the timeout
interval for locks, use the ttLockWait built-in procedure.

Reduce contention
Data store contention can substantially impede application performance.

To reduce contention in your application:
• Choose the appropriate locking method. See “Choose the best method of

locking” on page 65.
• Distribute data strategically in multiple tables and/or data stores.

If your application suffers a decrease in performance because of lock contention
and a lack of concurrency, reducing contention is an important first step in
improving performance.

The LOCK_GRANTS_IMMED, LOCK_GRANTS_WAIT and
LOCK_DENIALS_COND columns in the SYS.MONITOR table provide some
information on lock contention:
• LOCK_GRANTS_IMMED counts how often a lock was available and was

immediately granted at lock request time.
• LOCK_GRANTS_WAIT counts how often a lock request was granted after

the requestor had to wait for the lock to become available.
• LOCK_DENIALS_COND counts how often a lock request was not granted

because the requestor did not want to wait for the lock to become available.

If limited concurrency results in a lack of throughput, or if response time is an
issue, an application can serialize JDBC calls to avoid contention. This can be
achieved by having a single thread issue all those calls. Using a single thread
requires some queuing and scheduling on the part of the application, which has to
trade off some CPU time for a decrease in contention and wait time. The result is
higher performance for low-concurrency applications that spend the bulk of their
time in the data store.
64 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Choose the best method of locking
When multiple connections access a data store simultaneously,TimesTen uses
locks to ensure that the various transactions operate in apparent isolation.
TimesTen supports the isolation levels described in Chapter 7, “Transaction
Management and Recovery” in Oracle TimesTen In-Memory Database
Operations Guide. It also supports the locking levels: data store-level locking,
table-level locking and row-level locking. You can use the LockLevel
connection attribute to indicate whether data store-level locking or row-level
locking should be used. Use the ttOptSetFlag procedure to set optimizer hints
that indicate whether table locks should be used. The default lock granularity is
row locks.

Choose an appropriate lock level
If there is very little contention on the data store, use table-level locking. It
provides better performance and deadlocks are less likely. There is generally
little contention on the data store when transactions are short and/or there are few
connections. In that case, transactions are not likely to overlap.

Table-level locking is also useful when a statement accesses nearly all the rows
on a table. Such statements can be queries, updates, deletes or multiple inserts
done in a single transaction.

TimesTen uses table locks only with serializable isolation. If your application
specifies table locks with any other isolation levels, TimesTen overrides table-
level locking and uses row locks. However, the optimizer plan may still display
table-level locking hints.

Data store-level locking restricts concurrency more than table-level locking, and
is generally useful only for initialization operations, such as bulk-loading, when
no concurrency is necessary. It has better response-time than row-level or table-
level locking, at the cost of diminished throughput.

Row-level locking is generally preferable when there are many concurrent
transactions that are not likely to need access to the same row.

Choose an appropriate isolation level
When using row-level locking, applications can run transactions at the
SERIALIZABLE or READ_COMMITTED isolation level. The default isolation
level is READ_COMMITTED. You can use the Isolation connection attribute to
specify one of these isolation levels for new connections.

When running at SERIALIZABLE transaction isolation level, TimesTen holds
all locks for the duration of the transaction, so:
• Any transaction updating a row blocks writers until the transaction commits.
• Any transaction reading a row blocks out writers until the transaction

commits.
Application Tuning 65

When running at READ_COMMITTED transaction isolation level, TimesTen
only holds update locks for the duration of the transaction, so:
• Any transaction updating a row blocks out readers and writers of that row

until the transaction commits.
• Phantoms are possible. A phantom is a row that appears during one read but

not during another read, or appears in modified form in two different reads, in
the same transaction, due to early release of read locks during the transaction.

You can determine if there is an undue amount of contention on your system by
checking for time-out and deadlock errors (errors # 6001, 6002 and 6003).
Information is also available in the LOCK_TIMEOUTS and DEADLOCKS
columns of the SYS.MONITOR table.

Choose the appropriate logging options
The TimesTen Data Manager makes data store transactions durable by
maintaining logs of transactions on disk. Log records are written when a
transaction commits. Each commit incurs a disk write unless you specify
nondurable commits, as discussed in “Use durable commits appropriately” on
page 70.

When DurableCommits=1, the log I/O is amortized over other concurrent
connections using a technique called “group commit”. Thus response times may
be long. Log I/O also affects throughput if there is not sufficient concurrency to
hide the disk write. The LOG_FORCES column in the SYS.MONITOR table
keeps track of the number of times the log was flushed to disk. Flushing the log
to disk too frequently can result in I/O contention between the writes to the log
and the checkpoint files. You can use the LogDir connection attribute to specify
a different I/O path for log files.

For some applications, lost transactions can be tolerated. For example, it may be
possible to regenerate the data from another source in the event of a system or
application failure, or the application may take checkpoints at strategic intervals
to save data where needed. In these cases, it may be advantageous to turn off
logging when connecting to the data store, as described in Chapter 1, “Data Store
Attributes” in Oracle TimesTen In-Memory Database API Reference Guide.
However, this can result in a lack of atomicity, as described in Chapter 7,
“Transaction Management and Recovery” in Oracle TimesTen In-Memory
Database Operations Guide.

Logs are also used to roll back transactions during error handling, as well as to
redo transactions in case of application or system failure. If logging is turned off,
most statements execute atomically, but entire transactions cannot be rolled back.
For statements that do not execute atomically, TimesTen returns an error. If an
application is in development or if it is susceptible to frequent rollbacks for other
reasons, turning off logging may generate these errors, which may cause the data
store to become inconsistent. In this case, it may be preferable to use logging to
66 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

disk. To use non-durable commits, see “Use durable commits appropriately” on
page 70.

Additional facts about logging are:
• Logging can be set to different values on a connection basis, but all concurrent

connections must agree on the Logging attribute setting.
• Logging is required to use row-level locking.
• If logging is turned off, you should include periodic nondurable commits in

your application (see “Size transactions appropriately” on page 69). Durable
commits are not permitted. (Because there is no log to write to disk, durability
must be achieved through checkpoints.) If logging is disabled, operations that
are not atomic return an error or warning when the TimesTen Data Manager
cannot restore the data store to its state prior to a failed operation.

• Logging to disk is required to cache Oracle tables.

