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Purpose of This Manual
This manual contains release notes for Oracle Rdb Release 7.1.2.1. The notes describe changed and enhanced
features; upgrade and compatibility information; new and existing software problems and restrictions; and
software and documentation corrections.
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Intended Audience
This manual is intended for use by all Oracle Rdb users. Read this manual before you install, upgrade, or use
Oracle Rdb Release 7.1.2.1.

Intended Audience 7



Document Structure
This manual consists of the following chapters:

Chapter 1 Describes how to install Oracle Rdb Release 7.1.2.1.

Chapter 2 Describes software errors corrected in Oracle Rdb Release 7.1.2..1.

Chapter 3 Describes software errors corrected in Oracle Rdb Release 7.1.2.

Chapter 4 Describes enhancements introduced in Oracle Rdb Release 7.1.2.

Chapter 5 Describes improving query performance using Sampled Selectivity.

Chapter 6 Provides information not currently available in the Oracle Rdb documentation set.

Chapter 7 Describes problems, restrictions, and workarounds known to exist in Oracle Rdb Release 7.1.2.1.
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Chapter 1
Installing Oracle Rdb Release 7.1.2.1
This software update is installed using the standard OpenVMS Install Utility.

NOTE

All Oracle Rdb Release 7.1 kits are full kits. There is no requirement to install any prior
release of Oracle Rdb when installing new Rdb Release 7.1 kits.

Chapter 1Installing Oracle Rdb Release 7.1.2.1 9



1.1 Alpha EV7 Processor Support
For this release of Oracle Rdb, the Alpha EV7 (also known as the Alpha 21364) processor is the newest
processor supported.

1.1 Alpha EV7 Processor Support 10



1.2 Oracle Rdb V7.1 Version Numbering
Enhancement
Previously, the Oracle Rdb version number was specified as 4 digits (for example, version "7.1.0.2"). Starting
with Oracle Rdb Release 7.1.1, an additional, fifth, digit has been added to the kit version number. This new
digit is intended to indicate an optimization level of the Rdb software. The use of this new digit is to indicate a
"generic" kit (final digit of zero) for all Alpha processors or a "performance" kit that will run on a subset of
the supported platforms (final digit of 1). In the future, additional values may be specified to indicate other
performance or platform options.

For Oracle Rdb Release 7.1.2.1, the two kits are 7.1.2.1.0 (compiled for all Alpha processor types) and
7.1.2.1.1 (compiled for EV56 and later Alpha processors). These kits offer identical functionality and differ
only in a potential performance difference.
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1.3 Requirements
The following conditions must be met in order to install this software:

Oracle Rdb must be shutdown before you install this update kit. That is, the command file
SYS$STARTUP:RMONSTOP71.COM should be executed before proceeding with this installation.
If you have an OpenVMS cluster, you must shutdown the Rdb 7.1 monitor on all nodes in the cluster
before proceeding.

• 

The installation requires approximately 280,000 blocks for OpenVMS Alpha systems.• 
If you are running Hot Standby and you are upgrading from a version of Oracle Rdb 7.1 prior to 7.1.1,
you must install this kit on both the master and the standby systems prior to restarting Hot Standby.
This requirement is necessary due to changes to the message format used to transmit journal state
information from the master to the standby system.

• 
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1.4 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure as in the following
examples.

To install the Oracle Rdb for OpenVMS Alpha kit that is compiled to run on all Alpha platforms:

@SYS$UPDATE:VMSINSTAL RDBV71200AM device−name OPTIONS N 

To install the Oracle Rdb for OpenVMS Alpha kit that is performance targeted for Alpha EV56 and later
platforms:

@SYS$UPDATE:VMSINSTAL RDBV71201AM device−name OPTIONS N 

device−name

Use the name of the device on which the media is mounted. If the device is a disk drive, you also need to
specify a directory. For example: DKA400:[RDB.KIT]

OPTIONS N

This parameter prints the release notes.

The full Oracle Rdb Release 7.1 Installation Guide is also available on MetaLink in Adobe Acrobat PDF
format:

Top Tech Docs\Oracle Rdb\Documentation\Rdb 7.1 Installation and Configuration 
Guide 

1.4 Invoking VMSINSTAL 13



1.5 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press Ctrl/Y, the installation procedure
deletes all files it has created up to that point and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you and a prompt asks if you want to
continue. You might want to continue the installation to see if any additional problems occur. However, the
copy of Oracle Rdb installed will probably not be usable.

1.5 Stopping the Installation 14



1.6 After Installing Oracle Rdb
This update provides a new Oracle Rdb Oracle TRACE facility definition. Any Oracle TRACE selections that
reference Oracle Rdb will need to be redefined to reflect the new facility version number for the updated
Oracle Rdb facility definition, "RDBVMSV7.1−2".

If you have Oracle TRACE installed on your system and you would like to collect for Oracle Rdb, you must
insert the new Oracle Rdb facility definition included with this update kit.

The installation procedure inserts the Oracle Rdb facility definition into a library file called
EPC$FACILITY.TLB. To be able to collect Oracle Rdb event−data using Oracle TRACE, you must move
this facility definition into the Oracle TRACE administration database. Perform the following steps:

Extract the definition from the facility library to a file (in this case, RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.1−2 − 
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB 

1. 

Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE 

2. 

Note that the process executing the INSERT DEFINITION command must use the version of Oracle Rdb that
matches the version used to create the Oracle TRACE administration database or the INSERT DEFINITION
command will fail.
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1.7 Patches for OpenVMS V7.3−1
Several problems that affect installations using Oracle Rdb on OpenVMS V7.3−1 are corrected in patch kits
available from HP OpenVMS support. Oracle recommends that you consult with Hewlett−Packard and install
these patch kits (or their replacements) to correct or avoid the following problems:

VMS731_SYS−V0400 corrects the following problems seen with Oracle Rdb:
When using Oracle Rdb Galaxy support, or memory−resident global sections, processes enter
a permanent RWAST state at image exit. The system must be rebooted to remove the process
and continue normal operations. Note that when using Oracle Rdb Release 7.1.2 databases
with SHARED MEMORY IS PROCESS RESIDENT attribute, the Row Cache feature and
caches with the SHARED MEMORY IS SYSTEM, LARGE MEMORY IS ENABLED, or
RESIDENT attributes, or in an OpenVMS Galaxy configuration with Oracle Rdb Galaxy
support enabled, you are at an elevated risk of experiencing this problem.
Configurations that do not have this patch, or it's future replacement, applied will not be
supported by Oracle if the SHARED MEMORY IS PROCESS RESIDENT, the Row Cache,
or Galaxy support features are in use. If you are not using these features, then the patch or it's
replacement is not mandatory. However, Oracle still strongly recommends that it be used.

♦ 

Applications using the Oracle Rdb Row Cache or AIJ Log Server (ALS) features would
sometimes have their server processes hang in HIB (hibernate) state.

♦ 

• 

VMS731_SYSLOA−V0100 corrects the following problem seen with Oracle Rdb:
In an OpenVMS cluster environment, unreported deadlocks and hangs can occur. This
problem is sometimes characterized by an Oracle Rdb blocking lock incorrectly being shown
as owned by the system (in other words, with a zero PID).

♦ 
• 
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1.8 Oracle Rdb Release 7.1.2.1.1 Optimized for Alpha
EV56 (21164A Processor Chip) and Later Platforms
Oracle will be releasing Oracle Rdb 7.1 and later kits in parallel build streams − a "generic" kit that will run
on all certified and supported Alpha platforms as well as a "performance" kit that will run on a subset of the
supported platforms. The performance kit is intended for those customers with "newer" Alpha processor chips
who need higher levels of performance than are offered by the generic kits. The performance kits are
otherwise functionally identical to the generic kits.

Oracle will continue to release both types of kits for Oracle Rdb Release 7.1 as long as there is significant
customer interest in the generic kit.

For improved performance on current generation Alpha processors, Oracle Rdb Release 7.1.2.1.1 is compiled
explicitly for Alpha EV56 and later systems. This version of Oracle Rdb requires a system with a minimum
Alpha processor chip of EV56 and a maximum processor chip of Alpha EV7 (known as the Alpha 21364).

Oracle Rdb Release 7.1.2.1.1 is functionally equivalent to Oracle Rdb Release 7.1.2.1.0 and was built from
the same source code. The only difference is a potentially improved level of performance. Oracle Rdb
Releases 7.1.2.1.0 and 7.1.2.1.1 are certified on all supported Alpha processor types (up to and including the
Alpha EV7 processor).

In Release 7.1.2.1.1, Oracle Rdb is explicitly compiled for EV56 and later Alpha processors such that the
generated instruction stream can utilize the byte/word extension (BWX) of the Alpha architecture.
Additionally, this kit is compiled with instruction tuning biased for performance of Alpha EV6 and later
systems that support quad−issue instruction scheduling.

Note that you should not install Release 7.1.2.1.1 of Oracle Rdb on Alpha EV4, EV45 or EV5 systems. These
processor types do not support the required byte/word extension (BWX) of the Alpha architecture. Also
ensure that all systems in a cluster sharing the system disk are using a minimum of the Alpha EV56 processor.

To easily determine the processor type of a running OpenVMS Alpha system, use the CLUE CONFIG
command of the OpenVMS System Dump Analyzer utility (accessed with the ANALYZE/SYSTEM
command). The "CPU TYPE" field indicates the processor type as demonstrated in the following example
from an HP AlphaServer GS140 6/525 system with an EV6 (21264) processor:

$ ANALYZE/SYSTEM 
SDA> CLUE CONFIG 
System Configuration: 
    . 
    . 
    . 
Per−CPU Slot Processor Information: 
CPU ID    00                  CPU State    rc,pa,pp,cv,pv,pmv,pl 
CPU Type  EV6  Pass 2.3 (21264)         
PAL Code  1.96−1              Halt PC      00000000.20000000 
    . 
    . 
    . 
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1.8.1 AlphaServer 4000 EV56 299Mhz Not Supported by Oracle
Rdb Release Optimized for Alpha EV56 Processor

Oracle Rdb releases that are optimized for the Alpha EV56 and later processors are not able to run on the
AlphaServer 4000 with the 299Mhz EV56 processor. Though this CPU claims to be an EV56, it does not, in
fact, implement the byte/word instruction set as required.

According to information on the hp web site, this problem may be present in the AlphaServer 4000 or 4100
systems with a processor module of KN304−FA or KN304−FB. The systems effected appear to include the
AlphaServer 4x00 5/300 pedestal, cabinet and rackmount systems: DA−51FAB−ED/−FD/−GB or
DA−53GEB−CA/−EA/−FA/−GA.

The indicated CPU is not able to run Oracle Rdb releases that are optimized for the Alpha EV56 and later
processors. This effects Oracle Rdb Releases 7.1.0.5, 7.1.1.0.1 and 7.1.2.0.1 and all later kits optimized for the
Alpha EV56 and later processors.

Possible workarounds include updating the system to an EV56 module for the AlphaServer 4x00 that is later
than the KN304−FA or FB (ie a clock speed greater than 300Mhz). Some or the Possible modules would be:
KN304−AA 400mhz, KN304−DA 466mhz, B3005−CA 533mhz, B3006−EB 600mhz.

Otherwise, an Oracle Rdb release that is not optimized for the Alpha EV56 and later processors must be used
(such as release 7.1.0.4, 7.1.1.0.0 or 7.1.2.0.0).

Please contact your HP AlphaServer hardware vendor for additional information.
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1.9 Maximum OpenVMS Version Check Added
As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has been added to the product.
Oracle Rdb has always had a minimum OpenVMS version requirement. With 7.0.1.5 and for all future Oracle
Rdb releases, we have expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve product quality.

OpenVMS Version 7.3−x is the maximum supported version of OpenVMS.

The check for the OpenVMS operating system version and supported hardware platforms is performed both at
installation time and at runtime. If either a non−certified version of OpenVMS or hardware platform is
detected during installation, the installation will abort. If a non−certified version of OpenVMS or hardware
platform is detected at runtime, Oracle Rdb will not start.

1.9 Maximum OpenVMS Version Check Added 19



1.10 VMS$MEM_RESIDENT_USER Rights Identifier
Required
Oracle Rdb Version 7.1 introduced additional privilege enforcement for the database or row cache attributes
RESIDENT, SHARED MEMORY IS SYSTEM and LARGE MEMORY IS ENABLED. If a database utilizes
any of these features, then the user account that opens the database must be granted the
VMS$MEM_RESIDENT_USER rights identifier.

Oracle recommends that the RMU/OPEN command be used when utilizing these features.

1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required 20



Chapter 2
Software Errors Fixed in Oracle Rdb Release 7.1.2.1
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.2.1.

Chapter 2Software Errors Fixed in Oracle Rdb Release 7.1.2.1 21



2.1 Software Errors Fixed That Apply to All Interfaces

2.1.1 Query with shared expression in two predicates returns
wrong result

Bug 3201864, 2285818

The following query with shared expression in two predicates should return 1 row but instead returns 2 rows:

set flags 'strategy,detail'; 

SELECT  T1.CODE,T2.ALUM, T1.ALUM, T2.CODE 
  FROM T1, T2, T3 WHERE 
          T2.TUNE    = T1.TUNE          AND 
          T2.SLAM    = T1.SLAM          AND 
          T2.STAR    = T1.STAR          AND 
          (T1.CODE  >= T2.ALUM          AND 
           (T1.ALUM <= T2.CODE OR T2.CODE IS NULL)) AND 
          T3.TUNE    = T1.TUNE          AND 
          T3.SLAM    = T1.SLAM          AND 
          T3.STAR    = T1.STAR          AND 
          T2.TUNE    = '240167−1447'    AND 
          T2.SLAM    <= '31−dec−2002'   AND 
          (T2.CODE   >= '01−jan−2002' OR T2.CODE  IS NULL) AND 
         NOT EXISTS 
            (SELECT T4.TUNE FROM T2 T4 WHERE 
                  T4.TUNE = T2.TUNE    AND 
                  T4.MAKE = '0'       AND 
                  T4.SLAM = T2.SLAM    AND 
                  T4.STAR    = T2.STAR AND 
                  T4.SITE <> T2.SITE AND 
                  T1.ALUM >= T4.ALUM AND 
                  T1.CODE <= T4.CODE ); 
Tables: 
  0 = T1 
  1 = T2 
  2 = T3 
  3 = T2 
Cross block of 4 entries 
  Cross block entry 1 
    Conjunct: 1.TUNE = '240167−1447' 
    Conjunct: 1.SLAM <= '31−DEC−2002' 
    Leaf#01 FFirst 1:T2 Card=2 
      Bool: (1.CODE >= '1−JAN−2002') OR MISSING (1.CODE) 
      BgrNdx1 T2_IND_1 [1:2] Fan=7 
        Keys: (1.TUNE = '240167−1447') AND (1.SLAM <= '31−DEC−2002') 
  Cross block entry 2 
    Leaf#02 FFirst 0:T1 Card=1 
      Bool: (1.TUNE = 0.TUNE) AND (1.SLAM = 0.SLAM) AND (1.STAR = 0.STAR) AND 
          (0.CODE >= 1.ALUM) 
      BgrNdx1 T1_IND [1:1] Fan=11 
        Keys: 1.TUNE = 0.TUNE 
      BgrNdx2 T1_IND_1 [3:3] Fan=8 
        Keys: (1.TUNE = 0.TUNE) AND (1.SLAM = 0.SLAM) AND (1.STAR = 0.STAR) 
  Cross block entry 3 
    Conjunct: <agg0> = 0 
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    Aggregate−F1: 0:COUNT−ANY (<subselect>) 
    Leaf#03 FFirst 3:T2 Card=2 
      Bool: (3.TUNE = 1.TUNE) AND (3.MAKE = '0') AND (3.SLAM = 1.SLAM) AND 
            (3.STAR = 1.STAR) AND (3.SITE <> 1.SITE) AND (0.ALUM >= 3.ALUM) 
         AND (0.CODE <= 3.CODE) 
      BgrNdx1 T2_IND_1 [3:4] Fan=7 
        Keys: (3.TUNE = 1.TUNE) AND (3.SLAM = 1.SLAM) AND 
              (3.STAR = 1.STAR) AND (0.ALUM >= 3.ALUM) 
        Bool: (3.SLAM <= '31−DEC−2002') AND (3.TUNE = '240167−1447') 
  Cross block entry 4 
    Index only retrieval of relation 2:T3 
      Index name  T3_IND [3:3] 
        Keys: (2.TUNE = 0.TUNE) AND (2.SLAM = 0.SLAM) AND (2.STAR = 0.STAR) 
 T1.CODE                    T2.ALUM               T1.ALUM 
   T2.CODE            
 22−FEB−2002 00:00:00.00    1−OCT−2001 00:00:00.00   22−FEB−2002 00:00:00.00   
   31−JAN−2002 00:00:00.00   

 22−FEB−2002 00:00:00.00    1−FEB−2002 00:00:00.00   22−FEB−2002 00:00:00.00   
   31−DEC−2003 00:00:00.00   
2 rows selected 

The predicate "T2.CODE IS NULL" is shared by two OR clauses referencing other different tables, e.g.

   the first predicate (T1.ALUM <= T2.CODE OR T2.CODE  IS NULL)) references 
table T1 and T2, and 
   the second predicate (T2.CODE  >= '01−jan−2002' OR T2.CODE  IS NULL) 
references table T2.   

but, in the detailed strategy display, the first predicate is missing under the cross block entry 2 for table
"0:T1".

WORKAROUND: The query works if the SQL flag 'MAX_STABILITY' is defined OR the logical name
RDMS$MAX_STABILITY is defined :

set flags 'max_stability'; 

Tables: 
  0 = T1 
  1 = T2 
  2 = T3 
  3 = T2 
Cross block of 4 entries 
  Cross block entry 1 
    Conjunct: (1.CODE >= '1−JAN−2002') OR MISSING (1.CODE) 
    Get     Retrieval by index of relation 1:T2 
      Index name  T2_IND_1 [1:2] 
        Keys: (1.TUNE = '240167−1447') AND (1.SLAM <= '31−DEC−2002') 
  Cross block entry 2 
    Conjunct: (1.SLAM = 0.ALUM) AND (1.STAR = 0.STAR) AND (0.CODE >= 1.ALUM) 
              AND ((0.ALUM <= 1.CODE) OR MISSING (1.CODE)) 
    Get     Retrieval by index of relation 0:T1 
      Index name  T1_IND [1:1] 
        Keys: 1.TUNE = 0.TUNE 
  Cross block entry 3 
    Conjunct: <agg0> = 0 
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    Aggregate−F1: 0:COUNT−ANY (<subselect>) 
    Conjunct: (3.MAKER = '0') AND (3.SITE <> 1.SITE) AND (0.CODE <= 3.CODE) 
    Get     Retrieval by index of relation 3:T2 
      Index name  T2_IND_1 [3:4] 
        Keys: (3.TUNE = 1.TUNE) AND (3.SLAM = 1.SLAM) AND 
              (3.STAR = 1.STAR) AND (0.ALUM >= 3.ALUM) 
        Bool: (3.SLAM <= '31−DEC−2002') AND (3.TUNE = '240167−1447') 
  Cross block entry 4 
    Index only retrieval of relation 2:T3 
      Index name  T3_IND [3:3] 
        Keys: (2.TUNE = 0.TUNE) AND (2.ALUM = 0.ALUM) AND (2.STAR = 0.STAR) 
 T1.CODE                    T2.ALUM                  T1.ALUM             
   T2.CODE            
 22−FEB−2002 00:00:00.00    1−FEB−2002 00:00:00.00   22−FEB−2002 00:00:00.00   
   31−DEC−2003 00:00:00.00   

1 row selected 

This problem has been corrected in Oracle Rdb Release 7.1.2.1.

2.1.2 Memory Corruption When Using Explicit 2PC

BUG 3230612

It was possible for an application to experience memory corruption when the following were true:

Explicit two−phase commit (2PC) transactions were being utilized. That is, transactions that were
started and ended by using the system services SYS$START_TRANS and SYS$END_TRANS.

• 

The application would:
Detach from the database involved in the 2PC transaction1. 
Attach to a database2. 
Start a new 2PC transaction3. 

• 

The application would allocate memory after detaching from the database and before attaching to a
database.

This problem can be avoided by not using explicit two−phase commit or by remaining attached to all
databases.

For more information regarding explicit two−phase commit transactions see the Guide to Distributed
Transactions.

This problem has been corrected in Oracle Rdb Release 7.1.2.1.

2.1.3 DBR Bugchecks at DBR$VALIDATE_OPT_PAGES +
000001C4

When the PAGE TRANSFER VIA MEMORY was enabled it was possible for Database Recover
Processes (DBRs) to fail with the following exception:

***** Exception at 00074284 : DBR$VALIDATE_OPT_PAGES + 000001C4 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address=0000000000000000, PC=0000000000074284, PS=0000001B 

• 
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This bugcheck could occur when an AIJ Backup Server (ABS) or AIJ Log Server (ALS) process
would fail. The DBR process would attempt to recover global buffer data structures for those
processes even though the processes did not have any global buffers allocated. This problem was
introduced in Release 7.1.2.

This problem can be avoided by using PAGE TRANSFER VIA DISK or by disabling the ALS and
ABS processes.

This problem has been corrected in Oracle Rdb Release 7.1.2.1.
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2.2 Row Cache Errors Fixed

2.2.1 RMU Online Backup Can Fail When Using the
"Snapshots in Row Cache" feature

Bug 3214111

When using the "Snapshots in Row Cache" feature with Oracle Rdb Release 7.1.2, it was possible for
an online RMU backup command to fail with a bugcheck with an exception similar to
"RMU−F−CANTREADDBS, error reading pages 151:4294967295− 4294967295".

This problem was caused by the RCS process not correctly writing snapshot records from cache back
to database snapshot storage areas at the start of the backup operation.

This problem has been corrected in Oracle Rdb Release 7.1.2.1. The RCS process now always writes
all required snapshot records to database from the row cache.

2.2 Row Cache Errors Fixed 26



Chapter 3
Software Errors Fixed in Oracle Rdb Release
7.1.2
This chapter describes software errors that are fixed by Oracle Rdb Release 7.1.2.
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3.1 Software Errors Fixed That Apply to All
Interfaces

3.1.1 Area Access Fails After Online Storage Area Creation

Bug 3120908

In prior versions of Oracle Rdb Release 7.1, it was possible for access to storage areas created online
to fail if the database was open cluster−wide. This problem was caused by an incorrect reference to
the name of the newly added snapshot storage area.

The following sequence of events demonstrates one possible failure case using "NODEA" and
"NODEB".

NODEA:  $ SQL 
        SQL> CREATE DATABASE FILENAME DB 
              RESERVE 10 STORAGE AREAS 
              CREATE STORAGE AREA AREA1 
              CREATE STORAGE AREA AREA2; 
        SQL> CREATE TABLE T1 (COL1 INTEGER); 
        SQL> COMMIT; 
        SQL> EXIT; 
        $ RMU /OPEN /WAIT DB 

NODEB:  $ RMU /OPEN /WAIT DB 

NODEA:  $ SQL 
        SQL> ALTER DATABASE FILENAME DB ADD STORAGE AREA AREA3; 
        SQL> −− Do not exit from SQL 

NODEB:  $ SQL$ 
        SQL> ATTACH 'FILE DB'; 
        SQL> CREATE INDEX IDX_T1 ON T1 (COL1) STORE IN AREA3; 
        %RDMS−I−BUGCHKDMP, generating bugcheck dump file 
        DGA0:[DB]RDSBUGCHK.DMP; 
        %RDMS−I−BUGCHKDMP, generating bugcheck dump file 
        DGA0:[DB]SQLBUGCHK.DMP; 
        %SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual 
        address=0000000000000000, PC=00000000003AD32C, PS=0000001B 

The bugcheck "footprint" for this particular case for Oracle Rdb Release 7.1.1.0.1 is:

Exception occurred at PIO$READY + 000010B8 
SYSTEM−F−ACCVIO, access violation 
Called from PIO$READY + 00001964 
Called from RDMS$$KOD_CREATE_LAREA + 00000324 
Called from RDMS$$CREATE_INDEX_INFO + 00002904 

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.1.2 Page Transfer Via Memory Feature Now Available

The global buffer feature PAGE TRANSFER VIA MEMORY has been re−introduced in Release
7.1.2 of Oracle Rdb. This feature was disabled in a previous release of Oracle Rdb due to occasional
problems with database corruption when the feature was enabled. The corruption problems have been
resolved and the feature is again available for use.

The PAGE TRANSFER VIA MEMORY feature may provide considerable performance
improvements in application environments where there is a lot of contention for database pages. To
determine if this is a significant factor in the performance of a database use the RMU/SHOW
STATISTICS utility, go to the "PIO Statistics−−Data Writes" screen, and examine the "blocking
AST" counter. If that number represents a significant percentage of the overall number of buffer
writes (the "unmark buffer" counter) then it may be worthwhile to try the PAGE TRANSFER VIA
MEMORY feature to see if it improves performance. Note that this feature can only be used if global
buffers are enabled, after−image journaling is enabled, fast commit is enabled, and either the number
of cluster nodes is set to one, or the "SINGLE INSTANCE" clause was specified for the number of
cluster nodes. See the Guide to Database Performance and Tuning for more information regarding
this feature.

3.1.3 UNION Query With Two Left Outer Joins in First Leg
Returns Wrong Results

Bugs 3076004 and 2529598

The following UNION query with left outer join should return 1 row.

set flags 'strategy,detail'; 
select routing_id from 
     (select 
     C4.ROUTING_ID, 
 C2.FY, 
 C2.PAY_PERIOD 
          from 
       ROSTER as C2 
  left outer join 
      WORK_AUTH as C4 
   on (C2.AUTH_NBR = C4.AUTH_NBR) 
       left outer join 
           TAX_BEN as C5 
        ON (C2.AUTH_NBR = C5.TAX_BEN_NBR) 
    union 
      select 
 C6.ROUTING_ID, 
 C7.FY, 
 C7.PAY_PERIOD 
          from 
       WORK_AUTH as C6, PAY_PERIOD as C7) 
       AS DT (ROUTING_ID, FY, PAY_PERIOD) 
    where 
    fy='2004' and pay_period='01' and routing_id = 'R91297'; 
Tables: 
  0 = ROSTER 
  1 = WORK_AUTH 
  2 = TAX_BEN 
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  3 = WORK_AUTH 
  4 = PAY_PERIOD 
Merge of 1 entries 
  Merge block entry 1 
  Reduce: <mapped field>, <mapped field>, <mapped field> 
  Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a) 
  Merge of 2 entries 
    Merge block entry 1 
    Cross block of 2 entries (Left Outer Join) 
      Cross block entry 1 
        Cross block of 2 entries (Left Outer Join) 
          Cross block entry 1 
            Leaf#01 BgrOnly 0:ROSTER Card=2 
              BgrNdx1 ROSTER_NDX [2:2] Fan=15 
                Keys: (<mapped field> = '2004') AND (<mapped field> = '01') 
          Cross block entry 2 
            Leaf#02 BgrOnly 1:WORK_AUTH Card=1 
              Bool: 0.AUTH_NBR = 1.AUTH_NBR 
              BgrNdx1 WORK_AUTH_NDX [1:1] Fan=16 
                Keys: <mapped field> = 'R91297' 
      Cross block entry 2 
        Conjunct: 0.AUTH_NBR = 2.TAX_BEN_NBR 
        Index only retrieval of relation 2:TAX_BEN 
          Index name  TAX_BEN_NDX [1:1] 
            Keys: 0.AUTH_NBR = 2.TAX_BEN_NBR 
    Merge block entry 2 
    Cross block of 2 entries 
      Cross block entry 1 
        Conjunct: 3.ROUTING_ID = 'R91297' 
        Index only retrieval of relation 3:WORK_AUTH 
          Index name  WORK_AUTH_NDX [1:1] 
            Keys: <mapped field> = 'R91297' 
      Cross block entry 2 
        Conjunct: (4.FY = '2004') AND (4.PAY_PERIOD = '01') 
        Index only retrieval of relation 4:PAY_PERIOD 
          Index name  PAY_PERIOD_NDX [2:2] 
            Keys: (<mapped field> = '2004') AND (<mapped field> = '01') 
 ROUTING_ID   
 R91297       
 NULL         
2 rows selected 

This problem is similar to the previous Bug 2529598 where the fix did not cover the current case with
two left outer joins in the first UNION leg. The conjunct "routing_id = 'R91297'" is generated at the
top of the second UNION (merge) leg but not at the top of the first leg and thus returns the wrong
result.

The query works if the legs of the UNION clause are swapped, as in the following example:

select routing_id from 
     ( 
      select 
 C6.ROUTING_ID, 
 C7.FY, 
 C7.PAY_PERIOD 
          from 
       WORK_AUTH as C6, PAY_PERIOD as C7 
    union 
      select 
      C4.ROUTING_ID, 
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 C2.FY, 
 C2.PAY_PERIOD 
          from 
       ROSTER as C2 
  left outer join 
      WORK_AUTH as C4 
   on (C2.AUTH_NBR = C4.AUTH_NBR) 
       left outer join 
           TAX_BEN as C5 
        ON (C2.AUTH_NBR = C5.TAX_BEN_NBR) 
        ) 
        AS DT (ROUTING_ID, FY, PAY_PERIOD) 
    where 
    fy='2004' and pay_period='01' and routing_id = 'R91297'; 
Tables: 
  0 = WORK_AUTH 
  1 = PAY_PERIOD 
  2 = ROSTER 
  3 = WORK_AUTH 
  4 = TAX_BEN 
Conjunct: <mapped field> = 'R91297' 
Merge of 1 entries 
  Merge block entry 1 
  Reduce: <mapped field>, <mapped field>, <mapped field> 
  Sort: <mapped field>(a), <mapped field>(a), <mapped field>(a) 
  Conjunct: 1.FY = '2004' 
  Conjunct: 1.PAY_PERIOD = '01' 
  Merge of 2 entries 
    Merge block entry 1 
    Cross block of 2 entries 
      Cross block entry 1 
        Conjunct: 0.ROUTING_ID = 'R91297' 
        Index only retrieval of relation 0:WORK_AUTH 
          Index name  WORK_AUTH_NDX [1:1] 
            Keys: <mapped field> = 'R91297' 
      Cross block entry 2 
        Conjunct: (1.FY = '2004') AND (1.PAY_PERIOD = '01') 
        Index only retrieval of relation 1:PAY_PERIOD 
          Index name  PAY_PERIOD_NDX [2:2] 
            Keys: (<mapped field> = '2004') AND (<mapped field> = '01') 
    Merge block entry 2 
    Cross block of 2 entries        (Left Outer Join) 
      Cross block entry 1 
        Cross block of 2 entries        (Left Outer Join) 
          Cross block entry 1 
            Leaf#01 BgrOnly 2:ROSTER Card=2 
              BgrNdx1 ROSTER_NDX [2:2] Fan=15 
                Keys: (<mapped field> = '2004') AND (<mapped field> = '01') 
          Cross block entry 2 
            Conjunct: 2.AUTH_NBR = 3.AUTH_NBR 
            Get     Retrieval by index of relation 3:WORK_AUTH 
              Index name  WORK_AUTH_NDX [0:0] 
      Cross block entry 2 
        Leaf#02 BgrOnly 4:TAX_BEN Card=1 
          Bool: 2.AUTH_NBR = 4.TAX_BEN_NBR 
          BgrNdx1 TAX_BEN_NDX [1:1] Fan=17 
            Keys: 2.AUTH_NBR = 4.TAX_BEN_NBR 
 ROUTING_ID   
 R91297       
1 row selected 
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Notice that the "Conjunct: <mapped field> = 'R91297'" is now generated on top of both UNION legs.
Even though the conjunct is NOT efficiently optimized by being pushed down to the second leg at
least the query works correctly.

There is no known workaround other than the above−mentioned query with UNION legs swapped.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.4 Error %RDMS−E−NOSOL_FOUND in Full Outer Join
Query

Bug 2669656

The following full outer natural join query between columns of different data types fails using the
cross strategy (it should succeed applying the match strategy):

create table x1 (f1 char(10)); 
create table x2 (f1 integer); 
create table x3 (f1 char(10)); 

insert into x1 value ('1'); 
insert into x2 value (1); 
insert into x2 value (−1); 
insert into x3 value ('1'); 
insert into x3 value ('−1'); 

select * From x1 natural full outer join x2; 
~S: Full OJ query with cross strategy was not possible 
%RDMS−E−NOSOL_FOUND, No possible solution has been found by Rdb optimizer 

As a workaround, the following full outer join between columns of the same data type works applying
a match strategy.

select * From x1 natural full outer join x3; 
Tables: 
  0 = X1 
  1 = X3 
Match  (Full Outer Join) 
  Outer loop 
    Sort: 0.F1(a) 
    Get Retrieval sequentially of relation 0:X1 
  Inner loop 
    Temporary relation 
    Sort: 1.F1(a) 
    Get Retrieval sequentially of relation 1:X3 
 F1           
 −1           
 1            
2 rows selected 

The following query should apply a match strategy as suggested by the outline bug_outline.

create outline bug_outline 
id '6CBC3F110B75FD48C256CE94DCEB8A1F' 
mode 0 
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as ( 
  query ( 
−− For loop 
    subquery ( 
      X1 0    access path sequential 
        join by match to 
      X2 1    access path sequential 
      ) 
    ) 
  ) 
compliance optional     ; 

select * from x1 , x2 where x1.f1 = x2.f1; 
~S: Outline "BUG_OUTLINE" used 
~S: Full compliance with the outline was not possible 
Tables: 
  0 = X1 
  1 = X2 
Cross block of 2 entries 
  Cross block entry 1 
    Get     Retrieval sequentially of relation 0:X1 
  Cross block entry 2 
    Conjunct: 0.F1 = 1.F1 
    Get     Retrieval sequentially of relation 1:X2 
 X1.F1              X2.F1   
 1                      1   
1 row selected 

But the query works if one of the join predicates is cast as the same data type as the other as in the
following example.

create outline bug_good_outline 
id '0EEB4BC11CF012EDB10AEA1C16EC0E70' 
mode 0 
as ( 
  query ( 
−− For loop 
    subquery ( 
      X1 0    access path sequential 
        join by match to 
      X2 1    access path sequential 
      ) 
    ) 
  ) 
compliance optional     ; 

select * from x1 , x2 where cast(x1.f1 as integer) = x2.f1; 
~S: Outline "BUG_GOOD_OUTLINE" used 
Tables: 
  0 = X1 
  1 = X2 
Conjunct: CAST (0.F1 AS INT) = 1.F1 
Match 
  Outer loop 
    Sort: CAST (0.F1 AS INT)(a) 
    Get Retrieval sequentially of relation 0:X1 
  Inner loop 
    Temporary relation 
    Sort: 1.F1(a) 
    Get Retrieval sequentially of relation 1:X2 
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 X1.F1              X2.F1 
 1                      1   
1 row selected 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.5 Query With EXISTS Clause and COMPUTED BY
Column Returns Wrong Results

Bug 2452636

The following query, checking for EXISTS clause with an equality predicate involving a column of
"COMPUTED BY", returns wrong results when applying a match strategy.

Columns for table T2: 
Column Name     Data Type  Domain 
−−−−−−−−−−−     −−−−−−−−−  −−−−−− 
A_DATE                          DATE VMS     
A_SEC_NAME                      CHAR(12)     
A_DET_METHOD                    INTEGER      
A_CALC_PRICE                    INTEGER      
A_BAD_CMPBY                     INTEGER      
 Computed:   by 
      case 
    when (A_CALC_PRICE > 0 and 
         A_CALC_PRICE = 
   (select T0.A_PRICE from T0 
        where T0.A_SEC_NAME = T0.A_SEC_NAME 
    and T0.A_DATE = T0.A_DATE 
    and T0.A_PRICE_SOURCE = 'GIC' 
    and T0.A_PRICE_TYPE = 'STL' limit to 1 rows)) 
          then A_DET_METHOD 
       else 5 
          end 

Indexes on table T2: 
T2_NDX                          with column A_SEC_NAME 
  and column A_DATE 

set flags 'strategy,detail'; 
sel a_data from T1 s 
where exists (select * from T2 p 
                where p.A_SEC_NAME=s.A_SEC_NAME and 
                      p.a_date=s.a_date and 
                      p.a_bad_cmpby =   2); 
Tables: 
  0 = T1 
  1 = T2 
  2 = T0 
Conjunct: <agg0> <> 0 
Match 
  Outer loop 
    Sort: 0.A_SEC_NAME(a), 0.A_DATE(a) 
    Cross block of 2 entries 
      Cross block entry 1 
        Aggregate: 1:VIA (2.A_PRICE) 
        Firstn: 1 
        Leaf#01 FFirst 2:T0 Card=10 
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          Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) AND ( 
                2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') 
          BgrNdx1 T0_NDX [2:2] Fan=9 
            Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') 
            Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) 
      Cross block entry 2 
        Leaf#02 BgrOnly 0:T1 Card=2 
          BgrNdx1 T1_NDX [0:0] Fan=10 
  Inner loop      (zig−zag) 
    Aggregate−F1: 0:COUNT−ANY (<subselect>) 
    Get     Retrieval by index of relation 1:T2 
      Index name  T2_NDX [0:0] 
      A_DATA   
          14   
          10   
2 rows selected 

Notice that the following equality predicate involving the "Computed by" column A_BAD_CMPBY
is missing in the above strategy, and thus, the query returns the wrong result of 2 rows.

       "p.a_bad_cmpby =   2" 

   where p.a_bad_cmpby represents the following CASE statement: 

   case 
        when (A_CALC_PRICE > 0 and 
      A_CALC_PRICE = 
       (select T0.A_PRICE from T0 
     where T0.A_SEC_NAME = T0.A_SEC_NAME 
      and T0.A_DATE = T0.A_DATE 
      and T0.A_PRICE_SOURCE = 'GIC' 
      and T0.A_PRICE_TYPE = 'STL' limit to 1 rows)) 
  then A_DET_METHOD 
   else 5 
     end 

Notice that the select statement references only a single table T0.

The missing conjunct is supposed to be generated in the following format with the aggregate value
represented by <agg0>.

Conjunct: CASE (WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg0>)) 
                THEN 1.A_DET_METHOD ELSE 5) = 2 

The reason that the conjunct is not created in the query is that the inner match leg contains only the
context "1:T2" while the conjunct involves an aggregate value with external context "0:T0" from the
outer match leg.

Here is one workaround for the problem. This query works if an outline is used to change the strategy
from match to cross, since the inner cross leg contains both the contexts from the outer and inner
cross legs.

sel a_data from T1 s 
where exists (select * from T2 p 
                where p.A_SEC_NAME=s.A_SEC_NAME and 
                      p.a_date=s.a_date and 
                      p.a_bad_cmpby =   2); 
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~S: Outline "TEST_BUG_OUTLINE" used 
Tables: 
  0 = T1 
  1 = T2 
  2 = T0 
Cross block of 3 entries 
  Cross block entry 1 
    Aggregate: 0:VIA (2.A_PRICE) 
    Firstn: 1 
    Leaf#01 FFirst 2:T0 Card=10 
      Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) AND ( 
            2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') 
      BgrNdx1 T0_NDX [2:2] Fan=9 
        Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') 
        Bool: (2.A_SEC_NAME = 2.A_SEC_NAME) AND (2.A_DATE = 2.A_DATE) 
  Cross block entry 2 
    Leaf#02 FFirst 0:T1 Card=2 
      BgrNdx1 T1_NDX [0:0] Fan=10 
  Cross block entry 3 
    Conjunct: <agg1> <> 0 
    Aggregate−F1: 1:COUNT−ANY (<subselect>) 
    Leaf#03 FFirst 1:T2 Card=2 
      Bool: (1.A_SEC_NAME = 0.A_SEC_NAME) AND (1.A_DATE = 0.A_DATE) AND (CASE ( 
            WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg0>)) THEN 
            1.A_DET_METHOD ELSE 5) = 2) 
      BgrNdx1 T2_NDX [2:2] Fan=10 
        Keys: (1.A_SEC_NAME = 0.A_SEC_NAME) AND (1.A_DATE = 0.A_DATE) 
−− Rdb Generated Outline : 25−JUN−2003 11:30 
create outline QO_F5E5D311487F5E17_00000000 
id 'F5E5D311487F5E1776847CFB5A9C308B' 
mode 0 
as ( 
  query ( 
−− For loop 
    subquery ( 
      subquery ( 
        T0 2    access path index       T0_NDX 
        ) 
        join by cross to 
      T1 0    access path index       T1_NDX 
        join by cross to 
      subquery ( 
        T2 1    access path index       T2_NDX 
        ) 
      ) 
    ) 
  ) 
compliance optional     ; 
0 rows selected 

Here is another possible workaround. The query also works if the COMPUTED BY column is
changed to join the tables T0 and T2 instead of single table T0.

alter table T2 add column A_GOOD_CMPBY 
    computed by 
     case 
      when (A_CALC_PRICE > 0 and 
          A_CALC_PRICE = 
     (select T0.A_PRICE from T0 
   where T0.A_SEC_NAME = T2.A_SEC_NAME 
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       and T0.A_DATE = T2.A_DATE 
       and T0.A_PRICE_SOURCE = 'GIC' 
       and T0.A_PRICE_TYPE = 'STL' limit to 1 rows)) 
      then A_DET_METHOD 
      else 5 
    end; 

sel a_data from T1 s 
where exists (select * from T2 p 
                where p.A_SEC_NAME=s.A_SEC_NAME and 
                      p.a_date=s.a_date and 
                      p.a_good_cmpby =   2); 
Tables: 
  0 = T1 
  1 = T2 
  2 = T0 
Conjunct: <agg0> <> 0 
Match 
  Outer loop      (zig−zag) 
    Get     Retrieval by index of relation 0:T1 
      Index name  T1_NDX [0:0] 
  Inner loop 
    Aggregate: 0:COUNT−ANY (<subselect>) 
    Cross block of 2 entries 
      Cross block entry 1 
        Get     Retrieval by index of relation 1:T2 
          Index name  T2_NDX [0:0] 
      Cross block entry 2 
        Conjunct: CASE (WHEN ((1.A_CALC_PRICE > 0) AND (1.A_CALC_PRICE = <agg1>) 
                  ) THEN 1.A_DET_METHOD ELSE 5) = 2 
        Aggregate: 1:VIA (2.A_PRICE) 
        Firstn: 1 
        Leaf#01 FFirst 2:T0 Card=10 
          Bool: (2.A_SEC_NAME = 1.A_SEC_NAME) AND (2.A_DATE = 1.A_DATE) AND ( 
                2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') 
          BgrNdx1 T0_NDX [4:4] Fan=9 
            Keys: (2.A_PRICE_SOURCE = 'GIC') AND (2.A_PRICE_TYPE = 'STL') AND ( 
                  2.A_SEC_NAME = 1.A_SEC_NAME) AND (2.A_DATE = 1.A_DATE) 
0 rows selected 

Notice that the conjunct with aggregate value now appears in the Cross block entry 2 under the Inner
loop of the match strategy.

This query works since the context "1:T2" is joined by cross strategy with the context "2:T0" and the
conjunct with aggregate value is properly resolved with all the contexts available.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.6 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted
Ranked Indexes

Bug 2874671

If a cursor was used to fetch rows, and the transaction was committed between fetches, and the
retrieval strategy involved a backwards scan of an index of TYPE IS SORTED RANKED, then Rdb
could generate a bugcheck dump.
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The problem occurred because Oracle Rdb mistakenly released a lock prematurely. Later, when
Oracle Rdb was truly finished with the resource, a bugcheck occurred because a second attempt was
made to release the same lock.

The following example uses the MF_PERSONNEL database to demonstrate the problem.

SQL> at 'f mf_personnel'; 
SQL> drop index EMP_EMPLOYEE_ID; 
SQL> commit; 
SQL> create unique index EMP_EMPLOYEE_ID 
cont>     on EMPLOYEES (EMPLOYEE_ID asc) 
cont>     type is SORTED ranked 
cont>     node size 430 
cont>     disable compression; 
SQL> commit work; 
SQL> declare transaction read write isolation level read committed; 
SQL> declare t2 table cursor with hold preserve all for 
cont> select    * 
cont> from      employees 
cont> where     employee_id > '00300' 
cont> and       employee_id < '00400' 
cont> order by employee_id desc; 
SQL> open t2; 
SQL> fetch t2; 
 EMPLOYEE_ID   LAST_NAME        FIRST_NAME   MIDDLE_INITIAL 
   ADDRESS_DATA_1              ADDRESS_DATA_2         CITY 
      STATE   POSTAL_CODE   SEX    BIRTHDAY      STATUS_CODE 
 00374         Andriola         Leslie       Q 
   111 Boston Post Rd.                                Salisbury 
      NH      03268         M      19−Mar−1955   1 

SQL> commit; 
SQL> fetch t2; 
%RDMS−I−BUGCHKDMP, generating bugcheck dump file MBRADLEY_USR:[BRADLEY]RDSBUGCHK.DMP; 

The problem can be avoided by disabling the backward scan feature using the
RDMS$DISABLE_REVERSE_SCAN logical name.

The problem does not occur if all rows are fetched in the same transaction.

The problem does not occur if the index being scanned is not of TYPE IS SORTED RANKED.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.7 Illegal Page Count Error in the Dynamic Optimizer

Bug 3045841

When a very large table was queried, and the access strategy used the dynamic optimizer, and the first
two indexes used both returned more than 1024 dbkeys, an illegal page count error could be
generated.

To encounter this error, the table had to have close to one billion (1,000,000,000) rows.
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In addition, the retrieval strategy for the query must use the dynamic optimizer where at least two
indices return more than 1024 dbkeys.

In this case, the dynamic optimizer will allocate memory for a dbkey bitmap. In calculating the size of
that bitmap, integer (signed longword) arithmetic was used, and an integer overflow could cause the
calculation to result in a negative number being used as the requested amount of memory.

The following example shows a query on a table containing one billion (1,000,000,000) rows.

SQL> select * from t1 
cont>         where f1 >0 and f2 > 0 
cont>         optimize for total time; 
%COSI−F−UNEXPERR, unexpected system error 
−SYSTEM−F−ILLPAGCNT, illegal page count parameter 

A bugcheck dump may also be generated with the following exception and call sequence:

***** Exception at 00FE3664 : COSI_MEM_GET_VM + 000007B4 
%COSI−F−UNEXPERR, unexpected system error 
−SYSTEM−F−ILLPAGCNT, illegal page count parameter 
Saved PC = 00FE2E68 : COSI_MEM_GET_POOL + 00000048 
Saved PC = 00E3CCE8 : RDMS$$EXE_LEAF + 00001A38 
Saved PC = 00E290B4 : RDMS$$EXE_OPEN + 00000764 

The problem would not occur if any of the conditions described above were not true.

The problem can be avoided by disabling the dynamic optimizer for the query by using a query
outline with the clause EXECUTION OPTIONS NONE.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.8 Ranked Index Overflow Node Corruption on Insert

Bug 3009262

A problem in the way Rdb chooses the insertion point for the dbkey in a Ranked Index duplicate node
may, in rare cirumstances, cause a corruption of the index entry overflow node. This node corruption
may manifest itself as a bugcheck when trying to access the records associated with the overflow
node, as in the following example.

***** Exception at 00C72D78 : PSII2SCANGETNEXTBBCDUPLICATE + 00000128 
%COSI−F−BUGCHECK, internal consistency failure 

Or, this node corruption may be seen as a corrupt index warning when RMU/VERIFY/INDEX is used
to verify the ranked index. For example:

%RMU−I−BTRDUPCAR, Inconsistent duplicate cardinality (C1) of 221 specified 
                  for entry 1 at dbkey 85:807:1. 
                  Actual count of duplicates is 251. 
%RMU−I−BTRERPATH, parent B−tree node of 85:807:1 is at 85:806:0 
%RMU−I−BTRROODBK, root dbkey of B−tree is 85:806:0 
%RMU−W−DATNOTIDX, Row in table TT11 is not in any indexes. 
                  Logical dbkey is 83:82:2. 
%RMU−W−BADIDXREL, Index INDTT either points to a non−existent record or 
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                  has multiple pointers to a record in table TT11. 
                  The logical dbkey in the index is 83:127:8. 

A dump of the offending overflow node will show that even though the reference dbkey is correct, all
the dbkeys in the overflow node may be incorrect and possibly not valid record dbkeys.

The problem may only occur on Sorted Ranked index entries that are volatile enough so that more
than one overflow node is required to hold the duplicates and that, due to removal of dbkeys from the
entry, at least one non−final overflow node has subsequently been removed from the entry.

A subsequent insertion of a new duplicate in that entry may, if the insertion dbkey happens to be
greater than the last dbkey in an overflow node but less than the reference dbkey of the next overflow
node, incorrectly update the overflow node causing the subsequent corruption.

This problem only occurs with Sorted Ranked indexes.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.9 Incorrect Results From a Reverse Scan on a Ranked
Index

Bug 2874671

When an index of TYPE IS SORTED RANKED was used for retrieval and the scan was a reverse scan,
the wrong number of rows may have been returned.

The problem and symptoms are similar to that described in Section 3.1.43, however this problem is
separate and relates to reverse index scans on indices with or without duplicates.

In the following example, the first select shows that there are seven employee rows matching the
specified condition, however the subsequent cursor returns only two rows.

SQL> at 'f mf_personnel'; 
SQL> drop index EMP_EMPLOYEE_ID; 
SQL> commit; 
SQL> create unique index EMP_EMPLOYEE_ID 
cont>     on EMPLOYEES ( 
cont>     EMPLOYEE_ID 
cont>         asc) 
cont>     type is SORTED ranked 
cont>     node size 430 
cont>     disable compression; 
SQL> commit work; 
SQL> declare transaction read write isolation level read committed; 
SQL> select count(*) from employees 
cont> where    employee_id > '00300' 
cont> and      employee_id < '00400'; 

           7 
1 row selected 
SQL> declare t2 table cursor with hold preserve all for 
cont> select    * 
cont> from      employees 
cont> where    employee_id > '00300' 
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cont> and      employee_id < '00400' 
cont> order by employee_id desc; 
SQL> open t2; 
SQL> fetch t2; 
 EMPLOYEE_ID   LAST_NAME        FIRST_NAME   MIDDLE_INITIAL 
   ADDRESS_DATA_1              ADDRESS_DATA_2         CITY 
      STATE   POSTAL_CODE   SEX    BIRTHDAY      STATUS_CODE 
 00374         Andriola         Leslie       Q 
   111 Boston Post Rd.                                Salisbury 
      NH      03268         M      19−Mar−1955   1 

SQL> commit; 
SQL> fetch t2; 
 EMPLOYEE_ID   LAST_NAME        FIRST_NAME   MIDDLE_INITIAL 
   ADDRESS_DATA_1              ADDRESS_DATA_2         CITY 
      STATE   POSTAL_CODE   SEX    BIRTHDAY      STATUS_CODE 
 00369         Lapointe         Hope         NULL 
   63 Union Square                                    Boscawen 
      NH      03301         F      12−Mar−1948   1 

SQL> commit; 
SQL> fetch t2; 
%RDB−E−STREAM_EOF, attempt to fetch past end of record stream 

The problem only occurred if the retrieval was reset. A reset will occur if the transaction state has
changed since the last fetch or if the index node being retrieved has been updated since the last fetch.
In both of these cases, Oracle Rdb must re−compute its position in the index.

The problem will normally only be seen when WITH HOLD cursors are used and rows are fetched in
separate transactions.

The problem can be avoided by retrieving the rows from the cursor in a single transaction that is
either READ ONLY or READ WRITE ISOLATION LEVEL SERIALIZABLE.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.10 Restriction Removed for READ ONLY Transaction on
Standby Database

Bug 3017015

In prior versions of Oracle Rdb, attempts to execute a transaction on a Standby database would fail if
the SET TRANSACTION statement included a RESERVING ... FOR SHARED READ clause. This
occurred when the Standby database was restored using the
/TRANSACTION_MODE=READ_ONLY qualifier.

The following example shows the reported error.

SQL> attach 'filename mf_standby'; 
SQL> set transaction read only  
cont>     reserving employees for shared read; 
%RDB−E−BAD_TPB_CONTENT, invalid transaction parameters in the transaction parameter block (TPB) 
−RDMS−E−INVTRANOPT, the transaction option "SHARED READ" is not allowed 
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The /TRANSACTION_MODE qualifier is used to prevent read−write transactions executing on the
Standby database during replication. However, this makes it impossible for some read−only
applications to run against the standby database. This restriction is being relaxed for this release and
the SHARED READ reserving clause will be ignored for READ ONLY transactions on the Standby
database.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.11 Bugcheck at PSIINDEX$FIND_ENTS_EXACT + 54

Bug 2448304

When a combination of metadata operations was being performed in the same transaction, it was
possible that a bugcheck could be generated with an exception similar to the following example.

***** Exception at 0106BC24 : PSIINDEX$FIND_ENTS_EXACT + 00000054 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
  virtual address=0000000050000038, PC=000000000106BC24, PS=0000000B 

This problem was caused by an incorrect use of internal memory management optimizations. This
incorrect use can be identified by the unusual virtual adress of 0000000050000038.

The problem can be avoided by reducing the number of metadata operations performed in a single
transaction.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.12 AIJ Log Server Process May Loop or Bugcheck

Bugs 2651475 and 1756433

Under unknown but extremely rare conditions on busy databases where the After Image Journal (AIJ)
Log Server process is enabled, the ALS process has been observed to enter a loop condition writing
AIJ information to the AIJ file(s).

In the worst case, this problem could cause all available journal files to be filled with repeating data.
If no remedial action were to be taken, this condition could cause the database to be shutdown and the
AIJ journals to be considered inaccessable.

The database is not corrupted by this problem.

Stopping and restarting the ALS process will clear the looping condition even if the ALS process
must be stopped using the STOP/ID command.

Stopping the ALS process will not impact production as AIJ writes will automatically revert to the
non−ALS behaviour.

In Release 7.1.2, the behaviour of Oracle Rdb has been changed so that should this problem be
detected, the ALS process will automatically shutdown producing a bugcheck dump file. This will
prevent any danger of filling all available journals and will ensure that the database remains available.
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ALS may be safely restarted immediately as the conditions that cause such a loop are resolved during
recovery of the ALS process.

3.1.13 SYSTEM−F−NOIOCHAN Error

Bug 2540754

Repeated attaches/disconnects from a database eventually resulted in a SYSTEM−F−NOIOCHAN
failure. This problem could occur only if either of the following two conditions was true:

The database filename contained a concealed logical which included a search list and one of
the items in the search list included a rooted directory name.

♦ 

A storage area filename contained a logical with a concealed, routed filename.♦ 
The following example shows a database definition containing both of the above conditions.

$ DEFINE/SYSTEM/EXEC/TRANS=(CONCEALED) UIS_ D1:[T.], D2:[T.] 
$ DEFINE/SYSTEM/EXEC/TRANS=(CONCEALED) UIS_DEV_A D1:[T.] 
$ DEFINE/SYSTEM/EXEC/TRANS=(CONCEALED) UIS_DEV_E D1:[T.] 
$ DEFINE/SYSTEM/EXEC/TRANS=(CONCEALED) UIS_DEV_G D2:[T.] 
$ SQL$ 
SQL> CREATE DATABASE FILENAME 'UIS_:[DB]FOO.RDB' 
cont>  SEGMENTED STRING STORAGE AREA IS RDB$SYSTEM 
cont>  DEFAULT STORAGE AREA IS FOOSYS 
cont> CREATE STORAGE AREA RDB$SYSTEM 
cont>  FILENAME 'UIS_DEV_A:[DB]FOO.RDA' 
cont>  SNAPSHOT FILENAME 'UIS_DEV_A:[DB]FOO.SNP' 
cont> CREATE STORAGE AREA UIS_SYSTEM_DATA 
cont>  FILENAME 'UIS_DEV_G:[DB]FOOSYS.RDA' 
cont>  SNAPSHOT FILENAME 'UIS_DEV_E:[DB]FOOSYS.SNP'; 
SQL> exit; 

In the above example, a process that repeatedly attached to and disconnected from the FOO database
would see its process open channel count increase by three for each set of attach/disconnects. This
"channel leak" is associated with the database filename and each of the two storage areas. If the
process repeated the attach/disconnect sequence enough times, eventually the open I/O channel count
would be exhausted and the process would fail with SYSTEM−F−NOIOCHAN.

As a possible workaround, define the logicals without using concealed rooted filenames.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.14 ROLLBACK Not Appended to AIJ for Failed 2PC
Transactions

Bug 2510623

If a process was a participant in a two−phase commit (2PC) transaction, and if any of the participants
voted to commit the transaction, but before all of the participants voted one of the participants failed,
the database recovery process (DBR) would neglect to write a rollback entry to the after−image
journal (AIJ).

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.1.15 Bugcheck at LCK$MEMBIT_BLAST + 023C With
Exception of COSI−F−IVLOCKID

Bug 2628150

Previously, it was possible for Rdb to bugcheck with an exception of COSI−F−IVLOCKID at
LCK$MEMBIT_BLAST with a footprint similar to the following:

Exception at LCK$MEMBIT_BLAST + 0000023C 
COSI−F−IVLOCKID, invalid lock id 
Called from LCK$BLKAST + 00000084 
Called from symbol not found 
Called from LCK$MEMBIT_BLAST + 000001E4 
Called from LCK$UNBIND + 000001D4 
Called from KOD$UNBIND + 000003D4 
Called from RDMS$$DETACH_DATABASE + 000006D8 

This problem was due to a race condition when unbinding from the database while the database was
being opened or closed on another node of the cluster. As a workaround, Oracle suggests explicitly
opening databases with the RMU /OPEN command and leaving them open while available to users.

This problem has been corrected in Oracle Rdb Release 7.1.2. The race condition while unbinding
from the database has been removed.

3.1.16 Bugcheck When Multiple Tables are Transitively
Joined With IS NULL Filter

The following query with a transitive join between multiple tables bugchecks.

att 'file personnel'; 
select T0.SALARY_AMOUNT, 
    T1.DEPARTMENT_CODE, 
        T1.SUPERVISOR_ID, 
        T2.EMPLOYEE_ID, 
        T2.DEGREE, 
        T2.COLLEGE_CODE, 
        T2.DEGREE_FIELD 
        from SALARY_HISTORY T0, JOB_HISTORY T1, DEGREES T2 
          where T0.EMPLOYEE_ID = T1.EMPLOYEE_ID 
                 and T1.EMPLOYEE_ID = T2.EMPLOYEE_ID 
                 and T2.EMPLOYEE_ID is null; 

This bugcheck occurs when multiple tables are transitively joined and the IS NULL filter is applied to
the join column.

There is no known workaround.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.1.17 Unexpected Error From GRANT and REVOKE

Bug 2680837

In prior versions of Oracle Rdb, GRANT and REVOKE might fail if the table, sequence, module,
function or procedure name was delimited and contained lowercase characters.

The following example shows the problem with wildcard GRANT on all tables. The table name was
incorrectly converted to uppercase.

SQL> set quoting rules 'SQL92'; 
SQL> create table "little" ( i integer); 
SQL> create table "little_BIG" (i integer); 
SQL> create table BIG (i integer); 
SQL> 
SQL> grant all on table * to JONES; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−OBSOLETE_METADA, request references metadata objects that no 
longer exist 
−RDMS−F−TABNOTDEF, relation LITTLE is not defined in database 

A workaround for tables was to specify each table name explicitly.

SQL> set quoting rules 'SQL92'; 
SQL> grant all on table "little"     to JONES; 
SQL> grant all on table "little_BIG" to JONES; 
SQL> grant all on table BIG          to JONES; 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.18 Process Can Hang After SYS$FORCEX Issued

Bug 2665186

Oracle Rdb processes could hang if the OpenVMS system service SYS$FORCEX was used to
terminate a database application. For example, if an RMU /CLOSE was issued, some active database
processes may have become hung in the LEF state. Note that the default for RMU /CLOSE is
/ABORT=FORCEX. Another example of a command that uses the SYS$FORCEX facility is the
"Terminate image" command that is available in the RMU /SHOW STATISTICS utility.

This problem has been corrected in Oracle Rdb Release 7.1.2. Oracle Rdb processes will no longer
become hung due to the use of the SYS$FORCEX system service.

In the past, Oracle has recommended that SYS$FORCEX be used to terminate database processes
since that could prevent a database recovery process (DBR) from being invoked to recover the failed
database user. While this would often prevent a DBR from being invoked, it did not always prevent a
DBR process from being started. A DBR process may need to be invoked if the forced exit request is
received when there is an Oracle Rdb request active. This is due to limitations in the implementation
of exit handlers in the OpenVMS operating system.

Forced exit requests are intercepted by using the OpenVMS exit handler facility. If there is no Oracle
Rdb database request active at the time that the forced exit is received by the Oracle Rdb process, then
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the Oracle Rdb exit handler can gracefully rundown all Oracle Rdb activity. No DBR intervention is
required. But, if the exit request comes in while an Oracle Rdb database request is active, then it is not
possible to gracefully rundown Oracle Rdb.

An exit handler works effectively like an AST routine. That is, there is a good chance that when an
exit request has been received some Oracle Rdb task has been interrupted. Oracle Rdb must handle
the exit request when the exit handler is invoked, regardless of what activity is occurring at the time
of the interrupt. Rundown activity cannot be postponed to a later time after the currently executing
database request has finished. It is not possible for Oracle Rdb to unwind activity under way at the
time of the forced exit request, so if Oracle Rdb finds that a database request is active at the time of
the forced exit interrupt then no cleanup is attempted. The process fails abnormally and has to be
recovered by a DBR.

3.1.19 Show Storage Map "Lists_Map" Partition Display
Error

After a storage map for "lists" is created, a SHOW STORAGE MAP "LISTS_MAP" might
incorrectly indicate that the lists are "Implicitly mapped to the default storage area" instead of
displaying the desired information as a list of the storage areas actually used.

The following example illustrates the problem. The following is one such correct list.

SQL> show storage map lists_map 

LISTS_MAP  For Lists Store clause: 
   STORE lists in (RESUME_LISTS0, RESUME_LISTS1) for (newres.resume) FILL 
   SEQUENTIALLY in (RESUME_LISTS2, RESUME_LISTS3, RESUME_LISTS5, RESUME_LISTS7) 
   for (newres) FILL RANDOMLY in RESUME_LISTS −− this map uses the default list 
   area as part of two mappings 

 Partition information for lists map: 
 Vertical Partition: VRP_P000 
  Partition: (1) SYS_P00067 
    Fill Sequentially 
   Storage Area: RESUME_LISTS0 
  Partition: (1) SYS_P00068 
   Storage Area: RESUME_LISTS1 
  Partition: (2) SYS_P00069 
    Fill Randomly 

The following is an example of the error:

SQL>   show storage map lists_map 
     LISTS_MAP 
 For Lists 
 Store clause:    STORE lists 
             in (RESUME_LISTS0, 
                 RESUME_LISTS1) for (newres.resume) FILL SEQUENTIALLY 
             in (RESUME_LISTS2, 
                 RESUME_LISTS3, 
                 RESUME_LISTS5, 
                 RESUME_LISTS7) for (newres) FILL RANDOMLY 
             in RESUME_LISTS 
         −− this map uses the default list area as part of two mappings 
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 Partition information for lists map: 
  Implicitly mapped to the default storage area 

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.20 Incorrect Cardinalities Calculated by CREATE
DATABASE

Bug 2421582

In prior versions of Oracle Rdb, CREATE DATABASE would calculate incorrect cardinalities for
system relations RDB$FIELDS and RDB$RELATION_FIELDS.

The following example shows this behavior.

Old behaviour: 
RELATION NAME                   STORED               ACTUAL 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
RDB$FIELDS                      0                    41 
RDB$RELATION_FIELDS             70                   432 

Corrected  behaviour: 
RELATION NAME                   STORED               ACTUAL 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
RDB$FIELDS                      41                   41 
RDB$RELATION_FIELDS             432                  432 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.21 ALTER INDEX Fails With the RDMS−F−NOT_LARDY
Error

Bug 2722397

In prior releases of Oracle Rdb Release 7.1, attempts to use ALTER INDEX to TRUNCATE ALL
PARTITIONS or REBUILD ALL PARTITIONS would fail with the error NOT_LARDY for indices
that were not explicitly mapped.

The following example shows the error when an index is created on the JOBS table in the
PERSONNEL database.

SQL> set flags 'index_stats'; 
SQL> alter index JOB_CODE_INDEX rebuild all partitions; 
~Ai alter index "JOB_CODE_INDEX" (hashed=0, ordered=0) 
~As locking table "JOBS" 
~Ai truncate all partitions 
~Ai truncated 0 partitions, skipped 0 
~Ai shared larea − must destroy tree 
%RDB−E−NO_META_UPDATE, metadata update failed            
−RDMS−F−NOT_LARDY, area for 4:733:2 not in proper ready mode 
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The error occurs because ALTER INDEX incorrectly thinks this index shares the logical area with
another index. The DROP INDEX and CREATE INDEX commands must be used to rebuild this type
of index.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.22 Cannot Drop Close Timer Database

Bug 2711207

If a database has a wait for close timer defined, it cannot be dropped. For example:

SQL> create database filename foo open automatic (wait 1 minutes for close); 
SQL> disconnect all; 
SQL> $wait 0:1:30 
SQL> drop database filename foo; 
%RDB−F−SYS_REQUEST, error from system services request 
−RDMS−F−FILACCERR, error opening database root file DEV:[DIR]FOO.RDB;1 
−SYSTEM−W−ACCONFLICT, file access conflict 
SQL> 

To avoid this problem, disable the close timer prior to dropping the database.

SQL> alter database filename foo open automatic (wait 0 minutes for close); 
SQL> drop database filename foo; 
SQL> 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.23 Outer ORDER BY Ignored in Favor of Inner ORDER
BY Clause

Bug 2649678

The following query returned the results in the wrong sort order. The query has two explicit sorts, an
outer sort on the birthday column in ascending order and a sort in the nested select clause on the
birthday column in descending sort order. The query results were being returned in descending order
of the birthday column.

select o.* from 
  (select distinct i.last_name, i.first_name, i.birthday 
  from employees i order by birthday desc limit to 10 rows) o 
order by birthday asc; 

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.24 Query Using IN Clause With 16 Filter Predicates
Runs Slower
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Bug 2634849

The following query using an IN clause with 16 filter predicates takes much longer than a query that
uses 15 filter predicates where dynamic OR strategy is applied.

