Oracle® Rdb7 for OpenVMS

Release Notes

Release 7.0.4

February 2000

ORACLE

Oracle Rdb7 Release Notes
Release 7.0.4
Copyright © 2000, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on
behalf of the US Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE

Programs delivered subject to the DOD FAR Supplement are ‘commercial computer software’ and
use, duplication and disclosure of the Programs including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs
delivered subject to the Federal Acquisition Regulations are 'restricted computer software’ and use,
duplication and disclosure of the Programs shall be subject to the restrictions in FAR 52.227-19,
Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle
Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-
safe, back up, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle disclaims liability for any damages caused by
such use of the Programs.

Oracle is a registered trademark, and Oracle7, Oracle Expert, Oracle Rally, Oracle Rdb, Oracle
SQL/Services, and Rdb7 are trademarks or registered trademarks of Oracle Corporation. All
other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Preface ...

Contents

1 Installing Oracle Rdb7 Release 7.0.4

1.1
1.2
1.3
1.4
15
1.6

ReqUIrEMENTS
Invoking VIMSINSTAL
Stopping the Installation
After Installing Oracle Rdb7
Alpha EV6 Processor Support Added
Maximum OpenVMS Version Check Added

2 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

2.1

211
2.1.2
2.13
214

2.15
2.16
2.1.7
2.1.8
2.1.9
2.1.10
2111
2.1.12
2.1.13
2.1.14

2.2
221

2.2.2

2.2.3

224

225
2.3

Software Errors Fixed That Apply to All Interfaces.

RMU/LOAD into Temporary Table
Divide by Zero Error in Query on Large Table.
Wrong Results With COUNT DISTINCT CASE
Bugcheck at RDMS$$RDMSCHEMA_UNLOAD_META+40 on Drop
Area With Cascade.
Unexpected 1/0 During DROP and TRUNCATE TABLE
Incorrect Rounding of Negative Numbers in the Round Function
Ignored Join Order Led to Poor Query Performance
GROUP BY Query on a Distinct Subquery Returns Wrong Results . . .
After Image Journal File Format Change
ORDER BY Ignored in Query With a Sub-select Statement.
Query With Sort/Forward Scan Instead of Reverse Scan Slows

DOWN .
Query With Selection Predicates Over UNION Legs Returns Wrong
ResUlts
Left Outer Join View Query With CASE Statement Returns Wrong
ReESUILSo
Query Slower Using Cross Strategy and Outline Fails to Restore to
Match . ..

SQL Errors Fixed

Unexpected UNSDATASS Error Reported by SQL Precompiler and
Module Languageot
SQL IMPORT No Longer Evaluates Table and Column Constraints
Unexpected INVACC_OUT_PARA Error Generated by CREATE
MODULE . ..
Changed Behavior for CAST of Date/Time Values With Seconds Field

SQL Rejects Queries Which Use Column Named VALUE

Oracle RMU Errors Fixed e

Xiii

il
WNNN R R

pRR
N R R P

NI\JI\)II\)I\)I\JI\J
oo~ pbowDdN

P
(o]

2-11
2-11
2-11
2-12

2-14
2-14

2.3.1 RMU Extract Has Enhanced Extract of Conditional Expressions

2.3.2 RMU/REPLICATE AFTER START Command Fails on TCP/IP With
Large Port Numbers
2.3.3 SHOW STATS Cannot Replay /OPTIONS=ROW_CACHE Input File
2.3.4 RMU/SHOW LOCKS Difficult to Identify Lock Conflict Culprit
2.3.5 RMU BACKUP to Tape Hung if Bad Checksum
2.3.6 RMU BACKUP to Tape Hung on QUIT Response to Wrong Label
MESSAJE . . . o e
2.3.7 RMU/REPAIR/INIT=FREE_PAGES/ABM Did Not Return an
ErrOr
2.3.8 Incorrect BADIDXREL Messages From Online RMU Verify
2.3.9 RMU VERIFY Did Not Find a .RDA File After an RMU MOVE
24 Row Cache Errors Fixed
24.1 Row Cache Server Operator Notification
24.2 Row Cache Did Not Avoid Certain Database Writes
2.4.3 RMU /CLOSE /WAIT Would Not Always Wait When Row Cache
Enabled
2.5 Hot Standby Errors Fixed
251 RMU/REPLICATE AFTER START Command Fails Due to Lost AlJ
e

3 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1
3.1 Software Errors Fixed That Apply to All Interfaces.

3.1.1 Leaf Cardinality Problem in Sorted Ranked Indexes
3.1.2 Corruption of Ranked Index Node During Duplicate Deletion
3.1.3 Deadlock on AIP Larea Sync,
3.1.4 Online ALTER STORAGE AREA Operations and Row Cache
3.15 Inconsistent Enforcement of RESERVE Limits
3.1.6 ABS Initialization of AlJ Journal Causes System Slowdown
3.1.7 Transaction Checkpoint Determination of Switchover or Backup.
3.1.8 Non-Update Read/Write Transactions Do Not Validate Checkpoint
Thresholds e
3.1.9 Lowercase Characters Cannot Be Used as Escape Character in a
LIKE Clause e
3.1.10 ACCVIO if RDM$BIND_STT_NETWORK_TRANSPORT Logical
Defined.
3.1.11 RMU/SHOW Statistic Cluster Collection Failure
3.1.12 Error Creating RUJ When Default RUJ Directory Does Not Exist . . .

3.1.13 Process May Stall in an Infinite Wait for a GBPT Slot Latch
3.1.14 RDMS-F-NOREQIDT Errorst
3.1.15 AlJ Work File Search List Capability
3.1.16 Failed Backup of Extensible AlJ Causes Gap in Sequence

NUMDEIS . . .
3.1.17 Improper Column Reference in CREATE TRIGGER Now Detected . . .
3.1.18 Bugcheck in DIOSFREE_CURRENT_LOCK
3.2 SQL Errors Fixed. e

3.2.1 Improved Optimization for NULLIF Expression with Subselect
3.2.2 Correct JOIN Syntax Generated Error and Bugcheck
3.2.3 Incorrect Results from Oracle7 Outer Join Syntax.
3.231 Outer JOINS . ..o
3.2.3.2 Outer Join Examples

WwWwwowowowwow

A WNNNRER PP

P
N

w
[|
N

Wwwwoww

[|
~No o oo g

W wwww

WNOOWWOmOoSNN

e el

3.24

3.25
3.2.6
3.2.7
3.2.8

3.2.9
3.2.10

3.2.11
3.2.12
3.2.13

3.3

3.3.1
3.3.2
3.3.3
3.34
3.35

3.3.6

3.3.7
3.3.8
3.4
34.1
3.5
351

3.5.2
3.6
3.6.1

MAPPING VALUES Not Supported for CREATE INDEX in

IMPORT . . .
SELECT Returns Incorrect Values for GROUP BY Queries.
Restrictions on CURRENT_TIMESTAMP Default Value Lifted
SQL Uses Read/Write Transactions Against Standby Database
Domain Constraints Did Not Support Function Calls Passing

VALUE . . .
CREATE VIEW May Fail on Large or Complex View Definition
Incomplete Support for Multischema Databases for Query

OULIINES . . . o
UNKNOWN_VAR Error Reported During Select from a View
SQL Module Language Compiler Fails Unexpectedly
ORDER BY Select Query from a View with ORDER BY on the Same
COMPUTED BY Column Returns Wrong Result

Oracle RMU Errors Fixed i

Lock ID Hidden by Stall Message in RMU/SHOW Statistics
Terminal Width Checked by RMU/SHOW Statistics
RMU/SHOW Statistic Physical-Area Event Creation Bugchecks
Ignore Row Caches when Writing RMU/SHOW Statistic Report
RMU/LOAD from a Record-Oriented Device Caused RMS-F-10P
Error ..
RMU/EXTRACT Sometimes Bugchecks when Processing Many
STOrage ANBaS . . . ottt
Problem in Reporting Recovered AlJ Sequence Number
Truncate Table Could Generate RMU/VERIFY Errors

Row Cache Errors Fixed i

Row Cache of One Slot Causes Loop i

Hot Standby Errors Fixed i,

Stopping Hot Standby on Standby then Master Hangs Standby for 15
MINUEES
Monitor ENQLM Minimum Increased to 32767

Oracle Trace Errors Fixed e

Incorrect Completion Status Reported by Oracle Trace

4 Documentation Corrections

4.1

41.1
4.1.2
4.1.3
41.4
4.1.5

4.1.6
4.1.7
4.1.8

419
4.1.10
41.10.1
4.1.10.2
4.1.11

4.1.12

Documentation Corrections

Compressed Sorted Index Entry Stored in Incorrect Storage Area . ..
Partition Clause is Optional on CREATE STORAGE MAP
Oracle Rdb Logical Names
Waiting for Client Lock Message
Documentation Error in Oracle Rdb7 Guide to Database Performance
and TUNING e e
SET FLAGS Option IGNORE_OUTLINE Not Available
SET FLAGS Option INTERNALS Not Described.
Documentation for VALIDATE_ROUTINE Keyword for SET
FLAGS . . .
Documentation for Defining the RDBSERVER Logical Name
Undocumented SET Commands and Language Options
QUIET COMMIT Option e
COMPOUND TRANSACTIONS Option
Undocumented Size Limit for Indexes with Keys Using Collating
SEQUENCES . o ot it
Changes to RMU/REPLICATE AFTER/BUFFERS Command

3-16
3-16
3-17
3-18

3-19
3-19

3-20
3-21
3-21

3-22
3-23
3-23
3-24
3-24
3-24

3-25

3-25
3-25
3-26
3-26
3-26
3-26

3-26
3-27
3-27
3-27

-b-b-lﬁ-h-h
WWweErpPE

-b-l|>-l>
o1 o1 01

-b-b-l|>-l>-l>
O~NNO O

Tt

© ©

4.1.13
4.1.14
4.1.15

Change in the Way RDMAIJ Server is Set Upin UCX
CREATE INDEX Supported for Hot Standby
Dynamic OR Optimization Formats

5 Known Problems and Restrictions

vi

5.0.1
5.0.2
5.0.3
5.04
5.0.5
5.0.6
5.0.7
5.0.8
5.0.9
5.0.10
5.0.11

5.0.12
5.0.13

5.0.14
5.0.15
5.0.16
5.0.17

5.0.18
5.0.19

5.0.20
5.0.21
5.0.22

5.0.23
5.0.24

5.0.25

5.0.26

5.0.27

5.0.28
5.0.29

5.0.30
5.0.31

5.0.32

Clarification of the USER Impersonation Provided by the Oracle Rdb
SNV . .
Index STORE Clause WITH LIMIT OF Not Enforced in Single
Partition Map
Unexpected NO_META UPDATE Error Generated by DROP
MODULE ... CASCADE When Attached by PATHNAME
Unexpected DATEEQLILL Error During IMPORT With CREATE
INDEX or CREATE STORAGE MAP
Application and Oracle Rdb Both Using SYS$HIBER
IMPORT Unable to Import Some View Definitions
AIJSERVER Privileges
Lock Remastering and Hot Standby.
RDB_SETUP Privilege Error
Dynamic Optimizer Problem with Zigzag Match
Starting Hot Standby on Restored Standby Database May Corrupt
Database
Restriction on Compound Statement Nesting Levels
Back Up All AlJ Journals Before Performing a Hot Standby
Switchover Operation.
Concurrent DDL and Read-Only Transaction on the Same Table Not
Compatible.
Oracle Rdb and the SRM_CHECK Tool
Oracle RMU Checksum_\Verification Qualifier
Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL
(Alpha) . . .
Restriction on Using /NOONLINE with Hot Standby
SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error
DBAPack for Windows 3.1 is Deprecated
Determining Mode for SQL Non-Stored Procedures.
DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE
Error .
Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
Interruptions Possible when Using Multistatement or Stored
Procedures
Row Cache Not Allowed on Standby Database While Hot Standby
Replication Is Active
Hot Standby Replication Waits when Starting if Read-Only
Transactions RUNNING e
Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL
Oracle Functions Script
DEC C and Use of the /STANDARD Switch.
Excessive Process Page Faults and Other Performance Considerations
During Oracle Rdb Sorts i
Performance Monitor Column Mislabeled
Restriction Using Backup Files Created Later than Oracle Rdb7
Release 7.0.1
RMU Backup Operations and Tape Drive Types

5.0.33 Use of Oracle Rdb from Shared Images

5.0.34 Interactive SQL Command Line Editor Rejects Eight-Bit

Characters
5.0.35 Restriction Added for CREATE STORAGE MAP on Table with

Data

5.0.36 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error . ..
5.0.37 Oracle Rdb7 Workload Collection Can Stop Hot Standby

Replication
5.0.38 RMU Convert Command and System Tables
5.0.39 Converting Single-File Databases
5.0.40 Restriction when Adding Storage Areas with Users Attached to

Database
5.0.41 Restriction on Tape Usage for Digital UNIX V3.2
5.0.42 Support for Single-File Databases to be Dropped in a Future

Release

5.0.43 DECdtm Log Stalls
5.0.44 Cannot Run Distributed Transactions on Systems with DECnet/OSI
and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0
5.0.45 Multiblock Page Writes May Require Restore Operation
5.0.46 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to
Clean Up Transactionsot

5.0.47 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application.
5.0.48 SQL Does Not Display Storage Map Definition After Cascading Delete

Of Storage Areat
5.0.49 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE

CASE . . .
5.0.50 Different Methods of Limiting Returned Rows from Queries
5.0.51 Suggestions for Optimal Usage of the SHARED DATA DEFINITION

Clause for Parallel Index Creation.
5.0.52 Side Effect when Calling Stored Routines

5.0.53 Nested Correlated Subquery Outer References Incorrect
5.0.54 Considerations when Using Holdable Cursors
5.0.55 INCLUDE SQLDAZ2 Statement Is Not Supported for SQL Precompiler

for PL/I in Oracle Rdb Release 5.0 or Higher
5.0.56 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations

Incorrectly
5.0.57 RMU Parallel Backup Command Not Supported for Use with SLS . . .
5.0.58 Oracle RMU Commands Pause During Tape Rewind.
5.0.59 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX
5.1 Oracle CDD/Repository Restrictions.

5.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
5.1.2 Multischema Databases and CDD/Repository
5.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU
Privileges Access Control Lists
513.1 Installing the Corrected CDDSHR Images
5.1.3.2 CDD Conversion Procedure

5-19

5-20

5-20
5-21

5-21
5-22
5-23

5-23
5-23

5-23
5-24

5-24
5-25

5-25

5-25

5-26

5-27
5-27

5-28
5-30
5-31
5-32

5-33

5-33
5-34
5-34
5-34
5-34
5-34
5-36

5-36

5-38
5-38

Vii

6 Enhancements
6.1 Enhancements Provided in Oracle Rdb7 Release 7.0.4.

6.1.1 Suggestion To Increase Field Size On RMU SHOW STATISTIC
6.1.2 SHOW STATS "Logical Area Overview" Enhancements.
6.1.3 RCS Can Map All Caches at Database Open
6.1.4 Performance Enhancements When Number of Cluster Nodes is 1. ...
6.1.5 New ROW LENGTH Default Calculated for CREATE CACHE
6.1.6 RMU /CHECKPOINT /WAIT /JUNTIL
6.1.7 RMU Extract Supports New AUDIT_COMMENT Option
6.1.8 Revised Oracle Rdb for OpenVMS Client Kit
6.2 Enhancements Provided in Oracle Rdb7 Release 7.0.3.1
6.2.1 Per-Process Monitoring for SHOW STATS
6.2.2 New DOMAINS Option for RMU/EXTRACT
6.2.3 New NO REORGANIZE clause for ALTER STORAGE MAP
6.24 New Options for the GET DIAGNOSTICS Statement
6.2.5 RMU/SHOW Statistic OPCOM Message Tracking
6.2.6 New Restricted_Access Qualifier for RMU/LOAD
6.2.7 RDO EDT Editor on OpenVMS Alpha Now Available
6.2.8 New Options Added to SQL EXTRACT Function.................

7 LogMiner for Rdb

RMU Set Logminer Command

RMU Unload After_Journal Command
7.1 Restrictions and Limitations with LogMiner forRdb
7.2 Information Returned by LogMiner forRdb.
7.3 Record Definition Prefix for LogMiner Fields
7.4 SQL Table Definition Prefix for LogMiner Fields
7.5 Segmented String Columns
7.6 Additional Examples e

7.6.1 Example .rrd for the EMPLOYEES Table
7.6.2 Callback Module for the EMPLOYEES Table
7.6.3 Using LogMiner and the RMU Load Command to Replicate Table
Data
7.6.4 Using LogMiner to Minimize Application Downtime for
Maintenance
7.6.5 Using an OpenVMS Pipe

A Implementing Row Cache

Al OVEIVIBW . o ot e e e

Al1l Introduction
A.l2 Database Functions Using Row Cache
A.1.3 Writing Modified Rows to Disk.
A.l4 Row Cache Checkpointing and Sweeping
A.l5 Node and Process Failure Recovery
A.l51 Process Failure
A.15.2 Node Failure
A.15.3 The RCS Process and Database Recovery
A.1.6 Considerations When Using the Row Cache Feature

A.2 Requirements for Using Row Caches
A.3 Designing and Creatinga Row Cache
A3.1 Reserving Slots for Row Caches

viii

CDCDO)G)G)CDO‘)(IDCDG)CDO)@O

|
WWWOO~NODOOOUTUITUA,WWNREPE

|
e ol ol

7-2

-4
7-12
7-13
7-14
7-14
7-15
7-15
7-15
7-16

7-17

A.3.2
A3.21
A.3.2.2
A.3.3
A3.4
A3.4.1

Row Cache TypesSo e
Assigning Storage Areas to Row Caches
Assigning Tables to Row Caches

Sizinga Row Cache

Choosing Memory Location
Sizing Considerations.

A4 Using Row Cache e e

A4l
A.4.2
A421
A4.2.2
A4.23
A4.2.4
A.4.3
A4.31
A.4.3.2

Enabling and Disabling Row Cache
Specifying Checkpointing and Sweeping Options
Choosing the Checkpoint Source and Target Options.
Choosing the Checkpoint Interval
Specifying Sweeping Parameters
Specifying the Size and Location of the Cache Backing File
Controlling What is Cached in Memory
Row Replacement Strategy
Inserting Rows intoaCache

A5 Examining Row Cache Information

AS5.1

RMU Show Statistics Screens and Row Caching

A.6 EXamples . ..o

A6.1
A.6.2
A.6.3

Loading a Logical Area Cache
Caching Database Metadata
Cachinga Sorted Index

B Row Cache Statements
B.1 ALTER DATABASE Statementoo i

B.1.1
B.1.2
B.1.3
B.1.4
B.1.4.1

B.1.4.2
B.1.4.3
B.1.4.4
B.1.45
B.1.45.1
B.1.45.2

B.1.4.5.3
B.1.454
B.1.4.6

B.1.4.6.1
B.1.4.6.2
B.1.4.6.3

B.1.4.6.4
B.1.4.6.5

B.1.4.6.6
B.1.4.6.7
B.1.4.6.8

OVEIVIBW . . o e e
Environment
Format
ArgUMENTS . . . o
RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL |
GLOBAL}) .
RESERVE N CACHE SLOTS e
CACHE USING row-cache-name,
NO ROW CACHE e
ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
CHECKPOINT TIMED EVERY NSECONDS
CHECKPOINT ALL ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE
LOCATION IS directory-Spec
NO LOCATION . .. e e
ADD CACHEC Clause. e e
ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS ...
CACHE SIZE IS n ROW/CACHE SIZEISNn ROWS
CHECKPOINT ALL ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE
EXTENT IS n BLOCK/EXTENT ISNnBLOCKS
LARGE MEMORY IS ENABLED/LARGE MEMORY IS
DISABLED
LOCATION IS directory-Speco vi i
NO LOCATION . .. e e
NUMBER OF RESERVED ROWS ISn

A-11
A-12
A-12
A-13
A-15
A-18
A-19
A-20
A-20
A-20
A-22
A-22
A-23
A-24
A-24
A-24
A-27
A-31
A-32
A-32
A-32
A-34

P PEPET
ANRPRPP

UJUJ?UIJWUJ
gaortororh b

UJWCU?JWW
~NOoO oo oo

ix

B.1.4.6.9 NUMBER OF SWEEP ROWS ISn

B.1.4.6.10 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES
B.1.4.6.11 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT

ISDISABLED e
B.1.4.6.12 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS

PROCESS e
B.1.4.6.13 WINDOW COUNT IS N e e
B.1.4.7 ALTER CACHE row-cache-name
B.1.4.7.1 row-cache-params
B.1.4.7.2 DROP CACHE row-cache-name CASCADE
B.1.4.7.3 DROP CACHE row-cache-name RESTRICT
B.2 CREATE DATABASE e e e
B.2.1 OVEIVIBW . o e
B.2.2 Environment
B.2.3 Format e
B.2.4 ANQUMENTS . . .
B.2.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL |

GLOBAL}) o

B.2.4.2 CACHE USING row-cache-name
B.2.4.2.1 NO ROW CACHE e,
B.2.4.3 RESERVE n CACHE SLOTS i
B.2.4.4 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
B.2.4.4.1 CHECKPOINT TIMED EVERY NSECONDS
B.2.4.4.2 CHECKPOINT ALL ROWS TO BACKING FILE/

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE

B.2.4.4.3 LOCATION IS directory-Speco v i oo i i i e e
B.2.4.4.4 NO LOCATION . .. e e e e e
B.3 CREATE CACHE ClausSe o oo e e e e e e e e
B.3.1 Environment
B.3.2 Format e
B.3.3 AFQUMENTS . . .
B.3.3.0.1 CACHE row-cache-namec. ...
B.3.3.0.2 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS . ..
B.3.3.0.3 EXTENT IS n BLOCK/EXTENT ISNnBLOCKS............
B.3.3.0.4 CACHE SIZE IS n ROW/CACHE SIZEISNn ROWS
B.3.3.0.5 CHECKPOINT ALL ROWS TO BACKING FILE/

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE

B.3.3.0.6 LARGE MEMORY IS ENABLED/LARGE MEMORY IS
DISABLED
B.3.3.0.7 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT
ISDISABLED e
B.3.3.0.8 LOCATION IS directory-Speco v v i ie e e
B.3.3.0.9 NO LOCATION e
B.3.3.0.10 NUMBER OF RESERVED ROWS ISn
B.3.3.0.11 NUMBER OF SWEEP ROWS ISnNn
B.3.3.0.12 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES
B.3.3.0.13 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS
PROCESS e
B.3.3.0.14 WINDOW COUNT IS N e

B.3.4 Usage NOteS

Py
<

N
(o]

TWUIJUJUJWWUJ
NOOWOOWOOWOOOOo

w?um
[l

UJUJUJWW?UJUJWWW
PR RPRREREREBRERRE
(RGNS IS I NN NNy U

C Release Notes Relating to the Row Cache Feature
Cl1 Software Errors Fixed That Apply to All Interfaces.

C.l1 RCS Maximum Log File Size Control Logical
C.1.2 New RMU /SET ROW_CACHE [/[ENABLE | /DISABLE]

ComMmaNd
C.1.3 RCS Clearing "GRIC" Reference Counts
C.1l4 Row Cache RDC File Name Change
C.15 VLM or System Space Buffer Corruption.
C.1.6 Invisible Row After Erase and Store With Row Cache
C.1.7 Overriding RCS Checkpoint Timer Interval
C.1.8 Refresh RCS Metadata Information
C.1.9 RCS ACCVIO When Checkpointing All Row Caches to Database

D Known Problems and Restrictions Relating to the Row Cache
Feature

D.1 Known Problems and Restrictions,

D.1.1 RMU Online Verification Operations and Row Cache
D.1.2 Limitation: Online RMU /VERIFY and Row Cache
D.1.3 Adding Row Caches Requires Exclusive Database Access
D.1.4 Conflicts When Caching Metadata and Executing Certain SQL

Database Operations

E Logical Names Relating to the Row Cache Feature

El RDMS$BIND CKPT FILE_SIZE\
E2 RDMS$BIND CKPT TIME ...\t
E.3 RDMS$BIND DBR_UPDATE_RCACHE\,
E4 RDMS$BIND RCACHE_INSERT ENABLED,
E5 RDMS$BIND RCACHE _LATCH_SPIN_COUNT
E.6 RDMS$BIND RCACHE_RCRL_COUNT\,
E.7 RDMS$BIND _RCS BATCH COUNT ...\t
E.8 RDMS$BIND RCS CARRYOVER ENABLED\,
E.9 RDMS$BIND RCS CKPT COLD ONLY ...\ttt
E.10 RDMS$BIND RCS_CKPT BUFFER CNT.\,
E.11 RDMS$BIND _RCS CKPT TIME\t
E.12 RDMS$BIND RCS CLEAR GRICS DBR CNT.,
E.13 RDMS$BIND RCS_CREATION_ IMMEDIATE\,
E.14 RDMS$BIND RCS_KEEP BACKING FILES\,
E.15 RDMS$BIND RCS LOG FILE\
E.16 RDMS$BIND RCS_LOG HEADER
E.17 RDMS$BIND_RCS_LOG REOPEN SIZE
E.18 RDMS$BIND RCS LOG REOPEN SECS.''uuiiianeeenni..
E.19 RDMS$BIND_RCS PRIORITY ...\
E.20 RDMS$BIND_RCS_SWEEP _COUNT
E.21 RDMS$BIND_RCS VALIDATE_SECS\t
E.22 RDMS$BIND_RUJ GLOBAL_SECTION ENABLED

OO0
| R I
SN

oNoNONONONONONS!