Prepare statements in advance
As described in “Preparing SQL statements” on page 27, your application should
prepare a statement in advance if it will be executed more than a few times. Make
sure that the prepared statements have been committed in order to release locks
held by the prepare and to allow the query plan to persist.

If you have applications that generate a statement multiple times searching for
different values each time, use a parameterized statement to reduce compile time.
For example, if your application generates statements like:
SELECT A FROM B WHERE C = 10
SELECT A FROM B WHERE C = 15

You can replace these statements with the single statement:
SELECT A FROM B WHERE C = ?

TimesTen shares prepared commands automatically after they have been
committed. As a result, an application's request to prepare a command for
execution may be completed very quickly if a prepared version of the command
already exists in the system. Also, repeated requests for *Statement.execute* of
the same command may be able to avoid the prepare overhead by sharing a
previously prepared version of the command.

Even though TimesTen allows prepared statements to be shared, it is still a good
practice, for performance reasons, to use parameterized statements. Using
parameterized statements can reduce prepare overhead beyond what is made
available through statement sharing.

Avoid unnecessary prepare operations
Because preparing SQL statements is an expensive operation, your application
should minimize the number of calls to the Connection.prepareStatement
Application Tuning 67

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#prepareStatement(java.lang.String)

method. Most applications prepare a set of commands at the beginning of a
connection and use that set for the duration of the connection. This is a good
strategy when connections are long, consisting of hundreds or thousands of
transactions. If connections are relatively short, a better strategy is to establish a
long-duration connection that prepares the commands and executes them on
behalf of all threads or processes. The trade-off here is between communication
overhead and prepare overhead, and can be examined for each application.
Prepared statements are invalidated when a connection is closed.

Use the batch update facility for executing multiple
statements
The TimesTen JDBC driver supports the addBatch, clearBatch, and
executeBatch methods for the Statement and PreparedStatement JDBC
objects. These APIs can be used by applications to improve performance when
multiple SQL update operations are executed through a Statement object or
when multiple sets of parameters associated with a prepared statement are
executed through a PreparedStatement object.

For Statement objects, a batch consists of a set of SQL write operation
statements. Statements that return result sets are not allowed in a batch. A SQL
write operation statement is added to a batch by calling the addBatch method.
The set of SQL statements associated with a batch are executed through the
executeBatch method. For example:
// turn off autocommit
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe
Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For PreparedStatement objects, a batch consists of a set of prepared statement
input parameters. Prepared statement parameters are added to the batch by
executing setXXX calls followed by the addBatch call. The batch is executed
via the executeBatch method. For example:
// turn off autocommit
conn.setAutoCommit(false);

PreparedStatement stmt = conn.prepareStatement(
"INSERT INTO employees VALUES (?, ?)");

// first set of parameters
stmt.setInt(1, 2000);
stmt.setString(2, "Kelly Kaufmann");
68 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html

stmt.addBatch();

// second set of parameters
stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For more information on using the JDBC batch update facility see the Java
Platform API specification for the Statement and objects.

Bulk fetch rows of TimesTen data
TimesTen provides an extension that allows an application to fetch multiple rows
of data. For applications that retrieve large amounts of TimesTen data, fetching
multiple rows can increase performance greatly. However, when using read
committed isolation, locks are held on all rows being retrieved until the
application has received all the data, decreasing concurrency. For more
information on this feature, see “Fetching multiple rows of data” on page 33.

Size transactions appropriately
Each transaction that generates log records (for example, a transaction that does
an INSERT, DELETE or UPDATE) by default incurs a disk write when the
transaction commits. (See “Choose the appropriate logging options” on page 66.)
Disk I/O affects response time and may affect throughput, depending on how
effective group commit is.

Performance-sensitive applications should avoid unnecessary disk writes at
commit. Use a performance analysis tool to measure the amount of time your
application spends in disk writes (versus CPU time). If there seems to be an
excessive amount of I/O, there are two steps you can take to avoid writes at
commit:
• Adjust the transaction size.
• Adjust whether disk writes are performed at transaction commit. See “Use

durable commits appropriately” on page 70.

Long transactions perform fewer disk writes per unit time than short transactions.
However, long transactions also can reduce concurrency, as discussed in Chapter
7, “Transaction Management and Recovery” in Oracle TimesTen In-Memory
Database Operations Guide.
• If only one connection is active on a data store (for example, if it is an

exclusive connection), longer transactions could improve performance.
However, long transactions may have some disadvantages, such as longer
rollbacks.
Application Tuning 69

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html

• If there are multiple connections, there is a trade-off between log I/O delays
and locking delays. In this case transactions are best kept to their natural
length, as determined by their requirements for atomicity and durability.

Use durable commits appropriately
By default, each TimesTen transaction results in a disk write at commit time.
This practice ensures that no committed transactions are lost because of system
or application failures. Applications can avoid some or all of these disk writes by
performing nondurable commits. Nondurable commits do everything that a
durable commit does except write the transaction log to disk. Locks are released
and cursors are closed, but no disk write is performed.

Note: Some controllers or drivers only write data into cache memory in the
controller or write to disk some time after the operating system is told that the
write is completed. In these cases, a power failure may cause some information
that you thought was durably committed to be lost. To avoid this loss of data,
configure your disk to write to the recording media before reporting completion
or use an uninterruptable power supply.

The advantage of nondurable commits is a potential reduction in response time
and increase in throughput. The disadvantage is that some transactions may be
lost in the event of system failure. An application can force the log to disk by
performing an occasional durable commit or checkpoint, thereby decreasing the
amount of potentially lost data. In addition, TimesTen itself periodically flushes
the log to disk when internal buffers fill up, limiting the amount of data that will
be lost.

Transactions can be made durable or can be made to have delayed durability on a
connection-by-connection basis. Applications can force a durable commit of a
specific transaction by calling the ttDurableCommit procedure.

Applications that do not use nondurable commits can benefit from using
synchronous writes in place of write and flush. To turn on synchronous writes set
LogFlushMethod=2.

The XACT_D_COMMITS column of the SYS.MONITOR table indicates the
number of transactions that were durably committed.

Use the ResultSet.getString method sparingly
Because Java strings are immutable, ResultSet.getString must allocate space for
a new string (in addition to translating the underlying C-string to a Unicode
string) each time it is called. Therefore, this is one of the costliest calls in JDBC.