 SELECT COUNT(*) 
 FROM 
 (( SELECT 
    OPERATION_NO, PLATE_ID, FINISH_DATIME 
    ,BATCH_ID 
      FROM LCD_PLATE_HISTORY 
      WHERE   OPERATION_NO = '3040' AND PLATE_ID IN 
  ('BNL70826−03','BNL70826−04','BNL70826−05','BNL70826−06','BNL70826−10', 
   'BNL70826−11','BNL70826−12','BNL70826−13','BNL70826−14','BNL70826−15', 
   'BNL70826−18','BNL70828−01','BNL70828−02','BNL70828−03','BNL70828−04', 
   'BNL70828−05' 
   )) 
  AS TFT_H 
  ( OPERATION_NO, PLATE_ID, FINISH_DATIME 
    ,BATCH_ID 
   ) 
 INNER JOIN 
 ( SELECT OPERATION_NO 
    FROM LCD_PROCESS_DATA_ITEMS 
    WHERE   PROCESS_DATA_TYPE ='A' AND OPERATION_NO = '3040' ) 
      AS TFT_D1 ( OPERATION_NO) 
         ON TFT_H.OPERATION_NO = TFT_D1.OPERATION_NO 
 ) 
 LEFT OUTER JOIN 
 ( SELECT   PLATE_ID, OPERATION_NO 
   FROM LCD_PLATE_PROCESS_A) 
   AS TFT_A1 ( PLATE_ID, OPERATION_NO ) 
  ON TFT_H.OPERATION_NO = TFT_A1.OPERATION_NO 
        AND TFT_H.PLATE_ID = TFT_A1.PLATE_ID 
; 
Tables: 
  0 = LCD_PLATE_HISTORY 
  1 = LCD_PROCESS_DATA_ITEMS 
  2 = LCD_PLATE_PROCESS_A 
Aggregate: 0:COUNT (*) 
Cross block of 2 entries        (Left Outer Join) 
  Cross block entry 1 
    Cross block of 2 entries 
      Cross block entry 1 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: (1.PROCESS_DATA_TYPE = 'A') AND (1.OPERATION_NO = '3040') 
          Leaf#01 BgrOnly 1:LCD_PROCESS_DATA_ITEMS Card=1 
            Bool: 1.OPERATION_NO = '3040' 
            BgrNdx1 LCD_PROCESS_DATA_ITEMS_IDX_S2 [1:1] Fan=13 
              Keys: 1.OPERATION_NO = '3040' 
      Cross block entry 2 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: 0.OPERATION_NO = 1.OPERATION_NO 
          Leaf#02 BgrOnly 0:LCD_PLATE_HISTORY Card=505000 
            Bool: (0.OPERATION_NO = '3040') AND ((0.PLATE_ID = 'BNL70826−03') 
                   OR (0.PLATE_ID = 'BNL70826−04') OR (0.PLATE_ID = 
                  'BNL70826−05') OR (0.PLATE_ID = 'BNL70826−06') OR (0.PLATE_ID 
                   = 'BNL70826−10') OR (0.PLATE_ID = 'BNL70826−11') OR ( 
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                  0.PLATE_ID = 'BNL70826−12') OR (0.PLATE_ID = 'BNL70826−13') 
                   OR (0.PLATE_ID = 'BNL70826−14') OR (0.PLATE_ID = 
                  'BNL70826−15') OR (0.PLATE_ID = 'BNL70826−18') OR (0.PLATE_ID 
                   = 'BNL70828−01') OR (0.PLATE_ID = 'BNL70828−02') OR ( 
                  0.PLATE_ID = 'BNL70828−03') OR (0.PLATE_ID = 'BNL70828−04') 
                   OR (0.PLATE_ID = 'BNL70828−05')) 
            BgrNdx1 LCD_PLATE_HISTORY_IDX_S1 [1:1] Fan=9    <== See Note1 
              Keys: 0.OPERATION_NO = 1.OPERATION_NO 
              Bool: (0.OPERATION_NO = '3040') AND ((0.PLATE_ID = 'BNL70826−03') 
                     OR (0.PLATE_ID = 'BNL70826−04') OR (0.PLATE_ID = 
                    'BNL70826−05') OR (0.PLATE_ID = 'BNL70826−06') OR ( 
                    0.PLATE_ID = 'BNL70826−10') OR (0.PLATE_ID = 'BNL70826−11') 
                     OR (0.PLATE_ID = 'BNL70826−12') OR (0.PLATE_ID = 
                    'BNL70826−13') OR (0.PLATE_ID = 'BNL70826−14') OR ( 
                    0.PLATE_ID = 'BNL70826−15') OR (0.PLATE_ID = 'BNL70826−18') 
                     OR (0.PLATE_ID = 'BNL70828−01') OR (0.PLATE_ID = 
                    'BNL70828−02') OR (0.PLATE_ID = 'BNL70828−03') OR ( 
                    0.PLATE_ID = 'BNL70828−04') OR (0.PLATE_ID = 'BNL70828−05')) 
  Cross block entry 2 
    Merge of 1 entries 
      Merge block entry 1 
      Conjunct: (0.OPERATION_NO = 2.OPERATION_NO) AND (0.PLATE_ID = 2.PLATE_ID) 
      Index only retrieval of relation 2:LCD_PLATE_PROCESS_A 
        Index name  LCD_PLATE_PROCESS_A_IDX_S1 [2:2] 
          Keys: (0.PLATE_ID = 2.PLATE_ID) AND (0.OPERATION_NO = 2.OPERATION_NO) 

           5   
1 row selected 

Note1: Incorrect retrieval via LCD_PLATE_HISTORY_IDX_S1 [1:1] is applied instead of dynamic
OR strategy.

The query works applying dynamic OR strategy if one of the columns in the select list is commented
out.

 SELECT COUNT(*) 
 FROM 
 (( SELECT 
    OPERATION_NO, PLATE_ID, FINISH_DATIME 
!   ,BATCH_ID 
      FROM LCD_PLATE_HISTORY 
      WHERE   OPERATION_NO = '3040' AND PLATE_ID IN 
  ('BNL70826−03','BNL70826−04','BNL70826−05','BNL70826−06','BNL70826−10', 
   'BNL70826−11','BNL70826−12','BNL70826−13','BNL70826−14','BNL70826−15', 
   'BNL70826−18','BNL70828−01','BNL70828−02','BNL70828−03','BNL70828−04', 
   'BNL70828−05'    
   )) 
  AS TFT_H 
  ( OPERATION_NO, PLATE_ID, FINISH_DATIME 
!   ,BATCH_ID 
   ) 
 INNER JOIN 
 ( SELECT OPERATION_NO 
    FROM LCD_PROCESS_DATA_ITEMS 
    WHERE   PROCESS_DATA_TYPE ='A' AND OPERATION_NO = '3040' ) 
     AS TFT_D1 ( OPERATION_NO) 
      ON TFT_H.OPERATION_NO = TFT_D1.OPERATION_NO 
 ) 
 LEFT OUTER JOIN 
 ( SELECT   PLATE_ID, OPERATION_NO 
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   FROM LCD_PLATE_PROCESS_A) 
   AS TFT_A1 ( PLATE_ID, OPERATION_NO ) 
  ON TFT_H.OPERATION_NO = TFT_A1.OPERATION_NO 
         AND TFT_H.PLATE_ID = TFT_A1.PLATE_ID 
; 
Tables: 
  0 = LCD_PLATE_HISTORY 
  1 = LCD_PROCESS_DATA_ITEMS 
  2 = LCD_PLATE_PROCESS_A 
Aggregate: 0:COUNT (*) 
Cross block of 2 entries        (Left Outer Join) 
  Cross block entry 1 
    Cross block of 2 entries 
      Cross block entry 1 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: (1.PROCESS_DATA_TYPE = 'A') AND (1.OPERATION_NO = '3040') 
          Leaf#01 BgrOnly 1:LCD_PROCESS_DATA_ITEMS Card=1 
            Bool: 1.OPERATION_NO = '3040' 
            BgrNdx1 LCD_PROCESS_DATA_ITEMS_IDX_S2 [1:1] Fan=13 
              Keys: 1.OPERATION_NO = '3040' 
      Cross block entry 2 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: 0.OPERATION_NO = 1.OPERATION_NO 
          Leaf#02 NdxOnly 0:LCD_PLATE_HISTORY Card=505000 
            Bool: (0.OPERATION_NO = '3040') AND ((0.PLATE_ID = 'BNL70826−03') 
                   OR (0.PLATE_ID = 'BNL70826−04') OR (0.PLATE_ID = 
                  'BNL70826−05') OR (0.PLATE_ID = 'BNL70826−06') OR (0.PLATE_ID 
                   = 'BNL70826−10') OR (0.PLATE_ID = 'BNL70826−11') OR ( 
                  0.PLATE_ID = 'BNL70826−12') OR (0.PLATE_ID = 'BNL70826−13') 
                   OR (0.PLATE_ID = 'BNL70826−14') OR (0.PLATE_ID = 
                  'BNL70826−15') OR (0.PLATE_ID = 'BNL70826−18') OR (0.PLATE_ID 
                   = 'BNL70828−01') OR (0.PLATE_ID = 'BNL70828−02') OR ( 
                  0.PLATE_ID = 'BNL70828−03') OR (0.PLATE_ID = 'BNL70828−04') 
                   OR (0.PLATE_ID = 'BNL70828−05')) 
            FgrNdx  LCD_PLATE_HISTORY_IDX_S1 [(2:2)16] Fan=9 
              Keys: r0: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−05') 
                    r1: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−04') 
                    r2: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−03') 
                    r3: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−02') 
                    r4: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−01') 
                    r5: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−18') 
                    r6: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−15') 
                    r7: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−14') 
                    r8: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−13') 
                    r9: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−12') 
                    r10: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−11') 
                    r11: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−10') 
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                    r12: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−06') 
                    r13: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−05') 
                    r14: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−04') 
                    r15: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−03') 
            BgrNdx1 LCD_PLATE_HISTORY_IDX_S4 [(2:2)16] Fan=9 
              Keys: r0: (0.PLATE_ID = 'BNL70828−05') AND (0.OPERATION_NO = 
                        '3040') 
                    r1: (0.PLATE_ID = 'BNL70828−04') AND (0.OPERATION_NO = 
                        '3040') 
                    r2: (0.PLATE_ID = 'BNL70828−03') AND (0.OPERATION_NO = 
                        '3040') 
                    r3: (0.PLATE_ID = 'BNL70828−02') AND (0.OPERATION_NO = 
                        '3040') 
                    r4: (0.PLATE_ID = 'BNL70828−01') AND (0.OPERATION_NO = 
                        '3040') 
                    r5: (0.PLATE_ID = 'BNL70826−18') AND (0.OPERATION_NO = 
                        '3040') 
                    r6: (0.PLATE_ID = 'BNL70826−15') AND (0.OPERATION_NO = 
                        '3040') 
                    r7: (0.PLATE_ID = 'BNL70826−14') AND (0.OPERATION_NO = 
                        '3040') 
                    r8: (0.PLATE_ID = 'BNL70826−13') AND (0.OPERATION_NO = 
                        '3040') 
                    r9: (0.PLATE_ID = 'BNL70826−12') AND (0.OPERATION_NO = 
                        '3040') 
                    r10: (0.PLATE_ID = 'BNL70826−11') AND (0.OPERATION_NO = 
                        '3040') 
                    r11: (0.PLATE_ID = 'BNL70826−10') AND (0.OPERATION_NO = 
                        '3040') 
                    r12: (0.PLATE_ID = 'BNL70826−06') AND (0.OPERATION_NO = 
                        '3040') 
                    r13: (0.PLATE_ID = 'BNL70826−05') AND (0.OPERATION_NO = 
                        '3040') 
                    r14: (0.PLATE_ID = 'BNL70826−04') AND (0.OPERATION_NO = 
                        '3040') 
                    r15: (0.PLATE_ID = 'BNL70826−03') AND (0.OPERATION_NO = 
                        '3040') 
  Cross block entry 2 
    Merge of 1 entries 
      Merge block entry 1 
      Conjunct: (0.OPERATION_NO = 2.OPERATION_NO) AND (0.PLATE_ID = 2.PLATE_ID) 
      Index only retrieval of relation 2:LCD_PLATE_PROCESS_A 
        Index name  LCD_PLATE_PROCESS_A_IDX_S1 [2:2] 
          Keys: (0.PLATE_ID = 2.PLATE_ID) AND (0.OPERATION_NO = 2.OPERATION_NO) 

           5   
1 row selected 

As a potential workaround, the query works if the dynamic strategy is disabled by setting the SQL
flag 'MAX_STABILITY' or defining the logical RDMS$MAX_STABILITY as Y.

set flags 'MAX_STABILITIY'; 
!execute the above same query 
@bug.sql 
Tables: 
  0 = LCD_PLATE_HISTORY 

Oracle® Rdb for OpenVMS

3.1.22 Cannot Drop Close Timer Database 52



  1 = LCD_PROCESS_DATA_ITEMS 
  2 = LCD_PLATE_PROCESS_A 
Aggregate: 0:COUNT (*) 
Cross block of 2 entries        (Left Outer Join) 
  Cross block entry 1 
    Cross block of 2 entries 
      Cross block entry 1 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: 1.PROCESS_DATA_TYPE = 'A' 
          Conjunct: 1.OPERATION_NO = '3040' 
          Get     Retrieval by index of relation 1:LCD_PROCESS_DATA_ITEMS 
            Index name  LCD_PROCESS_DATA_ITEMS_IDX_S2 [1:1] 
              Keys: 1.OPERATION_NO = '3040' 
      Cross block entry 2 
        Merge of 1 entries 
          Merge block entry 1 
          Conjunct: 0.OPERATION_NO = 1.OPERATION_NO 
          Conjunct: (0.OPERATION_NO = '3040') AND ((0.PLATE_ID = 'BNL70826−03') 
                     OR (0.PLATE_ID = 'BNL70826−04') OR (0.PLATE_ID = 
                    'BNL70826−05') OR (0.PLATE_ID = 'BNL70826−06') OR ( 
                    0.PLATE_ID = 'BNL70826−10') OR (0.PLATE_ID = 'BNL70826−11') 
                     OR (0.PLATE_ID = 'BNL70826−12') OR (0.PLATE_ID = 
                    'BNL70826−13') OR (0.PLATE_ID = 'BNL70826−14') OR ( 
                    0.PLATE_ID = 'BNL70826−15') OR (0.PLATE_ID = 'BNL70826−18') 
                     OR (0.PLATE_ID = 'BNL70828−01') OR (0.PLATE_ID = 
                    'BNL70828−02') OR (0.PLATE_ID = 'BNL70828−03') OR ( 
                    0.PLATE_ID = 'BNL70828−04') OR (0.PLATE_ID = 'BNL70828−05')) 
          Get     Retrieval by index of relation 0:LCD_PLATE_HISTORY 
            Index name  LCD_PLATE_HISTORY_IDX_S1 [(2:2)16] 
              Keys: r0: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−05') 
                    r1: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−04') 
                    r2: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−03') 
                    r3: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−02') 
                    r4: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70828−01') 
                    r5: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−18') 
                    r6: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−15') 
                    r7: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−14') 
                    r8: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−13') 
                    r9: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−12') 
                    r10: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−11') 
                    r11: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−10') 
                    r12: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−06') 
                    r13: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−05') 
                    r14: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
                        'BNL70826−04') 
                    r15: (0.OPERATION_NO = '3040') AND (0.PLATE_ID = 
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                        'BNL70826−03') 
              Bool: 0.OPERATION_NO = '3040' 
  Cross block entry 2 
    Merge of 1 entries 
      Merge block entry 1 
      Conjunct: (0.OPERATION_NO = 2.OPERATION_NO) AND (0.PLATE_ID = 2.PLATE_ID) 
      Index only retrieval of relation 2:LCD_PLATE_PROCESS_A 
        Index name  LCD_PLATE_PROCESS_A_IDX_S1 [2:2] 
          Keys: (0.PLATE_ID = 2.PLATE_ID) AND (0.OPERATION_NO = 2.OPERATION_NO) 

           5   
1 row selected 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.25 PIOUTL$BUILD_IORB Bugcheck Adding Mixed
Format Storage Area

Bug 2753947

When adding storage areas to a database when the new storage area has a page size smaller than the
page size of any existing storage area, it was possible for memory corruption to occur. The symptoms
of this corruption could include bugcheck dumps with an ACCVIO exception at
PIOUTL$BUILD_IORB.

The following command sequence illustrates one possible failure case.

$ SQL 
    CREATE DATABASE FILENAME 'TESTDB' 
    NUMBER OF CLUSTER NODES 1              BUFFER SIZE IS 24 BLOCKS 
    NUMBER OF BUFFERS 50                   SHARED MEMORY IS SYSTEM 
    RESERVE 200 STORAGE AREAS              RESERVE 110 JOURNALS 
    DEFAULT STORAGE AREA IS RDB$SYSTEM 

    CREATE STORAGE AREA RDB$SYSTEM FILENAME 'TESTDB_SYSTEM_AREA.RDA' 
        PAGE SIZE IS 6 BLOCKS              ALLOCATION IS 1000 PAGES 
        EXTENT IS (MINIMUM 5000, MAXIMUM 10000, PERCENT GROWTH 20) 
        SNAPSHOT FILENAME 'TESTDB_SYSTEM_AREA.SNP' 
        SNAPSHOT ALLOCATION IS 100 PAGES 
        SNAPSHOT EXTENT IS (MINIMUM 10, MAXIMUM 10, PERCENT GROWTH 1); 

    EXIT; 
$ SQL 
    ALTER DATABASE FILENAME TESTDB 
    ADD STORAGE AREA A_MIXED_AREA FILENAME 'A_MIXED_AREA.RDA' 
        PAGE FORMAT IS MIXED 
        PAGE SIZE IS 3 BLOCKS              ALLOCATION IS 20 PAGES 
        EXTENT IS (MINIMUM 1000, MAXIMUM 1000, PERCENT GROWTH 20) 
        SNAPSHOT FILENAME 'A_MIXED_AREA.SNP' 
        SNAPSHOT ALLOCATION IS 10 PAGES 
        SNAPSHOT EXTENT IS (MINIMUM 10, MAXIMUM 10, PERCENT GROWTH 1); 
    EXIT; 

This problem has been corrected in Oracle Rdb Release 7.1.2. The potential failure was due to
incorrect "maximum pages in buffer" calculations being performed after the new area was added with
the smallest page size in the database. The new storage area is now added in a strictly "offline" mode
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to prevent inaccurate page size information from being used.

3.1.26 Unexpected Bugcheck During CREATE SEQUENCE

Bug 2753954

In prior versions of Oracle Rdb, attempts to use CREATE SEQUENCE in a READ ONLY transaction
would bugcheck if the database had snapshots disabled.

Alpha OpenVMS 7.3 
Oracle Rdb Server V7.1−04 
Got a RDSBUGCHK.DMP 
COSI−F−BUGCHECK, internal consistency failure 
Exception occurred at SEQ$CREATE_SEQUENCE + 00000280 
Called from RDMS$$CREATE_SEQUENCE_INFO + 0000033C 
Called from RDMS$$RELEASE_DDL_VM_HNDLR + 00000DD8 

The following example shows an example script being executed.

SQL> set flags 'transaction'; 
SQL> 
SQL> set transaction read only; 
~T Compile transaction (1) on db: 1 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_READ (read only) 
~T Start_transaction (1) on db: 1, db count=1 
~T Snapshots are disabled, READ ONLY converted to READ WRITE 
SQL> 
SQL> create sequence DEPT_ID_SEQ; 
%RDMS−I−BUGCHKDMP, generating bugcheck dump file USER2:[TESTING]RDSBUGCHK.DMP; 
SQL> rollback; 

This problem has been corrected in Oracle Rdb Release 7.1.2. Rdb now checks for the READ ONLY
transaction prior to creating the sequence in the Rdb database root file. An exception is now raised as
shown in this example.

SQL> create sequence DEPT_ID_SEQ; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−READ_ONLY_TRANS, attempt to update during a read−only transaction 

3.1.27 Bugcheck on Dropping of an Empty Sorted Ranked
Index

Bug 2772919

A problem in the checking of index node integrity on the dropping of a sorted ranked index caused a
bugcheck to be incorrectly raised.

The bugcheck shows the following exception:

***** Exception at 00DAA9C8 : PSII2DESTROYDUPCHAINS + 00000108 
%COSI−F−BUGCHECK, internal consistency failure 
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This problem only occurs when a sorted ranked index is created on an empty table and then dropped
prior to any records being inserted into the table.

A possible workaround is to insert a dummy record into the indexed table prior to dropping the index.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.28 Index Estimation May Not Estimate the Most Useful
Index First

Bug 650980

When a dynamic tactic is chosen for query execution, Oracle Rdb may perform estimation each time
the query executes to determine the most useful index for retrieval. Estimation involves examining the
index to determine which of multiple indexes would be the most useful for retrieving the required
data. If an index examined during estimation would return zero rows, the execution of that retrieval is
terminated since it is known that the query will return zero rows. This is termed zero shortcut.

In the past, when a zero shortcut is performed, Rdb did not re−order the background indexes. This
meant that the indexes would be estimated in the same sequence on the next execution. Should a
query execute many times over, where the second background index caused zero shortcut, the effort
to estimate the first index every time is wasted and could cause excessive IO.

In the following example, a portion of the execution trace for a query shows how background index 1
estimates at 1 row but background index 2 gives a precise estimate of zero causing zero shortcut. In
this case, the IO needed to estimate background index 1 is wasted.

~E#0005.04(1) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(2) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(3) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(4) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(5) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(6) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 
~E#0005.04(7) Estim  Ndx:Lev/Seps/DBKeys 1:1/1/1 2:1/0/0 ZeroShortcut 

Rdb now forces the index with the zero estimate to be the first index estimated on the subsequent
execution. This eliminates IO wasted on estimating other indices where one index repeatedly zero
shortcuts.

The corrected execution trace will show the indexes in the new order.

~E#0006.04(1) Estim   Index/Estimate 2/0 1/1 ZeroShortcut 
~E#0006.04(2) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 
~E#0006.04(3) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 
~E#0006.04(4) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 
~E#0006.04(5) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 
~E#0006.04(6) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 
~E#0006.04(7) Estim   Index/Estimate 2/0 1_1 ZeroShortcut 

Notice how on the second and subsequent executions, the background index 1 shows an underscore
"_" character. This indicates that estimation was not performed for that index.
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This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.29 Premature Switch to Sequential Retrieval in the
Dynamic Optimizer

Bug 1335370

When Oracle Rdb chooses to use the dynamic optimizer, it uses an estimate of the table cardinality to
limit how much of an index is read before it is considered too costly. If this limit is reached, Rdb
assumes it is less costly to read the data using sequential retrieval than to pursue the index lookup.

In the following example, a user attaches to a database and queries a table containing no rows. On
first reference to the table, the user will record the tables current cardinality. A second user then
inserts approximately 60,000 rows into the table. Because the first user has no way of identifying the
presence of the new rows, when the table is queried again the dynamic optimizer prematurely
switches to sequential retrieval. This causes a large amount of IO to be performed during the FIN
phase.

~S#0005 
Tables: 
  0 = RVOPERCONS 
Firstn: 15 
Sort: <mapped field>(a) 
Aggregate: 0:COUNT (*) 
           1:SUM (0.OPC_NUMTITU) 
           2:SUM (0.OPC_IMPORTE_EFECT) 
           3:MIN (0.OPC_NUMORD_OPER) 
Sort: 0.OPC_VALORRV(a), 0.OPC_PRECIORV(a) 
Leaf#01 BgrOnly 0:RVOPERCONS Card=0 
  Bool: (0.OPC_VALORRV = 'TEF') AND (0.OPC_NUMORD_OPER >= 0) AND ((( 
        0.OPC_CODSOCNS_RECC = '9820') AND (0.OPC_FECHA_ORDCOMP = '20000605') 
         AND (0.OPC_NUMORD_COMP = 60055)) OR ((0.OPC_CODSOCNS_RECV = '9820') 
         AND (0.OPC_FECHA_ORDVENT = '20000605') AND (0.OPC_NUMORD_VENT = 60055)) 
        ) 
  BgrNdx1 IXOPC1SU [2:1] Fan=14 
    Keys: (0.OPC_VALORRV = 'TEF') AND (0.OPC_NUMORD_OPER >= 0) 
~E#0005.01(1) BgrNdx1 FtchLim  DBKeys=1016  Fetches=4+42  RecsOut=0 
~E#0005.01(1) Fin     Seq      DBKeys=60451  Fetches=0+2329  RecsOut=26 

To avoid the problem, the user can do the following:

Detach and re−attach to the database. When the user re−attaches, the updated table cardinality
will be retrieved from the metadata that will include the newly inserted rows.

♦ 

Use a query outline. A query outline with EXECUTION OPTIONS NONE will prevent the
use of the dynamic optimizer which should ensure a static index lookup that will not switch to
sequential.

♦ 

During the estimation phase of dynamic execution, Rdb attempts to update the cardinality used to
determine the limit for the switch to sequential retrieval. It does this by using index depth and the
number of entries in the root node of a TYPE IS SORTED index to estimate the number of rows in a
table. However, this calculation did not take place if there was only one background index or the
index was TYPE IS SORTED RANKED or the index was partitioned.

This problem has been corrected by several changes in the dynamic optimizer.
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For ranked indexes, Rdb now calculates the estimate of rows based on the ranking
information in the root node of the index during index estimation.

♦ 

Estimation will be attempted even if there is only one background index.♦ 
Estimates for ranked indexes are considerably more reliable and are used in preference to
estimates from sorted (non−ranked) indexes.

♦ 

In addition, the execution trace information has been enhanced to enable display of the dynamic
cardinality updates using SET FLAGS 'EXECUTION,DETAIL(1)'.

The following example shows the new execution trace. Since the strategy is the same as the previous
example, it has been omitted in this example.

~Estim  Ndx1 Ranked: Nodes=155, Min=0, Est=3110 IO=1 
~Estim  RLEAF Cardinality=  4.3821000E+04 
~E#0004.01(1) Estim   Index/Estimate 1/3110 
~E#0004.01(1) BgrNdx1 EofBuf   DBKeys=1024  Fetches=3+42  RecsOut=0 
~E#0004.01(1) BgrNdx1 EofBuf   DBKeys=2048* Fetches=0+41  RecsOut=0 
~E#0004.01(1) BgrNdx1 EofBuf   DBKeys=3072* Fetches=0+40  RecsOut=0 
~E#0004.01(1) BgrNdx1 EofData  DBKeys=4058* Fetches=0+38  RecsOut=0 #Bufs=1017 
~E#0004.01(1) Fin     TTbl     DBKeys=4058  Fetches=0+1017  RecsOut=26 

Notice how the new debug information shows the new cardinality estimate for this dynamic strategy
is 4.3821000E+04 or 43,821 rows. This is reasonably close to the actual table cardinality of 60,000
rows. Because the table cardinality for this dynamic tactic is now more accurate, execution does not
switch to sequential retrieval and the index scan executes to completion resulting in a significant
performance improvement in terms of IO and elapsed time.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.30 Poor Performance From Bulk Loads After 7.1.0.1

Bug 2782338

In Oracle Rdb Release 7.1.0.1, the asynchronous batch write (ABW) facility was changed to no
longer write large batches of pages at a time. While this change worked fine for applications that
would randomly update some buffers in the buffer pool and not others, it did impact the performance
of bulk load and other update intensive operations. Not doing large batches increased the number of
recovery unit journal (RUJ) file writes done in a single transaction causing more I/O to be required for
a transaction.

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.

Oracle Rdb will again write a group of modified buffers when the ABW facility is triggered. The
number of buffers written will be as much as specified or defaulted for the database Asynchronous
Batch Write options "MAXIMUM BUFFER COUNT IS buffer−count" parameter. This number is
displayed in the following RMU /DUMP /HEADER output as "Maximum batch size is 4 buffers":

      − Asynchronous batch−write is enabled 
          Clean buffer count is 5 
          Maximum batch size is 4 buffers 
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Fewer pages may be written if the oldest buffers in the buffer pool are not all modified.

3.1.31 RDMRLE Image Not Always Supplied During
Installation

Bug 2799280

Depending on other versions of Oracle Rdb being previously installed on the system, the
RDMRLE%%.EXE image would not be supplied by the installation procedure.

As a potential workaround, the RDMRLE%%.EXE image can be manually extracted from the kit
savesets and moved to SYS$COMMON:[SYSLIB].

This problem has been corrected in Oracle Rdb Release 7.1.2. The RDMRLE%%.EXE image is now
correctly supplied by the installation procedure.

3.1.32 SORT Consumes All Available Memory

With ever larger databases and systems using extremely large Working Set parameters, SORT's input
parameters cause it to allocate all of the available memory for use in an in−memory sort. While this
might appear to be a good idea from a performance perspective, it seldom is better than using a much
smaller quantity of memory along with some sort work files. Such allocation also severely limits the
performance of other software components. We have limited SORT's allocation of memory for all
future versions of Rdb. In addition, it may be to the user's advantage to further constrain sort by using
the logical RDMS$BIND_SORT_MEMORY_MAX_BYTES as in the following example.

$ DEFINE RDMS$BIND_SORT_MEMORY_MAX_BYTES 1000000 

We use 1 million as an example. Different numbers may provide better performance depending on the
application.

In addition, we have added information to the bugcheck to provide better diagnosis of this problem.

A workaround for this problem is to use the logical name as described above. Some experimentation
may be needed to select an optimum number for the parameter.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.33 Unexpected Failure of the IDENTITY Clause in
CREATE TABLE

In prior releases of Oracle Rdb 7.1, the use of IDENTITY would sometimes fail. This occurred when
the name of the column was the same as the domain used for the type.

The following example shows the error:

SQL> create table PRODUCTS 
cont>     (product_id         PRODUCT_ID identity primary key, 
cont>      product_name       PRODUCT_NAME, 
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cont>      unit_price         MONEY, 
cont>      unit_name          char (10)); 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−SEQNONEXT, The next value for the sequence "PRODUCTS" is not available 

This problem has been corrected in Oracle Rdb Release 7.1.2. Rdb now correctly processes the
IDENTITY attribute in this case.

3.1.34 Unexpected Failure of INSERT for Table With
IDENTITY After an IMPORT

In prior versions of Oracle Rdb 7.1, IDENTITY columns were not correctly imported. Although the
IMPORT completes successfully, attempts to use the table with the IDENTITY column fail. The error
is shown in this example.

SQL> import data from SQL_COLUMN_IDENTITY_4.RBR file xx; 
SQL> ! Add new order 
SQL> insert into ORDERS 
cont>     values ((select customer_id from CUSTOMERS 
cont>              where customer_name = 'ian')); 
%RDB−E−SEQNONEXT, The next value for the sequence "ORDERS" is not available 

The problem is that the IMPORT DATABASE statement did not correctly mark the column as an
IDENTITY column.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.35 Unexpected Privileges Required Using VLM or SSB
Features with OpenVMS Galaxy Support Enabled

Previously, processes accessing or creating row caches using the VLM (Very Large Memory) or SSB
(System Space Buffers) features in an OpenVMS Galaxy environment were required to have the
PRMGBL and SYSGBL privileges enabled.

This problem has been corrected in Oracle Rdb Release 7.1.2. During VLM or SSB creation or
mapping in a Galaxy Environment, Oracle Rdb explicitly enables the PRMGBL and SYSGBL
privileges.

3.1.36 Bugchecks at PIO$FETCH + 00000360

Bug 2846828

Oracle Rdb would occasionally bugcheck with the following exception when attempts to upgrade a
lock mode on a database storage area resulted in a lock conflict.

***** Exception at 0057CF60 : PIO$FETCH + 00000360 
%COSI−F−BUGCHECK, internal consistency failure 

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.1.37 DBR Bugchecks at DBR$DDTM_RESOLVE +
000003F4

The database recovery process (DBR) would sometimes bugcheck with the following failure:

***** Exception at 0005EC94 : DBR$DDTM_RESOLVE + 000003F4 
%COSI−F−BUGCHECK, internal consistency failure 

This bugcheck would occur when the OpenVMS system service $GETDTIW would return an
undocumented transaction state value (11, or "IN_DOUBT") for an unresolved transaction. The DBR
would fail since it was not expecting that transaction state.

Subsequent attempts to open or attach to the database would usually succeed. The second query using
the $GETDTIW would typically return an expected state value.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.38 Spurious CHECKSUM Errors Reading READ ONLY
Areas with Global Buffers

In Oracle Rdb Release 7.1.0.4 through Release 7.1.1, it was possible for processes to report spurious
checksum errors if an area was set to READ ONLY and the global buffer feature was enabled. For
example, OPCOM messages similar to the following might be reported:

%%%%%%%%%%%  OPCOM  30−MAR−2003 15:14:17.35  %%%%%%%%%%% 
Message from user RDB_RANDOM on NODE1 
Oracle Rdb V7.1−1 Event Notification for Database 
DEV:[DIR]MF_PERSONNEL.RDB;1 

Page 10:273 checksum error − computed C64F3171, page contained C64E3171; 
retrying disk read 

The problem can be avoided by changing the storage area characteristics to be READ WRITE.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.39 Additional Memory Utilized for Global Buffers
Starting With Rdb Release 7.1.0.4

Bug 2904319

In Oracle Rdb Release 7.1.0.4, a change was made to increase the size of an internal global buffers
related data structure. Unfortunately, the number of times this structure is allocated is based on the
number of global buffers, the maximum global buffer user limit and the maximum number of users
allowed in the database. Databases with large numbers of users, global buffers and per user limits
could experience a unexpected potentially moderate growth in the size of the global section.

This problem has been resolved in Oracle Rdb Release 7.1.2. The size of the internal data structure is
now dynamically adjusted based on the actual maximum possible number of pages per buffer. For
most databases (those with a maximum number of pages per buffer of 32 or less), this change causes
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an effective reduction in size of the data structure to the pre−V7.1.0.4 behaviour.

3.1.40 Fields Added to Informational Table RDB$CACHES

The following changes have been made to the RDB$CACHES information table.

Bit 7 of column RDB$FLAGS is set when snapshots are enabled.♦ 
A new column RDB$SNAP_CACHE_SIZE has been added which is "Number of snapshot
record slots in cache".

♦ 

A new column RDB$PHYSICAL_MEMORY has been added which is "Physical memory in
bytes".

♦ 

The following example shows these changes.

SQL> show table rdb$caches 
Information for table RDB$CACHES 

An information table. 
Columns for table RDB$CACHES: 
Column Name                     Data Type        Domain 
−−−−−−−−−−−                     −−−−−−−−−        −−−−−− 
... 
RDB$SNAP_CACHE_SIZE             INTEGER 
RDB$PHYSICAL_MEMORY             BIGINT 
SQL> 

SQL> select RDB$FLAGS,RDB$SNAP_CACHE_SIZE,RDB$PHYSICAL_MEMORY from RDB$CACHES; 
   RDB$FLAGS   RDB$SNAP_CACHE_SIZE    RDB$PHYSICAL_MEMORY 
           5                  1000                 286000 
         132                333333            25727110112 
2 rows selected 
SQL> 

3.1.41 Page Locks Not Released When LOCKING IS PAGE
LEVEL

Bug 2959599

When the LOCKING IS PAGE LEVEL storage area attribute was enabled. it was possible for a
process to obtain a page lock and not release it when a blocking AST was delivered by another
process. Other processes would stall waiting for the page until the owning process removed the page
from its buffer pool. The process could continue to hold the lock even after committing its transaction.

When this problem occurred, the output from the RMU /SHOW LOCKS /MODE=CULPRIT would
be similar to the following:

======================================================================== 
SHOW LOCKS/LOCK/MODE=CULPRIT Information 
======================================================================== 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
Resource: page 4443 

         ProcessID Process Name    Lock ID   System ID Requested Granted  
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         −−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−− 
Blocker: 2541851A  DKOM_TSG_004... 5300BA60  0001002A            PW 
Waiting: 25418513  DKOM_BRZ_PAS... 48001A32  0001002A  PW        NL 

The OpenVMS system analyzer (SDA) utility SHOW LOCK command would show output similar to
the following:

Lock id:  5300BA60            PID:    0061011A   Flags: VALBLK  CONVERT NOQUEUE 
Par. id:  21010D65            SUBLCKs:       0          SYNCSTS SYSTEM  PROTECT 
LKB:      FFFFFFFF.7E352E50   BLKAST: 00000000 
Priority:     0000 

Granted at    PW   00000000−FFFFFFFF 

Resource:          0000115B 00000050  P...[...  Status: PROTCT 
 Length   08       00000000 00000000  ........ 
 Exec. mode        00000000 00000000  ........ 
 System            00000000 00000000  ........ 

Local copy 

Note that in the above output, the blocking AST address (BLKAST) is zero and the lock is granted in
PW mode.

To avoid this problem, set the storage area to LOCKING IS ROW LEVEL.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.42 Potential Bugcheck Using VLM Global Buffers With
Galaxy Support

Previously, databases using the Global Buffers VLM (Very Large Memory) feature in an OpenVMS
Galaxy environment could experience a bugcheck indicating reading an invalid page number. The
exception in the bugcheck dump file could look somewhat similar to the following:

***** Exception at 001A2124 : PIOFETCH$WITHIN_DB + 000005D4 
%RDMS−F−CANTREADDBS, error reading pages 1:0−0 
−RDMS−F−BADPAGNUM, page 0 is out of valid range (1:270) for physical area 1 

This problem typically would occur with databases where a second node attempted to open the
database after it had already been opened and accessed.

This problem has been corrected in Oracle Rdb Release 7.1.2. During VLM global buffer mapping in
a Galaxy environment, Oracle Rdb now does not zero the contents of the global buffer pages.

3.1.43 Incorrect Retrieval of Duplicates from Ranked
Indexes

Bugs 2903118 and 2669387

When retrieving data using an index of TYPE IS SORTED RANKED, where the index had duplicates,
records could fail to be delivered or could be delivered more than once.
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This problem was most noticeable where HOLD cursors were used across transactions and rows were
added or deleted from the duplicate chain being retrieved. It was possible, but very much less likely,
that the problem could occur where the duplicate chain being retrieved was updated by the same
attach.

The problem only occurred where data was being retrieved from a duplicates chain, for example
multiple records with the same key value in the index being used for retrieval.

In addition, the problem only occurred if the retrieval was reset. A reset will occur if the transaction
state has changed since the last fetch or if the duplicates chain being retrieved has been updated since
the last fetch. In both these cases, Oracle Rdb must re−compute its position in the duplicates chain
being retrieved.

In example 1, the rows being retrieved from the cursor are being deleted after each fetch. The problem
occurred because the same DBKEY was delivered twice.

SQL> fetch cursor_8 into :db_key; 
SQL> delete from MY_TABLE 
cont> where DBKEY = :db_key; 
%RDB−E−NO_RECORD, access by DBKEY failed because DBKEY is 
no longer associated with a record 
−RDMS−F−NODBK, 49:105813:6 does not point to a data record 

In extremely rare situations, it was possible that multiple rows could be delivered more than once or
the cursor could even loop through the selected duplicates chain indefinitely.

In example 2, the switch between transactions causes a HOLD cursor to be reset. In this case, the
DBKEY being returned is incorrectly reconstructed from the duplicates bitmap and is invalid. The
DBKEY 110:81:1 does not exist in the database.

fetch a into :i,:j; 
commit; 
set trans read write; 
commit; 
fetch a into :i,:j; 
%SQL−F−UDCURDEL, Cursor in fetch, update or delete, positioned 
on a deleted record 
−RDMS−F−NODBK, 110:81:1 does not point to a data record 

In some situations, it was possible that a row that should be retrieved was not delivered. The row may
simply be missing from the result or the cursor may prematurely return an end of stream status.

The problem only occurred when updates to the duplicate chain being retrieved caused the cursor to
be reset. The problem only occurred where the index used for retrieval was of TYPE IS SORTED
RANKED, and only if there were duplicates for the key value being fetched.

The problem can be avoided by adding additional columns to the index to ensure that all key values
are unique.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.1.44 ALTER TABLE Statement May Fail if RESERVING
Clause Used for Transaction

Bug 2979800

In prior releases of Oracle Rdb 7.1, the processing of a DEFAULT clause or an AUTOMATIC clause
might fail if the value expression referenced a table that was not referenced in the RESERVING
clause of the SET TRANSACTION statement that precedes the ALTER TABLE statement.

The following examples show the reported error when the table is referenced.

SQL> set transaction 
cont>     read write 
cont>     reserving MY_TAB2 for exclusive write; 
SQL> 
SQL> alter table MY_TAB2 
cont>     alter column a default (select min(a) from MY_TAB1); 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−E−DEFINCCOL, DEFAULT is incompatible with datatype of column "MY_TAB2"."A" 
−RDB−E−UNRES_REL, relation !AC in specified request is not a relation reserved in specified transaction 
SQL> 
SQL> alter table MY_TAB2 
cont>     add column c automatic insert as (select avg (a) from MY_TAB1); 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−UNRES_REL, relation MY_TAB1 in specified request is not a relation reserved in specified transaction 
SQL> 

These errors occur when an implicit UPDATE statement is executed which assigns the AUTOMATIC
AS, AUTOMATIC INSERT AS or DEFAULT value expression to each previously inserted row.

This problem has been corrected in Oracle Rdb Release 7.1.2. Rdb now implicitly reserves these
referenced tables for SHARED READ during the special UPDATE query.

3.1.45 Processes Not Recovered After Node Failure

Bug 2893496

It was possible for failed processes to not be recovered after a "node failure" if a recovery process
were to fail before completion. For example, if there was a system crash and after the system rebooted
database recovery processes (DBRs) were started but before they completed the system crashed again,
the processes being recovered by the DBRs at the time of the second system crash might not be
recovered again by subsequent DBRs. Those processes may or may not be recovered if a "node
failure" recovery was needed in the future. If those processes had made updates to the database and
the database was modified after the DBR failure, then it was possible for the database to become
corrupt.

This problem has been corrected in Oracle Rdb Release 7.1.2. Database recovery failures will no
longer cause failed processes to become forgotten.
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3.1.46 DBR Bugchecks at PIO$COMPLETE + 000002E4

Bug 2968254

The database recovery (DBR) process would sometimes fail with the following exception:

***** Exception at 0019EB34 : PIO$COMPLETE + 000002E4 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
virtual address=000000003FC68000, PC=000000000019EB34, PS=0000001B 

The calling routine ("Saved PC") was:

Saved PC = 00109AE4 : KODBND$REL_AREAS_BLOCKING_ASTX + 000000D4 

This problem would occur during a small timing window when a DBR process was running down and
database maintenance activities were being done at the same time.

To avoid this problem, wait for all recovery processes to complete before proceeding with database
maintenance that requires storage areas to be moved or deleted.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.47 Left Outer Join Query With CONCAT Function
Returns Wrong Results

Bugs 3139961, 2836144, 1837522

The following query with CONCAT function returns wrong results (should return 4 rows).

set flags 'strategy,detail'; 
select T1.YEAR,T1.WEEK,T1.KODE 
  FROM  T1 LEFT OUTER JOIN T2 
          ON T1.YEAR = T2.YEAR AND T1.KODE = T2.KODE, 
        T3 where 
    (T1.YEAR||T1.WEEK <='200337') and 
    T3.IPROC = T1.IPROC AND 
    T3.ITEAM = T1.ITEAM     ; 
Tables: 
  0 = T1 
  1 = T2 
  2 = T3 
Cross block of 2 entries 
  Cross block entry 1 
    Index only retrieval of relation 2:T3 
      Index name  T3_IND1 [0:0] 
  Cross block entry 2 
    Conjunct: ((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND 
              <error: missing expression>) OR ((0.YEAR = SUBSTRING ('200337' 
               FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4))) 
    Cross block of 2 entries        (Left Outer Join) 
      Cross block entry 1 
        Leaf#01 FFirst 0:T1 Card=4 
          Bool: (((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND NOT 
                MISSING (0.WEEK)) OR ((0.YEAR = SUBSTRING ('200337' 
                 FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4))) 
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                ) AND (2.IPROC = 0.IPROC) AND (2.ITEAM = 0.ITEAM) 
          BgrNdx1 T1_IND2 [0:0] Fan=15 
          BgrNdx2 T1_IND1 [0:0] Fan=14 
            Bool: ((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND NOT 
                  MISSING (0.WEEK)) OR ((0.YEAR = SUBSTRING ('200337' 
                   FROM 0 FOR 4)) AND (0.WEEK <= SUBSTRING ('200337' FROM 4) 
                  )) 
      Cross block entry 2 
        Conjunct: (0.YEAR = 1.YEAR) AND (0.KODE = 1.KODE) 
        Index only retrieval of relation 1:T2 
          Index name  T2_IND1 [2:2]      Direct lookup 
            Keys: (0.YEAR = 1.YEAR) AND (0.KODE = 1.KODE) 
 T1.YEAR   T1.WEEK   T1.KODE   
 2003      26        270          
 2003      34        270          
2 rows selected 

The problem is caused by the fix made for Bug 1837522 in Oracle Rdb Release 7.0.6.2 where a left
outer join query with OR predicate returns wrong results.

Even though this query apparently does not contain an OR predicate, the Oracle Rdb optimizer
transforms the CONCAT function into an OR expression with two SUBSTRING functions, as seen in
the following detail strategy.

  Bool: (((0.YEAR < SUBSTRING ('200337' FROM 0 FOR 4)) AND 
          NOT MISSING (0.WEEK)) OR 
         ((0.YEAR = SUBSTRING ('200337' FROM 0 FOR 4)) AND 
          (0.WEEK <= SUBSTRING ('200337' FROM 4)))) AND 
        (2.IPROC = 0.IPROC) AND (2.ITEAM = 0.ITEAM) 

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.1.48 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT

Bug 2502144

In prior releases of Oracle Rdb, it was possible for the Record Cache Server (RCS) process to
bugcheck in DIOCCH$UNMARK_GRIC_ENT. This problem was due to an incorrect check in the
RCS process while evaluating the amount of locked space on a database page that is owned by the
RCS.

When the RCS process writes an erased or resized record back to the database page, it must return the
resultant locked space on the page back to free space. This is because the RCS is not allowed to
"own" locked space. As part of this action, the RCS was checking to make sure that the amount of
locked space being returned exactly matched the length of the space being returned by the erased or
resized record. This check was not taking into account the possibility that there was existing locked
space on the page marked with the TID of the RCS. In such a case, the RCS could find that it
"owned" more locked space than it expected and would bugcheck.

This problem has been corrected in Oracle Rdb Release 7.1.2. The RCS process now correctly
evaluates and releases all locked space on the page that is owned by the RCS after writing an erased
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or resized record back to the database.

3.1.49 Query With Sum Function of Two Select Counts
Bugchecks

Bug 2649215

A query with a sum function of two select counts could produce a bugcheck.

    select sum ((select count (*) − (select count (*) from T1 
                                  where T1.F1 = T2.F1 
                                    and T1.F2 = T2.F2) 
             from T2 
             where F3 = 'B' 
             group by T2.F1, T2.F2) 
             ) 
    from rdb$database; 
%DEBUG−I−DYNMODSET, setting module RDMS$PREEXEASN 
%SYSTEM−F−BREAK, breakpoint fault at PC=003995E9, PSL=03C00004 
break on exception at RDMS$PREEXEASN\RDMS$$FIND_VALID_SEG_CRTV\%LINE 8443 in 
EAD 1 

The query works if one of the equality predicates is removed, as in the following example.

select sum ((select count (*) 
                − (select count (*) from T1 where 
                     T1.F1 = T2.F1 
!−−−                 and T1.F2 = T2.F2 
                    ) 
             from T2 where F3 = 'B' 
             group by T2.F1, T2.F2 
             )) 
from rdb$database; 
Tables: 
  0 = RDB$DATABASE 
  1 = T2 
  2 = T1 
Aggregate: 0:SUM (<agg1>) 
Cross block of 2 entries 
  Cross block entry 1 
    Aggregate: 1:VIA (<mapped field> − <agg2>) 
    Cross block of 2 entries 
      Cross block entry 1 
        Aggregate: 2:COUNT (*) 
        Index only retrieval of relation 2:T1 
          Index name  U1_T1 [1:1] 
            Keys: 2.F1 = 1.F1 
      Cross block entry 2 
        Aggregate: 3:COUNT (*) 
        Conjunct: 1.F3 = 'B' 
        Get     Retrieval by index of relation 1:T2 
          Index name  U1_T2 [0:0] 
  Cross block entry 2 
    Retrieval sequentially of relation 0:RDB$DATABASE 

                    1   
1 row selected 
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The query also works if the SUM function is removed.

select count (*) − (select count (*) from T1 
                                  where T1.F1 = T2.F1 
                                    and T1.F2 = T2.F2) 
             from T2 
             where F3 = 'B' 
             group by T2.F1, T2.F2 
             ; 
Tables: 
  0 = T2 
  1 = T1 
Cross block of 2 entries 
  Cross block entry 1 
    Aggregate: 0:COUNT (*) 
    Conjunct: 0.F3 = 'B' 
    Get     Retrieval by index of relation 0:T2 
      Index name  U1_T2 [0:0] 
  Cross block entry 2 
    Aggregate: 1:COUNT (*) 
    Index only retrieval of relation 1:T1 
      Index name  U1_T1 [2:2]        Direct lookup 
        Keys: (1.F1 = 0.F1) AND (1.F2 = 0.F2) 

                    0   
1 row selected 

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.2 SQL Errors Fixed

3.2.1 DECLARE LOCAL TEMPORARY TABLE Limited to 10
Tables Per Session

Bug 2911428

In prior releases of Oracle Rdb, access to tables declared using the DECLARE LOCAL
TEMPORARY TABLE statement in interactive and dynamic SQL would fail. This problem does not
occur when DECLARE LOCAL TEMPORARY TABLE is used in a CREATE MODULE statement.

The following example shows the reported error.

SQL> select * from demo.MODULE.prodn_new_constraints_table; 
%RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist 
−RDMS−F−TABIDNOTDEF, relation ID, 11, is not defined in database 

This problem has been corrected in Oracle Rdb Release 7.1.2. This limitation has been removed from
interactive and dynamic SQL. A workaround would be to declare tables #10 and #11 and not use
those temporary tables.

3.2.2 Unexpected ACCVIO When Reporting Incompatible
Character Set Assignments

Bug 3098432

In prior releases of Rdb, an incompatible character set assignment might cause Rdb to generate a
malformed message vector which can lead to an ACCVIO while trying to display the messsage.

The following example shows the problem.

SQL> select count(*) from rdb$database 
cont>  where _dec_mcs'a'=translate('a' using rdb$dec_kanji); 
%RDB−E, invalid or unsupported data conversion 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, virtual address= 
00000000004F2DE4, PC=FFFFFFFF80207624, PS=0000001B 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.3 ALTER STORAGE MAP May Fail With PARTEXTS
Error for LIST Storage Map

Bug 3030789

In prior releases of Oracle Rdb V7.1, a failure could occur when the ALTER STORAGE MAP was
used to change the LIST storage map for the database.

The following example uses MF_PERSONNEL to show this problem.
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SQL> create storage map lists_map 
cont> store list 
cont>     in JOBS for (resumes) 
cont>     in MF_PERS_SEGSTR; 
SQL> 
SQL> alter storage map lists_map 
cont> store list 
cont>     in JOBS for (resumes) 
cont>     in (EMPIDS_LOW, EMPIDS_MID, MF_PERS_SEGSTR) for (employees) 
cont>     in MF_PERS_SEGSTR; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−E−PARTEXTS, partition "SYS_P00001" already exists for this map or index 
"LISTS_MAP" 

The LIST storage maps which exhibit this problem use the same storage area more than once. In such
cases, the partition should be given a unique name and this is done by CREATE STORAGE MAP but
not by ALTER STORAGE MAP. The name "SYS_P00001" in the error is a name generated by Rdb.

This problem has been corrected in Oracle Rdb Release 7.1.2.

A workaround to this problem is to include a partition name in the map and so avoid the implicit
naming performed by Rdb.

SQL> alter storage map lists_map 
cont> store list 
cont>     in JOBS (partition a1) for (resumes) 
cont>     in (EMPIDS_LOW (partition b1) 
cont>        ,EMPIDS_MID (partition b2) 
cont>        ,MF_PERS_SEGSTR (partition b3)) for (employees) 
cont>     in MF_PERS_SEGSTR (partition c1); 
SQL> 

3.2.4 Problems Corrected in ALTER INDEX ... BUILD
PARTITION

Bug 3069318

Several problems with the ALTER INDEX partitioning building facility have been corrected with this
release of Rdb.

Use of the SIZE IS clause on an index segment could cause a bugcheck dump on either a
SORTED or SORTED RANKED index.
The bugcheck summary for a SORTED RANKED index would look similar to this output:

      COSI−F−BUGCHECK, internal consistency failure 
      Exception occurred at PSIIBUILD2BUILDFROMBOTTOM + 000017F4 
      Called from PSII2CREATETREE + 000002E8 
      Called from RDMS$$KOD_CREATE_TREE + 000001E4 

The bugcheck summary for a SORTED index would look similar to this output:

      COSI−F−BUGCHECK, internal consistency failure 

1. 
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      Exception occurred at PSIIBUILD$BUILD_FROM_BOTTOM + 00001354 
      Called from PSII$CREATE_TREE + 0000018C 
      Called from RDMS$$KOD_CREATE_TREE + 000002B8 

This problem occurred because the SIZE IS restriction was not applied during the SORT of
the partition rows. Thus rows were sorted by the full key and this could cause the data to be
returned in the incorrect collating order.
The index segment prefix cardinality was not calculated correctly. All columns were stored
with the same value. The RMU Collection Optimizer_Statistics command should be executed
on all affected indices.

2. 

BUILD PARTITION would fail if executed on a UNIQUE HASHED index.
The bugcheck summary would look similar to this output:

      SYSTEM−F−ACCVIO, access violation 
      Exception occurred at symbol not found 
      Called from symbol not found 
      Called from RDMS$$CHANGE_INDEX + 000020AC 
      Called from RDMS$$RELEASE_DDL_VM_HNDLR + 00001BA4 

The problem was that cardinality collection is not done for the index or the index segments
when the index is a HASHED index. However, the BUILD command still attempted to access
and store the accumulated cardinality data.

3. 

These problems have been corrected in Oracle Rdb Release 7.1.2.

3.2.5 INSERT Into Table With an IDENTITY Column May Fail
With RDB$_NO_PRIV Error

Bug 3051390

The following example shows the reported error when an unprivileged user attempts to implicitly
reference the IDENTITY sequence via the INSERT statement. The SHOW PRIVILEGE statement
shows that the user has no access to the sequence even though a SHOW PROTECTION command
shows the required access has been granted to the user.

SQL> INSERT INTO IDENTITY_TEST 
cont> (FIELD2) 
cont> VALUE 
cont> ('B01'); 
%RDB−E−NO_PRIV, privilege denied by database facility 
SQL> SHOW PRIVILEGE ON SEQUENCE IDENTITY_TEST; 
Privileges on Sequence IDENTITY_TEST 
    (IDENTIFIER=[DOC,NONPRIV_USER],ACCESS=NONE) 
SQL> SHOW PROTECTION ON SEQUENCE IDENTITY_TEST; 
Protection on Sequence IDENTITY_TEST 
    (IDENTIFIER=[DOC,NONPRIV_USER],ACCESS=SELECT+REFERENCES) 
    (IDENTIFIER=[DOC,SYS_DBA],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL+REFERENCES) 
    (IDENTIFIER=[*,*],ACCESS=NONE) 

SHOW PROTECTION shows the access control list (ACL) assigned to the object. SHOW
PRIVILEGE shows the access granted to the current user after processing the ACL, applying
databases roles (or rights identifiers) and overriding OpenVMS privileges. However, in this case, Rdb
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is erroneously inheriting no access for the sequence.

The problem occurs because the CREATE TABLE command was incorrectly setting the SYSTEM
flag for column−identity sequences and this prevents them from being executed from an INSERT
statement.

This problem has been corrected in Oracle Rdb Release 7.1.2. The SYSTEM flag is no longer set for
identity sequences.

After installing Oracle Rdb Release 7.1.2, any ALTER SEQUENCE or COMMENT ON
SEQUENCE command can be executed on the identity sequence to clear the incorrectly set SYSTEM
flag.

3.2.6 IMPORT May Generate ACCVIO Exception During
Import of a Module

In previous releases of Oracle Rdb, the IMPORT command would fail with an ACCVIO exception
during import of a module that contained an external function or procedure.

The following example shows the exception.

SQL> import database 
cont>    from SQL_CREATE_MODULE_4G_EXP 
cont>    filename SQL_CREATE_MODULE_4G_DB 
cont> ; 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
virtual address=00000000, PC=0029908E, PSL=03C00001 

This problem has been corrected in Oracle Rdb Release 7.1.2. SQL IMPORT now correctly handles
these types of modules.

3.2.7 SELECT ... FOR UPDATE Now Supported by Oracle
Rdb

Bug 2626074

In prior releases of Oracle Rdb, the FOR UPDATE clause of the SELECT statement was ignored by
SQL. This syntax is now enabled and changes behavior from prior releases.

The FOR UPDATE clause is now used by Rdb in the following locations:

Singleton SELECT statement♦ 
SELECT statement in interactive SQL♦ 
SELECT clause of the FOR cursor loop♦ 
SELECT clause of the DECLARE CURSOR statement♦ 

This clause is ignored if present in the following locations:

SELECT statement passed into the CREATE OUTLINE ... USING clause♦ 
SELECT statement as part of a derived table definition♦ 
SELECT statement as part of a view definition♦ 
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If used in a subselect clause♦ 
The columns listed are checked to ensure they are legal references but are only used by Rdb for the
DECLARE cursor statement. Previously, these columns were completely ignored. Therefore, it is
possible that successfully compiling applications that used the FOR UPDATE clause will now fail
because the column list contained an error.

The FOR UPDATE clause in a FOR cursor loop is equivalent to using the UPDATE ONLY clause.
You cannot specify a FOR UPDATE clause in a READ ONLY cursor.

The effect of this clause is to alert the optimizer that rows used by this query might be updated later
by the application. This may change the chosen access strategy and the rows will be locked for
WRITE rather than the default of READ. WRITE locks will be held until the transaction ends, even if
the row is not subsequently updated.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.8 Unexpected Failure From DROP STORAGE AREA ...
CASCADE Clause

Bug 2814690

In prior releases of Oracle Rdb, the DROP STORAGE AREA ... CASCADE clause may raise an
exception while trying to evaluate constraints for a table which has been implicitly deleted.

The following example shows this on a slightly modified MF_PERSONNEL database.

SQL> alter database filename MF_PERSONNEL 
cont>  drop storage area EMPIDS_LOW cascade 
cont>  drop storage area EMPIDS_MID cascade 
cont>  drop storage area EMPIDS_OVER cascade; 
%RDB−E−EXT_ERR, Oracle Rdb extension error 
−RDMS−F−RELNEXTS, relation EMPLOYEES does not exist in this database 

Each DROP STORAGE AREA ... CASCADE clause checks to see if this is the last partition for the
table and, if so, it implicitly drops the table. Unfortunately, that table name was already queued for
constraint verification.

This problem has been corrected in Oracle Rdb Release 7.1.2. The table is now removed from the
constraint verification list when it is implicitly dropped.

A workaround is to execute each DROP STORAGE AREA ... CASCADE clause in a separate
ALTER DATABASE statement.

SQL> alter database filename MF_PERSONNEL 
cont>  drop storage area EMPIDS_LOW cascade; 
SQL> alter database filename MF_PERSONNEL 
cont>  drop storage area EMPIDS_MID cascade; 
SQL> alter database filename MF_PERSONNEL 
cont>  drop storage area EMPIDS_OVER cascade; 
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3.2.9 Create Module Declaring Integer Variable's Default
With Cast Bugchecks

Bug 2672904

The problem occurs when processing a CREATE MODULE statement that has a global variable with
a default specified that involves a CAST and which contains a literal value. Such a statement would
fail and generate a SQL bugcheck dump.

The following example shows a query which fails due to this condition.

SQL> at 'fi personnel'; 
SQL> create module bug_test 
cont> declare :A_VALUE integer = cast(ABS(−100) as integer) 
cont> Function TEST() return integer; 
cont> begin 
cont> return :A_VALUE; 
cont> end; 
cont> end module; 
%RDMS−I−BUGCHKDMP, generating bugcheck dump file 
RDB_USER10:[HOWARD]SQLBUGCHK.DMP; 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
virtual address=0000000000000000, PC=00000000004E2EEC, PS=0000001B 

The SQLBUGCHK.DMP for the above example has an entry similar to the following:

***** Exception at 004E2EEC : SQL$$BLR_MODULE_VAR_GEN + 0000029C 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
virtual address=0000000000000000, PC=00000000004E2EEC, PS=0000001B 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.10 Incorrect Unit for the DETECTED ASYNC PREFETCH
THRESHOLD Option

Bug 2838771

In prior versions of Oracle Rdb V7.1, the THRESHOLD option of the DETECTED ASYNC
PREFETCH clause required the units to be PAGES. However, this value is really specified in
BUFFERS.

To avoid confusion, the SQL syntax has now been changed to use the BUFFERS unit for this clause.
The older syntax is now deprecated as shown in the following example:

SQL> alter database 
cont>     filename 'DB$:PERSONNEL' 
cont>     detected async prefetch is ENABLED 
cont>         (depth is 4 buffers, threshold is 4 pages); 
%SQL−I−DEPR_FEATURE, Deprecated Feature: 
PAGES is replaced with BUFFERS 

This problem has been corrected in Oracle Rdb Release 7.1.2. In addition, the RMU Extract command
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will output the new corrected syntax.

SQL> alter database 
cont>     filename 'DB$:PERSONNEL' 
cont>     detected async prefetch is ENABLED 
cont>         (depth is 4 buffers, threshold is 4 buffers); 

3.2.11 DROP CONSTRAINT Now Operates on Column and
Table Constraint

Bug 2921487

In previous versions of Rdb, the DROP CONSTRAINT statement (which is distinct from the ALTER
TABLE ... DROP CONSTRAINT clause) was only supported for dropping constraints created by the
RDO interface.

In this release, this statement has been enhanced to implicitly execute an ALTER TABLE ... DROP
CONSTRAINT statement if the named constraint is a table or column constraint.

The following example shows the error reported by prior versions.

SQL> drop constraint SAMPLE; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−F−CONDELVIAREL, constraint SAMPLE can only be deleted 
by changing or deleting relation EMPLOYEES 

This problem has been corrected in Oracle Rdb Release 7.1.2. SQL now allows all named constraints
to be dropped using the DROP CONSTRAINT statement.

3.2.12 IVP or Other Failure With Dynamic SQL if SQL$INT is
Installed /RESIDENT

Bug 2950983

In SYS$STARTUP:SQL$STARTUP.COM, if the line RESIDENT = "/RESIDENT" was present, (for
example: not commented out), the IVP failed while running the dynamic SQL test.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.13 CREATE INDEX Would Fail With READ_ONLY_FIELD
Error

Bug 2979800

In prior releases of Oracle Rdb V7.1, it was not possible to create a partitioned index which used an
IDENTITY, AUTOMATIC AS or an AUTOMATIC INSERT AS column as one of the partitioning
columns.
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The following example shows the error that was generated.

SQL> create sequence TESTING_SEQUENCE; 
SQL> 
SQL> create table TESTING_TABLE 
cont>     (a automatic as TESTING_SEQUENCE.nextval); 
SQL> 
SQL> create index TESTING_INDEX 
cont>     on TESTING_TABLE (a) 
cont>     store using (a) 
cont>         in TEST2A with limit of (1000) 
cont>         in TEST2B with limit of (2000) 
cont> ; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−READ_ONLY_FIELD, attempt to update the read−only field A 
SQL> 

The same error is generated by the ALTER INDEX statement if an non−partitioned index is changed
to a partitioned index.

The problem occurs when an implicit INSERT ... PLACEMENT ONLY RETURNING statement is
used and assigns values to these read−only columns. This PLACEMENT ONLY statement doesn't
actually insert a row but allows the return of DBKEY and other information related to the proposed
index.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.14 SQL Added Padding Spaces to Saved Source SQL
Statement

Bugs 1570063 and 2424124

The various SQL ALTER and CREATE statements save the original statement source in the database
for display by SQL SHOW commands and RMU Extract /Item=MODULE. In previous versions,
padding spaces were added to the saved source lines which made the output from SHOW and RMU
Extract hard to read.

With this release of Rdb, SQL no longer adds these padding spaces to the saved sources. This means
that the SHOW commands will no longer add any indentation when displaying most sources (triggers,
constraints, storage maps, and modules).

Objects created with older versions of Rdb will still contain the padding spaces.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.15 ALTER TABLE Caused AUTOMATIC UPDATE
Columns to be Evaluated for All Rows

Bug 2897401

In prior releases of Oracle Rdb V7.1, some forms of ALTER TABLE would erroneously cause
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AUTOMATIC UPDATE columns to be evaluated for all rows in the table. This occurred because
these statements execute an implicit UPDATE statement on the table.

ALTER TABLE ... ADD COLUMN ... DEFAULT ...
ALTER TABLE ... ADD COLUMN ... AUTOMATIC ...
When a new column was added that included the DEFAULT attribute, then all previously
inserted rows would be updated to include the DEFAULT as the value of the new column.
If the new column was based on a domain which included the DEFAULT attribute then, in
the same fashion, the table would be updated.
If the new column was an AUTOMATIC INSERT AS or an AUTOMATIC AS (implying
both insert and update actions), then all previously inserted rows would be updated with the
AUTOMATIC expression as the value of the new column.

♦ 

ALTER TABLE ... DROP COLUMN ...
When a LIST OF BYTE VARYING column is dropped, the table is implicitly updated to
remove the list data. This is done because the data is stored separately from the table rows and
Rdb must collect all references to those lists.

♦ 

This problem has been corrected in Oracle Rdb Release 7.1.2. These implicit UPDATE statements no
longer cause the AUTOMATIC UPDATE columns to be evaluated.

Related Changes

The AUTO_OVERRIDE flag can be used to allow updates to selected AUTOMATIC columns during
INSERT so that rows could be reloaded, or during UPDATE to adjust incorrectly stored values. The
effect of this flag has changed slightly with this release of Oracle Rdb.

For the INSERT statement, 'AUTO_OVERRIDE' allows assignment to any AUTOMATIC
column and any insert AUTOMATIC column omitted from the column list will be evaluated
normally. This remains the same as in previous versions.

♦ 

For the UPDATE statement, 'AUTO_OVERRIDE' allows direct assignment of values to any
AUTOMATIC column. No AUTOMATIC columns are evaluated.
The UPDATE case has changed with this release of Rdb. In prior releases, any UPDATE,
even with AUTO_OVERRIDE set, would cause any unassigned automatic columns to be
evaluated. This had a side effect for some DDL operations which implicitly performed
updates on the base table.

♦ 

To accommodate applications that wish to retain the older behavior, the DEFAULT clause can be
used to assign the AUTOMATIC expression to any column requiring complete reprocessing. If the
DEFAULT clause is used in an INSERT or UPDATE statement, then one of the following will be
applied:

If a DEFAULT attribute is present for the column, then that value will be applied during
INSERT or UPDATE.

♦ 

Else if an AUTOMATIC attribute is present for the column, then that value will be applied
during INSERT or UPDATE. This can only happen if the SET FLAGS 'AUTO_OVERRIDE'
is used since during normal processing these columns are read−only.

♦ 

Otherwise a NULL will be applied during INSERT or UPDATE.♦ 

3.2.16 SQL−F−NODBFILE When SQL Modules are Compiled
With /CONNECT

Bug 3002999
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When multiple SQL modules were called from the same main program and a disconnect was done,
under some circumstances calls to SQL modules after the disconnect would fail with the following
message:

%SQL−F−NODBFILE, Alias <ALIAS_NAME> is missing a declaration 

Where <ALIAS_NAME> is one of the aliases declared by one of the SQL modules. The behavior
will occur whenever the following is true:

The SQL modules are compiled with /CONNECT (which is the default).♦ 
Some aliases have a run time resolution for the filename or pathname.♦ 
One or more modules do not declare one of the aliases which has a run−time resolution.♦ 
The first call after the disconnect is to a module which does not have a declaration of an alias
with a run−time resolution.

♦ 

As a workaround, ensure that the first SQL module called after the disconnect declares all aliases
which have a run−time resolution.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.2.17 Concatenate Now Supports Non−character Values in
ORACLE LEVEL2

Bug 2948230

The following examples show that concatenating non−character string values result in an error from
interactive SQL.