AP OWWONREPR

UIUUD
N R BR R

mmimimimimimImimimimimmimmimmimmimmm
AR OWWWWWWWNNNNNNNRRRERPRPR

Examples

A-1
A-2
A-3
A-4

Tables

Xii

4-1
5-1
7-1
A-1
A-2

Sizing a Row Cache in a Global Section or System Space Buffer
Sizing a Row Cache in VLM
Sizing a Row Cache in Memory with VLM Enabled.

Row Cache Parameters . .

Object Type Values.

Oracle CDD/Repository Compatibility for Oracle Rdb Features

Output Fields.

Memory Locations of Row Cache Objects

Checkpoint Target Options

A-19
A-19
A-19
A-28

5-35
7-13
A-17
A-21

Purpose of This Manual

Preface

This manual contains release notes for Oracle Rdb7 Release 7.0.4. The

notes describe changed and enhanced features; upgrade and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections. These release notes cover both Oracle Rdb7 for
OpenVMS Alpha and Oracle Rdb7 for OpenVMS VAX, which are referred to by
their abbreviated name, Oracle Rdb7.

Intended Audience

This manual is intended for use by all Oracle Rdb7 users. Read this manual
before you install, upgrade, or use Oracle Rdb7 Release 7.0.4.

Document Structure

This manual consists of twelve chapters:

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5
Chapter 6
Chapter 7
Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

Describes how to install Oracle Rdb7 Release 7.0.4.
Describes software errors corrected in Oracle Rdb7 Release 7.0.4.
Describes software errors corrected in Oracle Rdb7 Release 7.0.3.1.

Provides information not currently available in the Oracle Rdb7
documentation set.

Describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.4.

Describes enhancements introduced in Oracle Rdb7 Releases 7.0.4 and
7.0.3.1

Introduction to the new LogMiner for Oracle Rdb features available in
Release 7.0.4.

Describes the Row Cache feature and functionality which was added in
Oracle Rdb7 Release 7.0.1.5.

Describes the Row Cache Statements available in Oracle Rdb7 Release
7.0.1.5 and beyond.

Describes software errors relating to the Row Cache feature that have
been corrected in Oracle Rdb7 Release 7.0.1.5 and beyond.

Describes problems and restrictions relating to the Row Cache feature
known to exist in Oracle Rdb7 Release 7.0.1.5 and beyond.

Describes the logical names relating specifically to the Row Cache
feature that are available in Oracle Rdb7 Release 7.0.1.5 and beyond.

Xii

1

Installing Oracle Rdb7 Release 7.0.4

This software update is installed using the standard OpenVMS Install Utility.

1.1 Requirements

The following conditions must be met in order to install this software update:

Oracle Rdb7 must be shutdown before you install this update kit. That is,
the command file SYS$STARTUP:RMONSTOP(70).COM should be executed
before proceeding with this installation. If you have an OpenVMS cluster, you
must shutdown all versions of Oracle Rdb7 on all nodes in the cluster before
proceeding.

The installation requires approximately 100,000 free blocks on your system
disk for OpenVMS VAX systems; 200,000 blocks for OpenVMS Alpha systems.

1.2 Invoking VMSINSTAL

To start the installation procedure, invoke the VMSINSTAL command procedure:
@SYSSUPDATE:VMSINSTAL variant-name device-name OPTIONS N

variant-name

The variant names for the software update for Oracle Rdb7 Release 7.0.4 are:

RDBSDO070 for Oracle Rdb7 for OpenVMS VAX standard version.
RDBASDO070 for Oracle Rdb7 for OpenVMS Alpha standard version.
RDBMVDO070 for Oracle Rdb7 for OpenVMS VAX multiversion.
RDBAMVDO070 for Oracle Rdb7 for OpenVMS Alpha multiversion.

device-name

Use the name of the device on which the media is mounted.

If the device is a disk drive, such as a CD-ROM reader, you also need to
specify a directory. For CD-ROM distribution, the directory name is the same
as the variant name. For example:

DKA400:[RDBSDO070.KIT]

If the device is a magnetic tape drive, you need to specify only the device
name. For example:

MTAO:

OPTIONS N

This parameter prints the release notes.

Installing Oracle Rdb7 Release 7.0.4 1-1

The following example shows how to start the installation of the VAX standard
kit on device MTAO: and print the release notes:

$ @SYSSUPDATE:VMSINSTAL RDBSD070 MTAQ: OPTIONS N

1.3 Stopping the Installation

To stop the installation procedure at any time, press Ctrl/Y. When you press
Ctrl/Y, the installation procedure deletes all files it has created up to that point
and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you
and a prompt asks if you want to continue. You might want to continue the
installation to see if any additional problems occur. However, the copy of Oracle
Rdb7 installed will probably not be usable.

1.4 After Installing Oracle Rdb7

This update provides a new Oracle Rdb7 Oracle TRACE facility definition. Any
Oracle TRACE selections that reference Oracle Rdb7 will need to be redefined
to reflect the new facility version number for the updated Oracle Rdb7 facility
definition, “RDBVMSV7.0-4".

If you have Oracle TRACE installed on your system and you would like to collect
for Oracle Rdb7, you must insert the new Oracle Rdb7 facility definition included
with this update kit.

The installation procedure inserts the Oracle Rdb7 facility definition into a
library file called EPCSFACILITY.TLB. To be able to collect Oracle Rdb7 event-
data using Oracle TRACE, you must move this facility definition into the Oracle
TRACE administration database. Perform the following steps:

1. Extract the definition from the facility library to a file (in this case,
RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.0-4 -
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPCSFACILITY.TLB

2. Insert the facility definition into the Oracle TRACE administration database.
$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

Note that if you are installing the multiversion variant of Oracle Rdb7, the
process executing the INSERT DEFINITION command must use the version
of Oracle Rdb7 that matches the version used to create the Oracle TRACE
administration database or the INSERT DEFINITION command will fail.

1.5 Alpha EV6 Processor Support Added

1-2

As of Oracle Rdb7 Release 7.0.3, the Alpha EV6 processor is supported. This
is the only thing that changed between Oracle Rdb7 Release 7.0.2.1 and Oracle
Rdb7 Release 7.0.3.

Installing Oracle Rdb7 Release 7.0.4

1.6 Maximum OpenVMS Version Check Added

As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has
been added to the product. Oracle Rdb has always had a minimum OpenVMS
version requirement. With 7.0.1.5 and for all future Oracle Rdb releases, we have
expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve
product quality.

OpenVMS Version 7.2-n is the maximum supported version of OpenVMS.
As of Oracle Rdb7 Release 7.0.3, the Alpha EV6 processor is supported.

The check for the OpenVMS operating system version and supported hardware
platforms is performed both at installation time and at runtime. If either a
non-certified version of OpenVMS or hardware platform is detected during
installation, the installation will abort. If a non-certified version of OpenVMS or
hardware platform is detected at runtime, Oracle Rdb will not start.

Installing Oracle Rdb7 Release 7.0.4 1-3

2

Software Errors Fixed in Oracle Rdb7 Release

7.0.4

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.4.

2.1 Software Errors Fixed That Apply to All Interfaces
2.1.1 RMU/LOAD into Temporary Table

2.1.2 Divide

Previously, RMU would not allow loading into a temporary table. While in many
cases loading into a temporary table would have little value, using triggers on a
temporary table may make this an attractive capability.

This restriction has been lifted in Oracle Rdb Release 7.0.4. Oracle Rdb
RMU/LOAD will now load data into temporary tables. Note that the contents
of the temporary table are available only to the RMU/LOAD process and will
disappear when the RMU/LOAD operation completes.

by Zero Error in Query on Large Table
Bug 800006

A simple query on a large table resulted in the following error.

%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide by zero at
PC=00375C39, PSL=03C00000

The following is an example of the conditions needed to cause the error and the
simple query used to evoke the error.

create table MIS_RTLSAL (RETL_CODE char(4), RETL_CREDITS integer);
create unique index MIS_RTLSAL_00 on MIS_RTLSAL (RETL_CODE);
commit;

select * from mis_rtlsal limit to 1 row;

For the case in which this problem was reported, the cardinality of the table was
161733114 rows and the row cluster factor for the table was 0.2081383. The large
table cardinality was one of the key contributing factors. The error occurred in
the Rdb Optimizer logic as it was trying to compute the cost of retrieving rows
from the database.

As a workaround, this problem can be avoided by using the old cost model for
the Rdb Optimizer. You can enable use of the old cost model, for example in
interactive SQL, by entering the statement SET FLAGS 'OLD_COST_MODEL’; .

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-1

2.1.3 Wrong Results With COUNT DISTINCT CASE
Bug 763963

The following query has two grouped aggregate value columns (indicated by the
COUNT operation and the GROUP BY clause), a project operation (DISTINCT),
and a CASE clause. These are the key factors contributing to the problem.

select ndate, node,
count(distinct(case device when 'NETWORK' then process_id else null end))
as NET_DEV_COUNT,
count(distinct(case device when
as NUL_DEV_COUNT
from rdb_usage group by ndate, node, product
order by ndate desc;

then process_id else null end))

With two or more such grouped aggregate columns, the query would return wrong
results for all but one of the aggregate columns. With only one grouped aggregate
column in the query, the results returned were correct.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.4 Bugcheck at RDMS$$RDMSCHEMA_UNLOAD_META+40 on Drop Area
With Cascade

Bug 1022562

A problem with the way memory was allocated during the removal of a storage
area caused local memory to be incorrectly overwritten which resulted in an
access violation at RDMS$$RDMSCHEMA_UNLOAD_META+40.

This problem was mainly seen when at least one table spanned two or more
storage areas including the storage area being dropped.

The following is an example of the storage map and alter database statement
which may show this problem. In the example, a storage map is created for a
table for storage across two storage areas.

SQL> create storage map tabl map for tabl
cont> store using (coll)

cont> in data_1 with limit of (1000)
cont> in data_2 with limit of (2000)
cont> ;

If, sometime later, the database is altered to drop one of these storage areas, an
access violation may occur.

SQL> alter database file testdb

cont> drop storage area data 1

cont> cascade;

%RDMS-I-BUGCHKDMP, generating bugcheck dump file RDSBUGCHK.DMP
%SQL-I-BUGCHKDMP, generating bugcheck dump file SQLBUGCHK.DMP
%SYSTEM-F-ACCVIO, access violation, reason mask=01, virtual
address=EF9A4AC2 ...

A possible workaround for this problem is to alter the appropriate storage maps
to exclude the storage area you wish to drop prior to altering the database. See
the example below.

2—-2 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

SQL> alter storage map tabl_map

cont> store using (coll)

cont> in data_2 with limit of (2000) reorganize;
SQL> alter database file testdb

cont> drop storage area data 1

cont> cascade;

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.5 Unexpected I/O During DROP and TRUNCATE TABLE
Bug 989292

If a table contained one or more columns of LIST OF BYTE VARYING type,
then the DROP TABLE and TRUNCATE TABLE statements would execute the
equivalent of the DELETE FROM table DML statement to erase the list data
from the database.

Unfortunately this meant that these statements updated the indices of the table
and therefore performed unnecessary 1/O to the database and journal files. In
addition to this problem, TRUNCATE TABLE erroneously executed BEFORE and
AFTER TRIGGER actions and some integrity constraints.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. Oracle Rdb now
uses a different mechanism to erase the list data which no longer causes updates
to the indices, or constraint and trigger execution. The result is a significant
reduction in 1/O for tables containing list data. There is no change in behavior for
tables that do not contain LIST OF BYTE VARYING columns.

Oracle recommends that SET TRANSACTION ... RESERVING be used to lock
the table for EXCLUSIVE WRITE mode to reduce 1/0, CPU and virtual memory
usage during these operations. If possible, attaching to the database using the
RESTRICTED ACCESS clause will further reduce 1/0 to the snapshot file (SNP)
for the LIST STORAGE AREA. Testing of the revised algorithm for DROP TABLE
showed a reduction of 10% in asynchronous reads, 82% in synchronous reads,
47% in asynchronous writes and 90% in synchronous writes when comparing the
operations.

The first script uses the default reserving mode of SHARED WRITE. This will
force all changes to the table to be logged to the snapshot file, and require the
Rdb Server to perform row locking (or at least maintain data structures to
support row locking).

SQL> attach 'file TEST

SQL> set transaction read write;

SQL> drop table EMPLOYEES cascade;
SQL> commit;

The second script uses EXCLUSIVE WRITE to avoid the snapshot 1/O for the
EMPLOYEES row changes, and RESTRICTED ACCESS to eliminate snapshot
1/0O for the LIST storage area.

SQL> attach 'file TEST restricted access "

SQL> set transaction read write reserving EMPLOYEES for exclusive write
SQL> drop table EMPLOYEES cascade;

SQL> commit;

The reduced 1/0, CPU usage and virtual memory requirements contributed to a
significant reduction in elapsed time for both DROP TABLE and TRUNCATE
TABLE when the table contained LIST OF BYTE VARYING columns.
Improvements on specific databases will depend on database design, quantity

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-3

of data, and over all system resources and therefore may vary from those
reported from the Oracle Rdb test environment.

2.1.6 Incorrect Rounding of Negative Numbers in the Round Function

The Round function in SQLSFUNCTIONS.EXE or SQL$SFUNCTIONSnn.EXE
incorrectly rounds negative numbers. This problem has been fixed.

For example, round of (-1.56, 0) would round to -1.0 Not -2.0.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.7 Ignored Join Order Led to Poor Query Performance

The following query executed in 1 second with Oracle Rdb7 Release 7.0.1.4.
In some later version (tested using Oracle Rdb7 Release 7.0.3.1), the query
completed after 9 minutes. Here is the query.

select ZM.TEISEI_KGO, PM.PM_ST, PM.OK_ST

from
PM, PM_ZUMEN PZ, ZUMEN ZM
where
PM.HINBAN = '009627401" and
PZ.HINBAN = PM.HINBAN and

ZM.ZUMEN_NO = PZZUMEN_NO and
ZM.VER = PZVER and
ZM.TEISEI_KGO = (select max(TEISEI_KGO) from ZUMEN ZM2
where ZM2.ZUMEN_NO = ZM.ZUMEN_NO and
ZM2.VER = ZM.VER);

Using interactive SQL, for example, one could compare the Optimizer query
strategy and cost estimates by entering the SET FLAGS 'STRATEGY,ESTIMATE’
statement before executing the query. The cost estimate for the VV7.0.1.4 query
strategy was less than that of the V7.0.3.1 chosen strategy. The good strategy
joined the tables in the following order.

PZ.PM_ZUMEN - ZM.ZUMEN - ZM2.ZUMEN - PM.PM
The poor strategy joined the tables in the following order.
ZM.ZUMEN - ZM2.ZUMEN - PZ.PM_ZUMEN - PM.PM

The Optimizer under Oracle Rdb7 Release 7.0.3.1 was ignoring the good join
order. That is, the optimizer did not consider the good join order as providing a
possible solution for the query strategy.

As a workaround, you can force Rdb to use the good query solution by creating a
guery outline under Oracle Rdb7 Release 7.0.1.4 or earlier and then applying that
outline to Oracle Rdb7 Release 7.0.3.1.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.8 GROUP BY Query on a Distinct Subquery Returns Wrong Results
Bug 1089991

The following query, using match strategy, returns the wrong results.

2—-4 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

select nl1, n5, count(*)
from
(select distinct C1.N1, C1.N2, C1.N3, C2.N5
from T1 C1, T2 C2
where (C1.N3 = C2.N4))
as vl (nl, n2, n3, nb)
group by ni,n5;
Aggregate
Merge of 1 entries
Merge block entry 1
Reduce Sort Conjunct

Match
Outer loop
Sort Get Retrieval sequentially of relation T2
Inner loop
Temporary relation Sort Get
Retrieval sequentially of relation T1
N1 N5
val2 val5 1
val3 val5 1
vall val5 1
vald val5 1
vall val5 1
val2 vals 1

6 rows selected
Where t1 and t2 are defined as follows:

create table T1 (
N1 CHAR (12),
N2 INTEGER,
N3 CHAR (4));

create table T2 (
N4 CHAR (4),
N5 CHAR (12));

commit work;

val2’, 1001, '5124’);
vald', 1002, '5124'
vall’; 1003, '5159'

insert into T1 value (°)
insert into T1 value (")
insert into T1 value (°)
insert into T1 value (val2’, 1004, '5159)
insert into T1 value ('vall’, 1005, '5163’);
insert into T1 value ('val2’, 1006, '5163)
insert into T1 value ('vall’, 1007, '5152')
insert into T1 value ('val2’, 1008, '5152)
insert into T1 value ('vall’, 1009, '5144);
insert into T1 value (val4’, 1009, '5144;

(

(

insert into T2 value ('5124', 'val5’);
insert into T2 value (5163, 'val5);
insert into T2 value ('5144’, 'val5’);

This problem is introduced by the redundant sort elimination enhancement made
in an earlier release of Oracle Rdb7. The Optimizer eliminates the GROUP BY
sort as redundant as follows.

By combining the GROUP BY sort (C1.N1, C2.N5) and
DISTINCT sort (C1.N1, C1.N2, C1.N3, C2.N5) into
(CL.N1, C2.N5, C1.N2, CL.N3)

Later the match strategy, using the join column (C1.N3 = C2.N4),
changes into (C1.N3, C2.N5, C1.N2, C1.N1) and thus produces the wrong
order for the GROUP BY operation.

The fix restores the GROUP BY sort to produce the correct result.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-5

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.9 After Image Journal File Format Change

With the new support for the LogMiner(tm) for Oracle Rdb feature, the After
Image Journal (AlJ) internal file format minor version number has been updated
for Release 7.0.4. If you enable the LogMiner for Oracle Rdb, After Image Journal
files created by this version of Oracle Rdb7 may not be accepted by prior versions
of Oracle Rdb7.

For this reason, you should make certain to verify and then backup your
database(s) and AlJ file(s) before upgrading to Oracle Rdb7 Release 7.0.4.

2.1.10 ORDER BY Ignored in Query With a Sub-select Statement
Bug 1073357

The following query, having an explicit ORDER BY clause, would return rows in
the wrong order.

select u.user_id, u.user_full_name,
(select group_id from user_group_usgr gr
where gr.user_id = u.user_id and gr.user_id = 'LEAM’)
from user_user u
order by u.user_id;

The key parts of this query which contributed to the situation leading to the error
are these:

1. an ORDER BY clause for the outer select statement
2. a sub-select statement with its own WHERE clause

3. a portion of the WHERE clause in the form: column = 'literal-value’ (in this
example: gr.user_id = 'LEAM’)

4. the referenced column (gr.user_id) is the same, though possibly from a
different table, as the one named in the ORDER BY clause (u.user_id).

Given these conditions, past versions of Oracle Rdb would ignore the ORDER BY
clause. Oracle Rdb assumed that the ordering was being done on a single value
(in this case the value 'LEAM’). There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.11 Query With Sort/Forward Scan Instead of Reverse Scan Slows Down
Bug 901904

The following query slows down drastically in Oracle Rdb7 due to the Sort
/Forward strategy as compared to Oracle Rdb V6.1 where the reverse scan is
applied.

select * from t1 where
¢4 >= 500000 and
cl ="10" and
c2 ='460" and
c3 =01
order by c4 desc;
Firstn ~ Sort
Leaf#01 BgrOnly T1 Card=9022
BgrNdx1 T1_NDX [1:0] Bool Fan=12

2—6 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

The following is the strategy output in Oracle Rdb V6.1.

Firstn -~ Conjunct Get Retrieval by index of relation T1
Index name T1 NDX [1.0] Bool Reverse Scan

The table and index are defined as follows:

create table T1 (
tsn integer,
cl char (2),
c2 char (3),
c3 char (2),
c4 integer);

create index T1 NDX on T1 (c4, cl, c2, c3);
commit work;

Oracle Rdb7 uses the new cost model where the index scan cost increases
significantly (in the range of 10 to 20 times compared to old cost model) in order
to reflect the more accurate rate of 1/O retrievals.

Reverse scan overhead cost depends on the forward scan index cost since it is
estimated as 10% of that cost, but sort cost is estimated based on the cardinality
of the tables and some startup fixed cost.

Consequently, the query will select sort and forward scan strategy over reverse
scan since sort cost becomes less expensive than reverse scan and thus the sort
suffers performance degradation at run time.

This fix may have a wide impact on other queries where the match with a
combination of sort is chosen over the cross. This fix may now revert the query
back to cross strategy due to the more expensive costing of sort.

The workaround would be to use the old cost model.
This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.12 Query With Selection Predicates Over UNION Legs Returns Wrong
Results

Bug 1030588
The following view query with selection predicates should return O rows.

select count(*) from vl

where

trade_date = 36527 and

currency = 'EUR;
Aggregate Reduce Sort

Merge of 2 entries
Merge block entry 1
Conjunct
Match
Outer loop
Sort Get Retrieval sequentially of relation T1 <=== missing conjunct
Inner loop
Get Retrieval by index of relation T2 <=== missing conjunct
Index name T2_IDX [0:0]
Merge block entry 2
Conjunct Get Retrieval sequentially of relation T1
2
1 row selected

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-7

Where the view vl is defined as follows:

create view vl (trade_date, currency) as
select p.settle_date, c.currency
from Tlc T2 p
where (c.tradenum = p.tradenum)
union
select trade date, currency
from T1

1

A fix for bug 548011 was made in Oracle Rdb7 Release 7.0.1.6 to push down the
selection predicates into the union legs but the fix introduced this problem.

The above query should push the predicates "trade_date = 36527" and "currency
='EUR™ into the Merge blocks (union legs).

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.1.13 Left Outer Join View Query With CASE Statement Returns Wrong
Results

Bug 1033975

The following left outer join view query with CASE statement returns the wrong
result (O rows).

select buys, trade_date, update type, portfolio, region
from viewl where
region = 'E’ and
portfolio = "JOHNE'
and buys > 0;
Reduce Sort Conjunct
Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Conjunct
Cross block of 2 entries (Left Outer Join)
Cross block entry 1
Conjunct Get
Retrieval by index of relation T1
Index name T1_NDX [1:1] Bool
Cross block entry 2
Conjunct <=== this extra conjunct is causing the problem
Merge of 1 entries
Merge block entry 1
Conjunct Index only retrieval of relation T2
Index name T2_NDX [1:1]
Cross block entry 2
Conjunct Conjunct
Index only retrieval of relation T3
Index name T3_NDX [1:1]
0 row selected

Where viewl is defined as follows:

2—-8 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

create view viewl (
region,
trade_date,
update_type,
portfolio,
buys) AS
select

c2.region,

c2.trade_date,

c2.update_type,

c2.portfolio,

c2.buys
from view2 as c2
left outer join
t3 as ¢3 on (c2.region = c3.region)

group by
c2.region,
c2.trade_date,
c2.update_type,
c2.portfolio,
c2.buys ;

and view? is defined as follows:

create view view2 (
region,
trade_date,
update_type,
portfolio,
buys) as
select
cl.region,
cl.trade_date,
cl.update_type,
c1.portfolio,
case
when (cl.recommendation > cl.held_when_recommended)
then cl.recommendation
else 0
end
from t1 as cl
left outer join
(select c5.region, c5.trade_date
from t2 ¢5) as c4 (fl, f2)
on (clregion = c4.fl) ;

In a previous release of Oracle Rdb7, a fix for bug 767931 was included where
the extra conjunct was generated for a left outer join query. This is usually not a
problem except when a CASE statement is used in the 2nd view to further qualify
the column of the selection predicates as shown above.

In the example, the conjunct of "buys" selection predicate requires the table T1
and correctly generates it in the 1st leg of the left outer join query but then it
incorrectly generates it again in the 2nd cross leg where only the T2 table is
available.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-9

2.1.14 Query Slower Using Cross Strategy and Outline Fails to Restore to
Match
Bugs 1066620 and 1066599

The following query once used a match strategy and performed well. After Oracle
Rdb7 Release 7.0.1.4, the strategy changed to a cross and the query ran much
slower. A query outline also failed to force the use of a match over cross strategy.

select s.subject_code, s.date_audit, s.audit_username
from subjects_d audit s
where s.date_audit =
(select max(sl.date_audit) from subjects _d_audit sl
where sl.subject code = s.subject code

and exists
(select s2.subject_code from subjects s2
where s2.subject_code = s.subject_code

)

~S: Outline "QO_A115A0E044FFD4BF_00000000" used
~S: Full compliance with the outline was not possible
%RDMS-F-OUTLINE_FAILED, could not comply with mandatory query outline directives

Here is the modified outline.

create outline QO_A115A0E044FFD4BF_00000000
id 'A115A0EQ44FFD4BF3957A95575671E8C’
mode 0

as (

query (
-- For loop

subquery (
SUBJECTS_D_AUDIT 0 access path sequential
! join by cross to
join by match to
subquery (
SUBJECTS_D_AUDIT 1 access path sequential

join by cross to
subquery (
SUBJECTS 2 access path index SUBJECTS_PKEY

)
)
)

compliance mandatory ;

The key parts of this query which contributed to the situation leading to the error
are these:

1. the main select query with 2 or more subquery'’s in the where clause
2. each subquery is joined to the common column of the main context

Oracle Rdb7 Release 7.0.1.5 introduced a problem when a fix was made for
Problem Report 771079.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2-10 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

2.2 SQL Errors Fixed

2.2.1 Unexpected UNSDATASS Error Reported by SQL Precompiler and
Module Language
Bugs 951824 and 1033571

The DATE VMS data type included from the Oracle CDD/Repository was not
correctly handled by the CAST function within the SQL precompiler and module
language compilers. This resulted in the following error.