In addition, you should not call ResultSet.getString on primitive numeric types,
like Byte or Integer, unless it is absolutely necessary. It is much faster to call
ResultSet.getInt on an integer column, for example.
70 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getString(java.lang.String)
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html#getInt(int)

Avoid data type conversions
TimesTen instruction paths are so short that even small delays due to data
conversion can cause a relatively large percentage increase in transaction time.

Use the default ResultSet.getXXX method for the data type of the data in the
underlying database. For example, if the data type of the data is DOUBLE, to
avoid data conversion in the JDBC driver you should call getDouble. For
information on the default getXXX method for a particular data type, refer to the
“JDBC Quick Reference” in the book JDBC Database Access with Java by
Hamilton, Cattell, Fisher. Similarly, use the default PreparedStatement.setXXX
method for the input parameter in an SQL statement. For example, if you are
inserting data into a CHAR column using a PreparedStatement, you should use
setString.

Avoid transaction rollback
When transactions fail due to erroneous data or application failure, they are
rolled back by TimesTen automatically. In addition, applications often explicitly
rollback transactions using Connection.rollback() to recover from deadlock or
time-out conditions. This is not desirable from a performance point of view: a
rollback consumes resources and the entire transaction is in effect wasted.

Applications should avoid unnecessary rollbacks. This may mean designing the
application to avoid contention (see “Choose the best method of locking” on
page 65) and checking application or input data for potential errors before
submitting it, if possible. The XACT_ROLLBACKS column of the
SYS.MONITOR table indicates the number of transactions that were rolled back.

Avoid frequent checkpoints
Applications that are connected to a data store for a long period of time
occasionally need to call the ttCkpt procedure to checkpoint the data store so
that log files do not fill up the disk. Transaction-consistent checkpoints can have
a significant performance impact because they require exclusive access to the
data store.

It is generally best to call ttCkpt to perform a non-blocking (or “fuzzy”)
checkpoint than ttCkptBlocking to perform a blocking checkpoint. Non-
blocking checkpoints may take longer, but they permit other transactions to
operate against the data store at the same time and thus impose less overall
overhead. You can increase the interval between successive checkpoints by
increasing the amount of disk space available for accumulating log files.

As the log increases in size (if the interval between checkpoints is large),
recovery time increases accordingly. If reducing recovery time after a system
crash or application failure is important, frequent checkpoints may be preferable.
Application Tuning 71

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html#rollback()

The DS_CHECKPOINTS column of the SYS.MONITOR table indicates how
often checkpoints have successfully completed.

Tuning JMS/XLA applications
This section contains specific performance tuning tips for applications that use
the JMS/XLA API. JMS/XLA has some overhead that makes it slower than using
the C XLA API. In the C API, records are returned to the user in a batch. In the
JMS model an object is instantiated and each record is presented one at a time in
a callback to the MessageListener onMessage method. High performance
applications can use some tuning to overcome some of this overhead.

Configure xlaPrefetch parameter
The code underlying the JMS layer that reads the transaction log is more efficient
if it can fetch as many rows as possible before presenting the object/rows to the
user. The amount of prefetching is controlled in the jmsxla.xml configuration file
with the “xlaPrefetch” parameter. Set the prefetch count to a large value like 100
or 1000.

Batch calls to ttXlaAcknowledge
Calls to ttXlaAcknowledge move the bookmark and involve updates to system
tables, so one way to increase throughput is to wait until several transactions
have been seen before issuing the call. This means that the reader application
must have some tolerance for seeing the same set of records more than once.
Moving the bookmark can be done manually using the Session
CLIENT_ACKNOWLEDGE mode when instantiating a session:
Session session = connection.createSession

(false, Session.CLIENT_ACKNOWLEDGE);

For many applications, setting this value to 100 is a reasonable choice.

Increase log buffer size
A larger log buffer size is called for when using XLA. When XLA is turned on,
additional log records are generated to store additional information for XLA. To
ensure the log buffer is properly sized, one can watch for changes in the
SYS.MONITOR table entries LOG_FS_READS and LOG_BUFFER_WAITS.
For optimal performance, both of these values should remain 0. Increasing the
log buffer size may be necessary to ensure the values remain 0.

Handling high event rates
The synchronous interface is suitable only for applications with low event rates
and for which AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE
acknowledgement modes are acceptable. Applications that require
72 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MessageListener.html

CLIENT_ACKNOWLEDGE acknowledgement mode and applications with
high event rates should use the asynchronous interface for receiving updates.
They should acknowledge the messages on the call back thread itself if they are
using CLIENT_ACKNOWLEDGEMENT as acknowledgement mode. See
“Receiving and processing updates” on page 56.
Application Tuning 73

74 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

5
JDBC Reference

This chapter lists the JDBC interfaces supported by TimesTen and the TimesTen
extensions to JDBC. It includes the following topics:
• Supported JDBC interfaces
• TimesTen extensions to JDBC

Supported JDBC interfaces
This section lists all interfaces supported by the TimesTen implementation of
JDBC. This section includes the following topics:
• Support for interfaces in java.sql package
• Support for interfaces in javax.sql package

For complete reference information, see the Java documentation:

http://java.sun.com/j2se/1.4.2/docs/api/index.html

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Support for interfaces in java.sql package
TimesTen supports the following java.sql interfaces:
• CallableStatement
• Connection
• DatabaseMetaData
• Driver
• ParameterMetaData
• PreparedStatement
• ResultSet
• ResultSetMetaData
• Statement
 75

http://java.sun.com/j2se/1.4.2/docs/api/index.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html

TimesTen supports the following java.sql classes:
• Date
• DriverManager
• DriverPropertyInfo
• Time
• Timestamp
• Types
• DataTruncation
• SQLException
• SQLWarning

In general, TimesTen does not support:
• CLOB, BLOB, Array, Struct and Ref data types
• Scrollable and updatable result sets
• Result set holdability
• Calendar for setDate or getDate
• Calendar for setTime or getTime

Restrictions for specific interfaces are described below.

CallableStatement
TimesTen implements the java.sql.CallableStatement interface

Restrictions:
• You cannot pass parameters to CallableStatement objects by name. You must

set parameters by ordinal numbers.
• You cannot use the SQL escape syntax.

Connection
TimesTen implements the java.sql.Connection interface.

Restriction:
• No support for savepoints

DatabaseMetaData
TimesTen implements the java.sql.DatabaseMetaData interface.

No restrictions.

Driver
TimesTen implements the java.sql.Driver interface from the following classes:
76 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Date.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DriverPropertyInfo.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Time.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DataTruncation.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/SQLWarning.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Driver.html

com.timesten.jdbc.TimesTenDriver

com.timesten.jdbc.TimesTenClientDriver

No restrictions.