SQL> create table t2(i1 int, c1 char(3)); 
SQL> select i1||c1 from t2; 
%SQL−F−UNSNUMXPR, Unsupported numeric expression 

This release of Oracle Rdb now supports this functionality for compatiblity with Oracle RDBMS.
You must use the dialect ORACLE LEVEL2 to enable this feature.

SQL> set dialect 'oracle level2'; 
SQL> create table t2(i1 int, c1 char(3)); 
SQL> insert into t2 values (1,'a'); 
1 row inserted 
SQL> insert into t2 values (12,'ab'); 
1 row inserted 
SQL> insert into t2 values (123,'abc'); 
1 row inserted 
SQL> select i1||c1 from t2; 

 1a              
 12ab            
 123abc          
3 rows selected 

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.2.18 RDB−E−REQ_NO_TRANS With Multiple SQL Modules
and Images

Bugs 2770532 and 1808821

When two SQL Modules are used in the same process from different images using a shared
connection, SQL mixes the state of the two modules. For example, suppose there is a main program
which directly calls some SQL Module Language routines. Further, this program calls routines that
reside in a shared image which in turn call other SQL Module Language routines. (It doesn't matter
whether different databases are used but it does matter that the SQL Modules are compiled to use a
single connection − i.e. /NOCONNECT which is the default.). In this configuration, the second and
subsequent calls to SQL Modules in either image will return a SQLCODE of −1. The underlying error
will be reported as:

%RDB−E−REQ_NO_TRANS, attempt to execute request with no transaction active 

As a workaround, SQL Modules can be compiled with /CONNECT. Note: this workaround has two
potential drawbacks:

The application may encounter the problem documented in Bug 3002999.♦ 
If the application depends on a single connection (e.g. in order to have a shared transaction
context), it will not work as designed.

♦ 

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.3 RDO and RDML Errors Fixed

3.3.1 RDML /DATE_TYPE Qualifier Default is Now
NOEMPTY_RECORDS

RDML /PASCAL generates a record type for date items. This type is either an empty record or a
record composed of two longword elements depending on the value of the /DATE_TYPE qualifier
(EMPTY_RECORDS or NOEMPTY_RECORDS respectively). Earlier versions of the Pascal
compiler behaved as desired when empty records were used in assignments and fetches. More current
versions of the Pascal compiler give the following warning message when empty records are used for
dates:

%PASCAL−W−EMPTYVAR, Fetching an empty record with an explicit size 
attribute may not yield expected results 

Furthermore, statements flagged with the above warning frequently do not yield the desired result but
instead treat the record as having a zero length. Using the /DATE_TYPE=NOEMPTY_RECORD
qualifier avoids this problem.

In order to make RDML /PASCAL more usable, NOEMPTY_RECORDs has been made the default
value for the DATE_TYPE. Additionally, using an explicit /DATE_TYPE=EMPTY_RECORDS on
the RDML /PASCAL command line will now result in the following warning message being issued
by RDML:

%RDML−W−DATE_NOEMPTY, /DATE_TYPE=EMPTY_RECORDS specified; 
use /DATE_TYPE=NOEMPTY_RECORDS 
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3.4 RMU Errors Fixed

3.4.1 Could Not Import Statistics on Different Node

In prior releases of Oracle Rdb, it was not possible to take a statistics file created via the
RMU/CLOSE/STATISTICS=EXPORT and import it on another node. For example, if a database
was backed up and then restored on another system the RMU/OPEN/STATISTICS=IMPORT
command would ignore the statistics file (.RDS file) even if it was renamed to contain the nodename
of the new node.

This problem has been corrected in Oracle Rdb Release 7.1.2. The statistics file may now be imported
on a node that is not the node that wrote the file.

3.4.2 RMU Extract Generates Incorrect ALTER TABLE ...
ADD CONSTRAINT Syntax

Bug 3109136

In prior versions of Oracle Rdb, RMU Extract could generate incorrect ALTER TABLE ... ADD
CONSTRAINT syntax when the constraint contained a reference to the DBKEY for the table.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.3 RMU/VERIFY/CONSTRAINTS Problems With Named
Tables And Constraints

Bug 3016789

Oracle Rdb V7.0 RMU/VERIFY/CONSTRAINTS verified all constraints even if a list of constraints
was specified. Oracle Rdb V7.1 RMU/VERIFY/CONSTRAINTS verified all constraints for all tables
even if a list of tables was specified. This behaviour has been corrected so that only constraints for a
specified list of tables or only the constraints specified will be verified.

The following example shows that for Oracle Rdb V7.0 RMU/VERIFY/CONSTRAINTS, all
constraints were verified even if a list of constraints was specified and that for Oracle Rdb V7.1
RMU/VERIFY/CONSTRAINTS, all constraints for all tables were verified even if a list of tables was
specified.

$DEFINE RDMS$DEBUG_FLAGS "H" 
$ rmu/show version 
Executing RMU for Oracle Rdb V7.0−7 
$ rmu/verify/constraint=(constraint=degrees_foreign2)/log mf_personnel 
%RMU−I−BGNROOVER, beginning root verification 
%RMU−I−ENDROOVER, completed root verification 
%RMU−I−BGNVCONST, beginning verification of constraints for database 
device:[directory]MF_PERSONNEL.RDB;1 
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0) 
~H: ...verify constraint "WORK_STATUS_PRIMARY_STATUS_CODE" 
~H: ...verify constraint "STATUS_NAME_VALUES" 
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~H: ...verify constraint "STATUS_TYPE_VALUES" 
~H: ...verify constraint "EMPLOYEES_PRIMARY_EMPLOYEE_ID" 
~H: ...verify constraint "EMP_SEX_VALUES" 
~H: ...verify constraint "EMP_STATUS_CODE_VALUES" 
~H: ...verify constraint "JOBS_PRIMARY_JOB_CODE" 
~H: ...verify constraint "WAGE_CLASS_VALUES" 
~H: ...verify constraint "DEPARTMENTS_PRIMARY1" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN1" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN2" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN3" 
~H: ...verify constraint "SALARY_HISTORY_FOREIGN1" 
~H: ...verify constraint "COLLEGES_PRIMARY_COLLEGE_CODE" 
~H: ...verify constraint "DEGREES_FOREIGN1" 
~H: ...verify constraint "DEGREES_FOREIGN2" 
~H: ...verify constraint "DEG_DEGREE_VALUES" 
~H: ...verify constraint "CANDIDATES_LAST_NAME_NOT_NULL" 
~H: ...verify constraint "RESUMES_UNIQUE_EMPLOYEE_ID" 
~H: ...verify constraint "RESUMES_FOREIGN1" 
%RMU−I−ENDVCONST, completed verification of constraints for database 
device:[directory]MF_PERSONNEL.RDB;1 

$ rmu/show version 
Executing RMU for Oracle Rdb V7.1−10 
$ rmu/verify/constraint=(table=colleges)/log mf_personnel 
%RMU−I−BGNROOVER, beginning root verification 
%RMU−I−ENDROOVER, completed root verification 
%RMU−I−BGNVCONST, beginning verification of constraints for database 
device:[directory]MF_PERSONNEL.RDB;1 
~H Extension (VERIFY CONSTRAINTS) Item List: (len=0) 
~H: ...verify constraint "WORK_STATUS_PRIMARY_STATUS_CODE" 
~H: ...verify constraint "STATUS_NAME_VALUES" 
~H: ...verify constraint "STATUS_TYPE_VALUES" 
~H: ...verify constraint "EMPLOYEES_PRIMARY_EMPLOYEE_ID" 
~H: ...verify constraint "EMP_SEX_VALUES" 
~H: ...verify constraint "EMP_STATUS_CODE_VALUES" 
~H: ...verify constraint "JOBS_PRIMARY_JOB_CODE" 
~H: ...verify constraint "WAGE_CLASS_VALUES" 
~H: ...verify constraint "DEPARTMENTS_PRIMARY1" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN3" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN1" 
~H: ...verify constraint "JOB_HISTORY_FOREIGN2" 
~H: ...verify constraint "COLLEGES_PRIMARY_COLLEGE_CODE" 
~H: ...verify constraint "DEGREES_FOREIGN1" 
~H: ...verify constraint "DEGREES_FOREIGN2" 
~H: ...verify constraint "DEG_DEGREE_VALUES" 
~H: ...verify constraint "CANDIDATES_LAST_NAME_NOT_NULL" 
~H: ...verify constraint "RESUMES_UNIQUE_EMPLOYEE_ID" 
~H: ...verify constraint "RESUMES_FOREIGN1" 
%RMU−I−ENDVCONST, completed verification of constraints for database 
device:[directory]MF_PERSONNEL.RDB;1  

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.4 RMU/BACKUP/PARALLEL/DISK_FILE Did Not Work
Properly

The Oracle Rdb RMU/BACKUP/PARALLEL/DISK_FILE command, which backs up a database to
multiple disk .RBF files using multiple processes, did not work properly. It created an empty directory
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list in the PLAN file and access violated even if the directory list was edited into the PLAN file and
the PLAN file was then executed. These problems have been corrected and parallel backup to
multiple disk files now creates a valid PLAN file and executes properly.

The following example shows that a parallel backup to multiple disk files created a PLAN file with
empty disk directory lists.

$ RMU /BACKUP − 
    /PARALLEL=EXECUTOR_COUNT=3 − 
    /DISK_FILE=(WRITER_THREADS=1) − 
    /LIST_PLAN=MFP.PLAN − 
    /NOEXECUTE − 
    MF_PERSONNEL − 
    DISK1:[DIRECTORY]MFP,DISK2:[DIRECTORY],DISK3:[DIRECTORY] 
$TYPE MFP.PLAN 

! Plan created on  6−JUN−2003 by RMU/BACKUP. 

Plan Name = MFP 
Plan Type = BACKUP 

Plan Parameters: 
    Database Root File = disk:[directory]MF_PERSONNEL.RDB;1 
    Backup File = MFP.RBF 
    Style = Multifile 

End Plan Parameters 

Executor Parameters : 
    Executor Name = COORDINATOR 
    Executor Type = Coordinator 
End Executor Parameters 

Executor Parameters : 
    Executor Name = WORKER_001 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        MF_PERS_SEGSTR, 
        EMPIDS_MID, 
        JOBS 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    End Directory List 
End Executor Parameters 

Executor Parameters : 
    Executor Name = WORKER_002 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        DEPARTMENTS, 
        EMPIDS_OVER, 
        SALARY_HISTORY 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    End Directory List 
End Executor Parameters 
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Executor Parameters : 
    Executor Name = WORKER_003 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        EMPIDS_LOW, 
        EMP_INFO, 
        RDB$SYSTEM 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    End Directory List 
End Executor Parameters 

The following example shows that a parallel backup to multiple disk files now creates a PLAN file
with disk directory lists that contain the disk directories from the command line.

$ RMU /BACKUP − 
    /PARALLEL=EXECUTOR_COUNT=3 − 
    /DISK_FILE=(WRITER_THREADS=1) − 
    /LIST_PLAN=MFP.PLAN − 
    /NOEXECUTE − 
    MF_PERSONNEL − 
    DISK1:[DIRECTORY]MFP,DISK2:[DIRECTORY],DISK3:[DIRECTORY] 
$RMU/BACKUP/PLAN MFP.PLAN 
$TYPE MFP.PLAN 

! Plan created on  6−JUN−2003 by RMU/BACKUP. 

Plan Name = MFP 
Plan Type = BACKUP 

Plan Parameters: 
    Database Root File = disk:[directory]MF_PERSONNEL.RDB;1 
    Backup File = MFP.RBF 
    Style = Multifile 

End Plan Parameters 

Executor Parameters : 
    Executor Name = COORDINATOR 
    Executor Type = Coordinator 
End Executor Parameters 

Executor Parameters : 
    Executor Name = WORKER_001 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        MF_PERS_SEGSTR, 
        EMPIDS_MID, 
        JOBS 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    DISK1:[DIRECTORY] 
    End Directory List 
End Executor Parameters 
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Executor Parameters : 
    Executor Name = WORKER_002 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        DEPARTMENTS, 
        EMPIDS_OVER, 
        SALARY_HISTORY 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    DISK2:[DIRECTORY] 
    End Directory List 
End Executor Parameters 

Executor Parameters : 
    Executor Name = WORKER_003 
    Executor Type = Worker 
    ! Executor Node = Node name for executor 
    Start Storage Area List 
        EMPIDS_LOW, 
        EMP_INFO, 
        RDB$SYSTEM 
    End Storage Area List 
    Writer_threads = 1 
    Directory List 
    DISK3:[DIRECTORY] 
    End Directory List 
End Executor Parameters 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.5 RMU/BACKUP/DISK_FILE Fails if too Many Writer
Threads

Bug 2991564

The Oracle Rdb RMU/BACKUP/DISK_FILE command, which backs up a database to multiple disk
files, could fail with an access violation error if the /WRITER_THREADS parameter specified a
number of writer threads that exceeded the number of disk devices listed on the command line. For
RMU/BACKUP/DISK_FILE, there cannot be more writer threads than disk devices specified on the
command line. Therefore, Oracle Rdb RMU has been changed so that if the specified
WRITER_THREADS value is larger than the number of disk devices, a warning message will be
output and the number of writer threads will be changed to equal the number of disk devices. The
message output is:

%RMU−W−DEFWRITER, The specified WRITER THREADS value is too large − 
changing to maximum possible value of # 

The following example shows the access violation that occurred if the number of writer threads (in
this case 5) exceeded the number of disk devices (in this case 3).

$RMU/BACKUP/DISK=(WRITER_THREADS=5) MF_PERSONNEL DISK1:MFP.RBF,DISK2:,DISK3: 
%RMU−I−RESUME, resuming operation on volume 2 using _disk2 
%RMU−I−RESUME, resuming operation on volume 3 using _disk3  
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
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virtual address =0000000000000030, PC=00000000003CA174, PS=0000001B 
%RMU−F−FATALERR, fatal error on BACKUP 
%RMU−F−FTL_BCK, Fatal error for BACKUP operation at  4−JUN−2003 05:59:00.11 

The following example shows the warning message that now is output to show that the number of
writer threads has been changed to equal the number of disk devices.

$RMU/BACKUP/DISK=(WRITER_THREADS=5) MF_PERSONNEL DISK1:MFP.RBF,DISK2:,DISK3: 
%RMU−W−DEFWRITER, The specified WRITER THREADS value is too large − changing 
to maximum possible value of 3 
%RMU−I−RESUME, resuming operation on volume 2 using _disk2 
%RMU−I−RESUME, resuming operation on volume 3 using _disk3  

The workaround for this problem is to specify a number of writer threads which is equal to or less
than the number of disk devices.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.6 TRUNCATE TABLE and RMU /REPAIR Corruption
Corrected

Previously, when using the TRUNCATE TABLE statement followed by a RMU /REPAIR /ABM
command executed one or more times, various corruptions of the SPAM and ABM structures could
occur. This could sometimes lead to table records that had been truncated "reappearing" in the table
unexpectedly.

The following example demonstrates one possible symptom of this problem detected by RMU
/VERIFY:

$ SQL$ 
    CREATE DATABASE FILENAME 'TEST.RDB' 
        CREATE STORAGE AREA RDB$SYSTEM FILENAME 'RDB$SYSTEM.RDA' 
        CREATE STORAGE AREA AREA FILENAME 'AREA.RDA'; 
    CREATE TABLE TAB (ID INTEGER); 
    CREATE INDEX IND ON TAB (ID) STORE IN AREA; 
    CREATE STORAGE MAP TM FOR TAB STORE IN AREA; 
    COMMIT; 
    INSERT INTO TAB VALUES (1); 
1 row inserted 
    COMMIT; 
    TRUNCATE TABLE TAB; 
    COMMIT; 
    EXIT; 
$! 
$ RMU/VER/ALL/NOLOG TEST 
%RMU−I−NODATANDX, no data records in index IND 
$! 
$ RMU/REPAIR/ABM TEST 
%RMU−I−FULBACREQ, A full backup of this database should be 
performed after RMU REPAIR 
$ RMU/VER/ALL/NOLOG TEST 
%RMU−W−AIPLAREID, area inventory page 152 entry #9 contains a 
                  reference to logical area 58 that is nonexistent 
%RMU−W−BADABMPTR, invalid larea for ABM page 5 in storage area 2. 
                  The SPAM page entry for this page is for a different larea. 
                  SPAM larea_dbid : 0 page larea_dbid: 58. 
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%RMU−W−BADABMPTR, invalid larea for ABM page 6 in storage area 2. 
                  The SPAM page entry for this page is for a different larea. 
                  SPAM larea_dbid : 0 page larea_dbid: 58. 
%RMU−W−BADABMPTR, invalid larea for ABM page 7 in storage area 2. 
                  The SPAM page entry for this page is for a different larea. 
                  SPAM larea_dbid : 0 page larea_dbid: 58. 
%RMU−E−BADABMPAG,       error verifying ABM pages 
%RMU−I−NODATANDX, no data records in index IND 

This problem has been corrected in Oracle Rdb Release 7.1.2. The RMU /REPAIR /ABM command
no longer incorrectly updates the SPAM and ABM structures after a TRUNCATE TABLE operation.

3.4.7 AIJ Backup File May Not Allow Recovery of a
Restored Database

Bug 2515818

When using circular AIJ files, the following sequence of commands will end up with an AIJ backup
file (foo$2.aij) looking like the second example.

Example 1

$ rmu/backup foo [bck]foo.rbf 
$ rmu/backup/after foo [.bck]foo$0.aij 
$ sql$ drop database filename [.db]foo; 
$ rmu/restore/nocdd [.bck]foo.rbf 
$ rmu/recover [.bck]foo$0 
$ rmu/backup/quiet foo [.bck]foo2.rbf 
$! 
$! Work with database : insert/update/delete records 
$! 
$ rmu/backup/after/quiet foo [.bck]foo$2.aij 

Example 2

1/1              TYPE=O (open record with :) 
    AIJ Sequence Number is 2 
    Last Commit TSN is 0:192 
2/2              TYPE=K (close record) 
129/3            TYPE=O (open record with :) 
    AIJ Sequence Number is 3 
    Last Commit TSN is 0:224 
             <some other AIJ records> 
132/10           TYPE=K (final close record) 

Note that we have a gap in the TSN numbers between the first and second Open records (192 vs 224).
In this particular case, the AIJ backup file (foo$2.aij) will not allow you to recover a database restored
from your last backup (foo2.rbf above), as shown in the following log excerpt :

$ rmu/restore/norecover/nocdd/directory=[.db2] [.bck]foo2.rbf 
$ rmu/recover/log/trace/root=[.db2]foo [.bck]foo$2.aij 
 : 
%RMU−W−AIJSEQPRI, AIJ file sequence number 2 created prior to expected 
sequence 3 
%RMU−I−AIJONEDONE, AIJ file sequence 2 roll−forward operations 
completed 
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%RMU−I−LOGRECSTAT, transaction with TSN 0:224 ignored 
%RMU−I−LOGRECSTAT, transaction with TSN 0:256 ignored 
%RMU−I−LOGRECSTAT, transaction with TSN 0:288 ignored 
%RMU−I−AIJONEDONE, AIJ file sequence 3 roll−forward operations completed 
%RMU−I−LOGRECOVR, 0 transactions committed 

As a possible workaround, start the recovery with the AIJ backup file used to recover the database
after it has been dropped (foo$0.aij in the above example).

$ RMU/RECOVER/LOG/TRACE/ROOT=[.DB2]FOO [.BCK]FOO$0.AIJ,[.BCK]FOO$2.AIJ 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.8 Domains Required for SQL_FUNCTION Not Output by
RMU Extract

Bug 1684510

In prior releases, the special domains created by the SQL_FUNCTIONS.SQL script were not
extracted by RMU Extract. This meant that any database that had the SQL functions library installed
would not be correctly recreated using the output from RMU Extract.

The following example shows the error that is generated.

%SQL−F−NO_SUCH_FIELD, Domain RDB$ORACLE_SQLFUNC_VCHAR_DOM 
does not exist in this database or schema 

This problem has been corrected in Oracle Rdb Release 7.1.2. The following domains are explicitly
extracted if present in the source database:

RDB$ORACLE_SQLFUNC_CHAR_DOM CHAR(1)♦ 
RDB$ORACLE_SQLFUNC_DATE_DOM DATE VMS♦ 
RDB$ORACLE_SQLFUNC_DEC_MCS_DOM CHAR(1)♦ 
RDB$ORACLE_SQLFUNC_VCHAR_DOM VARCHAR(2000)♦ 

The workaround is to include these definitions in the generated script manually or automate it using a
DCL procedure.

3.4.9 RMU /RESTORE Bugchecks at LCK$STALL_FOR_ENQ
+ 0CC0

It was possible for RMU /RESTORE to bugcheck with the following stack trace when the
/JUST_PAGE or /ONLINE qualifiers were used:

***** Exception at 00661910 : LCK$STALL_FOR_ENQ + 00000CC0 
%SYSTEM−F−ACCVIO, access violation, reason mask=00, 
virtual address=0000000000000048, PC=0000000000661910, PS=0000001B 

Saved PC = 0065F630 : LCK$LOCK + 000006F0 
Saved PC = 00408048 : RMUDIO$ACQUIRE_PAGE_LOCKS + 00000528 
Saved PC = 003AF458 : RMUCLI$RESTORE + 00005038 
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To avoid the problem, ensure that no other users are accessing the database while the restore
operation is in progress.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.10 Changes to RMU /CLOSE Behavior

Bug 2490013

Oracle Rdb Release 7.1.2 introduces changes in behavior to the RMU /CLOSE command.

In prior releases, if a database was not open on the current node and the RMU /CLOSE command was
issued with the /WAIT qualifier, a RDMS−F−DBNOTACTIVE error was returned. In this release, the
RDMS−F−DBNOTACTIVE error is no longer returned if the database is not open and the /WAIT
qualifier is specified.

This change was made to accommodate the /CLUSTER operation. When /WAIT is specified, it
implies /CLUSTER. When /CLUSTER is in effect, the database must be opened on the local node
before the shutdown request can be relayed to other nodes that may have the database open. Thus,
using the /WAIT qualifier causes the database to be opened on the local node if it isn't already open.
Since /WAIT causes the database to be opened, then there is no RDMS−F−DBNOTACTIVE error
returned.

Similarly, in prior releases, if a database was not open on the current node and the /CLUSTER and
/NOWAIT qualifiers were specified, then an error was returned and the database was not closed on
other nodes. In this release, no error is returned and the database is closed on other nodes.

Note that if opening the database on the node issuing the RMU /OPEN command will cause the
number of allowed cluster nodes to be exceeded, then an error will be returned and the database will
not be closed on the other nodes.

3.4.11 May Not be Able to Apply the Next AIJ After Doing
RMU /RECOVER /RESOLVE /STATE Multiple Times

Bug 2494572

In a distributed transaction with the prepare record in one AIJ and the commit record in a second AIJ,
if you ran RMU /RECOVER /RESOLVE /STATE twice on the first AIJ, then the recovery of the
second AIJ would fail as shown below. This is because an incorrect AIJ sequence number had been
set up during the second recovery of the first journal.

$ RMU /RECOVER /RESOLVE /STATE=ABORT /ROOT=FOODB AIJ_1.AIJ 
%RMU−I−LOGRECDB, recovering database file FOODB.RDB;1 
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed 
_AIJ_file: 
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed 
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number needed will be 1 
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled 

$ RMU /RECOVER /RESOLVE /STATE=ABORT /ROOT=FOODB AIJ_1.AIJ 
%RMU−I−LOGRECDB, recovering database file FOODB.RDB;1 
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%RMU−W−AIJSEQPRI, AIJ file sequence number 0 created prior to expected sequence 1 
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed 
%RMU−W−NOTRANAPP, no transactions in this journal were applied 
_AIJ_file: 
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed 
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence 
number needed will be 0 <= 
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled 

$ RMU /RECOVER /RESOLVE /STATE=ABORT /ROOT=FOODB AIJ_2.AIJ 
%RMU−I−LOGRECDB, recovering database file FOODB.RDB;1 
%RMU−F−AIJNORCVR, recovery of this journal must start with sequence 0 
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at  5−DEC−2002 09:39:51.73 

As a potential workaround, recover all the journals in the same recovery command.

$ RMU /RECOVER /RESOLVE /STATE=ABORT /ROOT=FOODB AIJ_1.AIJ,AIJ_2.AIJ 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.12 RMU /EXTRACT /ITEM=DATABASE May Not Display
Snapshot File Attributes

Bug 2713879

The following example shows the unexpected output from RMU Extract /Item=DATABASE for the
snapshot attributes of a new storage area.

.

.

.
    create storage area AREA2 
        filename 'USER1:[TESTING]AREA2.RDA' 
        −− read write storage area 
        locking is row level 
        page format is UNIFORM 
        page size is 2 blocks 
        allocation is 600 pages 
        extent is (minimum 99, maximum 9999, percent growth 20) 
        snapshot allocation is 0 pages 
        snapshot extent is (minimum 0, maximum 0, percent growth 0) 
        snapshot checksum calculation is DISABLED 

.

.

.

This problem occurs when the database is opened on more than one node in a cluster and is altered to
add one or more storage areas. RMU Extract /Item=DATABASE and /Item=IMPORT require that the
file information be refreshed on the node before the attributes are fetched. This was not being done for
the snapshot attributes.

This problem has been corrected in Oracle Rdb Release 7.1.2. Oracle Rdb now automatically
refreshes the snapshot file information prior to returning information to RMU Extract.
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3.4.13 Recovery of Empty Optimized AIJ Does Not Update
the Sequence Number

Bug 2581948

The recovery of an empty optimized AIJ does not update the next AIJ sequence number. This will
prevent the recovery of the next AIJ as shown below. An optimized AIJ file can be empty if the
corresponding AIJ file contains only rolled−back transactions. See the following example.

$ sql$ 
SQL> attach 'filename opt_aij'; 
SQL> insert into t1 values (1); 
1 row inserted 
SQL> rollback; 
SQL> exit 
$ RMU /BACKUP /AFTER OPT_AIJ OPT_AIJ_BCK1 

− Note that opt_aij_bck1 contains a single rolled−back transaction 

$ sql$ 
SQL> attach 'filename opt_aij'; 
SQL> insert into t1 values (2); 
1 row inserted 
SQL> commit; 
SQL> exit 
$ RMU /BACKUP /AFTER OPT_AIJ OPT_AIJ_BCK2 

! opt_aij_bck2 contains a single committed transaction 

$ RMU /OPTIMIZE /AFTER OPT_AIJ_BCK1 OPT_AIJ_OPT1 
$ RMU /OPTIMIZE /AFTER OPT_AIJ_BCK2 OPT_AIJ_OPT2 
$ RMU /RESTORE /NOCDD OPT_AIJ 

! Recovering the empty Optimized AIJ file opt_aij_opt1 

$ RMU /RECOVER /LOG OPT_AIJ_OPT1.OAIJ 
%RMU−I−LOGRECDB, recovering database file $111$DUA4:[VIGIER.OPTAIJ.DB]OPT_AIJ.RDB;1 
%RMU−I−LOGOPNAIJ, opened journal file RAID1:[VIGIER.OPTAIJ.DB]OPT_AIJ_OPT1.OAIJ;1 at  8−JAN−2003 10:20:54.13 
%RMU−I−AIJONEDONE, AIJ file sequence 0 roll−forward operations completed 
%RMU−I−LOGRECOVR, 0 transactions committed 
%RMU−I−LOGRECOVR, 0 transactions rolled back 
%RMU−I−LOGRECOVR, 0 transactions ignored 
%RMU−I−AIJNOACTIVE, there are no active transactions 
%RMU−I−AIJSUCCES, database recovery completed successfully 
%RMU−I−AIJNXTSEQ, to continue this AIJ file recovery, the sequence number needed will be 0 
%RMU−I−AIJALLDONE, after−image journal roll−forward operations completed 
%RMU−W−NOTRANAPP, no transactions in this journal were applied 
%RMU−I−AIJSUCCES, database recovery completed successfully 
%RMU−I−AIJFNLSEQ, to start another AIJ file recovery, the sequence number needed will be 0 
%RMU−I−AIJNOENABLED, after−image journaling has not yet been enabled 

− Note that the next AIJ Sequence number has been left as 0 

− Recovering the second Optimized AIJ file opt_aij_opt2 
$ RMU /RECOVER /LOG OPT_AIJ_OPT2.OAIJ 
%RMU−I−LOGRECDB, recovering database file $111$DUA4:[VIGIER.OPTAIJ.DB]OPT_AIJ.RDB;1 
%RMU−F−AIJNORCVR, recovery of this journal must start with sequence 0 
%RMU−F−FTL_RCV, Fatal error for RECOVER operation at  8−JAN−2003 10:23:38.32 
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The recovery fails since it does not have the expected AIJ sequence number.

A workaround is to put all the optimized AIJ files in the same command line.

$ RMU /RECOVER /LOG OPT_AIJ_OPT1.OAIJ,OPT_AIJ_OPT2.OAIJ 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.14 RMU /VERIFY Not Writing Constraint Verification
Failure Warnings to /OUTPUT File

Bug 2813243

RMU /VERIFY put CONSTFAIL warnings to the terminal but didn't log the message in the
/OUTPUT file.

This problem has been corrected in Oracle Rdb Release 7.1.2.

$ RMU /VERIFY /CONSTRAINTS /LOG /OUTPUT=M.OUT − 
    /TRANSACTION_TYPE=READ MF_PERSONNEL 
%RMU−W−CONSTFAIL, Verification of constraint "EMP_SEX_VALUES" has failed. 
$ TYPE M.OUT 
%RMU−I−BGNROOVER, beginning root verification 
%RMU−I−ENDROOVER, completed root verification 
%RMU−I−BGNVCONST, beginning verification of constraints for database 
 DISK:[DIRECTORY]MF_PERSONNEL.RDB;1 
%RMU−W−CONSTFAIL, Verification of constraint "EMP_SEX_VALUES" has failed. 
%RMU−I−ENDVCONST, completed verification of constraints for database 
 DISK:[DIRECTORY]MF_PERSONNEL.RDB;1 
%RMU−I−DBBOUND,   bound to database "SQL_USER2:[NIKADE.TEMP]MF_PERSONNEL.RDB;1" 
%RMU−I−OPENAREA,  opened storage area RDB$SYSTEM for read_only retrieval 
%RMU−I−BGNAIPVER, beginning AIP pages verification 
%RMU−I−ENDAIPVER, completed AIP pages verification 
%RMU−I−BGNABMSPM, beginning ABM pages verification 
%RMU−I−ENDABMSPM, completed ABM pages verification 
%RMU−I−CLOSAREAS, releasing read_only retrieval lock on all storage areas 
%RMU−S−ENDVERIFY, elapsed time for verification :    0 00:00:06.16 

3.4.15 RMU /COLLECT May Default to a READ WRITE
Transaction

Bug 2898115

When no transaction type is specified for the RMU/COLLECT OPTIMIZER_STATISTICS command,
RMU examines the database storage areas and if any storage area has snapshots disabled, a read write
transaction is used. If no storage areas have snapshots disabled, then a read only transaction is used.

Currently Rdb does not allow different areas on the same database to have snapshots enabled or
disabled. However, the attribute is recorded in the database root file against each storage area.

In previous versions, if a database had reserved and unused storage area slots, this check could
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erroneously examine the unused storage area slots and conclude that areas on the database had
snapshots disabled. This could cause RMU to adopt a read write transaction as the default transaction
mode for RMU/COLLECT.

The following example shows RMU/COLLECT executing against a database with reserved storage
areas erroneously selecting a read write transaction. The example also shows the use of debug flags to
display the transaction modes used by the command.

$ DEFINE RDMS$SET_FLAGS TRANSACTION 
$ RMU /COLLECT OPTIMIZER MF_PERSONNEL 
~T Compile transaction (1) on db: 1 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_WRITE (read write) 
~T Start_transaction (1) on db: 1, db count=1 
~T Commit_transaction on db: 1 
~T Prepare_transaction on db: 1 
~T Compile transaction (1) on db: 2 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_READ (read only) 
~T Start_transaction (1) on db: 2, db count=1 
~T Commit_transaction on db: 2 
~T Prepare_transaction on db: 2 
~T Compile transaction (1) on db: 3 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_WRITE (read write) 
~T Start_transaction (1) on db: 3, db count=1 
~T Commit_transaction on db: 3 
~T Prepare_transaction on db: 3 
~T Compile transaction (1) on db: 4 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_WRITE (read write) 
~T Start_transaction (1) on db: 4, db count=1 
~T Commit_transaction on db: 4 
~T Prepare_transaction on db: 4 

The following example shows the corrected behaviour.

$ RMU /COLLECT OPTIMIZER MF_PERSONNEL /TRANS=READ_ONLY 
~T Compile transaction (1) on db: 1 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_READ (read only) 
~T Start_transaction (1) on db: 1, db count=1 
~T Commit_transaction on db: 1 
~T Prepare_transaction on db: 1 
~T Compile transaction (1) on db: 2 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_READ (read only) 
~T Start_transaction (1) on db: 2, db count=1 
~T Commit_transaction on db: 2 
~T Prepare_transaction on db: 2 
~T Compile transaction (1) on db: 3 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
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0001 (00001) TPB$K_READ (read only) 
~T Start_transaction (1) on db: 3, db count=1 
~T Commit_transaction on db: 3 
~T Prepare_transaction on db: 3 
~T Compile transaction (1) on db: 4 
~T Transaction Parameter Block: (len=2) 
0000 (00000) TPB$K_VERSION = 1 
0001 (00001) TPB$K_WRITE (read write) 
~T Start_transaction (1) on db: 4, db count=1 
~T Commit_transaction on db: 4 
~T Prepare_transaction on db: 4 

Note that the read write transaction at the end of the example is used to update information in the
metadata and is normal and required.

Specifying the transaction type on the command line by using the
/TRANSACTION_TYPE=READ_ONLY qualifier will avoid this problem.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.16 RMU /CONVERT Failed if
VMS$MEM_RESIDENT_USER Rights Identifier Not Held

Bug 2879451

The Oracle Rdb RMU /CONVERT of an Rdb database to V7.1 failed if the user was not granted the
VMS VMS$MEM_RESIDENT_USER rights identifier and the database contained row caches
defined with the attributes SHARED MEMORY IS SYSTEM and LARGE MEMORY IS
ENABLED. This problem has been corrected. The conversion of a database will now succeed even if
the user does not hold the VMS VMS$MEM_RESIDENT_USER rights identifier. Because of the
nature of RMU /CONVERT where a database already containing the memory parameters mentioned
above is being converted to V7.1 but not used, RMU /CONVERT of databases to V7.1 will now be
allowed even if the user does not hold the VMS$MEM_RESIDENT_USER rights identifier.
However, once the database with these memory parameters is converted to V7.1, the user will still
have to hold the VMS$MEM_RESIDENT_USER rights identifier to open it.

The following example shows the failure of the conversion of an Oracle Rdb database to V7.1 that
occurred if the user was not granted the VMS VMS$MEM_RESIDENT_USER rights identifier and
the database contained row caches defined with the attributes SHARED MEMORY IS SYSTEM and
LARGE MEMORY IS ENABLED.

$RMU /CONVERT TEST_DATABASE.RDB 
%RMU−I−LOGCONVRT, database root converted to current structure level 
%RMU−F−MONFLRMSG, failure message received from the monitor 
−COSI−F−NOMEMRESID, requires rights identifier VMS$MEM_RESIDENT_USER 
%RMU−F−FTL_CNV, Fatal error for CONVERT operation at  1−APR−2003 15:28:26.09 

The workaround for this problem is to grant the user the VMS VMS$MEM_RESIDENT_USER
rights identifier before executing the RMU /CONVERT of the database to V7.1.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.4.17 Multi−Disk File Restore Could Fail if
READER_THREADS Exceeded One

The Oracle Rdb RMU MULTI DISK FILE RESTORE feature that allows the restore of an Oracle
Rdb database from multiple backup files ("RBF" files) on disk when the /DISK_FILE qualifier is
specified could cause corruption of the database when it was restored. This corruption was usually
associated with the RMU−E−INVBLKHDR or the RMU−F−BACKFILCOR and
RMU−E−BACFILCOR_03 errors being returned on the restore. This corruption did not always
happen but could occur frequently if the READER_THREADS parameter specified a value greater
than one. If a value of "1" was specified (the default if the READER_THREADS parameter is not
used with the /DISK_FILE qualifier), the problem did not happen since it only could occur if multiple
reader threads were executing. Note that this problem only occurred if the "/DISK_FILE" qualifier
was used. There was no problem for tape and single disk file backups and restores where the
/DISK_FILE qualifier is not used.

The following example shows two cases where database corruption could occur when using the
/DISK_FILE qualifier and specifying a READER_THREADS value greater than "1" (the default).

$ RMU /BACKUP /NOLOG /JOURNAL=B31A /DISK_FILE=(WRITER_THREADS=1) MF_PERSONNEL − 
        DISK:[DIRECTORY]B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY] 

$ RMU /RESTORE /NOLOG /NOCDD /JOURNAL=B31A /DISK_FILE=(READER_THREADS=2) − 
        DISK:[DIRECTORY]B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY] 
%RMU−E−INVBLKHDR, invalid block header in backup file 

$ RMU /RESTORE /NOLOG /NOCDD /JOURNAL=B31A /DISK_FILE=(READER_THREADS=2) − 
        DISK:[DIRECTORY]B31A.RBF,DISK:[DIRECTORY],DISK:[DIRECTORY] 
%RMU−F−BACFILCOR, Backup file is corrupt 
−RMU−E−BACFILCOR_03, Unexpected condition after end of volume detected 
%RMU−F−FATALERR, fatal error on RESTORE 
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 29−APR−2003 17:41:48.82 

The workaround for this problem is to not specify a value of READER_THREADS which is greater
than one. If READER_THREADS is not specified it will default to one.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.18 RMU Extract Not Extracting Modules Correctly When
MATCH Option Used

Bug 3139946

In prior releases of Oracle Rdb V7.1, the RMU Extract Option=MATCH was applied to all routines
contained within a module being extracted. This was incorrect. The MATCH qualifier should have
only been applied to the primary object name and not the nested definition. The result of this error
was that only routines matching the same pattern as the module name were being extracted.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.4.19 Recovery of Database With Fixed AIJs After Convert
to V7.1 Could Lose Data

The recovery of a database with multiple fixed AIJ files could lose data with the following sequence.
(Please also see the example below.)

Conversion of the V7.0 database to V7.1.1. 
Switchovers of the existing fixed AIJ files until getting the message
"%RMU−W−AIJMODSWTCH, AIJ switch−over suspended − add new journal or backup
current".

2. 

A backup of the current AIJ file.3. 
A restore of the backed up database.4. 
A recover of the AIJ data.5. 

The following example shows the incorrect behavior where transaction data was lost.

$ @sys$library:rdb$setver 7.0 
$ sql 
  attach 'file mf_personnel'; 
  drop table test_tbl1; 
  create table test_tbl1 (col1 integer, col2 varchar(20)); 
  insert into test_tbl1 values (1, 'test only'); 
  commit; 
  insert into test_tbl1 select col1+1, col2 from test_tbl1; 
  commit; 
  exit; 
$ rmu/set after/reserve=4 mf_personnel 
$ rmu/set after/disable mf_personnel 
$ rmu/set after/add=(name=aij1,file=aij_journal1.aij) mf_personnel 
$ rmu/set after/add=(name=aij2,file=aij_journal2.aij) mf_personnel 
$ rmu/set after/add=(name=aij3,file=aij_journal3.aij) mf_personnel 
$ rmu/set after/add=(name=aij4,file=aij_journal4.aij) mf_personnel 
$ rmu/set after/enable mf_personnel 
$ rmu/back/after mf_personnel aij.bck1 
$ rmu/backup mf_personnel personnel.rbf_1 
$ sql 
  attach 'file mf_personnel'; 
  select * from test_tbl1; 
        COL1   COL2 
           1   test only 
           2   test only 
  exit 
$ @sys$library:rdb$setver 7.1 
$ rmu/convert/commit/noconfirm mf_personnel 
$ rmu/backup mf_personnel personnel.rbf_2 
$ sql 
 attach 'file mf_personnel'; 
 update test_tbl1 set col1=col1+60; 
 commit; 
 exit 
$ rmu/set after/switch mf_personnel 
$ sql 
 attach 'file mf_personnel'; 
 update test_tbl1 set col2='test 1' where col1 < 62; 
 commit; 
 exit 
$ rmu/set after/switch mf_personnel 
$ sql 
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 attach 'file mf_personnel'; 
 insert into test_tbl1 select * from test_tbl1; 
 commit; 
 select * from test_tbl1; 
        COL1   COL2 
          61   test 1 
          62   test only 
          61   test 1 
          62   test only 
 exit 
$ rmu/set after/switch mf_personnel 
%RMU−W−AIJMODSWTCH, AIJ switch−over suspended − add new journal or backup 
 current 
$ rmu/back/after mf_personnel aij.bck2 
$ del *.rdb; 
$ del *.rda; 
$ del *.snp; 
$ rmu/restore/nocdd personnel.rbf_2 
$ rmu/recover aij.bck2 
$ sql 
 attach 'file mf_personnel'; 
 select * from test_tbl1; 
        COL1  COL2 
        61    test 1 
        62    test only 
 exit; 

The following example shows the correct results at the end of the sequence with all transaction data
preserved.

$ sql 
 attach 'file mf_personnel'; 
 select * from test_tbl1; 
        COL1  COL2 
        61    test 1 
        62    test only 
        61    test 1 
        62    test only 
        exit; 

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.20 Some Database Backup Files Created With LZSS
Compression Could Not be Restored

Bug 3113361

Some database backup files created with /COMPRESSION or /COMPRESSION=LZSS specified on
the backup command for using the LZSS method of software compression (the default) could not be
restored. This did not happen if /COMPRESSION=HUFFMAN had been specified on the backup for
using the HUFFMAN method of software compression. On the restore, an access violation occurred
and the restore did not complete resulting in a corrupt, partly restored database.

This did not happen for smaller root files such as the root file for the MF_PERSONNEL database but
did happen for larger root files with a large number of storage areas. In our testing, this problem
happened for root files which reserved a number of storage areas equal to 64 or greater.
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This problem has now been fixed. Specifying /COMPRESSION or /COMPRESSION=LZSS on the
backup command will now cause no problems on the restore. Note that the /COMPRESSION
qualifier can only be used with the RMU/BACKUP command since the RMU/RESTORE command
determines whether a backup file has been compressed from information saved in the backup file.

The following example shows the previous failing behavior. If the database was backed up by
specifying /COMPRESSION or /COMPRESSION=LZSS, the backup file was created without error
but an access violation could occur on the restore.

$ rmu/backup/nolog/compress test.rdb test.rbf 
$ sql drop database file test; 
$ rmu/restore/nocdd/log test.rbf 
%RMU−I−RESTXT_00, Restored root file device:[directory]TEST.RDB;1 
%RMU−I−RESTXT_21, Starting full restore of storage area (RDB$SYSTEM) 
 device:[directory]TEST_SYSTEM.RDA;1 at 25−AUG−2003 13:30:13.32 
%RMU−I−RESTXT_21, Starting full restore of storage area (TEST_TABLES) 
 device:[directory]TEST_TABLES.RDA;1 at 25−AUG−2003 13:30:13.32 
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual 
 address=0000000000F0C678, PC=FFFFFFFF810E9B10, PS=0000001B 
%RMU−I−BUGCHKDMP, generating bugcheck dump file device:[directory]RMUBUGCHK.DMP; 
%RMU−F−FATALERR, fatal error on RESTORE 
%RMU−F−FTL_RSTR, Fatal error for RESTORE operation at 25−AUG−2003 13:30:13.71 

To avoid this problem, specify RMU/BACKUP/COMPRESSION=HUFFMAN or do not use the
/COMPRESSION qualifier on the backup command.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.4.21 RMU Verify Access Violation Allocating Memory for
Expanding a Storage Record

Bug 3079474

An access violation sometimes occurred in RMU/VERIFY when insufficient memory was allocated
to create a buffer in virtual memory for expanding storage records. This caused the verify to terminate
abnormally. This would only occur if database corruption was present in the database. This problem
has been fixed.

The following example shows the access violation during the RMU/VERIFY.

$ rmu/ver/all/nolog 

%RMU−E−ERRSEGFET, Error fetching segmented string's primary segment. 
%RMU−I−SEGSTRDBK, Segmented string is at logical dbkey 1:10757:2. 
%RMU−I−SEGRECDBK, Data record is at logical dbkey 7:33099:0. 
%RMU−W−BADSTAREA, invalid storage area DBID 42941, 
                  valid storage areas are between 1 and 1222 
%RMU−E−RDYSEGSTR, ready needed for segmented string at 1:10533:17 
%RMU−E−ERRSEGFET, Error fetching segmented string's primary segment. 
%RMU−I−SEGSTRDBK, Segmented string is at logical dbkey 1:10533:17. 
%RMU−I−SEGRECDBK, Data record is at logical dbkey 7:33098:1. 
%RMU−F−ABORTVER,  fatal error encountered; aborting verification 
%SYSTEM−F−ACCVIO, access violation, reason mask=04, virtual 
address=000000000EA8DAC0, PC=0000000000311F34, PS=0000001B 
%RMU−F−FATALOSI, Fatal error from the Operating System Interface. 
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%RMU−I−BUGCHKDMP, generating bugcheck dump file DISK:[DIRECTORY]RMUBUGCHK.DMP; 
%RMU−F−FTL_VER, Fatal error for VERIFY operation at 21−AUG−2003 00:38:05.60 

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.5 LogMiner Errors Fixed

3.5.1 LogMiner Elimination of Processing Unneeded AIJ
Files

By default, after−image journal files are processed in the order that they are presented to the RMU
UNLOAD AFTER_JOURNAL command. The ORDER_AIJ_FILES qualifier specifies that the input
after−image journal files are to be processed in ascending order by sequence number. This can be of
benefit when you use wildcard (* or %) processing of a number of input files. The .AIJ files are each
opened, the first block is read (to determine the sequence number), and the files are closed prior to the
sorting operation.

The /RESTART=restart−point qualifier can be used to specify an AIJ Extract Restart Control Point
(AERCP) that indicates the location to begin the extraction. The AERCP indicates the transaction
sequence number (TSN) of the last extracted transaction along with a location in the .AIJ file where a
known "Micro−quiet point" exists.

When the Restart qualifier is not specified and no input after−image journal files are specified on the
command line, the Continuous LogMiner process starts extracting at the beginning of the earliest
modified online after−image journal file.

Previously, all specified input after−image journal files were always processed. This behaviour has
been altered when both the RESTART and ORDER_AIJ_FILES qualifiers are specified. In this
situation, any after−image journal files containing only sequence numbers prior to the "Micro−quiet
point" sequence number (indicated in the AIJ Extract Restart Control Point (AERCP)) can be
eliminated from processing after the order of sequence numbers has been determined by the sort
operation. Eliminating the unneeded after−image journal files can speed the restart operation.

3.5.2 Replication Option and LogMiner Features Active at
the Same Time

Bug 2903092

When both the Replication Option and LogMiner(TM) features are enabled, it is possible for the
"pre−delete" record contents stored in the after−image journal file for the LogMiner to contain
incorrect contents. This problem may be indicated by errors from the RMU /UNLOAD
/AFTER_JOURNAL command such as the following example:

%RMU−W−RECVERDIF, Record at DBKEY 819:20615:8 in table 
 "FOOBAR" version 262 does not match current version. 

This problem was caused by an incorrect buffer being used when writing the "pre−delete" record
contents for the LogMiner. This buffer was also used by the Replication Option code path and the
existing saved content was lost.

This problem has been corrected in Oracle Rdb Release 7.1.2. A different buffer is used to save
"pre−delete" record content data.
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3.5.3 RMU /UNLOAD /AFTER_JOURNAL Created .RRD
Content Clarification

Bug 2916639

An optional "RECORD_DEFINITION" keyword can be used with the RMU /UNLOAD
/AFTER_JOURNAL command to create a template .RRD (record definition) file that can be used to
load a transaction table. The TABLE_DEFINITION keyword can also be used to create a template
SQL procedure to create such a transaction table.

The behaviour of the RMU /UNLOAD /AFTER_JOURNAL command when used with these
keywords is to append the string "RDB_LM_" to the table name to create the record name in the
.RRD or .SQL file.

However, when the existing table name exceeds 24 characters in length, the resultant name for the
transaction table in the .SQL or .RRD file exceeds 31 characters and is no longer a valid table name in
an Rdb database. In these cases, a decision about the table name to be used must be made and the
.RRD or .SQL file must be manually modified.

Oracle Rdb engineering is considering alternatives for future releases to help reduce the impact of this
behaviour.

3.5.4 /TRANSACTION_TYPE Qualifier for RMU /UNLOAD
/AFTER_JOURNAL

The RMU /UNLOAD /AFTER_JOURNAL command would start either a read−write or a read−only
transaction to read the database metadata. A read−only transaction would be started if the database
was set to "SNAPSHOTS ARE IMMEDIATE"; otherwise a read−write transaction would be started.

The qualifier "/TRANSACTION_TYPE=" has been added to the RMU /UNLOAD
/AFTER_JOURNAL command to allow explicit control over the transaction type used when reading
the database metadata.

The following keywords may be specified to the "/TRANSACTION_TYPE=" qualifier.

AUTOMATIC − The transaction type will depend upon the current database settings for
snapshots (enabled, deferred, or disabled), transaction modes available to this user, and the
standby status of this database.

♦ 

READ_ONLY − Starts a READ ONLY transaction.♦ 
WRITE − Starts a READ WRITE transaction.♦ 
ISOLATION_LEVEL − The transaction isolation level. It accepts the following keywords:

READ_COMMITTED◊ 
REPEATABLE_READ◊ 
SERIALIZABLE◊ 

Please refer to the Oracle Rdb7 SQL Reference Manual under the SET TRANSACTION
statement for a complete description of these isolation levels.

♦ 

WAIT − Will wait indefinitely on a locked resource.♦ 
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WAIT=n − This instructs Rdb to wait 'n' seconds before aborting the wait and the RMU
session. Specifying a wait timeout interval of zero (0) is equivalent to specifying NOWAIT.

♦ 

NOWAIT − Will not wait on locked resources.♦ 
If the qualifier /TRANSACTION_TYPE is omitted or specified with no options, then the default is
/TRANSACTION_TYPE=(AUTOMATIC, WAIT).

Although a WRITE transaction is started on the database, RMU /UNLOAD /AFTER_JOURNAL
does not attempt to write to the database tables.
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3.6 Row Cache Errors Fixed

3.6.1 Storage Area Grows Despite Row Erasure When Using
Row Cache

Normally, when a process erases a row in the database, it keeps track of the page number of the
deleted row to be used as a starting point for future inserts into the table. This helps processes reuse
space in the database. Previously, however, when cached rows were erased, the process would not
correctly maintain this starting point page number.

This problem has been reduced in scope in Oracle Rdb Release 7.1.2. When a process erases a cached
row, if the database page for the row is in memory and is locked for update, the row is erased in the
cache and on the database page and the starting page number for future inserts is updated. If the
database page is not locked for update, however, the process does not update the database page after it
erases the row in cache. The RCS (Row Cache Server) process will, at some point in the future, move
the erased row back to disk. Until that time, the space on the database page remains allocated and
unavailable for reuse.

For tables with heavy delete activity when snapshots are enabled in cache, it may be wise to configure
the cache to specify that the RCS is to checkpoint it to the database rather than the backing store files.
This will cause space to be reclaimable by moving erased rows back to the database more rapidly.

Note that applications that attach to the database for long periods and insert and erase rows in such a
table may still need to periodically detach from the database and reattach in order to be able to find
space for reuse to insert records. This is due to the RCS being unable, at present, to notify processes
that it has moved erased rows from cache to disk and thus potentially making space available for
inserting records. Oracle expects to address this behaviour in a future Oracle Rdb release.

3.6.2 Logical Area Record Erasure Count Not Updated for
Cached Rows

Bug 3099718

Previously, logical area statistics for record erase operations were not correctly counted when erasing
rows in a row cache.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.6.3 Commit Performance Improvement With Row Cache
Feature

Performance of COMMIT operations has been improved when the Row Cache feature is enabled for a
database. Previously, all working set entries in all caches for the user were evaluated to determine if
there were any modified records that needed to be written back to the cache when the transaction
committed. This scanning is now avoided when there are known to be no modified records that need
to be written back.
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3.6.4 RMU /SET ROW_CACHE Command Updates

Bug 2618405

The "RMU /SET ROW_CACHE" command now allows the Row Cache "Backing Store" directory
specification to be maintained on a per−database and per−cache basis.

The "RMU /SET ROW_CACHE /BACKING_STORE_LOCATION=devdir" command can be used
to specify the database default backing store location for all caches that do not have a cache−specific
backing store location. The "RMU /SET ROW_CACHE /NOBACKING_STORE_LOCATION"
qualifier can be used to remove the database default backing store location.

New keywords "BACKING_STORE_LOCATION=devdir" and
"NOBACKING_STORE_LOCATION" have been added to the /ALTER qualifier to allow the
backing store location directory to be specified on a per−cache basis.

The "NAME=cachename" keyword now accepts the wildcard characters asterisk (*) and percent sign
(%) to specify matching cache names.

The "ENABLE" and "DISABLE" keywords have been removed and new keywords "DROP" and
"SNAPSHOT_SLOT_COUNT" have been added.

The valid keywords for the ALTER qualifier are:

NAME=cachename − Name of the cache to be modified. The cache must already be defined
in the database. This is a required parameter. This parameter accepts the wildcard characters
asterisk (*) and percent sign (%).

♦ 

DROP − Remove the row cache definition from the database.♦ 
SNAPSHOT_SLOT_COUNT=n − Specify the number of snapshot slots in the cache. A value
of zero disables in−cache snapshots for the cache.

♦ 

SLOT_COUNT=n − Specify the number of slots in the cache.♦ 
SLOT_SIZE=n − Specify the size (in bytes) of each slot in the cache.♦ 
WINDOW_COUNT=n − Deprecated qualifier.♦ 
WORKING_SET_COUNT=n − Specify the number of working set entries for the cache.
Valid values are from 1 to 100. Note that this keyword is deprecated.

♦ 

BACKING_STORE_LOCATION=devdir − Specify the per−cache default backing store
location.

♦ 

NOBACKING_STORE_LOCATION − Remove the per−cache default backing store location
and revert back to the database default backing store file location.

♦ 

SHARED_MEMORY − Specify the shared memory type and parameters for the cache. Valid
keywords are:

TYPE=PROCESS to specify traditional shared memory global section, which means
that the database global section is located in process (P0) address space and may be
paged from the processes working set as needed.

◊ 

TYPE=RESIDENT to specify that the database global section is memory resident in
process (P0) address space using OpenVMS Alpha shared page tables, which means
that a system space global section is fully resident, or pinned, in memory.

◊ 

RAD_HINT= "number" to indicate a request that memory for this shared memory
should be allocated from the specified OpenVMS Alpha Resource Affinity Domain
(RAD). This parameter specifies a hint to Oracle Rdb and OpenVMS about where

◊ 

♦ 
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memory should be physically allocated. It is possible that if the memory is not
available, it will be allocated from other RADs in the system. For systems that do not
support RADs, no RAD_HINT specification is valid.
The RAD_HINT qualifier is only valid when the shared memory type is set to
RESIDENT. Setting the shared memory type to SYSTEM or PROCESS explicitly
disables any previously defined RAD hint.

Note

OpenVMS support for RADs is available only on the AlphaServer
GS series systems. For more information about using RADs, refer
to the OpenVMS Alpha Partitioning and Galaxy Guide.

NORAD_HINT disables the RAD hint.◊ 
TYPE=SYSTEM Deprecated keyword.◊ 

SNAPSHOT_SLOT_COUNT=n − Specify the number of snapshot slots in the cache. A value
of zero disables the snapshot portion for the specified cache. Otherwise, the total number of
rows for the cache (the combination of "live" rows and snapshot rows) must be between 1 and
2,147,483,647.

♦ 

The "/ALTER=(...)" qualifier may be specified multiple times on the command line. Each /ALTER
qualifier specified operates on one unique cache if no wildcard character (% or *) is specified.
Otherwise, each /ALTER operates on all matching cache names. For example, the following
command alters two caches:

$ RMU /SET ROW_CACHE MF_PERSONNEL − 
        /ALTER= (   NAME = RDB$SYS_CACHE, 
                    SLOT_COUNT = 800, − 
                    WINDOW_COUNT = 25 ) − 
        /ALTER= (   NAME = RESUMES, − 
                    SLOT_SIZE=500, − 
                    WORKING_SET_COUNT = 15) 

The following command alters caches named FOOD and FOOT (and any other cache with a 4
character name with the first three characters of "FOO" defined in the database):

$ RMU /SET ROW_CACHE MF_PERSONNEL − 
        /ALTER= (   NAME = FOO%, 
                    BACKING_STORE_LOCATION=DISK$RDC:[RDC]) 

The following example modifies the database MYDB to set the snapshot slot count for the cache
"EMPL_IDX" to 250,000 slots and disables snapshots in cache for the "SALES" cache:

$ RMU /SET ROW_CACHE DGA0:[DB]MYDB.RDB − 
  /ALTER=(NAME=EMPL_IDX, SNAPSHOT_SLOT_COUNT=250000) − 
  /ALTER=(NAME=SALES, SNAPSHOT_SLOT_COUNT=0) 
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3.7 RMU Show Statistics Errors Fixed

3.7.1 RMU /SHOW STATISTICS Writes Invalid Configuration
File

Bug 3108571

Starting in Oracle Rdb Release 7.0.6.3, the RMU /SHOW STATISICS utility could write an invalid
line to a save configuration file. In particular, the "CHECKPOINT_TX" line would be omitted and
the line containing "CHECKPOINT_BLOCK_COUNT" would be corrupted.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.7.2 RMU /SHOW STATISTICS /DEADLOCK_LOG Does Not
Record First Deadlock Occurrence

Bug 3104519

Previously, it was possible for the first deadlock encountered by a process to not be correctly logged
by the RMU /SHOW STATISTICS utility when using the /DEADLOCK_LOG qualifier.

The following sequence of events shows one possible way that this behaviour could be seen. Three
sessions are needed; one to execute RMU /SHOW STATISTICS and two others to use interactive
SQL.

$! In session 1 
$ RMU /SHOW STATISTICS MF_PERSONNEL − 
    /NOINTERACTIVE − 
    /TIME=1 − 
    /UNTIL="''F$CVTIME("+0:1","ABSOLUTE")'" − 
    /DEADLOCK_LOG=DEAD.LOG 

       session 2                           session 3 

step1 $ SQL$                              $SQL$ 
      SQL> attach 'file mf_personnel';    SQL> attach 'file mf_personnel'; 

step2 SQL> select * from employees        SQL> select * from employees 
            where  employee_id = '00165';       where employee_id = '00190'; 

step3 SQL> update employees 
           set middle_initial = 'F' 
           where employee_id = '00190'; 

step4                                     SQL> update employees 
                                               set middle_initial = 'F' 
                                               where employee_id = '00165'; 

After letting the RMU /SHOW STATISTICS session expire, examining the content of DEAD.LOG
shows that it contains only the header information with no record of the deadlock.
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This problem has been corrected in Oracle Rdb Release 7.1.2.

3.7.3 RMU /SHOW STATISTICS Row Cache Overview
Integer Overflow

Bug 2644488

Statistics information maintained by Oracle Rdb are stored in longword integer counters. Some basic
operations on these counters are treated as signed while others are treated as unsigned. In the "Row
Cache Overview" display of the RMU /SHOW STATISTICS utility, it was possible for percentages
to be incorrectly displayed when counters exceeded approximately 2,147,483,647.

This problem has been corrected for the "Row Cache Overview" display for Oracle Rdb Release
7.1.2. Some of the integer operations are performed using unsigned quadwords to avoid overflow
resulting in negative values.

However, an integer longword can still represent approximately 4.29 billion values before it
overflows back to zero. When a counter does overflow and "wraps" back to zero, comparisons and
operations on this value may result in unexpected results when displayed by the RMU /SHOW
STATISTICS utility.

Oracle anticipates correcting this behaviour in the future.

3.7.4 RMU /SHOW STATISTICS "Device Information" Screen
Bugchecks in Playback Mode

Bug 2882453

RMU /SHOW STATISTICS bugchecks on selecting the "Device Information" option under the IO
Statistics (by file) in playback mode. This screen was enhanced to display information about devices
with AIJ files. The information necessary to do this is not saved in the binary file and hence cannot be
played back.

This problem has been corrected in Oracle Rdb Release 7.1.2. A change has been made to display
information of devices with AIJ files only in the normal mode.

3.7.5 RMU /SHOW STATISTICS Limiting Multi−Page Report

Previously, the RMU /SHOW STATISTICS utility would always write all pages for each display
when writing to a report file. For some databases, for example those with a large number of row cache
slots, this output would be quite lengthy.

As an assist to reducing the size of the output report file, the qualifier
"MULTIPAGE_MAXIMUM=n" has been added to the RMU /SHOW STATISTICS command.
When specified, the MULTIPAGE_MAXIMUM qualifier accepts a number representing the
maximum number of pages to write for a multi−page display. For example, if
/MULTIPAGE_MAXIMUM=5 is specified, only the first 5 pages of any multi−page display will be
written to the output file. If MULTIPAGE_MAXIMUM is not specified, the current behaviour of
"unlimited" is assumed and all pages for multi−page displays will be written to the output file.
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3.7.6 RMU /SHOW STATISTICS Misleading Maximum Values
After RESET or UNRESET

Bug 2790163

Previously, the determination of the maximum value for a statistics counter was incorrectly
determined after a RESET or UNRESET operation. The amount of time that the statistic value
represented was not being accurately calculated leading to an unexpectedly large or small peak value.

This problem has been corrected in Oracle Rdb Release 7.1.2. Statistics are now collected
immediately prior to a RESET or UNRESET operation.

3.7.7 Enhancement to Transaction Duration Display When
Written to Report

Bug 1982063

The "Write Report" function of the RMU /SHOW STATISTICS utility now includes all 3 variants of
the "Transaction Duration" display: Read/Write, Read/Only and Combined.

3.7.8 RMU /SHOW STATISTICS Bugcheck in
KUTDIS$UPDATE_RS

Bug 2912167

Previously, it was possible for the RMU /SHOW STATISTICS utility to bugcheck with an ACCVIO
in the routine KUTDIS$UPDATE_RS when logical area statistics were being displayed. This
problem was caused by an internal data structure being slightly undersized.

This problem has been corrected in Oracle Rdb Release 7.1.2. As a possible workaround, use the
/NOLOGICAL_AREA qualifier.

3.7.9 RMU /SHOW STATISTICS 95th Percentile Transaction
Duration Less Than 0.40 Seconds

Bug 2388494

At the completion of a transaction, Oracle Rdb captures the transaction duration and also updates a
table of transaction durations. This table is used to display frequency of transactions by duration. In
the past, the shortest transaction duration represented in this table was 0.40 seconds meaning that any
transaction that completed in 0.40 seconds or less would be counted in the 0.40 seconds bucket. This
effect can make it more difficult to optimize or tune database systems where most transactions are
quite short. Also on modern, fast OLTP systems, many or most transactions may well be less than
0.40 seconds.

This behaviour has been changed in Oracle Rdb Release 7.1.2. The shortest transaction duration
represented in the transaction duration table is now 0.01 seconds and the scaling of intervals within
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the table has been altered to provide finer detail of shorter transactions.

3.7.10 "RUJ File Writes" Statistic Not Accurate

Bug 2936595

Previously, the "RUJ file writes" database statistic as displayed by the RMU /SHOW STATISTICS
utility on the "RUJ Statistics" screen was not being correctly maintained and would often display a
value that was much too small.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.7.11 RMU /SHOW STATISTICS Custom (Yanked) Value
Double of Value Reported in Original Screen

Bug 2907249

Previously, the "yanked" value as shown on the custom statistics display would be double the value
reported on the original statistics display.

This problem has been corrected in Oracle Rdb Release 7.1.2.
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3.8 Hot Standby Errors Fixed

3.8.1 Changes to RMU /REPLICATE AFTER START
/BUFFERS Qualifier

Bug 2643337

In prior releases of Oracle Rdb, the /BUFFERS qualifier for the RMU/REPLICATE AFTER START
command was ignored if the database was not configured to use global buffers. The database
administrator had no control over the number of buffers used by the Log Recovery Server (LRS). The
LRS would determine the number of buffers based on various database configuration parameters.
While the value determined by the LRS was usually a reasonable number, occasionally it would not
be optimum.

This behavior has been changed. The LRS will now use the value specified by the /BUFFERS
qualifier, regardless of whether or not global buffers are being used.

In addition, the defaults for the /BUFFERS qualifier have been changed as follows:

Table 3−1 / Buffer Values

Local Buffers Global Buffers

Default Value 4096 4096 or Global Buffer USER LIMIT, whichever is smaller

Minimum Value 2 2

Maximum Value 524,288 524,288 or Global Buffer USER LIMIT, whichever is smaller

If global buffers are not being used on the standby database, and the currently configured buffer value
is less than 4096, it is advised that after installing this release the RMU/REPLICATE AFTER
CONFIGURE /MASTER /BUFFER command be used to explicitly set the number of buffers to an
appropriate value.

This problem has been corrected in Oracle Rdb Release 7.1.2.

3.8.2 Standby Database Missing Updates if Master Not
Manually Opened

Bug 2656517

When the following conditions are true, it is possible for database updates to not get propagated to a
standby database:

Hot Standby replication is enabled and started♦ 
The database is set to OPEN IS AUTOMATIC instead of OPEN IS MANUAL as
recommended in the documentation

♦ 

A user on a node that does not currently have the master database open attaches to the♦ 
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database and updates it before the AIJ Log Server (ALS) process starts
In the above scenario, it is possible for journal entries to be written by a user process instead of the
ALS process. When that occurs, the journal entries written by the user process are not transmitted to
the standby database and thus are not reflected in the standby database.

The ALS process will be automatically started when a user attaches to a database, but before this
release it was possible for a user process to update the database before the ALS process was ready to
transmit those changes to the standby database.

To avoid this problem, always manually open databases that utilize the Hot Standby feature prior to
making any updates to those databases.

This problem has been corrected in Oracle Rdb Release 7.1.2. The Oracle Rdb monitor process will
now defer responding to user attach requests until the ALS process is ready.

3.8.3 Starting LRS on Master Database Caused Shutdown

Bug 1775983

If a database administrator attempted to start the Hot Standby feature and mistakenly specified the
master database as the standby database then the master database was shutdown.

For example, note that in the following command the /MASTER qualifier is being used against the
master database. This causes Hot Standby to attempt to configure the master database as a standby
database.

$ RMU /REPLICATE AFTER_JOURNAL START [.MASTER]mf_personnel − 
  /MASTER_ROOT=[.STANDBY]standby_personnel 

When the above command was issued, the AIJ Log Roll−forward Server (LRS) failed with the
following error:

RDMS−F−STBYDBINUSE, standby database cannot be 
exclusively accessed for replication 

Whenever the LRS failed, the database was automatically shutdown. A running application could be
accidentally shutdown due to this type of command error.