$ sql$pre/cobolicopy_dict /list/copy_list test.sco
WHERE COL2 = CAST(:F_DATE_VMS AS DATE ANSI)
1
%SQL-F-UNSDATASS, (1) Unsupported date/time assignment from
F_DATE_VMS to <cast type>

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.2.2 SQL IMPORT No Longer Evaluates Table and Column Constraints

In prior versions of Oracle Rdb, the SQL IMPORT statement would validate each
constraint as it was applied to the recreated tables in the database. This could
be a time consuming step during IMPORT requiring multiple scans of the source
table.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The SQL IMPORT
statement no longer requires that constraints be validated. Eliminating this
step should reduce the time taken to IMPORT a database containing many
constraints. Oracle recommends using RMU/VERIFY/CONSTRAINTS to check

constraints.

Note

Users of the RDO IMPORT command are encouraged to use the SQL
IMPORT to benefit from this change in behavior.

2.2.3 Unexpected INVACC_OUT_PARA Error Generated by CREATE MODULE

In previous versions of Oracle Rdb7, the CALL statement in a stored procedure
or function might cause CREATE MODULE to fail unexpectedly.

The following example shows the error which may be generated by the CREATE
MODULE statement.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-11

SQL> create module SAMPLE_MODULE_P

cont> language SQL

cont>

cont> procedure P1 (out :a integer);
cont> set :a = 0;

cont>

cont> end module;

SQL>

SQL> create module SAMPLE_MODULE_Q
cont> language SQL

cont>

cont> procedure Q1 (out :c integer);
cont> call P1 (:c);

cont>

cont> end module;

%RDB-E-NO_META _UPDATE, metadata update failed
-RDB-E-INVALID_BLR, request BLR is incorrect at offset 58
-RDMS-E-INVACC_OUT PARA, attempt to read from an OUT parameter

This error is generated when a parameter declared as OUT is passed to a stored
procedure that similarly expects an OUT parameter. Oracle Rdb was incorrectly
requiring IN access to the parameter.

As a workaround, the parameter may be declared as INOUT to avoid this error.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The Oracle Rdb
Server now correctly checks the parameter mode and no longer requires the
parameter to be declared as INOUT in this case.

2.2.4 Changed Behavior for CAST of Date/Time Values With Seconds Field
Bug 1075663

On most VAX and Alpha AXP hardware, the VMS system time is maintained to
at least 1 millisecond intervals, which is more precise than is currently supported
by Oracle Rdb.

Applications which accept the date/time using system services (SYS$GETTIM,
SYS$BINTIM, etc) and insert those values using SQL must be aware that these
date/time values will be truncated to 100th of a second by formatting routines
such as SYS$ASCTIM, LIBSFORMAT_DATE_TIME and the SQL statements
SELECT, PRINT, etc.

When the displayed results are subsequently used as input to queries it is
possible that no matches will be found because the values do not include the full
fractional seconds precision. The following example shows the potential problem.

SQL> select ts_col from ts_table;
TS_COL

10-DEC-1999 10:27:10.80
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.22
10-DEC-1999 10:27:11.22
10-DEC-1999 10:27:11.22

9 rows selected

SQL> select * from ts_table
cont> where ts_col = date vms'10-DEC-1999 10:27:10.80’;
0 rows selected

SQL>

2-12 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

Oracle Rdb currently only supports times and timestamps up to 100ths of a
second precision, e.g. TIMESTAMP(2). Starting with Rdb Version 5.1, all Rdb
Server generated timestamps (CURRENT_TIME and CURRENT_TIMESTAMP)
are automatically truncated to 100ths of a second. Oracle therefore recommends
that these functions be used in preference to the OpenVMS system services to
avoid this problem.

However, if timestamp values must be derived from an external source then
care must be taken to query or store those values with correct truncation of the
fractional seconds precision.

Displaying full precision of seconds

The run-time library routine LIB$FORMAT_DATE_TIME can be used to format
the higher precision seconds fields. This routine is used by interactive SQL for

DATE VMS types. First a date formatting logical names must be defined which
includes the higher precision, as in the following example.

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE -
LIB$TIME_FORMAT_502 "IH02:IM0:!S0.IC7"

Once this logical is defined it can be used by any application which formats using
LIB$FORMAT_DATE_TIME.

SQL> set date format date 1, time 502

SQL> select ts_col from ts_table;

TS_COL

10-DEC-1999 10:27:10.8064904

10-DEC-1999 10:27:11.2175969

10-DEC-1999 10:27:11.2185734

10-DEC-1999 10:27:11.2195499

10-DEC-1999 10:27:11.2195499

10-DEC-1999 10:27:11.2195499

10-DEC-1999 10:27:11.2205264

10-DEC-1999 10:27:11.2205264

10-DEC-1999 10:27:11.2205264

9 rows selected

SQL> select * from ts_table

cont> where ts_col between date vms'10-DEC-1999 10:27:10.80’
cont> and date vms'10-DEC-1999 10:27:10.81";
TS_COL

10-DEC-1999 10:27:10.8064904

1 row selected

SQL>

Oracle Rdb7 Release 7.0.4 has been enhanced so that the CAST operator now
efficiently truncates these extra fractional seconds precision when you use the
same input and output data types. That is, if you cast a DATE VMS type to
DATE VMS, the fractional seconds precision is enforced. The same is true for
TIME, TIMESTAMP and INTERVAL types which include the SECOND field.

The following example shows the query result after truncation using CAST
function.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-13

SQL> select cast(ts_col as date vms) from ts_table;

10-DEC-1999 10:27:10.8000000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2200000
10-DEC-1999 10:27:11.2200000
10-DEC-1999 10:27:11.2200000
9 rows selected

SQL> select * from ts_table
cont> where cast(ts_col as date vms) = date vms'10-DEC-1999 10:27:10.80’;
TS_COL

10-DEC-1999 10:27:10.8064904
1 row selected

SQL>

2.2.5 SQL Rejects Queries Which Use Column Named VALUE
Bug 1149113

In prior versions of Oracle Rdb, using a column named VALUE was prohibited
because of the special nature of this keyword. VALUE is a special identifier
reserved for use in a domain CHECK constraint definition. Attempts to use such
a column caused a fatal error for DML statements (INSERT, SELECT, DELETE
and UPDATE) as shown in this simple example.

SQL> select value from v;
%SQL-F-VALUEILL, VALUE cannot be used outside of a domain constraint

While it is true that VALUE is a reserved word in the ANSI and 1SO SQL
Standards, other similar keywords cause an information message to be generated
so that older applications can continue to execute unchanged. However, this
VALUEILL error prevented applications from working with more recent versions
of Oracle Rdb.

With this release of Oracle Rdb, the VALUEILL error is no longer reported and
VALUE is treated in the same way as other reserved words. That is, a warning is
issued by default. The query will fail if a dialect is established such as SQL92.

SQL> select value from v;

%SQL-I-DEPR_FEATURE, Deprecated Feature; Keyword VALUE used as an identifier
0 rows selected

SQL> set dialect 'sql92’;

SQL> select value from v;

%SQL-F-RES_WORD_AS IDE, Keyword VALUE used as an identifier

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.3 Oracle RMU Errors Fixed

2.3.1 RMU Extract Has Enhanced Extract of Conditional Expressions

Oracle Rdb7 Release 7.0.4 improves the extraction of the conditional expressions
COALESCE, NVL, NULLIF, and simple CASE expressions.

In prior releases, these expressions were incorrectly extracted, and may have
appeared as searched CASE expressions. This occurred because the pattern
matching algorithm often didn't find a match for these expressions. This release
enhances the pattern matching to match correctly these expressions.

The side effect of these changes is that some searched CASE expressions may be
extracted as an alternate and more compact form of the conditional expression.

2-14 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

The following list shows the equivalent expressions matched by RMU Extract.
e NULLIF (a, b) is egivalent to

CASE
WHEN a = b THEN NULL
ELSE a

END

e NVL (&, ..., b) or COALESCE (a, ..., b) is equivalent to

CASE
WHEN a IS NOT NULL THEN a

ELSE b
END

e The simple CASE expression

CASE a
WHEN b THEN v1
WHEN NULL THEN v2

ELSE V3
END

is equivalent to

CASE
WHEN a = b THEN vl
WHEN a IS NULL THEN v2

ELSE 3
END

RMU Extract tries to decode the internal representation to as compact a SQL
expression as possible.

2.3.2 RMU/REPLICATE AFTER START Command Fails on TCP/IP With Large
Port Numbers

When the TCP/IP service for Hot Standby is defined with a port number larger
than 32,767, the network connection would fail due to incorrect network port to
host port translation of the port number.

$ rmulreplicate after_journal start m_testdb.rdb -
[standby=node:.device-directory:s_testdb.rdb
%COSI-F-CONNECFAIL, connect over network timed-out or failed

This problem has been corrected in Oracle Rdb7 Release 7.0.4. With this release,
TCP/IP port numbers up to 65,535 will be supported.

2.3.3 SHOW STATS Cannot Replay /OPTIONS=ROW_CACHE Input File

The RMU Show Statistic utility was unable to replay binary output files created
with the /OPTIONS=ROW_CACHE or /OPTIONS=ALL qualifiers. The problem
only occurs when the database has row caching enabled.

The only work-around is to not use the /OPTIONS=ROW_CACHE qualifier.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The
/OPTIONS=ROW_CACHE and /OPTIONS=ALL qualifiers now work correctly.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-15

2.3.4 RMU/SHOW LOCKS Difficult to Identify Lock Conflict Culprit

Each line of the RMU/SHOW LOCKS utility output shows the process that

is waiting and the process that is blocking it. At least one of the blocking
processes is not in the list of waiting processes. In other words, the process is
either running a long transaction or, more likely, it's waiting for a non-database
event. If this process is terminated or forced to finish its transaction, the waiting
processes start to move, and frequently the blocks all clear.

Waiting Blocker

0001 0002

0002 0003

0003 0004 <-- stop/id=0004 may well free things up
0005 0003

0006 0005 <-- stop/id=0005 would only help 0006

Maybe processes 0001-0006 are all culprits, but there is a sense in which process
0004 is more culpable.

There is no workaround to this problem other than manually searching the
RMU/SHOW LOCKS /MODE=WAITING output manually.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The
RMU/SHOW LOCKS utility has been enhanced to support a new display
mode, /MODE=CULPRIT.

The /IMODE=CULPRIT output is a sanitized version of the /MODE=WAITING
output. The /IMODE=CULPRIT qualifier displays only the set of locks for
processes that are blocking other processes but are themselves not blocked.
This output represents the processes that are the source of database stalls and
performance degradation.

In the following real-world example, one process is blocking the entire application.
Compare the difference in the output between the /MODE=WAITING and
/IMODE=CULPRIT output.

The IMODE=WAITING qualifier displays the following output:

SHOW LOCKS/LOCK/MODE=WAITING Information

Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
Blocker: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14........ 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL

Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
Blocker: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL

Resource: record 109:1085:0

2-16 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

ProcessID Process Name Lock ID System ID Requested Granted

Blocker: 3C806083 RICK12......... OE008171 000100E4 PR PR
Waiting: 3C805E82 RICKO.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA.......... 410002FA 000100E4 PR NL
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested
Blocker: 3C805E82 RICKO.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B0O0F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested
Blocker: 3C8004DC RICKS.......... 370088C2 000100E4 PR PR
Waiting: 3C805E82 RICKO.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested
Blocker: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL
Resource: record 109:1660:1

ProcessID Process Name Lock ID System ID Requested
Blocker: 3C8004DC RICKS.......... 2D00D032 000100E4 EX EX
Waiting: 3C806083 RICK12......... 5700D6F9 000100E4 EX NL
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested
Blocker: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL

Resource: record 109:1085:0

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-17

Granted

Granted

Granted

Granted

Granted

ProcessID Process Name Lock ID System ID Requested Granted

Blocker: 3C805A84 RICK11........ 3BO0OF074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL

Waiting: 3C805C86 RICK14........ 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

The IMODE=CULPRIT qualifier displays the following output:

SHOW LOCKS/LOCK/MODE=CULPRIT Information

Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
Blocker: 3C8004DC RICKG.......... 370088C2 000100E4 PR PR
Waiting: 3C805E82 RICKO.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3BO0F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICKS.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14........ 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICKA4.......... 410002FA 000100E4 PR NL

Resource: record 109:1660:1

ProcessID Process Name Lock ID System ID Requested Granted
Blocker: 3C8004DC RICKS.......... 2D00D032 000100E4 EX EX
Waiting: 3C806083 RICK12......... 5700D6F9 000100E4 EX NL

In this example, process 3C8004DC is the culprit of two separate, but probably
related, stalls.

2.3.5 RMU BACKUP to Tape Hung if Bad Checksum
Bug 1059787

When a database page contained an invalid checksum, RMU/BACKUP/ONLINE
to a tape device hung instead of reporting the error if checksum checking was
enabled.

The following example shows a sample RMU BACKUP command line which
caused the hang if there was a bad checksum on a database page.

RMU/BACKUP/ONLINE/LABEL=BACKO1 database.rdb TAPE:database.rbf

The following shows the corrected behavior: an error message is ouput and the
backup to tape reports the fatal error and does not hang.

RMU/BACKUP/ONLINE/LABEL=BACKO1 database.rdb TAPE:database.rbf
%RMU-F-CANTREADDBS, error reading pages 2:3-3

-RMU-F-CHECKSUM, checksum error - computed 67C3D4ES8, page contained 00003039
%RMU-F-FATALERR, fatal error on BACKUP

As a workaround, to avoid the problem do not enable checksum checking for RMU
BACKUP to tape.

RMU/BACKUP/NOCHECKSUM/ONLINE/LABEL=BACKO1 database.rdb TAPE:database.rbf

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2-18 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

2.3.6 RMU BACKUP to Tape Hung on QUIT Response to Wrong Label
Message

RMU BACKUP to tape devices hung when the user chose the "QUIT" response as
the reply to the message output by RMU BACKUP when a label was specified in
the RMU BACKUP command which did not match the label on the tape device
being used for the backup.

The following example shows an RMU BACKUP command line and QUIT
response to the wrong label message output by RMU BACKUP which caused
RMU BACKUP to tape to hang.

RMU/BACKUP/REWIND/LABEL=(badlab01,badlab02)/LOADER MF _PERSONNEL.RDB -
111MUA30:MF_PERSONNEL.RBF/MASTER, 111MUA31:/MASTER

%RMU-I-WRNGLBL, Tape on _111MUA30 was incorrectly labeled. Expected GOODLAB

- Found BADLABO1

9%RMU-I-TAPEDISPW, Specify tape disposition for _111MUA30 (QUIT,INITIALIZE,
RETRY,UNLOAD)

quit

The workaround for this problem is to choose an option other than "QUIT" in
response to the bad label message or to reenter the RMU BACKUP command
specifying a label that matches the label on the tape device.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.3.7 RMU/REPAIR/INIT=FREE_PAGES/ABM Did Not Return an Error
Bug 968268

The RMU/REPAIR documented restriction that the qualifiers
/[INITIALIZE=FREE_PAGES and /ABM were conflicting qualifiers and could
not be used together on the same RMU/REPAIR command line was not enforced
by a conflicting qualifiers error message but was allowed.

The following example shows that the /INITIALIZE=FREE_PAGES and /ABM
qualifiers were accepted by the RMU/REPAIR command when a conflicting
qualifiers error should have been returned.

$RMU/REPAIR/ABM/SPAM/INITIALIZE=FREE_PAGES/AREA=AREA_NAME MF_PERSONNEL

The following example shows that an error is now returned and the command is
not accepted.

$RMU/REPAIR/ABM/SPAM/INITIALIZE=FREE_PAGES/AREA=AREA_NAME MF_PERSONNEL
%RMU-F-CONFLSWIT, conflicting qualifiers /ABM and /INITIALIZE=FREE_PAGES

As a workaround, do not include the /ABM and /INITIALIZE=FREE_PAGES
qualifiers in the same RMU/REPAIR command line.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.3.8 Incorrect BADIDXREL Messages From Online RMU Verify
Bugs 883349 and 1039089

An online RMU VERIFY of a database index where /TTRANSACTION _
TYPE=READ_ONLY was specified sometimes output incorrect RMU-W-
BADIDXREL warning messages when the index was being concurrently modified
by other users. These same BADIDXREL messages were not output if the index
was not being modified during the online verify or if READ_ONLY was not
specified with the /TTRANSACTION_TYPE qualifier.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-19

The following example shows the RMU VERIFY command for verifying a
database index using the /TRANSACTION_TYPE=READ_ONLY qualifier and
the resulting RMU-W-BADIDXREL warning message which was not output if
/TRANSACTION_TYPE=READ_ONLY was not specified.

$ rmulverify/noroot/transaction_type=read_only -

findex=(db_index)/data rdb_database

%RMU-W-BADIDXREL, Index DB_INDEX either points to a non-existent record or
has multiple pointers to a record in table RDB_TABLE.
The logical dbkey in the index is 527:2324:1.

The workaround for this problem is to use the /TRANSACTION_TYPE=READ _
ONLY qualifier when no user transaction is modifying the database index being
verified or to specify another /TRANSACTION_TYPE such as PROTECTED (the
default) or EXCLUSIVE.

$ rmulverify/noroot/transaction_type=exclusive -
findex=(db_index)/data rdb_database

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.3.9 RMU VERIFY Did Not Find a .RDA File After an RMU MOVE

RMU/VERIFY did not find a .RDA database area file which had been updated to
a new version by the RMU/MOVE of the associated database snapshot file which
had been executed on another node of the cluster.

The following example shows the error.

On Nodel:

$ RMU/OPEN/ACC=UNR MF_PERSONNEL

On Node2:

$ RMU/OPEN/ACC=UNR MF_PERSONNEL

$ CREATE [.TEST] IDIR

$ RMU/MOVE/ONL/LOG MF_PERSONNEL RESUMES /SNAP=FILE=[.TEST]
On Nodel:

$ RMU/VERIFY/LOG/TRANS=READ_ONLY/AREA=RESUMES/SNAP MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification

%RMU-F-OPNFILERR, error opening file
DISK:[DIRECTORY]RESUMES.RDA;1

%RMU-F-FILNOTFND, file not found

%RMU-E-BDAREAOPN, unable to open file
DISK:[DIRECTORY]RESUMES.RDA;1 for storage area RESUMES
%RMU-F-ABORTVER, fatal error encountered; aborting verification

A workaround for this problem is to do the RMU/MOVE on the same node as the
RMU/VERIFY.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

2.4 Row Cache Errors Fixed

2.4.1 Row Cache Server Operator Notification

Similar to other Oracle Rdb7 database servers, the Row Cache Server (RCS)
process now sends start and terminate messages to the system operator if
database operator notifications are enabled.

The following example shows the format of the Row Cache Server operator
message:

2-20 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

$ REPLY/ENABLE=CENTRAL

%%%%%%%%%%% OPCOM 28-SEP-1999 17:16:57.32 %%%%%%%%%%%
Operator TTAO: has been enabled, username RC

%%%%%%%%%%% OPCOM 28-SEP-1999 17:16:57.33 %%%%%%%%%%%
Operator status for operator TTAOQ:

CENTRAL

$ RMU/OPEN DUAOQ:[DBJMFP

%%%%%%%%%%% OPCOM 28-SEP-1999 17:15:47.66 %%%%%%%%%%%
Message from user RDBVMS on RYEROX

Oracle Rdb X7.1-00 Database DUAO:[DBJMFP.RDB;1 Event Notification

Row Cache Server started

2.4.2 Row Cache Did Not Avoid Certain Database Writes

In certain situations, the Oracle Rdb7 Row Cache feature did not avoid database
update 1/0O that it otherwise could have avoided. In particular, when a database
record was modified when it was not originally in the cache, it is possible that the
database page containing the row could be written back to the database where it
otherwise would not have to be.

Some applications may find a performance improvement when using the Row
Cache feature with Oracle Rdb7 Release 7.0.4 due to the reduction in unneeded
database write 1/0 for some update operations.

2.4.3 RMU /CLOSE /WAIT Would Not Always Wait When Row Cache Enabled

When using the Row Cache feature with many or large caches, it was possible
that the RMU /CLOSE /WAIT command could return to the user with the
database still actually being shut down.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The RMU /CLOSE
/WAIT command now does an additional check to make sure that the database is
not open before returning to the user.

2.5 Hot Standby Errors Fixed
2.5.1 RMU/REPLICATE AFTER START Command Fails Due to Lost AlJ Write

There is a situation where Hot Standby fails but has already committed a
transaction that did not get written to the AlJ journal. During re-start of Hot
Standby, the lost write is before the last committed transaction causing re-start
to fail. The following error message is returned during restart.

$ rmulreplicate after_journal start s_testdb.rdb -

/master_root=m_testdb.rdb
%RDMS-F-CANTSTARTLRS, error starting AlJ Log Roll-Forward Server process
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

The following messages would appear in the LRS log file:

23-0CT-1999 07:49:41 - Transaction recovery not started during restart
23-0CT-1999 07:49:41 - This usually occurs when a manual roll-forward operation
23-0CT-1999 07:49:41 - using master database AlJ journals did not fully complete
23-0CT-1999 07:49:41 - This is sometimes caused by an AlJ switch-over operation
23-0CT-1999 07:49:41 - while Hot Standby is inactive

23-0CT-1999 07:49:41 - Failure reason: %RDMS-F-CANTSTARTLRS,
error starting AlJ Log Roll-Forward Server process

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 2-21

Software Errors Fixed in Oracle Rdb7 Release
7.0.3.1

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.3.1.

3.1 Software Errors Fixed That Apply to All Interfaces

3.1.1 Leaf Cardinality Problem in Sorted Ranked Indexes

A problem in storage of the cardinality fields of sorted ranked index entries
resulted in errors in RMU index verification.

This problem only occurred in duplicate entries where the number of duplicate
dbkeys stored for a single entry is greater than 65535. Update of the entry
cardinality caused problems with correct interpretation of the associated leaf
cardinality.

The following is an example of the verification error that may be encountered due
to this problem:

%RMU-W-BTRLEACAR, Inconsistent leaf cardinality (C2) of 6 specified
for entry 3 at dbkey 62:1087:0 using precision of 33.
Dbkey 62:3057:0 at level 2 specified a cardinality of 2
%RMU-I-BTRERPATH, parent B-tree node of 62:1087:0 is at 62:696:0
%RMU-I-BTRROODBK, root dbkey of B-tree is 62:696:0

A workaround for the problem is to use a normal sorted index instead of a sorted
ranked index.

This problem has been corrected in Oracle Rdb7 Version 7.0.4.

3.1.2 Corruption of Ranked Index Node During Duplicate Deletion

On very rare occasions the deletion of a duplicate record from a sorted ranked
index may cause corruption of the index node from which the duplicate dbkey was
removed.

This problem occurred in duplicate entries where the number of duplicate dbkeys
stored in the bitmap was already greater than could be held in a single index
node and thus the entry had overflow nodes attached to it.

Most deletions of duplicate dbkeys from the ranked index bitmap result in the
reduction of the size of the bitmap, however, on rare occasions is it possible for
the bitmap to increase in size. If this occurs and there is insufficient room in the
current index node for the new larger bitmap, the node will be split.

A problem with the splitting of the duplicate node during duplicate dbkey deletion
resulted in the corruption of the duplicate entry.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-1

The corruption of the index showed up during RMU index verification and caused
a bugcheck dump when attempting to access duplicate dbkeys held within the
corrupt bitmap.

The following is an example of the routine stack as may be seen in a bugcheck
caused by this problem:

%SYSTEM-F-ACCVIO, access violation, reason mask=00,
virtual address=000000003A800210, PC=FFFFFFFF8090A13C, PS=00000009

Saved PC = O0E7E8C8 : PSII2SCANINVALIDATESCANSREM + 000000A8
Saved PC = 00E62B68 : PSII2REMOVEDUPBBC + 000000C8

Saved PC = 00E5FBCO : PSII2REMOVEBOTTOM + 00000490

Saved PC = 00E5C908 : PSII2REMOVET + 00000228

Saved PC = 00E5CB54 : PSII2REMOVET + 00000474

Saved PC = 00E5D238 : PSII2REMOVETREE + 000001D0

Saved PC = 0102FC54 : RDMS$$KOD_REMOVE_TREE + 00001784
Saved PC = 00FFOF10 : RDMS$$EXE_ACTION + 00000A40

A workaround for the problem is to use a normal sorted index instead of a sorted
ranked index.

This problem has been corrected in Oracle Rdb7 Version 7.0.4.

3.1.3 Deadlock on AIP Larea Sync

When concurrently creating indexes, occasionally deadlocks would be returned
with the message: -RDMS-F-DEADLOCK, deadlock on AIP larea synch.
Customers encountering other deadlocks are encouraged to reoprt them to
their support personnel.

The following example shows a complete set of the errors encountered when this
problem occurs:

%RDB-E-DEADLOCK, request failed due to resource deadlock
-RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-DEADLOCK, deadlock on AIP larea synch

This problem has been corrected in Oracle Rdb7 Version 7.0.3.1.

3.1.4 Online ALTER STORAGE AREA Operations and Row Cache

Previously, it was possible to cause database recovery failures when using the row
cache feature and making online modifications to storage areas. For example,

if storage areas were marked read-only after they had been modified, it was
possible for cached changes to be unable to be written back to the database at a
later time.

This problem has been corrected. Online ALTER STORAGE AREA operations
now request that the RCS process flush all modified rows from all caches back to
the database before the storage area modification is performed. This means that
a ALTER STORAGE AREA operation may stall while the RCS flushes modified
rows back to the database.