ParameterMetaData
TimesTen implements the java.sql.ParameterMetaData interface.

Restrictions:
• No support for ResultSetMetaData getMetaData().
• The JDBC driver cannot determine whether a column is nullable and always

returns parameterNullableUnknown from calls to
ParameterMetaData. isNullable(int param).

• The ParameterMetaData.getScale() returns 1 for VARCHAR, NVARCHAR
and VARBINARY data types if they are INLINE.

Note: Scale is of no significance to these data types.

PreparedStatement
TimesTen fully implements the java.sql.PreparedStatement interface.

No restrictions.

ResultSet
TimesTen implements the java.sql.ResultSet interface.

Restrictions:
• You cannot have multiple open ResultSet objects per statement.
• You cannot specify the holdability of a result set, so a cursor cannot remain

open after it has been committed.

See “Working with result sets” on page 36.

ResultSetMetaData
TimesTen implements the java.sql.ResultSetMetaData interface.

No restrictions.

Statement
TimesTen implements the java.sql.Statement interface.

No restrictions.
JDBC Reference 77

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ParameterMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Statement.html

Support for interfaces in javax.sql package
DataSource
TimesTen implements javax.sql.DataSource using:
com.timesten.jdbc.TimesTenDataSource

ConnectionPoolDataSource
TimesTen implements the JDBC javax.sql.ConnectionPoolDataSource factory
for javax.sql.PooledConnection using:
com.timesten.jdbc.ObservableConnectionDS

PooledConnection
TimesTen implements the javax.sql.PooledConnection interface using:
com.timesten.jdbc.ObservableConnection

XADataSource
TimesTen implements javax.sql.XADataSource using:
com.timesten.jdbc.xa.TimesTenXADataSource
78 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/DataSource.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/ConnectionPoolDataSource.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/PooledConnection.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/PooledConnection.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/XADataSource.html

TimesTen extensions to JDBC
TimesTen provides the following JDBC class and interface:
• TimesTenConnection class
• TimesTenVendorCode interface

TimesTenConnection class
TimesTen implements the connection-level prefetch feature described in
“Fetching multiple rows of data” on page 33 with the TimesTenConnection
class. Its CLASSPATH is:
com.timesten.sql.TimesTenConnection

TimesTenConnection has the following methods:
• getTtPrefetchClose()
• getTtPrefetchCount()
• isDataStoreValid()
• setTtPrefetchClose(boolean)
• setTtPrefetchCount(int)

getTtPrefetchClose()

Description Returns the current state of TT_PREFETCH_CLOSE.

Syntax public boolean getTtPrefetchClose() throws SQLException

Returns The state of TT_PREFETCH_CLOSE.

Throws SQLException if a database access error occurs.

getTtPrefetchCount()

Description Returns the current prefetch count set for the TimesTen connection.

Syntax public int getTtPrefetchCount() throws SQLException

Returns The current prefetch count.

Throws SQLException if a database access error occurs.

isDataStoreValid()

Description Detects whether the data store is valid.
JDBC Reference 79

Syntax public boolean isDataStoreValid() throws SQLException

Returns • True if the data store is valid.
• False if the data store is not valid.

Throws SQLException if a database access error occurs.

setTtPrefetchClose(boolean)

Description Sets the state of TT_PREFETCH_CLOSE to true or false.

Syntax public void setTtPrefetchClose(boolean enable) throws SQLException

Parameter boolean enable

The value to which TT_PREFETCH_CLOSE is set.

Throws SQLException if a database access error occurs.

setTtPrefetchCount(int)

Description Establishes the number of rows to be prefetched for all of the statements on the
TimesTen connection. The application must have a direct driver connection to the
data store to use this method. See “Fetching multiple rows of data” on page 33.

Syntax public void setTtPrefetchCount(int count) throws SQLException

Parameter int count

The number of prefetches to set for the connection. The range is 0 to 128,
inclusive.

Throws SQLException if a database access error occurs.

TimesTenVendorCode interface
The TimesTenVendorCode interface defines error names for TimesTen error
numbers. The CLASSPATH of the TimesTenVendorCode interface is:
com.timesten.jdbc.TimesTenVendorCode

See Oracle TimesTen In-Memory Database JDBC API Extensions for the
complete list of errors. It is located in install_dir/doc/ttjava.zip.
80 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

6
JMS/XLA Reference

This chapter provides reference information for the JMS/XLA API. It includes
the following topics:
• XLA MapMessage contents
• DML event data formats
• DDL event data formats
• Data type mapping
• Internationalization support
• JMS classes for event handling
• JMS/XLA replication API
• JMS message header fields

XLA MapMessage contents
A MapMessage contains a set of typed name/value pairs that correspond to the
fields in an XLA update header, which is published as the C structure
ttXlaUpdateDesc_t. The fields contained in a MapMessage depend on what type
of update it is.

Update type
Each MapMessage returned by the JMS/XLA API contains at least one name/
value pair called __TYPE (with 2 underscores) that identifies the type of update
described in the message as an integer value. The types are specified as integer
values. As a convenience, you can use the constants defined in
com.timesten.dataserver.jmsxla.XlaConstants to compare against the
integer types. The following table shows the supported types:

Type Description

ADD_COLUMNS Indicates that columns have been added.

COMMIT_FIELD The name of the field in a message that
contains a commit.

COMMIT_ONLY Indicates that a commit has occurred.
 81

http://java.sun.com/j2ee/sdk_1.3/techdocs/api/javax/jms/MapMessage.html

CONTEXT_FIELD The name of the field in a message that
contains the context value passed to
ttApplicationContext as a byte array.

CREATE_INDEX Indicates that an index has been created.

CREATE_SEQ Indicates that a sequence has been
created.

CREATE_TABLE Indicates that a table has been created.

CREATE_VIEW Indicates that a view has been created.

DELETE Indicates that a row has been deleted.

DROP_COLUMNS Indicates that columns have been
dropped.

DROP_INDEX Indicates that an index has been dropped.

DROP_SEQ Indicates that a sequence has been
dropped.

DROP_TABLE Indicates that a table has been dropped.

DROP_VIEW Indicates that a view has been dropped.

FIRST_FIELD The name of the field that contains the
flag that indicates the first record in a
transaction.

INSERT Indicates that a row has been inserted.