This problem has been corrected in Oracle Rdb Release 7.1.2. Now, if the LRS fails with a
STBYDBINUSE error, the database is not shutdown.
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3.9 Oracle Trace Errors Fixed

3.9.1 Oracle Trace Did Not Collect for Oracle Rdb Release
7.1.1

Oracle TRACE did not collect data for the RDBVMS FACILITY for Oracle Rdb Release 7.1.1.0.0
and 7.1.1.0.1. This was because the version number specified by Rdb to the Oracle TRACE Service
Routine EPC$INIT was "V7.1−10" but the version number inserted by the Rdb installation into the
module "RDBVMSV7.1−10" in the TRACE VMS SYS$SHARE:EPC$FACILITY.TLB text library
was "V7.1−100" or "V7.1−101". This module could then be extracted and used to set the RDBVMS
facility definition and version in the Trace Administration database. The version string passed to the
Oracle TRACE Service Routine EPC$INIT must match identically with the version specified in the
facility definition in the Trace Administration database. Since this was not true for the RDBVMS
facility, when an RDBVMS TRACE collection was scheduled, no RDBVMS data was collected.

For Oracle Rdb Release 7.1.2.0.0 and 7.1.2.0.1, this has been corrected and the version number passed
to EPC$INIT for the RDBVMS facility will exactly match the RDBVMS facility version inserted by
the Rdb installation procedure into SYS$SHARE:EPC$FACILITY.TLB which can then be used to
define the RDBVMS facility in the TRACE Administration database. For both Rdb 7.1.2.0.0 and
7.1.2.0.1, this version is "V7.1−2".

The following example shows that for Oracle Rdb Release 7.1.1.0.0 and 7.1.1.0.1, RDBVMS facility
data was not getting collected as signified by no arrow pointing to the RDBVMS facility when the
Oracle TRACE "COLLECT SHOW REGISTER/NOCLUSTER" command is issued. Data is getting
collected for the ATM_SAMPLE facility as indicated by the arrow.

$ COLLECT SHOW REGISTER/NOCLUSTER 

Registrations actively collecting 

  Node: CLNODE  Collection: SAMPLE            Selection: SAMPLE_SELECTION 
                            _COLLECTION 

    Process   Process Name     Facility  Version   Registration Id 
    −−−−−−−−  −−−−−−−−−−−−−−−  −−−−−−−−  −−−−−−−−  −−−−−−−−−−−−−−−−−−−−−−−−−−−− 
    20638408  _RTA2:           RDBVMS    V7.1−101 
 −>                            ATM       V1.2−0    ATM APPLICATION EXT 
                               _SAMPLE 

The only workaround for this problem would be to change the version numbers in the Oracle TRACE
administration database tables from "V7.100" or "V7.101" to "V7.1−10".
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4.1 Enhancements Provided in Oracle Rdb
Release 7.1.2

4.1.1 New NVL2 Expression

This release of Oracle Rdb adds a new conditional function, NVL2, which can simplify complex
queries which require testing of values for NULL.

Syntax

NVL2 (value_expression, value_expression, value_expression)

Description

NVL2 lets you compute a value based on whether a specified expression is null or not null. If the first
value expression is not null, then the second value expression is returned as the function result.
Otherwise, the final value expression is returned. The data type of the NVL2 function is derived as a
common data type of the second and third value expressions.

For example, when the JOB_END date in JOB_HISTORY is NULL then that indicates the current job
for that employee. The following example uses NVL2 to annotate the output from a query on
JOB_HISTORY displaying either "current job" or "prior job" based on the NULL attribute of the
JOB_END column.

SQL> select employee_id, job_start, job_end, 
cont> NVL2 (job_end, 'prior job', 'current job') 
cont> from job_history 
cont> where employee_id < '00180' 
cont> order by employee_id, job_start; 
 EMPLOYEE_ID   JOB_START     JOB_END 
 00164          5−Jul−1980   20−Sep−1981   prior job 
 00164         21−Sep−1981   NULL          current job 
 00165          1−Jul−1975    4−Sep−1977   prior job 
 00165          5−Sep−1977    7−Apr−1979   prior job 
 00165          8−Apr−1979    7−Mar−1981   prior job 
 00165          8−Mar−1981   NULL          current job 

.

.

.

The following example shows whether the income of some employees is made up of SALARY plus
COMMISSION, or just SALARY, depending on whether the COMMISSION_PCT column of
EMPLOYEES is null or not.

SQL> SELECT last_name, salary_amount, 
cont>       NVL2 (commission_pct, 
cont>             salary_amount + (salary_amount * commission_pct), 
cont>             salary_amount) as Income edit using SALARY 
cont> FROM employees e, salary_history sh 
cont> WHERE last_name like 'B%' 
cont>   and e.employee_id = sh.employee_id 
cont>   and salary_end is null 
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cont> ORDER BY last_name; 
 E.LAST_NAME      SH.SALARY_AMOUNT        INCOME 
 Babbin                 $20,150.00    $20,956.00 
 Bartlett               $14,817.00    $15,261.51 
 Bartlett               $38,223.00    $38,987.46 
 Belliveau              $54,649.00    $55,741.98 
 Blount                 $63,080.00    $64,341.60 
 Boyd                   $30,275.00    $30,275.00 
 Boyd                   $24,166.00    $24,166.00 
 Brown                  $50,357.00    $50,357.00 
 Burton                 $23,053.00    $23,053.00 
9 rows selected 
SQL> 

4.1.2 SET DEFAULT CONSTRAINT MODE Enhancements

This release of Oracle Rdb enhances the SET DEFAULT CONSTRAINT MODE statement. This
statement is used to establish the session default constraint evaluation mode. In prior versions, this
statement was only supported in Interactive SQL but it can now be used in Dyanmic SQL. In addition,
the argument passed to this statement can now also be a parameter or host variable, allowing the value
to be provided at runtime in both Dynamic and Interactive SQL.

Format

Arguments

IMMEDIATE
ON
This requests that during the next transaction, all constraints defined as DEFERRABLE
INITIALLY DEFERRED be evaluated as though defined as DEFERRABLE INITIALLY
IMMEDIATE. ON is synonymous with IMMEDIATE.

♦ 

DEFAULT
OFF

♦ 
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This requests that during the next transaction, all constraints defined as DEFERRABLE
INITIALLY DEFERRED be evaluated as originally specified in the constraint definition.
OFF is synonymous with DEFAULT.
DEFERRED
Currently this is synonymous with DEFAULT. However, in a future release of Oracle Rdb
this keyword will change meaning.

♦ 

Within a transaction, the constraint mode can be set temporarily using the SET ALL CONSTRAINTS
statement. When a COMMIT or ROLLBACK is done, the mode will revert to that established by SET
DEFAULT CONSTRAINT MODE.

If using runtime−options, the passed character value must be one of the keywords: ON, OFF,
IMMEDIATE, DEFERRED, or DEFAULT. The following example shows how this can be done in
Interactive SQL.

SQL> show constraint mode 
    Statement constraint evaluation default is DEFERRED (off) 
SQL> declare :c_mode char(10) = 'IMMEDIATE'; 
SQL> set default constraint mode :c_mode; 
SQL> show constraint mode 
    Statement constraint evaluation default is IMMEDIATE (on) 
SQL> 

4.1.3 New Dialect ORACLE LEVEL2 Added

This release of Oracle Rdb introduces a new dialect: ORACLE LEVEL2. This dialect is designed to
be used in conjunction with SQL*Net for Rdb to provide better compatibility with the latest Oracle
RDBMS releases.

ORACLE LEVEL2 includes all the semantics associated with ORACLE LEVEL1 with the following
additions:

Implicitly enabled SQL99 dialect semantics.♦ 
Permits concatenation of non−character values. Each non−character value is implicitly CAST
as a VARCHAR value before concatenation.
Enhancement 2948230

♦ 

Date subtraction now results in a floating value with fractional portion. In ORACLE
LEVEL1, the result is always a fixed point value with no fractional part.

♦ 

Subsequent releases of Oracle Rdb may add to the list of features available in the ORACLE LEVEL2
dialect.

4.1.4 RMONSTOP71.COM Parameter for RMU /MONITOR
STOP Command

Bug 3098311

The Oracle Rdb RMONSTOP71.COM procedure used to shutdown Oracle Rdb now accepts an
optional parameter that can be used to control how the Rdb monitor is stopped. The parameter P1 can
be passed as the string "/ABORT=DELPRC" or "/ABORT=FORCEX". This parameter is included in
the RMU /MONITOR STOP command and can be used to cause the monitor process to terminate
attached database users.
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4.1.5 RMU/UNLOAD/AFTER_JOURNAL Output Flush

Bug 2832044

When using both the "OUTPUT" and "STATISTICS_INTERVAL" qualifiers with the
RMU/UNLOAD/AFTER_JOURNAL command, the output stream used for the log, trace and
statistics information is now flushed to disk (via the RMS $FLUSH service) at each statistics interval.
This enhancement helps make sure that an output file of trace and log information is written to disk
periodically.

4.1.6 RMU /SHOW STATISTICS Enhanced to Show Large
Memory Setting

Bug 2903442

Previously, the RMU /SHOW STATISTICS "Buffer Information" screen did not display the setting of
the global buffers "LARGE MEMORY IS ENABLED" setting.

This problem has been corrected in Oracle Rdb Release 7.1.2. The RMU /SHOW STATISTICS
"Buffer Information" screen now indicates the database global buffers "LARGE MEMORY IS
ENABLED" setting.

4.1.7 Statistics Collection Performance Improvement for
AlphaServer GS Systems

NUMA (non−uniform memory access) is an attribute of a system in which access time to any given
physical memory location is not the same for all CPUs. Given this architecture, consistently good
location is important (but not necessarily 100 percent of the time) for highest performance. In the
AlphaServer GS series, CPUs access memory in their own quad building block (QBB) faster than
they access memory in another QBB. The OpenVMS operating system treats the hardware as a set of
resource affinity domains (RADs). A RAD is a set of hardware components (CPUs, memory, and I/O)
with common access characteristics. On AlphaServer GS80/160/320 systems, a RAD corresponds to a
QBB.

Previously, a single copy of Oracle Rdb statistical information was maintained in a per−database
memory structure (located in the database shared memory section). There was one copy of the
statistical information for each database for all users on one OpenVMS system. Under heavy loads,
the NUMA effect while maintaining statistics information could reduce the absolute performance of
an application using Oracle Rdb due, in part, to increased memory access latency and CPU cache
flushes.

The impact of this effect has been reduced. On AlphaServer GS series systems with more than one
QBB configured with physical memory, the Oracle Rdb monitor process creates one global section
per RAD that contains physical memory for the statistical information memory structure. These
per−RAD global sections are created as "resident" and are requested to be allocated in physical
memory by RAD. As each user attaches to the database, the user's OpenVMS defined "home" RAD is
used to determine which global section to use for statistics collection for the user. The statistics global
section is always mapped into the process' P0 virtual address space (ie, this global section is not
controlled by SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED).
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Note

The global section creation requested in physical memory of a specific RAD is
simply a "hint" to OpenVMS. Memory may be obtained from other RADs if no free
memory is available at the time of allocation.

The RMU /SHOW STATISTICS utility maps all statistics global sections for a database. At each
statistics collection interval, the statistical counters from each of the RAD−specific global sections are
accumulated before display. Adding several copies of the statistics values together potentially
increases the CPU consumption of the RMU /SHOW STATISTICS utility at each sample interval.
However, the run−time performance gain by all database users should out−weigh the additional CPU
cost of the RMU /SHOW STATISTICS utility. Using a less−frequent update interval in the RMU
/SHOW STATISTICS utility will result in less CPU consumption as well.

The virtual memory consumed by processes attached to databases, the Oracle Rdb monitor
(RDMMON) and the RMU /SHOW STATISTICS utility will increase on those systems with more
than one QBB containing physical memory. This is due to the mapping of multiple statistics shared
memory global sections. However, because these sections are physically resident in memory,
additional working set quota should not be required. The amount of additional virtual address space
consumed is proportional to the number RADs configured in the system, the number of storage areas,
the number of logical areas and the number of row caches configured in each database.

Note

OpenVMS support for RADs is available only on the AlphaServer GS series
systems. For more information about using RADs, refer to the OpenVMS Alpha
Partitioning and Galaxy Guide.

4.1.8 RMU RECOVER Accepts Wildcard After−image
Journal File Specifications and ORDER_AIJ_FILES Qualifier

Bug 3032437

Starting with Oracle Rdb Release 7.1.2, the RMU /RECOVER command accepts wildcard
after−image journal file specifications. File specifications containing the OpenVMS wildcard
characters "%" and "*" are now parsed and processed.

By default, after−image journal files are processed in the order that they are presented to the RMU
RECOVER command (either explicitly or as returned from OpenVMS when using wildcards). The
new ORDER_AIJ_FILES qualifier specifies that the input after−image journal files are to be
processed in ascending order by sequence number. This can be of benefit when you use wildcard (* or
%) processing of a number of input files. The .AIJ files are each opened, the first block is read (to
determine the sequence number), and the files are closed prior to the sequence number sorting
operation.
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4.1.9 RMU/SHOW STATISTICS Page Dump Content and
Format Enhancements

Bug 2899761

Starting with Oracle Rdb Release 7.1.2, the RMU /SHOW STATISTICS utility displays the database
page content, including the content of rows on the page in the "PageInfo" display, if the user has the
OpenVMS BYPASS privilege enabled. The display of the page content is now also consistant with
the output format of the RMU /DUMP command.

4.1.10 Enhancement to Prestarted Transaction Timeout

Bug 2439694

Oracle Rdb Release 7.1 introduced the ability to timeout "prestarted" transactions. That functionality
has been enhanced to also force a process to obtain a new transaction sequence number (TSN) if the
same TSN has been reused throughout the duration of the prestarted transaction timeout interval.

When a READ WRITE transaction does not make any modifications to the database, Oracle Rdb will
reuse the TSN for the next transaction. If a user rarely or never makes any database modifications
then the TSN for the user will become old. This can cause snapshot files to grow excessively. This
enhancement provides the ability for processes that constantly reuse TSNs to periodically obtain a
new TSN, thus preventing excessive snapshot growth.

This problem has been corrected in Oracle Rdb Release 7.1.2.

4.1.11 RDM$BIND_SNAP_QUIET_POINT Logical No Longer
Used

Bug 2656534

If the logical RDM$BIND_SNAP_QUIET_POINT was defined to be "0" on a system that was used
for the standby database in a Hot Standby configuration, it was not possible to start database
replication. Attempts to start replication would fail with:

RDMS−F−HOTSNAPQUIET, quiet points must be enabled 
for snapshot transactions during hot standby replication 

However, defining the logical to "1" can cause processes with long running READ ONLY
transactions to prevent database backups from proceeding.

This logical was introduced in Oracle Rdb Release 6.0 to allow database administrators to override
the 6.0 requirement that READ ONLY transactions hold the quiet−point lock. Defining the logical to
"1" (the default) would provide better performance when the Fast Commit feature was enabled and
processes frequently switched between READ ONLY and READ WRITE transactions. Since that
time, improvements have been made to the quiet−point lock algorithms that make this logical no
longer necessary. Since releases 7.0.6.3 and 7.1.0.1, READ ONLY transactions would continue to
hold the quiet−point lock until a backup process requested the lock. When the lock was requested,
READ ONLY processes would release the quiet point lock as soon as the currently executing
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database request finished, if the RDM$BIND_SNAP_QUIET_POINT logical was defined as "0".
This made it no longer necessary to have the logical defined as "1".

Since the quiet−point lock behavior now behaves optimally, even with the Fast Commit feature
enabled, the RDM$BIND_SNAP_QUIET_POINT logical is no longer needed and thus has been
removed. Oracle Rdb will now behave as if the logical is always defined to be "0".

This problem has been corrected in Oracle Rdb Release 7.1.2.

4.1.12 New SET CONTINUE CHARACTER Statement for
Interactive SQL

Interactive SQL treats the minus sign (−) as the default continuation character. Unfortunately, this
character is commonly used as the minus sign and if scripts are generated with minus at the end of the
line then the results are unexpected.

In most cases, lines do not need to include a continuation character as most SQL statements are
terminated with a ';' character and interactive SQL will continue to prompt until a valid statement is
processed.

This release of SQL allows the database administrator to redefine the continuation character for
interactive SQL. By selecting a little used character, the database administrator avoids problems with
the minus sign and is still not required to use a continuation character in scripts. The SET
CONTINUE CHARACTER statement could be included in the SQLINI file for the process.

The following example shows the effect of defining an alternate continuation character.

SQL> declare :val integer; 
SQL> −− the trailing minus is assumed to be a continue character 
SQL> begin 
cont> set :val = :val − 
cont>             (select count (*) from work_status); 
            (select count (*) from work_status); 
            ^ 
%SQL−F−LOOK_FOR, Syntax error, looking for ;, found ( instead 
SQL> end; 
end; 
^ 
%SQL−F−LOOK_FOR_STMT, Syntax error, looking for a valid SQL statement, found END instead 
SQL> 
SQL> set continue character '\'; 
SQL> show continue character 
Continue character is '\'. 
SQL> 
SQL> −− now the trailing minus is not used as a continue character 
SQL> begin 
cont> set :val = :val − 
cont>             (select count (*) from work_status); 
cont> end; 

Usage Notes

The continuation character must be a valid SQL language terminator. These characters are:♦ 
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'#', '(', ')', '*', '+', ',', '−', '.', '/', ':', ';', '?', '[', '\', ']', '{', |, and '}'.
Currently only single octet values are supported by Interactive SQL.♦ 
Use the SHOW CONTINUE CHARACTER to display the current continuation character.♦ 

4.1.13 OPTIMIZE Clause Enhancements

This release of Oracle Rdb introduces new controls for enabling optimizer selectivity using the
OPTIMIZE clause on SELECT, INSERT ... SELECT, DELETE, UPDATE and compound statements
(on the outermost BEGIN ... END).

Format

The enhanced syntax for OPTIMIZE now includes a WITH clause to select one of three optimization
controls: DEFAULT (as used by previous versions of Rdb), AGGRESSIVE (assumes smaller
numbers of rows will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

The following example shows how to use this new clause.

SQL> select * from employees where employee_id < '00170' 
cont>   optimize with sampled selectivity; 

Please refer to Section 5.1.1 for more information.

4.1.14 New Options for the OPTIMIZATION_LEVEL Qualifier

This release of Oracle Rdb introduces new controls for enabling optimizer selectivity using the
OPTIMIZATION_LEVEL qualifier on the SQL precompile or SQL Module Language compiler. This
qualifier is used to establish default values for TOTAL TIME, FAST FIRST and the new
SELECTIVITY clause. SELECT, INSERT ... SELECT, DELETE, UPDATE and compound
statements (on the outermost BEGIN ... END) will inherit these settings during compile of the
module.
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See the Section 4.1.15 for similar functionality that can alter the defaults for Interactive SQL and
Dynamic SQL.

Format

The enhanced syntax for the OPTIMIZATION_LEVEL qualifier now includes two new options:
AGGRESSIVE_SELECTIVITY (assumes smaller numbers of rows will be selected), and
SAMPLED_SELECTIVITY (which uses literals in the query to perform preliminary estimation on
indices). You can choose one of these options and one of the options TOTAL_TIME or
FAST_FIRST. Use a comma to separate the keywords and enclose the list in parentheses.

Only one of the options TOTAL_TIME or FAST_FIRST may be selected. Only one of the options
AGGRESSIVE_SELECTIVITY or SAMPLED_SELECTIVITY may be selected. No other options
may be include if DEFAULT is selected.

DEFAULT will set the module to the current Oracle Rdb defaults: FAST FIRST and DEFAULT
SELECTIVITY.

The following example shows how to use this new functionality with the SQL Module Language
compiler.

$ SQL$MOD/OPTIMIZATION_LEVEL=(TOTAL_TIME,SAMPLED_SELECTIVITY) APPCODE.SQLMOD 

The following example shows how to use this new functionality with the SQL pre−compiler.

$ SQL$PRE/SQLOPTIONS=OPTIMIZATION_LEVEL=(TOTAL_TIME,SAMPLED_SELECTIVITY) APPCODE.SC 

Note

Any query which explicily includes an OPTIMIZE WITH or OPTIMIZE FOR
clause is not affected by the settings established using the
OPTIMIZATION_LEVEL qualifier.

Please refer to Section 5.1.1 for more information.
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4.1.15 SET OPTIMIZATION LEVEL Enhancements

This release of Oracle Rdb introduces new controls for enabling optimizer selectivity using the SET
OPTIMIZATION LEVEL statement. This statement is used to establish default values for TOTAL
TIME, FAST FIRST and the new SELECTIVITY clause. Subsequent SELECT, INSERT ...
SELECT, DELETE, UPDATE and compound statements (on the outermost BEGIN ... END) will
inherit these settings in Interactive and Dynamic SQL.

See the Section 4.1.14 for similar functionality that can alter the defaults for SQL Module Language
and the SQL precompiler.

Format

The enhanced syntax for SET OPTIMIZATION LEVEL now includes two new options:
AGGRESSIVE SELECTIVITY (assumes smaller numbers of rows will be selected), and SAMPLED
SELECTIVITY (which uses literals in the query to perform preliminary estimation on indices).

The runtime−options, either a literal value or parameter, can contain a formatted string containing the
keyword DEFAULT, or one of TOTAL TIME or FAST FIRST, and one of AGGRESSIVE
SELECTIVITY or SAMPLED SELECTIVITY. Use a comma to separate the clauses.

Only one of the options TOTAL TIME or FAST FIRST may be selected. Only one of the options
AGGRESSIVE SELECTIVITY or SAMPLED SELECTIVITY may be selected. No other options
may be included if DEFAULT is selected. A blank string will cause an error to be reported.

DEFAULT will set the session to the current Oracle Rdb defaults: FAST FIRST and DEFAULT
SELECTIVITY.

The following example shows how to use this new functionality:
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SQL> set optimization level 'total time, sampled selectivity'; 
SQL> select * from employees where employee_id > '00200'; 

Note

Any query which explicitly includes an OPTIMIZE WITH or OPTIMIZE FOR
clause is not affected by the settings established using SET OPTIMIZATION
LEVEL.

Please refer to Section 5.1.1 for more information.

4.1.16 RMU Load Now Supports SELECTIVITY Option for
OPTIMIZE Qualifier

The /OPTIMIZE qualifier for RMU Load now supports a new SELECTIVITY qualifier so that the
Rdb query optimizer can be influenced to use different selectivity values. Please refer to Section 5.1.1
for more details.

The SELECTIVITY option accepts the following keywords:

AGGRESSIVE − assumes a smaller number of rows will be selected (compared to the default
Rdb selectivity)

♦ 

SAMPLED − uses literals in the query to perform preliminary estimation on indices♦ 
DEFAULT − uses default selectivity rules♦ 

The following example shows how to use this new option.

$ RMU/UNLOAD/OPTIMIZE=(TOTAL_TIME,SELECTIVITY=SAMPLE) − 
_$      SALES_DB CUSTOMER_TOP10 TOP10.UNL 

This option is most useful when the RMU Unload command references a view definition with a
complex predicate.

4.1.17 New Options Supported for LOGMINER SUPPORT
Clause

The LOGMINER SUPPORT clause for CREATE DATABASE, IMPORT DATABASE, and ALTER
DATABASE now allows the continuous mode for LogMiner to be enabled and disabled.

LOGMINER SUPPORT IS ENABLED (CONTINUOUS)
Enables continuous LogMiner.

♦ 

LOGMINER SUPPORT IS ENABLED (NOT CONTINUOUS)
Disables continuous LogMiner, but leaves LogMiner enabled.

♦ 

LOGMINER SUPPORT IS DISABLED
Disables LogMiner, including disabling continuous LogMiner.

♦ 

Please refer to the Oracle Rdb RMU Reference Manual for more information about the Rdb
LogMiner feature.
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4.1.18 Changes to the IMPORT Command

In prior releases, the IMPORT command would display messages about the database. This is no
longer true starting with Oracle Rdb Release 7.1.2. An example follows:

SQL> export data file mf_personnel into x; 
SQL> drop data file mf_personnel; 
SQL> import data from x file mf_personnel; 

However, there is still the ability to generate these informational messages. A new clause, BANNER,
has been added to the IMPORT command. Now, to enable informational messages to be displayed
(hence the old behavior), simply specify BANNER on the IMPORT command line. Here is an
example:

SQL> import data from x file mf_personnel BANNER; 
Exported by Oracle Rdb X7.1−00 Import/Export utility 
A component of Oracle Rdb SQL X7.1−00 
Previous name was mf_personnel 
It was logically exported on 29−MAY−2003 12:32 
Multischema mode is DISABLED 
Database NUMBER OF USERS is 50 
Database NUMBER OF CLUSTER NODES is 16 
Database NUMBER OF DBR BUFFERS is 20 
Database SNAPSHOT is ENABLED 
Database SNAPSHOT is IMMEDIATE 
Database JOURNAL ALLOCATION is 512 
Database JOURNAL EXTENSION is 512 
Database BUFFER SIZE is 6 blocks 
Database NUMBER OF BUFFERS is 20 
Adjustable Lock Granularity is Enabled Count is 3 
Database global buffering is DISABLED 
Database number of global buffers is 250 
Number of global buffers per user is 5 
Database global buffer page transfer is via DISK 
Journal fast commit is DISABLED 
Journal fast commit checkpoint interval is 0 blocks 
Journal fast commit checkpoint time is 0 seconds 
Commit to journal optimization is Disabled 
Journal fast commit TRANSACTION INTERVAL is 256 
LOCK TIMEOUT is 0 seconds 
Statistics Collection is ENABLED 
Unused Storage Areas are: 0 
System Index Compression is DISABLED 
Journal was Disabled 
Unused Journals are: 1 
Journal Backup Server was:   Manual 
Journal Log Server was:      Manual 
Journal Overwrite was:       Disabled 
Journal shutdown minutes was 60 
Asynchronous Prefetch is ENABLED 
Async prefetch depth buffers is 5 
Asynchronous Batch Write is ENABLED 
Async batch write clean buffers is 5 
Async batch write max buffers is 4 
Lock Partitioning is DISABLED 
Incremental Backup Scan Optim uses SPAM pages 
Unused Cache Slots are: 1 
Workload Collection is DISABLED 
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Cardinality Collection is ENABLED 
Metadata Changes are ENABLED 
Row Cache is DISABLED 
Detected Asynchronous Prefetch is ENABLED 
Detected Asynchronous Prefetch Depth Buffers is 4 
Detected Asynchronous Prefetch Threshold Buffers is 4 
Open is Automatic, Wait period is 0 minutes 
Shared Memory is PROCESS 
Unused Sequences are: 32 
The Transaction Mode(s) Enabled are: 
        ALL 
IMPORTing STORAGE AREA: RDB$SYSTEM 
IMPORTing STORAGE AREA: DEPARTMENTS 
IMPORTing STORAGE AREA: EMPIDS_LOW 
IMPORTing STORAGE AREA: EMPIDS_MID 
IMPORTing STORAGE AREA: EMPIDS_OVER 
IMPORTing STORAGE AREA: EMP_INFO 
IMPORTing STORAGE AREA: JOBS 
IMPORTing STORAGE AREA: MF_PERS_SEGSTR 
IMPORTing STORAGE AREA: SALARY_HISTORY 
IMPORTing table CANDIDATES 
IMPORTing table COLLEGES 
IMPORTing table DEGREES 
IMPORTing table DEPARTMENTS 
IMPORTing table EMPLOYEES 
IMPORTing table JOBS 
IMPORTing table JOB_HISTORY 
IMPORTing table RESUMES 
IMPORTing table SALARY_HISTORY 
IMPORTing table WORK_STATUS 
IMPORTing view CURRENT_SALARY 
IMPORTing view CURRENT_JOB 
IMPORTing view CURRENT_INFO 

It is also valid to specify NO BANNER on the IMPORT command line. Specifying NO BANNER is
equivalent to specifying the IMPORT command with no clauses; that is informational messages about
the database will not be displayed. In the following example, note that no informational messages are
displayed:

SQL> import data from x file mf_personnel NO BANNER; 

Warning and error messages will continued to be displayed as in prior releases.

4.1.19 ALTER MODULE Statement

Description

This statement allows the named module to be modified.

Environment

You can use the ALTER MODULE statement:

In interactive SQL♦ 
Embedded in host language programs♦ 
As part of a procedure in an SQL module, or other compound statement♦ 
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In dynamic SQL as a statement to be dynamically executed♦ 
Format

Usage Notes

You require ALTER privilege on the referenced module.♦ 
The ALTER MODULE statement causes the RDB$LAST_ALTERED column of the
RDB$MODULES table for the named module to be updated with the transactions timestamp.

♦ 

The COMPILE option forces the Rdb server to recompile all the stored (SQL) functions and
procedures. External routines in the module are not affected.
Use COMPILE when a routine has been made INVALID by the execution of a DROP ...
CASCADE operation. This mechanism should be preferred over the SET FLAGS
'VALIDATE_ROUTINE' method available in previous versions.
The first routine which cannot successfully be compiled will be reported and the ALTER
statement terminated.

♦ 

The ADD clause allows new functions and procedures to be added to the module. Please refer
to the CREATE MODULE statement for details. The END MODULE clause must be used to
end the ALTER MODULE clause to provide an unambiguous statement termination.

♦ 

RENAME TO allows the name of the module to be changed. This clause requires that
synonyms are enabled in the database. Use ALTER DATABASE ... SYNONYMS ARE
ENABLED.
The old name will be used to create a synonym for the new name of this module. This
synonym can be dropped if the name is no longer used by applications.
This clause is equivalent to the RENAME MODULE statement.

♦ 

Oracle® Rdb for OpenVMS

4.1.19 ALTER MODULE Statement 128



The DROP FUNCTION and DROP PROCEDURE clauses will drop the named routines from
this module. All DROP clauses are executed prior to the COMPILE and ADD clauses in this
ALTER statement. The named function or procedure must be part of the module being
altered.

♦ 

The COMMENT IS clause changes the existing comment on the module. This clause is
equivalent to the COMMENT ON MODULE statement.

♦ 

Note

In this release, no LOCAL TEMPORARY TABLE definitions for the module are
visible to the ADD FUNCTION or ADD PROCEDURE clauses. This restriction
will be lifted in a future release of Rdb.

Examples

A comment can be added or changed on a module using the COMMENT IS clause as shown in this
example.

Example 4−1 Changing the comment on a module

SQL> alter module EMPLOYEES_MAINTENANCE 
cont>     comment is 
cont>           'routines to add and remove employee rows' 
cont>     /     'Fix: also record the employees birthday'; 
SQL> 
SQL> show module EMPLOYEES_MAINTENANCE; 
Information for module EMPLOYEES_MAINTENANCE 

 Header: 
 EMPLOYEES_MAINTENANCE 
 Comment:       routines to add and remove employee rows 
                Fix: also record the employees birthday 
 Module ID is: 7 

 Routines in module EMPLOYEES_MAINTENANCE: 
     ADD_EMPLOYEE 
     IS_CURRENT_EMPLOYEE 
     REMOVE_EMPLOYEE 

The COMPILE clause can be used to check each stored procedure or function to ensure that it can be
executed. If the compile fails, it will report the first reason, in this example a missing table.

Example 4−2 Revalidating all routines in a module

SQL> alter module EMPLOYEES_MAINTENANCE compile; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−OBSOLETE_METADA, request references metadata objects that no longer exist 
−RDMS−F−BAD_SYM, unknown relation symbol − ARCHIVE_EMPLOYEES 

The following example creates a simple module and shows the effect of DROP TABLE ...
CASCADE. i.e. the procedure REMOVE_EMPLOYEE is marked as invalid. The COMPILE clause
is used to attempt to re−validate the procedure, however, a referenced table no longer exists. After
replacing the table, the COMPILE completes successfully.
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Example 4−3 Replacing a routine in a module

SQL> set dialect 'sql99'; 
SQL> attach 'file PERSONNEL1'; 
SQL> 
SQL> create table EMPLOYEES 
cont>     (employee_id        integer, 
cont>      last_name          char(40), 
cont>      first_name         char(40), 
cont>      birthday           date, 
cont>      start_date         date default current_date); 
SQL> 
SQL> create table ARCHIVE_EMPLOYEES 
cont>     (employee_id        integer, 
cont>      last_name          char(40), 
cont>      first_name         char(40), 
cont>      archive_date       date default current_date); 
SQL> 
SQL> create module EMPLOYEES_MAINTENANCE 
cont> 
cont>     procedure REMOVE_EMPLOYEE (in :employee_id integer); 
cont>     begin 
cont>     −− take copy of the old row 
cont>     insert into ARCHIVE_EMPLOYEES 
cont>         (employee_id, last_name, first_name) 
cont>         select employee_id, last_name, first_name 
cont>         from EMPLOYEES 
cont>         where employee_id = :employee_id; 
cont>     −− remove the old row 
cont>     delete from EMPLOYEES 
cont>         where employee_id = :employee_id; 
cont>     end; 
cont> 
cont>     procedure ADD_EMPLOYEE 
cont>         (in :employee_id integer, 
cont>          in :last_name char(40), 
cont>          in :first_name char(40), 
cont>          in :birthday date); 
cont>     insert into EMPLOYEES 
cont>         (employee_id, last_name, first_name, birthday) 
cont>         values (:employee_id, :last_name, :first_name, :birthday); 
cont> 
cont> end module; 
SQL> 
SQL> show module EMPLOYEES_MAINTENANCE 
Information for module EMPLOYEES_MAINTENANCE 

 Header: 
 EMPLOYEES_MAINTENANCE 
 Module ID is: 7 

 Routines in module EMPLOYEES_MAINTENANCE: 
     ADD_EMPLOYEE 
     REMOVE_EMPLOYEE 

SQL> 
SQL> drop table ARCHIVE_EMPLOYEES cascade; 
SQL> 
SQL> show procedure REMOVE_EMPLOYEE; 
Information for procedure REMOVE_EMPLOYEE 
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Current state is INVALID
Can be revalidated

 Procedure ID is: 8 
 Source: 
 REMOVE_EMPLOYEE (in :employee_id integer); 
    begin 
    −− take copy of the old row 
    insert into ARCHIVE_EMPLOYEES 
        (employee_id, last_name, first_name) 
        select employee_id, last_name, first_name 
        from EMPLOYEES 
        where employee_id = :employee_id; 
    −− remove the old row 
    delete from EMPLOYEES 
        where employee_id = :employee_id; 
    end 
 No description found 
 Module name is: EMPLOYEES_MAINTENANCE 
 Module ID is: 7 
 Number of parameters is: 1 

Parameter Name                  Data Type        Domain or Type 
−−−−−−−−−−−−−−                  −−−−−−−−−        −−−−−−−−−−−−−− 
EMPLOYEE_ID                     INTEGER 
        Parameter position is 1 
        Parameter is IN (read) 
        Parameter is passed by reference 

SQL> 
SQL> −− COMPILE reports the missing table 
SQL> alter module EMPLOYEES_MAINTENANCE compile; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDB−E−OBSOLETE_METADA, request references metadata objects 
that no longer exist 
−RDMS−F−BAD_SYM, unknown relation symbol − ARCHIVE_EMPLOYEES 
SQL> 
SQL> create table ARCHIVE_EMPLOYEES 
cont>     (employee_id        integer, 
cont>      last_name          char(40), 
cont>      first_name         char(40), 
cont>      birthday           date, 
cont>      archive_date       date default current_date); 
SQL> 
SQL> −− new table definition is compatible 
SQL> alter module EMPLOYEES_MAINTENANCE compile; 
SQL> 
SQL> alter module EMPLOYEES_MAINTENANCE 
cont>     comment is 
cont>           'routines to add and remove employee rows' 
cont>     /     'Fix: also record the employees birthday' 
cont> 
cont>     drop procedure REMOVE_EMPLOYEE if exists 
cont> 
cont>     add procedure REMOVE_EMPLOYEE (in :employee_id integer); 
cont>     begin 
cont>     −− take copy of the old row 
cont>     insert into ARCHIVE_EMPLOYEES 
cont>         (employee_id, last_name, first_name, birthday) 
cont>         select employee_id, last_name, first_name, birthday 
cont>         from EMPLOYEES 
cont>         where employee_id = :employee_id; 
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cont>     −− remove the old row 
cont>     delete from EMPLOYEES 
cont>         where employee_id = :employee_id; 
cont>     end; 
cont> end module; 
SQL> 
SQL> show module EMPLOYEES_MAINTENANCE; 
Information for module EMPLOYEES_MAINTENANCE 

 Header: 
 EMPLOYEES_MAINTENANCE 
 Comment:       routines to add and remove employee rows 
                Fix: also record the employees birthday 
 Module ID is: 7 

 Routines in module EMPLOYEES_MAINTENANCE: 
     ADD_EMPLOYEE 
     REMOVE_EMPLOYEE 

In this example, the ADD clause is used to add a new function to an existing module.

Example 4−4 Adding a new function to a module

SQL> alter module EMPLOYEES_MAINTENANCE 
cont>     add function IS_CURRENT_EMPLOYEE (in :employee_id integer) 
cont>         returns integer; 
cont>     return (case 
cont>             when exists (select * 
cont>                          from EMPLOYEES 
cont>                          where employee_id = :employee_id) 
cont>             then 1 
cont>             else 0 
cont>             end); 
cont> end module; 
SQL> 
SQL> show module EMPLOYEES_MAINTENANCE; 
Information for module EMPLOYEES_MAINTENANCE 

 Header: 
 EMPLOYEES_MAINTENANCE 
 Comment:       routines to add and remove employee rows 
                Fix: also record the employees birthday 
 Module ID is: 7 

 Routines in module EMPLOYEES_MAINTENANCE: 
     ADD_EMPLOYEE 
     IS_CURRENT_EMPLOYEE 
     REMOVE_EMPLOYEE 

4.1.20 New RENAME Statement

Description

This release of Oracle Rdb 7.1 includes a new RENAME statement and support for the RENAME TO
clause for most ALTER statements.
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The RENAME statement allows the database administrator to change the name of a database object.
This new name is then available for reference in other data definition statements, as well as from
queries and routines.

Note

The RENAME statement may require that synonyms are enabled for the database.
Please reference the SYNONYMS ARE ENABLED clause of the ALTER,
CREATE and IMPORT DATABASE statements.

Environment

You can use the RENAME statement:

In interactive SQL♦ 
Embedded in host language programs♦ 
As part of a procedure in an SQL module♦ 
In dynamic SQL as a statement to be dynamically executed♦ 

Syntax

oldname is the name of an existing object in the database. If the object type keyword is specified then
an object must exist of that type. The name may also be a synonym for an object of the specified type.

newname is the new name for this object. This name must not already exist in the database for this
object type, nor be the name of a synonym. The one exception is when the synonym references the
oldname object. See the usage notes for further discussion.

If this is a RENAME TABLE, RENAME VIEW or RENAME SEQUENCE then the newname
cannot be the name of an existing table, sequence or view.

USAGE NOTES
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You must have ALTER privilege on the database to rename a DOMAIN or OUTLINE.
You must have ALTER privilege on the table, view, sequence, module, function or procedure
to alter its name. If the procedure or function is part of a module, then you will require only
ALTER privilege on the containing module.
You must have SECURITY privilege on the database to alter the name of a USER, ROLE or
PROFILE.
You must have ALTER privilege on the referencing table to rename a CONSTRAINT or
TRIGGER.

♦ 

The names of the database objects are stored in the Rdb system tables as both column values
(for instance RDB$SEQUENCE_NAME) as well as encoded in binary definitions (such as
RDB$VIEW_RSE and RDB$VIEW_SOURCE).
The RENAME clause will modify all column values to reference the new name. However, the
encoded values and original SQL source code are not modified by this command.
To support these encoded definitions, as well as previously compiled applications, the old
names are used to create synonyms that reference the new name of the object.
The RENAME statement will create a synonym for the old names of domains, functions,
modules, procedures, sequences, tables and views. These synonyms can be dropped if they
are not used.

Note

It is not possible to create synonyms for OUTLINES, CONSTRAINTS,
PROFILES, ROLES, TRIGGERS, or USERS. Therefore, RENAME does
not create synonyms for these objects. Care should be taken if the old
names appear in module definitions or application code.

♦ 

If a synonym already exists and references the same object, then it will be removed as part of
the RENAME statement. For example, if you rename a table and wish to return to the
previous oldname, there will be an existing synonym with this name. Rdb will implicitly
remove this synonym during the rename operation.

♦ 

The object type is optional. If no object type keyword is provided then Rdb will search for a
matching name in this order:

table or view1. 
domains2. 
function or procedure3. 
module4. 
sequence5. 
trigger6. 
constraint7. 
outline8. 
user9. 
role10. 
profile11. 

♦ 

When an IDENTITY column is created for a table, a sequence with the same name as the
table is implicitly created. You may not use RENAME SEQUENCE on the identity sequence.
Please use RENAME TABLE instead to alter the name of the table and its identity sequence.

♦ 

You may not RENAME an Rdb system table, system view or system sequence.♦ 
The following table compares the ALTER commands to the equivalent RENAME statement:♦ 
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Table 4−1 Comparison between RENAME and ALTER statements

RENAME statement Equivalent ALTER statement
Is a synonym

created?

RENAME CONSTRAINT ALTER CONSTRAINT ... RENAME TO No

RENAME DOMAIN ALTER DOMAIN ... RENAME TO Yes

RENAME FUNCTION ALTER FUNCTION ... RENAME TO Yes

RENAME MODULE ALTER MODULE ... RENAME TO Yes

RENAME OUTLINE ALTER OUTLINE ... RENAME TO No

RENAME PROCEDURE ALTER PROCEDURE ... RENAME TO Yes

RENAME PROFILE ALTER PROFILE ... RENAME TO No

RENAME ROLE ALTER ROLE ... RENAME TO No

RENAME SEQUENCE ALTER SEQUENCE ... RENAME TO Yes

RENAME TABLE ALTER TABLE ... RENAME TO Yes

RENAME TRIGGER ALTER TRIGGER ... RENAME TO No

RENAME USER ALTER USER ... RENAME TO No

RENAME VIEW No equivalent Yes

4.1.21 New Warning Generated When Row Size
Exceeds Row Cache Length

Bug 2909840

When a table's row length exceeds the size allocated for the associated logical area row cache,
Rdb generates a warning to alert the database administrator of a possible problem with the
row cache.

Rows can change size when ALTER TABLE adds a new column or alters an existing
column's data type. An existing column can also be implicitly altered by ALTER DOMAIN,
as the domain change is propagated to all referencing tables.

The following example shows the new warning message.

SQL> alter table NEW_EMPLOYEES alter column MIDDLE_INITIAL varchar(20); 
%RDB−W−META_WARN, metadata successfully updated with the reported warning 
−RDMS−I−RCHLENEXC, new row length exceeds size of row cache − check cache 
attributes 

Note that this ALTER TABLE operation succeeded. The warning is generated because rows
that are too long to fit in the cache will not benefit from fast in−memory access. However, it
is also quite possible that row compression will continue to result in compressed rows that
still fit within the row cache. The database administrator will need to evaluate the change in
light of the database design.
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4.1.22 Oracle Media Management V2.0 API for Oracle
Rdb RMU

The Oracle Media Management V2.0 API is supported by Oracle Rdb for RMU commands
which accept the /LIBRARIAN qualifier. This support permits backing up to and restoring
from, data archiving software applications supporting this interface. Examples of such
applications include:

Archive Backup System for OpenVMS from Hewlett−Packard Corporation on the
world−wide−web at http://h71000.www7.hp.com/openvms/storage/abspage.html

◊ 

LEGATO NetWorker(R) from LEGATO Systems, Inc. on the world−wide−web at
http://www.legato.com/

◊ 

Archive Backup Client (ABC) for OpenVMS from STORServer Inc. on the
world−wide−web at http://www.storserver.com/

◊ 

More information on these products is available from the vendors.

4.1.22.1 Commands Accepting /LIBRARIAN

The Oracle Rdb Release 7.1.2 RMU commands which accept the /LIBRARIAN qualifier for
storing data to this interface are:

RMU /BACKUP◊ 
RMU /BACKUP /AFTER_JOURNAL◊ 
RMU /OPTIMIZE /AFTER_JOURNAL◊ 

The Oracle Rdb Release 7.1.2 RMU commands which accept the /LIBRARIAN qualifier for
retrieving data from this interface are:

RMU /RESTORE◊ 
RMU /RESTORE /ONLY_ROOT◊ 
RMU /DUMP /AFTER_JOURNAL◊ 
RMU /DUMP /BACKUP_FILE◊ 
RMU /RECOVER◊ 

RMU only supports the retrieval using the /LIBRARIAN qualifier for data that has been
previously stored by RMU using the /LIBRARIAN qualifier.

In addition to the /LIBRARIAN qualifier used with existing RMU commands, there is a new
RMU /LIBRARIAN /LIST command to list data streams stored in a LIBRARIAN
implementation that have been created by RMU from a backup filename and a new RMU
/LIBRARIAN /REMOVE command to delete data streams stored in a LIBRARIAN
implementation that have been created by RMU from a backup filename.

Oracle Media Manager V2.0 Interface

Only applications that conform to the Oracle Media Manager V2.0
specification can be called using the /LIBRARIAN qualifier or the new
RMU /LIBRARIAN commands.

RMU commands used with the /LIBRARIAN qualifier may not specify a list of tape or disk
devices. It accepts a backup file ( "rbf file") name. Any disk or device specification and
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version number specified with the backup file name is ignored for the backup file name
specified to the archive. For example, "device:[directory]FILENAME.RBF;1" is specified as
"FILENAME.RBF " when the backup file data is stored in or retrieved from the archive.

4.1.22.2 Opaque Archive Application

The archive application is effectively an opaque "black box" in regards to RMU and the
backup file name is the identifier of the stream of data stored in the archive. The utilities and
command procedures specific to the particular LIBRARIAN application must be used to
associate devices with the stream of data sent to or retrieved from the archive by RMU. Since
the LIBRARIAN application is an opaque utility to RMU that stores and manages data,
device specific qualifiers such as /REWIND, /DENSITY or /LABEL cannot be used with this
interface.

4.1.22.3 RMU Backup Streams

Each writer thread for a backup operation or reader thread for a restore operation manages its
own stream of data. Therefore, each thread uses a unique backup file name generated from
the backup file name specified on the command line. A number is incremented and added to
the end of the backup file extension (the extension defaults to ".RBF") specified to the archive
(except for the first) representing a unique data stream. This number is the equivalent of the
volume number associated with non−LIBRARIAN RMU backups and restores.

For example, if

$RMU /BACKUP /LIBRARIAN=(WRITER_THREADS=3) /LOG DB FILENAM.RBF 

is specified for a backup command, the backup file data stream names

FILENAME.RBF 
FILENAME.RBF02 
FILENAME.RBF03 

are specified to the archive to identify the three streams of data stored in the archive by the
three writer threads which together represent the stored database. Since each data stream must
contain at least one database storage area and a single storage area must be completely
contained in one data stream, if the number of writer threads specified is greater than the
number of storage areas, it will be set equal to the number of storage areas.

When

$RMU /RESTORE /LIBRARIAN=(READER_THREADS=3) /LOG FILENAM.RBF 

is specified to restore the database, these same three data stream backup file names, one name
specified by each of the three reader threads, will be generated by RMU and sent to the
archive application to retrieve all the data associated with the database. If the number of
reader threads is less than the number of backup writer threads, one or more restore reader
threads will restore more than one data stream. If the number of reader threads specified is
greater than the number of backup writer threads, the number of reader threads will be set
equal to the number of backup writer threads so that all restored data is retrieved.
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Therefore, the same number of reader threads in the example was specified on the restore as
writer threads on the backup to generate all the stream names which represent the database.
The user does not have to specify the same number of reader threads on the restore as writer
threads specified on the backup. If a smaller number of reader threads on the restore is
specified than the number of writer threads specified in the backup of the database, the data
streams to be retrieved will be divided among the specified reader threads using an algorithm
which assigns the data streams so that each thread will have an approximately equal amount
of work to do. If a greater number of reader threads is specified on the restore than was
specified on the backup, the number of reader threads will be automatically changed to equal
the number of writer threads used in the backup.

The /VOLUMES qualifier cannot be used on the RMU/RESTORE command if the
/LIBRARIAN qualifier is used. RMU automatically determines the number of data streams
stored in the LIBRARIAN implementation based on the backup file name specified for the
restore command and sets the volume number to the actual number of stored data streams.
This helps to ensure that all data streams which represent the database are retrieved.

The default value for both WRITER_THREADS and READER_THREADS is "1". The
WRITER_THREADS parameter can only be specified with the /LIBRARIAN qualifier for
the RMU/BACKUP database command. The READER_THREADS parameter can only be
specified with the /LIBRARIAN qualifier for the RMU /RESTORE database and the RMU
/DUMP /BACKUP commands. All other RMU commands that accept the /LIBRARIAN
qualifier only use one writer thread or one reader thread representing one archive data stream.

4.1.22.4 Parallel Backup Operations

The /LIBRARIAN qualifier can be used for parallel backup operations where backup threads
can execute in multiple processes distributed among one or more nodes in a cluster. The
database backup command can be invoked as a parallel command which uses multiple
processes but the other RMU commands which accept the /LIBRARIAN qualifier do not
support parallel processes but execute in one process.

The following lines in the backup PLAN file used to specify the parameters for parallel
backup operations relate directly to the LIBRARIAN feature.

    Backup File = MF_PERSONNEL.RBF 
    Style = Librarian 
    Librarian_trace_level = # 
    Librarian_trace_file = FILE.TRACE 
    Librarian_logical_names = (− 
             logical_name_1=equivalence_value_1, − 
             logical_name_2=equivalence_value_2) 
    Writer_threads = # 

The backup file name must be the same file name specified for the restore and the style must
be set to "Librarian" indicating a backup to the LIBRARIAN. The "Librarian_logical_names"
entry is a list of logical names and their equivalence values. This is an optional parameter
provided so that any logical names used by a particular LIBRARIAN application can be
defined as process logical names before the backup or restore operation begins. For example,
some LIBRARIAN applications provide support for logical names for specifying catalogs or
debugging. "Librarian_trace_level = #" and "Librarian_trace_file = FILE.TRACE" are
optional parameters specified with the /LIBRARIAN qualifier and passed to the LIBRARIAN
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application to be used for diagnostic purposes. The "Writer_threads = #" specifies the number
of writer threads which will be used by each worker executor process. If this number exceeds
the number of database storage areas assigned to a worker process, it will be set equal to the
number of storage areas specified for that worker process.

If the backup is a parallel operation, a PLAN file is created and executed as part of the
existing RMU /BACKUP /PARALLEL and RMU /BACKUP /PLAN command syntax. The
following is an example of a parallel backup and non−parallel restore (the restore is always
non−parallel and executes in a single process) using the /LIBRARIAN qualifier.

$RMU /BACKUP /PARALLEL=EXECUTOR=3 /LIBRARIAN=WRITER_THREADS=3− 
 /LIST_PLAN=FILENAME.PLAN /NOEXECUTE /LOG DATABASE FILENAM.RBF 
$RMU /BACKUP /PLAN FILENAME.PLAN 
$RMU/ RESTORE /LIBRARIAN=(READER_THREADS=9) /LOG FILENAME.RBF 

In this example, the first backup command creates the PLAN file for a parallel backup but
does not execute it. The second backup command executes the parallel backup using the
PLAN file. Note that 3 worker processes will be used and each process will use the 3 writer
threads specified with the /LIBRARIAN qualifier. Each writer thread in each process will
write one stream of backup data to the LIBRARIAN. Therefore 9 streams will be written to
the LIBRARIAN archive. The streams will be given the names:

FILENAME.RBF 
FILENAME.RBF02 
FILENAME.RBF03 
FILENAME.RBF04 
FILENAME.RBF05 
FILENAME.RBF06 
FILENAME.RBF07 
FILENAME.RBF08 
FILENAME.RBF09 

To retrieve the same 9 data streams which represent the backed up Rdb database on the
non−parallel restore, a READER_THREADS=9 parameter can be specified with the
/LIBRARIAN qualifier to use 9 threads to execute the restore, or if a READER_THREADS
value between 1 and 8 is specified (1 is the default), RMU will determine the number of data
streams actually stored by querying the LIBRARIAN implementation and distribute the data
streams among the requested reader threads. If a READER_THREADS value is specified that
is greater than "9", RMU will set it to "9" so that the restore does not attempt to retrieve data
streams which do not exist.

4.1.22.5 Data Stream Naming Considerations

Since data stream names representing the database are generated based on the backup file
name specified for the RMU backup command used with the /LIBRARIAN qualifier, the user
must either use a different backup file name to store the next backup of the database to the
LIBRARIAN implementation or first delete the existing data streams generated from the
backup file name before the SAME backup file name can be reused for the next backup.

To delete the existing data streams stored in the LIBRARIAN implementation, a
LIBRARIAN management utility can be used or the RMU /LIBRARIAN /REMOVE
command described below can be used with just the backup file name to delete all the data
streams generated based on that name. The user can incorporate the date or some other unique
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identifier in the backup file name when he does each backup to make it unique if he wants to
avoid deleting a previous backup to the LIBRARIAN which used the same backup file name.
Many LIBRARIAN implementations allow the user to specify an automatic deletion date for
each data stream stored in their archives.

4.1.22.6 /LIBRARIAN Parameters

The /LIBRARIAN qualifier accepts the following parameters.

WRITER_THREADS=#
Use # writer threads to write # backup data streams to the LIBRARIAN. The
database storage areas will be partitioned among the database streams. The streams
will be named BACKUP_FILENAME.EXT, BACKUP_FILENAME.EXT02,
BACKUP_FILENAME.EXT03, up to BACKUP_FILENAME.EXT99.
BACKUP_FILENAME.EXT is the backup file name specified in the RMU command
excluding any specified device, directory or version number. The default extension
name is ".RBF". The "WRITER_THREADS" parameter can only be specified for
parallel and non−parallel database backups. The default is 1 writer thread. The
minimum is 1 and the maximum is 99. This parameter cannot be specified for other
RMU commands which accept the /LIBRARIAN qualifier for write operations such
as RMU/BACKUP/AFTER_JOURNAL/LIBRARIAN since these commands only
allow 1 writer thread which creates 1 database stream. This value will be set equal to
the number of database storage areas if it exceeds that number.

◊ 

READER_THREADS=#
Use # reader threads to read all the backup data streams from the LIBRARIAN
created for the backup filename. The streams will be named
BACKUP_FILENAME.EXT, BACKUP_FILENAME.EXT02,
BACKUP_FILENAME.EXT03, up to BACKUP_FILENAME.EXT99.
BACKUP_FILENAME.EXT is the backup file name specified in the RMU command
excluding any specified device, directory or version number. The default extension
name is ".RBF". The "READER_THREADS" parameter can only be specified for
database restores and dumps of databases stored by RMU in the LIBRARIAN. A
reader thread value of 1 is used for all other RMU commands that read data from the
LIBRARIAN. The minimum READER_THREADS value is 1 and the maximum is
99. The default value is 1.
The number of READER_THREADS for a database restore from the LIBRARIAN
should be equal to or less than the number of WRITER_THREADS specified for the
database backup or the number of reader threads will be set by RMU to be equal to
the number of data streams actually stored in the LIBRARIAN by the backup. If the
READER_THREADS specified for the restore are less than the
WRITER_THREADS specified for the backup, RMU will partition the data streams
among the specified reader threads so that all data streams representing the database
are restored. Therefore, each reader thread may read more than one data stream.

◊ 

TRACE_FILE=file_specification
The LIBRARIAN application which supports the MEDIA MANAGEMENT API
V2.0 will write trace data to this file, if specified, as defined in the MEDIA
MANAGEMENT API V2.0 specification.

◊ 

LEVEL_TRACE=#
The level number of the trace data written by the LIBRARIAN application which
supports the MEDIA MANAGEMENT API V2.0 as defined in the MEDIA
MANAGEMENT API V2.0 specification (levels 0 through 2) or a higher level as

◊ 
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defined by the LIBRARIAN application. Level 0 (trace all error conditions) is the
default.
LOGICAL_NAMES=(logical_name=equivalence_value,...)
This parameter allows the user to specify a list of process logical names which the
LIBRARIAN application may use to specify particular catalogs or archives for
storing or retrieving backup files, or LIBRARIAN debug logical names, etc. See the
LIBRARIAN specific documentation for the definition of these logical names. The
list of process logical names will be defined by RMU prior to the start of the backup
or restore operation.

◊ 

4.1.22.7 Logical Names To Access LIBRARIAN Application

The following VMS logical names are for use with a LIBRARIAN application. These logical
names need to be defined before the RMU backup or restore command is executed and should
not be specified with the list of logical names specified with the /LIBRARIAN qualifier.

RMU$LIBRARIAN_PATH
This logical name must be defined to the file specification for the sharable
LIBRARIAN image to be loaded and called by RMU backup and restore operations.
The translation must include the file type ( ".EXE" for example) and must not include
a version number. The shareable LIBRARIAN shareable image referenced must be
an installed ( "known") image. See the LIBRARIAN implementation documentation
for the name and location of this image and how it should be installed. For a parallel
RMU backup, RMU$LIBRARIAN_PATH should be defined as a system−wide
logical name so that the multiple processes created by a parallel backup can all
translate the logical.

$ DEFINE /SYSTEM /EXECUTIVE_MODE − 
    RMU$LIBRARIAN_PATH librarian_shareable_image.exe 

◊ 

RMU$DEBUG_SBT
This logical name is not required. If defined to any value, RMU will display debug
tracing information messages from modules that make calls to the LIBRARIAN
shareable image. This information may be helpful for support analysts from Oracle or
your librarian vendor when analyzing problems. See the LIBRARIAN documentation
for any other logical names or setup procedures specific to the particular
LIBRARIAN implementation. For a parallel backup, RMU$DEBUG_SBT should be
defined as a system logical so that the multiple processes created by a parallel backup
can all translate the logical.

◊ 

4.1.22.8 SQL/Services Required for RMU Parallel Backup

Oracle Rdb V7.1 SQL/Services is required for RMU parallel backup operations. However, no
special changes are required to SQL/Services specific to RMU parallel backup operations to
the LIBRARIAN. The LIBRARIAN should be installed and available on all nodes on which
the parallel backup operation executes. As long as non−LIBRARIAN Rdb V7.1 parallel
backup operations are currently working, no LIBRARIAN specific changes to the
SQL/Services setup should be needed.
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4.1.22.9 Listing and Deleting Data Streams

The RMU /LIBRARIAN command enables the user to list or delete data streams stored in the
LIBRARIAN implementation based on the backup file name used for the RMU backup. The
LIST and REMOVE options cannot be used together in the same RMU/LIBRARIAN
command.

RMU /LIBRARIAN /LIST=(OUTPUT=disk:[directory]listfile.ext) FILENAME.RBF 
RMU /LIBRARIAN /REMOVE=([NO]CONFIRM) FILENAME.RBF 

FILENAME.RBF is the backup filename. Any device, directory or version number specified
with the backup file name will be ignored. The backup file name must be the same name
previously used for an RMU backup to the LIBRARIAN. A default file type of ".RBF" is
assumed if none is specified.

The following command qualifiers are supported:

/LIST=(OUTPUT=disk:[directory]listfile.ext)
"/LIST" used alone will display to the default output device. If the "OUTPUT" option
is used, output will be displayed to the specified file. All data streams existing in the
LIBRARIAN that were generated for the specified backup name will be listed. The
information listed for each data stream name include:

The backup stream name based on the backup file.⋅ 
Any comment associated with the backup stream name.⋅ 
The creation method associated with the backup stream name. This will
always be STREAM to indicate creation by a backup operation.

⋅ 

The creation date and time when the stream was backed up to the
LIBRARIAN.

⋅ 

Any expiration data and time specified for deletion of the stream by the
LIBRARIAN.

⋅ 

The media sharing mode which indicates if the media can be accessed
concurrently or not. This is usually the case for disks but not tapes.

⋅ 

The file ordering mode which indicates if files on the media can be accessed
in random order or sequential order.

⋅ 

Any volume label(s) for the media which contain the backup stream.⋅ 

Implementation Specific

Not all of these items will be listed depending on the particular
LIBRARIAN implementation.

◊ 

/REMOVE=([NO]CONFIRM)
"/REMOVE" deletes all data streams existing in the LIBRARIAN that were
generated for the specified backup name. This command should be used with caution.
The user should be sure that a more recent backup for the database exists in the
LIBRARIAN under another name before using this command. The "CONFIRM"
option is the default. It will prompt the user to confirm that he wants to delete the
backup from the LIBRARIAN. The user can then reply "Y(ES)" to do the deletion or
"N(O)" to exit the command without doing the deletion if he wants to confirm that a
more recent backup for the database exists in the LIBRARIAN that was generated
using a different backup name. The user must specify the "NOCONFIRM" option if

◊ 
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he does not want to be prompted. In this case, the deletion will be done with no
confirmation prompt.
The following additional optional keywords can be specified with either the /LIST
qualifier or the /REMOVE qualifier. They must be specified and have no defaults.
These are the same options discussed earlier for the /LIBRARIAN qualifier used with
other RMU commands such as /BACKUP and /RESTORE.

TRACE_FILE=file_specification
The LIBRARIAN application which supports the MEDIA MANAGEMENT
API V2.0 will write trace data to this file, if specified, as defined in the
MEDIA MANAGEMENT API V2.0 specification.

⋅ 

LEVEL_TRACE=n
The level number of the trace data written by the LIBRARIAN application
which supports the MEDIA MANAGEMENT API V2.0 as defined in the
MEDIA MANAGEMENT API V2.0 specification (levels 0 through 2) or a
higher level as defined by the LIBRARIAN application. Level 0 (trace all
error conditions) is the default.

⋅ 

LOGICAL_NAMES=(logical_name=equivalence_value,...)
This parameter allows the user to specify a list of process logical names
which the LIBRARIAN application may use to specify particular catalogs or
archives for listing or removing backup files, or LIBRARIAN debug logical
names, etc. See the LIBRARIAN specific documentation for the definition of
these logical names. The list of process logical names will be defined by
RMU prior to the start of the list or remove operation.

⋅ 

4.1.23 Sanity Checks Added to RMU /VERIFY to Check
TSNs and CSNs

Bug 2551131

Checks have been added to RMU /VERIFY to ascertain if the Transaction Sequence Numbers
(TSNs) and Commit Sequence Numbers (CSN) have acceptable values. This verification is
performed while verifying the root.

Three sanity checks have been added to achieve this. They are:

Highest Active TSN is less than the TSN that will be assigned to the next transaction.
If this check fails the following kind of error message is displayed.

    %RMU−E−HIGHTSNINV, Highest active TSN (1024:1024) is higher than 
    the TSN that will be assigned next (0:256). 

◊ 

Last Committed TSN is less than the TSN that will be assigned to the next
transaction. If this check fails the following kind of error message is displayed.

    %RMU−E−LASTCMTSNINV, Last Committed TSN (1024:1024) is higher than 
    the TSN that will be assigned next (0:256). 

◊ 

Highest CSN is less than the next CSN that will be assigned. If this check fails the
following kind of error message is displayed.

    %RMU−E−HIGHCSNINV, Highest CSN (1024:1024) is higher than the CSN 
    that will be  assigned next (0:256). 

◊ 

These checks will be available starting with Oracle Rdb Release 7.1.2.
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4.1.24 RMU /CLOSE /WAIT /NOCLUSTER Now Allowed

Bug 976101

In the past, if the /WAIT qualifier was used with RMU /CLOSE then it implied /CLUSTER.
Specifying /NOCLUSTER was not allowed. This restriction has been lifted. It is now
possible to specify /NOCLUSTER in conjunction with the /WAIT qualifier. This provides the
ability to have database shutdown complete on the local node before RMU returns to the DCL
prompt. Specifying the /WAIT qualifier without the /NOCLUSTER qualifier will still imply
/CLUSTER, as it has in prior releases.

4.1.25 Native 64−bit Virtual Addressing for Row
Caches

Oracle Rdb Release 7.1.2 provides enhancements to the Row Cache feature to utilize the
native 64−bit virtual memory addressing capabilities of the Alpha processor and OpenVMS.
Utilizing these enhancements, applications are now able to more easily access row caches
with significantly larger numbers of records being cached.

4.1.25.1 Background

Within Oracle Rdb, the VLM (Very Large Memory, or "LARGE MEMORY IS ENABLED")
feature was created circa 1995 for Rdb release 7.0 to allow access to more than 32 bits worth
of virtual address space (the traditional VMS address space size). This interface was
implemented because, at the time, programs on OpenVMS Alpha did not have the ability to
directly access memory outside a 32−bit virtual address space.

In addition, the "SHARED MEMORY IS SYSTEM" feature was implimented to help reduce
consumption of process virtual address space in the "program region" (P0 region). By moving
database shared memory sections from P0 to "system" (S0/S1) address space, additional
program code and buffers could be stored in P0 address space. However, even this additional
virtual address space was limited to something less than 2 GB (gigabytes) of usable memory.

Starting with OpenVMS Alpha V7.0, the operating system provides native support for a
64−bit virtual address space, defined by the Alpha architecture. This capability makes 64−bit
virtual address space available to applications. OpenVMS and Current Alpha architecture
implementations support 8 TB (terabytes) of virtual address space.

Previously, the Oracle Rdb Row Cache feature was limited to something less than 33 million
total cached rows per database. This limitation was due primarily to storing row cache related
data structures in 32−bit address space. Even with the "LARGE MEMORY IS ENABLED"
attribute, some data structures had to be located in 32−bit virtual address space and lead to
this restriction.

4.1.25.2 64−bit Addressing

Starting with Oracle Rdb Release 7.1.2, the Row Cache feature utilizes the native 64−bit
virtual addressing support within the Alpha processor and OpenVMS. Various data structures
related to the Row Cache feature are now created in the OpenVMS "P2" 64−bit virtual
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address space. The existing Row Cache memory mapping features "LARGE MEMORY IS
ENABLED" and "SHARED MEMORY IS SYSTEM" have been eliminated and replaced
with this native 64−bit virtual addressing. Row caches on Alpha processors are now always
mapped in 64−bit process virtual address space.

4.1.25.3 No Application or Database Changes Required

There should be no user or application visible effects due to the Oracle Rdb implementation
of native 64−bit virtual addressing for Row Caches. If the "RESIDENT" attribute is specified
for a row cache, the cache will be created as a memory−resident global section utilizing
OpenVMS "shared page tables" (potentially with granularity hints). The OpenVMS "shared
page tables" capability for memory−resident global sections can help reduce physical memory
consumption by allowing multiple processes to share page table entries for the global section.
For very large global section, "granularity hints" allow ranges of pages to be mapped by a
single translation buffer entry within the Alpha processor leading to improved translation
buffer hit rates.

When the shared memory section for a row cache is to be memory−resident, the pages for the
section are always resident in physical memory. The pages are not placed into the process'
working set list when the process maps to the global section. The pages are also not charged
against the process' working set quota or against any page−file quota. Pages within
memory−resident global sections are not backed by the pagefile or by any other file on disk.
The user must have the rights identifier VMS$MEM_RESIDENT_USER to create the
memory−resident global section.

4.1.25.4 Deprecated Attributes

The row cache memory mapping features "LARGE MEMORY IS ENABLED" and
"SHARED MEMORY IS SYSTEM" have been replaced with the "RESIDENT" attribute. If
the "LARGE MEMORY IS ENABLED" or "SHARED MEMORY IS SYSTEM" attributes
are specified for a row cache, the cache is considered to be set "RESIDENT". Though
deprecated, the "LARGE MEMORY IS ENABLED" and "SHARED MEMORY IS
SYSTEM" attributes are internally considered as synonyms for "RESIDENT".