3.1.5 Inconsistent Enforcement of RESERVE Limits

Bug 972253
Oracle Rdb7 did not consistently enforce the number of reserved storage areas,
journals, or caches that could be created in a database. For example, Oracle Rdb7

would allow a user to repeatedly add reserved storage areas to a database until
the database had more storage areas than are allowed by Oracle Rdb7, as shown:

3-2 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

$ SQL
CREATE DATABASE FILENAME SLOT_LIMITS

RESERVE 1000 STORAGE AREAS
CREATE STORAGE AREA AREA_1 FILENAME AREA_1,
DISCONNECT ALL,;
ALTER DATABASE FILENAME SLOT_LIMITS

RESERVE 200 STORAGE AREAS;
%RDMS-W-DOFULLBCK, full database backup should be done to ensure future recovery
DISCONNECT ALL,;
EXPORT DATABASE FILENAME SLOT_LIMITS INTO SLOT_LIMITS;
DROP DATABASE FILENAME SLOT_LIMITS;
IMPORT DATABASE FROM SLOT_LIMITS FILENAME SLOT_LIMITS;
Exported by Oracle Rdb V7.0-3 Import/Export utility

IMPORT DATABASE FROM SLOT_LIMITS FILENAME SLOT_LIMITS;
Exported by Oracle Rdb V7.0-3 Import/Export utility

IMPORTing STORAGE AREA: RDB$SYSTEM

IMPORTing STORAGE AREA: AREA_1

%SQL-F-ERRCRESCH, Error creating database filename SLOT_LIMITS
-RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter block (DPB)
-RDMS-F-BADPARAM, reserved storage area count (1200) is out of valid range (0...1024)

A workaround for the failed IMPORT is to respecify the RESERVE...STORAGE
AREAS clause on the IMPORT statement to a lower value.

This problem has been corrected in Oracle Rdb7 Version 7.0.4. Oracle Rdb7
will now disallow adding more reserved areas, journals, or caches than the total
allowed for a database.

3.1.6 ABS Initialization of AlJ Journal Causes System Slowdown

The initialization of AlJ journals, which occurs after the journal has been backed
up, is extremely 1/O intensive and often impacts the ability of the database to
concurrently generate new AlJ information. Currently, there are two logicals that
control the impact of the AlJ initialization operation. However, the default values
were originally defined when only extensible AlJ journals existed. These default
values are not conducive to circular AlJ journal initialization.

The workaround is to define explicit values for the RDM$BIND_AIJ_
INITIALIZATION_IO0_COUNT and RDM$BIND_AIJ INITIALIZATION_IO_
SIZE logicals when using fixed-size circular AlJ journals.

This problem has been corrected in Oracle Rdb7 Version 7.0.3.1.

The default values for the RDM$BIND_AIJ_INITIALIZATION_IO_COUNT and
RDM$BIND_AIJ_INITIALIZATION_IO_SIZE logicals are now based on whether
extensible or circular AlJ journals are active. The new default values are the

following:

Extensible AlJ Circular AlJ
Logical Name Default Default
RDMS$BIND_AIJ_INITIALIZATION_IO_COUNT 15 2
RDMS$BIND_AIJ_INITIALIZATION_IO_SIZE 127 32

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-3

In addition, these two logicals have been added to the database “AlJ dashboard.”
This means that the AlJ journal initialization values can be non-persistently
modified at runtime using the RMU Show Statistics database dashboard utility.

3.1.7 Transaction Checkpoint Determination of Switchover or Backup

It is sometimes possible for a committing transaction to checkpoint even though
no checkpoint thresholds have been exceeded. This problem occurs more
frequently when the current AlJ journal is located on an extremely fast 1/0
device or serviced by an extremely fast device controller such as an HSJ disk
controller with write-back caching enabled.

The problem is caused by a race condition between the process committing the
transaction and the process performing the AlJ group commit 1/O to the AlJ
journal.

There is no workaround to this problem. However, this problem does not cause
database corruption or cause other database integrity problems.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.8 Non-Update Read/Write Transactions Do Not Validate Checkpoint
Thresholds

Currently, a read/write transaction that does not modify any database objects
does not validate its checkpoint thresholds. This strategy has the advantage
of allowing the transaction to re-use the “Transaction Sequence Number” and
reducing the amount of AlJ journal information being submitted. However,
this strategy has the disadvantage of the process checkpoint not getting
advanced, which can result in an increased recovery duration if the process
were to terminate prematurely.

Users can see the transaction commit behavior, using the new logical name
RDM$BIND_RW_TX CKPT_ADVANCE. This logical name can be placed in the
LNMS$FILE_DEV table.

The value “0” indicates that read/write non-update transactions do not advance
the checkpoint; this is the current behaviour and the default value. The value “1”
indicates that read/write non-update transactions will advance the checkpoint if
the checkpoint thresholds are exceeded.

3.1.9 Lowercase Characters Cannot Be Used as Escape Character in a LIKE
Clause
Bug 905784

When lowercase characters are used as escape characters within an SQL
statement, Rdb may not be able to correctly locate matching records.

This problem only occurs when a sorted index is used by the optimizer to preselect
a range of records which will be filtered using the LIKE pattern.

The following example shows the problem:

3-4 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

SQL> create table ttable (tname char(10));

SQL> insert into ttable (thame) value ('my_tablel);

SQL> insert into ttable (thame) value ('my_table2);

SQL> set flags 'strategy’;

SQL> select thame from ttable

cont> where tname like 'myz_table%’ escape 'Z’;

Conjunct Get Retrieval sequentially of relation TTABLE
TNAME

my_tablel

my_table2

2 rows selected

SQL> create index tind on ttable(thame);

SQL> select thame from ttable

cont> where tname like 'myz_table%' escape 'z’;

Conjunct Index only retrieval of relation TTABLE
Index name TIND [1:1]

0 rows selected

Two possible workarounds can be used to prevent this problem:

= Use only uppercase or case-independent characters as the escape character
within the LIKE clause.

= Prevent the optimizer from using index retrieval by either deleting the index
or by using a query outline to change the selected strategy.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.10 ACCVIO if RDM$BIND_STT_NETWORK_TRANSPORT Logical Defined

It is possible for the RMU/SHOW Statistic utility to access violate when the
RDM$BIND_STT_NETWORK_TRANSPORT logical is defined to the value
“DECNET". This problem occurs on OpenVMS Alpha systems only, and appears
to occur for OpenVMS Version 6.2 and later.

The only workaround is to not define the RDM$BIND_STT_NETWORK _
TRANSPORT logical.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.11 RMU/SHOW Statistic Cluster Collection Failure

It is sometimes possible for the RMU/SHOW Statistic utility to not connect to
the remote statistics collection server (RDMSTTnn.EXE). This problem occurs on
OpenVMS Alpha systems only, and appears to occur for OpenVMS Version 7.1
and later.

There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.12 Error Creating RUJ When Default RUJ Directory Does Not Exist
Bug 860794

Errors are returned if a database is altered such that the default recovery journal
(RUJ) location has a non-existent directory. For example:

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-5

SQL> create database filename foo;

SQL> alter database filename foo recover journal

cont> (location is 'sys$disk:[nosuchdir]);

SQL> disconnect all;

SQL> att 'fi foo’;

SQL> create table foo (f1 int);

%RDB-F-SYS_REQUEST, error from system services request

-RDMS-F-FILACCERR, error creating run-unit journal file DEV:[NOSUCHDIR]JFO0$0001'
-RMS-E-DNF, directory not found

-SYSTEM-W-NOSUCHFILE, no such file

SQL>

SQL> alter database filename foo recover journal

cont> (location is 'sys$disk:[gooddir]);

%RDB-F-SYS_REQUEST, error from system services request

-RDMS-F-FILACCERR, error creating run-unit journal file DEV:[NOSUCHDIR]JFOO$0001"
-RMS-E-DNF, directory not found

-SYSTEM-W-NOSUCHFILE, no such file

SQL>

The workarounds are:
1. Create the directory so that it becomes valid.
2. EXPORT/IMPORT the database.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. If the default
recovery journal location contains an invalid directory, it will now be ignored.

3.1.13 Process May Stall in an Infinite Wait for a GBPT Slot Latch
Bug 714899

Under some rare conditions, it is possible to get a deadlock between a global
buffer page table (GBPT) latch and a global page lock. Such a deadlock is not
detected and so you get a process stall waiting indefinitely f or a GBPT slot latch,
blocking all other processes with its locks.

The code has been changed to bugcheck after 3 minutes if you do not get a latch
instead of looping infinitely.

There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.14 RDMS-F-NOREQIDT Errors
Bugs 870987 and 890405

In situations with high Oracle Rdb7 lock contention and substantial RMS activity,
it was possible to have an application fail with the following error:

%RDMS-F-NOREQIDT, reached internal maximum number of simultaneous timer requests

This error could be returned to the application program or sometimes a bugcheck
dump would be written with this error as the exception.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. Oracle Rdb7 has
been changed to no longer use as many timer requests when handling blocking
AST requests for database locks.

3-6 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

3.1.15 AIlJ Work File Search List Capability

In previous releases of Oracle Rdb, the RDB$BIND_AIJ_WORK_FILE logical
could be used to designate a device and directory in which the AlJ work files
would be created. However, when that device became full and no more work files
could be created or extended, Hot Standby would be shutdown.

In this release, a search list can be specified by defining logicals RDB$BIND_AlJ_
WORK_FILE1, RDB$BIND_AIJ_WORK_FILE2, ... RDB$BIND_AIJ_WORK_
FILENn with each logical pointing to a different device/directory. The numbers
must start with 1 and increase sequentially without any gaps. When an AlJ
work file cannot be created due to a "device full" error, Rdb will look for the next
device in the search list by translating the next sequential work file logical. If
RDB$BIND_AlJ_WORK_FILE is defined, it will be used first.

This AlJ work file search list capability is available in Oracle Rdb7 Release
7.0.3.1.

3.1.16 Failed Backup of Extensible AlJ Causes Gap in Sequence Numbers

In previous releases of Oracle Rdb, a failed backup of an extensible AlJ caused
a gap in the AlJ sequence numbers. This gap caused RMU/RECOVER and Hot
Standby to fail.

In this release, a failed backup of an extensible AlJ no longer causes a gap in the
sequence numbers.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.1.17 Improper Column Reference in CREATE TRIGGER Now Detected
Bug 592660

In prior versions of Oracle Rdb, an application error in a trigger definition was
not detected by the SQL interface. The resulting trigger generated a confusing
diagnostic. This error is shown in the following example:

SQL> create table T (ta integer);

SQL> create table S (sa integer, sh integer);
SQL>

SQL> -- bad column reference in INSERT
SQL> create trigger T_S

cont> before update of TA on T
cont> referencing new as C2

cont> (insert into S (ta) values (ta))
cont> for each row;

%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INVALID_BLR, request BLR is incorrect at offset 13
-RDMS-E-INVASSIGNMENT, illegal target for assignment

The problem was that the SQL interface allowed a column of the triggering table
(T in the example) to be listed in the column list of an INSERT statement, even
when it did not belong on the table targeted by the INSERT statement. This
problem only occurs for the INSERT statement if the REFERENCING clause is
present in a trigger definition.

This problem has been corrected in Oracle Rdb7 Version 7.0.4. SQL now detects
the invalid column reference as shown in this example:

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-7

SQL> -- bad column reference in INSERT
SQL> create trigger T_S

cont> before update of TA on T
cont> referencing new as C2

cont> (insert into S (ta) values (ta))
cont> for each row;

%SQL-F-FLDNOTCRS, Column TA was not found in the tables in current scope

3.1.18 Bugcheck in DIO$SFREE_CURRENT_LOCK
Bug 728613

A bugcheck occurred with an exception in the routine DIOSFREE_CURRENT _
LOCK if the transaction type was READ COMMITTED and a hold cursor was
used containing a query whose strategy employed a backward scan and the rows
from the cursor were fetched over multiple transactions. The problem occurred
because Oracle Rdb mistakenly released a lock prematurely. Later, when Oracle
Rdb was truly finished with the resource, a bugcheck occurred trying to release
the lock that had previously been released.

The following query on the PERSONNEL database shows an example of the
problem:

SQL> ATTACH 'FILE PERSONNEL’;

SQL>

SQL> DECLARE TRANSACTION READ WRITE ISOLATION LEVEL READ COMMITTED;
SQL>

SQL> DECLARE T2 TABLE CURSOR WITH HOLD PRESERVE ALL FOR

cont> SELECT *

cont> FROM EMPLOYEES
cont> WHERE ~ EMPLOYEE_ID > ‘00300’
cont> AND EMPLOYEE_ID < 00400’
cont> ORDER BY EMPLOYEE_ID DESC;
sQL>

SQL> OPEN T2;
SQL> FETCH T2:

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS DATA 1 ADDRESS_DATA 2 CITY
STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00374 Andriola Leslie Q.
111 Boston Post Rd. NULL Salisbury
NH 03268 M 19-Mar-1955 1
SQL>
SQL> COMMIT;
SQL>

SQL> FETCH T2;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file DISK:[DIRJRDSBUGCHK.DMP;

The only workaround the problem is to restructure the transaction to use isolation
level serializable; or use a standard, non-hold cursor; or avoid the backward scan;
or fetch all the rows using one transaction.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.2 SQL Errors Fixed

3.2.1 Improved Optimization for NULLIF Expression with Subselect
Bug 903619

3-8 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

In prior versions of Oracle Rdb, queries using NULLIF might have a sub-optimzal
optimizer strategy if it included a subquery, as shown in this example:

SQL> set flags 'strat’;
SQL> select nullif ((select count(*)

cont> from job_history jh

cont> where jh.employee_id = e.employee _id),
cont> ,

cont> employee _id

cont> from employees e
cont> where employee_id < '00166’;
Match
Outer loop
Cross block of 2 entries
Cross block entry 1
Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:1]
Cross block entry 2

Aggregate Index only retrieval of relation JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]
Inner loop (zig-zag)
Aggregate Conjunct Index only retrieval of relation JOB_HISTORY
Index name JOB_HISTORY_SORT [0:0]
EMPLOYEE_ID
2 00164
4 00165

2 rows selected

This problem has been corrected in Oracle Rdb7 Release 7.0.4. NULLIF now
shares an optimization with COALESCE and the simple CASE expression where
the subselect is evaluated just once. This allows the Oracle Rdb server to perform
less table accesses as shown in the example run on the latest release:

SQL> set flags 'strategy’;
SQL> select nullif ((select count(*)

cont> from job_history jh

cont> where jh.employee_id = e.employee_id),
cont> ,

cont> employee id

cont> from employees e
cont> where employee_id < '00166’;
Match
Outer loop
Index only retrieval of relation EMPLOYEES
Index name EMP_EMPLOYEE_ID [0:1]

Inner loop (zig-zag)
Aggregate Conjunct Index only retrieval of relation JOB_HISTORY
Index name JOB_HISTORY_SORT [0:0]
EMPLOYEE_ID
2 00164
4 00165

2 rows selected

Note that a side effect of this change is that the query outline ID generated for
the query and the query structure will change and thus the query outline will not
be used for the query. This will require regeneration of these query outlines.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-9

3.2.2 Correct JOIN Syntax Generated Error and Bugcheck
Bug 941621

In a SELECT expression, a result table is derived from some combination of the
table references identified in the FROM clause of the expression. In the following
example, the table reference is a joined table in which one of the latter table
references is a derived table. The syntax is correct, yet was generating an error.
This problem has been fixed and the syntax is now accepted. This example shows
the syntax error which had been generated:

select coll,tablel.col2 from tablel
left join

(select coll from table2 where col2 = 1) 2
inner join table3 using (coll)

Lsing (col2);

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:

%SQL-W-LOOK_FOR_CON, JOIN, LEFT, FULL, UNION, CROSS, RIGHT,
%SQL-W-LOOK_FOR_CON, INNER, LIMIT, ORDER, NATURAL,),
%SQL-F-LOOK_FOR_FIN, found T2 instead

In the next example, the correlation name clause has been omitted. In such a
case, SQL was generating a bugcheck dump. For example:

select coll,tablel.col2 from tablel
left join

(select coll from table2 where col2 = 1)
inner join table3 using (chl)
) using (chl);

%SQL-I-BUGCHKDMP, generating bugcheck dump file DISK1:[TEST]SQLBUGCHK.DMP;
%SQL-F-BUGCHK, There has been a fatal error. Please contact your Oracle
support representative. SQLSSEMRSE - WALK_TABLE_REF - UNKNOWN TYPE

The following example shows the error message SQL now generates:

select chl,tablel.ch?2 from tablel
left join
(

(select chl from table2 where ch2 = 1)
inner join table3 using (chl)

using (chl);
%SQL-F-CORNAMREQ, A correlation name is required for a derived table

These problems have been corrected.

3.2.3 Incorrect Results from Oracle7 Outer Join Syntax
Bugs 782901 and 693636

Oracle Rdb release 7.0.1.1 introduced new SQL syntax for performing outer
joins between two or more tables. The syntax and semantics were designed to
duplicate the syntax available in Oracle7 and Oracle8 SQL and therefore enhance
the compatibility between these two products. The special operator (+) can be
placed in the WHERE clause to instruct SQL to join tables using outer join
semantics.

3-10 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

In prior releases, this syntax could produce the incorrect results listed below.
However, the ANSI/ISO SQL standard syntax (SQL92) for LEFT, RIGHT,
and FULL OUTER JOIN does not have these problems and can be used as a
workaround for these limitations.

e Using outer join syntax to join a table to itself may only perform an inner
join. For example:

select e.eid, e.ename, m.ename as "Manager"
from employees e, employees m

where e.manid = m.eid (+)

order by m.eid, e.eid;

= If a table was joined to itself and three or more table sources were specified,
the query did not work and the error FLDNOTCRS would be erroneously
generated as shown in this example:

SQL> select o.order_id, bl.comp_name, b2.comp_name
cont> from t_order o, company bl, company b2
cont> where bl.comp_id (+) = o.customer

cont> and bl.comp_type(+) = o.cust_type

cont> and b2.comp_id(+) = o.transport

cont> and b2.comp_type(+) = o.trans_type;

%SQL-F-FLDNOTCRS, Column B1.COMP_NAME was not found in the tables in current
scope

In some cases on OpenVMS Alpha, an SQL bugcheck could be generated.

= Predicates which compared an outer join marked table column with a simple
expression were not correctly used for the outer join.

In this example, the condition job (+) = 'Clerk’ was treated as though it
had no outer join marker as in job = 'Clerk’ . If the column is not qualified
with (+), it becomes part of the WHERE clause as a filter to the final result
table. However, the query had wanted to place this condition on the outer
join to force NULL-filled rows to be returned. The difference in the result can
be seen in the correct results from these queries:

SQL> select ename, job, dept.deptno, dname
cont> from emp, dept
cont> where emp.deptno (+) = dept.deptno

cont> and job (+) = 'Clerk’;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting

Smith Clerk 20 Research

Adams Clerk 20 Research

James Clerk 30 Sales

NULL NULL 40 Operations

5 rows selected

SQL>

SQL> select ename, job, dept.deptno, dname
cont> from emp, dept
cont> where emp.deptno (+) = dept.deptno

cont> and job = 'Clerk’;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting

Smith Clerk 20 Research
Adams Clerk 20 Research

James Clerk 30 Sales

4 rows selected

SQL>

= Complex multitable outer joins were not supported by Oracle Rdb.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-11

When more than one column from a table is referenced for an outer join
SQL erroneously diagnoses an invalid form of join. The following example
is a valid SQL query and should not have caused an error message to be
displayed:

SQL> select e.employee_id, sh.salary_amount, jh.job_start
cont> from employees e, job_history jh, salary history sh
cont> where

cont> e.employee_id = sh.employee id (+)

cont> and e.employee_id = jh.employee_id (+)

cont> and e.department_code = jh.department_code (+)
cont> and e.employee_id = '00164’;

%SQL-F-ONETABLEJOIN, a table may be outer joined to at most one other table

These problems have been corrected in Oracle Rdb7 Release 7.0.4. SQL now
processes this style of join operator correctly and more generally than in previous
releases.

3.2.3.1 Outer Joins

An outer join extends the result of a simple join. An outer join returns all rows
that satisfy the join condition and those rows from one table for which no rows
from the other satisfy the join condition. Such rows are not returned by a simple
join. To write a query that performs an outer join of tables A and B and returns
all rows from A, apply the outer join operator (+) to all columns of B in the join
condition. For all rows in A that have no matching rows in B, Oracle Rdb returns
NULL for any select list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

= The (+) operator can appear only in the WHERE clause and can be applied
only to a column of a table or view.

< If A and B are joined by multiple join conditions, you must use the (+)
operator in all these conditions. If you do not, Oracle Rdb will return only the
rows resulting from a simple join, but without a warning or error to advise
you that you do not have the results of an outer join.

e The (+) operator can be applied only to a column, not to an arbitrary
expression. However, an arbitrary expression can contain a column marked
with the (+) operator.

= A condition containing the (+) operator cannot be combined with another
condition using the OR logical operator.

< A condition cannot use the IN comparison operator to compare a column
marked with the (+) operator with an expression.

= A condition cannot compare any column marked with the (+) operator with a
subquery.

If the WHERE clause contains a condition that compares a column from table B
with a constant, the (+) operator must be applied to the column so that Oracle
Rdb returns the rows from table A for which it has generated NULLSs for this
column. Otherwise Oracle Rdb will return only the results of a simple join.

In a query that performs outer joins of more than two pairs of tables, a single
table can be the NULL-generated table for only one other table. For this reason,
you cannot apply the (+) operator to columns of B in the join condition for A and
B, and the join condition for B and C.

3-12 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

3.2.3.2 Outer Join Examples
The examples in this section extend the results of an inner join (Equijoin)
between the EMP and the DEPT tables.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno = dept.deptno;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Blake Manager 30 Sales
Clark Manager 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Allen Salesman 30 Sales
Ward Salesman 30 Sales
Martin Salesman 30 Sales

Scott Analyst 20 Research
Turner Salesman 30 Sales
Adams Clerk 20 Research
James Clerk 30 Sales
Miller Clerk 10 Accounting

14 rows selected

The following query uses an outer join to extend the results of the Equijoin
example above:

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Clark Manager 10 Accounting
Miller Clerk 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Scott Analyst 20 Research
Adams Clerk 20 Research
Blake Manager 30 Sales

Allen Salesman 30 Sales

Ward Salesman 30 Sales

Martin Salesman 30 Sales

Turner Salesman 30 Sales

James Clerk 30 Sales

NULL NULL 40 Operations

15 rows selected

In this outer join, Oracle Rdb returns a row containing the Operations
department even though no employees work in this department. Oracle Rdb
returns NULL in the ENAME and JOB columns for this row. The join query in
this example selects only departments that have employees.

The following query uses an outer join to extend the results of the preceding
example:

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-13

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept

cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job (+) = 'Clerk’;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting

Smith Clerk 20 Research

Adams Clerk 20 Research

James Clerk 30 Sales

NULL NULL 40 Operations

5 rows selected

In this outer join, Oracle Rdb returns a row containing the Operations
department even though no clerks work in this department. The (+) operator on
the JOB column ensures that rows for which the JOB column is NULL are also
returned. If this (+) were omitted, the row containing the Operations department
would not be returned because its JOB value is not CLERK.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept

cont> WHERE emp.deptno (+) = dept.deptno
cont> AND job = 'Clerk’;

EMP.ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
Miller Clerk 10 Accounting

Smith Clerk 20 Research

Adams Clerk 20 Research

James Clerk 30 Sales

4 rows selected

This example shows four outer join queries on the CUSTOMERS, ORDERS,
LINEITEMS, and PARTS tables:

SQL> SELECT custno, custname

cont> FROM customers

cont> ORDER BY custno;
CUSTNO CUSTNAME

1 Angelic Co

2 Believable Co

3 Cables R Us
3 rows selected

SQL>

SQL> SELECT orderno, custno, orderdate
cont> FROM orders

cont> ORDER BY orderno;

ORDERNO CUSTNO ORDERDATE
9001 1 1999-10-13
9002 2 1999-10-13
9003 1 1999-10-20
9004 1 1999-10-27
9005 2 1999-10-31
5 rows selected

SQL>

SQL> SELECT orderno, lineno, partno, quantity
cont> FROM lineitems

cont> ORDER BY orderno, lineno;

ORDERNO LINENO PARTNO QUANTITY
9001 1 101 15
9001 2 102 10
9002 1 101 25
9002 2 103 50
9003 1 101 15
9004 1 102 10
9004 2 103 20

7 rows selected

3-14 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

SQL>

SQL> SELECT partno, partname

cont> FROM parts

cont> ORDER BY partno;

PARTNO PARTNAME

101 X-Ray Screen
102 Yellow Bag
103 Zoot Suit

3 rows selected

The customer Cables R Us has placed no orders, and order number 9005 has no
line items.