MTYP_FIELD The name of the field in a message that
contains type information.

MVER_FIELD The name of the field in a message that
contains the log file number of the XLA
record.

NULLS_FIELD The name of the field in a message that
contains the list of fields that have null
values.

REPL_FIELD The name of the field in a message that
contains the flag that indicates that the
update was applied by replication.

Type Description
82 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

XLA flags
For all update types, the MapMessage contains name/value pairs that indicate:
• Whether this is the first record of a transaction
• Whether this is the last record of a transaction
• Whether the update was performed by replication
• Which table was updated
• The owner of the updated table

The name/value pairs that contain these XLA flags are described in Table 6.1.
Each name is preceded by two underscores:

TBLNAME_FIELD The name of the field in a message that
contains the table name.

TBLOWNER_FIELD The name of the field in a message that
specifies the table owner.

TRUNCATE Indicates that a table has been truncated.

TYPE_FIELD The name of the field in a message that
specifies the message type.

UPDATE Indicates that a row has been updated.

UPDATE_DESCRIPTOR_FIELD The name of the field that returns
ttXlaUpdateDesc_t as a byte array.

UPDATED_COLUMNS_FIELD The name of the field in a message that
contains the list of updated columns.

Type Description
JMS/XLA Reference 83

Table 6.1 XLA Flags

DML event data formats
Many Data Manipulation Language (DML) operations generate XLA updates
that can be monitored by XLA event handlers. This section describes the contents
of the MapMessage objects that are generated for these operations.

Table data
For INSERT, UPDATE and DELETE operations MapMessages contain two
name/value pairs called __TBLOWNER and __TBLNAME. These fields
describe the name and owner of the table that is being updated. For example, for
a table owned by user SCOTT, called EMPLOYEES, which could be referred to
in a SQL statement as SCOTT.EMPLOYEES, MapMessages related to this table
contain a field called __TBLOWNER whose value is the string SCOTT, and a
field called __TBLNAME whose value is the string EMPLOYEES.

Name Description Corresponding
ttXlaTblDesc_t
Field

__COMMIT Indicates that this is the last record in a transaction
and that a commit was performed after this
operation. Only included in the MapMessage if
UPDCOMMIT is on.

TT_UPDCOMMIT

__FIRST Indicates that this is the first record in a new
transaction.
Only included in the MapMessage if UPDFIRST is
on.

TT_UPDFIRST

__REPL Indicates that this change was applied to the
database via replication. Only included in the
MapMessage if UPDREPL is on.

TT_UPDREPL

__UPDCOLS Only used for UPDATETUP records, this flag
indicates that the XLA update descriptor contains a
list of columns that were actually modified by the
operation. Specified as a String that contains a
semicolon delimited list of column names. Only
included in the MapMessage if UPDCOLS is on.

TT_UPDCOLS
84 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

Row data
For INSERT and DELETE operations, a complete image of the inserted or
deleted row is included in the message and all column values are available.

For UPDATE operations, the complete before and after image of the row is
available, as well as a list of column numbers indicating which columns were
actually modified. You access the column values using the names of the columns.
The column names in the “before” image all begin with a single underscore. For
example, <columnname> contains the new value and _<columnname> contains
the old value.

If the value of a column is NULL, it is omitted from the column list. The
__NULLS name/value pair contains a semicolon-delimited list of the columns that
contain NULL values.

Context information
If the ttApplicationContext built-in procedure was used to encode context
information in an XLA record, that information is included in the __CONTEXT
name/value pair in the MapMessage. If no context information is provided, the
__CONTEXT value is not included in the MapMessage.

DDL event data formats
Many Data Definition Language (DDL) operations generate XLA updates that
can be monitored by XLA event handlers. This section describes the contents of
the MapMessage objects that are generated for these operations.

CREATE_TABLE
Messages with __TYPE=1 (XlaConstants.CREATE_TABLE) indicate that a table
has been created. Table 6.2 shows the name/value pairs that are included in a
MapMessage generated for a CREATE_TABLE operation.

Table 6.2 Create Table Data Provided in Update Messages

Name Value

OWNER String value of the owner of the created
table.

NAME String value of the name of the created
table.
JMS/XLA Reference 85

PK_COLUMNS String value containing the names of the
columns in the primary key for this table.
If the table has no primary key, the
PK_COLUMNS value is not specified.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

COLUMNS String value containing the names of the
columns in the table.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

Note: For each column in the table,
additional name/value pairs that
describes the column are included in the
MapMessage.

_column_name_TYPE Integer value representing the datatype
of this column. From java.sql.types.

_column_name_PRECISION Integer value containing the precision of
this column (for NUMERIC /
DECIMAL).

_column_name_SCALE Integer value containing the scale of this
column (for NUMERIC / DECIMAL).

_column_name_SIZE Integer value indicating the maximum
size of this column (for CHAR /
VARCHAR / BINARY / VARBINARY).

_column_name_NULLABLE Boolean value indicating whether this
column can have a NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this
column is stored in the “inline” or “out
of line” part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this
column is part of the primary key of the
table.

Table 6.2 Create Table Data Provided in Update Messages

Name Value
86 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

DROP_TABLE
Messages with __TYPE=2 (XlaConstants.DROP_TABLE) indicate that a table
has been dropped. Table 6.3 shows the name/value pairs that are included in a
MapMessage generated for a DROP_TABLE operation.

CREATE_INDEX
Messages with __TYPE=3 (XlaConstants.CREATE_INDEX) indicate that an
index has been created. Table 6.4 shows the name/value pairs that are included in
a MapMessage generated for a CREATE_INDEX operation.

Table 6.3 Drop Table Data Provided in Update Messages

Name Value

OWNER String value of the owner of the
sequence.

NAME String value of the name of the dropped
sequence.

Table 6.4 Create Index Data Provided in Update Messages

Name Value

TBLOWNER String value of the owner of the table on
which the index was created.

TBLNAME String value of the name of the table on
which the index was created.

IXNAME String value of the name of the created
index.

INDEX_TYPE String value representing the index type:
“P” (Primary Key), “F” (Foreign Key),
or “R” (Regular).

INDEX_METHOD String value representing the index
method: “H” (Hash) or “T” (T-tree).

UNIQUE Boolean value indicating whether or not
the index is UNIQUE.
JMS/XLA Reference 87

DROP_INDEX
Messages with __TYPE=4 (XlaConstants.DROP_INDEX) indicate that an index
has been dropped. Table 6.5 shows the name/value pairs that are included in a
MapMessage generated for a DROP_INDEX operation.