The following Oracle Rdb Row Cache attributes have become deprecated in SQL:

"LARGE MEMORY IS ENABLED"◊ 
"SHARED MEMORY IS SYSTEM"◊ 
"WINDOW COUNT"◊ 

The following Oracle Rdb Row Cache attribute keywords have become deprecated with the
"RMU /SET ROW_CACHE /ALTER" command:

WINDOW_COUNT=n◊ 
SHARED_MEMORY=TYPE=SYSTEM◊ 

The "LARGE MEMORY IS ENABLED" and "SHARED MEMORY IS SYSTEM" attributes
remain supported and functional for database and global buffer shared memory configuration.
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4.1.25.5 Cache Size Limits

In this release of Oracle Rdb, the total number of rows for any individual cache (the
combination of "live" rows and snapshot rows) is limited to 2,147,483,647. This restriction
may be relaxed in a future Oracle Rdb release.

4.1.25.6 Row Cache Feature Only

This change to utilize native 64−bit virtual addressing is specific to the Row Cache feature in
this release of Oracle Rdb. Rdb database global buffers, for example, continue to be mapped
into 32−bit virtual address space and continue to support the "LARGE MEMORY IS
ENABLED" and "SHARED MEMORY IS SYSTEM" attributes. No additional support for
64−bit virtual addressing (including via callable interfaces such as SQL) is provided in this
release of Oracle Rdb. Oracle is considering additional possible uses for native 64−bit virtual
addressing within Oracle Rdb for future releases.

4.1.25.7 System Parameters

Shared memory sections using the "LARGE MEMORY IS ENABLED" or "SHARED
MEMORY IS SYSTEM" features were previously not created as OpenVMS global sections
and were not directly effected by the global section system parameters (specifically
GBLSECTIONS, GBLPAGES and GBLPAGFIL). Because all row cache shared memory
sections are now global sections on OpenVMS, it is possible that the global section system
parameters may have to be increased in order to map large caches that previously relied on
the "LARGE MEMORY IS ENABLED" or "SHARED MEMORY IS SYSTEM" features.

Reserved Memory Registry

The Reserved Memory Registry allows an OpenVMS system to be
configured with large amounts of memory set aside for use within
memory−resident sections or other privileged code. This release of Oracle
Rdb does not support use of the OpenVMS Reserved Memory Registry for
registering Oracle Rdb shared memory sections. This restriction may be
relaxed in a future Oracle Rdb release.

4.1.25.8 Additional Information

Refer to the following documents for additional information about Alpha processors and
OpenVMS addressing and memory management:

OpenVMS Programming Concepts Manual◊ 
OpenVMS System Services Reference Manual◊ 
OpenVMS Calling Standard◊ 
OpenVMS System Manager's Manual◊ 
OpenVMS Alpha Partitioning and Galaxy Guide◊ 
Alpha Architecture Handbook◊ 
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4.1.26 Snapshots In Row Cache

Oracle Rdb Release 7.1.2 provides enhancements to the Row Cache feature to allow snapshot
copies of rows to be stored in Row Cache shared memory rather than in the on−disk snapshot
storage areas. Utilizing these enhancements, applications are now able to more easily access
and modify rows with reduced database I/O and locking operations. These features are
enabled and configured on a per−cache basis.

4.1.26.1 Background

A row cache is a section of globally accessible memory that contains copies of rows. Row
caching provides the ability to store frequently accessed rows in memory, reducing disk I/O.
The rows remain in memory even when the associated page has been flushed back to disk. A
row cache can contain index structures as well as table data.

The snapshot mechanism in Oracle Rdb allows read−only transactions to see a consistent
view of the database while other transactions update the database. The previous versions of
rows are written to special snapshot areas of the database by the transactions that update the
rows.

By default, snapshot copies of rows are stored in database snapshot storage area files. The
"Snapshots in Row Cache" feature allows snapshot rows to be stored in a designated section
of shared memory. With this enhancement, read−only transactions can quickly read snapshot
copies of rows from memory and read−write transactions can quickly write snapshots. The
reading and writing of the snapshot information can be accomplished with no database page
I/O or associated database page locking.

4.1.26.2 Configuration

Each defined row cache for a database can be designated to allow a specified number of
snapshot rows to be stored in the cache. The number of snapshot rows allowed is specified in
addition to the number of database rows that can be stored in the cache. Because many
versions of a row may be stored in the snapshot portion of the cache, the number of snapshot
rows and cache rows are specified independently.

As the snapshot portion of the row cache is effectively an extension of the row cache itself,
most attributes of the cache are shared with the snapshot portion. These attributes include:

The maximum row size (as is specified with the ROW LENGTH is n BYTES
parameter)

◊ 

Memory location specification (SHARED MEMORY IS PROCESS, SHARED
MEMORY IS SYSTEM, LARGE MEMORY, and so on)

◊ 

Allocate Set count◊ 

4.1.26.3 Space Reclaimation

A snapshot copy of a database record must be maintained until there are no transactions in the
database older than the transaction that stored the snapshot copy of the record. As the oldest
transactions in the database commit, space used to store snapshot records (either in the
snapshot storage areas or in the snapshot portion of a cache) may be re−used for storing
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newer snapshots. By keeping transactions relatively short, the number of snapshot rows that
need to be stored can be reduced.

4.1.26.4 Objects in Mixed Format Areas

With this release of the "Snapshots in Row Cache" feature, only objects (index nodes and data
records) stored in uniform−format storage areas utilize the ability to store snapshots in a row
cache. Objects stored in mixed format storage areas are unable to have snapshot copies stored
in a row cache.

This restriction results from internal mechanisms used to perform sequential scans in the
database and interactions with the retrieval of snapshot information. This restriction is
expected to be relaxed in a future Oracle Rdb release.

4.1.26.5 SQL Syntax

The SQL "ALTER DATABASE ... ALTER ROW CACHE", "ALTER DATABASE ... ADD
ROW CACHE", and " CREATE DATABASE ... CREATE ROW CACHE" commands can
be used to set parameters for the snapshot portion of a row cache. The syntax to support
snapshots in cache is "ROW SNAPSHOT [ IS ] { DISABLED | { ENABLED [ ( CACHE
SIZE IS N ROWS ) ] }".

The "ROW SNAPSHOT IS DISABLED" option disables storing snapshot copies of
rows within the cache.

◊ 

The "ROW SNAPSHOT IS ENABLED (CACHE SIZE IS n ROWS)" option enables
storage of snapshot copies of rows within the cache and specifies the number of
snapshot "slots" to allocate for the cache.

◊ 

If you do not specify the CACHE SIZE clause for the ROW SNAPSHOT IS ENABLED
option, Oracle Rdb creates a cache that can contain up to 1000 snapshot rows.

The following example demonstrates using SQL to modify the "C1" cache to disable storage
of snapshot rows in cache and to modify the "C5" cache to enable storage of snapshot rows in
the cache with a snapshot cache size of 12345 rows:

SQL> ALTER DATABASE FILE X$ 
cont> ALTER CACHE C1 
cont>  ROW SNAPSHOT IS DISABLED; 
SQL> ALTER DATABASE FILE X$ 
cont> ALTER CACHE C5 
cont>  ROW SNAPSHOT IS ENABLED (CACHE SIZE IS 12345 ROWS); 

4.1.26.6 RMU Syntax

The "RMU /SET ROW_CACHE" command can be used to set parameters for the snapshot
portion of a row cache. The "/ALTER=(...)" qualifier accepts a
"SNAPSHOT_SLOT_COUNT=n" keyword. The value specified on the
SNAPSHOT_SLOT_COUNT keyword sets the number of snapshot slots in the cache. A
value of zero disables the snapshot portion for the specified cache.
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The following example modifies the database MYDB to set the snapshot slot count for the
cache "EMPL_IDX" to 25000 slots and disables snapshots in cache for the "SALES" cache:

$ RMU /SET ROW_CACHE DGA0:[DB]MYDB.RDB − 
  /ALTER=(NAME=EMPL_IDX, SNAPSHOT_SLOT_COUNT=25000) − 
  /ALTER=(NAME=SALES, SNAPSHOT_SLOT_COUNT=0) 

4.1.26.7 Snapshot Cache Sizing

Because the application and workload behaviour determine the number of database rows that
are modified and the transaction length, it is not reasonable to make specific
recommendations for sizing the snapshot portion of caches for all application and database
types. The ratio of the size of the snapshot cache to the main cache may be similar to the ratio
of the database snapshot storage area to the live storage area.

The snapshot portion of a row cache may be larger (may contain more rows) than the "main"
row cache itself. The snapshot portion of a row cache may also be much smaller.

If an application has long running transactions and active read−write transactions modifying
data, many snapshot copies of the modified data may need to be maintained. This can require
caches with many snapshot rows for those caches with heavy update activity.

When the snapshot portion of a cache fills and no slots are available for re−use (due to the age
of the oldest transaction in the database), read−write transactions may need to "overflow"
snapshot records from cache to disk. This overflow operation can be quite costly in terms of
CPU time and disk I/O operations. When a snapshot cache is discovered to be full and a
read−write transaction must store a new snapshot copy of a row, all existing snapshot copies
for that row must be written from the cache to the snapshot storage area on disk. And all
future snapshot operations to the cache must also be written to disk.

When the snapshot portion of a row cache is marked as being "full", the row cache server
(RCS) process periodically checks the cache to see if space is available for reuse. Similar to
the algorithms governing space recollection in snapshot storage areas, this space only
becomes available when the oldest transaction in the database commits. When the RCS
process finds reclaimable space in the snapshot portion of a cache that is marked "full", it will
clear the "full" indicator to permit new snapshot copies to be stored in the cache by
read−write transactions.

4.1.26.8 Performance and Operational Considerations

When a row is removed from the cache (due to it becoming fragmented, growing too large for
the cache, or from a TRUNCATE TABLE operation), all snapshot copies for the row must be
written from cache back to the snapshot storage area on disk. This can be a relatively costly
and slow operation. This can usually be avoided by insuring that caches are sized with slots
large enough for the data being stored.

At certain times during normal database operations, all modified rows must be written from
cache(s) back to the physical database storage areas. Events that require writing all modified
data back to the database include:
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Database close◊ 
RMU /VERIFY◊ 
RMU /BACKUP◊ 

Prior to "Snapshots in Row Cache", it was unlikely that very many modified rows would
remain in cache memory when database snapshots were enabled. Now, for those caches
configured with snapshots in cache, the cache itself may have many more modified rows.
When there are many modified rows in memory, it may take a significant amount of time to
write all of these rows back to the database. You may need to plan based on the amount of
time required to, for example, initiate backup operations, if there may be a large number of
modified rows in cache.

By removing delays introduced by disk I/O operations, applications may tend to experience
improved performance. Some systems, however, may see a significant reduction in system
idle time due to the reduction in I/O waiting. Presumably, this will be reflected in an increase
of overall application performance as the computer system is now being more effectively
utilized.

4.1.26.9 Statistics

The "Row Cache Status" display of the RMU/SHOW STATISTICS utility provides
information about the state of a single row cache and now includes status information about
the snapshot portion of the cache.

Node: CLICK (2/2/2) Oracle Rdb      Perf. Monitor 17−FEB−2003 22:20:39.61 
Rate: 3.00 Seconds          Row Cache Status         Elapsed: 00:00:31.79 
Page: 1 of 1         DISK$DEMO1:[RDBDEMO]OLTP.RDB;1          Mode: Online 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
                             For Cache: TRD_IDX1     
Statistic.Name Stat.Value Percent 

Total slots:       2000  100.0% Slot Length: 1000  Hash slots: 2048 
Slots full:         876   43.8% Use:        225  25.6% 
Slots empty:       1124   56.2% Rsv:        132  11.7% 
Marked Slots:       347   17.3% Hot:        347 100.0% Cold:     0   0.0% 
Clean Slots:       1653   82.6% Hot:          0   0.0% Cold:  1653 100.0% 
Used Space:         876k  43.8% Wstd:         0k  0.0% 
Free Space:        1124k  56.2% 
Hash Que Lengths:  Empty:1245 1:730      2:73       3:0        4+:0 
Cursor position:   1008 of 2000 wrapped 0 times 
Cache latched:     No 
Cache is full:     No          Cache modified:  Yes  Snapshot is full: No 
Number of checkpoints: None 
Cache Recovery:    0:3577 
Snap Slots:         500  100.0% Ful:      399  79.8% Rcl:     393  78.6% 
Snap Cursor:  45 of 500 (slot 2045) wrapped 2 times 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 

The following fields provide information about the snapshot portion of the cache.

Snapshot is full − If snapshots within cache are enabled for the row cache, indicates if
the cache has been flagged as having no snapshot slots that can be used to store
snapshot records until the oldest transaction in the database commits and allows
snapshot slots to be "reclaimed" for re−use.

◊ 

Snap Slots − Indicates the number of snapshot slots configured.◊ 
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...Ful − How many of the slots contain snapshot records.◊ 

...Rcl − How many of the slots contain snapshot records that can be "reclaimed" for
re−use.

◊ 

Snap Cursor − Indicates the current cursor position within the snapshot portion of the
cache; processes allocating slots in the cache start searching for available space at this
cursor position.

◊ 

...wrapped − How many times the entire snapshot portion of the cache has been
scanned and the allocation cursor was reset to the beginning of the cache.

◊ 

In this example display, the row cache itself is configured with 2000 slots and the snapshot
portion of the cache is configured for 500 slots (the snapshot portion of the cache can be
configured to be larger or smaller than the cache itself). The current "Snap Cursor" position is
at slot 45 within the 500 snapshot slots.

Within the RMU/SHOW STATISTICS utility, the "Zoom" sub−screen of the "Hot Row
Information" display can be used to examine the actual in−cache contents of a row. On this
display, the sign (positive or negative) of the "SnapPage" value indicates if the snapshot
pointer references a page on disk in the snapshot storage area (a positive value) or a slot
number within the snapshot portion of the cache (a negative value). For example, the
following display shows a "Zoom" sub−screen for the record in cache with a database key of
56:662:0.

Node: MARVEL (1/1/1)      Oracle Rdb  Perf. Monitor  3−FEB−2003 23:11:06.27 
Rate: 3.00 Seconds          Hot Row Information        Elapsed: 04:14:58.28 
Page: 1 of 6           DGA127:[T]MF_PERSONNEL.RDB;587          Mode: Online 
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 
                            For Cache: N1 (unsorted) 
Area:Page:Ln #Users State Length SlotNo Area:Page:Ln #Users State Length 
Empty             0            0      0 Empty             0            0 

 +−− DBK=56:662:0 LEN=17 TSN=0:132 SnapPage=−101 VNO=2 −−−−−−−−−−−−−−−−−+ 
 |                                                                      | 
 |                       001E  0000  line 0 (56:662:0) record type 30   | 
 |                    00 0001  0002  1 byte in 0 sets/dynamic items     | 
 |                             ....  12 bytes of static data            | 
 |   FC0000820200008201000102  0005   data '...........ü'               | 
 |                                                                      | 
 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+ 

In this example, the snapshot pointer is −101 indicating, because it is negative, that the first
entry in the snapshot chain can be found in snapshot slot 101 within the cache. Note that a
snapshot pointer of −1 indicates the end of a snapshot chain in this context.

The RMU /DUMP /ROW_CACHE command can also be used to format and display the
in−memory cache contents for a row cache of an open database. In this display output,
negative snapshot pointer values also indicate snapshot pointers within the row cache.

4.1.26.10 Importance of the After−Image Journal

Any time the Oracle Rdb "Fast Commit" feature is utilized, the after−image journal (AIJ) is
the only place where changed database records are known to be written to persistent storage
when a transaction commits.

Protecting the after−image journal file(s) is thus very important. Oracle encourages use of
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data protection features such as disk volume shadowing and especially the Oracle Rdb Hot
Standby feature to help ensure the safety of the contents of the AIJ.

The Row Cache "backing store" (also known as .RDC) files are also important to ensure rapid
database recovery after a system failure. These files contain the modified row content of
caches as of the most recent row cache server (RCS) checkpoint operation. Oracle encourages
use of data protection features such as disk volume shadowing to help ensure the safety of the
contents of the "backing store" files.

4.1.27 Performance Enhancements for RMU
/RECOVER with Optimized After−Image Journals

Several enhancements and performance improvements have been made to the creation and
processing of optimized after−image journal files. These changes should result in a significant
reduction in elapsed time when using optimized after−image journals for recovery.

The RMU /OPTIMIZE /AFTER_JOURNAL command optimizes a backed up after−image
journal (.AIJ) file for database recovery (rollforward) operations by eliminating unneeded and
duplicate journal records, and by ordering journal records. An optimized after−image journal
file created by the RMU /OPTIMIZE /AFTER_JOURNAL command can provide better
recovery performance for your database than a non−optimized after−image journal. A
potential benefit of this improved recovery performance is that the database is made available
to users sooner.

By default, the RMU /OPTIMIZE /AFTER_JOURNAL command orders the after−image
journal records by ascending physical DBKEY. The order of records in an optimized AIJ file
determines the sequence that pages are accessed by a subsequent RMU /RECOVER
command. Sorting AIJ records by physical DBKEY can improve I/O performance at recovery
time by reducing disk head motion. However, an ascending physical DBKEY sequence also
causes the database to be recovered sequentially, one storage area at a time. This typically
results in only one disk device being accessed at a time, often with sequential disk read and
write operations.

Significant enhancements have been made to the optimization and usage of optimized
after−image journals. These changes include the "/RECOVERY_METHOD" qualifier for the
RMU /OPTIMIZE /AFTER_JOURNAL command to allow an alternate record ordering to be
used, and asynchronous read−ahead and write−behind for database access during recovery
using an optimized after−image journal.

The "/RECOVERY_METHOD" qualifier for the RMU /OPTIMIZE /AFTER_JOURNAL
command allows two possible order types:

SEQUENTIAL − AIJ records are ordered by physical DBKEY in a
AREA:PAGE:LINE sequence. This is the traditional method used by the RMU
/OPTIMIZE /AFTER_JOURNAL command and is the default.

◊ 

SCATTER − AIJ records are ordered by a sort key of PAGE:AREA:LINE (page
number, area number and line number). This order often allows the RMU
/RECOVER command to perform much more effective I/O prefetching and writing to
multiple storage areas simultaneously (typically where storage areas of the database
are distributed among multiple disk devices).

◊ 
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SCATTER ordering tends to allow more disk devices to be active during the recovery
process. This, in turn, should help reduce idle CPU time and allows the recovery to complete
in less time. However, because database configurations vary widely, Oracle recommends that
you perform tests with both SCATTER and SEQUENTIAL ordering of the optimized
after−image journals to determine which method produces the best results for your system.

Note that because an optimized AIJ file is not functionally equivalent to the original AIJ file,
the original AIJ file should not be discarded after it has been optimized.

You cannot use optimized AIJ files with the following types of recovery operations:

By−area recovery operations (recovery operations that use the RMU Recover
command with the Areas qualifier).

◊ 

By−page recovery operations (recovery operations that use the RMU Recover
command with the Just_Corrupt qualifier).

◊ 

RMU Recover commands with the Until qualifier. The optimized AIJ does not retain
enough of the information from the original AIJ for such an operation.

◊ 

Recovery operation where the database or any storage areas (or both) are inconsistent
with the optimized AIJ file. A database or storage area will be inconsistent with the
optimized AIJ file if the transaction sequence number (TSN) of the last committed
transaction of the database or storage area is not equal to the TSN of the last
committed transaction in the open record of the AIJ file. The last committed TSN in
the optimized file represents the last transaction committed to the database at the time
the original AIJ file was created.

◊ 

As a workaround for these restrictions against using optimized AIJ files in these recovery
operations, use the original, unoptimized AIJ files in these situations instead. Oracle
recommends that you do not discard the original AIJ file after it has been optimized.

When using an optimized after−image journal for recovery, the optimal number of buffers
specified with the "/AIJ_BUFFERS" qualifier depends on the number of "active" storage
areas being recovered. For those journals optimized with
"/RECOVERY_METHOD=SEQUENTIAL" (the default), a buffer count of perhaps 250 to
500 is usually sufficient.

When using journals optimized with "/RECOVERY_METHOD=SCATTER", reasonable
performance can usually be attained with a buffer count of about five times the number of
"active" storage areas being recovered (with a minimum of perhaps 250 to 500 buffers).

"Active" storage areas refers to those areas that have records with modifications reflected in
the optimized after−image journal. If only a small number of storage areas are actively
modified, less recovery buffers may be needed. The CPU cost of using "excessive" numbers
of buffers tends to be relatively small.

When using non−optimized after−image journals for recovery, the RMU /DUMP
/AFTER_JOURNAL command can be used to suggest an optimal number of recovery
buffers. In effectively all cases though, the default of 20 buffers is probably not sufficient for
best performance. Oracle suggests specifying a buffer count of at least 5000 for most
databases as a reasonable starting point.

The number of asynchronous prefetch (APF) buffers is also a performance factor during
recovery. For recovery operations of optimized after−image journals, the RMU /RECOVER
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command sets the number of APF buffers (also known as the APF "depth") based on the
values of the process quotas ASTLM, BYTLM and the specified "/AIJ_BUFFERS" value.
Specifically, the APF depth is set to the maximum of:

50% of the ASTLM process quota◊ 
50% of the DIOLM process quota◊ 
25% of the specified "/AIJ_BUFFERS" value◊ 

Further, accounts and processes that perform RMU /RECOVER operations should be
reviewed to ensure that various quotas are set to ensure high levels of I/O performance. Table
4−2 lists suggested quota values for recovery performance.

Table 4−2 Recommended Minimum Process Quotas

Quota Setting

DIOLM
Equal to or greater than half of the count of database buffers specified by
the "/AIJ_BUFFERS" qualifier. Minimum of 250.

BIOLM Equal to or greater than the setting of DIOLM.

ASTLM Equal to or greater than 50 more than the setting of DIOLM.

BYTLM

Equal to or greater than 512 times the database buffer size times one half
the value of database buffers specified by the "/AIJ_BUFFERS" qualifier.
Based on a 12 block buffer size and the desire to have up to 100
asynchronous I/O requests outstanding (either reading or writing), the
minimum suggested value is 614,400 for a buffer count of 200.

WSQUOTA,
WSEXTENT

Large enough to avoid excessive page faulting

FILLM
50 more than the count of database storage areas and snapshot storage
areas.

The RMU /DUMP /AFTER_JOURNAL command indicates the type of optimization
(sequential or scattered) when dumping an optimized after−image journal file. The first
record in the after−image journal is an "Open" record and contains an indication that the
journal is optimized and what type of optimization was specified as shown in the following
example (the line reading "Type is Optimized"):

1/1   TYPE=O, LENGTH=510, TAD=27−MAY−2003 08:25:31.67, CSM=00 
    Database DPA86:[AIJOPT]MF_PERSONNEL.RDB;1 
    Database timestamp is 10−DEC−1996 10:17:31.13 
    Facility is "RDMSAIJ ", Version is 711.1 
    Database version is 71.0 
    AIJ Sequence Number is 17231 
    Last Commit TSN is 0:1384096 
    Synchronization TSN is 0:0 
    Journal created on VMS platform 
    Type is Optimized (Scatter) 
    Open mode is Initial 
    Journal was backed up on 27−MAY−2003 08:26:26.25 
    Backup type is Quiet−Point 
    I/O format is Block 
    Commit−to−Journal optimization disabled 
    Switchover by process 2023D558 
    AIJ journal activation ID is 00A207B1F9111F6B 
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    LogMiner is enabled 

4.1.28 Enhancements to INSERT ... FILENAME for LIST
OF BYTE VARYING Data

Enhancement 2738471

The INSERT INTO CURSOR ... FILENAME statement loads the contents of the specified
file into the LIST OF BYTE VARYING column. In prior versions, the user could specify
BINARY or TEXT as the type of data being inserted. This release of Oracle Rdb V7.1 now
includes a new type, CHARACTER VARYING.

BINARY
Used to load unformatted data such as images, audio files, etc. The contents are
broken into 512 octet segments during INSERT.

◊ 

TEXT
Used to load text, a terminator is added to each segment loaded. The contents are
written one line to a segment with trailing terminators carriage return (CR) and line
feed (LF).

◊ 

CHARACTER VARYING
Used to load text but with no terminator. The contents are written one line to a
segment.

◊ 

In addition, this release allows the TEXT and CHARACTER VARYING source to contain
segments of up to 65500 bytes in length. In prior releases, the upper limit was 512 octets.

Interactive SQL now also reports the number of segments inserted and the length of the
longest segment. To disable this output, use the SET DISPLAY NO ROW COUNT
statement.

The following example shows a sample session that inserts a large text file into a single LIST
OF BYTE VARYING column.

SQL> create table samples (a list of byte varying); 
SQL> 
SQL> declare a insert only table cursor for select a from samples; 
SQL> declare b insert only list cursor for select a where current of a; 
SQL> 
SQL> open a; 
SQL> insert into cursor a default values; 
1 row inserted 
SQL> 
SQL> open b; 
SQL> insert into cursor b 
cont>   filename 'WEEKLY_REPORT.DAT' as character varying; 
47706 segments inserted (maximum length 270)
SQL> close b; 
SQL> 
SQL> close a; 

This statement can only be used in interactive SQL and dynamic SQL.
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4.1.29 Default for RMU CRC Qualifier Changed to /CRC
= AUTODIN_II

The default behavior for the CRC qualifier for the following RMU commands is changed in
Oracle Rdb V7.1.2:

Backup◊ 
Backup After_Journal◊ 
Backup Plan◊ 
Optimize After_Journal◊ 

The default value for the CRC qualifier on the above backup commands will be CRC =
AUTODIN_II.

Oracle Corporation recommends that you accept the new behavior for your applications. The
new default behavior prevents undetected corruption in backup media. /CRC specifies that
software CRC checking code is to be computed and stored in the data blocks of the output.
This level of software checking provides full end−to−end data consistency checks.

/CRC = AUTODIN_II − Uses the AUTODIN−II polynomial for the 32−bit cyclic
redundancy check (CRC) calculation and provides the most reliable end−to−end error
detection. Typing /CRC is sufficient to select the /CRC=AUTODIN_II qualifier. It is
not necessary to type the entire qualifier.

◊ 

/CRC = CHECKSUM − Uses one's complement addition, which is the same
computation used to do a checksum of the database pages on disk.

◊ 

/NOCRC − Disables end−to−end error detection.◊ 

Use of /CRC

Please note that the use of /CRC on the AIJ backup command has meaning
when used in conjunction with the /FORMAT=NEW_TAPE qualifier. For
more information, see the RMU Help on /BACKUP/AFTER/FORMAT.

4.1.30 Index Estimation

Predicate estimation is being used increasingly in the Rdb optimizer to determine the cost and
productivity of various index scans.

When a particular query is executed, the conditions in the record select expression, the
"where" clause of an SQL statement, determine which rows will be selected. These
conditions, or predicates, can be used to limit the parts of an index that are scanned to find
data records.

Consider the following SQL query.

SQL> SELECT * FROM employees WHERE last_name='Toliver' 
cont>  and first_name='Alvin'; 

If there were an index on first_name and a second index on last_name, then Rdb would have
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to decide which of the two indices would be most efficient for retrieving the data. To do this,
Rdb examines each index to find out roughly how many rows would be found through that
index. For example, how many 'Toliver' rows would be found in the last_name index.

Historically, Rdb uses estimation in the dynamic optimizer. The dynamic optimizer uses
estimation to calculate costs of index scans on competing indices. This information is used to
ensure the most efficient indices are scanned first.

During request compilation, the Rdb optimizer uses the selectivity of each expression to help
cost various retrieval strategies to determine the most efficient method for retrieving the data.

Where an expression compares a literal value (e.g. WHERE field1=42), and an index exists
on that field, the static optimizer can use estimation to obtain from the actual data an estimate
for that predicate. In other words, how many rows would actually have the value forty−two in
the field called "field1"?

This feature is called Sampled Selectivity and is described in Section 5.1.1.

4.1.30.1 How Estimation Is Performed

Normally, Rdb performs estimation on indexes of TYPE IS SORTED and TYPE IS SORTED
RANKED by descending the index structure to locate the index node where the selected range
spans more than one key value in the node. This is termed the split level.

The REFINE_ESTIMATES flag can be used to modify the behaviour of the estimation
process. For a complete description of the estimation process, including the new features,
please refer to the Rdb Technical Note available through MetaLink.

The REFINE_ESTIMATES flag does not change the behaviour of the estimation process for
indexes of TYPE IS SORTED.

For ranked indexes of TYPE IS SORTED RANKED, the REFINE_ESTIMATES flag allows
estimation to descend beyond the split level to obtain a far more accurate estimate and
enables rules to be enforced for how far estimation should proceed.

In addition to the new functionality, the execution trace has been significantly enhanced. In
particular, the use of SET FLAGS 'EXECUTION,DETAIL(1)' will display significantly more
information about the estimation process.

In the following example, the indexes contain the unique values 1 to 100,000. Index I21 is
TYPE IS SORTED and index I22 is TYPE IS SORTED RANKED.

A cursor is opened selecting a range of exactly two keys for two records. In the first open, the
keys are such that the estimation descends all the way to the level one node and therefore
correctly estimates the number of records from each index as two.

However, in the second open, the keys were chosen such that they happened to span a
separator in the index root node. So even though the query would only find two rows in the
index, the estimation was erroneously high.

SQL> set flags 'strategy,detail(1),exec' 
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SQL> declare :a,:b,:c,:d int; 
SQL> begin 
cont> set :a=1; set :b=2; set :c=1; set :d=2; 
cont> end; 
SQL> declare c1 cursor for select count(*) from t2 
cont> where f1 between :a and :b 
cont> and f2 between :c and :d; 
SQL> open c1; 
~S#0003 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F1 >= <var0>) AND (0.F1 <= <var1>) AND (0.F2 >= <var2>) AND (0.F2 <= 
        <var3>) 
  BgrNdx1 I21 [1:1] Fan=17 
    Keys: (0.F1 >= <var0>) AND (0.F1 <= <var1>) 
  BgrNdx2 I22 [1:1] Fan=17 
    Keys: (0.F2 >= <var2>) AND (0.F2 <= <var3>) 
~Estim  Ndx1 Sorted: Split lev=1, Seps=2 Est=2 Precise 
~Estim  Ndx2 Ranked: Nodes=1, Min=2, Est=2 Precise IO=3 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0003.01(1) Estim   Index/Estimate 1/2 2/2 
~E#0003.01(1) BgrNdx1 EofData  DBKeys=2  Fetches=0+0  RecsOut=0 #Bufs=1 
~E#0003.01(1) BgrNdx2 FtchLim  DBKeys=0  Fetches=0+0  RecsOut=0 
~E#0003.01(1) Fin     Buf      DBKeys=2  Fetches=0+1  RecsOut=2 
SQL> close c1; 
SQL> begin 
cont> set :a=35287; set :b=35288; set :c=6207; set :d=6208; 
cont> end; 
SQL> open c1; 
~Estim  Ndx1 Sorted: Split lev=4, Seps=1 Est=5534 
~Estim  Ndx2 Ranked: Nodes=309, Min=0, Est=6205 IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0003.01(2) Estim   Index/Estimate 1/5534 2/6205 
~E#0003.01(2) BgrNdx1 EofData  DBKeys=2  Fetches=1+0  RecsOut=0 #Bufs=1 
~E#0003.01(2) BgrNdx2 FtchLim  DBKeys=0  Fetches=0+0  RecsOut=0 
~E#0003.01(2) Fin     Buf      DBKeys=2  Fetches=0+1  RecsOut=0 
SQL> close c1; 

The next example shows the difference in the ranked index estimate on I22 when refinement
is enabled.

SQL> select count(*) from t2 
cont> where f1 between :a and :b 
cont> and f2 between :c and :d; 
~S#0004 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F1 >= <var0>) AND (0.F1 <= <var1>) AND (0.F2 >= <var2>) AND (0.F2 <= 
        <var3>) 
  BgrNdx1 I21 [1:1] Fan=17 
    Keys: (0.F1 >= <var0>) AND (0.F1 <= <var1>) 
  BgrNdx2 I22 [1:1] Fan=17 
    Keys: (0.F2 >= <var2>) AND (0.F2 <= <var3>) 
~Estim  Ndx1 Sorted: Split lev=4, Seps=1 Est=5534 
~Estim  Ndx2 Ranked: Nodes=2, Min=2, Est=2 Precise IO=2 
~Estim  RLEAF Cardinality=  1.0000000E+05 
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~E#0004.01(1) Estim   Index/Estimate 2/2 1/5534 

Notice that, in this case, the estimate for index I22, which is background index 2, is now
precisely two even though the previous query indicated the split level for the same range was
very high in the index.

The ranked estimation is more accurate because estimation refinement descended the index
beyond the split level until a reasonable estimate was obtained. The estimate for sorted index
I21 is still inaccurate because estimation refinement is only available for ranked indices.

Refinement rules allow control of the estimation process by limiting the total IO based on the
smallest estimate obtained for each execution of a request. If the first index estimates that 10
rows will be returned, the estimation process can be limited to 10 IO's, on the assumption that
fetching the records should take not more than ten IO's.

The ranked index estimation refinement rules are:

REFINE_ESTIMATES(1) − Use IO to limit the descend to split level.◊ 
REFINE_ESTIMATES(2) − Use IO to limit the refinement, where we read beyond
the split level.

◊ 

REFINE_ESTIMATES(4) − Limit refinement until the known true branches of an
index contain more records than branches of the index that are not completely
included in the range selected.

◊ 

REFINE_ESTIMATES(8) − As each node in the index is processed for estimation,
the error in that estimate is calculated. This rule terminates estimation once the
calculated error in the estimate is less than ten percent of the estimate.

◊ 

REFINE_ESTIMATES(16) − Enable refinement. If this rule is the only refinement
rule enabled, refinement will attempt to obtain a precise estimate regardless of the
cost. If other refinement rules are also enabled, those rules will be enforced and this
rule is not required.

◊ 

Estimation refinement rules can be combined by adding their values. In this way, all ranked
estimation refinement rules can be enabled by using SET FLAGS 'REFINE_ESTIMATES(15)'.
The REFINE_ESTIMATES(16) refinement rule is not required when any of the other rules are
enabled.

The following examples show how refinement rules affect estimation on the two ranked
indices I22 and I23.

SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont>    and f3 between 1 and 2; 
~S#0003 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F2 >= 6207) AND (0.F2 <= 6208) AND (0.F3 >= 1) AND (0.F3 <= 2) 
  BgrNdx1 I22 [1:1] Fan=17 
    Keys: (0.F2 >= 6207) AND (0.F2 <= 6208) 
  BgrNdx2 I23 [1:1] Fan=17 
    Keys: (0.F3 >= 1) AND (0.F3 <= 2) 
~Estim  Ndx1 Ranked: Nodes=2, Min=2, Est=2 Precise IO=4 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~Estim  Ndx2 Ranked: Nodes=0, Min=0, Est=12250 Descend IO limit IO=4 
~E#0003.01(1) Estim   Index/Estimate 1/2 2_12250 
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Because the estimate for the first background index is two rows, the estimation process is
limited to two IO's. The second background index does not get estimated because estimation
on the first index has already used 4 IO's.

SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont>    and f3 between 1 and 2; 
~S#0004 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F2 >= 6207) AND (0.F2 <= 6208) AND (0.F3 >= 1) AND (0.F3 <= 2) 
  BgrNdx1 I22 [1:1] Fan=17 
    Keys: (0.F2 >= 6207) AND (0.F2 <= 6208) 
  BgrNdx2 I23 [1:1] Fan=17 
    Keys: (0.F3 >= 1) AND (0.F3 <= 2) 
~Estim  Ndx1 Ranked: Nodes=2, Min=2, Est=2 Precise IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~Estim  Ndx2 Ranked: Nodes=154, Min=0, Est=3103 Descend IO limit IO=2 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0004.01(1) Estim   Index/Estimate 1/2 2/3103 

Because we immediately repeat the same query, the first index is again estimated at two rows,
but because the previous query already read these index nodes, this did not cost any IO's
because the nodes remained in our buffer pool. This meant that two IO's could be used to
begin estimation on the second background index. The estimate is not very accurate because
we could only descend a short way into the index structure in two IO's.

In the following example, you will see that we descend further and further down the index on
each execution and the estimate becomes progressively better on each execution.

SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont>    and f3 between 1 and 2; 
~S#0005 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F2 >= 6207) AND (0.F2 <= 6208) AND (0.F3 >= 1) AND (0.F3 <= 2) 
  BgrNdx1 I22 [1:1] Fan=17 
    Keys: (0.F2 >= 6207) AND (0.F2 <= 6208) 
  BgrNdx2 I23 [1:1] Fan=17 
    Keys: (0.F3 >= 1) AND (0.F3 <= 2) 
~Estim  Ndx1 Ranked: Nodes=2, Min=2, Est=2 Precise IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~Estim  Ndx2 Ranked: Nodes=1, Min=0, Est=10 Descend IO limit IO=2 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0005.01(1) Estim   Index/Estimate 1/2 2/10 
~E#0005.01(1) BgrNdx1 EofData  DBKeys=2  Fetches=0+0  RecsOut=0 #Bufs=1 
~E#0005.01(1) BgrNdx2 FtchLim  DBKeys=0  Fetches=0+0  RecsOut=0 
~E#0005.01(1) Fin     Buf      DBKeys=2  Fetches=0+0  RecsOut=0 

           0 
1 row selected 
SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont>    and f3 between 1 and 2; 
~S#0006 
Tables: 
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  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F2 >= 6207) AND (0.F2 <= 6208) AND (0.F3 >= 1) AND (0.F3 <= 2) 
  BgrNdx1 I22 [1:1] Fan=17 
    Keys: (0.F2 >= 6207) AND (0.F2 <= 6208) 
  BgrNdx2 I23 [1:1] Fan=17 
    Keys: (0.F3 >= 1) AND (0.F3 <= 2) 
~Estim  Ndx1 Ranked: Nodes=2, Min=2, Est=2 Precise IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~Estim  Ndx2 Ranked: Nodes=1, Min=2, Est=2 Precise IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0006.01(1) Estim   Index/Estimate 1/2 2/2 

In this case, after three executions the estimate obtained is precisely two.

It is anticipated that refinement rules will become the default in a future version of Oracle
Rdb.

4.1.31 Hash Index Estimation

In addition to the functionality described in Section 4.1.30, the index estimation process has
been enhanced to support estimation of indexes of TYPE IS HASHED.

For a complete description of this feature, please refer to the Rdb Technical Note available
through MetaLink.

By default, Rdb does not allow estimation of hashed indexes. As with the new features for
TYPE IS SORTED RANKED, this feature is controlled using the refine estimates flag.

The values that effect the behaviour on hashed indexes are:

REFINE_ESTIMATES(32) − Enable estimation on hashed indexes.◊ 
REFINE_ESTIMATES(64) − Use the smallest estimate obtained for this execution of
the request to limit the IO consumed during estimation.

◊ 

The values can be combined with those affecting ranked indices by adding them together.

In the following query, index I32 is TYPE IS SORTED RANKED and index I33 is TYPE IS
HASHED.

SQL> set flags 'strategy,detail(1),exec,refine_estimates(111)' 
SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont> and f3 in (1,2); 
~S#0004 
Tables: 
  0 = T2 
Aggregate: 0:COUNT (*) 
Leaf#01 BgrOnly 0:T2 Card=100000 
  Bool: (0.F2 >= 6207) AND (0.F2 <= 6208) AND ((0.F3 = 1) OR (0.F3 = 2)) 
  BgrNdx1 I23 [(1:1)2] Fan=1 
    Keys: r0: 0.F3 = 2 
          r1: 0.F3 = 1 
  BgrNdx2 I22 [1:1] Fan=17 
    Keys: (0.F2 >= 6207) AND (0.F2 <= 6208) 
~Estim  Ndx1 Hashed: Nodes=0, Est=2 Precise IO=5 
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~Estim  Ndx2 Ranked: Nodes=0, Min=0, Est=12250 Descend IO limit IO=5 
~E#0004.01(1) Estim   Index/Estimate 1/2 2_12250 

The hashed index is background index 1 and is estimated to return precisely two rows. The
Refinement rules are in place for ranked indexes so the estimation on the ranked index I22 is
not performed.

By repeating the same query, so that some index nodes are already buffered, we can see that
estimation on the ranked index will proceed.

Please note that this example has been edited for brevity.

SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont> and f3 in (1,2); 
~Estim  Ndx1 Hashed: Nodes=0, Est=2 Precise IO=0 
~Estim  Ndx2 Ranked: Nodes=163, Min=0, Est=3284 Refine IO limit IO=2 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0005.01(1) Estim   Index/Estimate 1/2 2/3284 
~E#0005.01(1) BgrNdx1 EofData  DBKeys=2  Fetches=0+0  RecsOut=0 #Bufs=1 
~E#0005.01(1) BgrNdx2 FtchLim  DBKeys=0  Fetches=0+0  RecsOut=0 
~E#0005.01(1) Fin     Buf      DBKeys=2  Fetches=0+0  RecsOut=0 

           0 
1 row selected 
SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont> and f3 in (1,2); 
~Estim  Ndx1 Hashed: Nodes=0, Est=2 Precise IO=0 
~Estim  Ndx2 Ranked: Nodes=10, Min=0, Est=190 Refine IO limit IO=2 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0006.01(1) Estim   Index/Estimate 1/2 2/190 
~E#0006.01(1) BgrNdx1 EofData  DBKeys=2  Fetches=0+0  RecsOut=0 #Bufs=1 
~E#0006.01(1) BgrNdx2 FtchLim  DBKeys=0  Fetches=0+0  RecsOut=0 
~E#0006.01(1) Fin     Buf      DBKeys=2  Fetches=0+0  RecsOut=0 

           0 
1 row selected 
SQL> select count(*) from t2 where f2 between 6207 and 6208 
cont> and f3 in (1,2); 
~Estim  Ndx1 Hashed: Nodes=0, Est=2 Precise IO=0 
~Estim  Ndx2 Ranked: Nodes=2, Min=2, Est=2 Precise IO=0 
~Estim  RLEAF Cardinality=  1.0000000E+05 
~E#0007.01(1) Estim   Index/Estimate 1/2 2/2 

Unlike estimation on sorted indexes, estimation of indexes of TYPE IS HASHED is performed
even where the index has more than one partition.

Estimation on hashed indexes is also supported for range list queries. A range list query, such
as the one shown above, provides multiple key values to be retrieved from the same index.
This occurs where the query has a condition such as KEY=42 OR KEY=6 or KEY IN (1,5,9).

4.1.32 New LIKE Clause Added to CREATE TABLE

Description

The CREATE ... LIKE statement allows a database administrator to copy the metadata for an
existing table and create a new table with similar characteristics.
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Syntax

Usage Notes

The table name provided by the LIKE clause must be a base table, a global temporary
table, or a local temporary table that currently exists in the current database.
Specifying a synonym for a base table or temporary table is also permitted.
The following attributes of the table are copied:

The names and ordering of all columns⋅ 
For each column, the data type, DEFAULT, IDENTITY, COMPUTED BY
clause, AUTOMATIC AS clause, COMMENT and domain will be inherited.

⋅ 

Display attributes such as DEFAULT VALUE, QUERY NAME, QUERY
HEADER and EDIT STRING clauses.

⋅ 

The table comment is inherited, unless overwritten by a COMMENT IS
clause.

⋅ 

If the source table includes an IDENTITY column then the LIKE clause will
result in a new sequence being created with the same name as this new table.

⋅ 

Other table attributes such as referential constraints, triggers, storage maps and
indices are not inherited and must be separately created.

Note

◊ 
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If a COMPUTED BY expression uses a subselect to reference the
current table, then this information is inherited unchanged by the
new table. You should perform a subsequent ALTER TABLE
statement to DROP and redefine the COMPUTED BY column.

You cannot reference a system table or a view with the LIKE clause.

SQL> create table my_sys like rdb$database; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−E−NOMETSYSREL, operation illegal on system defined metadata 

◊ 

The referenced table name can be followed by a set of additional column names and
table constraints. These are added to those inherited from the referenced table. See
the example below.

◊ 

Example: Using the LIKE clause to make a copy of a table definition

This new table will be used to record the EMPLOYEES details after they are retired from the
company. An extra column, RETIRED_DATE, is added to record the date of the retirement
and a new CHECK constraint is added to ensure that the employee is not listed in both the
EMPLOYEES table and this new RETIRED_DATE column.

SQL> set dialect 'sql99'; 
SQL> 
SQL> create table RETIRED_EMPLOYEES 
cont>     like EMPLOYEES 
cont>     (retired_date DATE_DOM 
cont>     ,primary key (EMPLOYEE_ID) 
cont>     ,check (not exists 
cont>       (select * from EMPLOYEES e 
cont>        where e.employee_id = RETIRED_EMPLOYEES.employee_id)) 
cont>      initially deferred 
cont>     ); 
SQL> 
SQL> show table RETIRED_EMPLOYEES; 
Information for table RETIRED_EMPLOYEES 

Columns for table RETIRED_EMPLOYEES: 
Column Name         Data Type   Domain 
−−−−−−−−−−−         −−−−−−−−−   −−−−−− 
EMPLOYEE_ID                     CHAR(5)      ID_DOM 
LAST_NAME                       CHAR(14)     LAST_NAME_DOM 
FIRST_NAME                      CHAR(10)     FIRST_NAME_DOM 
MIDDLE_INITIAL                  CHAR(1)      MIDDLE_INITIAL_DOM 
ADDRESS_DATA_1                  CHAR(25)     ADDRESS_DATA_1_DOM 
ADDRESS_DATA_2                  CHAR(20)     ADDRESS_DATA_2_DOM 
CITY                            CHAR(20)     CITY_DOM 
STATE                           CHAR(2)      STATE_DOM 
POSTAL_CODE                     CHAR(5)      POSTAL_CODE_DOM 
SEX                             CHAR(1)      SEX_DOM 
BIRTHDAY                        DATE VMS     DATE_DOM 
STATUS_CODE                     CHAR(1)      STATUS_CODE_DOM 
RETIRED_DATE                    DATE VMS     DATE_DOM 

Table constraints for RETIRED_EMPLOYEES: 
RETIRED_EMPLOYEES_CHECK1 
 Check constraint 
 Table constraint for RETIRED_EMPLOYEES 
 Evaluated on COMMIT 
 Source: 
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 CHECK (not exists 
    (select * from EMPLOYEES e 
      where e.employee_id = RETIRED_EMPLOYEES.employee_id)) 

RETIRED_EMPLOYEES_PRIMARY1 
 Primary Key constraint 
 Table constraint for RETIRED_EMPLOYEES 
 Evaluated on UPDATE, NOT DEFERRABLE 
 Source: 
 PRIMARY key (EMPLOYEE_ID) 

Constraints referencing table RETIRED_EMPLOYEES: 
No constraints found 

Indexes on table RETIRED_EMPLOYEES: 
No indexes found 

Storage Map for table RETIRED_EMPLOYEES: 
No Storage Map found 

Triggers on table RETIRED_EMPLOYEES: 
No triggers found 

SQL> 

4.1.33 Enhancements to Statistical Functions

This release of Oracle Rdb V7.1 adds the following new statistical functions to the existing
functions COUNT, MAX, MIN, AVG, SUM, STDDEV, and VARIANCE:

VAR_POP
This function calculates the variance for the population. It is equivalent to
VARIANCE with degrees of freedom fixed at 0 (for example SET FLAGS
'VARIANCE_DOF(0)' which is the default setting).

◊ 

VAR_SAMP
This function calculates the variance for a subset or sampling of the population. It is
equivalent to VARIANCE with degrees of freedom fixed at 1 (for example SET
FLAGS 'VARIANCE_DOF(1)'). By convention, one degree of freedom is used when
the sampling of the population is performed.

◊ 

STDDEV_POP
This function calculates the standard deviation (the square root of the variance) for
the population. It is equivalent to STDDEV with degrees of freedom fixed at 0 (for
example SET FLAGS 'VARIANCE_DOF(0)' which is the default setting).

◊ 

STDDEV_SAMP
This function calculates the standard deviation (the square root of the variance) for
the subset of sampling of the population. It is equivalent to STDDEV with degrees of
freedom fixed at 1 (for example SET FLAGS 'VARIANCE_DOF(1)'). By
convention, one degree of freedom is used when the sampling of the population is
performed.

◊ 

These functions are based on the proposed new SQL Database Language standard. The SET
FLAGS 'VARIANCE_DOF' option does not change the result of these functions and is only
applied to the STDDEV and VARIANCE functions.
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In addition, a new FILTER clause is provided for all statistical functions. This clause can be
used to limit the values included in the COUNT, MAX, MIN, SUM, AVG, STDDEV and
VARIANCE functions.

Syntax

Usage Notes

The keywords ALL and DISTINCT are not permitted when using the VAR_POP,
VAR_SAMP, STDDEV_POP and STDDEV_SAMP statistical functions.

◊ 

The function COUNT(value−expr) is equivalent to COUNT(*) FILTER (value−exp
IS NOT NULL).
If you apply FILTER to COUNT(value−expr) then it will implicitly include an IS
NOT NULL restriction. This might be seen when using the STRATEGY and
DETAILS option of SET FLAGS.

◊ 

The FILTER predicate may not include subselect clauses or references to statistical
functions.

◊ 

Examples

The following example shows the differences in results when using these two functions. Use
of either function will depend on the application and data being processed. It may be that
processing as a sampling might yield a better standard deviation.

Example 4−5 Comparing the output of STDDEV_POP and STDDEV_SAMP

SQL> select stddev_pop (salary_amount), stddev_samp (salary_amount) 
cont> from SALARY_HISTORY; 

  1.777268393871476E+004    1.778488626348816E+004 
1 row selected 
SQL> 

FILTER can be used to eliminate data from the statistical function so that the generated report
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can process the data in a single pass.

Example 4−6 Applying the FILTER clause

SQL> select 
cont>   max (salary_amount) filter (where salary_end is null), 
cont>   max (salary_amount) filter (where salary_end is not null), 
cont>   min (distinct salary_amount) filter (where salary_end = salary_start), 
cont>   min (distinct salary_amount) filter (where salary_end > salary_start) 
cont> from 
cont>   salary_history 
cont> where 
cont>   employee_id = '00164' 
cont> group by 
cont>   employee_id; 

      51712.00        50000.00            NULL        26291.00 
1 row selected 
SQL> 

4.1.34 RMU /VERIFY Enhanced to Detect Sequence
Problems

RMU /VERIFY has been enhanced to detect two sequence problems. Each sequence that is
created has an CLTSEQ entry and a row in the system table RDB$SEQUENCES
corresponding to it.

RMU /VERIFY now makes sure that each row in the RDB$SEQUENCES table has a
matching CLTSEQ entry in the root, and each CLTSEQ entry in the root file that is marked
"Reserved" (i.e. it is associated with a sequence that is being used) has a matching row in the
RDB$SEQUENCES table.

On finding these problems, messages of the following type will be generated:

%RMU−E−NOSEQROW, Sequence id 1 has an entry in the root file but no row 
in RDB$SEQUENCES 
%RMU−E−NOSEQENT, Sequence id 1 has no valid entry in the root file 

This RMU /VERIFY enhancement is available starting with Oracle Rdb Release 7.1.2.

4.1.35 Determining Which Oracle Rdb Options Are
Installed

When installing Oracle Rdb Server on OpenVMS you can choose from five components to
install:

Oracle Rdb1. 
Programmer for Rdb (Rdb Compilers)2. 
Hot Standby3. 
Power Utilities4. 
Common Components5. 
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Starting with Rdb 7.0, you can determine what Rdb options were selected during the
installation of Rdb by running the program
SYS$SYSTEM:RDBINS<RdbVersionVariant>.EXE. For example:

$ RUN SYS$SYSTEM:RDBINS71 
Installed: Oracle Rdb,Rdb Compilers,Hot Standby,Power Utilities 

Previously, however, the output of the RDBINS program could not easily be redirected.
Attempts to redefine SYS$OUTPUT would not allow the program output to be captured.

This problem has been resolved. The RDBINS program now allows redirection of the output
to SYS$OUTPUT. The RDBINS program also creates a DCL symbol
RDB$INSTALLED_SELECTIONS containing the same output string as is displayed to
SYS$OUTPUT.

4.1.36 New Procedure RDB$IMAGE_VERSIONS.COM

The command procedure RDB$IMAGE_VERSIONS.COM is supplied in SYS$LIBRARY
by the Rdb installation procedure. The RDB$IMAGE_VERSIONS command procedure can
be used to display the image identification string and image link date/time from various
Oracle Rdb or potentially related images in SYS$SYSTEM, SYS$LIBRARY and
SYS$MESSAGE. This procedure can be used to determine exactly what images are installed
on the system.

RDB$IMAGE_VERSIONS.COM accepts an optional parameter. If passed, this parameter
specifies a specific file or wildcard to lookup and display information for. By default,
filenames starting with RD*, SQL*, RM*, and COSI* and ending with .EXE are searched for
and displayed.

The following example shows how to use the RDB$IMAGE_VERSIONS command
procedure.

Decrdb RTA1:> @RDB$IMAGE_VERSIONS 
SYS$SYSROOT:[SYSEXE]RDB$NATCONN71.EXE;1 SQL*NET V7.1−55   8−MAY−2002 15:56 
SYS$COMMON:[SYSEXE]RDBINS.EXE;4         ORACLE RDB V7.0  14−NOV−2002 17:20 
SYS$COMMON:[SYSEXE]RDBINS70.EXE;33      ORACLE RDB V7.0   7−MAR−2003 15:30 
SYS$COMMON:[SYSEXE]RDBINS71.EXE;5       ORACLE RDB V7.1   9−APR−2003 10:58 
SYS$COMMON:[SYSEXE]RDBPRE.EXE;5         V7.0−65          10−SEP−2002 16:02 
SYS$COMMON:[SYSEXE]RDBPRE70.EXE;37      V7.0−7           28−FEB−2003 23:24 
SYS$COMMON:[SYSEXE]RDBPRE71.EXE;5       V7.1−101          8−APR−2003 16:49 
SYS$COMMON:[SYSEXE]RDBSERVER.EXE;9      RDB/RSV V7.0−65   5−SEP−2002 21:01 
SYS$COMMON:[SYSEXE]RDBSERVER70.EXE;41   RDB/RSV V7.0−7   27−FEB−2003 17:29 
SYS$COMMON:[SYSEXE]RDBSERVER71.EXE;5    RDB/RSVV7.1−101   7−APR−2003 17:43 
SYS$COMMON:[SYSEXE]RDMABS.EXE;5         RDB V7.0−65      10−SEP−2002 16:01 
    . 
    . 
    . 

4.1.37 Oracle Rdb SGA API

Oracle Rdb maintains an extensive set of online performance statistics that provide valuable
dynamic information regarding the status of an active database. The system global area
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(SGA) application programming interface (API) described in this document provides a way to
retrieve these database performance statistics.

The SGA API automates retrieving database statistics available only through the RMU Show
Statistics command. The SGA API provides the only way to retrieve statistics for Oracle Rdb
databases from an application. Using the SGA API provides fast access to the data without
affecting the execution of the server.

Previously, the Oracle Rdb SGA API was available as a separate software option to be
downloaded, installed and maintained independently of the Oracle Rdb kit. Each time a new
version of Oracle Rdb was installed, the SGA API would have to be updated. If the SGA API
was not updated, it would in many cases fail to work correctly.

This problem has been partly resolved. The contents of the SGA API separate software option
are now automatically provided in the RDM$DEMO directory during the Oracle Rdb kit
installation procedure. Please refer to the SGA API documentation available in RDM$DEMO
in various formats as SGAAPI.PS, SGAAPI.HTML and SGAAPI.TXT for additional
information.

Existing Users of the SGAAPI May Have to Modify Procedures

Existing users of the Oracle Rdb SGA API should refer to the
documentation as there will be some minor changes required. In particular,
the KUSRMUSHRxx.EXE sharable image is now provided in
SYS$LIBRARY and the KUSRMUSHRxx.OPT linker options file has been
updated to reference this sharable image in its new location.
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Improving Query Performance Using
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5.1 Sampled Selectivity

5.1.1 Improving Query Performance Using Sampled
Selectivity

Oracle Rdb Release 7.1.2 introduces a new optimizer feature called sampled selectivity. Use
of sampled selectivity can improve the performance of certain database queries by giving the
Rdb optimizer more accurate information about the distribution of data in tables. The role of
the Rdb optimizer is to decide how to execute a query on an Rdb database in the most
efficient manner. To accomplish that, the optimizer considers different ways of joining results
from various tables and different methods of retrieving the data for each table. The result of
the optimization process is a query strategy. The choice of query strategy depends primarily
on its cost, based on estimating the number of disk I/O operations that will be done when the
query is executed. This might be mitigated by constraints placed on the query, such as, fast
first execution and query outlines.

5.1.2 Selectivity in the Optimization Process

Most of the time the Rdb optimizer does an excellent job of choosing query strategies.
However, query optimization is not an exact science; and in a small number of cases the
chosen strategies are sub−optimal (the queries take longer to perform than one might expect).
Sometimes the reason for this can be traced to dramatically inaccurate estimates of the
number of data rows that will be processed. Sampled rather than static computation of
selectivity might help correct this.

Part of computing the I/O cost involves breaking down a SQL query's WHERE clause into
individual predicates. For instance, A.LAST_NAME = B.LAST_NAME is a predicate that
specifies a join condition on two tables. Another example is the predicate EMPLOYEE_ID =
'00164', where a column value is restricted to a range, or in this case, to a single value. The
purpose of such predicates is to limit the number of rows to be retrieved. Each predicate
specifies some condition that allows only those rows that qualify to be selected. The ratio of
the number of qualifying rows divided by the total number of rows is called the selectivity
factor.

The Rdb optimizer determines predicate selectivity in different ways. For example, given a
join condition, such as, A.LAST_NAME = B.LAST_NAME, the selectivity is computed as
some function of the cardinality of the two tables. For predicates of the form
EMPLOYEE_ID = '00164' (more particularly "column−name relational−operator
literal−value" or "column−name IS NULL"), the optimizer assigns a fixed value to the
selectivity, as described in the next section. It is for this second type of expression, when an
index exists on the column, that sampled selectivity can be employed.

5.1.2.1 Fixed Selectivity Is Used by Default

For predicates of the form "column−name relational−operator literal−value" or
"column−name IS NULL", the optimizer assigns a selectivity factor whose value depends on
the operator used in the expression. In the example EMPLOYEE_ID = '00164', the default
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behavior of Rdb is to assign the equals operator a fixed selectivity factor of 3.125%. If the
EMPLOYEES table has 100 rows in it, the equals operation is assumed on average to return
three rows (which is 3%). This selectivity value is fixed and does not depend on the value
'00164' in the predicate. If instead the predicate were EMPLOYEE_ID = '00273', the
optimizer would still predict that three rows in the EMPLOYEES table would match that
selection criterion.

Rdb provides two choices for fixed selectivity values; the first is the default set for Rdb and
the other choice uses aggressive selectivity values that predict fewer rows will be returned
than do the standard Rdb values. Given an estimated cost for retrieving all the data in a
selected table column, selectivity is used to reduce that cost to some fraction representing the
subset of data that is of interest.

5.1.2.2 Fixed Selectivity Can Sometimes Be a Poor Predictor

Selectivity is used to predict cardinality (the number of rows to be processed), and predicted
cardinality is used to estimate I/O cost. However, fixed selectivity can be a poor predictor
given certain distributions of data. For example, if a table of 100 rows has a COUNTRY
column and all values in the table for that column happen to be 'SWITZERLAND', the true
selectivity of the predicate WHERE COUNTRY = 'SWITZERLAND' should be 100%, not
3%. This is a case where the distribution of column values over the range of possible values is
very narrow. Such a data distribution is said to be highly skewed.

5.1.3 Introducing Sampled Selectivity

Oracle Rdb Release 7.1.2 introduces another way to calculate selectivity. This can be done by
sampling the data in a table's index and estimating the cardinality from the actual distribution
of data. Given an estimate of a predicate's cardinality and given the number of rows in a table,
one can estimate the selectivity factor. Tests have shown that, on average, selectivity
estimation done by sampling data in an index is more accurate than by simply using a fixed
value.

Execution of the Rdb optimizer is divided into a static optimization phase and a dynamic
optimization phase. The role of the static optimizer is to choose the "best" query strategy. For
certain types of queries the dynamic optimizer processes several competing indices. When
multiple indexes on a table exist, the dynamic optimizer accesses those which are useful to
see which is the most productive. Different executions of the query can thus adapt to
changing input parameters and use the best index.

The first step in dynamic optimization involves sorting background indexes in order by the
number of expected returned keys. The number of index entries to be processed is estimated
by sampling each candidate index. The static optimizer now uses that same method of
sampling an index to estimate the cardinality of a result and from that to compute the
selectivity.

5.1.3.1 Pros and Cons of the Different Selectivity Methods

Sampled selectivity computation is usually more accurate than using a fixed selectivity value
because it is based on the actual distribution of data in a table. A sorted, ranked index gives
better overall results than does a sorted, non−ranked index because cardinality information is
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stored within a sorted, ranked index. For any given data value, any one of the three methods
(fixed, sorted, ranked) might yield the most accurate result. Typically, ranked indexes give
the best results and fixed selectivity gives the least accurate results.

The following is a simple range query on the EMPLOYEES table in the sample
PERSONNEL database.

SQL> select employee_id from employees where employee_id > 'nnnnn'; 

There are 100 rows in the EMPLOYEES table. The values in the EMPLOYEE_ID column
are unique and range from '00164' to '00471'. The worst estimates for all three methods occur
when 'nnnnn' = '00164'. The fixed selectivity method predicts 35 rows, so it is too low by 65
rows. The sorted, unranked index method predicts 34 rows, so it is too low by 66 rows. The
ranked index method predicts 84 rows, but it is only wrong by 16 rows.

Sampled selectivity comes with a small cost. In order to get the more accurate estimates, the
optimizer must sample indexes during query compilation; and this might require I/O
operations to be performed depending on how many of the index nodes are already in
memory. If the indexes used for the estimation are also used during query execution, there
might be no additional I/O if the same index nodes must be referenced again as the index
information will typically remain buffered. Also, if the query is compiled once but executed
many times, any additional I/O to perform the estimation might be insignificant.

There is no evidence to show that enabling aggressive selectivity for all queries will result in
overall better query strategies than by using the standard (default), fixed Rdb values.
Aggressive selectivity is best used for specific queries where it is shown to help and where
sampled selectivity cannot be used.

5.1.3.2 Requirements for Using Sampled Selectivity

When the feature is enabled, sampled selectivity estimation is attempted only for certain
forms of predicate and only under the right set of circumstances. For example, if a table has
no indexes, selectivity cannot be estimated by sampling since there are no indexes on which
to sample the data. The following is a set of rules that define when sampled selectivity
estimation can and cannot be performed.

Predicate Form
The predicate must be one of the following types:
column = literal
column <> literal
column > literal
column >= literal
column < literal
column <= literal
column IS NULL
For all but the IS NULL case, the operands can be transposed, for example, literal =
column. When predicates use variables instead of literals, estimation by sampling
cannot be done because the value is unknown at query compilation time.

◊ 

Base Table Column
The column reference must be to a base table column, such as the EMPLOYEE_ID
column in the EMPLOYEES table, or to a view column that maps one−to−one with

◊ 
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such a column.
Column Is First Index Segment
At least one sorted or sorted, ranked index on the table must exist with the predicate's
column as its first segment. The index may have more than one segment.

◊ 

Hashed Index not Used
For an index to be useful in the estimation process, it must be either a sorted index or
a sorted, ranked index. Hashed indexes are not used for sampled selectivity
estimation.

◊ 

Single Partition Index
For an index to be considered useful, it can only have a single partition.

◊ 

Ascending Key Values
In the candidate indexes, all columns must be sorted in ascending order.

◊ 

No Explicit Collating Sequence
The column used for the first index segment must not have any explicit collating
sequence specified.

◊ 

No Mapping Values
The first index segment must not be mapped (see the MAPPING VALUES clause in
the SQL CREATE INDEX statement).

◊ 

In the future it might be possible to relax or eliminate some of the preceding restrictions given
sufficient interest in so doing.

5.1.4 How to Enable the Various Selectivity Methods

Rdb uses several different methods for estimating predicate selectivity. These methods are
shown in Table 5−2. Two of those methods, (Fixed) and (Index), can now be influenced by
you. If you do nothing, by default Rdb will use it's standard set of values for assigning (Fixed)
selectivity to predicates. There are several ways to specify the method to be used:

For individual queries
By including the optional OPTIMIZE WITH clause on INSERT ... SELECT,
SELECT, UPDATE, DELETE, and compound statements (only on the outermost
BEGIN−END block), you can specify the type of selectivity computation to use for
individual queries. See Section 5.1.4.1.

◊ 

For queries made within the current SQL session
You can avoid having to include the OPTIMIZE WITH clause on each SQL query by
establishing a default method for selectivity calculation. For interactive and dynamic
SQL see Section 5.1.4.2, which describes the SET OPTIMIZATION LEVEL
statement and Section 5.1.4.3, which describes the SET FLAGS statement. For
pre−compiled SQL and for SQL module language code see Section 5.1.4.4 to read
about compiler switches that affect selectivity estimation and Section 5.1.4.3 for a
description of the SET FLAGS statement.

◊ 

For all query sessions
See Section 5.1.4.3 for the use of the RDMS$SET_FLAGS logical name.

◊ 

For RMU/UNLOAD
A qualifier has been added to the RMU/UNLOAD command that allows you to
specify how selectivity is to be evaluated. See Section 5.1.4.5.

◊ 
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5.1.4.1 OPTIMIZE WITH Clause

The INSERT ... SELECT, SELECT, UPDATE, DELETE and compound statements (only at
the outer BEGIN−END block) have an optional clause, OPTIMIZE WITH, that specifies
what type of selectivity computation method is to be used. The OPTIMIZE FOR, OPTIMIZE
USING, and OPTIMIZE AS forms of the OPTIMIZE clause are already described in the
Oracle Rdb SQL Reference Manual.

Format

When using the OPTIMIZE WITH clause, you can specify one of three options. If you
choose sampled selectivity, the Rdb optimizer will use the index sampling method for
selectivity estimation wherever possible. For those predicates where this is not possible, the
norm is to use standard, fixed selectivity values. If you choose aggressive selectivity, the Rdb
optimizer will use the fixed, aggressive values for selectivity computation. Finally, if you
choose to use default selectivity for the query, this specifically means that index sampling and
aggressive selectivity will not be used.

The following example shows how to use this new clause.

SQL> select * from employees where employee_id < '00170' 
cont>   optimize with sampled selectivity; 

5.1.4.2 SET OPTIMIZATION LEVEL Statement

New options have been added to the SET OPTIMIZATION LEVEL statement, options that
allow you to specify default selectivity behavior for your INSERT ... SELECT, SELECT,
UPDATE, DELETE and compound statements within the session. The FAST FIRST,
TOTAL TIME and DEFAULT options of the SET OPTIMIZATION LEVEL statement are
described in the Oracle Rdb SQL Reference Manual.

Format
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If you choose other than the DEFAULT behavior, you may pick one of either FAST FIRST
or TOTAL TIME and/or you may choose one of the selectivity options. For selectivity
computation the chosen default is applied to each INSERT ... SELECT, SELECT, UPDATE,
DELETE, and compound statement in the SQL session provided that those statements do not
explicitly have the OPTIMIZE WITH clause, described in Section 5.1.4.1.