The following outer join returns all customers and the dates they placed orders.
The (+) operator ensures that customers who placed no orders are also returned:

SQL> SELECT custname, orderdate

cont> FROM customers, orders

cont> WHERE customers.custno = orders.custno (+)
cont> ORDER BY customers.custno, orders.orderdate;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE

Angelic Co 1999-10-13
Angelic Co 1999-10-20
Angelic Co 1999-10-27
Believable Co 1999-10-13
Believable Co 1999-10-31
Cables R Us NULL

6 rows selected

The following outer join builds on the result of the previous one by adding the
LINEITEMS table to the FROM clause, columns from this table to the select
list, and a join condition joining this table to the ORDERS table to the WHERE
clause. This query joins the results of the previous query to the LINEITEMS
table and returns all customers, the dates they placed orders, the part number,
and the quantity of each part they ordered. The first (+) operator serves the same
purpose as in the previous query. The second (+) operator ensures that orders
with no line items are also returned:

SQL> SELECT custname, orderdate, partno, quantity

cont> FROM customers, orders, lineitems

cont> WHERE customers.custno = orders.custno (+)

cont> AND orders.ordermno = lineitems.orderno (+)

cont> ORDER BY customers.custno, orders.orderdate, lineitems.partno;

CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.PARTNO LINEITEMS.QUANTITY

Angelic Co 1999-10-13 101 15
Angelic Co 1999-10-13 102 10
Angelic Co 1999-10-20 101 15
Angelic Co 1999-10-27 102 10
Angelic Co 1999-10-27 103 20
Believable Co 1999-10-13 101 25
Believable Co 1999-10-13 103 50
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL

9 rows selected

The following outer join builds on the result of the previous one by adding the
PARTS table to the FROM clause, the PARTNAME column from this table to the
select list, and a join condition joining this table to the LINEITEMS table to the
WHERE clause. This query joins the results of the previous query to the PARTS
table to return all customers, the dates they placed orders, the quantity, and
the name of each part they ordered. The first two (+) operators serve the same
purposes as in the previous query. The third (+) operator ensures that rows with
NULL part numbers are also returned:

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-15

SQL> SELECT custname, orderdate, quantity, partname

cont> FROM customers, orders, lineitems, parts

cont> WHERE customers.custno = orders.custno (+)

cont> AND orders.orderno = lineitems.orderno (+)

cont> AND lineitems.partno = parts.partno (+)

cont> ORDER BY customers.custno, orders.orderdate, parts.partno;

CUSTOMERS.CUSTNAME =~ ORDERS.ORDERDATE LINEITEMS.QUANTITY PARTS.PARTNAME

Angelic Co 1999-10-13 15 X-Ray Screen
Angelic Co 1999-10-13 10 Yellow Bag
Angelic Co 1999-10-20 15 X-Ray Screen
Angelic Co 1999-10-27 10 Yellow Bag
Angelic Co 1999-10-27 20 Zoot Suit
Believable Co 1999-10-13 25 X-Ray Screen
Believable Co 1999-10-13 50 Zoot Suit
Believable Co 1999-10-31 NULL NULL

Cables R Us NULL NULL NULL

9 rows selected

3.2.4 MAPPING VALUES Not Supported for CREATE INDEX in IMPORT

In previous releases of Oracle Rdb, the SQL IMPORT statement did not allow an
index to be created or replaced which used the MAPPING VALUES clause. This
restriction has now been lifted. The SQL IMPORT statement now supports the
full CREATE INDEX syntax as a subclause, allowing indexes to be created and
replaced during the IMPORT operation.

The following example shows the error which was generated in previous releases:

SQL> import database

cont> from ppp

cont> filename MAPP

cont> create index PERSON_INDEX

cont> on PERSON (employee_id mapping values 0000.00 to 2001.9)

cont> ;

%SQL-F-NOMAPIMPO, Mapping Values on CREATE INDEX within an IMPORT is not
supported

A workaround to this problem is to use the DROP INDEX statement to remove
the index (either before the EXPORT or after the IMPORT) and then re-create

the index when the database is complete. The corrected behavior in this update
to Oracle Rdb will be more efficient, as the index will only be built once.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.2.5 SELECT Returns Incorrect Values for GROUP BY Queries
Bug 882722

Prior releases of Oracle Rdb7 would return incorrect results when similar
expressions appeared in the select list of a GROUP BY query. SQL attempted to
eliminate common expressions and incorrectly folded together the results of these
similar expressions.

This problem affected the use of the functions CAST, EXTRACT, TRIM and the
subtraction operator that resulted in different INTERVAL data types.

The following example shows this problem where the EXTRACT of the MONTH
field is incorrectly returning the year:

3-16 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

SQL> select fundnum,

cont> extract(year from distribution_date) as yr,
cont> extract(month from distribution_date) as mth,
cont> count(*),

cont> sum(distribution_rate)

cont> from fund_distributions
cont> group by fundnum,

cont> extract(year from distribution_date),
cont> extract(month from distribution_date);
FUNDNUM YR MTH
202 1999 1999 1 2.533465999999999E-003
245 1999 1999 1 6.772000000000000E-002

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.2.6 Restrictions on CURRENT_TIMESTAMP Default Value Lifted

In previous versions of Oracle Rdb, the CURRENT_TIMESTAMP built-in
FUNCTION was controlled by the setting of the DEFAULT DATE FORMAT,

or DIALECT of the session. When these were set to SQL92, CURRENT_
TIMESTAMP could only be used as a default for a TIMESTAMP domain or
column. When set to VMS or the default dialect SQL040, then CURRENT _
TIMESTAMP could only be used as a default for a DATE VMS domain or column.

This restriction was problematic when tables were created with columns of both
DATE VMS and TIMESTAMP and these columns wished to use the default of
CURRENT_TIMESTAMP. SQL would reject the CREATE TABLE definition no
matter what setting was active for the DEFAULT DATE FORMAT. In a similar
way, when different tables were created the DEFAULT DATE FORMAT or
DIALECT had to be changed between each CREATE/ALTER DOMAIN or TABLE
statement.

This restriction has been lifted in this release of Oracle Rdb. SQL now uses

the column or domain data type when checking the usage of the CURRENT _
TIMESTAMP as a default value. If the column or domain is of type TIMESTAMP
then CURRENT_TIMESTAMP returns a value of type TIMESTAMP, otherwise it
will be DATE VMS.

Oracle Rdb has also relaxed the fractional seconds precision used by the
DEFAULT clause for CURRENT_TIMESTAMP, CURRENT_TIME, TIMESTAMP,
TIME, and INTERVAL literals. They no longer need to exactly match those of the
column or domain. Obviously, if the DEFAULT allows more precision than the
column, then truncation will occur during assignment.

The following example shows the errors reported when the DIALECT is set to
SQL92:

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-17

SQL> create table C_T_TEST1

cont> (a timestamp default current timestamp);
SQL>

SQL> create table C_T_TEST2

cont> (a timestamp(1) default current_timestamp(2));

%SQL-F-DEFVALINC, You specified a default value for A which is inconsistent
with its data type

SQL>

SQL> create table C_T_TEST3

cont> (a integer,

cont> b timestamp(0) default timestamp'1999-7-2:12:00:00.99);

%SQL-F-DEFVALINC, You specified a default value for B which is inconsistent
with its data type

SQL>
SQL> create table C_T_TEST4
cont> (a date vms default current_timestamp);

%SQL-F-DEFVALINC, You specified a default value for A which is inconsistent
with its data type

The following example shows the new behavior:

SQL> set dialect 'sql92’;
SQL> attach ‘file db$:scratch’;

SQL>

SQL> create table C_T _TEST1

cont> (a timestamp default current_timestamp);

SQL>

SQL> create table C_T_TEST2

cont> (a timestamp(1) default current_timestamp(2));

SQL>

SQL> create table C_T _TEST3

cont> (a integer,

cont> b timestamp(0) default timestamp'1999-7-2:12:00:00.99");
SQL> insert into C_T _TEST3 (a) values (0);

cont> (a integer,

cont> b timestamp(0) default timestamp’1999-7-2:12:00:00.99");

SQL> insert into C_T _TEST3 (a) values (0);
1 row inserted
SQL> select * from C_T TESTS;
A B
0 1999-07-02 12:00:00
1 row selected

SQL>
SQL> create table C_T_TEST4
cont> (a date vms default current_timestamp);

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

3.2.7 SQL Uses Read/Write Transactions Against Standby Database

In prior releases of Oracle Rdb7, the SQL interface, in particular interactive and
dynamic SQL, would attempt to execute a read/write transaction on a database
which was currently a standby database. This type of database is considered
read-only and starting a read/write transaction fails. This problem may cause
connections from ODBC, SQL*Net for Rdb, and SQL/Services to fail.

A workaround for this problem is to restore the standby database using the
RMU/RESTORE/TRANSACTION_MODE=READ_ONLY command which permits
only read-only transactions on the database. Current releases of SQL do detect
this setting and will then operate correctly. When the standby database is
required as the master database (following a system failure), the ALTER
DATABASE ... ALTER TRANSACTION MODE (READ WRITE) statement
should be used to enable read/write transactions for the database.

3-18 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. SQL now
determines that the database is a standby database and uses by default READ
ONLY transactions for metadata queries.

3.2.8 Domain Constraints Did Not Support Function Calls Passing VALUE
Bug 808378

In prior releases of Oracle Rdb, attempts to pass the special VALUE keyword to
a user-defined function (external or stored) would cause the CREATE or ALTER
DOMAIN statement to bugcheck.

The following example shows the resulting exception:

SQL> create module myModule language sql

cont> function myFunction(in :x char(1)) return char(l);

cont> begin

cont> return case :x when A’ then :x else null end;

cont> end;

cont> end module;

SQL> create domain myDomain char(1)

cont> check(myFunction(value) is not null) not deferrable;
%SQL-I-BUGCHKDMP, generating bugcheck dump file DISK1:[TEST]SQLBUGCHK.DMP;
%SQL-F-BUGCHK, There has been a fatal error. Please contact your Oracle support
representative. SQL$SEMASS - 9

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. SQL now
supports the passing of the VALUE keyword (or the name of the domain) to a
user-defined function in a domain CHECK constraint.

3.2.9 CREATE VIEW May Fail on Large or Complex View Definition
Bug 909035

Definitions of very complex views, view definitions referencing long table and
column names, or views based on tables with many columns may fail with one of
the following errors:

e Obsolete metadata

%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no longer
exist

-RDMS-F-BAD_SYM, unknown field symbol - XXX

Here XXX represents a partial or corrupt column name from the view
definition.

e Invalid BLR

%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INVALID_BLR, request BLR is incorrect at offset NNN

Here NNN represents some numeric offset into the definition.

These problems occur when SQL attempts to build a binary version of the view
row selection expression (RSE) which exceeds 65,535 (64K) bytes in length. This
was the maximum size supported in prior versions of Oracle Rdb, and remains
the limit for Oracle CDD/Repository and older versions of Oracle Rdb.

There is no simple workaround for this restriction. However, you could use
shorter table and column names, or break the view definition into references to
other views.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-19

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. Oracle Rdb
has been enhanced to support much larger view definitions. SQL will use a new
format for the view definition if it requires more than 65,535 bytes to describe.
However, this new format is not supported by Oracle CDD/Repository or older
versions of Oracle Rdb, and these view definitions cannot be created in these
products.

3.2.10 Incomplete Support for Multischema Databases for Query Outlines

Bug 886825

In prior releases of Oracle Rdb, the support for multischema databases was
incomplete for query outlines for the following reasons:

e The CREATE OUTLINE statement did not support the STORED NAME
IS clause. Therefore, user-specified names could not be provided for query
outlines.

The workaround for this problem was to accept the unique names generated
by SQL.

e The OPTIMIZE USING clause on the DECLARE CURSOR, SELECT,
UPDATE, and DELETE statements did not allow a fully-qualified query
outline name.

A workaround for this problem was to specify the query outline name without
the catalog or schema reference.

The following example shows the error reported when an attempt was made to
use a fully-qualified name for the outline SAMPLE:

SQL> select count(a)
cont> from SAMPLE TABLE
cont> where b <> CURRENT_TIMESTAMP
cont> optimize using outer_space.inner_space.sample;
optimize using outer_space.inner_space.sample;
A

%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, AS, FOR, USING, ;,
%SQL-F-LOOK_FOR_FIN, found . instead

These problems have been corrected in Oracle Rdb7 Release 7.0.3.1. SQL now
supports the STORED NAME IS clause for the CREATE OUTLINE statement,
and the fully-qualified name can be used in the OPTIMIZE USING clause.

Note

If a fully-qualified name is used for the OPTIMIZE USING clause, then
the catalog and schema must exist within the database. However, for
consistency with single schema databases, the outline need not exist at
the time of the query processing. If the outline is not created prior to
execution of the query, then this name will be ignored by the Oracle Rdb
optimizer.

3-20 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

CREATE OUTLINE <outline-name>

k» STORED NAME IS <stored-name> —)
FROM —» (—» <sql-query> —>)
ON — PROCEDURE ID proc-id
_E: FUNCTION - NAME <name> J
IDid-number -
L» MODE mode Jk —;» (= query-list —-»>)—)
USING
L» COMPLIANCE MANDATOR\d
_E: OPTIONAL
(<
L» EXECUTION OPTIONS —» (—» execution-options —>) J

v

(
s COMMENTIS <string> jj
I G

3.2.11 UNKNOWN_VAR Error Reported During Select from a View
Bug 903619

In prior versions of Oracle Rdb, the error, “unknown variable 1 found in the query
string” may be reported when selecting rows from a view.

The problem only occurs when the conditional expressions CASE, COALESCE,
NVL, and DECODE are used in a SELECT DISTINCT clause as part of a
CREATE VIEW statement. Typically these conditional expressions contain
subselects that reference other table contexts. Although the view can be created,
it could never be used successfully, as shown in this example:

SQL> select * from sample_view;
%RDB-E-INVALID_BLR, request BLR is incorrect at offset 66
-RDMS-E-UNKNOWN_VAR, unknown variable 1 found in the query string

This error is caused by an incorrect definition stored in the database by the

CREATE VIEW statement. Once this release of Oracle Rdb is installed, the view
can be deleted and re-created to correct this problem.

A workaround for this problem is to rewrite the view SELECT clause to use
GROUP BY or a derived table in place of the DISTINCT clause. The resulting
view will probably be more efficient and perform less table accesses because the
complex expressions will not be used for the unique row selection.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. The CREATE
VIEW statement now correctly handles conditional expressions with subselects in
the view SELECT clause.

3.2.12 SQL Module Language Compiler Fails Unexpectedly

Bug 496320
It is possible that the SQL module language compiler could fail when processing a
FETCH statement. The failure occurs when parameters have the same names as

columns in the table and are not prefixed with colons. The SQL module language
compiler should diagnose this error, but instead it fails to complete the compile.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-21

On OpenVMS VAX systems, the SQL module language compile fails with error
similar to those in the following example:

$ sgl$mod appl
00000207'GF 14 28 06A7 797 MOVC3 #20,
G"MESSAGES$1_1+MESSAGES$1_1VAR3, G"MESSAGE$0_0+MESSAGE$0_0$VARSO
%MACRO-E-UNDEFSYM, Undefined symbol
06AE
%MACRO-E-UNDEFSYM, Undefined symbol
00000223'GF 01 28 06CA 804 MOVC3 #1,
G"MESSAGES$1_1+MESSAGE$1_1$VARS$6, G"MESSAGES$0_0+MESSAGE$0_0$VARSO
%MACRO-E-UNDEFSYM, Undefined symbol
06D1
%MACRO-E-UNDEFSYM, Undefined symbol

There were 4 errors, 0 warnings and 0 information messages, on lines:
797 (2) 804 (2)

MACRO/NOLIST MAR_SPEC
On OpenVMS Alpha systems the following is produced:

$ sqi$mod appl

%SQL-E-CHKINIT, 2 integrity check errors in initial IL & ST for module

READ BD FOR_BATCH

%SQL-I-BUGCHKDMP, generating bugcheck dump file DISK1:[TEST]SQLBUGCHK.DMP;

This problem has been corrected in Oracle Rdb7 Version 7.0.4. The SQL module
language compiler has been enhanced to detect this situation and report a new
error message, as shown in the following example:

$ sgl$mod appl

ARCHIVED

1
%SQL-F-INVINTOTAR, (1) target for an INTO clause must be a variable or
parameter

3.2.13 ORDER BY Select Query from a View with ORDER BY on the Same
COMPUTED BY Column Returns Wrong Result

Bugs 880630 and 934057

The following ORDER BY select query from a view with ORDER BY on the same
COMPUTED BY column returns wrong results:

select F_ COMPUTE_BY from test view order by F COMPUTE_BY;
F_COMPUTE_BY
5.50
5.50
2 rows selected
where the view test view is defined as :
create view test view (
LEV_ID ,
F_COMPUTE_BY
) as
select
T1.LEV_ID,
T1.F_COMPUTE_BY
from T1 T1
order by T1.F_ COMPUTE_BY asc ;

where the column F_COMPUTE_BY is defined as:

COMPUTED BY (select C2.F2 from T2 C2
where (T1.F1 = C2.F1)));

The correct result should be the same as the following query:

3-22 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

SQL> sel * from test view;

LEV_ID F_COMPUTE_BY
123456 5.50
123456 10.10

2 rows selected
Here is the script to reproduce the problem:

create table T2 (
F1 CHAR(26),
F2 INTEGER

);
INSERT INTO T2 VALUE (F101’, 10);
INSERT INTO T2 VALUE (FL 02, 5);

create table T1 (

F1 CHAR(26),

REV_ID INTEGER,

PROJ_ID CHAR(6),

LEV_ID CHAR(6),

F_COMPUTE_BY

computed by (select T2.F2 from T2 T2
where (T1.F1 = T2.F1));

INSERT INTO T1 (F1, REV_ID, PROJ_ID, LEV_ID) VALUE
(F1_0L', 990413001, ‘2800, '123456);

INSERT INTO T1 (F1, REV_ID, PROJ ID, LEV_ID) VALUE
(F1_02', 990413002, ‘2800, '123456);

create index T1_NDX
on T1 (
PROJ_ID asc,
REV_ID asc);

create index T2_NDX

on T2 (

F1)
This problem occurs when the ORDER BY clause of both the main select query
and view query is placed upon the same column where the column is COMPUTED
BY as a subquery select.

The current problem is caused by Oracle Rdb 7.0.1.6 where a fix was introduced
for bug 651184 to explicitly join the subselect query under the view query if the
view query contains ORDER BY clause. This fix has a serious flaw when the
subselect query is defined under a COMPUTED BY definition for the column.

Workaround: None.

This problem has been corrected in Oracle Rdb7 Version 7.0.4.

3.3 Oracle RMU Errors Fixed

3.3.1 Lock ID Hidden by Stall Message in RMU/SHOW Statistics

Previously, RMU/SHOW Statistics could “hide” the Lock ID value when displaying
stall messages if the stall message was long, even when the terminal width was
set wide enough to display everything correctly. For example:

Node: LLDV0O Oracle Rdb V7.0-01 Performance Monitor 11-AUG-1999 22:39:0
Rate: 3.00 Seconds Stall Messages Elapsed: 6 04:26:42.2
Page: 1 of 1 DEV_DISKE:[DEV.DATA]RGN_DB.RDB;2 Mode: Onlie
Process.ID Since...... T Stall.reason........cccceevvevvvevenee. Lock.ID.

20202B96:1 10:37:11.23 W Waiting for client '....Q..." 000000051000000040000005

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-23

This problem has been corrected in Oracle Rdb7 Version 7.0.4. RMU/SHOW
Statistics now displays the Lock ID value with an offset from the right margin of
the display. Setting the display wider (to 132 columns, for example) allows both
the stall message text and the Lock ID to be displayed at one time.

3.3.2 Terminal Width Checked by RMU/SHOW Statistics

RMU/SHOW Statistics assumes a minimum terminal width of 80 columns. When
run on a terminal set to less than 80 columns, RMU/SHOW Statistics could
bugcheck or be unable to properly format the display.

This problem has been corrected in Oracle Rdb7 Version 7.0.4. RMU/SHOW
Statistics now enforces a minimum terminal width of 80 columns. It also enforces
a minimum row count of 24. If the terminal is set to less than the minimum
number of rows or columns, an error message is displayed.

3.3.3 RMU/SHOW Statistic Physical-Area Event Creation Bugchecks

Attempting to create a user-defined event involving a physical or logical area
when used in conjunction with the /INOINTERACTIVE qualifier causes the
RMU/SHOW Statistic utility to bugcheck.

The following configuration file entry shows an example of a user-defined event
that will cause the problem when the RMU/SHOW Statistic utility is invoked
using the NOINTERACTIVE qualifier:

EVENT_DESCRIPTION = "ENABLE ' (Extends)’ \
MAX_CUR_TOTAL \
AREA DEPARTMENTS
INITIAL 0 EVERY 1 LIMIT 0 \
NOTIFY OPER12":

The workaround is to use the /INTERACTIVE qualifier, or do not specify an event
using a physical or logical area statistic name.

This problem has been corrected in Oracle Rdb7 Version 7.0.3.1. User-defined
events using physical or logical areas in conjunction with the /INOINTERACTIVE
qgualifier now work as expected.

3.3.4 Ignore Row Caches when Writing RMU/SHOW Statistic Report
Bug 944656

Customers frequently use the RMU/SHOW Statistic utility Write Report
(Numbers) to generate screen snapshots which are then processed using various
analysis tools. When the database has row caches enabled, the RMU/SHOW
Statistic utility maps all available caches into memory. When the database
contains a large number of row caches, or the row caches have a large number of
slots, or both, this can cause the process PO space to be exhausted.

The best workaround is to put the row caches in system space (VLM).
This problem has been corrected in Oracle Rdb7 Version 7.0.3.1.

When row caching is allowed on the database, the "Options" on-screen menu will
display the following new options:

e Include row cache information

This option allows you to include all row cache information in the report.
This is the default setting.

e Exclude row cache information

3-24 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

This option allows you to exclude all row cache information in the report.

You can also use the new configuration variable REPORT_IGNORE_RCACHE to
specify the initial report option. The value TRUE indicates that the report should
exclude all row cache information. The default value FALSE indicates that the
report should include row cache information. This variable can be changed at run
time using the Options on-screen menu options that was previously described.

3.3.5 RMU/LOAD from a Record-Oriented Device Caused RMS-F-IOP Error

Previously, attempting to use the RMU/LOAD utility using a record-oriented
device (a terminal or mailbox, for example) for data input would fail with an
RMS-F-10P error.

For example:

$ RMU/LOAD DB.RDB /RECORD_DEFINITION=FILE=TBL.RRD TBL MBAS500:
%RMU-F-FILACCERR, error opening input file MBA500:[DB].UNL;

-RMS-F-IOP, operation invalid for file organization or device
%RMU-I-DATRECSTO, 0 data records stored.

%RMU-F-FTL_LOAD, Fatal error for LOAD operation at 13-JUN-1999 15:13:33.41

This problem was caused by an attempt to search for the input file on the
specified device to return the full file specification.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. When the input
source is a record-oriented device, no search for the input file is done.

3.3.6 RMU/EXTRACT Sometimes Bugchecks when Processing Many Storage

Areas

Bug 633334

In previous versions of Oracle Rdb, the RMU/EXTRACT storage area output
could be truncated or RMU might bugcheck at EXTRACT_DATABASE +789 if the
database had many storage areas. This affects the /ITEM options for DATABASE,
IMPORT, and ALL.

RMU uses a special interface call (API) to retrieve all the names of the storage
areas. This problem occured when the buffer was incorrectly truncated. This
truncated buffer appeared corrupted and so RMU/EXTRACT would bugcheck.

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1. The buffer
returned from the storage area query is no longer truncated.

3.3.7 Problem in Reporting Recovered AlJ Sequence Number

In previous releases of Oracle Rdb, when multiple, after-image journals were
combined into one journal file, such as a backup of multiple journals, the
RMU/RECOVER command’'s AIJONEDONE trace message could display incorrect
information. The RMU/RECOVER command might display the sequence number
of the next journal to be recovered instead of the journal just recovered. In the
following example, sequence 5 has just been recovered and sequence 6 will be
recovered next, but the AIJONEDONE message indicates an incorrect sequence
number of 6:

%RMU-I-AIJONEDONE, AlJ file sequence 6 roll-forward operations completed

This problem has been corrected in Oracle Rdb7 Release 7.0.3.1.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-25

3.3.8 Truncate Table Could Generate RMU/VERIFY Errors
Bug 919653

In rare cases, where the area bit map (ABM) pages are at the beginning of a
space management page (SPAM) interval, a truncate of that logical area could
corrupt the linkages between the area inventory page (AIP), the area bit map
page, and the SPAM page. This corruption was reported by RMU/VERIFY.

The following example shows the output from the VERIFY. The reference to
larea_dbid : -1 indicates a deleted logical area on the SPAM page.

%RMU-W-AIPLAREID, area inventory page 7 entry #14 contains a
reference to logical area 95 that is nonexistent
%RMU-W-BADABMPTR, invalid larea for ABM page 192151 in storage area 1.
The SPAM page entry for this page is for a different larea.
SPAM larea_dbid : -1 page larea_dbid: 95.
%RMU-W-BADABMPTR, invalid larea for ABM page 192152 in storage area 1.
The SPAM page entry for this page is for a different larea.
SPAM larea_dbid : -1 page larea_dbid: 95.

Issuing an RMU/REPAIR/SPAM/ABM command will correct this error.

This problem has been corrected in Oracle Rdb7 Version 7.0.4.

3.4 Row Cache Errors Fixed

3.4.1 Row Cache of One Slot Causes Loop

When the Oracle Rdb7 row cache feature is enabled and if a cache is created
specifying only one slot in the cache, a second insert into the cache may cause a
process to enter a seemingly infinite loop.

As a possible workaround, always create row caches with at least 2 slots in the
cache. Oracle recommends that you create all caches with at least 100 slots.

This problem as been corrected. Caches with only 1 slot no longer cause the to
CPU loop.

3.5 Hot Standby Errors Fixed

3.5.1 Stopping Hot Standby on Standby then Master Hangs Standby for 15
Minutes

If the Hot Standby product is properly shutdown on the standby database first,
and then immediately thereafter also shutdown properly on the master database,
it is possible for the standby database to wait 15 minutes before actually shutting
down.

The workaround is to do any of the following:
= Stop Hot Standby on the standby database using the /ABORT qualifier.
= Restart the master database, and properly shutdown the master database.

This problem has been corrected in Oracle Rdb7 Version 7.0.3.1. Shutting down
the Hot Standby product from the standby database, master database, or both
now works as expected.

3-26 Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1

3.5.2 Monitor ENQLM Minimum Increased to 32767
All OpenVMS Systems

Bug 357439

In previous versions, the Oracle Rdb7 monitor process (RDMMON) was created
with a minimum lock limit (ENQLM) of 8192 locks. This minimum has been
increased to 32767 locks (the OpenVMS maximum value).