HASH_PAGES Integer value representing the number of
PAGES in a hash index. (Not specified
for T-Tree indexes).

COLUMNS String value describing the columns in
the index.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

Table 6.4 Create Index Data Provided in Update Messages

Name Value

Table 6.5 Drop Index Data Provided in Update Messages

Name Value

OWNER String value of the owner of the table on
which the index was dropped.

TABLE_NAME String value of the name of the table on
which the index was dropped.

INDEX_NAME String value of the name of the dropped
index.
88 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

ADD_COLUMNS
Messages with __TYPE=5 (XlaConstants.ADD_COLUMNS) indicate that a table
has been altered by adding new columns. Table 6.6 shows the name/value pairs
that are included in a MapMessage generated for a ADD_COLUMNS operation.

Table 6.6 Add Columns Data Provided in Update Messages

Name Value

OWNER String value of the owner of the altered
table.

NAME String value of the name of the altered
table.

PK_COLUMNS String value containing the names of the
columns in the primary key for this
table. If the table has no primary key, the
PK_COLUMNS value is not specified.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

COLUMNS String value containing the names of the
columns added to the table.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

Note: For each added column,
additional name/value pairs that
describe the column are included in the
MapMessage.

_column_name_TYPE Integer value representing the datatype
of this column. From java.sql.types.

_column_name_PRECISION Integer value containing the precision of
this column (for NUMERIC /
DECIMAL).

_column_name_SCALE Integer value containing the scale of this
column (for NUMERIC / DECIMAL).

_column_name_SIZE Integer value indicating the maximum
size of this column (for CHAR /
VARCHAR / BINARY /
VARBINARY).
JMS/XLA Reference 89

DROP_COLUMNS
Messages with __TYPE=6 (XlaConstants.DROP_COLUMNS) indicate that a table
has been altered by dropping existing columns. Table 6.7 shows the name/value
pairs that are included in a MapMessage generated for a DROP_COLUMNS
operation.

_column_name_NULLABLE Boolean value indicating whether this
column can have a NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this
column is stored in the “inline” or “out
of line” part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this
column is part of the primary key of the
table.

Table 6.6 Add Columns Data Provided in Update Messages

Name Value

Table 6.7 Drop Columns Data Provided in Update Messages

Name Value

OWNER String value of the owner of the altered
table.

NAME String value of the name of the altered
table.

COLUMNS String value containing the names of the
columns dropped from the table.
Format: <col1name>[;<col2name>
[;<col3name>[;…]]]

Note: For each dropped column,
additional name/value pairs that
describe the column are included in the
MapMessage.

_column_name_TYPE Integer value representing the datatype
of this column. From java.sql.types.
90 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

CREATE_VIEW
Messages with __TYPE=14 (XlaConstants.CREATE_VIEW) indicate that a
materialized view has been created. Table 6.8 shows the name/value pairs that
are included in a MapMessage generated for a CREATE_VIEW operation.

_column_name_PRECISION Integer value containing the precision of
this column (for NUMERIC /
DECIMAL).

_column_name_SCALE Integer value containing the scale of this
column (for NUMERIC / DECIMAL).

_column_name_SIZE Integer value indicating the maximum
size of this column (for CHAR /
VARCHAR / BINARY /
VARBINARY).

_column_name_NULLABLE Boolean value indicating whether this
column can have a NULL value.

_column_name_OUTOFLINE Boolean value indicating whether this
column is stored in the “inline” or “out
of line” part of the tuple.

_column_name_INPRIMARYKEY Boolean value indicating whether this
column is part of the primary key of the
table.

Table 6.7 Drop Columns Data Provided in Update Messages

Name Value

Table 6.8 Create View Data Provided in Update Messages

Name Value

OWNER String value of the owner of the created
view.

NAME String value of the name of the created
view.
JMS/XLA Reference 91

DROP_VIEW
Messages with __TYPE=15 (XlaConstants.DROP_VIEW) indicate that a
materialized view has been dropped. Table 6.8 shows the name/value pairs that
are included in a MapMessage generated for a DROP_VIEW operation

CREATE_SEQ
Messages with __TYPE=16 (XlaConstants.CREATE_SEQ) indicate that a
SEQUENCE has been created. Table 6.10 shows the name/value pairs that are
included in a MapMessage generated for a CREATE_SEQ operation

DROP_SEQ
Messages with __TYPE=17 (XlaConstants.DROP_SEQ) indicate that a sequence
has been dropped. Table 6.11 shows the name/value pairs that are included in a

Table 6.9 Drop View Data Provided in Update Messages

Name Value

OWNER String value of the owner of the dropped view.

NAME String value of the name of the dropped view.

Table 6.10 Create Sequence Data Provided in Update Messages

Name Value

OWNER String value of the owner of the created
sequence.

NAME String value of the name of the created
sequence.

CYCLE Boolean value indicating whether the CYCLE
option was specified on the new sequence.

INCREMENT Long value indicating the INCREMENT BY
option specified for the new sequence.

MIN_VALUE Long value indicating the MINVALUE option
specified for the new sequence.

MAX_VALUE Long value indicating the MAXVALUE option
specified for the new sequence.
92 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

MapMessage generated for a DROP_SEQ operation

TRUNCATE
Messages with __TYPE=18(XlaConstants.TRUNCATE) indicate that a table has
been truncated. All rows in the table have been deleted. Table 6.12 shows the
name/value pairs that are included in a MapMessage generated for a TRUNCATE
operation

Data type mapping
The following table lists access methods for the data types supported by
TimesTen. For more information about data types, see Chapter 1, “Data Types”in
Oracle TimesTen In-Memory Database SQL Reference Guide.

Table 6.11 Drop Sequence Data Provided in Update Messages

Name Value

OWNER String value of the owner of the dropped
table.

NAME String value of the name of the dropped
table.

Table 6.12 Truncate Data Provided in Update Messages

Name Value

OWNER String value of the owner of the truncated
table.

NAME String value of the name of the truncated table.

TimesTen Column
Type

Read With

CHAR(n) MapMessage.getString

VARCHAR(n) MapMessage.getString

NCHAR(n) MapMessage.getString

NVARCHAR(n) MapMessage.getString

NVARCHAR2(n) MapMessage.getString

DOUBLE MapMessage.getDouble
JMS/XLA Reference 93

FLOAT MapMessage.getFloat

DECIMAL(p,s) MapMessage.getString.