If you set optimization level for sampled selectivity, the Rdb optimizer will use the index
sampling method for selectivity estimation wherever possible. For those predicates where this
is not possible, Rdb will revert to using standard, fixed selectivity values. If you set
optimization level for aggressive selectivity, the Rdb optimizer will use the fixed, aggressive
values for selectivity computation.

5.1.4.3 The SELECTIVITY Debug Flag

Yet another way that you can declare how selectivity is to be computed is by setting the
SELECTIVITY debug flag. You can do so in one of two ways. One is by defining the
OpenVMS logical name, RDMS$SET_FLAGS. The other is by using the SQL SET FLAGS
statement. The RDMS$SET_FLAGS logical name and the SET FLAGS statement are
described in the Oracle Rdb SQL Reference Manual.

When you define selectivity using the RDMS$SET_FLAGS logical name, it affects queries
for all SQL sessions which are run within the scope of that logical name. Doing so can be
useful when trying to debug query performance problems. When you define selectivity using
the SET FLAGS statement, its effect lasts for the duration of the database attach.

The SELECTIVITY debug flag lets you specify default, aggressive, or sampled selectivity
behavior, just as you can using the OPTIMIZE WITH clause. In addition, the SELECTIVITY
flag lets you enable both aggressive and sampled behavior, something that is not allowed with
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the SET OPTIMIZATION LEVEL statement nor the OPTIMIZE WITH clause. The
SELECTIVITY debug flag affects queries that do not otherwise have a selectivity mode
specified. It can also affect partial query outlines, triggers, constraints, and internal Rdb
queries.

The SELECTIVITY debug flag takes a numeric argument, with a value of from 0 to 3. For
example,

$ DEFINE RDMS$SET_FLAGS "SELECTIVITY(2)" 

or

SQL> SET FLAGS 'SELECTIVITY (2)'; 

Table 5−1 shows the numeric values for the SELECTIVITY debug flag and their meanings.

Table 5−1 Settings for the SELECTIVITY Debug Flag

Selectivity Debug Flag Setting Meaning

SELECTIVITY (0) Default selectivity

SELECTIVITY (1) Aggressive selectivity

SELECTIVITY (2) Sampled selectivity

SELECTIVITY (3)
Sampled + aggressive
selectivity

5.1.4.4 SQL Precompiled and SQL Module Language Code

Optimizer selectivity controls can also be enabled using the OPTIMIZATION_LEVEL
qualifier on SQL precompiled or SQL Module Language compiled code. In addition to being
able to establish default values for TOTAL TIME versus FAST FIRST optimization, the
OPTIMIZATION_LEVEL qualifier can now indicate the type of selectivity estimation to
perform by default. SELECT, INSERT ... SELECT, UPDATE, DELETE and compound
statements (on the outermost BEGIN ... END) will inherit these settings during compilation of
the module.

Format
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5.1.4.5 RMU/UNLOAD/OPTIMIZE

A SELECTIVITY option has been added to the RMU/UNLOAD/OPTIMIZE command. By
specifying the SELECTIVITY option you can direct how the optimizer will estimate
predicate selectivity values during RMU/UNLOAD operations.

Syntax:

RMU/UNLOAD/OPTIMIZE=(SELECTIVITY:selectivity−option) 

selectivity_option = {DEFAULT, SAMPLED, or AGGRESSIVE} 

If you choose sampled selectivity, the Rdb optimizer will use the index sampling method for
selectivity estimation wherever possible. For those predicates where this is not possible, the
norm is to use standard, fixed selectivity values. If you choose aggressive selectivity, the Rdb
optimizer will use the fixed, aggressive values for selectivity computation. Finally, if you
choose to use default selectivity, this specifically means that index sampling and aggressive
selectivity will not be used.

5.1.5 Improving the Accuracy of Sampled Selectivity

Sampled selectivity estimation using a sorted, ranked index can be done with varying degrees
of accuracy. More accuracy might require that more I/O be spent during the index sampling
process depending on how many of the index nodes are resident in memory. Sampling
accuracy is controlled by the REFINE_ESTIMATES debug flag. For more information about
refining estimates on sorted, ranked indexes, see Section 4.1.30.

When sampled selectivity is being computed with refined estimates in effect, there is no
specific numeric limit placed on the number of I/O operations to be performed. That being the
case, there are three refinement rules (as defined in Section 4.1.30) that can affect the
calculation of sampled selectivity:

Rule 3−−−Limit refinement to the TRUE/MIXED cardinality case.
To enable this refinement rule, SET FLAGS 'REFINE_ESTIMATES(4)' or DEFINE
RDMS$SET_FLAGS "REFINE_ESTIMATES(4)".

◊ 

Rule 4−−−Limit refinement so that the error in the estimate is within ten percent.
To enable this refinement rule, SET FLAGS 'REFINE_ESTIMATES(8)' or DEFINE

◊ 
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RDMS$SET_FLAGS "REFINE_ESTIMATES(8)".
Rule 5−−−Try to provide precise estimates.
To enable this refinement rule, SET FLAGS 'REFINE_ESTIMATES(16)' or DEFINE
RDMS$SET_FLAGS "REFINE_ESTIMATES(16)".

◊ 

Rules 3 and 4 can be combined by setting the value of the REFINE_ESTIMATES flag to 12.
Rule 5 is only needed if you want no other limits on the refinement process and want the most
precise estimates.

5.1.6 Details about the Sampled Selectivity Process

This section gives details about the operation of the Rdb optimizer as it performs sampled
selectivity computation.

In an early stage of query compilation the static optimizer scans each WHERE clause in the
query, locates each leaf predicate, and assigns it a selectivity factor. Consider the following:
WHERE LAST_NAME = 'Toliver' AND FIRST_NAME = 'Alvin'. Also, assume there exist
sorted indexes on the LAST_NAME and FIRST_NAME columns. The leaf predicates are (1)
LAST_NAME = 'Toliver', and (2) FIRST_NAME = 'Alvin'. There is a higher−level predicate,
the AND of two expressions, which is not a leaf predicate. In this example, sampled
selectivity estimation is only performed for the two leaf predicates. The key steps in this
process are:

Validate the predicate format
The form of the predicate must be one of those described in Section 5.1.3.2.

1. 

Avoid Redundant Estimation
To avoid unnecessary I/O, the optimizer maintains a list of up to 100 predicates for
which estimation by sampling has already been done. The list only applies to the
current query. If two predicates are the same and are for the same table, the second
predicate is given the already−computed selectivity value of the first one.

2. 

Verify the Presence of One or More Useful Indexes
The table in which the predicate column exists must have one or more indexes which
could be used for sampled selectivity estimation. What determines that an index is
useful is explained in Section 5.1.3.2.

3. 

Choose the Best Index for the Job
A table can have multiple indexes, and several indexes might be valid for doing the
estimation. The optimizer looks at each such index and chooses one using the
following criteria.

Ranked over Non−Ranked
First, a sorted, ranked index is assumed to give more accurate estimates than
an index that is not.

1. 

Unique over Duplicates Allowed
If both indexes are equal thus far, and if one index is unique and the other
index allows duplicates, the unique index is chosen as likely to give the more
accurate results.

2. 

Shorter index key Length
All other things being equal, an index with a shorter index key length is
chosen.

3. 

4. 

Estimate Cardinality by Sampling the Index
Once the optimizer chooses an index it scans the index to estimate the expected
cardinality for the predicate. Cardinality is then used to compute selectivity.

5. 
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When Sampled Estimation Fails
If sampled selectivity estimation is attempted and fails for whatever reason, the
optimizer reverts to using the fixed selectivity values.

6. 

5.1.7 Diagnostic Information about Selectivity
Estimation

If you are interested in seeing details about selectivity estimation there is an option to do so.
For each query that is compiled you can see what selectivity values were used, what methods
were chosen to derive those values, and cardinality predicted for each predicate (where
appropriate). Another option will show you the following: either (1) the name of the index
used to estimate selectivity, or (2) the reason(s) that selectivity could not be estimated by
sampling.

5.1.7.1 How to Enable Diagnostic Output

Normally, diagnostic information is not shown. To see information about the optimizer's
query estimation process, you must enable the ESTIMATES flag. That capability has been
available in Rdb for many years. To view details about predicate selectivity computation, you
must also enable the DETAIL flag, as described in the following paragraphs. To set these
flags, either define the RDMS$SET_FLAGS logical name or use the SET FLAGS statement
in SQL.

Normal query estimation summary:

To enable standard output about the query estimation process, define the
RDMS$SET_FLAGS logical name as follows:

$ DEFINE RDMS$SET_FLAGS ESTIMATES 

or

SQL> SET FLAGS 'ESTIMATES'; 

Examples of the output you might see for this and other flag settings are shown in Section
5.1.7.4.

Query estimation summary plus predicate selectivity:

To enable detailed output about the query estimation process, define the
RDMS$SET_FLAGS logical name as follows:

$ DEFINE RDMS$SET_FLAGS "ESTIMATES,DETAIL(2)" 

or

SQL> SET FLAGS 'ESTIMATES,DETAIL(2)'; 

With these settings you will see for each query the standard summary about query estimation
plus, for each predicate, the selectivity values used, what methods were chosen to derive
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those values, and cardinality predicted (where appropriate).

Query estimation summary plus predicate selectivity and more:

By using DETAIL(3) in place of DETAIL(2) in the preceding statements, you will also see
either (1) the name of the index used to estimate selectivity, or (2) the reason(s) that
selectivity could not be estimated by sampling.

5.1.7.2 How to Disable Diagnostic Output

To disable output about the query estimation process, you can either use the
RDMS$SET_FLAGS logical name or use the SET FLAGS statement in SQL.

By de−assigning the RDMS$SET_FLAGS logical name, you undo any previously set flags.
Among other things, this disables the output of query estimates.

$ DEASSIGN RDMS$SET_FLAGS 

If you want to continue using sampled selectivity but no longer need to see query estimates,
do the following instead:

$ DEFINE RDMS$SET_FLAGS "SELECTIVITY(2)" 

When redefining the RDMS$SET_FLAGS logical name, you have to include those flags you
still want to remain in effect. By contrast, in interactive or dynamic SQL you do not have to
refer to flags you want to remain in effect.

SQL> SET FLAGS 'NOESTIMATES,NODETAIL'; 

The preceding disables query estimates but leaves other flags unchanged.

5.1.7.3 Details about Selectivity Estimation Diagnostics

The method for selectivity computation appears in parentheses on the output line showing
estimated selectivity (see examples in Section 5.1.7.4). Table 5−2 shows the various methods:

Table 5−2 Methods of Computing Selectivity

Method Meaning

(Average)
Selectivity was computed using some average statistical value known about
the table or an index, e.g., an index segment group factor.

(Cardinality) Selectivity was computed as some function of current table cardinality.

(Fixed) A fixed value for selectivity was chosen (either standard or aggressive).

(Index) Selectivity was computed by sampling an index.

(Index) (Dup)
Selectivity computation was avoided. The predicate is a duplicate of one
elsewhere in the query, one for which selectivity was computed by sampling
an index.
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When selectivity cannot be determined by index sampling, and when the level of detail in the
diagnostic output is properly set (see Section 5.1.7.1), messages can appear in the output to
explain the reason(s). These messages and what they mean are listed in Table 5−3.

Table 5−3 Reasons That Selectivity Sampling Cannot Be Done

Message Meaning

Column has an explicit
collating sequence

This is explained in Section 5.1.3.2.

Sampled selectivity is
disabled

This is self−explanatory.

Error during index scan
It was not possible to perform the index scan. For example, under
unusual circumstances a buffer overflow can occur.

Exception error
An unexpected error occurred. This indicates that a design or
implementation problem exists in the Rdb optimizer. The problem
should be reported to Oracle.

Expression not
supported for sampled
selectivity

See Section 5.1.3.2 to see which expressions are acceptable and
which are not.

Indexes not valid for
sampled selectivity

For selectivity to be computed by sampling, the predicate column's
table must have an index with appropriate attributes, as explained
in Section 5.1.3.2.

Internal error ...
An unexpected error occurred. This indicates that a design or
implementation problem exists in the Rdb optimizer. The problem
should be reported to Oracle.

Operator not supported
for sampled selectivity

See Section 5.1.3.2 to see which operators are acceptable and
which are not.

Selectivity is fixed for
outer join Booleans

The selectivity of an outer join Boolean predicate is fixed at 1.0
(i.e., 100%).

Table has no indexes
For selectivity to be computed by sampling, the predicate column's
table must have an index with appropriate attributes, as explained
in Section 5.1.3.2.

5.1.7.4 Examples of Selectivity Estimation Diagnostics

This section shows examples of what you might see when you ask for query estimation
diagnostics.

Example 1: Normal diagnostics for the query estimation process

The following example shows a simple query and the normal summary one can see for the
query estimation process. This occurs when the level of detail is not specified (equivalent to
detail level 0). The output of the estimates summary is described in the Oracle Rdb Guide to
Database Performance and Tuning, Section C.4, Displaying Optimization Statistics with the
O Flag.
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SQL> set flags 'estimates'; 
SQL> select last_name from employees where employee_id > '00400'; 
Solutions tried 2 
Solutions blocks created 1 
Created solutions pruned 0 
Cost of the chosen solution   3.3090658E+00 
Cardinality of chosen solution   3.5000000E+01 

Example 2: Detail level 2 estimates

There is no difference between detail levels 0 and 1 for the estimation diagnostics. At detail
level 2, prior to the normal estimates, Rdb displays information about the predicates in the
query, in this case, the predicate EMPLOYEE_ID > '00400'. First, each table is listed along
with a correlation number. Below, the EMPLOYEES table is given as table 0. Next, each
predicate is shown (this query has only one). 0.EMPLOYEE_ID signifies the
EMPLOYEE_ID column in table 0, i.e., EMPLOYEES. Following the listed predicate is a
line showing the predicate selectivity, the method by which that selectivity value was derived
(Index, in this case), and the estimated cardinality for the predicate. Estimated cardinality and
selectivity are related by the formula:

selectivity = estimated cardinality / table cardinality 

The notation (Index) means that predicate selectivity was calculated by sampling an index
(sampled selectivity).

SQL> set flags 'estimates,detail(2)'; 
SQL> select last_name from employees where employee_id > '00400' 
       optimize with sampled selectivity; 
~Predicate selectivity and cardinality estimation: 
Tables: 
  0 = EMPLOYEES 
Predicates: 
  0.EMPLOYEE_ID > '00400' 
    Selectivity  5.9999999E−02 (Index)        Estimated cardinality 6 
Solutions tried 2 
Solutions blocks created 1 
Created solutions pruned 0 
Cost of the chosen solution   1.9074016E+00 
Cardinality of chosen solution   6.0000000E+00 

Example 3: Detail level 3 estimates

At detail level 3, the output includes additional information: either (1) the name of the index
used to estimate selectivity, or (2) the reason(s) that selectivity could not be estimated by
sampling. In this example there are two predicates. For the first predicate, selectivity is
computed by index sampling and the name of the index used is shown. For the second
predicate, selectivity cannot be computed by sampling because there is no useful index for
doing so. Although there is an index on the EMPLOYEE_ID column, there is none on the
LAST_NAME column.

SQL> set flags 'estimates,detail(3)'; 
SQL> select last_name from employees 
cont> where employee_id < '00180' and last_name > 'W' 
      optimize with sampled selectivity; 
~Predicate selectivity and cardinality estimation: 
Tables: 
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  0 = EMPLOYEES 
Predicates: 
  0.EMPLOYEE_ID < '00180' 
    Selectivity  1.6000000E−01 (Index)        Estimated cardinality 16 
      Index EMP_EMPLOYEE_ID used 
  0.LAST_NAME > 'W' 
    Selectivity  3.4999999E−01 (Fixed)        Estimated cardinality 35 
      Indexes not valid for sampled selectivity 
        Index EMP_EMPLOYEE_ID is not useful 
          First index segment is not predicate column 
Solutions tried 2 
Solutions blocks created 1 
Created solutions pruned 0 
Cost of the chosen solution   2.4074016E+00 
Cardinality of chosen solution   5.5999999E+00 

Example 4: Example showing the (Average) Method for Computing Selectivity

For a predicate of the form column = value, selectivity is determined by sampling if possible,
that is, the (Index) method. If this cannot be done and if the table has a single segment index
on that column, the method used is (Average). That is, an average value is used for the entire
index.

SQL> set flags 'estimates,detail(3)'; 
SQL> select employee_id, last_name from employees 
cont> where employee_id = '00250'; 
~Predicate selectivity and cardinality estimation: 
Tables: 
  0 = EMPLOYEES 
Predicates: 
  0.EMPLOYEE_ID = '00250' 
    Selectivity  9.9999998E−03 (Average)      Estimated cardinality 1 
      Sampled selectivity is disabled 
Solutions tried 2 
Solutions blocks created 1 
Created solutions pruned 0 
Cost of the chosen solution   1.6474016E+00 
Cardinality of chosen solution   1.0000000E+00 

Example 5: Example showing the (Cardinality) Method for Computing Selectivity

For some predicates, the selectivity is a function of table cardinality.

SQL> select e.employee_id, e.last_name, d.department_name 
cont> from employees e, departments d 
cont> where e.employee_id = d.manager_id; 
~Predicate selectivity and cardinality estimation: 
Tables: 
  0 = EMPLOYEES 
  1 = DEPARTMENTS 
Predicates: 
  0.EMPLOYEE_ID = 1.MANAGER_ID 
    Selectivity  9.9999998E−03 (Cardinality) 
      Expression not supported for sampled selectivity 
Solutions tried 10 
Solutions blocks created 4 
Created solutions pruned 1 
Cost of the chosen solution   4.5832439E+01 
Cardinality of chosen solution   2.6000000E+01 
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Chapter 6
Documentation Corrections, Additions and
Changes
This chapter provides corrections for documentation errors and omissions.
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6.1 Documentation Corrections

6.1.1 Character Set AL24UTFFSS

Oracle Rdb supports the AL24UTFFSS character set.

AL24UTFFSS is similiar to the unicode UTF8 character set except for the Hangul codepoints.
It is based on the Unicode standard 1.1 which is now obsolete but is provided for backward
compatibility with existing applications.

6.1.2 Explanation of SQL$INT in a SQL Multiversion
Environment and How to Redefine SQL$INT

Bug 2500594

In an environment running multiple versions of Oracle Rdb, for instance Rdb V7.0 and Rdb
V7.1, there are now several varianted SQL images, such as SQL$70.EXE and SQL$71.EXE.
However, SQL$INT.EXE is not varianted but acts as a dispatcher using the translation of the
logical name RDMS$VERSION_VARIANT to activate the correct SQL runtime
environment. This image is replaced when a higher version of Oracle Rdb is installed. Thus,
using the example above, when Rdb V7.1 is installed, SQL$INT.EXE will be replaced with
the V7.1 SQL$INT.EXE.

If an application is linked in this environment (using V7.1 SQL$INT) and the corresponding
executable deployed to a system running Oracle Rdb V7.0 multiversion only, the execution of
the application may result in the following error:

%IMGACT−F−SYMVECMIS, shareable image's symbol vector table mismatch 

In order to avoid such a problem, the following alternative is suggested:

In the multiversion environment running both Oracle Rdb V7.0 and Oracle Rdb V7.1, run
Oracle Rdb V7.0 multiversion by running the command procedures RDB$SETVER.COM 70
and RDB$SETVER RESET. This will set up the necessary logical names and symbols that
establish the Oracle Rdb V7.0 environment.

For example:

$ @SYS$LIBRARY:RDB$SETVER 70 

Current PROCESS Oracle Rdb environment is version V7.0−63 (MULTIVERSION) 
Current PROCESS SQL environment is version V7.0−63 (MULTIVERSION) 
Current PROCESS Rdb/Dispatch environment is version V7.0−63 (MULTIVERSION) 

$ @SYS$LIBRARY:RDB$SERVER RESET 
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Now run SQL and verify that the version is correct:

$ sql$ 
SQL> show version 
Current version of SQL is: Oracle Rdb SQL V7.0−63 

Define SQL$INT to point to the varianted SQL$SHR.EXE. Then, create an options file
directing the linker to link with this newly defined SQL$INT. An example follows:

$ DEFINE SQL$INT SYS$SHARE:SQL$SHR'RDMS$VERSION_VARIANT'.EXE 
$ LINK TEST_APPL,SQL$USER/LIB,SYS$INPUT/option 
SQL$INT/SHARE 
^Z 

The executable is now ready to be deployed to the Oracle Rdb V7.0 multiversion
environment and should run successfully.

Please note that with each release of Oracle Rdb, new entry points are added to the SQL$INT
shareable image. This allows the implementation of new functionality. Therefore,
applications linked with SQL$INT from Oracle Rdb V7.1 cannot be run on systems with only
Oracle Rdb V7.0 installed. This is because the shareable image does not contain sufficient
entry points.

The workaround presented here allows an application to explicitly link with the Oracle Rdb
V7.0 version of the image. Such applications are upward compatible and will run on Oracle
Rdb V7.0 and Oracle Rdb V7.1. The applications should be compiled and linked under the
lowest version.

In environments where Oracle Rdb V7.1 is installed, this workaround is not required because
the SQL$INT image will dynamically activate the appropriate SQL$SHRxx image as
expected.

6.1.3 Documentation Omitted Several Reserved Words

Bug 2319321

The following keywords are considered reserved words in Oracle Rdb Release 7.1.

UID◊ 
CURRENT_UID◊ 
SYSTEM_UID◊ 
SESSION_UID◊ 
RAW◊ 
LONG◊ 
DBKEY◊ 
ROWID◊ 
SYSDATE◊ 

In particular, any column which has these names will be occluded by the keyword. i.e.
selecting from column UID will be interpreted as referencing the built in function UID and so
return a different result.
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The correction to this problem is to enable keyword quoting using SET QUOTING RULES
'SQL92' (or 'SQL99') and enclose the column name in quotations.

In addition, SQL will now generate a warning if these reserved words are used (unquoted) in
CREATE and ALTER operations.

6.1.4 Additional Usage Notes for ALTER INDEX

These notes were missing from the New and Changed Features Manual for Rdb V7.1:

The clauses REBUILD PARTITION, TRUNCATE PARTITION and BUILD
PARTITION all leave the index in build−pending state. This effectively disables
maintenance on this index by forbidding the use of INSERT, UPDATE or DELETE
statements on the table.
This change to the table state allows multiple ALTER INDEX operations to be
executed in parallel to build or truncate the index partitions.
After all partitions have been built, a final ALTER INDEX ... MAINTENANCE IS
ENABLED step must be executed to make this index complete. If no other indices
are in build−pending state then this will also enable updates to the table.
The BUILD ALL and REBUILD ALL clauses automatically enable maintenance on
the index when all partitions are complete.

◊ 

When the index is in build−pending state, the following warning is issued to remind
the database administrator that maintenance must be enabled.

SQL> alter index PERSON_INDEX_S 
cont>   rebuild partition P3; 
%RDB−W−META_WARN, metadata successfully updated with the reported warning 
−RDMS−W−IDXBLDPEND, index in build pending state − maintenance is disabled 

Please note that this warning indicates that the ALTER INDEX was successful.

◊ 

6.1.5 Using Databases from Releases Earlier Than V6.0

Bug 2383967

You cannot convert or restore databases earlier than V6.0 directly to V7.1. The RMU Convert
command for V7.1 supports conversions from V6.0 through V7.0 only. If you have a V3.0
through V5.1 database, you must convert it to at least V6.0 and then convert it to V7.1. For
example, if you have a V4.2 database, convert it first to at least V6.0, then convert the
resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle RMU
generates an error.

6.1.6 Clarification of PREPARE Statement Behavior

Bug 2581863
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According to the Oracle Rdb7 SQL Reference Manual, Volume 3 page 7−227, when using a
statement−id parameter for PREPARE "if that parameter is an integer, then you must
explicitly initialize that integer to zero before executing the PREPARE statement".

This description is not correct and should be replaced with this information:

If the statement−id is non−zero and does not match any prepared statement (the id
was stale or contained a random value), then an error is raised:
%SQL−F−BADPREPARE, Cannot use DESCRIBE or EXECUTE on a statement
that is not prepared

1. 

If the statement−id is non−zero, or the statement name is one that has previously been
used and matches an existing prepared statement, then that statement is automatically
released prior to the prepare of the new statement. Please refer to the RELEASE
statement for further details.

2. 

If the statement−id is zero or was automatically released, then a new statement−id is
allocated and the statement prepared.

3. 

Please note that if you use statement−name instead of a statement−id−parameter then SQL
will implicitly declare an id for use by the application. Therefore, the semantics described
apply similarly when using the statement−name. See the RELEASE statement for details.

6.1.7 CREATE OUTLINE Supports Trigger, Constraint,
Column and View Outlines

The syntax diagram for the following note was incorrect in the original documentation about
it which was Section 1.3.5 in the Oracle Rdb Release 7.1.0 Release Notes.

CREATE OUTLINE now supports direct outline creation for TRIGGERS and
CONSTRAINTS, and partial outlines for column expressions (COMPUTED BY and
AUTOMATIC), and VIEW definitions.

The CREATE OUTLINE syntax has been enhanced to support the referencing of views,
constraints, triggers and columns. The name of the outline in these cases should match the
name of the object so that Oracle Rdb may locate the outline definition at runtime.

FORMAT
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USAGE NOTES

When CREATE OUTLINE ... ON TRIGGER is used then an outline for just the first
compound trigger action is created. In a future release, outlines for subsequent actions
will be supported.

◊ 

Partial outlines for view definitions may not be suitable for use in queries without
providing more details in the outline. This is shown in a later example.

◊ 

CREATE OUTLINE ... ON COLUMN must reference a computed column, such as a
table COMPUTED BY, AUTOMATIC or view column that contains select
expressions. The CREATE will fail if no select expression is available.

◊ 

The following example shows the outline created for the CURRENT_JOB view. Note that the
access path for JOB_HISTORY defaults to SEQUENTIAL and therefore is not the best
choice for this view. This occurs because the view normally queries with an EMPLOYEE_ID
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specified, which would cause the optimizer to choose index access for the JOB_HISTORY
table.

SQL> create outline CURRENT_JOB on view CURRENT_JOB; 
SQL> show outline CURRENT_JOB 
     CURRENT_JOB 
 Source: 

−− Rdb Generated Outline : 16−MAY−2001 15:11 
create outline CURRENT_JOB 
−− On view CURRENT_JOB 
id '9C6D98DAAF09A3E1796F7D345399028B' 
mode 0 
as ( 
  query ( 
−− View 
    subquery ( 
      JOB_HISTORY 0   access path sequential 
        join by cross to 
      EMPLOYEES 1     access path index       EMPLOYEES_HASH 
      ) 
    ) 
  ) 
compliance optional     ; 

This alternate definition includes an index on JOB_HISTORY.

SQL> create outline CURRENT_JOB 
cont>     on view CURRENT_JOB 
cont> mode 0 
cont> as ( 
cont>   query ( 
cont> −− View 
cont>     subquery ( 
cont>       JOB_HISTORY 0   access path index  JH_EMPLOYEE_ID 
cont>         join by cross to 
cont>       EMPLOYEES 1     access path index  EMPLOYEES_HASH 
cont>       ) 
cont>     ) 
cont>   ) 
cont> compliance optional 
cont> comment is 'qo for view CURRENT_JOB'; 

The following query shows the results when applying this query outline. The table
RETIRED_EMPLOYEES, as the name implies, contains all retired employees. Therefore,
there should be no jobs assigned to these employees and the query should return zero rows.

SQL> −− should return no rows, since the employee retired and 
SQL> −− there is no current job 
SQL> set flags 'strategy'; 
SQL> select EMPLOYEE_ID 
cont>  from CURRENT_JOB cj 
cont>       inner join RETIRED_EMPLOYEES re 
cont>       using (EMPLOYEE_ID) 
cont>  where EMPLOYEE_ID = '00164'; 
~S: Outline "CURRENT_JOB" used 
Cross block of 2 entries 
  Cross block entry 1 
    Index only retrieval of relation RETIRED_EMPLOYEES 
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      Index name  RE_EMPLOYEE_ID [1:1] 
  Cross block entry 2 
    Cross block of 2 entries 
      Cross block entry 1 
        Conjunct 
        Leaf#01 FFirst JOB_HISTORY Card=274 
          BgrNdx1 JH_EMPLOYEE_ID [1:1] Bool Fan=17 
      Cross block entry 2 
        Conjunct        Index only retrieval of relation EMPLOYEES 
          Index name  EMPLOYEES_HASH [1:1]       Direct lookup 
0 rows selected 
SQL> 

Note that the query outline CURRENT_JOB is reported as being used.

6.1.8 New RMU/BACKUP Storage Area Assignment
With Thread Pools

This is to clarify how storage areas are assigned to disk and tape devices using the new
RMU/BACKUP THREAD POOL and BACKUP TO MULTIPLE DISK DEVICES features
introduced in Oracle Rdb Release 7.1.

For the case of backup to multiple disk devices using thread pools, the algorithm used by
RMU/BACKUP to assign threads is to calculate the size of each area as the product of the
page length in bytes times the highest page number used (maximum page number) for that
area. The area sizes are then sorted by descending size and ascending device name. For
internal processing reasons, the system area is placed as the first area in the first thread. Each
of the remaining areas is added to whichever thread has the lowest byte count. In this way, the
calculated area sizes are balanced between the threads.

For tape devices, the same algorithm is used but the areas are partitioned among writer
threads, not disk devices.

The partitioning for backup to multiple disk devices is done by disk device, not by output
thread, because there will typically be more disk devices than output threads, and an area can
not span a device.

6.1.9 DROP INDEX Now an Online Table Operation

The example for the following note was in error in the original documentation.

DROP INDEX can now be used when other users are processing the table on which the index
is defined. This requires that the index has previously been disabled with the ALTER INDEX
... MAINTENANCE IS DISABLED statement.

Once maintenance is disabled for an index, it is no longer used by queries on the table. For
example, it is not used for retrieval and it is not updated by INSERT, DELETE or UPDATE
statements. Therefore, with this release, Rdb has relaxed the requirement of EXCLUSIVE
table access for DROP INDEX.

Oracle recommends that the DROP INDEX statement immediately be followed by a
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COMMIT statement so that all locks on the system metadata be released. Otherwise, access to
this and other tables may be stalled waiting for rows locked in the tables RDB$INDICES,
RDB$INDEX_SEGMENTS, RDB$STORAGE_MAPS, and
RDB$STORAGE_MAP_AREAS.

This change benefits very large databases (VLDB) which have the need to drop indices stored
in MIXED format storage areas on large cardinality tables. These indices may take several
hours to erase, which in previous versions required taking the table offline from normal
processing until the DROP INDEX completed.

Note that indices stored in UNIFORM format storage areas do not take long to DROP due to
optimizations which can be made for UNIFORM areas.

−− Disable the index maintenance.  This requires exclusive access to the 
−− table, but takes a very short time.  This should be done during normal 
−− offline maintenance 
−− 
set transaction read write; 
alter index TRANSACTION_POSTING_INDEX 
    maintenance is disabled; 
commit; 

−− Once disabled the index can be dropped at any time 
−− 
set transaction read write; 
drop index TRANSACTION_POSTING_INDEX; 

commit; 

Please note that DROP INDEX will write before image data to the snapshot files (.SNP) if the
transaction is started in a mode such as SHARED or PROTECTED. Snapshots can be
disabled on the database to avoid the excessive snapshot file I/O during concurrent DROP
INDEX operations. Naturally, this may not be possible under normal workloads.

6.1.10 AUTOMATIC Clause Not Supported in ALTER
TABLE ... ALTER COLUMN

Bug 2170476

The ALTER TABLE description in the New and Changed Features Manual for Oracle Rdb
7.1 includes a misleading syntax diagram. The alt−col−type diagram includes the
AUTOMATIC clause as a possible alternate when altering an existing column using the
ALTER COLUMN clause. This functionality is currently not supported by Oracle Rdb.

The revised syntax is:
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6.1.11 RDM$BIND_LOCK_TIMEOUT_INTERVAL
Overrides the Database Parameter

Bug 2203700

When starting a transaction, there are three different values that are used to determine the lock
timeout interval for that transaction. Those values are:

The value specified in the SET TRANSACTION statement1. 
The value stored in the database as specified in CREATE or ALTER DATABASE2. 
The value of the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL3. 

The timeout interval for a transaction is the smaller of the value specified in the SET
TRANSACTION statement and the value specified in CREATE DATABASE. However, if
the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL is defined, the value of this
logical name overrides the value specified in CREATE DATABASE.

The description of how these three values interact, found in several different parts of the Rdb
documentation set, is incorrect and will be replaced by the description above.

The lock timeout value in the database can be dynamically modified from the Locking
Dashboard in RMU/SHOW STATISTICS. The Per−Process Locking Dashboard can be used
to dynamically override the logical name RDM$BIND_LOCK_TIMEOUT_INTERVAL for
one or more processes.

6.1.12 New Request Options for RDO, RDBPRE and
RDB$INTERPRET

This release note was included in the V70A Release Notes but had gotten dropped somewhere
along the line.

For this release of Rdb, two new keywords have been added to the handle−options for the
DECLARE_STREAM, the START_STREAM (undeclared format) and FOR loop statements.
These changes have been made to RDBPRE, RDO and RDB$INTERPRET at the request of
several RDO customers.

In prior releases, the handle−options could not be specified in interactive RDO or
RDB$INTERPRET. This has changed in Rdb7 but these allowed options will be limited to
MODIFY and PROTECTED keywords. For RDBPRE, all options listed will be supported.
These option names were chosen to be existing keywords to avoid adding any new keywords
to the RDO language.
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The altered statements are shown in Example 5−1, Example 5−2 and Example 5−3.

Example 5−1 DECLARE_STREAM Format

Example 5−2 START_STREAM Format

Example 5−3 FOR Format

Each of these statements references the syntax for the HANDLE−OPTIONS which has been
revised and is shown below.

The following options are available for HANDLE−OPTIONS:

REQUEST_HANDLE specifies the request handle for this request. This option is
only valid for RDBPRE and RDML applications. It cannot be used with
RDB$INTERPRET, nor interactive RDO.

◊ 

TRANSACTION_HANDLE specifies the transaction handle under which this◊ 
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request executes. This option is only valid for RDBPRE and RDML applications. It
cannot be used with RDB$INTERPRET, nor interactive RDO.
MODIFY specifies that the application will modify all (or most) records fetched from
the stream or for loop. This option can be used to improve application performance
by avoiding lock promotion from SHARED READ for the FETCH to PROTECTED
WRITE access for the nested MODIFY or ERASE statement. It can also reduce
DEADLOCK occurrence because lock promotions are avoided.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This
option is not currently available for RDML.
For example:

     RDO>   FOR (MODIFY) E IN EMPLOYEES WITH E.EMPLOYEE_ID = "00164" 
     cont>    MODIFY E USING E.MIDDLE_INITIAL = "M" 
     cont>    END_MODIFY 
     cont>  END_FOR 

This FOR loop uses the MODIFY option to indicate that the nested MODIFY is an
unconditional statement and so aggressive locking can be undertaken during the fetch
of the record in the FOR loop.

◊ 

PROTECTED specifies that the application may modify records fetched by this
stream by a separate and independent MODIFY statement. Therefore, this stream
should be protected from interference (aka Halloween affect). The optimizer will
select a snapshot of the rows and store them in a temporary relation for processing,
rather than traversing indexes at the time of the FETCH statement. In some cases this
may result in poorer performance when the temporary relation is large and overflows
from virtual memory to a temporary disk file, but the record stream will be protected
from interference. The programmer is directed to the documentation for the Oracle
Rdb logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE.
This option is valid for RDBPRE, RDB$INTERPRET, and interactive RDO. This
option is not currently available for RDML.
The following example creates a record stream in a BASIC program using Callable
RDO:

     RDMS_STATUS = RDB$INTERPRET ('INVOKE DATABASE PATHNAME "PERSONNEL"') 

     RDMS_STATUS = RDB$INTERPRET ('START_STREAM (PROTECTED) EMP USING ' + & 
                                  'E IN EMPLOYEES') 

     RDMS_STATUS = RDB$INTERPRET ('FETCH EMP') 

     DML_STRING = 'GET ' +                                           & 
                      '!VAL = E.EMPLOYEE_ID;' +                      & 
                      '!VAL = E.LAST_NAME;' +                        & 
                      '!VAL = E.FIRST_NAME' +                        & 
                  'END_GET' 

     RDMS_STATUS = RDB$INTERPRET (DML_STRING, EMP_ID, LAST_NAME, FIRST_NAME) 

In this case the FETCH needs to be protected against MODIFY statements which
execute in other parts of the application.

◊ 
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6.2 Address and Phone Number Correction
for Documentation
In release 7.0 or earlier documentation, the address and fax phone number listed on the Send
Us Your Comments page are incorrect. The correct information is:

FAX −− 603.897.3825 
Oracle Corporation 
One Oracle Drive 
Nashua, NH 03062−2804 
USA 
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6.3 Online Document Format and Ordering
Information
You can view the documentation in Adobe Acrobat format using the Acrobat Reader, which
allows anyone to view, navigate, and print documents in the Adobe Portable Document
Format (PDF). See http://www.adobe.com for information about obtaining a free copy of
Acrobat Reader and for information on supported platforms.

The Oracle Rdb documentation in Adobe Acrobat format is available on MetaLink:

Top Tech Docs\Oracle Rdb\Documentation\<bookname> 

Customers should contact their Oracle representative to purchase printed documentation.

6.3 Online Document Format and Ordering Information 199



6.4 New and Changed Features in Oracle Rdb
Release 7.1
This section provides information about late−breaking new features or information that is
missing or changed since the Oracle Rdb New and Changed Features for Oracle Rdb manual
was published.

6.4.1 PERSONA is Supported in Oracle SQL/Services

In the "New and Changed Features for Oracle Rdb" Manual under the section "ALTER
DATABASE Statement" is a note stating that impersonation is not supported in Oracle
SQL/Services. This is incorrect. There was a problem in the first release of Oracle Rdb 7.1
(7.1.0) whereby impersonation through Oracle SQL/Services failed. This problem is resolved
in Oracle Rdb Release 7.1.0.1.

6.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be
Delimited Identifiers

The New and Changed Features for Oracle Rdb manual describes SEQUENCES but does not
mention that the special pseudocolumns NEXTVAL and CURRVAL can be delimited. All
uppercase and lowercase variations of these keywords are accepted and assumed to be
equivalent to these uppercase keywords.

The following example shows that any case is accepted:

SQL> set dialect 'sql92'; 
SQL> create sequence dept_id; 
SQL> select dept_id.nextval from rdb$database; 
                    1 
1 row selected 
SQL> select "DEPT_ID".currval from rdb$database; 
                    1 
1 row selected 
SQL> select "DEPT_ID"."CURRVAL" from rdb$database; 
                    1 
1 row selected 
SQL> select "DEPT_ID"."nextval" from rdb$database; 
                    2 
1 row selected 
SQL> select "DEPT_ID"."CuRrVaL" from rdb$database; 
                    2 
1 row selected 

6.4.3 Only=select_list Qualifier for the RMU Dump
After_Journal Command

The Oracle Rdb New and Changed Features for Oracle Rdb manual documents the
First=select_list and Last=select_list qualifiers for the RMU Dump After_Journal command.
Inadvertently missed was the Only=select_list qualifier.
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The First, Last, and Only qualifiers have been added because the Start and End qualifiers are
difficult to use since users seldom know, nor can they determine, the AIJ record number in
advance of using the RMU Dump After_Journal command.

The select_list clause of these qualifiers consists of a list of one or more of the following
keywords:

TSN=tsn
Specifies the first, last, or specific TSN in the AIJ journal using the standard [n:]m
TSN format.

◊ 

TID=tid
Specifies the first, last or specific TID in the AIJ journal.

◊ 

RECORD=record
Specifies the first or last record in the AIJ journal. This is the same as the existing
Start and End qualifiers (which are still supported, but deprecated). This keyword
cannot be used with the Only qualifier.

◊ 

BLOCK=block#
Specifies the first or last block in the AIJ journal. This keyword cannot be used with
the Only qualifier.

◊ 

TIME=date_time
Specifies the first or last date/time in the AIJ journal using the standard date/time
format. This keyword cannot be used with the Only qualifier.

◊ 

The First, Last, and Only qualifiers are optional. You may specify any or none of them.

The keywords specified for the First qualifier can differ from the keywords specified for the
other qualifiers.

For example, to start the dump from the fifth block of the AIJ journal, you would use the
following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=5) MF_PERSONNEL.AIJ 

To start the dump from block 100 or TSN 52, whichever occurs first, you would use the
following command:

RMU/DUMP/AFTER_JOURNAL /FIRST=(BLOCK=100,TSN=0:52) MF_PERSONNEL.AIJ 

When multiple keywords are specified for a qualifier, the first condition being encountered
activates the qualifier. In the preceding example, the dump starts when either block 100 or
TSN 52 is encountered.

Be careful when searching for TSNs or TIDs as they are not ordered in the AIJ journal. For
example, if you want to search for a specific TSN, use the Only qualifier and not the First and
Last qualifiers. For example, assume the AIJ journal contains records for TSN 150, 170, and
160 (in that order). If you specify the First=TSN=160 and Last=TSN=160 qualifiers, nothing
will be dumped because TSN 170 will match the Last=TSN=160 criteria.
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6.5 Oracle Rdb7 and Oracle CODASYL DBMS
Guide to Hot Standby Databases
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7
and Oracle CODASYL DBMS Guide to Hot Standby Databases.

6.5.1 Restrictions Lifted on After−Image Journal Files

The Hot Standby software has been enhanced regarding how it handles after−image journal
files. Section 4.2.4 in the Oracle Rdb and Oracle CODASYL DBMS Guide to Hot Standby
Databases states the following information:

     If an after−image journal switchover operation is suspended when 
     replication operations are occurring, you must back up one or more of 
     the modified after−image journals to add a new journal file. 

This restriction has been removed. Now, you can add journal files or use the emergency AIJ
feature of Oracle Rdb release 7.0 to automatically add a new journal file. Note the following
distinctions between adding an AIJ file and adding an emergency AIJ file:

You can add an AIJ file to the master database and it will be replicated on the standby
database. If replication operations are active, the AIJ file is created on the standby
database immediately. If replication operations are not active, the AIJ file is created
on the standby database when replication operations are restarted.

◊ 

You can add emergency AIJ files anytime. If replication operations are active, the
emergency AIJ file is created on the standby database immediately. However,
because emergency AIJ files are not journaled, starting replication after you create an
emergency AIJ will fail. You cannot start replication operations because the Hot
Standby software detects a mismatch in the number of after−image journal files on
the master compared to the standby database.
If an emergency AIJ file is created on the master database when replication
operations are not active, you must perform a master database backup and then
restore the backup on the standby database. Otherwise, an AIJSIGNATURE error
results.

◊ 

6.5.2 Changes to RMU Replicate After_Journal ...
Buffer Command

The behavior of the RMU Replicate After_Journal ... Buffers command has been changed.
The Buffers qualifier may be used with either the Configure option or the Start option.

When using local buffers, the AIJ Log Roll−forward Server will use a minimum of 4096
buffers. The value provided to the Buffers qualifier will be accepted but ignored if it is less
than 4096. In addition, further parameters will be checked and the number of buffers may be
increased if the resulting calculations are greater than the number of buffers specified by the
Buffers qualifier. If the database is configured to use more than 4096 AIJ Request Blocks
(ARBs), then the number of buffers may be increased to the number of ARBs configured for
the database. The LRS ensures that there are at least 10 buffers for every possible storage area
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in the database. Thus if the total number of storage areas (both used and reserved) multiplied
by 10 results in a greater number of buffers, then that number will be used.

When global buffers are used, the number of buffers used by the AIJ Log Roll−forward
Server is determined as follows:

If the Buffers qualifier is omitted and the Online qualifier is specified, then the
number of buffers will default to the previously configured value, if any, or 256,
whichever is larger.

◊ 

If the Buffers qualifier is omitted and the Online qualifier is not specified or the
Noonline qualifier is specified, then the number of buffers will default to the
maximum number of global buffers allowed per user ("USER LIMIT"), or 256,
whichever is larger.

◊ 

If the Buffers qualifier is specified then that value must be at least 256, and it may not
be greater than the maximum number of global buffers allowed per user ("USER
LIMIT").

◊ 

The Buffer qualifier now enforces a minimum of 256 buffers for the AIJ Log Roll−forward
Server. The maximum number of buffers allowed is still 524288 buffers.

6.5.3 Unnecessary Command in the Hot Standby
Documentation

There is an unnecessary command documented in the Oracle Rdb and Oracle CODASYL
DBMS Guide to Hot Standby Databases manual. The documentation (in Section 2.12 "Step
10: Specify the Network Transport Protocol") says that to use TCP/IP as the network
protocol, you must issue the following commands:

$ CONFIG UCX AIJSERVER OBJECT 
$ UCX SET SERVICE RDMAIJSRV 
/PORT=n 
/USER_NAME=RDMAIJSERVER 
/PROCESS_NAME=RDMAIJSERVER 
/FILE=SYS$SYSTEM:rdmaijserver_ucx.com 
/LIMIT=nn 

The first of these commands ($ CONFIG UCX AIJSERVER OBJECT) is unnecessary. You
can safely disregard the first line when setting up to use TCP/IP with Hot Standby.

The documentation will be corrected in a future release of Oracle Rdb.

6.5.4 Change in the Way RDMAIJ Server is Set Up in
UCX

Starting with Oracle Rdb Release 7.0.2.1, the RDMAIJ image became a varianted image.
Therefore, the information in Section 2.12, "Step 10: Specify the Network Transport
Protocol," of the Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby
Databases has become outdated with regard to setting up the RDMAIJSERVER object when
using UCX as the network transport protocol. The UCX SET SERVICE command is now
similar to the following:
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$ UCX SET SERVICE RDMAIJ − 
      /PORT=port_number − 
      /USER_NAME=RDMAIJ − 
      /PROCESS_NAME=RDMAIJ − 
      /FILE=SYS$SYSTEM:RDMAIJSERVER.com − 
      /LIMIT=limit 

For Oracle Rdb multiversion, the UCX SET SERVICE command is similar to the following:

$ UCX SET SERVICE RDMAIJ70 − 
      /PORT=port_number − 
      /USER_NAME=RDMAIJ70 − 
      /PROCESS_NAME=RDMAIJ70 − 
      /FILE=SYS$SYSTEM:RDMAIJSERVER70.com − 
      /LIMIT=limit 

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn) and places a file
called RDMAIJSERVER(nn).COM in SYS$SYSTEM. The RMONSTART(nn).COM
command procedure will try to enable a service called RDMAIJ(nn) if UCX is installed and
running.

Changing the RDMAIJ server to a varianted image does not impact installations using
DECNet since the correct DECNet object is created during the Oracle Rdb installation.

6.5.5 CREATE INDEX Operation Supported for Hot
Standby

On Page 1−13 of the Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby
Databases, the add new index operation is incorrectly listed as an offline operation not
supported by Hot Standby. The CREATE INDEX operation is now fully supported by Hot
Standby, as long as the transaction does not span all available AIJ journals, including
emergency AIJ journals.
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6.6 Oracle Rdb7 for OpenVMS Installation and
Configuration Guide
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7
for OpenVMS Installation and Configuration Guide.

6.6.1 Suggestion to Increase GH_RSRVPGCNT
Removed

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide contains a section titled
"Installing Oracle Rdb Images as Resident on OpenVMS Alpha". This section includes
information about increasing the value of the OpenVMS system parameter
GH_RSRVPGCNT when you modify the RMONSTART.COM or SQL$STARTUP.COM
procedures to install Oracle Rdb images with the Resident qualifier.

Note that modifying the parameter GH_RSRVPGCNT is only required if the
RMONSTART.COM or SQL$STARTUP.COM procedures have been manually modified to
install Oracle Rdb images with the Resident qualifier. Furthermore, if the
RMONSTART.COM and SQL$STARTUP.COM procedures are executed during the system
startup procedure (directly from SYSTARTUP_VMS.COM, for example), there is no need to
modify the GH_RSRVPGCNT parameter.

Oracle Corporation recommends that you do not modify the value of the GH_RSRVPGCNT
system parameter unless it is absolutely required. Some versions of OpenVMS on some
hardware platforms require GH_RSRVPGCNT to be a value of zero in order to ensure the
highest level of system performance.

6.6.2 Prerequisite Software

In addition to the software listed in the Oracle Rdb Installation and Configuration Guide and
at the url http://www.oracle.com/rdb/product_info/index.html, note that the MACRO
compiler and linker from HP Computer Corporation are required software in order to install
Oracle Rdb on your OpenVMS Alpha system.

6.6.3 Defining the RDBSERVER Logical Name

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and Configuration
Guide provide the following examples for defining the RDBSERVER logical name: $
DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE

and $ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt to reference
the RDBSERVERxx.EXE image. Below is one example where the RDBSERVER.COM
procedure references SYS$COMMON:<SYSEXE> and SYS$COMMON:[SYSEXE] rather
than SYS$SYSTEM.

$   if .not. − 
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       ((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. − 
        (f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len)) 
$   then 
$       say "''rdbserver_image' is not found in SYS$COMMON:<SYSEXE>" 
$       say "RDBSERVER logical is ''rdbserver_image'" 
$       exit 
$   endif 

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for OpenVMS
Installation and Configuration Guide, the image would not be found.

The correct definition of the logical name is as follows: DEFINE RDBSERVER
SYS$COMMON:<SYSEXE>RDBSERVER70.EXE

and DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE
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6.7 Guide to Database Design and Definition
This section provides information that is missing from or changed in release 7.0 of the Oracle
Rdb7 Guide to Database Design and Definition.

6.7.1 Lock Timeout Interval Logical Incorrect

On Page 7−31 of Section 7.4.8 in the Oracle Rdb7 Guide to Database Design and Definition,
the RDM$BIND_LOCK_TIMEOUT logical name is referenced incorrectly. The correct
logical name is RDM$BIND_LOCK_TIMEOUT_INTERVAL.

The Oracle Rdb7 Guide to Database Design and Definition will be corrected in a future
release.

6.7.2 Example 4−13 and Example 4−14 Are Incorrect

Example 4−13 showing vertical partitioning, and Example 4−14, showing vertical and
horizontal partitioning, are incorrect. They should appear as follows:

Example 4−13:

SQL> CREATE STORAGE MAP EMPLOYEES_1_MAP 
cont>    FOR EMPLOYEES 
cont>    ENABLE COMPRESSION 
cont>    STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, 
cont>                   MIDDLE_INITIAL, STATUS_CODE) 
cont>                   DISABLE COMPRESSION 
cont>                   IN ACTIVE_AREA 
cont>    STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, 
cont>                   STATE, POSTAL_CODE) 
cont>                   IN INACTIVE_AREA 
cont>    STORE IN OTHER_AREA; 

Example 4−14:

SQL>  CREATE STORAGE MAP EMPLOYEES_1_MAP2 
cont>        FOR EMP2 
cont>        STORE COLUMNS (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, 
cont>                       MIDDLE_INITIAL, STATUS_CODE) 
cont>              USING (EMPLOYEE_ID) 
cont>              IN ACTIVE_AREA_A WITH LIMIT OF ('00399') 
cont>              IN ACTIVE_AREA_B WITH LIMIT OF ('00699') 
cont>              OTHERWISE IN ACTIVE_AREA_C 
cont>        STORE COLUMNS (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, 
cont>                      STATE, POSTAL_CODE) 
cont>              USING (EMPLOYEE_ID) 
cont>              IN INACTIVE_AREA_A WITH LIMIT OF ('00399') 
cont>              IN INACTIVE_AREA_B WITH LIMIT OF ('00699') 
cont>              OTHERWISE IN INACTIVE_AREA_C 
cont>        STORE IN OTHER_AREA; 
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6.8 Oracle Rdb7 SQL Reference Manual
This section provides information that is missing from or changed in V7.0 of the Oracle Rdb7
SQL Reference Manual.

6.8.1 Clarification of the DDLDONOTMIX Error
Message

The ALTER DATABASE statement performs two classes of functions:

Changing the database root structures in the .RDB file1. 
Modifying the system metadata in the RDB$SYSTEM storage area.2. 

The first class of changes do not require a transaction to be active. However, the second class
requires that a transaction be active. Oracle Rdb does not currently support the mixing of
these two classes of ALTER DATABASE clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the
{SQL−syntax} clause can not be used with some ALTER DATABASE clauses" is displayed,
and the ALTER DATABASE statement fails. For example:

SQL> alter database filename MF_PERSONNEL 
cont> dictionary is not used 
cont> add storage area JOB_EXTRA filename JOB_EXTRA; 
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the database parameter 
block (DPB) 
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with 
some ALTER DATABASE clauses 

The following clauses may be mixed with each other, but may not appear with other clauses
such as ADD STORAGE AREA or ADD CACHE:

DICTIONARY IS [ NOT ] REQUIRED◊ 
DICTIONARY IS NOT USED◊ 
MULTISCHEMA IS { ON | OFF }◊ 
CARDINALITY COLLECTION IS { ENABLED | DISABLED }◊ 
METADATA CHANGES ARE { ENABLED | DISABLED }◊ 
WORKLOAD COLLECTION IS { ENABLED | DISABLED }◊ 
SYNONYMS ARE ENABLED◊ 
SECURITY CHECKING IS { INTERNAL | EXTERNAL }◊ 

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into
two statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL 
cont> dictionary is not used; 
SQL> alter database filename MF_PERSONNEL 
cont> add storage area JOB_EXTRA filename JOB_EXTRA; 
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6.8.2 Node Specification Allowed on Root FILENAME
Clauses

In previous releases of the Oracle Rdb SQL Reference Manual, it was not made clear that a
node specification may only be specified for the root FILENAME clause of the ALTER
DATABASE, CREATE DATABASE, EXPORT DATABASE, and IMPORT DATABASE
statements.

This means that the directory or file specification specified with the following clauses can
only be a device, directory, file name, and file type:

LOCATION clause of the ROW CACHE IS ENABLED, RECOVERY JOURNAL,
ADD CACHE, and CREATE CACHE clauses

◊ 

SNAPSHOT FILENAME clause◊ 
FILENAME and SNAPSHOT FILENAME clauses of the ADD STORAGE AREA
and CREATE STORAGE AREA clauses

◊ 

BACKUP FILENAME clause of the JOURNAL IS ENABLED, ADD JOURNAL,
and ALTER JOURNAL clauses

◊ 

BACKUP SERVER and CACHE FILENAME clauses of the JOURNAL IS
ENABLED clause

◊ 

FILENAME clause of the ADD JOURNAL clause◊ 
Usage notes reflecting this restriction for these clauses will appear in a future release of the
Oracle Rdb SQL Reference Manual.

6.8.3 Incorrect Syntax Shown for Routine−Clause of
the CREATE MODULE Statement

The Oracle Rdb7 SQL Reference Manual incorrectly showed that a simple−statement could
be specified for the routine−clause of the CREATE MODULE statement. You can specify a
compound−statement and compound−use−statement for the routine−clause only of the
CREATE MODULE statement.

This correction appears in the Oracle Rdb New and Changed Features for Oracle Rdb manual
and will appear in a future release of the Oracle Rdb7 SQL Reference Manual.

6.8.4 Omitted SET Statements

The following SET statements and language options were omitted from the Oracle Rdb7 SQL
Reference Manual.

6.8.4.1 QUIET COMMIT

The following QUIET COMMIT options were omitted from the documentation:

 Interactive and dynamic SET QUIET COMMIT statement 
 SQL 
 Module Header           QUIET COMMIT option 
 SQL Module Language     /QUIET_COMMIT and /NOQUIET_COMMIT qualifiers 
 SQL Precompiler         /SQLOPTIONS=QUIET_COMMIT and 
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                         /SQLOPTIONS=NOQUIET_COMMIT options 

These options control the behavior of the COMMIT and ROLLBACK statements in cases
where there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when COMMIT or
ROLLBACK is executed. This default is retained for backward compatibility for applications
that wish to detect the situation. If QUIET COMMIT is set to ON, a COMMIT or
ROLLBACK executes successfully when there is no active transaction.

Within a compound statement, the COMMIT and ROLLBACK statements are ignored.

In interactive or dynamic SQL, the SET statement can be used to disable or enable error
reporting for COMMIT and ROLLBACK when no transaction is active. The parameter to the
SET command is a string literal or host variable containing the keyword ON or OFF. For
example:

SQL> COMMIT; 
%SQL−F−NO_TXNOUT, No transaction outstanding 
SQL> ROLLBACK; 
%SQL−F−NO_TXNOUT, No transaction outstanding 
SQL> SET QUIET COMMIT 'on'; 
SQL> ROLLBACK; 
SQL> COMMIT; 
SQL> SET QUIET COMMIT 'off'; 
SQL> COMMIT; 
%SQL−F−NO_TXNOUT, No transaction outstanding 

In the SQL module language or precompiler header, the QUIET COMMIT option can be used
to disable or enable error reporting for COMMIT and ROLLBACK when no transaction is
active. The keyword ON or OFF must be used to enable or disable this feature. The following
example enables QUIET COMMIT so that no error is reported if a COMMIT is executed
when no transaction is active:

MODULE TXN_CONTROL 
LANGUAGE BASIC 
PARAMETER COLONS 
QUIET COMMIT ON 

PROCEDURE S_TXN (SQLCODE); 
SET TRANSACTION READ WRITE; 

PROCEDURE C_TXN (SQLCODE); 
COMMIT; 

6.8.4.2 COMPOUND TRANSACTIONS

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic SQL) and
the module header option, COMPOUND TRANSACTIONS, controls the SQL behavior for
starting default transactions for compound statements.

By default, if there is no current transaction, SQL will start a transaction before executing a
compound statement or stored procedure. However, this may conflict with the actions within
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the procedure or may start a transaction for no reason if the procedure body does not perform
database access. This default is retained for backward compatibility for applications which
may expect a transaction to be started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, SQL starts a transaction before
executing the procedure. Otherwise, if it is set to INTERNAL, it allows the procedure to start
a transaction as required by the procedure execution.

In interactive or dynamic SQL, the following SET command can be used to disable or enable
transactions starting by the SQL interface. The parameter to the SET command is a string
literal or host variable containing the keyword 'INTERNAL' or 'EXTERNAL'.

SQL> SET COMPOUND TRANSACTIONS 'internal'; 
SQL> CALL START_TXN_AND_COMMIT (); 
SQL> SET COMPOUND TRANSACTIONS 'external'; 
SQL> CALL UPDATE_EMPLOYEES (...); 

In the SQL module language or precompiler header, the COMPOUND TRANSACTIONS
option can be used to disable or enable starting a transaction for procedures. The keyword
INTERNAL or EXTERNAL must be used to enable or disable this feature.

MODULE TXN_CONTROL 
LANGUAGE BASIC 
PARAMETER COLONS 
COMPOUND TRANSACTIONS INTERNAL 

PROCEDURE S_TXN (SQLCODE); 
BEGIN 
SET TRANSACTION READ WRITE; 
END; 

PROCEDURE C_TXN (SQLCODE); 
BEGIN 
COMMIT; 
END; 

6.8.5 Size Limit for Indexes with Keys Using Collating
Sequences

When a column is defined with a collating sequence, the index key is specially encoded to
incorporate the correct collating information. This special encoding takes more space than
keys encoded for ASCII (which is the default when no collating sequence is used). Therefore,
the encoded string uses more than the customary one byte per character of space within the
index. This is true for all versions of Oracle Rdb which support collating sequences.

For all collating sequences, except Norwegian, the space required is approximately 9 bytes
for every 8 characters. Therefore, a CHAR (24) column will require approximately 27 bytes
to store. For Norwegian collating sequences, the space required is approximately 10 bytes for
every 8 characters.

The space required for encoding the string must be taken into account when calculating the
size of an index key against the limit of 255 bytes. Suppose a column defined with a collating
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sequence of GERMAN was used in an index. The length of that column is limited to a
maximum of 225 characters because the key will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a German
collating sequence and included in an index, exceeds the index size limit of 255 bytes, even
though the column is defined as less than 255 characters in length.

SQL> CREATE DATABASE 
cont>      FILENAME 'testdb.rdb' 
cont>      COLLATING SEQUENCE GERMAN GERMAN; 
SQL> CREATE TABLE employee_info 
cont>      (emp_name CHAR (233)); 
SQL> CREATE INDEX emp_name_idx 
cont>      ON employee_info ( 
cont>      emp_name     ASC) 
cont>      TYPE IS SORTED; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−F−INDTOOBIG, requested index is too big 

6.8.6 Clarification of SET FLAGS Option
DATABASE_PARAMETERS

The Oracle Rdb7 SQL Reference Manual described the option DATABASE_PARAMETERS
in table 7−6 in the SET FLAGS section. However, this keyword generates output only during
ATTACH to the database which happens prior to the SET FLAGS statement executing.

This option is therefore only useful when used with the RDMS$SET_FLAGS logical name
which provides similar functionality.

$ define RDMS$SET_FLAGS "database_parameters" 
$ sql$ 
SQL> Attach 'File db$:scratch'; 
 ATTACH #1, Database BLUGUM$DKA300:[SMITHI.DATABASES.V70]SCRATCH.RDB;1 
~P Database Parameter Buffer (version=2, len=79) 
0000 (00000) RDB$K_DPB_VERSION2 
0001 (00001) RDB$K_FACILITY_ALL 
0002 (00002) RDB$K_DPB2_IMAGE_NAME "NODE::DISK:[DIR]SQL$70.EXE;1" 
0040 (00064) RDB$K_FACILITY_ALL 
0041 (00065) RDB$K_DPB2_DBKEY_SCOPE (Transaction) 
0045 (00069) RDB$K_FACILITY_ALL 
0046 (00070) RDB$K_DPB2_REQUEST_SCOPE (Attach) 
004A (00074) RDB$K_FACILITY_RDB_VMS 
004B (00075) RDB$K_DPB2_CDD_MAINTAINED (No) 
 RDMS$BIND_WORK_FILE = "DISK:[DIR]RDMSTTBL$UEOU3LQ0RV2.TMP;" (Visible = 0) 
SQL> Exit 
 DETACH #1 

6.8.7 Incorrect Syntax for CREATE STORAGE MAP
Statement

The main diagram of the CREATE STORAGE MAP statement incorrectly shows the
partition−clause as required syntax. The partition−clause is not a required clause.
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The partition−clause diagram of the CREATE STORAGE MAP statement incorrectly
indicated that the STORE keyword was not repeated. When creating a vertically partitioned
table you must repeat the STORE keyword for each partition.

FORMAT

When creating a vertical record partition, the last STORE clause cannot contain the
COLUMNS clause. If you attempt to include the COLUMNS clause on the last STORE
clause, you will an error similar to the following:

%SQL−F−VRP_ILLEGAL_STO, Storage Map "EMPLOYEES_MAP2" specified STORE COLUMNS 
after a STORE 

The following example shows the correct syntax for creating a storage map with horizontal
and vertical partitions:

SQL> CREATE STORAGE MAP employees_map2 
cont>     FOR employees2 
cont> −− 
cont> −− Store the primary information horizontally partitioned 
cont> −− across the areas EMPIDS_LOW, EMPIDS_MID and EMPIDS_OVER. 
cont> −− Disable compression because these columns are accessed often. 
cont> −− 
cont>     STORE 
cont>         COLUMNS (employee_id, last_name, 
cont>                   first_name, middle_initial) 
cont>     VERTICAL PARTITION volatile_columns 
cont>         DISABLE COMPRESSION 
cont>         USING (employee_id) 
cont>             IN empids_low 
cont>             (PARTITION id_low) 
cont>                 WITH LIMIT OF (`00200') 
cont>             IN empids_mid 
cont>             (PARTITION id_mid) 
cont>                 WITH LIMIT OF (`00400') 
cont>             OTHERWISE IN empids_over 
cont>             (partition id_ovr) 
cont> −− 
cont> −− Place all the address information in EMP_INFO. 
cont> −− Make sure these character columns are compressed. 
cont> −− 
cont>     STORE 
cont>         COLUMNS (address_data_1, address_data_2, city, state, 
cont>                  postal_code) 
cont>         ENABLE COMPRESSION 
cont>         IN emp_info 
cont> −− 
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cont> −− The remaining columns get written randomly over these area. 
cont> −− 
cont>     STORE 
cont>         ENABLE COMPRESSION 
cont>         RANDOMLY ACROSS (salary_history, jobs); 

Refer to Oracle Rdb New and Changed Features for Oracle Rdb for the full syntax of the
CREATE STORAGE MAP statement. The Oracle Rdb7 SQL Reference Manual will be
corrected in a future release.

6.8.8 Use of SQL_SQLCA Include File Intended for
Host Language File

Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are intended for use
with the host language files only. That is, only *.C should be including that file. Precompiled
files (*.SC files) should use the EXEC SQL INCLUDE SQLCA embedded SQL command in
the declaration section of the module. In this way the precompiler can properly define the
structure to be used by the related SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the SQLCODE or
SQLSTATE variables which may be routine specific.

The following example shows this error:

#include <stdio.h> 
#include <sql_sqlca.h> 
struct SQLCA SQLCA; 

int main (void) 
{ 
EXEC SQL EXECUTE IMMEDIATE `show version'; 
printf ("SQLCODE=%d\n", SQLCA.SQLCODE); 
} 
$ SQLPRE/CC issues the following error against this program: 
%SQL−F−NOSQLCODE, Neither SQLCA, SQLCODE nor SQLSTATE were declared 

The following example shows correct usage:

#include <stdio.h> 
#include <sql_sqlca.h> 
EXEC SQL INCLUDE SQLCA; 

int main (void) 
{ 
EXEC SQL EXECUTE IMMEDIATE `show version'; 
printf ("SQLCODE=%d\n", SQLCA.SQLCODE); 
} 

6.8.9 Missing Information on Temporary Tables

The following information was inadvertently omitted from the Oracle Rdb7 SQL Reference
Manual. (Should be in the Usage Notes for CREATE TEMPORARY TABLE.)
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Data for a temporary table is stored in virtual memory, not in a storage area. For journaling
purposes, when changes are made to the data in a temporary table such as updates or deletes,
recovery space is required to hold before images of deleted and updated rows. This recovery
space also requires virtual memory and may result in having to increase Page File Quota and
Virtual Page Count on OpenVMS.

A recommended way to reduce memory usage when using temporary tables is to commit
transactions which modify temporary table data as soon as possible. Upon commit the
additional copies of data are released and available for reuse by Oracle Rdb. This eliminates
extra copies of data and therefore reduces virtual memory usage.

See the Oracle Rdb7 Guide to Database Design and Definition for calculating memory usage
for temporary tables.
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6.9 Oracle RMU Reference Manual, Release
7.0
This section provides information that is missing from or changed in V7.0 of the Oracle RMU
Reference Manual.

6.9.1 RMU Unload After_Journal Null Bit Vector
Clarification

Each output record from the RMU /UNLOAD /AFTER_JOURNAL command includes a
vector (array) of bits. There is one bit for each field in the data record. If a null bit value is 1,
the corresponding field is NULL; if a null bit value is 0, the corresponding field is not NULL
and contains an actual data value. The contents of a data field that is NULL are not initialized
and are not predictable.

The null bit vector begins on a byte boundary. The field RDB$LM_NBV_LEN indicates the
number of valid bits (and thus, the number of columns in the table). Any extra bits in the final
byte of the vector after the final null bit are unused and the contents are unpredictable.