3.6 Oracle Trace Errors Fixed
3.6.1 Incorrect Completion Status Reported by Oracle Trace
Bug 949283

An incorrect value for the status of a request was being stored by Oracle Trace.
The stored value was larger than the field definition and also corrupted the value
for the Client_PC address. When the Oracle Trace information was formatted

in a database, incorrect information was being returned in the queries against
tables holding this information.

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb7 Version 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.3.1 3-27

A

Documentation Corrections

This chapter provides information not currently available in the Oracle Rdb7
documentation set.

4.1 Documentation Corrections

4.1.1 Compressed Sorted Index Entry Stored in Incorrect Storage Area

This note was originally included in the Oracle Rdb7 Release 7.0.1.3 and 7.0.2
Release Notes. The logical name documented in the note for those releases was
documented incorrectly. Below is a corrected note.

In specific cases, in versions V6.1 and V7.0 of Oracle Rdb, when a partitioned,
compressed sorted index was created after the data was inserted into the table,
b-tree entries may have been inserted into the wrong storage area.

All of the following criteria must be met in order for the possibility of this problem
to occur:

e CREATE INDEX is issued after there are records already in the table on
which the index is being created

= index must be partitioned over a single column

= index must have compression enabled

= scale factor must be zero on the columns of the index

= no collating sequences specified on the columns of the index
= no descending indexes

e MAPPING VALUES must not be specified

RMU/DUMP/AREA=xx will show that the b-tree entry was not stored in the
expected storage area. However, in versions V6.1 and V7.0 of Oracle Rdb, the
rows of the table can still be successfully retrieved.

The following example shows the problem:

create database
filename foo
create storage area Area_l
filename Area 1
create storage area Area_ 2
filename Area2;

create table T1
(C1 integer);

I insert data into table prior to index creation
insert into T1 values (0);
commit;

Documentation Corrections 4-1

I create index with COMPRESSION ENABLED
create index Index 1
on T1 (C1)
enable compression
store using (C1)
in Area_1 with limit of (0)
otherwise in Area_2;
COMMIT;
|

! Dump out the page for b-tree in AREA_1, there are 0 bytes stored.
I There should be 5 bytes stored for the b-tree entry.
|

RMU/DUMP/AREA:AREA_l

... total B-tree node size: 430
0030 2003 0240 line 0 (2:5:0) index: set 48
002F FFFFFFFF FFFF 0244 owner 47:-1:-1
0000 024C 0 bytes of entries <---***** ng entry
8200 024E level 1, full suffix
00000000000000000000000000000000 0250 unused '

i
I Dump out the page for b-tree in AREA 2, there are 5 bytes stored
!

RMU/DUMP/AREA=AREA 2

... total B-tree node size: 430
0031 2003 0240 line 0 (3:5:0) index: set 49
002F FFFFFFFF FFFF 0244 owner 47:-1:-1

000A 024C 10 hytes of entries

8200 024E level 1, full suffix

00 05 0250 5 bytes stored, O byte prefix <---entry
0100008000 0252 key ...

22B1 10 0257 pointer 47:554:0

This problem occurs when index compression is enabled. Therefore, a workaround
is to create the index with compression disabled (which is the default). Once this
update kit is applied, it is recommended that the index be dropped and recreated
with compression enabled to rebuild the b-tree.

Note

In prior versions, the rows were successfully retrieved even though the
key values were stored in the wrong storage area. This was due to the
range query algorithm skipping empty partitions or scanning extra areas.

However, due to an enhancement in the algorithm for range queries on
partitioned SORTED indexes in Oracle Rdb7 Relese 7.0.2, the rows of the
table which are stored in the incorrect storage areas may not be retrieved
when using the partitioned index.

The optimized algorithm now only scans the relevant index areas (and

no longer skips over emtpy areas) resulting in only those rows being
returned. Therefore, it is recommended that the index be dropped and
re-created. For a short term solution, another alternative is to disable the

4-2 Documentation Corrections

new optimization by defining the logical RDMS$INDEX_PART_CHECK to
0.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.3.

4.1.2 Partition Clause is Optional on CREATE STORAGE MAP
Bug 642158

In the Oracle Rdb7 SQL Reference Manual, the syntax diagram for the CREATE
STORAGE MAP statement incorrectly shows the partition clause as required
syntax. The partition clause is not a required clause.

This correction will appear in the next publication of the Oracle Rdb SQL
Reference Manual.

4.1.3 Oracle Rdb Logical Names

The Oracle Rdb7 Guide to Database Performance and Tuning contains a table

in Chapter 2 summarizing the Oracle Rdb logical hames and configuration
parameters. The information in the following table supersedes the entries for the
RDM$BIND_RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT
logical names.

Logical Name
Configuration Parameter Function

RDM$BIND_RUJ_ALLOC BLKCNT Allows you to override the default value of the
.ruj file. The block count value can be defined
between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre-extend the .ruj files for each
process using a database. The block count value
can be defined between 0 and 65535 with a
default of 127.

4.1.4 Waiting for Client Lock Message

The Oracle Rdb7 Guide to Database Performance and Tuning contains a section
in Chapter 3 that describes the Performance Monitor Stall Messages screen. The
section contains a list describing the “Waiting for” messages. The description of
the “waiting for client lock” message was missing from the list.

A client lock indicates that an Oracle Rdb metadata lock is in use. The term
client indicates that Oracle Rdb is a client of the Oracle Rdb locking services.
The metadata locks are used to guarantee memory copies of the metadata (table,
index, and column definitions) are consistent with the on-disk versions.

The “waiting for client lock” message means the database user is requesting an
incompatible locking mode. For example, when trying to delete a table which is
in use, the drop operation requests a PROTECTED WRITE lock on the metadata
object (such as a table) which is incompatible with the existing PROTECTED
READ lock currently used by others of the table.

These metadata locks consist of three longwords. The lock is displayed in text
format first, followed by its hexadecimal representation. The text version masks
out nonprintable characters with a period (.).

Documentation Corrections 4-3

The leftmost value seen in the hexadecimal output contains the ID of the object.
The following ID describes the tables, routines, modules and storage map areas.

= For tables and views, the ID represents the unique value found in the
RDB$RELATION_ID column of the RDB$RELATIONS system table for the
given table.

= For routines, the ID represents the unique value found in the
RDB$ROUTINE_ID column of the RDB$ROUTINES system table for the
given routine.

= For modules, the ID represents the unique value found in the
RDB$MODULE_ID column of the RDB$MODULES system table for the
given module.

= For storage map areas, the ID presents the physical area ID. The “waiting for
client lock” message on storage map areas is very rare. This may be raised
for databases that have been converted from versions prior to Oracle Rdb 5.1.

The next value displayed signifies the object type. The following table describes
objects and their hexadecimal type values:

Table 4-1 Object Type Values

Object Hexadecimal Value
Tables or views 00000004
Routines 00000006
Modules 00000015
Storage map areas 0000000E

The last value in the hexadecimal output represents the lock type. The value 55
indicates this is a client lock.

The following example shows a “waiting for client” lock message from the Stall
Messages screen:

Process.ID Since...... Stall.reason.......cceevevvvrvenenns Lock.ID.
46001105:2 10:40:46.38 - waiting for client "........ ' 000000190000000400000055
1 2 3 4

The following list describes each part of the client lock:
1 s indicates nonprintable characters.

2 00000019 indicates unique identifier hex value 19 (RDBSRELATION_ID =
25).

3 00000004 indicates object type 4 which is a table.
4 00000055 indicates this is a client lock.

To determine the name of the referenced object given the Lock ID the following
queries can be used based on the object type:

SQL> SELECT RDB$RELATION_NAME FROM RDB$RELATIONS WHERE RDB$RELATION_ID = 25;
SQL> SELECT RDB$MODULE_NAME FROM RDB$MODULES WHERE RDB$MODULE_ID = 12;
SQL> SELECT RDB$ROUTINE_NAME FROM RDB$ROUTINES WHERE RDB$ROUTINE_ID = 7;

Note

Because the full client lock output is long, it may require more space than

4-4 Documentation Corrections

is allotted for the Stall.reason column and therefore can be overwritten by
the Lock.ID. column output.

For more detailed lock information, perform the following steps:

1. Press the L option from the horizontal menu to display a menu of
Lock IDs.

2. Select the desired Lock ID.

4.1.5 Documentation Error in Oracle Rdb7 Guide to Database Performance
and Tuning

The Oracle Rdb7 Guide to Database Performance and Tuning, Volume 2 contains
an error in section C.7, “Displaying Sort Statistics with the R Flag”.

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort
operation. A zero (0) value indicates that the sort was accomplished
completely in memory.

This is incorrect. This statistic should be described as shown:

Work File Alloc indicates how much space (in blocks) was allocated in the
work files for this sort operation. A zero (0) value indicates that the sort was
accomplished completely in memory.

This error will be corrected in a future release of Oracle Rdb Guide to Database
Performance and Tuning.

4.1.6 SET FLAGS Option IGNORE_OUTLINE Not Available
Bug 510968

The Oracle Rdb7 SQL Reference Manual described the option IGNORE_
OUTLINE in Table 7-6 of the SET FLAGS section. However, this keyword
was not implemented in Oracle Rdb7.

This has been corrected in this release of Oracle Rdb7. This keyword is now
recognized by the SET FLAGS statement. As a workaround the logical name
RDMS$BIND_OUTLINE_FLAGS "I" can be used to set this attribute.

4.1.7 SET FLAGS Option INTERNALS Not Described

The Oracle Rdb7 SQL Reference Manual does not describe the option
INTERNALS in Table 7-6 in the SET FLAGS section. This keyword was available
in first release of Oracle Rdb7 and is used to enable debug flags output for
internal queries such as constraints and triggers. It can be used in conjunction
with other options such as STRATEGY, BLR, and EXECUTION. For example, the
following flag settings are equivalent to defining the RDMS$DEBUG_FLAGS as
ISn and shows the strategy used by the trigge’s actions on the AFTER DELETE
trigger on the EMPLOYEES table.

SQL> SET FLAGS 'STRATEGY, INTERNAL, REQUEST NAME';
SQL> SHOW FLAGS

Documentation Corrections 4-5

Alias RDB$DBHANDLE:

Flags currently set for Oracle Rdb:
INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES

SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164’;

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE

Get Temporary relation Retrieval by index of relaton DEGREES
Index name DEG_EMP_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE

Get Temporary relation Retrieval by index of relation JOB_HISTORY
Index name JOB_HISTORY_HASH [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE

Get Temporary relation Retrieval by index of relation SALARY_HISTORY
Index name SH_EMPLOYEE_ID [1:1]

~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE

Conjunct Get Retrieval by index of relation DEPARTMENTS
Index name DEPARTMENTS_INDEX [0:0]

Temporary relation Get Retrieval by index of relation EMPLOYEES
Index name EMPLOYEES_HASH [1:1] Direct lookup

1 row deleted

4.1.8 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS

The SET FLAGS section of the Oracle Rdb7 SQL Reference Manual omitted
the description of the VALIDATE_ROUTINE keyword (which can be negated
as NOVALIDATE_ROUTINE). This keyword enables the re-validation of an
invalidated stored procedure or function. This flag has the same action as
the logical RDMS$VALIDATE_ROUTINE or the UNIX environment variable
SQL_VALIDATE_ROUTINE described in the Oracle Rdb7 Guide to Database
Performance and Tuning.

This example shows the re-validation of a stored procedure. When the stored
routine is successfully prepared (but not executed), the setting of VALIDATE _
ROUTINE causes the entry for this routine in the RDB$ROUTINES system table
to be set as valid.

SQL> SET TRANSACTION READ WRITE;
SQL> SET FLAGS 'VALIDATE _ROUTINE;
SQL> SET NOEXECUTE;

SQL> CALL ADD_EMPLOYEE (Smith);
SQL> SET EXECUTE;

SQL> COMMIT;

In this example, the use of the SET NOEXECUTE statement in interactive SQL
allows the stored routine to be successfully compiled, but it is not executed.

4.1.9 Documentation for Defining the RDBSERVER Logical Name
Bugs 460611 and 563649.

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide provide the following examples for defining the RDBSERVER
logical name:

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVERT70.EXE
and
$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVERG61.EXE

These definitions are inconsistent with other command procedures that attempt
to reference the RDBSERVERXxX.EXE image. The following is one example where
the RDBSERVER.COM procedure references SYS$COMMON:<SYSEXE> and
SYS$SCOMMON:[SYSEXE], rather than SYS$SYSTEM:

4-6 Documentation Corrections

“r

if .not. -
((f$locate ("SYS$COMMON:<SYSEXE>"rdbserver_image) .ne. log_len) .or. -
(f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))
then
say ""rdbserver_image’ is not found in SYS$COMMON:<SYSEXE>"
say "RDBSERVER logical is "rdbserver_image™
exit
endif

OB B H

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for
OpenVMS Installation and Configuration Guide, the image would not be found.

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide should
define the logical name as follows:

DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER70.EXE
and
DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

4.1.10 Undocumented SET Commands and Language Options

The following SET statements were omitted from the Oracle Rdb7
documentation.

4.1.10.1 QUIET COMMIT Option
The SET QUIET COMMIT statement (for interactive and dynamic SQL), the
module header option QUIET COMMIT, the /QUIET_COMMIT (and /INOQUIET _
COMMIT) qualifier for SQL module language, or the /SQLOPTIONS=QUIET _
COMMIT (and NOQUIET_COMMIT) option for the SQL language precompiler
allows the programmer to control the behavior of the COMMIT and ROLLBACK
statements in cases where there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when
COMMIT or ROLLBACK is executed. This default is retained for backward
compatibility for applications that may wish to detect the situation. If QUIET
COMMIT is set to ON, then a COMMIT or ROLLBACK executes successfully
when there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK statements
in this case are ignored.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable
or enable error reporting for COMMIT and ROLLBACK when no transaction is
active. The parameter to the SET command is a string literal or host variable
containing the keyword ON or OFF. The keywords may be in any case (upper,
lower, or mixed).

SQL> COMMIT;

%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;

%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT ‘on’;

SQL> ROLLBACK;

SQL> COMMIT;

SQL> SET QUIET COMMIT 'off;

SQL> COMMIT;

%SQL-F-NO_TXNOUT, No transaction outstanding

Documentation Corrections 4-7

In the SQL module language or precompiler header, the clause QUIET COMMIT
can be used to disable or enable error reporting for COMMIT and ROLLBACK
when no transaction is active. The keyword ON or OFF must be used to enable
or disable this feature. The following example enables QUIET COMMIT so that
no error is reported if a COMMIT is executed when no transaction is active. For
example:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

4.1.10.2 COMPOUND TRANSACTIONS Option

The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic
SQL) and the module header option COMPOUND TRANSACTIONS allows the
programmer to control the SQL behavior for starting default transactions for
compound statements.

By default, if there is no current transaction, SQL will start a transaction before
executing a compound statement or stored procedure. However, this may conflict
with the actions within the procedure, or may start a transaction for no reason if
the procedure body does not perform any database access. This default is retained
for backward compatibility for applications that may expect a transaction to be
started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, then SQL starts a
transaction before executing the procedure; otherwise, if it is set to INTERNAL,
it allows the procedure to start a transaction as required by the procedure
execution.

Examples

In interactive or dynamic SQL, the following SET command can be used to disable
or enable transactions started by the SQL interface. The parameter to the SET
command is a string literal or host variable containing the keyword INTERNAL
or EXTERNAL. The keywords may be in any case (upper, lower, or mixed). For
example:

SQL> SET COMPOUND TRANSACTIONS ‘internal’;
SQL> CALL START_TXN_AND_COMMIT ();

SQL> SET COMPOUND TRANSACTIONS ‘external’;
SQL> CALL UPDATE_EMPLOYEES (..

In the SQL module language or precompiler header, the clause COMPOUND
TRANSACTIONS can be used to disable or enable starting a transaction for
procedures. The keyword INTERNAL or EXTERNAL must be used to enable or
disable this feature.

MODULE TXN_CONTROL

LANGUAGE BASIC

PARAMETER COLONS

COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN

SET TRANSACTION READ WRITE;
END:

4-8 Documentation Corrections

PROCEDURE C_TXN (SQLCODE);
BEGIN

COMMIT;

END;

4.1.11 Undocumented Size Limit for Indexes with Keys Using Collating
Seqguences

Bug 586079

When a column is defined with a collating sequence, the index key is specially
encoded to incorporate the correct ordering (collating) information. This special
encoding takes more space than keys encoded for ASCII (the default when no
collating sequence is used). Therefore, the encoded string uses more than the
customary one byte per character of space within the index. This is true for all
versions of Oracle Rdb that support collating sequences.

For all collating sequences, except Norwegian, the space required is
approximately 9 bytes for every 8 characters. So, a CHAR (24) column will
require approximately 27 bytes. For Norwegian collating sequences, the space
required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when
calculating the size of an index key against the limit of 255 bytes. Suppose a
column defined with a collating sequence of GERMAN was used in an index. The
length of that column is limited to a maximum of 225 characters because the key
will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a
German collating sequence and included in an index, exceeds the index size limit
of 255 bytes, even though the column is defined as less than 255 characters in

length:

SQL> CREATE DATABASE

cont> FILENAME 'TESTDB.RDB'

cont> COLLATING SEQUENCE GERMAN GERMAN,;
SQL> CREATE TABLE EMPLOYEE_INFO (

cont> EMP_NAME CHAR (233));

SQL> CREATE INDEX EMP_NAME_IDX

cont> ON EMPLOYEE_INFO {

cont> EMP_NAME ASC)

cont> TYPE IS SORTED;

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

4.1.12 Changes to RMU/REPLICATE AFTER/BUFFERS Command

The behavior of the RMU/REPLICATE AFTER/BUFFERS command has been
changed. The /BUFFERS qualifier may be used with either the CONFIGURE
option or the START option.

When using local buffers, the AlJ log roll-forward server (LRS) will use a
minimum of 4096 buffers. The value provided to the /BUFFERS qualifier will
be accepted, but it will be ignored if it is less than 4096. In addition, further
parameters will be checked and the number of buffers may be increased if the
resulting calculations are greater than the number of buffers specified by the
/BUFFERS qualifier. If the database is configured to use more than 4096 AlJ
request blocks (ARBSs), then the number of buffers may be increased to the
number of ARBs configured for the database. The LRS ensures that there are at
least 10 buffers for every possible storage area in the database. Thus, if the total

Documentation Corrections 4-9

number of storage areas (both used and reserved) multiplied by 10 results in a
greater number of buffers, that number will be used.

When global buffers are used, the number of buffers used by the AlJ log roll-
forward server is determined as follows:

e If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is specified,
the number of buffers will default to the previously configured value, if any,
or 256, whichever is larger.

= If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is not
specified or the /INOONLINE is specified, the number of buffers will default to
the maximum number of global buffers allowed per user (“USER LIMIT"), or
256, whichever is larger.

= If the /BUFFERS qualifier is specified, that value must be at least 256, and it
may not be greater than the maximum number of global buffers allowed per
user (“USER LIMIT").

The /BUFFER qualifier now enforces a minimum of 256 buffers for the AlJ log
roll-forward server. The maximum number of buffers allowed is still 524288
buffers.

4.1.13 Change in the Way RDMAIJ Server is Set Up in UCX

Starting with Oracle Rdb V7.0.2.1, the RDMAIJ image has become a varianted
image. Therefore, the information in section 2.12, “Step 10: Specify the Network
Transport Protocol,” of the Oracle Rdb7 and Oracle CODASYL DBMS Guide

to Hot Standby Databases has become outdated in regards to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The
UCX SET SERVICE command should now look similar to the following:

$ UCX SET SERVICE RDMAIJ -
[PORT=<port_number> -
JUSER_NAME=RDMALJ -
[PROCESS_NAME=RDMAIJ -
[FILE=SYS$SYSTEM:RDMAIJSERVER.com -
JLIMIT=<limit>

And for Oracle Rdb multiversion, it should look similar to the following:

$ UCX SET SERVICE RDMAIJ70 -
[PORT=<port_number> -
JUSER_NAME=RDMAIJ70 -
[PROCESS_NAME=RDMAIJ70 -
[FILE=SYS$SYSTEM:RDMAIJSERVERT70.com -
[LIMIT=<limit>

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn)
and places a file called RDMAIJSERVER(nn).com in SYS$SYSTEM and the
RMONSTART(nn).COM command procedure will try to enable a service called
RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a multivarianted image does not impact
installations using DECNet since the correct DECNet object is created during the
Rdb installation.

4-10 Documentation Corrections

4.1.14 CREATE INDEX Supported for Hot Standby

On page 1-13 of the Guide to Hot Standby Databases, the add new index operation
is incorrectly listed as an offline operation not supported by Hot Standby. The
CREATE INDEX operation is now fully supported by Hot Standby, as long as the
transaction does not span all available AlJ journals, including emergency AlJ
journals.

4.1.15 Dynamic OR Optimization Formats
Bug 711643

In Table C-2 on Page C-7 of the Oracle Rdb7 Guide to Database Performance
and Tuning, the dynamic OR optimization format is incorrectly documented as
[I:h...In. The correct formats for Oracle Rdb Release 7.0 and later are [(I:h)n] and
[I:h,12:h2].

Documentation Corrections 4-11

5

Known Problems and Restrictions

This chapter describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.4.

5.0.1 Clarification of the USER Impersonation Provided by the Oracle Rdb
Server

Bug 551240

In Oracle Rdb V6.1, a new feature was introduced which allowed a user to
attach (or connect) to a database by providing a username (USER keyword)
and a password (USING keyword). This functionality allows the Rdb Server to
impersonate those users in two environments.

= Remote Database Access. When DECnet is used as the remote transport, the
Rdb/Dispatch layer of Oracle Rdb uses the provided username and password,
or proxy access to create a remote process which matches the named user.
However, in a remote connection over TCP/IP, the RDBSERVER process is
always logged into RDB$SREMOTE rather than a specified user account. In
this case the Rdb Server impersonates the user by using the user’s UIC (user
identification code) during privilege checking. The UIC is assigned by the
OpenVMS AUTHORIZE utility.

e SQL/Services database class services. When SQL/Services (possibly accessed
by ODBC) accesses a database, it allows the user to logon to the database and
the SQL/Services server then impersonates that user in the database.

When a database has access control established using OpenVMS rights
identifiers, then access checking in these two environments does not work

as expected. For example, if a user JONES was granted the rights identifier
PAYROLL_ACCESS, then you would expect a table in the database with SELECT
access granted to PAYROLL_ACCESS to be accessible to JONES. This does not
currently work because the Rdb Server does not have the full OpenVMS security
profile loaded, just the UIC. So only access granted to JONES is allowed.

This problem results in an error being reported such as the following from ODBC:
[Oracle][ODBC][Rdb]%RDB-E-NO_PRIV privileged by database facility (#-1028)

This is currently a restriction in this release of Oracle Rdb. In the next major
release, support will be provided to inherit the users full security profile into the
database.

Known Problems and Restrictions 5-1

5.0.2 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition

Map

Bug 413410

An index which has a STORE clause with a single WITH LIMIT OF clause and
no OTHERWISE clause doesn’t validate the inserted values against the high
limit. Normally values beyond the last WITH LIMIT OF clause are rejected
during INSERT and UPDATE statements.

Consider this example:

create table PTABLE (
NR
INTEGER,
A
CHAR (2));
create index NR_IDX
on PTABLE (
NR)
type is HASHED
store using (NR)
in EMPIDS_LOW
with limit of (10);

When a value is inserted for NR that exceeds the value 10, then an error such as
"%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for

NR_IDX" should be generated. However, this error is only reported if the index
has two or more partitions.

A workaround for this problem is to create a CHECK constraint on the column to
restrict the upper limit. e.g. CHECK (NR <= 10). This check constraint should
be defined as NOT DEFERRABLE and will be solved using an index lookup.

This problem will be corrected in a future version of Oracle Rdb.

5.0.3 Unexpected NO_META UPDATE Error Generated by DROP MODULE ...
CASCADE When Attached by PATHNAME

Bug 755182

The SQL statement DROP MODULE ... CASCADE may sometimes generate an
unexpected NO_META _UPDATE error. This occurs when the session attaches to
a database by PATHNAME.

SQL> drop module ml cascade;

%RDB-E-NO_META UPDATE, metadata update failed

-RDMS-F-OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
-RDMS-E-MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle
CDD/Repository does not support CASCADE. The workaround is to attach by
FILENAME and perform the metadata operation.

In a future version of Oracle Rdb, an informational message will be issued
describing the downgrade from CASCADE to RESTRICT in such cases.

5-2 Known Problems and Restrictions

5.0.4 Unexpected DATEEQLILL Error During IMPORT With CREATE INDEX or
CREATE STORAGE MAP

Bug 1094071

When the SQL IMPORT statement includes CREATE STORAGE MAP or
CREATE INDEX statements which use TIMESTAMP or DATE ANSI literals in
the WITH LIMIT OF clause, it fails with the following error:

%SQL-F-UNSDATXPR, Unsupported date expression
-SQL-F-DATEEQLILL, Operands of date/time comparison are incorrect

The same CREATE STORAGE MAP or CREATE INDEX statements work
correctly when used outside of the IMPORT statement.

This error is generated because the SQL IMPORT statement tries to validate the
data type of the column against that of the literal value. However, during this
phase of the IMPORT, the table does not yet exist.

A workaround for this problem is to use DATE VMS literals in the WITH LIMIT
OF clause and allow the Rdb Server to perform the data type conversion at
runtime.

This restriction will be relaxed in a future version of Oracle Rdb.