Can be converted to BigDecimal or to Double by
the application.

NUMERIC(p,s) MapMessage.getString.

Can be converted to BigDecimal or to Double by
the application.

INTEGER MapMessage.getInt

SMALLINT MapMessage.getShort

TINYINT MapMessage.getShort

BIGINT MapMessage.getLong

BINARY(n) MapMessage.getBytes

VARBINARY(n) MapMessage.getBytes

DATE MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970).
Can be converted to Date or Calendar by the
application.

TIME MapMessage.getString.

Can be converted to Date or Calendar by the
application.

TIMESTAMP MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970). It
truncates nanoseconds. Use
MapMessage.getString if you require
nanosecond precision.
Can be converted to Date or Calendar by the
application.

TT_CHAR MapMessage.getString

TT_VARCHAR MapMessage.getString

TimesTen Column
Type

Read With
94 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

TT_NCHAR MapMessage.getString

TT_NVARCHAR MapMessage.getString

ORA_CHAR MapMessage.getString

ORA_VARCHAR2 MapMessage.getString

ORA_NCHAR MapMessage.getString

ORA_NVARCHAR2 MapMessage.getString

VARCHAR2 MapMessage.getString

TT_TINYINT MapMessage.getShort

TT_SMALLINT MapMessage.getShort

TT_INTEGER MapMessage.getInt

TT_BIGINT MapMessage.getLong

BINARY_FLOAT MapMessage.getFloat

BINARY_DOUBLE MapMessage.getDouble

REAL MapMessage.getFloat

NUMBER MapMessage.getString

ORA_NUMBER MapMessage.getString

TT_DECIMAL MapMessage.getString

TT_TIME MapMessage.getString

TT_DATE MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970).

TT_TIMESTAMP MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970).

ORA_DATE MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970).

TimesTen Column
Type

Read With
JMS/XLA Reference 95

Internationalization support
JMS/XLA uses a UTF-16 character set for the following data types:
TT_CHAR
TT_VARCHAR
ORA_CHAR
ORA_VARCHAR2
TT_NCHAR
TT_NVARCHAR
ORA_NCHAR
ORA_NVARCHAR2
NCHAR
NVARCHAR
NVARCHAR2

JMS classes for event handling
You can use JMS classes when programming to the JMS/XLA API. The JMS/
XLA API supports only publish/subscribe messaging. JMS classes include:

Message (parent class only)
TopicConnectionFactory
Topic
TopicSubscriber
Connection
Session
ConnectionMetaData
MapMessage
TopicConnection
TopicSession
ConnectionFactory
Destination

ORA_TIMESTAMP MapMessage.getLong, MapMessage.getString

MapMessage.getLong returns microseconds
since epoch (00:00:00 UTC, January 1, 1970). It
truncates nanoseconds. Use
MapMessage.getString if you require
nanosecond precision.

TT_BINARY MapMessage.getBytes

TT_VARBINARY MapMessage.getBytes

TimesTen Column
Type

Read With
96 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

MessageConsumer
ExceptionListener

See http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-frame.html for
documentation for these classes.

JMS/XLA replication API
The TimesTen com.timesten.dataserver.jmsxla package includes the
TargetDataStore interface interface and the TargetDataStoreImpl class class.

See Oracle TimesTen In-Memory Database JMS/XLA API for complete
documentation. It is located in install_dir/doc/ttjava.zip.

TargetDataStore interface

This interface is used to apply XLA update records from a source data store to a
target data store. The source and target data store schema must be identical for
the affected tables.

This interface includes the following methods:

Method Description

apply Applies XLA update descriptor to the
target data store

close Closes the connections to the data store
and releases the resources

commit Performs a manual commit

getAutoCommitFlag Returns the value of the autocommit flag

getConnectString Returns the data store connection string

getUpdateConflictCheckFlag Returns the value of the flag for checking
update conflicts

isClosed Checks whether the object is closed

isDataStoreValid Checks whether the data store is
valid

rollback Rolls back the last transaction
JMS/XLA Reference 97

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/package-frame.html

TargetDataStoreImpl class
This class creates connections and XLA handles for a target data store.It
implements the TargetDataStore interface interface.

JMS message header fields
Table 6.13 shows the JMS message header fields provided by JMS/XLA.

setAutoCommitFlag Sets the flag for autocommit during
apply

setUpdateConflictCheckFlag Sets the flag for checking update
conflicts during apply

Table 6.13 JMS/XLA Header Fields

Header Contents

JMSMessageId The log file number of the XLA record.

JMSType The string representation of the __TYPE field
98 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

In
de

x

Index
A
attributes

setting programmatically 24

B
binding parameters 27
bulk fetch rows 69

C
CallableStatement interface 76
character set 96
checking for errors 42
checkpoints

and performance 71
COMMIT SQL statement 30
concurrency

and locking 65
connection character set

JDBC 36
Connection interface 76
ConnectionCharacterSet attribute

JDBC 36
ConnectionPoolDataSource interface 78
contention, lock

data store 64
conversions

and performance 71
creating tables

example 29

D
data store

lock contention 64
data types

conversions and performance 71
mapping 93

DatabaseMetaData interface 76
DataSource interface 78
Driver interface 76
dropping a table

JMS/XLA 59
durable commits

performance impact 70

E
error checking

TimesTenVendorCode interface 44
error handling 40

reporting errors and warnings 42
responding to errors 44

errors
and recovery 42
checking for 42
fatal 40
non-fatal 41

escape syntax
Java 26

event rates
JMS/XLA 72

examples
creating tables 29

exception handling 40

F
fatal errors 40
fetching multiple rows 33

G
GDK

JMS/XLA dependency 54
getTtPrefetchClose method 79
getTtPrefetchCount method 79

I
I/O

performance 70
internationalization 96
isDataStoreValid method 79
isolation modes

and performance 65

J
Java escape syntax 26
javax.sql.support 78
JMS/XLA

dropping a table 59
high event rates 72
replication 59
99

JMS/XLA messages
extracting the update descriptor 59

jmsxla.xml configuration file 9, 50

L
locks

and concurrency 65
and performance 65
data store-level 65
row-level 65
table-level 65
timeout interval and performance 64

logging
and rollbacks 66

Logging attribute
and performance 66

M
methods

ResultSet.getXXX 71
multibyte characters

JDBC 26
multithreaded applications

conflicts 39
troubleshooting 39

N
non-durable commits

advantages and disadvantages 70
non-fatal errors 41

O
Oracle Globalization Development Kit

version 54
orai18n.jar version 54

P
parameter binding 27
ParameterMetaData interface 77
parameters

duplicate 27
performance

and isolation modes 65
application tuning

checkpoints 71
durable commits 70
logging 66
transaction rollback 45, 71

transaction size 69
bulk fetch rows 69
lock timeout interval 64
SQL tuning

prepare operations 67
phantoms 66
PooledConnection interface 78
prepared statement

committing 27
sharing 28

PreparedStatement interface 77
Preparing SQL statements 27
problems running demo programs 19
processing rows 36