The following example C program demonstrates one possible way of reading and parsing a
binary output file (including the null bit vector) from the RMU /UNLOAD
/AFTER_JOURNAL command. This sample program has been tested using Oracle Rdb
V7.0.5 and higher and HP C V6.2−009 on OpenVMS Alpha V7.2−1. It is meant to be used as
a template for writing your own program.

/* DATATYPES.C */ 

#include <stdio.h> 
#include <descrip.h> 
#include <starlet.h> 
#include <string.h> 

#pragma member_alignment __save 
#pragma nomember_alignment 

struct { /* Database key structure */ 
    unsigned short      lno;    /* line number */ 
    unsigned int        pno;    /* page number */ 
    unsigned short      dbid;   /* area number */ 
    } dbkey; 

typedef struct { /* Null bit vector with one bit for each column */ 
    unsigned            n_tinyint   :1; 
    unsigned            n_smallint  :1; 
    unsigned            n_integer   :1; 
    unsigned            n_bigint    :1; 
    unsigned            n_double    :1; 
    unsigned            n_real      :1; 
    unsigned            n_fixstr    :1; 
    unsigned            n_varstr    :1; 
    } nbv_t; 

struct { /* LogMiner output record structure for table DATATYPES */ 
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    char                rdb$lm_action; 
    char                rdb$lm_relation_name [31]; 
    int                 rdb$lm_record_type; 
    short               rdb$lm_data_len; 
    short               rdb$lm_nbv_len; 
    __int64             rdb$lm_dbk; 
    __int64             rdb$lm_start_tad; 
    __int64             rdb$lm_commit_tad; 
    __int64             rdb$lm_tsn; 
    short               rdb$lm_record_version; 
    char                f_tinyint; 
    short               f_smallint; 
    int                 f_integer; 
    __int64             f_bigint; 
    double              f_double; 
    float               f_real; 
    char                f_fixstr[10]; 
    short               f_varstr_len;   /* length of varchar */ 
    char                f_varstr[10];   /* data of varchar */ 
    nbv_t               nbv; 
    } lm; 

#pragma member_alignment __restore 

main () 
{   char timbuf [24]; 
    struct dsc$descriptor_s dsc = { 
        23, DSC$K_DTYPE_T, DSC$K_CLASS_S, timbuf}; 
    FILE *fp = fopen ("datatypes.dat", "r", "ctx=bin"); 

    memset (&timbuf, 0, sizeof(timbuf)); 

    while (fread (&lm, sizeof(lm), 1, fp) != 0) 
    { 
        printf ("Action     = %c\n",     lm.rdb$lm_action); 
        printf ("Table      = %.*s\n",   sizeof(lm.rdb$lm_relation_name), 
                                         lm.rdb$lm_relation_name); 
        printf ("Type       = %d\n",     lm.rdb$lm_record_type); 
        printf ("Data Len   = %d\n",     lm.rdb$lm_data_len); 
        printf ("Null Bits  = %d\n",     lm.rdb$lm_nbv_len); 

        memcpy (&dbkey, &lm.rdb$lm_dbk, sizeof(lm.rdb$lm_dbk)); 
        printf ("DBKEY      = %d:%d:%d\n", dbkey.dbid, 
                                        dbkey.pno, 
                                        dbkey.lno); 

        sys$asctim (0, &dsc, &lm.rdb$lm_start_tad, 0); 
        printf ("Start TAD  = %s\n", timbuf); 

        sys$asctim (0, &dsc, &lm.rdb$lm_commit_tad, 0); 
        printf ("Commit TAD = %s\n", timbuf); 

        printf ("TSN        = %Ld\n",    lm.rdb$lm_tsn); 
        printf ("Version    = %d\n",     lm.rdb$lm_record_version); 

        if (lm.nbv.n_tinyint == 0) 
                printf ("f_tinyint  = %d\n", lm.f_tinyint); 
        else    printf ("f_tinyint  = NULL\n"); 

        if (lm.nbv.n_smallint == 0) 
                printf ("f_smallint = %d\n", lm.f_smallint); 
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        else    printf ("f_smallint = NULL\n"); 

        if (lm.nbv.n_integer == 0) 
                printf ("f_integer  = %d\n", lm.f_integer); 
        else    printf ("f_integer  = NULL\n"); 

        if (lm.nbv.n_bigint == 0) 
                printf ("f_bigint   = %Ld\n", lm.f_bigint); 
        else    printf ("f_bigint   = NULL\n"); 

        if (lm.nbv.n_double == 0) 
                printf ("f_double   = %f\n", lm.f_double); 
        else    printf ("f_double   = NULL\n"); 

        if (lm.nbv.n_real == 0) 
                printf ("f_real     = %f\n", lm.f_real); 
        else    printf ("f_real     = NULL\n"); 

        if (lm.nbv.n_fixstr == 0) 
                printf ("f_fixstr   = %.*s\n", sizeof (lm.f_fixstr), 
                                                        lm.f_fixstr); 
        else    printf ("f_fixstr   = NULL\n"); 

        if (lm.nbv.n_varstr == 0) 
                printf ("f_varstr   = %.*s\n", lm.f_varstr_len, lm.f_varstr); 
        else    printf ("f_varstr   = NULL\n"); 

        printf ("\n"); 
    } 
} 

Example sequence of commands to create a table, unload the data and display the contents
with this program:

SQL> ATTACH 'FILE MF_PERSONNEL'; 
SQL> CREATE TABLE DATATYPES ( 
       F_TINYINT TINYINT 
      ,F_SMALLINT SMALLINT 
      ,F_INTEGER INTEGER 
      ,F_BIGINT BIGINT 
      ,F_DOUBLE DOUBLE PRECISION 
      ,F_REAL REAL 
      ,F_FIXSTR CHAR (10) 
      ,F_VARSTR VARCHAR (10)); 
SQL> COMMIT; 
SQL> INSERT INTO DATATYPES VALUES (1, NULL, 2, NULL, 3, NULL, 'THIS', NULL); 
SQL> INSERT INTO DATATYPES VALUES (NULL, 4, NULL, 5, NULL, 6, NULL, 'THAT'); 
SQL> COMMIT; 
SQL> EXIT; 
$ RMU /BACKUP /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ 
$ RMU /UNLOAD /AFTER_JOURNAL MF_PERSONNEL AIJBCK.AIJ − 
     /TABLE = (NAME=DATATYPES, OUTPUT=DATATYPES.DAT) 
$ CC DATATYPES.C 
$ LINK DATATYPES.OBJ 
$ RUN DATATYPES.EXE 
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6.9.2 New Transaction_Mode Qualifier for Oracle RMU
Commands

A new qualifier, Transaction_Mode, has been added to the RMU Copy, Move_Area, Restore,
and Restore Only_Root commands. You can use this qualifier to set the allowable transaction
modes for the database root file created by these commands. If you are not creating a root file
as part of one of these commands, for example, you are restoring an area, attempting to use
this qualifier returns a CONFLSWIT error. This qualifier is similar to the SET
TRANSACTION MODE clause of the CREATE DATABASE command in interactive SQL.

The primary use of this qualifier is when you restore a backup file (of the master database) to
create a Hot Standby database. Include the Transaction_Mode qualifier on the RMU Restore
command when you create the standby database (prior to starting replication operations).
Because only read−only transactions are allowed on the standby database, you should use the
Transaction_Mode=Read_Only qualifier setting. This setting prevents modifications to the
standby database at all times, even when replication operations are not active.

You can specify the following transaction modes for the Transaction_Mode qualifier:

All 
Current 
None 
[No]Batch_Update 
[No]Read_Only 
[No]Exclusive 
[No]Exclusive_Read 
[No]Exclusive_Write 
[No]Protected 
[No]Protected_Read 
[No]Protected_Write 
[No]Shared 
[No]Shared_Read 
[No]Shared_Write 

Note that [No] indicates that the value can be negated. For example, the NoExclusive_Write
option indicates that exclusive write is not an allowable access mode for this database. If you
specify the Shared, Exclusive, or Protected option, Oracle RMU assumes you are referring to
both reading and writing in these modes. For example, the Transaction_Mode=Shared option
indicates that you want both Shared_Read and Shared_Write as transaction modes. No mode
is enabled unless you add that mode to the list or you use the ALL option to enable all modes.

You cannot negate the following three options: All, which enables all transaction modes;
None, which disables all transaction modes; and Current, which enables all transaction modes
that are set for the source database. If you do not specify the Transaction_Mode qualifier,
Oracle RMU uses the transaction modes enabled for the source database.

You can list one qualifier that enables or disables a particular mode followed by another that
does the opposite. For example, Transaction_Mode=(NoShared_Write, Shared) is ambiguous
because the first value disables Shared_Write access while the second value enables
Shared_Write access. Oracle RMU resolves the ambiguities by first enabling all modes that
are enabled by the items in the Transaction_Mode list and then disabling those modes that are
disabled by items in the Transaction_Mode list. The order of items in the list is irrelevant. In
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the example discussed, Shared_Read is enabled and Shared_Write is disabled.

The following example shows how to set a newly restored database to allow read−only
transactions only. After Oracle RMU executes the command, the database is ready for you to
start Hot Standby replication operations.

$ RMU/RESTORE/TRANSACTION_MODE=READ_ONLY MF_PERSONNEL.RBF 

6.9.3 RMU Server After_Journal Stop Command

If database replication is active and you attempt to stop the database AIJ Log Server, Oracle
Rdb returns an error. You must stop database replication before attempting to stop the server.

In addition, a new qualifier, Output=filename, has been added to the RMU Server
After_Journal Stop command. This optional qualifier allows you to specify the file where the
operational log is to be created. The operational log records the transmission and receipt of
network messages.

If you do not include a directory specification with the file name, the log file is created in the
database root file directory. It is invalid to include a node name as part of the file name
specification.

Note that all Hot Standby bugcheck dumps are written to the corresponding bugcheck dump
file; bugcheck dumps are not written to the file you specify with the Output qualifier.

6.9.4 Incomplete Description of Protection Qualifier for
RMU Backup After_Journal Command

The description of the Protection Qualifier for the RMU Backup After_Journal command is
incomplete in the Oracle RMU Reference Manual for Digital UNIX. The complete
description is as follows:

The Protection qualifier specifies the system file protection for the backup file produced by
the RMU Backup After_Journal command. If you do not specify the Protection qualifier, the
default access permissions are −rw−r−−−−− for backups to disk or tape.

Tapes do not allow delete or execute access and the superuser account always has both read
and write access to tapes. In addition, a more restrictive class accumulates the access rights of
the less restrictive classes.

If you specify the Protection qualifier explicitly, the differences in access permissions applied
for backups to tape or disk as noted in the preceding paragraph are applied. Thus, if you
specify Protection=(S,O,G:W,W:R), the access permissions on tape becomes rw−rw−r−.

6.9.5 RMU Extract Command Options Qualifier

A documentation error exists in the description of the Options=options−list qualifier of the
RMU Extract command. Currently, the documentation states that this qualifier is not applied
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to output created by the Items=Volume qualifier. This is incorrect. Beginning with 6.1 of
Oracle Rdb, the behavior of the Options=options−list qualifier is applied to output created by
the Items=Volume qualifier.

6.9.6 RDM$SNAP_QUIET_POINT Logical is Incorrect

On page 2−72 of the Oracle RMU Reference Manual, the reference to the
RDM$SNAP_QUIET_POINT logical is incorrect. The correct logical name is
RDM$BIND_SNAP_QUIET_POINT.

6.9.7 Using Delta Time with RMU Show Statistics
Command

Oracle RMU does not support the use of delta time. However, because the OpenVMS
platform does, there is a workaround. You can specify delta time using the following syntax
with the RMU Show Statistics command:

$ RMU/SHOW STATISTICS/OUTPUT=file−spec/UNTIL=" ' ' f$cvtime ("+7:00") ' " 

The +7:00 adds 7 hours to the current time.

You can also use "TOMORROW" and "TODAY+n".

This information will be added to the description of the Until qualifier of the RMU Show
Statistics command in a future release of the Oracle RMU Reference Manual.
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6.10 Oracle Rdb7 Guide to Database
Performance and Tuning
The following section provides corrected, clarified, or omitted information for the Oracle
Rdb7 Guide to Database Performance and Tuning manual.

6.10.1 Dynamic OR Optimization Formats

In Table C−2 on Page C−7 of the Oracle Rdb7 Guide to Database Performance and Tuning,
the dynamic OR optimization format is incorrectly documented as [l:h...]n. The correct
formats for Oracle Rdb Release 7.0 and later are [(l:h)n] and [l:h,l2:h2].

6.10.2 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table in Chapter 2
summarizing the Oracle Rdb logical names. The information in the following table
supersedes the entries for the RDM$BIND_RUJ_ALLOC_BLKCNT and
RDM$BIND_RUJ_EXTEND_BLKCNT logical names.

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of the .ruj
file. The block count value can be defined between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre−extend the .ruj files for each
process using a database. The block count value can be defined between 0 and 65535 with a
default of 127.

6.10.3 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section in Chapter 3
that describes the Performance Monitor Stall Messages screen. The section contains a list
describing the "Waiting for" messages. The description of the "waiting for client lock"
message was missing from the list.

A client lock indicates that an Rdb metadata lock is in use. The term client indicates that Rdb
is a client of the Rdb locking services. The metadata locks are used to guarantee memory
copies of the metadata (table, index and column definitions) are consistent with the on−disk
versions.

The "waiting for client lock" message means the database user is requesting an incompatible
locking mode. For example, when trying to drop a table which is in use, the drop operation
requests a PROTECTED WRITE lock on the metadata object (such as a table) which is
incompatible with the existing PROTECTED READ lock currently used by other users of the
table.

The lock name for these special locks consist of an encoded 16 byte name. The first 4 bytes
contains the leading four bytes of the user name (for system objects the RDB$ prefix is
skipped) followed by three longwords. The lock is displayed in text format first − here will be
seen the prefix for the table, routine, or module name; followed by its hexadecimal
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representation. The text version masks out non−printable characters with a dot (.).

waiting for client '...."...EMPL' 4C504D45000000220000000400000055 

The leftmost value seen in the hexadecimal output contains the name prefix which is easier
read in the text field. Then comes a hex number (00000022) which is the id of the object. The
id is described below for tables, views, functions, procedures, modules, and sequences.

For tables and views, the id represents the unique value found in the
RDB$RELATION_ID column of the RDB$RELATIONS system relation for the
given table.

◊ 

For routines (that is functions and procedures), the id represents the unique value
found in the RDB$ROUTINE_ID column of the RDB$ROUTINES system relation
for the given routine.

◊ 

For modules, the id represents the unique value found in the RDB$MODULE_ID
column of the RDB$MODULES system relation for the given module.

◊ 

For sequences, the id represents the unique value found in the RDB$SEQUENCE_ID
column of the RDB$SEQUENCES system relation for the given sequence.

◊ 

The next value displayed signifies the object type. The following table describes objects and
their hexadecimal type values.

Table 6−1 Objects and Their Hexadecimal Type Value

Object Hexadecimal Value

Tables or views 00000004

Modules 00000015

Routines 00000016

Sequences 00000019

The last value in the hexadecimal output represents the lock type. The hexadecimal value 55
indicates this is a client lock and distinct from page and other data structure locks.

The following example shows a "waiting for client lock" message from a Stall Messages
screen while the application was processing the EMPLOYEES table from
MF_PERSONNEL. The terminal should be set to 132 characters wide to view the full client
lock string.

Process.ID  Since.................. T Stall.reason.............................Lock.ID. 
27800643:1                            waiting for logical area 79 (CW)         16004833 
27800507:1  31−OCT−2002 16:05:15.71 W waiting for client '...."...EMPL' 4C504D45000000220000000400000055 (PW)          2D014F5C 

To determine the name of the referenced object given the lock ID, the following queries can
be used based on the object type:

SQL> select RDB$RELATION_NAME from RDB$RELATIONS where RDB$RELATION_ID = 25; 
SQL> select RDB$MODULE_NAME from RDB$MODULES where RDB$MODULE_ID = 12; 
SQL> select RDB$ROUTINE_NAME from RDB$ROUTINES where RDB$ROUTINE_ID = 7; 
SQL> select RDB$SEQUENCE_NAME from RDB$SEQUENCES where RDB$SEQUENCE_ID = 2; 

For more detailed lock information, perform the following steps:
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Press the L option from the horizontal menu to display a menu of lock IDs.◊ 
Select the desired lock ID.◊ 

6.10.4 RDMS$TTB_HASH_SIZE Logical Name

The logical name RDMS$TTB_HASH_SIZE sets the size of the hash table used for
temporary tables. If the logical name is not defined, Oracle Rdb uses a default value of 1249.

If you expect that temporary tables will be large (that is, 10K or more rows), use this logical
name to adjust the hash table size to avoid long hash chains. Set the value to approximately
1/4 of the expected maximum number of rows for each temporary table. For example, if a
temporary table will be populated with 100,000 rows, define this logical name to be 25000. If
there are memory constraints on your system, you should define the logical name to be no
higher than this value (1/4 of the expected maximum number of rows).

6.10.5 Error in Updating and Retrieving a Row by
Dbkey Example 3−22

Example 3−22 in Section 3.8.3 that shows how to update and retrieve a row by dbkey is
incorrect. The example should appear as follows:

SQL> ATTACH 'FILENAME MF_PERSONNEL.RDB'; 
SQL> −− 
SQL> −− Declare host variables 
SQL> −− 
SQL> DECLARE :hv_row INTEGER;              −− Row counter 
SQL> DECLARE :hv_employee_id ID_DOM;       −− EMPLOYEE_ID field 
SQL> DECLARE :hv_employee_id_ind SMALLINT; −− Null indicator variable 
SQL> −− 
SQL> DECLARE :hv_dbkey CHAR(8);            −− DBKEY storage 
SQL> DECLARE :hv_dbkey_ind SMALLINT;       −− Null indicator variable 
SQL> −− 
SQL> DECLARE :hv_last_name LAST_NAME_DOM; 
SQL> DECLARE :hv_new_address_data_1 ADDRESS_DATA_1_DOM; 
SQL> −− 
SQL> SET TRANSACTION READ WRITE; 
SQL> BEGIN 
cont> −− 
cont> −− Set the search value for SELECT 
cont> −− 
cont>  SET :hv_last_name = 'Ames'; 
cont> −− 
cont> −− Set the NEW_ADDRESS_DATA_1 value 
cont> −− 
cont> SET :hv_new_address_data_1 = '100 Broadway Ave.'; 
cont> END; 
SQL> COMMIT; 
SQL> −− 
SQL> SET TRANSACTION READ ONLY; 
SQL> BEGIN 
cont> SELECT E.EMPLOYEE_ID, E.DBKEY 
cont>   INTO :hv_employee_id INDICATOR :hv_employee_id_ind, 
cont>        :hv_dbkey INDICATOR :hv_dbkey_ind 
cont>   FROM EMPLOYEES E 
cont> WHERE E.LAST_NAME = :hv_last_name 
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cont> LIMIT TO 1 ROW; 
cont> −− 
cont> GET DIAGNOSTICS :hv_row = ROW_COUNT; 
cont> END; 
SQL> COMMIT; 
SQL> −− 
SQL> SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE; 
SQL> BEGIN 
cont> IF (:hv_row = 1) THEN 
cont>    BEGIN 
cont>    UPDATE EMPLOYEES E 
cont>      SET E.ADDRESS_DATA_1 = :hv_new_address_data_1 
cont>    WHERE E.DBKEY = :hv_dbkey; 
cont>    END; 
cont> END IF; 
cont> END; 
SQL> COMMIT; 
SQL> −− 
SQL> −− Display result of change 
SQL> −− 
SQL> SET TRANSACTION READ ONLY; 
SQL> SELECT E.* 
cont> FROM EMPLOYEES E 
cont> WHERE E.DBKEY = :hv_dbkey; 
 EMPLOYEE_ID   LAST_NAME        FIRST_NAME   MIDDLE_INITIAL 
   ADDRESS_DATA_1              ADDRESS_DATA_2         CITY 
      STATE   POSTAL_CODE   SEX    BIRTHDAY      STATUS_CODE 
 00416         Ames             Louie        A 
   100 Broadway Ave.                                  Alton 
      NH      03809         M      13−Apr−1941   1 

1 row selected 
SQL> 

The new example will appear in a future publication of the Oracle Rdb7 Guide to Database
Performance and Tuning manual.

6.10.6 Error in Calculation of Sorted Index in Example
3−46

Example 3−46 in Section 3.9.5.1 shows the output when you use the RMU Analyze Indexes
command and specify the Option=Debug qualifier and the DEPARTMENTS_INDEX sorted
index.

The description of the example did not include the 8 byte dbkey in the calculation of the
sorted index. The complete description is as follows:

The entire index (26 records) is located on pages 2 and 3 in logical area 72 and uses 188 bytes
of a possible 430 bytes or the node record is 47 percent full. Note that due to index
compression, the node size has decreased in size from 422 bytes to 188 bytes and the percent
fullness of the node records has dropped from 98 to 47 percent. Also note that the used/avail
value in the summary information at the end of the output does not include the index header
and trailer information, which accounts for 32 bytes. This value is shown for each node
record in the detailed part of the output. The number of bytes used by the index is calculated
as follows: the sort key is 4 bytes plus a null byte for a total of 5 bytes. The prefix is 1 byte
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and the suffix is 1 byte. The prefix indicates the number of bytes in the preceding key that are
the same and the suffix indicates the number of bytes that are different from the preceding
key. The dbkey pointer to the row is 8 bytes. There are 26 data rows multiplied by 15 bytes
for a total of 390 bytes. The 15 bytes include:

7 bytes for the sort key: length + null byte + prefix + suffix◊ 
8 bytes for the dbkey pointer to the row◊ 

Add 32 bytes for index header and trailer information for the index node to the 390 bytes for a
total of 422 bytes used. Index compression reduces the number of bytes used to 188 bytes
used.

The revised description will appear in a future publication of the Oracle Rdb7 Guide to
Database Performance and Tuning manual.

6.10.7 Documentation Error in Section C.7

The Oracle Rdb Guide to Database Performance And Tuning, Volume 2 contains an error in
Section C.7 titled Displaying Sort Statistics with the R Flag.

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort operation. A
zero (0) value indicates that the sort was accomplished completely in memory.

◊ 

This is incorrect, the statistics should be described as show below:

Work File Alloc indicates how much space (in blocks) was allocated in the work files
for this sort operation. A zero (0) value indicates that the sort was accomplished
completely in memory.

◊ 

This error will be corrected in a future release of Oracle Rdb Guide to Database Performance
And Tuning.

6.10.8 Missing Tables Descriptions for the
RDBEXPERT Collection Class

Appendix B in the Oracle Rdb7 Guide to Database Performance and Tuning describes the
event−based data tables in the formatted database for the Oracle Rdb PERFORMANCE and
RDBEXPERT collection classes. This section describes the missing tables for the
RDBEXPERT collection class.

Table 6−2 shows the TRANS_TPB table.

Table 6−2 Columns for Table EPC$1_221_TRANS_TPB

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN
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TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

TPB VARCHAR(127)

TPB_STR_ID INTEGER STR_ID_DOMAIN

Table 6−3 shows the TRANS_TPB_ST table. An index is provided for this table. It is defined
with column STR_ID, duplicates are allowed, and the type is sorted.

Table 6−3 Columns for Table EPC$1_221_TRANS_TPB_ST

Column Name Data Type Domain

STR_ID INTEGER STR_ID_DOMAIN

SEGMENT_NUMBER SMALLINT SEGMENT_NUMBER_DOMAIN

STR_SEGMENT VARCHAR(128)

6.10.9 Missing Columns Descriptions for Tables in the
Formatted Database

Some of the columns were missing from the tables in Appendix B in the Oracle Rdb7 Guide
to Database Performance and Tuning. The complete table definitions are described in this
section.

Table 6−4 shows the DATABASE table.

Table 6−4 Columns for Table EPC$1_221_DATABASE

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

DB_NAME VARCHAR(255)

DB_NAME_STR_ID INTEGER STR_ID_DOMAIN

IMAGE_FILE_NAME VARCHAR(255)

IMAGE_FILE_NAME_STR_ID INTEGER STR_ID_DOMAIN

Table 6−5 shows the REQUEST_ACTUAL table.
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Table 6−5 Columns for Table EPC$1_221_REQUEST_ACTUAL

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER

S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER
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S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CLIENT_PC_END INTEGER

STREAM_ID_END INTEGER

REQ_ID_END INTEGER

COMP_STATUS_END INTEGER

REQUEST_OPER_END INTEGER

TRANS_ID_END VARCHAR(16)

TRANS_ID_END_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER

FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER
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LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER

CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

Table 6−6 shows the TRANSACTION table.
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Table 6−6 Columns for Table EPC$1_221_TRANSACTION

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_START DATE VMS

TIMESTAMP_END DATE VMS

CLIENT_PC_START INTEGER

STREAM_ID_START INTEGER

LOCK_MODE_START INTEGER

TRANS_ID_START VARCHAR(16)

TRANS_ID_START_STR_ID INTEGER STR_ID_DOMAIN

GLOBAL_TID_START VARCHAR(16)

GLOBAL_TID_START_STR_ID INTEGER STR_ID_DOMAIN

DBS_READS_START INTEGER

DBS_WRITES_START INTEGER

RUJ_READS_START INTEGER

RUJ_WRITES_START INTEGER

AIJ_WRITES_START INTEGER

ROOT_READS_START INTEGER

ROOT_WRITES_START INTEGER

BUFFER_READS_START INTEGER

GET_VM_BYTES_START INTEGER

FREE_VM_BYTES_START INTEGER

LOCK_REQS_START INTEGER

REQ_NOT_QUEUED_START INTEGER

REQ_STALLS_START INTEGER

REQ_DEADLOCKS_START INTEGER

PROM_DEADLOCKS_START INTEGER

LOCK_RELS_START INTEGER

LOCK_STALL_TIME_START INTEGER

D_FETCH_RET_START INTEGER

D_FETCH_UPD_START INTEGER

D_LB_ALLOK_START INTEGER

D_LB_GBNEEDLOCK_START INTEGER

D_LB_NEEDLOCK_START INTEGER

D_LB_OLDVER_START INTEGER

D_GB_NEEDLOCK_START INTEGER

D_GB_OLDVER_START INTEGER

D_NOTFOUND_IO_START INTEGER

D_NOTFOUND_SYN_START INTEGER
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S_FETCH_RET_START INTEGER

S_FETCH_UPD_START INTEGER

S_LB_ALLOK_START INTEGER

S_LB_GBNEEDLOCK_START INTEGER

S_LB_NEEDLOCK_START INTEGER

S_LB_OLDVER_START INTEGER

S_GB_NEEDLOCK_START INTEGER

S_GB_OLDVER_START INTEGER

S_NOTFOUND_IO_START INTEGER

S_NOTFOUND_SYN_START INTEGER

D_ASYNC_FETCH_START INTEGER

S_ASYNC_FETCH_START INTEGER

D_ASYNC_READIO_START INTEGER

S_ASYNC_READIO_START INTEGER

AS_READ_STALL_START INTEGER

AS_BATCH_WRITE_START INTEGER

AS_WRITE_STALL_START INTEGER

AREA_ITEMS_START VARCHAR(128)

AREA_ITEMS_START_STR_IDINTEGER STR_ID_DOMAIN

BIO_START INTEGER

DIO_START INTEGER

PAGEFAULTS_START INTEGER

PAGEFAULT_IO_START INTEGER

CPU_START INTEGER

CURRENT_PRIO_START SMALLINT

VIRTUAL_SIZE_START INTEGER

WS_SIZE_START INTEGER

WS_PRIVATE_START INTEGER

WS_GLOBAL_START INTEGER

CROSS_FAC_2_START INTEGER

CROSS_FAC_3_START INTEGER

CROSS_FAC_7_START INTEGER

CROSS_FAC_14_START INTEGER

DBS_READS_END INTEGER

DBS_WRITES_END INTEGER

RUJ_READS_END INTEGER

RUJ_WRITES_END INTEGER

AIJ_WRITES_END INTEGER

ROOT_READS_END INTEGER

ROOT_WRITES_END INTEGER

BUFFER_READS_END INTEGER

GET_VM_BYTES_END INTEGER
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FREE_VM_BYTES_END INTEGER

LOCK_REQS_END INTEGER

REQ_NOT_QUEUED_END INTEGER

REQ_STALLS_END INTEGER

REQ_DEADLOCKS_END INTEGER

PROM_DEADLOCKS_END INTEGER

LOCK_RELS_END INTEGER

LOCK_STALL_TIME_END INTEGER

D_FETCH_RET_END INTEGER

D_FETCH_UPD_END INTEGER

D_LB_ALLOK_END INTEGER

D_LB_GBNEEDLOCK_END INTEGER

D_LB_NEEDLOCK_END INTEGER

D_LB_OLDVER_END INTEGER

D_GB_NEEDLOCK_END INTEGER

D_GB_OLDVER_END INTEGER

D_NOTFOUND_IO_END INTEGER

D_NOTFOUND_SYN_END INTEGER

S_FETCH_RET_END INTEGER

S_FETCH_UPD_END INTEGER

S_LB_ALLOK_END INTEGER

S_LB_GBNEEDLOCK_END INTEGER

S_LB_NEEDLOCK_END INTEGER

S_LB_OLDVER_END INTEGER

S_GB_NEEDLOCK_END INTEGER

S_GB_OLDVER_END INTEGER

S_NOTFOUND_IO_END INTEGER

S_NOTFOUND_SYN_END INTEGER

D_ASYNC_FETCH_END INTEGER

S_ASYNC_FETCH_END INTEGER

D_ASYNC_READIO_END INTEGER

S_ASYNC_READIO_END INTEGER

AS_READ_STALL_END INTEGER

AS_BATCH_WRITE_END INTEGER

AS_WRITE_STALL_END INTEGER

AREA_ITEMS_END VARCHAR(128)

AREA_ITEMS_END_STR_ID INTEGER STR_ID_DOMAIN

BIO_END INTEGER

DIO_END INTEGER

PAGEFAULTS_END INTEGER

PAGEFAULT_IO_END INTEGER

CPU_END INTEGER
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CURRENT_PRIO_END SMALLINT

VIRTUAL_SIZE_END INTEGER

WS_SIZE_END INTEGER

WS_PRIVATE_END INTEGER

WS_GLOBAL_END INTEGER

CROSS_FAC_2_END INTEGER

CROSS_FAC_3_END INTEGER

CROSS_FAC_7_END INTEGER

CROSS_FAC_14_END INTEGER

Table 6−7 shows the REQUEST_BLR table.

Table 6−7 Columns for Table EPC$1_221_REQUEST_BLR

Column Name Data Type Domain

COLLECTION_RECORD_ID SMALLINT COLLECTION_RECORD_ID_DOMAIN

IMAGE_RECORD_ID INTEGER IMAGE_RECORD_ID_DOMAIN

CONTEXT_NUMBER INTEGER CONTEXT_NUMBER_DOMAIN

TIMESTAMP_POINT DATE VMS

CLIENT_PC INTEGER

STREAM_ID INTEGER

REQ_ID INTEGER

TRANS_ID VARCHAR(16)

TRANS_ID_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_NAME VARCHAR(31)

REQUEST_NAME_STR_ID INTEGER STR_ID_DOMAIN

REQUEST_TYPE INTEGER

BLR VARCHAR(127)

BLR_STR_ID INTEGER STR_ID_DOMAIN

6.10.10 A Way to Find the Transaction Type of a
Particular Transaction Within the Trace Database

The table EPC$1_221_TRANSACTION in the formatted Oracle Trace database has a column
LOCK_MODE_START of longword datatype. The values of this column indicate the type of
transaction a particular transaction was.

Value           Transaction type 
−−−−−           −−−−−−−−−−−−−−−− 
8               Read only 
9               Read write 
14              Batch update 
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6.10.11 Using Oracle TRACE Collected Data

The following example shows how the OPTIMIZE AS clause is reflected in the Oracle
TRACE database. When a trace collection is started the following SQL commands will record
the request names.

SQL> attach `file personnel'; 
SQL> select last_name, first_name 
cont> from employees 
cont> optimize as request_one; 
. 
. 
. 
SQL> select employee_id 
cont> from employees 
cont> optimize as request_two; 
. 
. 
. 
SQL> select employee_id, city, state 
cont> from employees 
cont> optimize as request_three; 
. 
. 
. 
SQL> select last_name, first_name, employee_id, city, state 
cont> from employees 
cont> optimize as request_four; 
. 
. 
. 

Once an Oracle TRACE database has been populated from the collection, a query such as the
following can be used to display the request names and types. The type values are described
in Table 3−10. The unnamed queries in this example correspond to the queries executed by
interactive SQL to validate the names of the tables an columns referenced in the user supplied
queries.

SQL> select REQUEST_NAME, REQUEST_TYPE, TIMESTAMP_POINT 
cont> from EPC$1_221_REQUEST_BLR; 
REQUEST_NAME                      REQUEST_TYPE   TIMESTAMP_POINT 
                                             1   15−JAN−1997 13:23:27.18 
                                             1   15−JAN−1997 13:23:27.77 
REQUEST_ONE                                  1   15−JAN−1997 13:23:28.21 
REQUEST_TWO                                  1   15−JAN−1997 13:23:56.55 
REQUEST_THREE                                1   15−JAN−1997 13:24:57.27 
REQUEST_FOUR                                 1   15−JAN−1997 13:25:25.44 
6 rows selected 

The next example shows the internal query format (BLR) converted to SQL strings after
EPC$EXAMPLES:EPC_BLR_TOSQL_CONVERTER.COM has been run.

SQL> SELECT A.REQUEST_NAME, B.SQL_STRING FROM 
cont> EPC$1_221_REQUEST_BLR A, 
cont> EPC$SQL_QUERIES B 
cont> WHERE A.CLIENT_PC = 0 AND A.SQL_ID = B.SQL_ID; 
A.REQUEST_NAME 
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  B.SQL_STRING 
REQUEST_ONE 
      SELECT C1.LAST_NAME, C1.FIRST_NAME.        FROM EMPLOYEES C1 
. . . 
REQUEST_TWO 
      SELECT C1.EMPLOYEE_ID.        FROM EMPLOYEES C1 
. . . 
REQUEST_THREE 
SELECT C1.EMPLOYEE_ID, C1.CITY, C1.STATE.        FROM EMPLOYEES C1 
  . 
  . 
  . 
4 rows selected 

Table 4−17 shows the Request Types.

Table 6−8 Request Types

Symbolic Name Value Comment

RDB_K_REQTYPE_OTHER 0 A query executed internally by Oracle Rdb

RDB_K_REQTYPE_USER_REQUEST1
A non−stored SQL statement, which
includes compound statements

RDB_K_REQTYPE_PROCEDURE 2 A stored procedure

RDB_K_REQTYPE_FUNCTION 3 A stored function

RDB_K_REQTYPE_TRIGGER 4 A trigger action

RDB_K_REQTYPE_CONSTRAINT 5 A table or column constraint

6.10.12 AIP Length Problems in Indexes that Allow
Duplicates

When an index allows duplicates, the length stored in the AIP will be 215 bytes, regardless of
the actual index node size. Because an index with duplicates can have variable node sizes, the
215−byte size is used as a median length to represent the length of rows in the index's logical
area.

When the row size in the AIP is less than the actual row length, it is highly likely that SPAM
entries will show space is available on pages when they have insufficient space to store
another full size row. This is the most common cause of insert performance problems.

For example, consider a case where an index node size of 430 bytes (a common default value)
is used; the page size for the storage area where the index is stored is 2 blocks. After
deducting page overhead, the available space on a 2−block page is 982 bytes. Assume that the
page in this example is initially empty.

A full size (430−byte) index node is stored. As 8 bytes of overhead are associated
with each row stored on a page, that leaves 982−430−8 = 544 free bytes remaining on
the page.

1. 

A duplicate key entry is made in that index node and thus a duplicate node is created2. 
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on the same page. An initial duplicate node is 112 bytes long (duplicate nodes can
have a variety of sizes depending on when they are created, but for this particular
example, 112 bytes is used). Therefore, 544−112−8 = 424 free bytes remain on the
page.

At this point, 424 bytes are left on the page. That is greater than the 215 bytes that the AIP
shows as the row length for the logical area, so the SPAM page shows that the page has space
available. However, an attempt to store a full size index node on the page will fail, because
the remaining free space (424 bytes) is not enough to store a 430−byte node.

In this case, another candidate page must be selected via the SPAM page, and the process
repeats until a page that truly has sufficient free space available is found. In a logical area that
contains many duplicate nodes, a significant percentage of the pages in the logical area may
fit the scenario just described. When that is the case, and a new full size index node needs to
be stored, many pages may need to be read and checked before one is found that can be used
to store the row.

It is possible to avoid the preceding scenario by using logical area thresholds. The goal is to
set a threshold such that the SPAM page will show a page is full when space is insufficient to
store a full size index node.

Using the previous example, here is how to properly set logical area thresholds to prevent
excessive pages checked on an index with a 430−byte node size that is stored on a 2−block
page. To calculate the proper threshold value to use, you must first determine how full the
page can get before no more full size nodes will fit on the page. In this example, a database
page can have up to 982−430−8 = 544 bytes in use before the page is too full. Therefore, if
544 or fewer bytes are in use, then enough space remains to store another full size node. The
threshold is then 544 / 982 = .553971, or 55%.

In addition, you can determine how full a page must be before a duplicate node of size 112
will no longer fit. In this example, a database page can have up to 982−112−8 = 862 bytes in
use before the page is too full. Therefore, if 862 or fewer bytes are in use, then enough space
remains to store another small duplicates node. The threshold is then 862 / 982 = .8778, or
88%.

Here is an example of creating an index with the above characteristics:

SQL> CREATE INDEX TEST_INDEX ON EMPLOYEES (LAST_NAME) 
cont>     STORE IN RDB$SYSTEM 
cont>     (THRESHOLD IS (55, 55, 88)); 

These settings mean that any page at over 55% full will not be fetched when inserting a full
index node, however, it may be fetched when inserting the smaller duplicates node. When the
page is over 88% full then neither a full node nor a duplicate node can be stored, so the page
is set as FULL. The lowest setting is not used and so can be set to any value less than or equal
to the lowest used threshold.

Note that the compression algorithm used on regular tables that have compression enabled
does not apply to index nodes. Index nodes are not compressed like data rows and will always
utilize the number of bytes that is specified in the node size. Do not attempt to take into
account a compression factor when calculating thresholds for indexes.
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6.10.13 RDM$BIND_MAX_DBR_COUNT Documentation
Clarification

Appendix A in Oracle Rdb7 Guide to Database Performance and Tuning incorrectly describes
the use of the RDM$BIND_MAX_DBR_COUNT logical name.

Following is an updated description. Note that the difference in actual behavior between what
is in the existing documentation and the software is that the logical name only controls the
number of database recovery processes created at once during "node failure" recovery (that is,
after a system or monitor crash or other abnormal shutdown).

When an entire database is abnormally shut down (due, for example, to a system failure), the
database will have to be recovered in a "node failure" recovery mode. This recovery will be
performed by another monitor in the cluster if the database is opened on another node or will
be performed the next time the database is opened.

The RDM$BIND_MAX_DBR_COUNT logical name and the
RDB_BIND_MAX_DBR_COUNT configuration parameter define the maximum number of
database recovery (DBR) processes to be simultaneously invoked by the database monitor
during a "node failure" recovery.

This logical name and configuration parameter apply only to databases that do not have
global buffers enabled. Databases that utilize global buffers have only one recovery process
started at a time during a "node failure" recovery.

In a node failure recovery situation with the Row Cache feature enabled (regardless of the
global buffer state), the database monitor will start a single database recovery (DBR) process
to recover the Row Cache Server (RCS) process and all user processes from the oldest active
checkpoint in the database.
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6.11 Oracle Rdb7 Guide to SQL Programming
This section provides information that is missing or changed in the Oracle Rdb7 Guide to
SQL Programming.

6.11.1 Location of Host Source File Generated by the
SQL Precompiler

When the SQL precompiler generates host source files (for example, .c, .pas, or .for) from the
precompiler source files, it locates these files based on the Object qualifier in the command
given to the SQL precompiler.

The following examples show the location where the host source file is generated.

When the Object qualifier is not specified on the command line, the object and the host
source file take the name of the SQL precompiler with the extensions of .obj and .c,
respectively. For example:

$ sqlpre/cc scc_try_mli_successful.sc 
$ dir scc_try_mli_successful.* 

Directory MYDISK:[LUND] 

SCC_TRY_MLI_SUCCESSFUL.C;1              SCC_TRY_MLI_SUCCESSFUL.OBJ;2 
SCC_TRY_MLI_SUCCESSFUL.SC;2 

Total of 3 files. 

When the Object qualifier is specified on the command line, the object and the host source
take the name given on the qualifier switch. It uses the default of the SQL precompiler source
if a filespec is not specified. It uses the defaults of .obj and .c if the extension is not specified.
If the host language is a language other than C, it uses the appropriate host source extension
(for example, .pas or .for). The files also default to the current directory if a directory
specification is not specified. For example:

$ sqlpre/cc/obj=myobj scc_try_mli_successful.sc 
$ dir scc_try_mli_successful.* 

Directory MYDISK:[LUND] 

SCC_TRY_MLI_SUCCESSFUL.SC;2 

Total of 1 file. 
$ dir myobj.* 

Directory MYDISK:[LUND] 

MYOBJ.C;1           MYOBJ.OBJ;2 

Total of 2 files. 

$ sqlpre/cc/obj=MYDISK:[lund.tmp] scc_try_mli_successful.sc 
$ dir scc_try_mli_successful.* 
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Directory MYDISK:[LUND] 

SCC_TRY_MLI_SUCCESSFUL.SC;2 

Total of 1 file. 
$ dir MYDISK:[lund.tmp]scc_try_mli_successful.* 

Directory MYDISK:[LUND.TMP] 

SCC_TRY_MLI_SUCCESSFUL.C;1              SCC_TRY_MLI_SUCCESSFUL.OBJ;2 

Total of 2 files. 

6.11.2 Remote User Authentication

In the Oracle Rdb7 Guide to SQL Programming, Table 15−1 indicates that implicit
authorization works from an OpenVMS platform to another OpenVMS platform using
TCP/IP. This table is incorrect. Implicit authorization only works using DECnet in this
situation.

The Oracle Rdb7 Guide to SQL Programming will be fixed in a future release.

6.11.3 Additional Information About Detached
Processes

Oracle Rdb documentation omits necessary detail on running Oracle Rdb from a detached
process.

Applications run from detached processes must ensure that the OpenVMS environment is
established correctly before running Oracle Rdb, otherwise Oracle Rdb will not execute.

Attempts to attach to a database and execute an Oracle Rdb query from applications running
as detached processes will result in an error similar to the following:

%RDB−F−SYS_REQUEST, error from system services request 
−SORT−E−OPENOUT, error opening [file] as output 
−RMS−F−DEV, error in device name or inappropriate device type for operation 

The problem occurs because a detached process does not normally have the logical names
SYS$LOGIN or SYS$SCRATCH defined.

There are two methods that can be used to correct this:

Solution 1:
Use the DCL command procedure RUN_PROCEDURE to run the ACCOUNTS
application:
RUN_PROCEDURE.COM includes the single line:
$ RUN ACCOUNTS_REPORT
Then execute this procedure using this command:
$ RUN/DETACH/AUTHORIZE
SYS$SYSTEM:LOGINOUT/INPUT=RUN_PROCEDURE

◊ 
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This solution executes SYS$SYSTEM:LOGINOUT so that the command language
interface (DCL) is activated. This causes the logical names SYS$LOGIN and
SYS$SCRATCH to be defined for the detached process. The /AUTHORIZE qualifier
also ensures that the users' process quota limits (PQLs) are used from the system
authorization file rather than relying on the default PQL system parameters, which
are often insufficient to run Oracle Rdb.
Solution 2:
If DCL is not desired, and SYS$LOGIN and SYS$SCRATCH are not defined, then
prior to executing any Oracle Rdb statement, you should define the following logical
names:

RDMS$BIND_WORK_FILE
Define this logical name to allow you to reduce the overhead of disk I/O
operations for matching operations when used in conjunction with the
RDMS$BIND_WORK_VM logical name. If the virtual memory file is too
small then overflow to disk will occur at the disk and directory location
specified by RDMS$BIND_WORK_FILE.
For more information on RDMS$BIND_WORK_FILE and
RDMS$BIND_WORK_VM, see the Oracle Rdb Guide to Database
Performance and Tuning.

⋅ 

SORTWORK0, SORTWORK1, and so on
The OpenVMS Sort/Merge utility (SORT/MERGE) attempts to create sort
work files in SYS$SCRATCH. If the SORTWORK logical names exist, the
utility will not require the SYS$SCRATCH logical. However, note that not
all queries will require sorting, and that some sorts will be completed in
memory and so will not necessarily require disk space.
If you use the logical RDMS$BIND_SORT_WORKFILES, you will need to
define further SORTWORK logical names as described in the Oracle Rdb
Guide to Database Performance and Tuning.
You should also verify that sufficient process quotas are specified on the
RUN/DETACH command line, or defined as system PQL parameters to
allow Oracle Rdb to execute.

⋅ 

◊ 
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6.12 Guide to Using Oracle SQL/Services
Client APIs
The following information describes Oracle SQL/Services documentation errors or omissions.

The Guide to Using Oracle SQL/Services Client APIs does not describe changes to
size and format of integer and floating−point data types
Beginning with Oracle SQL/Services V5.1, the size and format of some integer and
floating−point data types is changed as follows:

Trailing zeros occur in fixed−point numeric data types with SCALE
FACTOR.
Trailing zeros are now included after the decimal point up to the number of
digits specified by the SCALE FACTOR. In versions of Oracle SQL/Services
previous to V5.1, at most one trailing zero was included where the value was
a whole number.
The following examples illustrate the changes using a field defined as
INTEGER(3):

          V5.1 and     Versions previous 
          higher       to V5.1 
          −−−−−−−−     −−−−−−−−−−−−−−−−− 
            1.000        1.0 
           23.400       23.4 
          567.890      567.89 

⋅ 

Trailing zeros occur in floating−point data types. Trailing zeros are now
included in the fraction, and leading zeros are included in the exponent, up to
the maximum precision available, for fields assigned the REAL and
DOUBLE PRECISION data types.

                                                      Versions previous 
          Data Type           V5.1 and higher         to V5.1 
          −−−−−−−−−−−−−−−−    −−−−−−−−−−−−−−−−−−−−−−  −−−−−−−−−−−−−−−−− 
          REAL                1.2340000E+01           1.234E+1 
          DOUBLE PRECISION    5.678900000000000E+001  5.6789E+1 

⋅ 

Size of TINYINT and REAL data types is changed.
The maximum size of the TINYINT and REAL data types is changed to
correctly reflect the precision of the respective data types.
The following table shows the maximum lengths of the data types now and in
previous versions:

                              V5.1 and    Versions previous 
          Data type           higher      to V5.1 
          −−−−−−−−−−          −−−−−−−−    −−−−−−−−−−−−−−−−− 
          TINYINT              4           6 
          REAL                15          24 

⋅ 

◊ 

The Guide to Using Oracle SQL/Services Client APIs does not describe that the
sqlsrv_associate() service returns SQL error code −1028 when connecting to a
database service if the user has not been granted the right to attach to the database.
When a user connects to a database service, the sqlsrv_associate() service completes
with the SQL error code −1028, SQL_NO_PRIV, if the user has been granted access
to the Oracle SQL/Services service, but has not been granted the right to attach to the
database. A record of the failure is written to the executor process's log file. Note that

◊ 
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the sqlsrv_associate() service completes with the Oracle SQL/Services error code
−2034, SQLSRV_GETACCINF if the user has not been granted access to the Oracle
SQL/Services service.
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6.13 Updates to System Relations
The following sections include updates to system relations that were inadvertently omitted in
the SQL Help and Rdb Help files in Release 7.0.

6.13.1 Clarification on Updates to the
RDB$LAST_ALTERED Column for the
RDB$DATABASE System Relation

The ALTER DATABASE statement can be used to change many database attributes,
however, only those listed below will cause the RDB$DATABASE system relation to be
changed. The column RDB$LAST_UPDATED is used to record the date and time when the
system relation RDB$DATABASE is updated and so will change when any of the following
clauses are used by ALTER DATABASE.

CARDINALITY COLLECTION IS { ENABLED | DISABLED }◊ 
DICTIONARY IS [NOT] REQUIRED◊ 
DICTIONARY IS NOT USED◊ 
METADATA CHANGES ARE { ENABLED | DISABLED }◊ 
MULTISCHEMA IS { ON | OFF }◊ 
SECURITY CHECKING IS EXTERNAL ( PERSONAL SUPPORT IS { ENABLED
| DISABLED })

◊ 

SYNONYMS ARE ENABLED◊ 
WORKLOAD COLLECTION IS { ENABLED | DISABLED }◊ 

In addition any GRANT and REVOKE statements which use the ON DATABASE clause
will cause the RDB$LAST_UPDATED column to be updated for RDB$DATABASE.
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6.14 Error Messages
The following subsections further describe or clarify error messages.

6.14.1 Clarification of the DDLDONOTMIX Error
Message

The ALTER DATABASE statement performs two classes of functions: changing the
database root structures in the .RDB file and modifying the system metadata in the
RDB$SYSTEM storage area. The first class of changes do not require a transaction to be
active. However, the second class requires that a transaction be active. Oracle Rdb does not
currently support the mixing of these two classes of ALTER DATABASE clauses.

When you mix clauses that fall into both classes, the error message DDLDONOTMIX "the
{SQL−syntax} clause can not be used with some ALTER DATABASE clauses" is displayed,
and the ALTER DATABASE statement fails.

SQL> alter database filename MF_PERSONNEL 
cont> dictionary is not used 
cont> add storage area JOB_EXTRA filename JOB_EXTRA; 
%RDB−F−BAD_DPB_CONTENT, invalid database parameters in the 
database parameter block (DPB) 
−RDMS−E−DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can 
not be used with some ALTER DATABASE clauses 

The following clauses may be mixed with each other but may not appear with other clauses
such as ADD STORAGE AREA or ADD CACHE:

DICTIONARY IS [ NOT ] REQUIRED◊ 
DICTIONARY IS NOT USED◊ 
MULTISCHEMA IS { ON | OFF }◊ 
CARDINALITY COLLECTION IS { ENABLED | DISABLED }◊ 
METADATA CHANGES ARE { ENABLED | DISABLED }◊ 
WORKLOAD COLLECTION IS { ENABLED | DISABLED }◊ 

If the DDLDONOTMIX error is displayed, then restructure the ALTER DATABASE into
two statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL 
cont> dictionary is not used; 
SQL> alter database filename MF_PERSONNEL 
cont> add storage area JOB_EXTRA filename JOB_EXTRA; 
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Chapter 7
Known Problems and Restrictions
This chapter describes problems and restrictions relating to Oracle Rdb Release 7.1.2, and
includes workarounds where appropriate.
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7.1 Known Problems and Restrictions in All
Interfaces
This section describes known problems and restrictions that affect all interfaces for Release
7.1.

7.1.1 SYSTEM−F−INSFMEM Fatal Error With SHARED
MEMORY IS SYSTEM or LARGE MEMORY IS
ENABLED in Galaxy Environment

When using the GALAXY SUPPORT IS ENABLED feature in an OpenVMS Galaxy
environment, a %SYSTEM−F−INSFMEM, insufficient dynamic memory error may be
returned when mapping record caches or opening the database. One source of this problem
specific to a Galaxy configuration is running out of Galaxy Shared Memory regions. For
Galaxy systems, GLX_SHM_REG is the number of shared memory region structures
configured into the Galaxy Management Database (GMDB).

While the default value (for OpenVMS versions through at least V7.3−1) of 64 regions might
be adequate for some installations, sites using a larger number of databases or row caches
when the SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED features
are enabled may find the default insufficient.

If a %SYSTEM−F−INSFMEM, insufficient dynamic memory error is returned when mapping
record caches or opening databases, Oracle Corporation recommends that you increase the
GLX_SHM_REG parameter by 2 times the sum of the number of row caches and number of
databases that might be accessed in the Galaxy at one time. As the Galaxy shared memory
region structures are not very large, setting this parameter to a higher than required value does
not consume a significant amount of physical memory. It also may avoid a later reboot of the
Galaxy environment. This parameter must be set on all nodes in the Galaxy.

Galaxy Reboot Required

Changing the GLX_SHM_REG system parameter requires that the
OpenVMS Galaxy environment be booted from scratch. That is, all nodes
in the Galaxy must be shut down and then the Galaxy reformed by starting
each instance.

7.1.2 Oracle Rdb and OpenVMS ODS−5 Volumes

The OpenVMS Version 7.2 release introduced an Extended File Specifications feature, which
consists of two major components:

A new, optional, volume structure, ODS−5, which provides support for file names
that are longer and have a greater range of legal characters than in previous versions
of OpenVMS.

◊ 

Support for "deep" directory trees.◊ 
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ODS−5 was introduced primarily to provide enhanced file sharing capabilities for users of
Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS for OpenVMS), as
well as DCOM and JAVA applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and explicitly
requires ODS−2 (the traditional OpenVMS volume structure) file and directory name
conventions to be followed. Because of this knowledge, Oracle does not support any Oracle
Rdb database file components (including root files, storage area files, after image journal
files, record cache backing store files, database backup files, after image journal backup files,
etc.) that utilize any non−ODS−2 file naming features. For this reason, Oracle recommends
that Oracle Rdb database components not be located on ODS−5 volumes.

Oracle does support Oracle Rdb database file components on ODS−5 volumes provided that
all of these files and directories used by Oracle Rdb strictly follow the ODS−2 file and
directory name conventions. In particular, all file names must be specified entirely in
uppercase and "special" characters in file or directory names are forbidden.

7.1.3 Optimization of Check Constraints

Bug 1448422

When phrasing constraints using the "CHECK" syntax, a poorer strategy can be chosen by the
optimizer than when the same or similar constraint is phrased using referential integrity
(PRIMARY and FOREIGN KEY) constraints.

For example, I have two tables T1 and T2, both with one column, and I wish to ensure that all
values in table T1 exist in T2. Both tables have an index on the referenced field. I could use a
PRIMARY KEY constraint on T2 and a FOREIGN KEY constraint on T1.

SQL> alter table t2 
cont>   alter column f2 primary key not deferrable; 
SQL> alter table t1 
cont>   alter column f1 references t2 not deferrable; 

When deleting from the PRIMARY KEY table, Rdb will only check for rows in the
FOREIGN KEY table where the FOREIGN KEY has the deleted value. This can be seen as
an index lookup on T1 in the retrieval strategy.

SQL> delete from t2 where f2=1; 
Get     Temporary relation      Retrieval by index of relation T2 
  Index name  I2 [1:1] 
Index only retrieval of relation T1 
  Index name  I1 [1:1] 
%RDB−E−INTEG_FAIL, violation of constraint T1_FOREIGN1 caused operation to fail 

The failure of the constraint is not important. What is important is that Rdb efficiently detects
that only those rows in T1 with the same values as the deleted row in T2 can be affected.

It is necessary sometimes to define this type of relationship using CHECK constraints. This
could be necessary because the presence of NULL values in the table T2 precludes the
definition of a primary key on that table. This could be done with a CHECK constraint of the
form:
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SQL> alter table t1 
cont>   alter column f1 
cont>   check (f1 in (select * from t2)) not deferrable; 
SQL> delete from t2 where f2=1; 
Get     Temporary relation      Retrieval by index of relation T2 
  Index name  I2 [1:1] 
Cross block of 2 entries 
  Cross block entry 1 
    Index only retrieval of relation T1 
      Index name  I1 [0:0] 
  Cross block entry 2 
    Conjunct        Aggregate−F1    Conjunct 
    Index only retrieval of relation T2 
      Index name  I2 [0:0] 
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail 

The cross block is for the constraint evaluation. This retrieval strategy indicates that to
evaluate the constraint, the entire index on table T1 is being scanned and for each key, the
entire index in table T2 is being scanned. The behavior can be improved somewhat by using
an equality join condition in the select clause of the constraint:

SQL> alter table t1 
cont>   alter column f1 
cont>   check (f1 in (select * from t2 where f2=f1)) 
cont>      not deferrable; 

or: 

SQL> alter table t1 
cont>   alter column f1 
cont>   check (f1=(select * from t2 where f2=f1)) 
cont>      not deferrable; 

In both cases the retrieval strategy will look like this:

SQL> delete from t2 where f2=1; 
Get     Temporary relation      Retrieval by index of relation T2 
  Index name  I2 [1:1] 
Cross block of 2 entries 
  Cross block entry 1 
    Index only retrieval of relation T1 
      Index name  I1 [0:0] 
  Cross block entry 2 
    Conjunct        Aggregate−F1    Conjunct 
    Index only retrieval of relation T2 
      Index name  I2 [1:1] 
%RDB−E−INTEG_FAIL, violation of constraint T1_CHECK1 caused operation to fail 

While the entire T1 index is scanned, at least the value from T1 is used to perform an index
lookup on T2.

These restrictions result from semantic differences in the behavior of the "IN" and "EXISTS"
operators with respect to null handling, and the complexity of dealing with non−equality join
conditions.

To improve the performance of this type of integrity check on larger tables, it is possible to
use a series of triggers to perform the constraint check. The following triggers perform a
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similar check to the constraints above.

SQL> create trigger t1_insert 
cont>  after insert on t1 
cont>  when (not exists (select * from t2 where f2=f1)) 
cont>    (error) for each row; 
SQL> create trigger t1_update 
cont>  after update on t1 
cont>  when (not exists (select * from t2 where f2=f1)) 
cont>    (error) for each row; 
SQL> ! A delete trigger is not needed on T1. 
SQL> create trigger t2_delete 
cont>  before delete on t2 
cont>  when (exists (select * from t1 where f1=f2)) 
cont>    (error) for each row; 
SQL> create trigger t2_modify 
cont>  after update on t2 
cont>  referencing old as t2o new as t2n 
cont>  when (exists (select * from t1 where f1=t2o.f2)) 
cont>    (error) for each row; 
SQL> ! An insert trigger is not needed on T2. 

The strategy for a delete on T2 is now:

SQL> delete from t2 where f2=1; 
Aggregate−F1    Index only retrieval of relation T1 
  Index name  I1 [1:1] 
Temporary relation      Get     Retrieval by index of relation T2 
  Index name  I2 [1:1] 
%RDB−E−TRIG_INV_UPD, invalid update; encountered error condition defined for 
trigger 
−RDMS−E−TRIG_ERROR, trigger T2_DELETE forced an error 

The trigger strategy is the index only retrieval displayed first. You will note that the index on
T1 is used to examine only those rows that may be affected by the delete.

Care must be taken when using this workaround as there are semantic differences in the
operation of the triggers, the use of "IN" and "EXISTS", and the use of referential integrity
constraints.

This workaround is useful where the form of the constraint is more complex, and cannot be
phrased using referential integrity constraints. For example, if the application is such that the
value in table T1 may be spaces or NULL to indicate the absence of a value, the above
triggers could easily be modified to allow for these semantics.

7.1.4 Using Databases from Releases Earlier Than V6.0

You cannot convert or restore databases earlier than V6.0 directly to V7.1. The RMU Convert
command for V7.1 supports conversions from V6.0 through V7.0 only. If you have a V3.0
through V5.1 database, you must convert it to at least V6.0 and then convert it to V7.1. For
example, if you have a V4.2 database, convert it first to at least V6.0, then convert the
resulting database to V7.1.

If you attempt to convert a database created prior to V6.0 directly to V7.1, Oracle RMU
generates an error.
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7.1.5 Carryover Locks and NOWAIT Transaction
Clarification

In NOWAIT transactions, the BLAST (Blocking AST) mechanism cannot be used. For the
blocking user to receive the BLAST signal, the requesting user must request the locked
resource with WAIT (which a NOWAIT transaction does not do). Oracle Rdb defines a
resource called NOWAIT, which is used to indicate that a NOWAIT transaction has been
started. When a NOWAIT transaction starts, the user requests the NOWAIT resource. All
other database users hold a lock on the NOWAIT resource so that when the NOWAIT
transaction starts, all other users are notified with a NOWAIT BLAST. The BLAST causes
blocking users to release any carryover locks. There can be a delay before the transactions
with carryover locks detect the presence of the NOWAIT transaction and release their
carryover locks. You can detect this condition by examining the stall messages. If the
"Waiting for NOWAIT signal (CW)" stall message appears frequently, the application is
probably experiencing a decrease in performance, and you should consider disabling the
carryover lock behavior.

7.1.6 Unexpected Results Occur During Read−Only
Transactions on a Hot Standby Database

When using Hot Standby, it is typical to use the standby database for reporting, simple
queries, and other read−only transactions. If you are performing these types of read−only
transactions on a standby database, be sure you can tolerate a READ COMMIT level of
isolation. This is because the Hot Standby database might be updated by another transaction
before the read−only transaction finishes, and the data retrieved might not be what you
expected.

Because Hot Standby does not write to the snapshot files, the isolation level achieved on the
standby database for any read−only transaction is a READ COMMITED transaction. This
means that nonrepeatable reads and phantom reads are allowed during the read−only
transaction:

Nonrepeatable read operations: Allows the return of different results within a single
transaction when an SQL operation reads the same row in a table twice.
Nonrepeatable reads can occur when another transaction modifies and commits a
change to the row between transactions. Because the standby database will update the
data when it confirms a transaction has been committed, it is very possible to see an
SQL operation on a standby database return different results.

◊ 

Phantom read operations: Allows the return of different results within a single
transaction when an SQL operation retrieves a range of data values (or similar data
existence check) twice. Phantoms can occur if another transaction inserted a new
record and committed the insertion between executions of the range retrieval. Again,
because the standby database may do this, phantom reads are possible.

◊ 

Thus, you cannot rely on any data read from the standby database to remain unchanged. Be
sure your read−only transactions can tolerate a READ COMMIT level of isolation before you
implement procedures that read and use data from a standby database.
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7.1.7 Both Application and Oracle Rdb Using
SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service (possibly
through RTL routines such as LIB$WAIT), the application must ensure that the event being
waited for has actually occurred. Oracle Rdb uses $HIBER/$WAKE sequences for
interprocess communications particularly when the ALS (AIJ Log Server) feature is enabled.

The use of the $WAKE system service by Oracle Rdb can interfere with other users of
$HIBER (such as the routine LIB$WAIT) that do not check for event completion, possibly
causing a $HIBER to be unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence that avoids
continuing without a check for the operation (such as a delay or a timer firing) being
complete.

The following pseudo−code shows how a flag can be used to indicate that a timed−wait has
completed correctly. The wait does not complete until the timer has actually fired and set
TIMER_FLAG to TRUE. This code relies on ASTs being enabled.

ROUTINE TIMER_WAIT: 
    BEGIN 
    ! Clear the timer flag 
    TIMER_FLAG = FALSE 
    ! Schedule an AST for sometime in the future 
    STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST) 
    IF STAT <> SS$_NORMAL 
    THEN BEGIN 
         LIB$SIGNAL (STAT) 
         END 
    ! Hibernate.  When the $HIBER completes, check to make 
    ! sure that TIMER_FLAG is set indicating that the wait 
    ! has finished. 
    WHILE TIMER_FLAG = FALSE 
    DO  BEGIN 
        SYS$HIBER() 
        END 
    END 
ROUTINE TIMER_AST: 
    BEGIN 
    ! Set the flag indicating that the timer has expired 
    TIMER_FLAG = TRUE 
    ! Wake the main−line code 
    STAT = SYS$WAKE () 
    IF STAT <> SS$_NORMAL 
    THEN BEGIN 
         LIB$SIGNAL (STAT) 
         END 
    END 

The LIB$K_NOWAKE flag can be specified when using the OpenVMS LIB$WAIT routine
to allow an alternate wait scheme (using the $SYNCH system service) that can avoid
potential problems with multiple code sequences using the $HIBER system service.
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7.1.8 Bugcheck Dump Files with Exceptions at
COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files indicate an exception at
COSI_CHF_SIGNAL. This location is, however, not the address of the actual exception. The
actual exception occurred at the previous call frame on the stack (the one listed as the next
Saved PC after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","−F−","−E−" 

***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140 
%COSI−F−BUGCHECK, internal consistency failure 
Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318 
Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C 
Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC 
Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0 
      . 
      . 
      . 

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset 00000318. If
you have a bugcheck dump with an exception at COSI_CHF_SIGNAL, it is important to note
the next "Saved PC" because it is needed when working with Oracle Rdb Worldwide Support.

7.1.9 Read−only Transactions Fetch AIP Pages Too
Often

Oracle Rdb read−only transactions fetch Area Inventory Pages (AIP) to ensure that the logical
area has not been modified by an exclusive read−write transaction. This check is needed
because an exclusive read−write transaction does not write snapshot pages and these pages
may be needed by the read−only transaction.

Because AIPs are always stored in the RDB$SYSTEM area, reading the AIP pages could
represent a significant amount of I/O to the RDB$SYSTEM area for some applications.
Setting the RDB$SYSTEM area to read−only can avoid this problem, but it also prevents
other online operations that might be required by the application so it is not a viable
workaround in all cases.

This problem has been reduced in Oracle Rdb release 7.0. The AIP entries are now read once
and then are not read again unless they need to be. This optimization requires that the
carry−over locks feature be enabled (this is the default setting). If carry over locks are not
enabled, this optimization is not enabled and the behavior is the same as in previous releases.

7.1.10 Row Cache Not Allowed While Hot Standby
Replication is Active

The row cache feature may not be enabled on a hot standby database while replication is
active. The hot standby feature will not start if row cache is enabled.
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This restriction exists because rows in the row cache are accessed via logical dbkeys.
However, information transferred to the standby database via the after image journal facility
only contains physical dbkeys. Because there is no way to maintain rows in the cache via the
hot standby processing, the row cache must be disabled when the standby database is open
and replication is active.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the RMU Open
command. To open the hot standby database prior to starting replication, use the
ROW_CACHE=DISABLED qualifier on the RMU Open command.

7.1.11 Excessive Process Page Faults and other
Performance Considerations During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process performance. One
factor contributing to Oracle Rdb process page faulting is sorting operations. Common causes
of sorts include the SQL GROUP BY, ORDER BY, UNION, and DISTINCT clauses
specified for a query, and index creation operations. Defining the logical name
RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle Rdb sort operations are
occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the Oracle Rdb
images and does not generally call the routines in the OpenVMS run−time library. A copy of
the SORT32 code is used to provide stability between versions of Oracle Rdb and OpenVMS
and because Oracle Rdb calls the sort routines from executive processor mode which is
difficult to do using the SORT32 shareable image. SQL IMPORT and RMU Load operations
do, however, call the OpenVMS SORT run−time library.

At the beginning of a sort operation, the SORT code allocates some memory for working
space. The SORT code uses this space for buffers, in−memory copies of the data, and sorting
trees.

SORT does not directly consider the processes quotas or parameters when allocating memory.
The effects of WSQUOTA and WSEXTENT are indirect. At the beginning of each sort
operation, the SORT code attempts to adjust the process working set to the maximum
possible size using the $ADJWSL system service specifying a requested working set limit of
%X7FFFFFFF pages (the maximum possible). SORT then uses a value of 75% of the
returned working set for virtual memory scratch space. The scratch space is then initialized
and the sort begins.