5.0.5 Application and Oracle Rdb Both Using SYS$HIBER

In application processes that use Oracle Rdb and the $HIBER system service
(possibly via RTL routines such as LIB$SWAIT), it is important that the
application ensures that the event being waited for has actually occurred.
Oracle Rdb uses $HIBER/$WAKE sequences for interprocess communications
particularly when the ALS (AlJ Log Server) or the Row Cache features are
enabled.

Oracle Rdb’s use of the $WAKE system service can interfere with other users of
$HIBER (such as the routine LIB$SWAIT) that do not check for event completion,
possibly causing a $HIBER to be unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence
that avoids continuing without a check for the operation (such as a delay or a
timer firing) being complete.

The following pseudo-code shows one example of how a flag can be used to
indicate that a timed-wait has completed correctly. The wait does not complete
until the timer has actually fired and set TIMER_FLAG to TRUE. This code
relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
BEGIN
I Clear the timer flag
TIMER_FLAG = FALSE

I Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$ NORMAL THEN LIB$SIGNAL (STAT)

! Hibernate. When the $HIBER completes, check to make
I sure that TIMER_FLAG is set indicating that the wait

I has finished.

WHILE TIMER_FLAG = FALSE

DO SYS$HIBER()

END

Known Problems and Restrictions 5-3

ROUTINE TIMER_AST:
BEGIN
I Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE

I Wake the main-line code

STAT = SYS$WAKE ()

IF STAT <> SS$ NORMAL THEN LIB$SIGNAL (STAT)
END

Starting with OpenVMS V7.1, the LIB$SWAIT routine has been enhanced via
the FLAGS argument (with the LIBSK_NOWAKE flag set) to allow an alternate
wait scheme (using the $SYNCH system service) that can avoid potential
problems with multiple code sequences using the $HIBER system service. See
the OpenVMS RTL Library (LIB$) Manual for more information about the
LIBSWAIT routine.

5.0.6 IMPORT Unable to Import Some View Definitions
Bug 520651

View definitions that reference SQL functions, that is functions defined by

the CREATE MODULE statement, cannot currently be imported by the SQL
IMPORT statement. This is because the views are defined before the functions
themselves exist.

The following example shows the errors from IMPORT.

IMPORTIing view TVIEW

%SQL-F-NOVIERES, unable to import view TVIEW
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist

-RDMS-E-RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist

-RDMS-F-TABNOTDEF, relation TVIEW is not defined in database

The following script can be used to demonstrate the problem.

create database filename badimp;
create table t (sex char);

create module TFORMAT
language SQL

function FORMAT_OUT (s char)

returns char(4);

return (case :S
when 'F' then 'Female’
when "M’ then 'Male’
else NULL
end);

end module;

create view TVIEW (m_f) as
select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the
workaround is to save the view definitions and reapply them after the IMPORT
completes.

5-4 Known Problems and Restrictions

This restriction does not apply to external functions, created using the CREATE
FUNCTION statement, as these database objects are defined before tables and
views.

5.0.7 AIJSERVER Privileges

For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created
with only NETMBX and TMPMBX privileges. These privileges are sufficient to
start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate
to ensure continued replication in all environments and workload situations.
Therefore, Oracle recommends that the DBA provide the following additional
privileges for the AIJSERVER account:

= ALTPRI

This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

= PSWAPM

This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

= SETPRV

This privilege allows the AIJSERVER to temporarily set any additional
privileges it may need to access the standby database or its server processes.

= SYSPRV

This privilege allows the AIJSERVER to access the standby database rootfile,
if necessary.

= WORLD

This privilege allows the AIJSERVER to more accurately detect standby
database server process failure and handle network failure more reliably.

5.0.8 Lock Remastering and Hot Standby

When using the Hot Standby feature, Oracle recommends that the VMS
distributed lock manager resource tree be mastered on the standby node where
Hot Standby is started. This can be using any of the following methods:

= Disable dynamic lock remastering. This can be done dynamically by setting
the SYSGEN parameter PEL1 to the value 1.

When using this option, be sure that Hot Standby is started on the node
where the standby database is first opened.

= Increasing the LOCKDIRWT value for the LRS node higher than any other
node in the same cluster. However, this is not a dynamic SYSGEN parameter,
and a node re-boot is required.

Failure to prevent dynamic lock remastering may cause severe performance
degradation for the standby database, which ultimately may be reflected by
decreased master database transaction throughput.

Known Problems and Restrictions 5-5

5.0.9 RDB_SETUP Privilege Error

Rdb Web Agent V3.0 exposes a privilege problem with Rdb V7.0 and later. This
will be fixed in the next Rdb7 release.

The RDB_SETUP function fails with %RDB-E-NO_PRIV, privilege denied by
database facility.

It appears that the only workaround is to give users DBADM privilege. Oracle
Corporation does not recommend giving users the DBADM privilege.
5.0.10 Dynamic Optimizer Problem with Zigzag Match

In some queries when utilizing zigzag match retrieval, a problem with the
interaction of the zigzag match and the dynamic optimizer may cause the query
to fail to deliver appropriate records.

The queries affected contain a join of two or more tables where the optimizer
has chosen to utilize a zigzag match retrieval strategy and dynamic optimization
(LEAF) retrieval of data for the inner leg of the match.

The following is an example of the type of strategy associated with the affected

gueries:
Match
Outer loop (zig-zag)
Conjunct Get Retrieval by index of relation TABLEL
Index name TABLEL1 INDEX 01 [1:1]
Inner loop (zig-zag)

Leaf#02 Sorted TABLE2 Card=128800
FgrNdx TABLE2 _INDEX 01 [0:0] Fan=41
BgrNdx1 TABLE2 INDEX 02 [0:0] Fan=27

A problem in the delivery of data by the inner leg of the match from the dynamic
optimizer data buffers prevented the appropriate match records in the outer from
leg being found.

A workaround for the problem is to use the RDMS$DISABLE _ZIGZAG_MATCH
logical name or the SQL SET FLAGS statement to disable the zigzag match:

VMS> define RDMS$DISABLE_ZIGZAG_MATCH 2

or

SQL> set flags 'nozigzag_match’;
Alternatively, dynamic optimization may be disabled by using the RDMS$MAX _
STABILITY logical name or the SQL SET FLAGS statement:

VMS> define RDMS$SMAX_STABILITY "TRUE"
or
SQL> set flags 'max_stability’;

5-6 Known Problems and Restrictions

5.0.11 Starting Hot Standby on Restored Standby Database May Corrupt
Database

If a standby database is modified outside of Hot Standby, then backed up and
restored, Hot Standby will appear to start up successfully but will corrupt the
standby database. A subsequent query of the database will return unpredictable
results, possibly in a bugcheck in DIOFETCH$FETCH_ONE_LINE. When the
standby database is restored from a backup of itself, the database is marked as
unmodified. Therefore, Hot Standby cannot tell whether the database had been
modified before the backup was taken.

WORKAROUND: None.

5.0.12 Restriction on Compound Statement Nesting Levels

The use of multiple nesting levels of compound statements such as CASE or IF-

THEN-ELSE within multistatement procedures can result in excessive memory

usage during the compile of the procedure. Virtual memory problems have been

reported with 10 or 11 levels of nesting. The following example shows an outline
of the type of nesting that can lead to this problem.

CREATE MODULE MY_MOD LANGUAGE SQL
PROCEDURE MY PROCEDURE
(PARAMETERS))

BEGIN
DECLARE;

SET :VARS = (;

SELECT ...,
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG I Case #1

WHEN 100 THEN SET ...

WHEN -811 THEN SET ...,

WHEN 0 THEN
SET ..., SELECT ..,
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE FLAG I Case #2

WHEN 0 THEN SET ...
WHEN -811 THEN SET ..,
WHEN 100 THEN

UPDATE...; SET ..;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET .., I #1
ELSE
IF :FLAG < 0 THEN SET.. I #2
ELSE
DELETE ..
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET... I #3
SET ..,
ELSE
IF :FLAG < 0 THEN SET..,; I #4
ELSE
IF IN_CHAR_PARAM = 'S’ THEN I #5
UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ..; I #6
ELSE
IF :FLAG < 0 THEN SET..., I #7
END IF; I #7
END IF, I #6
END IF, I #5

Known Problems and Restrictions 5-7

IF :FLAG = 0 THEN I #5

UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ... | #6
ELSE
IF :FLAG < 0 THEN SET ..; I #7
ELSE
DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE:
IF :FLAG= 100 THEN SET ..; | #8
ELSE
IF :FLAG < 0 THEN SET ..; I #9
ELSE
DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ..; I #10
SET ...
ELSE
IF :FLAG < 0 THEN SET .., ! #11
END IF; (11 end if's for #11 - #1)
ELSE SET ..;
END CASE; | Case #2
ELSE SET ..;
END CASE; | Case #1
END;
END MODULE;

Workaround: Reduce the complexity of the multistatement procedure. Use fewer
levels of compound statement nesting by breaking the multistatement procedure
into smaller procedures or by using the CALL statement to execute nested stored
procedures.

5.0.13 Back Up All AlJ Journals Before Performing a Hot Standby Switchover
Operation
Prior to performing a proper Hot Standby switchover operation from the old
master database to the new master database (old standby database), be sure to
back up ALL AlJ journals.

If you do not back up the AlJ journals on the old master database prior to
switchover, they will be initialized by the Hot Standby startup operation, and you
will not have a backup of those AlJ journals.

Failure to back up these journals may place your new master database at risk of
not being able to be recovered, requiring another fail-over in the event of system
failure.

5.0.14 Concurrent DDL and Read-Only Transaction on the Same Table Not
Compatible

It is possible that a read-only transaction could generate a bugcheck at
DIOBNDS$FETCH_AIP_ENT + 1C4 if there is an active, uncommitted transaction
that is making metadata changes to the same table. Analysis shows that the
snapshot transaction is picking up stale metadata information. Depending

on what metatdata modifications are taking place, it is possible for metadata
information to be removed from the system tables but still exist in the snapshot
file. When the read-only transaction tries to use that information, it no longer
exists and causes a bugcheck.

5-8 Known Problems and Restrictions

The following example shows the actions of the two transactions:

A B:
attach
set transaction read write
attach
set transaction read only
drop index emp_last_name
select * from employees
...bugcheck...

The only workaround is to avoid running the two transactions together.

5.0.15 Oracle Rdb and the SRM_CHECK Tool

The Alpha Architecture Reference Manual, Third Edition (AARM) describes
strict rules for using interlocked memory instructions. The Compaq Alpha 21264
(EV6) processor and all future Alpha processors are more stringent than their
predecessors in their requirement that these rules be followed. As a result, code
that has worked in the past despite noncompliance may now fail when executed
on systems featuring the new 21264 processor.

Oracle Rdb Release 7.0.3 supports the Compaq Alpha 21264 (EV6) processor.
Oracle has performed extensive testing and analysis of the Rdb code to ensure
that it is compliant with the rules for using interlocked memory instructions.

However, customers using the Compaq supplied SRM_CHECK tool may find
that several of the Oracle Rdb images cause the tool to report potential alpha
architecture violations. Although SRM_CHECK can normally identify a code
section in an image by the section’s attributes, it is possible for OpenVMS images
to contain data sections with those same attributes. As a result, SRM_CHECK
may scan data as if it were code, and occasionally, a block of data may look like
a noncompliant code sequence. This is the case with the Oracle Rdb supplied
images. There is no actual instruction stream violation.

However, customers must use the SRM_CHECK tool on their own application
executable image files. It is possible that applications linked with very old version
of Oracle Rdb (versions prior to Oracle Rdb Release 6.0-05) could have included
illegal interlocked memory instruction sequences produced by very old versions of
compilers. This code was included in the Oracle Rdb object library files for some
very old versions of Oracle Rdb.

If errant instruction sequences are detected in the objects supplied by the
Oracle Rdb object libraries, the correct action is to relink the application with a
more-current version of Oracle Rdb.

Additional information about the Compaq Alpha 21264 (EV6) processor
interlocked memory instructions issues is available at:

http://www.openvms.digital.com/openvms/21264_considerations.html

5.0.16 Oracle RMU Checksum_ Verification Qualifier

The Oracle Rdb RMU BACKUP database backup command includes a Checksum_
Verification qualifier.

Specifying Checksum_\Verification requests that the RMU Backup command
verify the checksum stored on each database page before it is backed up, thereby
providing end-to-end error detection on the database 1/0.

Known Problems and Restrictions 5-9

The Checksum_Verification qualifier uses additional CPU resources but can
provide an extra measure of confidence in the quality of the data backed up. Use
of the Checksum_Verification qualifier offers an additional level of data security
and use of the Checksum_Verification qualifier permits Oracle RMU to detect the
possibility that the data it is reading from these disks has only been partially
updated.

Note, however, that if you specify the Nochecksum_Verification qualifier, and
undetected corruptions exist in your database, the corruptions are included in
your backup file and restored when you restore the backup file. Such a corruption
might be difficult to recover from, especially if it is not detected until weeks or
months after the restore operation is performed.

Oracle Corporation recommends that you use the Checksum_Verification qualifier
with all database backup operations because of the improved data integrity this
qualifier provides.

Unfortunately, due to an oversight, for versions of Oracle Rdb prior to Version
8.0, the default for online backups is the Nochecksum_\Verification qualifier.
When you do not specify the Checksum_\Verification qualifie on all of your RMU
database backup commands.

5.0.17 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL
(Alpha)
OpenVMS Alpha V7.1 introduced the high-performance Sort/Merge utility (also

known as HYPERSORT). This utility takes advantage of the Alpha architecture
to provide better performance for most sort and merge operations.

The high-performance Sort/Merge utility supports a subset of the SOR routines.
Unfortunately, the high-performance Sort/Merge utility does not support several
of the interfaces used by the RMU/OPTIMIZE/AFTER_JOURNAL command. In
addition, the high-performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU/OPTIMIZE
/AFTER_JOURNAL command.

For this reason, the use of the high-performance Sort/Merge utility is not
supported for the RMU/OPTIMIZE/AFTER_JOURNAL command. Do not define
the logical name SORTSHR to reference HYPERSORT.EXE.

5.0.18 Restriction on Using /NOONLINE with Hot Standby

When a user process is performing a read-only transaction on a standby database,
an attempt to start replication on the standby database with the /NOONLINE
qualifier will fail with the following error, and the database will be closed
clusterwide:

%RDMS-F-OPERCLOSE, database operator requested database shutdown

In a previous release, the following error was returned and the process doing the
read-only transaction was not affected:

%RDMS-F-STBYDBINUSE, standby database cannot be exclusively accessed for
replication

As a workaround, if exclusive access is necessary to the standby database,
terminate any user processes before starting replication with the /NOONLINE
qualifier.

This restriction is due to another bug fix and will be lifted in a future release of
Oracle Rdb.

5-10 Known Problems and Restrictions

5.0.19 SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error

Bug 683916

A bugcheck could occur when a ranked B-tree index is used in a query after

a database has been upgraded to Release 7.0.1.3. This is a result of index
corruption that was introduced in previous versions of Oracle Rdb7. This
corruption has been fixed and indexes created using Release 7.0.1.3 will not be
impacted.

As a workaround, delete the affected index and re-create it under Oracle Rdb7
Release 7.0.1.3 or later.

5.0.20 DBAPack for Windows 3.1 is Deprecated

Oracle Enterprise Manager DBAPack will no longer be supported for use on
Windows 3.1.

5.0.21 Determining Mode for SQL Non-Stored Procedures
Bug 506464.

Although stored procedures allow parameters to be defined with the modes IN,
OUT, and INOUT, there is no similar mechanism provided for SQL module
language or SQL precompiled procedures. However, SQL still associates a mode
with a parameter using the following rules:

Any parameter which is the target of an assignment is considered an OUT
parameter. Assignments consist of the following:

= The parameter is assigned a value with the SET or GET DIAGNOSTICS
statement. For example:

set .pl = 0;
get diagnostics :p2 = TRANSACTION_ACTIVE;

= The parameter is assigned a value with the INTO clause of an INSERT,
UPDATE, or SELECT statement. For example:

insert into T (coll, col2)
values (...)
returning dbkey into :p1;

update accounts
set account_balance = account_balance + :amount
where account_number = :pl
returning account_balance
into :current_balance;

select last_name
into :pl
from employees
where employee_id = '00164’;

e The parameter is passed on a CALL statement as an OUT or INOUT
argument. For example:

begin
call GET_CURRENT BALANCE (:pl);
end;

Known Problems and Restrictions 5-11

Any parameter that is the source for a query is considered an IN parameter.
Query references include:

= The parameter appears in the SELECT list, WHERE or HAVING clauses of a
SELECT, or DELETE statement. For example:

select :pl || last_name, count(*)
from T
where last_name like 'Smith%’
group by last_name
having count(*) > :p2;

delete from T
where posting_date < :pl;

= The parameter appears on the right side of the assignment in a SET
statement or SET clause of an UPDATE statement. For example:

set :pl = (select avg(salary)
from T
where department = :p2);
update T
set coll = :pl
where ...;

= The parameter is used to provide a value to a column in an INSERT
statement. For example:

insert into T (coll, col2)
values (:p1, :p2);

= The parameter is referenced by an expression in a TRACE, CASE, IF/ELSEIF,
WHILE statement, or by the DEFAULT clause of a variable declaration. For
example:

begin
declare :v integer default :pl;
DO_LOOFP:
while :p2 > :pl
loop
if :pl is null then
leave DO_LOOP;
end if;
set :p2 = :p2 + 1,

trace ‘Loop at ', :p2;
end loop;
end;

= The parameter is passed on a CALL statement as an INOUT or IN argument.
For example:

begin
call SET_LINE_SPEED (:pl);
end;

SQL only copies values from the client (application parameters) to the procedure
running in the database server if it is marked as either an IN or INOUT
parameter. SQL only returns values from the server to the client application
parameter variables if the parameter is an OUT or INOUT parameter.

If a parameter is considered an OUT only parameter, then it must be assigned
a value within the procedure, otherwise the result returned to the application
is considered undefined. This could occur if the parameter is used within a

5-12 Known Problems and Restrictions

conditional statement such as CASE or IF/ELSEIF. In the following example, the
value returned by :p2 would be undefined if :p1 were negative or zero:

begin
if ;p1 > 0 then
set :p2 = (select count(*)
from T
where coll = :pl);
end if;
end;

It is the responsibility of the application programmer to ensure that the
parameter is correctly assigned values within the procedure. A workaround is to
either explicitly initialize the OUT parameter, or make it an INOUT parameter.
For example:

begin
if ;p1l > 0 then
set :p2 = (select count(*)
from T
where coll = :pl);
elseif :p2 is null then
begin
end;
end if;
end;

The empty statement will include a reference to the parameter to make it an IN
parameter as well as an OUT parameter.

5.0.22 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE Error

An error could result when a DROP TABLE CASCADE statement is issued. This
occurs when the following conditions apply:

e A table is created with an index defined on the table.
= A storage map is created with a placement via index.

= The storage map is a vertical record partition storage map with two or more
STORE COLUMNS clauses.

The error message given is %RDB-E-NO_META UPDATE, metadata update
failed.

The following example shows a table, index, and storage map definition followed
by a DROP TABLE CASCADE statement and the resulting error message:

Known Problems and Restrictions 5-13

SQL> CREATE TABLE VRP_TABLE (ID INT, ID2 INT);

SQL> COMMIT;

SQL> CREATE UNIQUE INDEX VRP_IDX ON VRP_TABLE (ID)
SQL> STORE IN EMPIDS_LOW;

SQL> COMMIT;

SQL> CREATE STORAGE MAP VRP_MAP

cont> FOR VRP_TABLE

cont> PLACEMENT VIA INDEX VRP_IDX

cont> ENABLE COMPRESSION

cont> STORE COLUMNS (D)

cont> IN EMPIDS_LOW

cont> STORE COLUMNS (ID2)

cont> IN EMPIDS_MID;

SQL> COMMIT;

SQL>

SQL> DROP TABLE VRP_TABLE CASCADE;

SQL> -- Index VRP_IDX is also being dropped.
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-WISH_LIST, feature not implemented yet
-RDMS-E-VRPINVALID, invalid operation for storage map "VRP_MAP"

The workaround to this problem is to first delete the storage map, and then
delete the table using the CASCADE option. The following example shows the
workaround. The SHOW statement indicates that the table, index, and storage
map were deleted:

SQL> DROP STORAGE MAP VRP_MAP;
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> -- Index VRP_IDX is also being dropped.
SQL> COMMIT;

SQL> SHOW TABLE VRP_TABLE

No tables found

SQL> SHOW INDEX VRP_IDX

No indexes found

SQL> SHOW STORAGE MAP VRP_MAP

No Storage Maps Found

This problem will be corrected in a future version of Oracle Rdb.

5.0.23 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL

In certain situations, Oracle Rdb bugcheck dump files will indicate an exception
at COSI_CHF_SIGNAL. This location is, however, not the address of the actual
exception. The actual exception occurred at the previous call frame on the stack
(the one listed as the next "Saved PC" after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC""-F-"/"-E-"

#kxk Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI-F-BUGCHECK, internal consistency failure

Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00COBE6C : PSII2BALANCE + 0000105C
Saved PC = 00COF4D4 : PSII2INSERTT + 000005CC

= 00C10640 : PSII2INSERTTREE + 000001A0

Saved PC

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset
00000318. If you have a bugcheck dump with an exception at COSI_CHF_
SIGNAL, it is important to note the next “Saved PC” because it will be needed
when working with Oracle Rdb Support Services.

5-14 Known Problems and Restrictions

5.0.24 Interruptions Possible when Using Multistatement or Stored Procedures

Long running multistatement or stored procedures can cause other users in the
database to be interrupted by holding resources needed by those other users.
Some resources obtained by the execution of a multistatement or stored procedure
will not be released until the multistatement or stored procedure finishes.

This problem can be encountered even if the statement contains COMMIT or
ROLLBACK statements.

The following example demonstrates the problem. The first session enters an
endless loop; the second session attempts to backup the database, but it is
permanently interrupted:

Session 1

SQL> ATTACH 'FILE MF_PERSONNEL’;

SQL> CREATE FUNCTION LIBSWAIT (IN REAL BY REFERENCE)
cont> RETURNS INT;

cont> EXTERNAL NAME LIBSWAIT

cont> LOCATION 'SYS$SHARE.LIBRTL.EXE’

cont> LANGUAGE GENERAL

cont> GENERAL PARAMETER STYLE

cont> VARIANT;

SQL> COMMIT;

SQL> EXIT;

$ SQL

SQL> ATTACH 'FILE MF_PERSONNEL';

SQL> BEGIN

cont> DECLARE :LAST NAME LAST NAME_DOM;
cont> DECLARE :WAIT_STATUS INTEGER;

cont> LOOP

cont> SELECT LAST NAME INTO :LAST NAME
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = '00164’;
cont> ROLLBACK;

cont> SET :WAIT_STATUS = LIBSWAIT (5.0);
cont> SET TRANSACTION READ ONLY;

cont> END LOOP;

cont> END;

Session 2
$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session we can see that the backup process is waiting for a lock held
in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL

SHOW LOCKS/BLOCKING Information

Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
Waiting: 20204383 RMU BACKUP..... 5600A476 00010001 CW NL
Blocker: 2020437B SQL............ 3B00A35C 00010001 PR PR

$

There is no workaround for this restriction. When the multistatement or stored
procedure finishes execution, the resources needed by other processes will be
released.

Known Problems and Restrictions 5-15

5.0.25 Row Cache Not Allowed on Standby Database While Hot Standby
Replication Is Active

The row cache feature may not be active on a Hot Standby database while
replication is taking place. The Hot Standby feature will not start if row cache is
active on the standby database.

This restriction exists because rows in the row cache are accessed using logical
dbkeys. However, information transferred to the Hot Standby database from the
after-image journal facility only contains physical dbkeys. Because there is no
way to maintain rows in the cache using the Hot Standby processing, the row
cache must be disabled on the standby database when the standby database is
open and replication is active. The master database is not affected; the row cache
feature and the Hot Standby feature may be used together on a master database.

The row cache feature should be identically configured on the master and standby
databases in the event failover occurs, but the row cache feature must not be
activated on the standby database until it becomes the master.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the
RMU/OPEN command to disable the row cache feature on the standby database.
To open the Hot Standby database prior to starting replication, use the ROW _
CACHE=DISABLED qualifier on the RMU/OPEN command.

5.0.26 Hot Standby Replication Waits when Starting if Read-Only Transactions
Running

Hot Standby replication will wait to start if there are read-only (snapshot)
transactions running on the standby database. The log roll-forward server (LRS)
will wait until the read-only transactions commit, and then replication will
continue.

This is an existing restriction of the Hot Standby software. This release note is
intended to complement the Hot Standby documentation.

5.0.27 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle
Functions Script

If your programming environment is not set up correctly, you may encounter
problems running the SYS$LIBRARY:SQL_FUNCTIONS70.SQL script used to
set up the Oracle7 functions being supplied with Oracle Rdb.

The following example shows the error:

%RDB-E-EXTFUN_FAIL, external routine failed to compile or execute successfully
-RDMS-E-INVRTNUSE, routine RDB$ORACLE_SQLFUNC_INTRO can not be used, image
"SQL$FUNCTIONS" not activated

-RDMS-I-TEXT, Error activating image

DISK:[DIR]SQL$FUNCTIONS.;, File not found

To resolve this problem, use the @SYS$SLIBRARY:RDB$SETVER to set up the
appropriate logical names. This will be necessary for programs that use the
functions as well.

In a standard environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER S

In a multiversion environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER 70

5-16 Known Problems and Restrictions

5.0.28 DEC C and Use of the /ISTANDARD Switch
Bug 394451

The SQL$PRE compiler examines the system to know which dialect of C to
generate. That default can be overwritten by using the /CC=[DECC/VAXC]
switch. The /STANDARD switch should not be used to choose the dialect of C.