R
recovery 40
replication

using JMS/XLA 59
result sets

working with 36
ResultSet interface 77
ResultSet.getXXX method 71
ResultSetMetaData interface 77
rollback

performance impact 45, 71
ROLLBACK SQL statement 30
row-level locking

and logging 67

S
setTtPrefetchClose method 80
setTtPrefetchCount method 80
sizing

transactions 69
SQLPrepare

performance impact 67
Statement interface 77
subscriptions

table, verifying 55, 56

T
table subscriptions

verifying 55, 56
tables

creating, example 29
target data store

applying messages 60
100 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

checking conflicts 60
creating 60
manual commit 60
rollback 60

TargetDataStore interface 97
error recovery 61

TargetDataStoreImpl class 98
TimesTenConnection interface 79
TimesTenVendorCode interface 44, 80
TimesTenXADataSource interface 80
transaction log API

and views 50
transaction rollback

performance impact 45, 71

transaction size
performance impact 69

U
update descriptor

extracting 59
UTF-16 96

X
XADataSource interface 78
XLA updates

asynchronous 56
synchronous 56
Index 101

102 Oracle TimesTen In-Memory Database Java Developer’s and Reference Guide

	Contents
	About this Guide
	TimesTen documentation
	Background reading
	Conventions used in this guide
	Technical Support

	Configuring the Java Development Environment
	Installing TimesTen and the JDK
	Setting the Java environment variables
	Set CLASSPATH
	Set the shared library path variable
	Set the THREADS_FLAG variable (UNIX only)
	Set the PATH variable

	Compiling and executing Java applications
	About the TimesTen Java demos
	About the TimesTen demo schema
	What the TimesTen demos do
	Compiling the TimesTen Java demos
	Executing the TimesTen Java demos
	Executing the level demos
	Executing the XlaLevel demos
	Problems executing the TimesTen Java demo programs
	Problems compiling the TimesTen Java demo program

	Working with TimesTen Data Stores
	Java classes
	Connecting to a TimesTen data store
	Load the TimesTen driver
	Create a connection URL for the data store
	Specifying data store attributes in the connection URL

	Connect to the data store
	Disconnect from the data store

	Opening and closing a direct driver connection
	Managing TimesTen data
	Calling SQL statements within Java applications
	Setting autocommit
	Specifying multibyte characters in SQL functions
	Preparing SQL statements
	Executing SQL statements
	Using COMMIT and ROLLBACK SQL statements
	Setting a timeout value for executing SQL statements
	Putting it all together: preparing and executing SQL

	Fetching multiple rows of data
	Executing multiple SQL statements in a batch
	Working with result sets

	Calling TimesTen built-in procedures
	Managing multiple threads
	Handling errors
	About fatal errors, non-fatal errors, and warnings
	Handling fatal errors and recovery
	Handling non-fatal errors
	About warnings

	Reporting errors and warnings
	Detecting and responding to specific errors
	Rolling back failed transactions

	Using JMS/XLA for Event Management
	JMS/XLA concepts
	How XLA reads records from the transaction log
	XLA and materialized views
	XLA configuration file and topics
	XLA updates
	XLA bookmarks
	XLA acknowledgement modes
	Prefetching updates
	Acknowledging updates

	XLA demos
	JMS/XLA and Oracle GDK dependency
	Connecting to XLA
	Monitoring tables for updates
	Receiving and processing updates
	Processing updates

	Terminating an XLA application
	Closing the connection
	Deleting bookmarks
	Unsubscribing from a table

	Using XLA as a replication mechanism
	TargetDataStore error recovery

	Application Tuning
	Tuning Java applications
	Turn off autocommit mode
	Choose a timeout interval
	Reduce contention
	Choose the best method of locking
	Choose an appropriate lock level
	Choose an appropriate isolation level

	Choose the appropriate logging options
	Prepare statements in advance
	Avoid unnecessary prepare operations
	Use the batch update facility for executing multiple statements
	Bulk fetch rows of TimesTen data
	Size transactions appropriately
	Use durable commits appropriately
	Use the ResultSet.getString method sparingly
	Avoid data type conversions
	Avoid transaction rollback
	Avoid frequent checkpoints

	Tuning JMS/XLA applications
	Configure xlaPrefetch parameter
	Batch calls to ttXlaAcknowledge
	Increase log buffer size
	Handling high event rates

	JDBC Reference
	Supported JDBC interfaces
	Support for interfaces in java.sql package
	CallableStatement
	Connection
	DatabaseMetaData
	Driver
	ParameterMetaData
	PreparedStatement
	ResultSet
	ResultSetMetaData
	Statement

	Support for interfaces in javax.sql package
	DataSource
	ConnectionPoolDataSource
	PooledConnection
	XADataSource

	TimesTen extensions to JDBC
	TimesTenConnection class
	getTtPrefetchClose()
	getTtPrefetchCount()
	isDataStoreValid()
	setTtPrefetchClose(boolean)
	setTtPrefetchCount(int)

	TimesTenVendorCode interface

	JMS/XLA Reference
	XLA MapMessage contents
	Update type
	XLA flags

	DML event data formats
	Table data
	Row data
	Context information

	DDL event data formats
	CREATE_TABLE
	DROP_TABLE
	CREATE_INDEX
	DROP_INDEX
	ADD_COLUMNS
	DROP_COLUMNS
	CREATE_VIEW
	DROP_VIEW
	CREATE_SEQ
	DROP_SEQ
	TRUNCATE

	Data type mapping
	Internationalization support
	JMS classes for event handling
	JMS/XLA replication API
	TargetDataStore interface
	TargetDataStoreImpl class

	JMS message header fields

	Index