The initialization of the scratch space generally causes page faults to access the pages newly
added to the working set. Pages that were in the working set already may be faulted out as the
new pages are faulted in. Once the sort operation completes and SORT returns back to Oracle
Rdb, the pages that may have been faulted out of the working set are likely to be faulted back
into the working set.

When a process working set is limited by the working set quota (WSQUOTA) parameter and
the working set extent (WSEXTENT) parameter is a much larger value, the first call to the
sort routines can cause many page faults as the working set grows. Using a value of
WSEXTENT that is closer to WSQUOTA can help reduce the impact of this case.
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With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter
PQL_MWSEXTENT equal to the WSMAX parameter. This means that all processes on the
system end up with WSEXTENT the same as WSMAX. Since that might be quite high,
sorting might result in excessive page faulting. You may want to explicitly set
PQL_MWSEXTENT to a lower value if this is the case on your system.

Sort work files are another factor to consider when tuning for Oracle Rdb sort operations.
When the operation can not be done in the available memory, SORT uses temporary disk files
to hold the data as it is being sorted. The Oracle Rdb7 Guide to Database Performance and
Tuning contains more detailed information about sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work files sort is
to use if work files are required. The default is 2 and the maximum number is 10. The work
files can be individually controlled by the SORTWORKn logical names (where n is from 0
through 9). You can increase the efficiency of sort operations by assigning the location of the
temporary sort work files to different disks. These assignments are made by using up to ten
logical names, SORTWORK0 through SORTWORK9.

Normally, SORT places work files in the your SYS$SCRATCH directory. By default,
SYS$SCRATCH is the same device and directory as the SYS$LOGIN location. Spreading
the I/O load over many disks improves efficiency as well as performance by taking advantage
of the system resources and helps prevent disk I/O bottlenecks. Specifying that a your work
files reside on separate disks permits overlap of the SORT read/write cycle. You may also
encounter cases where insufficient space exists on the SYS$SCRATCH disk device (for
example, while Oracle Rdb builds indexes for a very large table). Using the SORTWORK0
through SORTWORK9 logical names can help you avoid this problem.

Note that SORT uses the work files for different sorted runs, and then merges the sorted runs
into larger groups. If the source data is mostly sorted, then not every sort work file may need
to be accessed. This is a possible source of confusion because even with 10 sort work files, it
is possible to exceed the capacity of the first SORT file and the sort operation fails never
having accessed the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_WORK_FILE
do not affect or control the operation of sort. These logical names are used to control other
temporary space allocation within Oracle Rdb.

7.1.12 Control of Sort Work Memory Allocation

Oracle Rdb uses a built−in SORT32 package to perform many sort operations. Sometimes,
these sorts exhibit a significant performance problem when initializing work memory to be
used for the sort. This behavior can be experienced, for example, when a very large sort
cardinality is estimated, but the actual sort cardinality is small.

In rare cases, it may be desirable to artificially limit the sort package's use of work memory.
Two logicals have been created to allow this control. In general, there should be no need to
use either of these logicals and misuse of them can significantly impact sort performance.
Oracle recommends that these logicals be used carefully and sparingly.

The logical names are:
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Table 7−1 Sort Memory Logicals

Logical Definition

RDMS$BIND_SORT_MEMORY_WS_FACTOR

Specifies a percentage of the process's
working set limit to be used when
allocating sort memory for the built−in
SORT32 package. If not defined, the
default value is 75 (representing 75%),
the maximum value is 75 (representing
75%), and the minimum value is 2
(representing 2%). Processes with vary
large working set limits can sometimes
experience significant page faulting and
CPU consumption while initializing sort
memory. This logical name can restrict
the sort work memory to a percentage of
the processes maximum working set.

RDMS$BIND_SORT_MEMORY_MAX_BYTES

Specifies an absolute limit to be used
when allocating sort memory for the
built−in SORT32 package. If not
defined, the default value is unlimited
(up to 1GB), the maximum value is
2,147,483,647 and the minimum value is
32,768.

7.1.13 The Halloween Problem

When a cursor is processing rows selected from a table, it is possible that another separate
query can interfere with the retrieval of the cursor by modifying the index columns key values
used by the cursor.

For instance, if a cursor selects all EMPLOYEES with LAST_NAME >= 'M', it is likely that
the query will use the sorted index on LAST_NAME to retrieve the rows for the cursor. If an
update occurs during the processing of the cursor which changes the LAST_NAME of an
employee from "Mason" to "Rickard", then it is possible that that employee row will be
processed twice. First when it is fetched with name "Mason", and then later when it is
accessed by the new name "Rickard".

The Halloween problem is a well known problem in relational databases. Access strategies
which optimize the I/O requirements, such as Index Retrieval, can be subject to this problem.
Interference from queries by other sessions are avoided by locking and are controlled by the
ISOLATION LEVEL options in SQL, or the CONCURRENCY/CONSISTENCY options in
RDO/RDML.

Oracle Rdb avoids this problem if it knows that the cursors subject table will be updated. For
example, if the SQL syntax UPDATE ... WHERE CURRENT OF is used to perform updates
of target rows, or the RDO/RDML MODIFY statement uses the context variable for the
stream. Then the optimizer will choose an alternate access strategy if an update can occur
which may cause the Halloween problem. This can be seen in the access strategy in Example
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2−2 as a "Temporary relation" being created to hold the result of the cursor query.

When you use interactive or dynamic SQL, the UPDATE ... WHERE CURRENT OF or
DELETE ... WHERE CURRENT OF statements will not be seen until after the cursor is
declared and opened. In these environments, you must use the FOR UPDATE clause to
specify that columns selected by the cursor will be updated during cursor processing. This is
an indication to the Rdb optimizer so that it protects against the Halloween problem in this
case. This is shown in Example 2−1 and Example 2−2.

The following example shows that the EMP_LAST_NAME index is used for retrieval. Any
update performed will possibly be subject to the Halloween problem.

SQL> set flags 'strategy'; 
SQL> declare emp  cursor for 
cont> select * from employees where last_name >= 'M' 
cont> order by last_name; 
SQL> open emp; 
Conjunct        Get     Retrieval by index of relation EMPLOYEES 
  Index name  EMP_LAST_NAME [1:0] 
SQL> close emp; 

The following example shows that the query specifies that the column LAST_NAME will be
updated by some later query. Now the optimizer protects the EMP_LAST_NAME index used
for retrieval by using a "Temporary Relation" to hold the query result set. Any update
performed on LAST_NAME will now avoid the Halloween problem.

SQL> set flags 'strategy'; 
SQL> declare emp2 cursor for 
cont> select * from employees where last_name >= 'M' 
cont> order by last_name 
cont> for update of last_name; 
SQL> open emp2; 
Temporary relation      Conjunct        Get 
Retrieval by index of relation EMPLOYEES 
  Index name  EMP_LAST_NAME [1:0] 
SQL> close emp2; 

When you use the SQL precompiler, or the SQL module language compiler it can be
determined from usage that the cursor context will possibly be updated during the processing
of the cursor because all cursor related statements are present within the module. This is also
true for the RDML/RDBPRE precompilers when you use the DECLARE_STREAM and
START_STREAM statements and use the same stream context to perform all MODIFY and
ERASE statements.

The point to note here is that the protection takes place during the open of the SQL cursor (or
RDO stream), not during the subsequent UPDATE or DELETE.

If you execute a separate UPDATE query which modifies rows being fetched from the cursor
then the actual rows fetched will depend upon the access strategy chosen by the Rdb
optimizer. As the query is separate from the cursors query (i.e. doesn't reference the cursor
context), then the optimizer does not know that the cursor selected rows are potentially
updated and so cannot perform the normal protection against the Halloween problem.
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7.2 SQL Known Problems and Restrictions
This section describes known problems and restrictions for the SQL interface for release 7.1.

7.2.1 SET FLAGS CRONO_FLAG to be Removed

The SET FLAGS statement and RDMS$SET_FLAGS logical name currently accept the
obsolete keyword CRONO_FLAG. This keyword will be removed in the next release of
Oracle Rdb V7.1. Please update all scripts and applications to use the keyword
CHRONO_FLAG.

7.2.2 Interchange File (RBR) Created by Oracle Rdb
Release 7.1 Not Compatible With Previous Releases

To support the large number of new database attributes and objects, the protocol used by SQL
EXPORT and SQL IMPORT has been enhanced to support more protocol types. Therefore,
this format of the Oracle Rdb release 7.1 interchange files can no longer be read by older
versions of Oracle Rdb.

Oracle Rdb continues to provide upward compatibility for interchange files generated by
older versions.

Oracle Rdb has never supported backward compatibility, however, it was sometimes possible
to use an interchange file with an older version of IMPORT. However, this protocol change
will no longer permit this usage.

7.2.3 Unexpected NO_META_UPDATE Error Generated
by DROP MODULE ... CASCADE When Attached by
PATHNAME

The SQL DROP MODULE ... CASCADE statement may sometimes generate an unexpected
NO_META_UPDATE error. This occurs when the session attaches to a database by
PATHNAME. For example:

SQL> drop module m1 cascade; 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−F−OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure) 
−RDMS−E−MODNOTDEL, module "M1" has not been deleted 

This error occurs because the CASCADE option is ignored because the Oracle
CDD/Repository does not support CASCADE. The workaround is to attach by FILENAME
and perform the metadata operation.

In a future release of Oracle Rdb, an informational message will be issued describing the
downgrade from CASCADE to RESTRICT in such cases.
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7.2.4 System Relation Change for International
Database Users

Due to an error in creating the RDB$FIELD_VERSIONS system relation, another system
relation, RDB$STORAGE_MAP_AREAS, cannot be accessed if the session character sets
are not set to DEC_MCS.

This problem prevents the new Oracle Rdb GUIs, specifically the Oracle Rdb Schema
Manager, from viewing indexes and storage maps from existing Oracle Rdb databases.

The problem can be easily corrected by executing the following SQL statement after
attaching to the database:

SQL> UPDATE RDB$FIELD_VERSIONS SET RDB$FIELD_SUB_TYPE = 32767 
cont> WHERE RDB$FIELD_NAME = 'RDB$AREA_NAME'; 

7.2.5 Single Statement LOCK TABLE is Not Supported
for SQL Module Language and SQL Precompiler

The new LOCK TABLE statement is not currently supported as a single statement within the
module language or embedded SQL language compiler.

Instead you must enclose the statement in a compound statement. That is, use BEGIN... END
around the statement as shown in the following example. This format provides all the syntax
and flexibility of LOCK TABLE.

This restriction does not apply to interactive or dynamic SQL.

The following extract from the module language listing file shows the reported error if you
use LOCK TABLE as a single statement procedure. The other procedure in the same module
is acceptable because it uses a compound statement that contains the LOCK TABLE
statement.

1 MODULE sample_test 
2 LANGUAGE C 
3 PARAMETER COLONS 
4 
5 DECLARE ALIAS FILENAME 'mf_personnel' 
6 
7 PROCEDURE a (SQLCODE); 
8 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE; 
%SQL−F−WISH_LIST, (1) Feature not yet implemented − LOCK TABLE requires compound 
statement 
9 
10 PROCEDURE b (SQLCODE); 
11 BEGIN 
12 LOCK TABLE employees FOR EXCLUSIVE WRITE MODE; 
13 END; 

To workaround this problem of using LOCK TABLE for SQL module language or embedded
SQL application, use a compound statement in an EXEC SQL statement.
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7.2.6 Restriction for CREATE STORAGE MAP
Statement on Table with Data

Oracle Rdb V7.0 added support that allows a storage map to be added to an existing table that
contains data. The Oracle Rdb7 Guide to Database Design and Definition describes this
feature and lists restrictions.

Oracle Rdb release 7.1 adds the restriction that the storage map cannot include a WITH
LIMIT clause for the storage area. The following example shows the resulting error:

SQL> create table MAP_TEST1 (a integer, b char(10)); 
SQL> create index MAP_TEST1_INDEX on MAP_TEST1 (a); 
SQL> insert into MAP_TEST1 (a, b) values (3, 'Third'); 
1 row inserted 
SQL> create storage map MAP_TEST1_MAP for MAP_TEST1 
cont> store using (a) in RDB$SYSTEM 
cont>     with limit of (10);                −− cannot use WITH LIMIT clause 
%RDB−E−NO_META_UPDATE, metadata update failed 
−RDMS−F−RELNOTEMPTY, table "MAP_TEST1" has data in it 
−RDMS−E−NOCMPLXMAP, can not use complex map for non−empty table 

7.2.7 Multistatement or Stored Procedures May Cause
Hangs

Long−running multistatement or stored procedures can cause other users in the database to
hang if the procedures obtain resources needed by those other users. Some resources obtained
by the execution of a multistatement or stored procedure are not released until the
multistatement or stored procedure finishes. Thus, any−long running multistatement or stored
procedure can cause other processes to hang. This problem can be encountered even if the
statement contains SQL COMMIT or ROLLBACK statements.

The following example demonstrates the problem. The first session enters an endless loop;
the second session attempts to backup the database but hangs forever.

Session 1: 

SQL> attach 'filename MF_PERSONNEL'; 
SQL> create function LIB$WAIT (in real by reference) 
cont> returns integer; 
cont> external name LIB$WAIT location 'SYS$SHARE:LIBRTL.EXE' 
cont> language general general parameter style variant; 
SQL> commit; 
        . 
        . 
        . 
$ SQL 
SQL> attach 'filename MF_PERSONNEL'; 
SQL> begin 
cont> declare :LAST_NAME LAST_NAME_DOM; 
cont> declare :WAIT_STATUS integer; 
cont> loop 
cont> select LAST_NAME into :LAST_NAME 
cont> from EMPLOYEES where EMPLOYEE_ID = '00164'; 
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cont> rollback; 
cont> set :WAIT_STATUS = LIBWAIT (5.0); 
cont> set transaction read only; 
cont> end loop; 
cont> end; 

Session 2: 

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL 

From a third session, you can see that the backup process is waiting 
for a lock held in the first session: 

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL 
    . 
    . 
    . 
Resource: nowait signal 

ProcessID Process Name        Lock ID  System ID Requested Granted 
−−−−−−−−− −−−−−−−−−−−−−−−     −−−−−−−−− −−−−−−−− −−−−−−−−− −−−−−−− 
20204383  RMU BACKUP.....     5600A476  00010001 CW        NL 
2020437B  SQL............     3B00A35C  00010001 PR        PR 

There is no workaround for this restriction. When the multistatement or stored procedure
finishes execution, the resources needed by other processes are released.

7.2.8 Use of Oracle Rdb from Shareable Images

If code in the image initialization routine of a shareable image makes any calls into Oracle
Rdb, through SQL or any other means, access violations or other unexpected behavior may
occur if Oracle Rdb images have not had a chance to do their own initialization.

To avoid this problem, applications must take one of the following steps:

Do not make Oracle Rdb calls from the initialization routines of shareable images.◊ 
Link in such a way that the RDBSHR.EXE image initializes first. You can do this by
placing the reference to RDBSHR.EXE and any other Oracle Rdb shareable images
last in the linker options file.

◊ 

This is not a bug; it is a restriction resulting from the way OpenVMS image activation works.
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7.3 Oracle RMU Known Problems and
Restrictions
This section describes known problems and restrictions for the RMU interface for release 7.1.

7.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been
Disabled

The MAX_FILE_SIZE option of the RMU/BACKUP/DISK_FILE qualifier for backup to
multiple disk files has been temporarily disabled since it creates corrupt RBF files if the
maximum file size in megabytes is exceeded and a new RBF file is created. It also does not
give a unique name to the new RBF file but creates an RBF file with the same name but a
new version number in the same disk directory. This will cause an RMU−F−BACFILCOR
error on the restore and the restore will not complete.

The multi−file disk backup and restore will succeed if this option is not used. If this option is
specified, a warning message is now output that this qualifier will be ignored.

The following example shows that the MAX_FILE_SIZE option, when used with the
/DISK_FILE qualifier on an RMU/BACKUP, will be ignored and a warning message will be
output.

$ RMU/BACKUP /ONLINE                    − 
             /NOCRC                     − 
             /NOLOG                     − 
             /NOINCREMENTAL             − 
             /QUIET_POINT               − 
             TEST_DB_DIR:TEST_DB 
  − 
BACKUP_DIR_1:TEST_DB/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,− 
BACKUP_DIR_2:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) ,− 
BACKUP_DIR_3:/DISK_FILE=(WRITER_THREADS=3,MAX_FILE_SIZE=10) 

%RMU−W−DISABLEDOPTION, The MAX_FILE_SIZE option is temporarily disabled 
        and will be ignored 

As a workaround to avoid this problem, do not specify the MAX_FILE_SIZE option with the
/DISK_FILE qualifier.

7.3.2 RMU Convert Fails When Maximum Relation ID is
Exceeded

If, when relation IDs are assigned to new system tables during an RMU Convert of an Oracle
Rdb V7.0 database to a V7.1 database, the maximum relation ID of 8192 allowed by Oracle
Rdb is exceeded, the fatal error %RMU−F−RELMAXIDBAD is displayed and the database is
rolled back to V70. Contact your Oracle support representative if you get this error. Note that
when the database is rolled back, the fatal error %RMU−F−CVTROLSUC is displayed to
indicate that the rollback was successful but caused by the detection of a fatal error and not
requested by the user.

7.3 Oracle RMU Known Problems and Restrictions 262



This condition only occurs if there are an extremely large number of tables defined in the
database or if a large number of tables were defined but have subsequently been deleted.

The following example shows both the %RMU−F−RELMAXIDBAD error message if the
allowed database relation ID maximum of 8192 is exceeded and the
%RMU−F−CVTROLSUC error message when the database has been rolled back to V7.0
since it cannot be converted to V7.1:

$rmu/convert mf_personnel 
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.1−00 
Are you satisfied with your backup of 
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of 
 any associated .aij files [N]? Y 
 %RMU−I−LOGCONVRT, database root converted to current structure level 
 %RMU−F−RELMAXIDBAD, ROLLING BACK CONVERSION − Relation ID exceeds maximum 
  8192 for system table RDB$RELATIONS 
 %RMU−F−CVTROLSUC, CONVERT rolled−back for 
  DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.0 

The following example shows the normal case when the maximum allowed relation ID is not
exceeded:

$rmu/convert mf_personnel 
%RMU−I−RMUTXT_000, Executing RMU for Oracle Rdb V7.1−00 
Are you satisfied with your backup of 
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 and your backup of 
 any associated .aij files [N]? Y 
%RMU−I−LOGCONVRT, database root converted to current structure level 
%RMU−S−CVTDBSUC, database DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 
 successfully converted from version V7.0 to V7.1 
%RMU−I−CVTCOMSUC, CONVERT committed for 
 DEVICE:[DIRECTORY]MF_PERSONNEL.RDB;1 to version V7.1 

7.3.3 RMU Unload /After_Journal Requires Accurate
AIP Logical Area Information

The RMU Unload /After_Journal command uses the on−disk area inventory pages (AIPs) to
determine the appropriate type of each logical area when reconstructing logical dbkeys for
records stored in mixed−format storage areas. However, the logical area type information in
the AIP is generally unknown for logical areas created prior to Oracle Rdb release 7.0.1. If
the RMU Unload /After_Journal command cannot determine the logical area type for one or
more AIP entries, a warning message is displayed for each such area and may ultimately
return logical dbkeys with a 0 (zero) area number for records stored in mixed−format storage
areas.

In order to update the on−disk logical area type in the AIP, the RMU Repair utility must be
used. The INITIALIZE=LAREA_PARAMETERS=optionfile qualifier option file can be
used with the TYPE qualifier. For example, to repair the EMPLOYEES table of the
MF_PERSONNEL database, you would create an options file that contains the following
line:

EMPLOYEES /TYPE=TABLE
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For partitioned logical areas, the AREA=name qualifier can be used to identify the specific
storage areas that are to be updated. For example, to repair the EMPLOYEES table of the
MF_PERSONNEL database for the EMPID_OVER storage area only, you would create an
options file that contains the following line:

EMPLOYEES /AREA=EMPID_OVER /TYPE=TABLE

The TYPE qualifier specifies the type of a logical area. The following keywords are allowed:

TABLE
Specifies that the logical area is a data table. This would be a table created using the
SQL CREATE TABLE syntax.

◊ 

B−TREE
Specifies that the logical area is a B−tree index. This would be an index created using
the SQL CREATE INDEX TYPE IS SORTED syntax.

◊ 

HASH
Specifies that the logical area is a hash index. This would be an index created using
the SQL CREATE INDEX TYPE IS HASHED syntax.

◊ 

SYSTEM
Specifies that the logical area is a system record that is used to identify hash buckets.
Users cannot explicitly create these types of logical areas.

Note

This type should NOT be used for the RDB$SYSTEM logical areas.
This type does NOT identify system relations.

◊ 

BLOB
Specifies that the logical area is a BLOB repository.

◊ 

There is no explicit error checking of the type specified for a logical area. However, an
incorrect type may cause the RMU Unload /After_Journal command to be unable to correctly
return valid, logical dbkeys.

7.3.4 Do Not Use HYPERSORT with RMU Optimize
After_Journal Command

The OpenVMS Alpha V7.1 operating system introduced the high−performance Sort/Merge
utility (also known as HYPERSORT). This utility takes advantage of the OpenVMS Alpha
architecture to provide better performance for most sort and merge operations.

The high−performance Sort/Merge utility supports a subset of the SOR routines.
Unfortunately, the high−performance Sort/Merge utility does not support several of the
interfaces used by the RMU Optimize After_Journal command. In addition, the
high−performance Sort/Merge utility reports no error or warning when being called with the
unsupported options used by the RMU Optimize After_Journal command.

Because of this, the use of the high−performance Sort/Merge utility is not supported for the
RMU Optimize After_Journal command. Do not define the logical name SORTSHR to
reference HYPERSORT.EXE.
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7.3.5 Changes in EXCLUDE and INCLUDE Qualifiers
for RMU Backup

The RMU Backup command no longer accepts both the Include and Exclude qualifiers in the
same command. This change removes the confusion over exactly what gets backed up when
Include and Exclude are specified on the same line, but does not diminish the capabilities of
the RMU Backup command.

To explicitly exclude some storage areas from a backup, use the Exclude qualifier to name the
storage areas to be excluded. This causes all storage areas to be backed up except for those
named by the Exclude qualifier.

Similarly, the Include qualifier causes only those storage areas named by the qualifier to be
backed up. Any storage area not named by the Include qualifier is not backed up. The
Noread_only and Noworm qualifiers continue to cause read−only storage areas and WORM
storage areas to be omitted from the backup even if these areas are explicitly listed by the
Include qualifier.

Another related change is in the behavior of EXCLUDE=*. In previous versions,
EXCLUDE=* caused all storage areas to be backed up. Beginning with V7.1, EXCLUDE=*
causes only a root backup to be done. A backup created by using EXCLUDE=* can be used
only by the RMU Restore Only_Root command.

7.3.6 RMU Backup Operations Should Use Only One
Type of Tape Drive

When using more than one tape drive for an RMU Backup command, all of the tape drives
must be of the same type (for example, all the tape drives must be TA90s or TZ87s or
TK50s). Using different tape drive types (for example, one TK50 and one TA90) for a single
database backup operation may make database restoration difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a backup
operation, but is not able to detect all invalid cases and expects that all tape drives for a
backup are of the same type.

As long as all of the tapes used during a backup operation can be read by the same type of
tape drive during a restore operation, the backup is likely valid. This may be the case, for
example, when using a TA90 and a TA90E.

Oracle Corporation recommends that, on a regular basis, you test your backup and recovery
procedures and environment using a test system. You should restore the database and then
recover using AIJs to simulate failure recovery of the production system.

Consult the Oracle Rdb7 Guide to Database Maintenance, the Oracle Rdb7 Guide to Database
Design and Definition, and the Oracle RMU Reference Manual for additional information
about Oracle Rdb backup and restore operations.
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7.3.7 RMU/VERIFY Reports PGSPAMENT or
PGSPMCLST Errors

RMU/VERIFY may sometimes report PGSPAMENT or PGSPMCLST errors when verifying
storage areas. These errors indicate that the Space Area Management (SPAM) page fullness
threshold for a particular data page does not match the actual space usage on the data page.
For a further discussion of SPAM pages, consult the Oracle Rdb7 Guide to Database
Maintenance.

In general, these errors will not cause any adverse affect on the operation of the database.
There is potential for space on the data page to not be totally utilized, or for a small amount of
extra I/O to be expended when searching for space in which to store new rows. But unless
there are many of these errors then the impact should be negligible.

It is possible for these inconsistencies to be introduced by errors in Oracle Rdb. When those
cases are discovered, Oracle Rdb is corrected to prevent the introduction of the
inconsistencies. It is also possible for these errors to be introduced during the normal
operation of Oracle Rdb. The following scenario can leave the SPAM pages inconsistent:

A process inserts a row on a page, and updates the threshold entry on the
corresponding SPAM page to reflect the new space utilization of the data page. The
data page and SPAM pages are not flushed to disk.

1. 

Another process notifies the first process that it would like to access the SPAM page
being held by the process. The first process flushes the SPAM page changes to disk
and releases the page. Note that it has not flushed the data page.

2. 

The first process then terminates abnormally (for example, from the DCL
STOP/IDENTIFICATION command). Since that process never flushed the data page
to disk, it never wrote the changes to the Recovery Unit Journal (RUJ) file. Since
there were no changes in the RUJ file for that data page then the Database Recovery
(DBR) process did not need to roll back any changes to the page. The SPAM page
retains the threshold update change made above even though the data page was never
flushed to disk.

3. 

While it would be possible to create mechanisms to ensure that SPAM pages do not become
out of synch with their corresponding data pages, the performance impact would not be
trivial. Since these errors are relatively rare and the impact is not significant, then the
introduction of these errors is considered to be part of the normal operation of Oracle Rdb. If
it can be proven that the errors are not due to the scenario above, then Oracle Product Support
should be contacted.

PGSPAMENT and PGSPMCLST errors may be corrected by doing any one of the following
operations:

Recreate the database by performing:
SQL EXPORT1. 
SQL DROP DATABASE2. 
SQL IMPORT3. 

◊ 

Recreate the database by performing:
RMU/BACKUP1. 
SQL DROP DATABASE2. 
RMU/RESTORE3. 

◊ 
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Repair the SPAM pages by using the RMU/REPAIR command. Note that the
RMU/REPAIR command does not write its changes to an after−image journal (AIJ)
file. Therefore, Oracle recommends that a full database backup be performed
immediately after using the RMU/REPAIR command.
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7.4 Known Problems and Restrictions in
All Interfaces for Release 7.0 and Earlier
The following problems and restrictions from release 7.0 and earlier still exist.

7.4.1 Converting Single−File Databases

Because of a substantial increase in the database root file information for V7.0, you
should ensure that you have adequate disk space before you use the RMU Convert
command with single−file databases and V7.0 or higher.

The size of the database root file of any given database increases a minimum of 13
blocks and a maximum of 597 blocks. The actual increase depends mostly on the
maximum number of users specified for the database.

7.4.2 Row Caches and Exclusive Access

If a table has a row−level cache defined for it, the Row Cache Server (RCS) may
acquire a shared lock on the table and prevent any other user from acquiring a
Protective or Exclusive lock on that table.

7.4.3 Exclusive Access Transactions May
Deadlock with RCS Process

If a table is frequently accessed by long running transactions that request
READ/WRITE access reserving the table for EXCLUSIVE WRITE and if the table
has one or more indexes, you may experience deadlocks between the user process and
the Row Cache Server (RCS) process.

There are at least three suggested workarounds to this problem:

Reserve the table for SHARED WRITE⋅ 
Close the database and disable row cache for the duration of the exclusive
transaction

⋅ 

Change the checkpoint interval for the RCS process to a time longer than the
time required to complete the batch job and then trigger a checkpoint just
before the batch job starts. Set the interval back to a smaller interval after the
checkpoint completes.

⋅ 

7.4.4 Strict Partitioning May Scan Extra Partitions

When you use a WHERE clause with the less than (<) or greater than (>) operator
and a value that is the same as the boundary value of a storage map, Oracle Rdb scans
extra partitions. A boundary value is a value specified in the WITH LIMIT OF
clause. The following example, executed while the logical name
RDMS$DEBUG_FLAGS is defined as "S", illustrates the behavior:
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ATTACH 'FILENAME MF_PERSONNEL'; 
CREATE TABLE T1 (ID INTEGER, LAST_NAME CHAR(12), FIRST_NAME CHAR(12)); 
CREATE STORAGE MAP M FOR T1 PARTITIONING NOT UPDATABLE 
 STORE USING (ID) 
 IN EMPIDS_LOW WITH LIMIT OF (200) 
 IN EMPIDS_MID WITH LIMIT OF (400) 
 OTHERWISE IN EMPIDS_OVER; 
INSERT INTO T1 VALUES (150,'Boney','MaryJean'); 
INSERT INTO T1 VALUES (350,'Morley','Steven'); 
INSERT INTO T1 VALUES (300,'Martinez','Nancy'); 
INSERT INTO T1 VALUES (450,'Gentile','Russ'); 
SELECT * FROM T1 WHERE ID > 400; 
Conjunct Get Retrieval sequentially of relation T1 
Strict Partitioning: part 2 3 
ID LAST_NAME FIRST_NAME 
450 Gentile Russ 
1 row selected 

In the previous example, partition 2 does not need to be scanned. This does not affect
the correctness of the result. Users can avoid the extra scan by using values other than
the boundary values.

7.4.5 Restriction When Adding Storage Areas with
Users Attached to Database

If you try to interactively add a new storage area where the page size is less than the
existing page size and the database has been manually opened or users are active, the
add operation fails with the following error:

%RDB−F−SYS_REQUEST, error from system services request 
−RDMS−F−FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1 
−SYSTEM−W−ACCONFLICT, file access conflict 

You can make this change only when no users are attached to the database and, if the
database is set to OPEN IS MANUAL, the database is closed. Several internal Oracle
Rdb data structures are based on the minimum page size and these structures cannot
be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ, any recovery
scenario fails. Note also that if you use .aij files, you must backup the database and
restart after−image journaling because this change invalidates the current AIJ
recovery.

7.4.6 Support for Single−File Databases to Be
Dropped in a Future Release

Oracle Rdb currently supports both single−file and multifile databases on all
platforms. However, single−file databases will not be supported in a future release of
Oracle Rdb. At that time, Oracle Rdb will provide the means to easily convert
single−file databases to multifile databases.

Oracle Rdb recommends that users with single−file databases perform the following
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actions:

Use the Oracle RMU commands, such as Backup and Restore, to make
copies, backup, or move single−file databases. Do not use operating system
commands to copy, back up, or move databases.

⋅ 

Create new databases as multifile databases even though single−file
databases are supported.

⋅ 

7.4.7 Multiblock Page Writes May Require Restore
Operation

If a node fails while a multiblock page is being written to disk, the page in the disk
becomes inconsistent, and is detected immediately during failover. (Failover is the
recovery of an application by restarting it on another computer.) The problem is rare,
and occurs because only single−block I/O operations are guaranteed by OpenVMS to
be written atomically. This problem has never been reported by any customer and
was detected only during stress tests in our labs.

Correct the page by an area−level restore operation. Database integrity is not
compromised, but the affected area is not available until the restore operation
completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required.

7.4.8 Replication Option Copy Processes Do Not
Process Database Pages Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly Data
Distributor) begins running after an application has begun modifying the database,
the copy processes catch up to the application and are not able to process database
pages that are logically ahead of the application in the RDB$CHANGES system
relation. The copy processes all align waiting for the same database page and do not
move on until the application has released it. The performance of each copy process
degrades because it is being paced by the application.

When a copy process completes updates to its respective remote database, it updates
the RDB$TRANSFERS system relation and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding up any
database updates until the deletion process is complete. The application stalls while
waiting for the RDB$CHANGES table. The resulting contention for
RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

This is a known restriction in V4.0 and higher. Oracle Rdb uses page locks as latches.
These latches are held only for the duration of an action on the page and not to the
end of transaction. The page locks also have blocking asynchronous system traps
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(ASTs) associated with them. Therefore, whenever a process requests a page lock, the
process holding that page lock is sent a blocking AST (BLAST) by OpenVMS. The
process that receives such a blocking AST queues the fact that the page lock should
be released as soon as possible. However, the page lock cannot be released
immediately.

Such work requests to release page locks are handled at verb commit time. An Oracle
Rdb verb is an Oracle Rdb query that executes atomically, within a transaction.
Therefore, verbs that require the scan of a large table, for example, can be quite long.
An updating application does not release page locks until its verb has completed.

The reasons for holding on to the page locks until the end of the verb are fundamental
to the database management system.
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7.5 SQL Known Problems and
Restrictions for Oracle Rdb Release 7.0
and Earlier
The following problems and restrictions from Oracle Rdb Release 7.0 and earlier still
exist.

7.5.1 SQL Does Not Display Storage Map
Definition After Cascading Delete of Storage Area

When you drop a storage area using the CASCADE keyword and that storage area is
not the only area to which the storage map refers, the SHOW STORAGE MAP
statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1 
     DEGREES_MAP1 
 For Table:             DEGREES1 
 Compression is:        ENABLED 
 Partitioning is:       NOT UPDATABLE 
 Store clause:          STORE USING (EMPLOYEE_ID) 
            IN DEG_AREA WITH LIMIT OF ('00250') 
             OTHERWISE IN DEG_AREA2 

SQL> DISCONNECT DEFAULT; 
SQL> −− Drop the storage area, using the CASCADE keyword. 
SQL> ALTER DATABASE FILENAME MF_PERSONNEL 
cont> DROP STORAGE AREA DEG_AREA CASCADE; 
SQL> −− Display the storage map definition. 
SQL> ATTACH 'FILENAME MF_PERSONNEL'; 
SQL> SHOW STORAGE MAP DEGREES_MAP1 
DEGREES_MAP1 For Table: DEGREES1 
Compression is: ENABLED 
Partitioning is: NOT UPDATABLE 

The other storage area, DEG_AREA2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map
qualifier to see the mapping.

7.5.2 ARITH_EXCEPT or Incorrect Results Using
LIKE IGNORE CASE

When you use LIKE...IGNORE CASE, programs linked under Oracle Rdb V4.2 and
V5.1, but run under higher versions of Oracle Rdb, may result in incorrect results or
%RDB−E−ARITH_EXCEPT exceptions.
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To work around the problem, avoid using IGNORE CASE with LIKE or recompile
and relink under a higher version (V6.0 or higher.)

7.5.3 Different Methods of Limiting Returned
Rows from Queries

You can establish the query governor for rows returned from a query by using either
the SQL SET QUERY LIMIT statement or a logical name. This note describes the
differences between the two mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name to a small value, the
query often fails with no rows returned regardless of the value assigned to the logical.
The following example demonstrates setting the limit to 10 rows and the resulting
failure:

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10 
$ SQL$ 
SQL> ATTACH 'FILENAME MF_PERSONNEL'; 
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES; 
%RDB−F−EXQUOTA, Oracle Rdb runtime quota exceeded 
−RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached 

Interactive SQL must load its metadata cache for the table before it can process the
SELECT statement. In this example, interactive SQL loads its metadata cache to
allow it to check that the column EMPLOYEE_ID really exists for the table. The
queries on the Oracle Rdb system relations RDB$RELATIONS and
RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it. Raising the
limit to a number less than 100 (the cardinality of EMPLOYEES) but more than the
number of columns in EMPLOYEES (that is, the number of rows to read from the
RDB$RELATION_FIELDS system relation) is sufficient to read each column
definition.

To see an indication of the queries executed against the system relations, define the
RDMS$DEBUG_FLAGS logical name as "S" or "B".

If you set the row limit using the SQL SET QUERY statement and run the same
query, it returns the number of rows specified by the SQL SET QUERY statement
before failing:

 SQL> ATTACH 'FILENAME MF_PERSONNEL'; 
 SQL> SET QUERY LIMIT ROWS 10; 
 SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES; 
 EMPLOYEE_ID 
 00164 
 00165 
    . 
    . 
    . 
 00173 
 %RDB−E−EXQUOTA, Oracle Rdb runtime quota exceeded 
 −RDMS−E−MAXRECLIM, query governor maximum limit of rows has been reached 
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The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and module processor
command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT. They may limit more queries than are obvious.
This is important when using 4GL tools, the SQL precompiler, the SQL module
processor, and other interfaces that read the Oracle Rdb system relations as part of
query processing.

7.5.4 Suggestions for Optimal Use of SHARED
DATA DEFINITION Clause for Parallel Index
Creation

The CREATE INDEX process involves the following steps:

Process the metadata.1. 
Lock the index name.
Because new metadata (which includes the index name) is not written to disk
until the end of the index process, Oracle Rdb must ensure index name
uniqueness across the database during this time by taking a special lock on
the provided index name.

2. 

Read the table for sorting by selected index columns and ordering.3. 
Sort the key data.4. 
Build the index (includes partitioning across storage areas).5. 
Write new metadata to disk.6. 

Step 6 is the point of conflict with other index definers because the system relation
and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

⋅ 

By assigning the location of the temporary sort work files SORTWORK0,
SORTWORK1, ... , SORTWORK9 to different disks for each parallel
process that issues the SHARED DATA DEFINITION statement, you can
increase the efficiency of sort operations. This minimizes any possible disk
I/O bottlenecks and allows overlap of the SORT read/write cycle.

⋅ 

If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk I/O savings. That is, pages

⋅ 
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are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the I/O load on the table.
If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name or
the NUMBER OF BUFFERS IS clause in SQL to change the number of
buffers).

⋅ 

To distribute the disk I/O load, store the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes results in contention during the index creation (Step 5) for SPAM
pages.

⋅ 

Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

⋅ 

Even though snapshot I/O should be minimal, consider disabling snapshots
during parallel index creation.

⋅ 

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to
determine the appropriate working set values for each process to minimize
excessive paging activity. In particular, avoid using working set parameters
where the difference between WSQUOTA and WSEXTENT is large. The
SORT utility uses the difference between these two values to allocate scratch
virtual memory. A large difference (that is, the requested virtual memory
grossly exceeds the available physical memory) may lead to excessive page
faulting.

⋅ 

The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or I/O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

⋅ 

Using the SHARED DATA DEFINITION clause on a single−file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

⋅ 

The following table displays the elapsed time benefit when creating multiple indexes
in parallel with the SHARED DATA DEFINITION clause. The table shows the
elapsed time for ten parallel process index creations (Index1, Index2, ... Index10) and
one process with ten sequential index creations (All10). In this example, global
buffers are enabled and the number of buffers is 500. The longest time for a parallel
index creation is Index7 with an elapsed time of 00:02:34.64, compared to creating
ten indexes sequentially with an elapsed time of 00:03:26.66. The longest single
parallel create index elapsed time is shorter than the elapsed time of creating all ten of
the indexes serially.

Table 7−2 Elapsed Time for Index Creations

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96
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Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All10 00:03:26.66

7.5.5 Side Effect When Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called is also
called by a stored function during the calculation of an argument value, passed
arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

SQL> create module M 
cont>     language SQL 
cont> 
cont>     procedure P (in :a integer, in :b integer, out :c integer); 
cont>     begin 
cont>     set :c = :a + :b; 
cont>     end; 
cont> 
cont>     function F () returns integer 
cont>     comment is 'expect F to always return 2'; 
cont>     begin 
cont>     declare :b integer; 
cont>     call P (1, 1, :b); 
cont>     trace 'returning ', :b; 
cont>     return :b; 
cont>     end; 
cont> end module; 
SQL> 
SQL> set flags 'TRACE'; 
SQL> begin 
cont> declare :cc integer; 
cont> call P (2, F(), :cc); 
cont> trace 'Expected 4, got ', :cc; 
cont> end; 
~Xt: returning 2 
~Xt: Expected 4, got 3 

The result as shown above is incorrect. The routine argument values are written to the
called routine's parameter area before complex expression values are calculated.
These calculations may (as in the example) overwrite previously copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for the
routine. The following example shows the workaround:

SQL> begin 
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cont> declare :bb, :cc integer; 
cont> set :bb = F(); 
cont> call P (2, :bb, :cc); 
cont> trace 'Expected 4, got ', :cc; 
cont> end; 
~Xt: returning 2 
~Xt: Expected 4, got 4 

This problem will be corrected in a future version of Oracle Rdb.

7.5.6 Considerations When Using Holdable
Cursors

If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may not
remain stable. That is, rows may be inserted, updated, and deleted by other users
because no locks are held on the rows selected by the holdable cursor after a commit
or rollback occurs. Moreover, depending on the access strategy, rows not yet fetched
may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in a
concurrent user environment:

If the access strategy forces Oracle Rdb to take a data snapshot, the data read
and cached may be stale by the time the cursor fetches the data.
For example, user 1 opens a cursor and commits the transaction. User 2
deletes rows read by user 1 (this is possible because the read locks are
released). It is possible for user 1 to report data now deleted and committed.

⋅ 

If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.
Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the
data that was fetched. However, the duplicates chain could be revised by the
time Oracle Rdb returns to using it.

⋅ 

Holdable cursors are a very powerful feature for read−only or predominantly
read−only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP to the
value 1 to force all hold cursors to fetch the result set into a cached data area. (The
cached data area appears as a "Temporary Relation" in the optimizer strategy
displayed by the SET FLAGS 'STRATEGY' statement or the
RDMS$DEBUG_FLAGS "S" flag.) This logical name helps to stabilize the cursor to
some degree.

| Contents

◊ 

Oracle® Rdb for OpenVMS

7.5.6 Considerations When Using Holdable Cursors 277


	Table of Contents
	Oracle® Rdb for OpenVMS
	Release Notes
	November 2003
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Document Structure
	Chapter 1Installing Oracle Rdb Release 7.1.2.1
	1.1 Alpha EV7 Processor Support
	1.2 Oracle Rdb V7.1 Version Numbering Enhancement
	1.3 Requirements
	1.4 Invoking VMSINSTAL
	1.5 Stopping the Installation
	1.6 After Installing Oracle Rdb
	1.7 Patches for OpenVMS V7.3-1
	1.8 Oracle Rdb Release 7.1.2.1.1 Optimized for Alpha EV56 (21164A Processor Chip) and Later Platforms
	1.8.1 AlphaServer 4000 EV56 299Mhz Not Supported by Oracle Rdb Release Optimized for Alpha EV56 Processor

	1.9 Maximum OpenVMS Version Check Added
	1.10 VMS$MEM_RESIDENT_USER Rights Identifier Required
	Chapter 2Software Errors Fixed in Oracle Rdb Release 7.1.2.1
	2.1 Software Errors Fixed That Apply to All Interfaces
	2.1.1 Query with shared expression in two predicates returns wrong result
	2.1.2 Memory Corruption When Using Explicit 2PC
	2.1.3 DBR Bugchecks at DBR$VALIDATE_OPT_PAGES + 000001C4

	2.2 Row Cache Errors Fixed
	2.2.1 RMU Online Backup Can Fail When Using the "Snapshots in Row Cache" feature

	Chapter 3Software Errors Fixed in Oracle Rdb Release 7.1.2
	3.1 Software Errors Fixed That Apply to All Interfaces
	3.1.1 Area Access Fails After Online Storage Area Creation
	3.1.2 Page Transfer Via Memory Feature Now Available
	3.1.3 UNION Query With Two Left Outer Joins in First Leg Returns Wrong Results
	3.1.4 Error %RDMS-E-NOSOL_FOUND in Full Outer Join Query
	3.1.5 Query With EXISTS Clause and COMPUTED BY Column Returns Wrong Results
	3.1.6 Bugcheck in DIO$FREE_CURRENT_LOCK for Sorted Ranked Indexes
	3.1.7 Illegal Page Count Error in the Dynamic Optimizer
	3.1.8 Ranked Index Overflow Node Corruption on Insert
	3.1.9 Incorrect Results From a Reverse Scan on a Ranked Index
	3.1.10 Restriction Removed for READ ONLY Transaction on Standby Database
	3.1.11 Bugcheck at PSIINDEX$FIND_ENTS_EXACT + 54
	3.1.12 AIJ Log Server Process May Loop or Bugcheck
	3.1.13 SYSTEM-F-NOIOCHAN Error
	3.1.14 ROLLBACK Not Appended to AIJ for Failed 2PC Transactions
	3.1.15 Bugcheck at LCK$MEMBIT_BLAST + 023C With Exception of COSI-F-IVLOCKID
	3.1.16 Bugcheck When Multiple Tables are Transitively Joined With IS NULL Filter
	3.1.17 Unexpected Error From GRANT and REVOKE
	3.1.18 Process Can Hang After SYS$FORCEX Issued
	3.1.19 Show Storage Map "Lists_Map" Partition Display Error
	3.1.20 Incorrect Cardinalities Calculated by CREATE DATABASE
	3.1.21 ALTER INDEX Fails With the RDMS-F-NOT_LARDY Error
	3.1.22 Cannot Drop Close Timer Database
	3.1.23 Outer ORDER BY Ignored in Favor of Inner ORDER BY Clause
	3.1.24 Query Using IN Clause With 16 Filter Predicates Runs Slower
	3.1.25 PIOUTL$BUILD_IORB Bugcheck Adding Mixed Format Storage Area
	3.1.26 Unexpected Bugcheck During CREATE SEQUENCE
	3.1.27 Bugcheck on Dropping of an Empty Sorted Ranked Index
	3.1.28 Index Estimation May Not Estimate the Most Useful Index First
	3.1.29 Premature Switch to Sequential Retrieval in the Dynamic Optimizer
	3.1.30 Poor Performance From Bulk Loads After 7.1.0.1
	3.1.31 RDMRLE Image Not Always Supplied During Installation
	3.1.32 SORT Consumes All Available Memory
	3.1.33 Unexpected Failure of the IDENTITY Clause in CREATE TABLE
	3.1.34 Unexpected Failure of INSERT for Table With IDENTITY After an IMPORT
	3.1.35 Unexpected Privileges Required Using VLM or SSB Features with OpenVMS Galaxy Support Enabled
	3.1.36 Bugchecks at PIO$FETCH + 00000360
	3.1.37 DBR Bugchecks at DBR$DDTM_RESOLVE + 000003F4
	3.1.38 Spurious CHECKSUM Errors Reading READ ONLY Areas with Global Buffers
	3.1.39 Additional Memory Utilized for Global Buffers Starting With Rdb Release 7.1.0.4
	3.1.40 Fields Added to Informational Table RDB$CACHES
	3.1.41 Page Locks Not Released When LOCKING IS PAGE LEVEL
	3.1.42 Potential Bugcheck Using VLM Global Buffers With Galaxy Support
	3.1.43 Incorrect Retrieval of Duplicates from Ranked Indexes
	3.1.44 ALTER TABLE Statement May Fail if RESERVING Clause Used for Transaction
	3.1.45 Processes Not Recovered After Node Failure
	3.1.46 DBR Bugchecks at PIO$COMPLETE + 000002E4
	3.1.47 Left Outer Join Query With CONCAT Function Returns Wrong Results
	3.1.48 RCS Bugchecks at DIOCCH$UNMARK_GRIC_ENT
	3.1.49 Query With Sum Function of Two Select Counts Bugchecks

	3.2 SQL Errors Fixed
	3.2.1 DECLARE LOCAL TEMPORARY TABLE Limited to 10 Tables Per Session
	3.2.2 Unexpected ACCVIO When Reporting Incompatible Character Set Assignments
	3.2.3 ALTER STORAGE MAP May Fail With PARTEXTS Error for LIST Storage Map
	3.2.4 Problems Corrected in ALTER INDEX ... BUILD PARTITION
	3.2.5 INSERT Into Table With an IDENTITY Column May Fail With RDB$_NO_PRIV Error
	3.2.6 IMPORT May Generate ACCVIO Exception During Import of a Module
	3.2.7 SELECT ... FOR UPDATE Now Supported by Oracle Rdb
	3.2.8 Unexpected Failure From DROP STORAGE AREA ... CASCADE Clause
	3.2.9 Create Module Declaring Integer Variable's Default With Cast Bugchecks
	3.2.10 Incorrect Unit for the DETECTED ASYNC PREFETCH THRESHOLD Option
	3.2.11 DROP CONSTRAINT Now Operates on Column and Table Constraint
	3.2.12 IVP or Other Failure With Dynamic SQL if SQL$INT is Installed /RESIDENT
	3.2.13 CREATE INDEX Would Fail With READ_ONLY_FIELD Error
	3.2.14 SQL Added Padding Spaces to Saved Source SQL Statement
	3.2.15 ALTER TABLE Caused AUTOMATIC UPDATE Columns to be Evaluated for All Rows
	3.2.16 SQL-F-NODBFILE When SQL Modules are Compiled With /CONNECT
	3.2.17 Concatenate Now Supports Non-character Values in ORACLE LEVEL2
	3.2.18 RDB-E-REQ_NO_TRANS With Multiple SQL Modules and Images

	3.3 RDO and RDML Errors Fixed
	3.3.1 RDML /DATE_TYPE Qualifier Default is Now NOEMPTY_RECORDS

	3.4 RMU Errors Fixed
	3.4.1 Could Not Import Statistics on Different Node
	3.4.2 RMU Extract Generates Incorrect ALTER TABLE ... ADD CONSTRAINT Syntax
	3.4.3 RMU/VERIFY/CONSTRAINTS Problems With Named Tables And Constraints
	3.4.4 RMU/BACKUP/PARALLEL/DISK_FILE Did Not Work Properly
	3.4.5 RMU/BACKUP/DISK_FILE Fails if too Many Writer Threads
	3.4.6 TRUNCATE TABLE and RMU /REPAIR Corruption Corrected
	3.4.7 AIJ Backup File May Not Allow Recovery of a Restored Database
	3.4.8 Domains Required for SQL_FUNCTION Not Output by RMU Extract
	3.4.9 RMU /RESTORE Bugchecks at LCK$STALL_FOR_ENQ + 0CC0
	3.4.10 Changes to RMU /CLOSE Behavior
	3.4.11 May Not be Able to Apply the Next AIJ After Doing RMU /RECOVER /RESOLVE /STATE Multiple Times
	3.4.12 RMU /EXTRACT /ITEM=DATABASE May Not Display Snapshot File Attributes
	3.4.13 Recovery of Empty Optimized AIJ Does Not Update the Sequence Number
	3.4.14 RMU /VERIFY Not Writing Constraint Verification Failure Warnings to /OUTPUT File
	3.4.15 RMU /COLLECT May Default to a READ WRITE Transaction
	3.4.16 RMU /CONVERT Failed if VMS$MEM_RESIDENT_USER Rights Identifier Not Held
	3.4.17 Multi-Disk File Restore Could Fail if READER_THREADS Exceeded One
	3.4.18 RMU Extract Not Extracting Modules Correctly When MATCH Option Used
	3.4.19 Recovery of Database With Fixed AIJs After Convert to V7.1 Could Lose Data
	3.4.20 Some Database Backup Files Created With LZSS Compression Could Not be Restored
	3.4.21 RMU Verify Access Violation Allocating Memory for Expanding a Storage Record

	3.5 LogMiner Errors Fixed
	3.5.1 LogMiner Elimination of Processing Unneeded AIJ Files
	3.5.2 Replication Option and LogMiner Features Active at the Same Time
	3.5.3 RMU /UNLOAD /AFTER_JOURNAL Created .RRD Content Clarification
	3.5.4 /TRANSACTION_TYPE Qualifier for RMU /UNLOAD /AFTER_JOURNAL

	3.6 Row Cache Errors Fixed
	3.6.1 Storage Area Grows Despite Row Erasure When Using Row Cache
	3.6.2 Logical Area Record Erasure Count Not Updated for Cached Rows
	3.6.3 Commit Performance Improvement With Row Cache Feature
	3.6.4 RMU /SET ROW_CACHE Command Updates

	3.7 RMU Show Statistics Errors Fixed
	3.7.1 RMU /SHOW STATISTICS Writes Invalid Configuration File
	3.7.2 RMU /SHOW STATISTICS /DEADLOCK_LOG Does Not Record First Deadlock Occurrence
	3.7.3 RMU /SHOW STATISTICS Row Cache Overview Integer Overflow
	3.7.4 RMU /SHOW STATISTICS "Device Information" Screen Bugchecks in Playback Mode
	3.7.5 RMU /SHOW STATISTICS Limiting Multi-Page Report
	3.7.6 RMU /SHOW STATISTICS Misleading Maximum Values After RESET or UNRESET
	3.7.7 Enhancement to Transaction Duration Display When Written to Report
	3.7.8 RMU /SHOW STATISTICS Bugcheck in KUTDIS$UPDATE_RS
	3.7.9 RMU /SHOW STATISTICS 95th Percentile Transaction Duration Less Than 0.40 Seconds
	3.7.10 "RUJ File Writes" Statistic Not Accurate
	3.7.11 RMU /SHOW STATISTICS Custom (Yanked) Value Double of Value Reported in Original Screen

	3.8 Hot Standby Errors Fixed
	3.8.1 Changes to RMU /REPLICATE AFTER START /BUFFERS Qualifier
	3.8.2 Standby Database Missing Updates if Master Not Manually Opened
	3.8.3 Starting LRS on Master Database Caused Shutdown

	3.9 Oracle Trace Errors Fixed
	3.9.1 Oracle Trace Did Not Collect for Oracle Rdb Release 7.1.1

	Chapter 4Enhancements
	4.1 Enhancements Provided in Oracle Rdb Release 7.1.2
	4.1.1 New NVL2 Expression
	4.1.2 SET DEFAULT CONSTRAINT MODE Enhancements
	4.1.3 New Dialect ORACLE LEVEL2 Added
	4.1.4 RMONSTOP71.COM Parameter for RMU /MONITOR STOP Command
	4.1.5 RMU/UNLOAD/AFTER_JOURNAL Output Flush
	4.1.6 RMU /SHOW STATISTICS Enhanced to Show Large Memory Setting
	4.1.7 Statistics Collection Performance Improvement for AlphaServer GS Systems
	4.1.8 RMU RECOVER Accepts Wildcard After-image Journal File Specifications and ORDER_AIJ_FILES Qualifier
	4.1.9 RMU/SHOW STATISTICS Page Dump Content and Format Enhancements
	4.1.10 Enhancement to Prestarted Transaction Timeout
	4.1.11 RDM$BIND_SNAP_QUIET_POINT Logical No Longer Used
	4.1.12 New SET CONTINUE CHARACTER Statement for Interactive SQL
	4.1.13 OPTIMIZE Clause Enhancements
	4.1.14 New Options for the OPTIMIZATION_LEVEL Qualifier
	4.1.15 SET OPTIMIZATION LEVEL Enhancements
	4.1.16 RMU Load Now Supports SELECTIVITY Option for OPTIMIZE Qualifier
	4.1.17 New Options Supported for LOGMINER SUPPORT Clause
	4.1.18 Changes to the IMPORT Command
	4.1.19 ALTER MODULE Statement
	4.1.20 New RENAME Statement
	4.1.21 New Warning Generated When Row Size Exceeds Row Cache Length
	4.1.22 Oracle Media Management V2.0 API for Oracle Rdb RMU
	4.1.22.1 Commands Accepting /LIBRARIAN
	4.1.22.2 Opaque Archive Application
	4.1.22.3 RMU Backup Streams
	4.1.22.4 Parallel Backup Operations
	4.1.22.5 Data Stream Naming Considerations
	4.1.22.6 /LIBRARIAN Parameters
	4.1.22.7 Logical Names To Access LIBRARIAN Application
	4.1.22.8 SQL/Services Required for RMU Parallel Backup
	4.1.22.9 Listing and Deleting Data Streams

	4.1.23 Sanity Checks Added to RMU /VERIFY to Check TSNs and CSNs
	4.1.24 RMU /CLOSE /WAIT /NOCLUSTER Now Allowed
	4.1.25 Native 64-bit Virtual Addressing for Row Caches
	4.1.25.1 Background
	4.1.25.2 64-bit Addressing
	4.1.25.3 No Application or Database Changes Required
	4.1.25.4 Deprecated Attributes
	4.1.25.5 Cache Size Limits
	4.1.25.6 Row Cache Feature Only
	4.1.25.7 System Parameters
	4.1.25.8 Additional Information

	4.1.26 Snapshots In Row Cache
	4.1.26.1 Background
	4.1.26.2 Configuration
	4.1.26.3 Space Reclaimation
	4.1.26.4 Objects in Mixed Format Areas
	4.1.26.5 SQL Syntax
	4.1.26.6 RMU Syntax
	4.1.26.7 Snapshot Cache Sizing
	4.1.26.8 Performance and Operational Considerations
	4.1.26.9 Statistics
	4.1.26.10 Importance of the After-Image Journal

	4.1.27 Performance Enhancements for RMU /RECOVER with Optimized After-Image Journals
	4.1.28 Enhancements to INSERT ... FILENAME for LIST OF BYTE VARYING Data
	4.1.29 Default for RMU CRC Qualifier Changed to /CRC = AUTODIN_II
	4.1.30 Index Estimation
	4.1.30.1 How Estimation Is Performed

	4.1.31 Hash Index Estimation
	4.1.32 New LIKE Clause Added to CREATE TABLE
	4.1.33 Enhancements to Statistical Functions
	4.1.34 RMU /VERIFY Enhanced to Detect Sequence Problems
	4.1.35 Determining Which Oracle Rdb Options Are Installed
	4.1.36 New Procedure RDB$IMAGE_VERSIONS.COM
	4.1.37 Oracle Rdb SGA API

	Chapter 5Improving Query Performance Using Sampled Selectivity
	5.1 Sampled Selectivity
	5.1.1 Improving Query Performance Using Sampled Selectivity
	5.1.2 Selectivity in the Optimization Process
	5.1.2.1 Fixed Selectivity Is Used by Default
	5.1.2.2 Fixed Selectivity Can Sometimes Be a Poor Predictor

	5.1.3 Introducing Sampled Selectivity
	5.1.3.1 Pros and Cons of the Different Selectivity Methods
	5.1.3.2 Requirements for Using Sampled Selectivity

	5.1.4 How to Enable the Various Selectivity Methods
	5.1.4.1 OPTIMIZE WITH Clause
	5.1.4.2 SET OPTIMIZATION LEVEL Statement
	5.1.4.3 The SELECTIVITY Debug Flag
	5.1.4.4 SQL Precompiled and SQL Module Language Code
	5.1.4.5 RMU/UNLOAD/OPTIMIZE

	5.1.5 Improving the Accuracy of Sampled Selectivity
	5.1.6 Details about the Sampled Selectivity Process
	5.1.7 Diagnostic Information about Selectivity Estimation
	5.1.7.1 How to Enable Diagnostic Output
	5.1.7.2 How to Disable Diagnostic Output
	5.1.7.3 Details about Selectivity Estimation Diagnostics
	5.1.7.4 Examples of Selectivity Estimation Diagnostics


	Chapter 6Documentation Corrections, Additions and Changes
	6.1 Documentation Corrections
	6.1.1 Character Set AL24UTFFSS
	6.1.2 Explanation of SQL$INT in a SQL Multiversion Environment and How to Redefine SQL$INT
	6.1.3 Documentation Omitted Several Reserved Words
	6.1.4 Additional Usage Notes for ALTER INDEX
	6.1.5 Using Databases from Releases Earlier Than V6.0
	6.1.6 Clarification of PREPARE Statement Behavior
	6.1.7 CREATE OUTLINE Supports Trigger, Constraint, Column and View Outlines
	6.1.8 New RMU/BACKUP Storage Area Assignment With Thread Pools
	6.1.9 DROP INDEX Now an Online Table Operation
	6.1.10 AUTOMATIC Clause Not Supported in ALTER TABLE ... ALTER COLUMN
	6.1.11 RDM$BIND_LOCK_TIMEOUT_INTERVAL Overrides the Database Parameter
	6.1.12 New Request Options for RDO, RDBPRE and RDB$INTERPRET

	6.2 Address and Phone Number Correction for Documentation
	6.3 Online Document Format and Ordering Information
	6.4 New and Changed Features in Oracle Rdb Release 7.1
	6.4.1 PERSONA is Supported in Oracle SQL/Services
	6.4.2 NEXTVAL and CURRVAL Pseudocolumns Can Be Delimited Identifiers
	6.4.3 Only=select_list Qualifier for the RMU Dump After_Journal Command

	6.5 Oracle Rdb7 and Oracle CODASYL DBMS Guide to Hot Standby Databases
	6.5.1 Restrictions Lifted on After-Image Journal Files
	6.5.2 Changes to RMU Replicate After_Journal ... Buffer Command
	6.5.3 Unnecessary Command in the Hot Standby Documentation
	6.5.4 Change in the Way RDMAIJ Server is Set Up in UCX
	6.5.5 CREATE INDEX Operation Supported for Hot Standby

	6.6 Oracle Rdb7 for OpenVMS Installation and Configuration Guide
	6.6.1 Suggestion to Increase GH_RSRVPGCNT Removed
	6.6.2 Prerequisite Software
	6.6.3 Defining the RDBSERVER Logical Name

	6.7 Guide to Database Design and Definition
	6.7.1 Lock Timeout Interval Logical Incorrect
	6.7.2 Example 4-13 and Example 4-14 Are Incorrect

	6.8 Oracle Rdb7 SQL Reference Manual
	6.8.1 Clarification of the DDLDONOTMIX Error Message
	6.8.2 Node Specification Allowed on Root FILENAME Clauses
	6.8.3 Incorrect Syntax Shown for Routine-Clause of the CREATE MODULE Statement
	6.8.4 Omitted SET Statements
	6.8.4.1 QUIET COMMIT
	6.8.4.2 COMPOUND TRANSACTIONS

	6.8.5 Size Limit for Indexes with Keys Using Collating Sequences
	6.8.6 Clarification of SET FLAGS Option DATABASE_PARAMETERS
	6.8.7 Incorrect Syntax for CREATE STORAGE MAP Statement
	6.8.8 Use of SQL_SQLCA Include File Intended for Host Language File
	6.8.9 Missing Information on Temporary Tables

	6.9 Oracle RMU Reference Manual, Release 7.0
	6.9.1 RMU Unload After_Journal Null Bit Vector Clarification
	6.9.2 New Transaction_Mode Qualifier for Oracle RMU Commands
	6.9.3 RMU Server After_Journal Stop Command
	6.9.4 Incomplete Description of Protection Qualifier for RMU Backup After_Journal Command
	6.9.5 RMU Extract Command Options Qualifier
	6.9.6 RDM$SNAP_QUIET_POINT Logical is Incorrect
	6.9.7 Using Delta Time with RMU Show Statistics Command

	6.10 Oracle Rdb7 Guide to Database Performance and Tuning
	6.10.1 Dynamic OR Optimization Formats
	6.10.2 Oracle Rdb Logical Names
	6.10.3 Waiting for Client Lock Message
	6.10.4 RDMS$TTB_HASH_SIZE Logical Name
	6.10.5 Error in Updating and Retrieving a Row by Dbkey Example 3-22
	6.10.6 Error in Calculation of Sorted Index in Example 3-46
	6.10.7 Documentation Error in Section C.7
	6.10.8 Missing Tables Descriptions for the RDBEXPERT Collection Class
	6.10.9 Missing Columns Descriptions for Tables in the Formatted Database
	6.10.10 A Way to Find the Transaction Type of a Particular Transaction Within the Trace Database
	6.10.11 Using Oracle TRACE Collected Data
	6.10.12 AIP Length Problems in Indexes that Allow Duplicates
	6.10.13 RDM$BIND_MAX_DBR_COUNT Documentation Clarification

	6.11 Oracle Rdb7 Guide to SQL Programming
	6.11.1 Location of Host Source File Generated by the SQL Precompiler
	6.11.2 Remote User Authentication
	6.11.3 Additional Information About Detached Processes

	6.12 Guide to Using Oracle SQL/Services Client APIs
	6.13 Updates to System Relations
	6.13.1 Clarification on Updates to the RDB$LAST_ALTERED Column for the RDB$DATABASE System Relation

	6.14 Error Messages
	6.14.1 Clarification of the DDLDONOTMIX Error Message

	Chapter 7Known Problems and Restrictions
	7.1 Known Problems and Restrictions in All Interfaces
	7.1.1 SYSTEM-F-INSFMEM Fatal Error With SHARED MEMORY IS SYSTEM or LARGE MEMORY IS ENABLED in Galaxy Environment
	7.1.2 Oracle Rdb and OpenVMS ODS-5 Volumes
	7.1.3 Optimization of Check Constraints
	7.1.4 Using Databases from Releases Earlier Than V6.0
	7.1.5 Carryover Locks and NOWAIT Transaction Clarification
	7.1.6 Unexpected Results Occur During Read-Only Transactions on a Hot Standby Database
	7.1.7 Both Application and Oracle Rdb Using SYS$HIBER
	7.1.8 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
	7.1.9 Read-only Transactions Fetch AIP Pages Too Often
	7.1.10 Row Cache Not Allowed While Hot Standby Replication is Active
	7.1.11 Excessive Process Page Faults and other Performance Considerations During Oracle Rdb Sorts
	7.1.12 Control of Sort Work Memory Allocation
	7.1.13 The Halloween Problem

	7.2 SQL Known Problems and Restrictions
	7.2.1 SET FLAGS CRONO_FLAG to be Removed
	7.2.2 Interchange File (RBR) Created by Oracle Rdb Release 7.1 Not Compatible With Previous Releases
	7.2.3 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ... CASCADE When Attached by PATHNAME
	7.2.4 System Relation Change for International Database Users
	7.2.5 Single Statement LOCK TABLE is Not Supported for SQL Module Language and SQL Precompiler
	7.2.6 Restriction for CREATE STORAGE MAP Statement on Table with Data
	7.2.7 Multistatement or Stored Procedures May Cause Hangs
	7.2.8 Use of Oracle Rdb from Shareable Images

	7.3 Oracle RMU Known Problems and Restrictions
	7.3.1 RMU/BACKUP MAX_FILE_SIZE Option Has Been Disabled
	7.3.2 RMU Convert Fails When Maximum Relation ID is Exceeded
	7.3.3 RMU Unload /After_Journal Requires Accurate AIP Logical Area Information
	7.3.4 Do Not Use HYPERSORT with RMU Optimize After_Journal Command
	7.3.5 Changes in EXCLUDE and INCLUDE Qualifiers for RMU Backup
	7.3.6 RMU Backup Operations Should Use Only One Type of Tape Drive
	7.3.7 RMU/VERIFY Reports PGSPAMENT or PGSPMCLST Errors

	7.4 Known Problems and Restrictions in All Interfaces for Release 7.0 and Earlier
	7.4.1 Converting Single-File Databases
	7.4.2 Row Caches and Exclusive Access
	7.4.3 Exclusive Access Transactions May Deadlock with RCS Process
	7.4.4 Strict Partitioning May Scan Extra Partitions
	7.4.5 Restriction When Adding Storage Areas with Users Attached to Database
	7.4.6 Support for Single-File Databases to Be Dropped in a Future Release
	7.4.7 Multiblock Page Writes May Require Restore Operation
	7.4.8 Replication Option Copy Processes Do Not Process Database Pages Ahead of an Application

	7.5 SQL Known Problems and Restrictions for Oracle Rdb Release 7.0 and Earlier
	7.5.1 SQL Does Not Display Storage Map Definition After Cascading Delete of Storage Area
	7.5.2 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
	7.5.3 Different Methods of Limiting Returned Rows from Queries
	7.5.4 Suggestions for Optimal Use of SHARED DATA DEFINITION Clause for Parallel Index Creation
	7.5.5 Side Effect When Calling Stored Routines
	7.5.6 Considerations When Using Holdable Cursors