Support for DEC C was added to the product with V6.0 and this note is

meant to clarify that support, not to indicate a change. It is possible to use
ISTANDARD=RELAXED_ANSI89 or /STANDARD=VAXC correctly, but this is not
recommended.

The following example shows both the right and wrong way to compile an Oracle
Rdb SQL program. Assume a symbol SQL$PRE has been defined, and DEC C is
the default C compiler on the system:

$ SQL$PRE/CC ! This is correct.
$ SQL$PRE/CC=DECC ! This is correct.
$ SQL$PRE/CC=VAXC ! This is correct.

$ SQLSPRE/CC/STANDARD=VAXC ! This is incorrect.

Notice that the /STANDARD switch has other options in addition to
RELAXED_ANSI89 and VAX C. Those are also not supported.

5.0.29 Excessive Process Page Faults and Other Performance Considerations
During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process
performance. Sometimes this page faulting occurs during Oracle Rdb sort
operations. This note describes how page faulting can occur and some ways to
help control, or at least understand, it.

One factor contributing to Oracle Rdb process page faulting is sorting operations.
Common causes of sorts include the SQL GROUP BY, ORDER BY, UNION, and
DISTINCT clauses specified for query and index creation operations. Defining the
logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle
Rdb sort operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the
Oracle Rdb images and does not generally call the routines in the OpenVMS
run-time library. A copy of the SORT32 code is used to provide stability between
versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort
routines from executive processor mode which is difficult to do using the SORT32
sharable image. Database import and RMU load operations call the OpenVMS
sort run-time library.

At the beginning of a sort operation, the sort code allocates some memory for
working space. The sort code uses this space for buffers, in-memory copies of the
data, and sorting trees.

Sort code does not directly consider the process quotas or parameters when
allocating memory. The effects of WSQUOTA and WSEXTENT are indirect. At
the beginning of each sort operation, the sort code attempts to adjust the process’
working set to the maximum possible size using the SADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum
possible). Sort code then uses a value of 75% of the returned working set for
virtual memory scratch space. The scratch space is then initialized and the sort
begins.

Known Problems and Restrictions 5-17

The initialization of the scratch space generally causes page faults to access

the pages newly added to the working set. Pages that were in the working set
already may be faulted out as new pages are faulted in. Once the sort operation
completes, the pages that may have been faulted out of the working set are likely
to be faulted back into the working set.

When a process’ working set is limited by the working set quota (WSQUOTA)
parameter and the working set extent (WSEXTENT) parameter is a much larger
value, the first call to the sort routines can cause many page faults as the working
set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help
reduce the impact of this case.

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL _
MWSEXTENT equal to the WSMAX parameter. This means that all processes
on the system end up with WSEXTENT the same as WSMAX. Because WSMAX
might be quite high, sorting might result in excessive page faulting. You may
want to explicitly set PQL_MWSEXTENT to a lower value if this is the case on
your system.

Sort work files are another factor to consider when tuning Oracle Rdb sort
operations. When the operation cannot be done in available memory, sort code
will use temporary disk files to hold the data as it is being sorted. The Oracle
Rdb Guide to Performance and Tuning contains more detailed information about
sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work
files sort code is to use if work files are required. The default is 2, and the
maximum number is 10. The work files can be individually controlled by the
SORTWORKN logical names (where n is from 0 through 9). You can increase the
efficiency of sort operations by assigning the location of the temporary sort work
files to different disks. These assignments are made by using up to 10 logical
names, SORTWORKO through SORTWORKO.

Normally, sort code places work files in the user’'s SYS$SCRATCH directory. By
default, SYS$SCRATCH is the same device and directory as the SYSSLOGIN
location. Spreading the 1/O load over many disks improves efficiency as well as
performance by taking advantage of the system resources and helps prevent disk
1/0 bottlenecks. Specifying that a user’s work files will reside on separate disks
permits overlap of the sort read/write cycle. You may also encounter cases where
insufficient space exists on the SYS$SCRATCH disk device, such as when Oracle
Rdb builds indexes for a very large table. Using the SORTWORKO through
SORTWORKO logical names can help you avoid this problem.

Note that sort code uses the work files for different sorted runs, and then merges
the sorted runs into larger groups. If the source data is mostly sorted, then

not every sort work file may need to be accessed. This is a possible source

of confusion because even with 10 sort work files, it is possible to exceed the
capacity of the first sort file, and the sort operation will fail never having accessed
the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND _
WORK_FILE do not affect or control the operation of sort. These logical names
are used to control other temporary space allocations within Oracle Rdb.

5-18 Known Problems and Restrictions

5.0.30 Performance Monitor Column Mislabeled

The File 10 Overview statistics screen, in the Rdb Performance Monitor, contains
a column labeled Pages Checked. The column should be labeled Pages Discarded
to correctly reflect the statistic displayed.

5.0.31 Restriction Using Backup Files Created Later than Oracle Rdb7
Release 7.0.1

Bug 521583

Backup files created using Oracle Rdb7 releases later than 7.0.1 cannot be
restored using Oracle Rdb7 Release 7.0.1. To fix a problem in a previous release,
some internal backup file data structures were changed. These changes are not
backward compatible with Oracle Rdb7 Release 7.0.1.

If you restore the database using such a backup file, then any attempt to access
the restored database may result in unpredictable behavior, even though a verify
operation may indicate no problems.

There is no workaround to this problem. For this reason, Oracle Corporation
strongly recommends performing a full and complete backup both before and
after the upgrade from Release 7.0.1 to later releases of Oracle Rdb7.

5.0.32 RMU Backup Operations and Tape Drive Types

When using more than one tape drive for an RMU backup operation, all the tape
drives must be of the same type. For example, all the tape drives must be either
TA90s or TZ87s or TK50s. Using different tape drive types (one TK50 and one
TA90) for a single database backup operation may make database restoration
difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a
backup operation, but is not able to detect all invalid cases and expects that all
tape drives for a backup are of the same type.

As long as all the tapes used during a backup operation can be read by the same
type of tape drive during a restore operation, the backup is likely to be valid.
This may be the case, for example, when using a TA90 and a TA90E.

Oracle recommends that, on a regular basis, you test your backup and recovery
procedures and environment using a test system. You should restore the
databases and then recover them using AlJs to simulate failure recovery of
the production system.

Consult the Oracle Rdb Guide to Database Maintenance, the Oracle Rdb Guide

to Database Design and Definition, and the Oracle RMU Reference Manual for

additional information about Oracle Rdb backup and restore operations.
5.0.33 Use of Oracle Rdb from Shared Images

Bug 470946

If code in the image initialization routine of a shared image makes any calls
into Oracle Rdb, through SQL or any other means, access violations or other
unexpected behavior may occur if Oracle Rdb’s images have not had a chance to
do their own initialization.

To avoid this problem, applications must do one of the following:

e Do not make Oracle Rdb calls from the initialization routines of shared
images.

Known Problems and Restrictions 5-19

e Link in such a way that the RDBSHR.EXE image initializes first. This can
be done by placing the reference to RDBSHR.EXE and any other Oracle Rdb
shared images last in the linker options file.

5.0.34 Interactive SQL Command Line Editor Rejects Eight-Bit Characters
Digital UNIX Systems

The interactive SQL command line editor on Digital UNIX can interfere with
entering eight-bit characters from the command line. The command line editor
assumes that a character with the eighth bit set will invoke an editing function.
If the command line editor is enabled and a character with the eighth bit set

is entered from the command line, the character will not be inserted on the
command line. If the character has a corresponding editor function, the function
will be invoked; otherwise, the character is considered invalid and rejected.

There are two ways to enter eight-bit characters from the SQL command line:
either disable the command line editor or use the command line editor character
qguoting function to enter each eight-bit character. To disable the command line
editor, set the configuration parameter RDB_NOLINEDIT in the configuration
file. For example:

I Disable the interactive SQL command line editor.
RDB_NOLINEDIT ON

To place quotation marks around a character using the command line editor, type
Ctrl/V before each character to be place in quotation marks.

5.0.35 Restriction Added for CREATE STORAGE MAP on Table with Data

Oracle Rdb7 added support that allows a storage map to be added to an existing
table which contains data. The restrictions listed for Oracle Rdb7 were:

e The storage map must be a simple map that references only the default
storage area and represents the current (default) mapping for the table. The
default storage area is either RDB$SYSTEM or the area name provided by
the CREATE DATABASE...DEFAULT STORAGE AREA clause.

e The new map cannot change THRESHOLDS or COMPRESSION for the table,
nor can it use the PLACEMENT VIA INDEX clause. It can only contain one
area and cannot be vertically partitioned. This new map simply describes the
mapping as it exists by default for the table.

This release of Rdb7 adds the additional restriction that the storage map may not
include a WITH LIMIT clause for the storage area. The following example shows
the reported error:

SQL> CREATE TABLE MAP_TEST1 (A INTEGER, B CHAR(10));

SQL> CREATE INDEX MAP_TEST1_INDEX ON MAP_TEST1 (A);

SQL> INSERT INTO MAP_TEST1 (A, B) VALUES (3, 'Third");

1 row inserted

SQL> CREATE STORAGE MAP MAP_TEST1 MAP FOR MAP_TEST1
cont> STORE USING (A) IN RDB$SYSTEM

cont> WITH LIMIT OF (10); -- can't use WITH LIMIT clause
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST1" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table

5-20 Known Problems and Restrictions

5.0.36 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error
Bug 456867

If a domain has a DEFAULT of CURRENT_USER, SESSION_USER, or
SYSTEM_USER and attempts to delete that default, it may fail unexpectedly.
The following example shows the error:

SQL> ATTACH 'FILENAME PERSONNEL’;

SQL> CREATE DOMAIN ADDRESS DATA2_DOM CHAR(31)

cont> DEFAULT CURRENT_USER,;

SQL> COMMIT;

SQL> ALTER DOMAIN ADDRESS_DATA2_DOM

cont> DROP DEFAULT;

%SQL-F-DEFVALUNS, Default values are not supported for the data type of
ADDRESS_DATA2_DOM

To work around this problem you must first alter the domain to have a default of
NULL, as shown, and then use DROP DEFAULT:

SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> SET DEFAULT NULL;

SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> DROP DEFAULT:

SQL> COMMIT:

This problem will be corrected in a future release of Oracle Rdb.

5.0.37 Oracle Rdb7 Workload Collection Can Stop Hot Standby Replication

If you are replicating your Oracle Rdb7 database using the Oracle Hot Standby
option, you must not use the workload collection option. By default, workload
collection is disabled. However, if you enabled workload collection, you must
disable it on the master database prior to performing a backup operation on that
master database if it will be used to create the standby database for replication
purposes. If you do not disable workload collection, it could write workload
information to the standby database and prevent replication operations from
occurring.

The workaround included at the end of this section describes how to disable
workload collection on the master database and allow the Hot Standby software
to propagate the change to the standby database automatically during replication
operations.

Background Information

By default, workload collection and cardinality collection are automatically
disabled when Hot Standby replication operations are occurring on the standby
database. However, if replication stops (even for a brief network failure), Oracle
Rdb7 potentially can start a read/write transaction on the standby database to
write workload collection information. Then, because the standby database is
no longer synchronized transactionally with the master database, replication
operations cannot restart.

Note

The Oracle Rdb7 optimizer can update workload collection information in
the RDB$WORKLOAD system table even though the standby database
is opened exclusively for read-only queries. A read/write transaction is
started during the disconnection from the standby database to flush the
workload and cardinality statistics to the system tables.

Known Problems and Restrictions 5-21

If the standby database is modified, you receive the following messages when you
try to restart Hot Standby replication operations:

%RDMS-F-DBMODIFIED, database has been modified; AlJ roll-forward not possible
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround
To work around this problem, perform the following:

= On the master database, disable workload collection using the SQL clause
WORKLOAD COLLECTION IS DISABLED on the ALTER DATABASE
statement. For example:

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

This change is propagated to the standby database automatically when you
restore the standby database and restart replication operations. Note that,
by default, the workload collection feature is disabled. You need to disable
workload collection only if you previously enabled workload collection with
the WORKLOAD COLLECTION IS ENABLED clause.

< On the standby database, include the Transaction_Mode qualifier on the
RMU/Restore command when you restore the standby database. You should
set this qualifier to read-only to prevent modifications to the standby database
when replication operations are not active. The following example shows the
Transaction_Mode qualifier used in a typical RMU/Restore command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
INOCDD
INOLOG
[ROOT=DISKZ1:[DIR]standby_personnel.rdb
[AIJ_OPT=aij_opt.dat
DISK1:[DIR]standby_personnel.rbf

If, in the future, you fail over processing to the standby database (so that the
standby database becomes the master database), you can re-enable updates to
the “new” master database. For example, to re-enable updates, use the SQL
statement ALTER DATABASE and include the SET TRANSACTION MODES
(ALL) clause. The following example shows this statement used on the new
master database:

SQL> ALTER DATABASE FILE mf personnel
cont> SET TRANSACTION MODES (ALL);

5.0.38 RMU Convert Command and System Tables

When the RMU Convert command converts a database from a previous version
to Oracle Rdb V7.0 or higher, it sets the RDB$CREATED and RDB$LAST _
ALTERED columns to the timestamp of the convert operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is
space filled) of the converter. Here xxx represents the object name, such as in
RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_
RELATIONS if the database is transfer enabled.

5-22 Known Problems and Restrictions

5.0.39 Converting Single-File Databases

Because of a substantial increase in the database root file information for Release
7.0, you should ensure that you have adequate disk space before you use the
RMU Convert command with single-file databases and Release 7.0 or higher.

The size of the database root file of any given database will increase a minimum
of 13 blocks and a maximum of 597 blocks. The actual increase depends mostly
on the maximum number of users specified for the database.

5.0.40 Restriction when Adding Storage Areas with Users Attached to
Database

If you try to interactively add a new storage area where the page size is less than
the existing page size and the database has been manually opened or users are
active, the add operation fails with the following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKAO:[RDBJTEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

You can make this change only when no users are attached to the database and,
if the database is set to OPEN IS MANUAL, the database is closed. Several
internal Oracle Rdb data structures are based on the minimum page size, and
these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AlJ file, any
recovery scenario will fail. Note also that if you use .aij files, you must backup

the database and restart after-image journaling because this change invalidates
the current AlJ recovery.

5.0.41 Restriction on Tape Usage for Digital UNIX V3.2
Digital UNIX Systems

You can experience a problem where you are unable to use multiple tapes with
the Oracle RMU Backup command with Digital UNIX V3.2. Every attempt to
recover fails. If this happens and device errors are logged in the system error log,
it is possible that the operation succeeded, but the device open reference count is
zeroed out. This means that any attempt to use the drive by the process holding
the open file descriptor will fail with EINVAL status but another process will be
able to open and use the drive even while the first process has it opened.

There is no workaround for this problem. This problem with the magtape driver
will be corrected in a future release of Digital UNIX.

5.0.42 Support for Single-File Databases to be Dropped in a Future Release

Oracle Rdb currently supports both single-file and multifile databases on both
OpenVMS and Digital UNIX. However, single-file databases will not be supported
in a future release of Oracle Rdb. At that time, Oracle Rdb will provide the
means to easily convert single-file databases to multifile databases.

Oracle recommends that users with single-file databases perform the following
actions:

e Use the Oracle RMU commands, such as Backup and Restore, to make
copies, back up, or move single-file databases. Do not use operating system
commands to copy, back up, or move databases.

= Create new databases as multifile databases even though single-file databases
are supported in Oracle Rdb release 6.1 and release 7.0.

Known Problems and Restrictions 5-23

5.0.43 DECdtm Log Stalls

Resource managers using the DECdtm services can sometimes suddenly stop
being able to commit transactions. If Oracle Rdb7 is installed and transactions
are being run, an RMU Show command on the affected database will show
transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on
symptoms, fixes, and workarounds for this problem. One workaround, for
OpenVMS V5.5-x, is provided here.

On the affected node while the log stall is in progress, type the following
command from a privileged account:

$ MCR LMCP SET NOTIMEZONE
This should force the log to restart.

This stall occurs only when a particular bit in a pointer field becomes set. To
see the value of the pointer field, enter the following command from a privileged
account (where <nodename> is the SCS node name of the node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>
This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$IOURNAL;1
End of file block 4002 / Allocated 4002

Log Version 1.0

Transaction log UID: 29551FC0-CBB7-11CC-8001-AA000400B7A5

Penultimate Checkpoint: 000013FD4479 0079

Last Checkpoint:; 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this
excerpt from the previous example shows:

Last Checkpoint: 000013FDFC84 0084
N
|

When the number indicated in the example becomes 8, the log will stall. Check
this number and observe how quickly it grows. When it is at 7FFF, frequently
use the following command:

$ MCR LMCP SHOW LOG /CURRENT
If this command shows a stall in progress, use the workaround to restart the log.

See your Compaq Computer Corporation representative for information about
patches to DECdtm.

5.0.44 Cannot Run Distributed Transactions on Systems with DECnet/OSI and
OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version

6.1 or OpenVMS VAX Version 6.0, you cannot run Oracle Rdb7 operations

that require the two-phase commit protocol. The two-phase commit protocol
guarantees that if one operation in a distributed transaction cannot be completed,
none of the operations is completed.

If you have DECnet/OSI installed on a system running OpenVMS VAX Version
6.1 or higher or OpenVMS Alpha Version 6.2 or higher, you can run Oracle Rdb
operations that require the two-phase commit protocol.

5-24 Known Problems and Restrictions

For more information about the two-phase commit protocol, see the Oracle Rdb
Guide to Distributed Transactions.

5.0.45 Multiblock Page Writes May Require Restore Operation

If a node fails while a multiblock page is being written to disk, the page in

the disk becomes inconsistent and is detected immediately during failover.
(Failover is the recovery of an application by restarting it on another computer.)
The problem is rare and occurs because only single-block 1/0 operations are
guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area-level restore operation. Database integrity is
not compromised, but the affected area will not be available until the restore
operation completes.

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required.

5.0.46 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to
Clean Up Transactions

If a program attaches to a database on a remote node and it loses the connection
before the COMMIT statement is issued, there is nothing you can do except exit
the program and start again.

The problem occurs when a program is connected to a remote database and
updates the database, but then just before it commits, the network fails. When
the commit executes, SQL shows, as it normally should, that the program has
lost the link. Assume that the user waits for a minute or two, then tries the
transaction again. The problem is that when the start transaction is issued for
the second time, it fails because old information still exists about the previous
failed transaction. This occurs even if the user issues a DISCONNECT statement
(in Release 4.1 and earlier, a FINISH statement), which also fails with an
RDB-E-1I0O_ERROR error message.

5.0.47 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly
Data Distributor) begins running after an application has begun modifying the
database, the copy processes will catch up to the application and will not be
able to process database pages that are logically ahead of the application in
the RDB$CHANGES system table. The copy processes all align waiting for the
same database page and do not move on until the application has released it.
The performance of each copy process degrades because it is being paced by the
application.

When a copy process completes updates to its respective remote database,

it updates the RDB$TRANSFERS system table and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding
up any database updates until the deletion process is complete. The application
stalls while waiting for the RDB$CHANGES table. The resulting contention
for RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

Known Problems and Restrictions 5-25

This is a known restriction in Release 4.0 and higher. Oracle Rdb uses page
locks as latches. These latches are held only for the duration of an action on
the page and not to the end of transaction. The page locks also have blocking
asynchronous system traps (ASTs) associated with them. Therefore, whenever
a process requests a page lock, the process holding that page lock is sent a
blocking AST (BLAST) by OpenVMS. The process that receives such a blocking
AST queues the fact that the page lock should be released as soon as possible.
However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time.

An Oracle Rdb verb is an Oracle Rdb query that executes atomically, within a
transaction. Therefore, verbs that require the scan of a large table, for example,
can be quite long. An updating application does not release page locks until its
verb has completed.

The reasons for holding on to the page locks until the end of the verb are
fundamental to the database management system.

5.0.48 SQL Does Not Display Storage Map Definition After Cascading Delete
of Storage Area

When you delete a storage area using the CASCADE keyword and that storage
area is not the only area to which the storage map refers, the SHOW STORAGE
MAP statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1

Compression is: ENABLED

Partitioning is: NOT UPDATABLE

Store clause: STORE USING (EMPLOYEE_ID)

IN DEG_AREA WITH LIMIT OF ('00250")
OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;

SQL> -- Drop the storage area, using the CASCADE keyword.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL

cont> DROP STORAGE AREA DEG_AREA CASCADE;

SQL> -

SQL> -- Display the storage map definition.

SQL> ATTACH 'FILENAME MF_PERSONNEL’;

SQL> SHOW STORAGE MAP DEGREES MAP1
DEGREES_MAP1

For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE
SQL>

The other storage area, DEG_AREAZ2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map
gualifier to see the mapping.

5-26 Known Problems and Restrictions

5.0.49 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE

When you use LIKE ... IGNORE CASE, programs linked under Oracle Rdb
Release 4.2 and Release 5.1, but run under higher versions of Oracle Rdb, may
result in incorrect results or %RDB-E-ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE, or recompile
and relink under a higher version (Release 6.0 or higher.)

5.0.50 Different Methods of Limiting Returned Rows from Queries

You can establish the query governor for rows returned from a query by using the
SQL SET QUERY LIMIT statement, a logical name, or a configuration parameter.
This note describes the differences between the mechanisms.

If you define the RDMS$BIND_QG_REC_LIMIT logical name or RDB_BIND_
QG_REC_LIMIT configuration parameter to a small value, the query will
often fail with no rows returned. The following example demonstrates setting
the limit to 10 rows and the resulting failure:

$ DEFINE RDMS$BIND_QG_REC LIMIT 10

$ SQLS

SQL> ATTACH 'FILENAME MF_PERSONNEL’;

SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;

%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded

-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can
process the SELECT statement. In this example, interactive SQL loads
its metadata cache to allow it to check that the column EMPLOYEE_ID
really exists for the table. The queries on the Oracle Rdb system tables
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it.
Raising the limit to a number less than 100 (the cardinality of EMPLOYEES)
but more than the number of columns in EMPLOYEES (that is, the number
of rows to read from the RDB$RELATION_FIELDS system table) is sufficient
to read each column definition.

To see an indication of the queries executed against the system tables, define
the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter as S or B.

If you set the row limit using the SQL SET QUERY statement and run the
same query, it returns the number of rows specified by the SQL SET QUERY
statement before failing:

SQL> ATTACH 'FILENAME MF_PERSONNEL’;
SQL> SET QUERY LIMIT ROWS 10;

SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID

00164

00165

00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in
any way.

Known Problems and Restrictions 5-27

Like the SET QUERY LIMIT statement, the SQL precompiler and
module processor command line qualifiers (QUERY_MAX ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG _
REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other
interfaces that read the Oracle Rdb system tables as part of query processing.

5.0.51 Suggestions for Optimal Usage of the SHARED DATA DEFINITION
Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:
1. Process the metadata.

2. Lock the index name.

Because new metadata (which includes the index name) is not written to
disk until the end of the index process, Oracle Rdb must ensure index name
unigueness across the database during this time by taking a special lock on
the provided index name.

Read the table for sorting by selected index columns and ordering.

3

4. Sort the key data.

5. Build the index (includes partitioning across storage areas).
6

Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system table
and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

e You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

= By assigning the location of the temporary sort work files SORTWORKO,
SORTWORKI1, ..., SORTWORKO to different disks for each parallel process
that issues the SHARED DATA DEFINITION statement, you can increase the
efficiency of sort operations. This minimizes any possible disk 1/O bottlenecks
and allows overlap of the SORT read/write cycle.

= If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk 1/O savings. That is, pages
are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the 1/O load on the table.

< If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name
or RDB_BIND_BUFFERS configuration parameter or the NUMBER OF
BUFFERS IS clause in SQL to change the number of buffers).

5-28 Known Problems and Restrictions

= To distribute the disk 1/0O load, place the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes will result in contention during the index creation (Step 5) for SPAM
pages.

e Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

= Even though snapshot 1/0 should be minimal, consider disabling snapshots
during parallel index creation.

= Refer to the Oracle Rdb Guide to Performance and Tuning to determine
the appropriate working set values for each process to minimize excessive
paging activity. In particular, avoid using working set parameters where
the difference between WSQUOTA and WSEXTENT is large. The SORT
utility uses the difference between these two values to allocate scratch virtual
memory. A large difference (that is, the requested virtual memory grossly
exceeds the available physical memory) may lead to excessive page faulting.

= The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or 1/0O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

= Using the SHARED DATA DEFINITION clause on a single-file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

The following table displays the elapsed time benefit when creating multiple
indexes in parallel with the SHARED DATA DEFINITION clause. The

table shows the elapsed time for 10 parallel process index creations (Index1,
Index2, ... Index10) and one process with 10 sequential index creations (All10).
In this example, global buffers are enabled and the number of buffers is 500.
The longest time for a parallel index creation is Index7 with an elapsed time of
00:02:34.64, compared to creating 10 indexes sequentially with an elapsed time of
00:03:26.66. The longest single parallel create index elapsed time is shorter than
the elapsed time of creating all 10 of the indexes serially.

Index Create Job Elapsed Time
Index1 00:02:22.50
Index2 00:01:57.94
Index3 00:02:06.27
Index4 00:01:34.53
Index5 00:01:51.96
Index6 00:01:27.57
Index7 00:02:34.64
Index8 00:01:40.56
Index9 00:01:34.43
Index10 00:01:47.44
All 10 00:03:26.66

Known Problems and Restrictions 5-29

5.0.52 Side Effect when Calling Stored Routines

When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called
is also called by a stored function during the calculation of an argument value,
passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

SQL> CREATE MODULE M
cont> LANG SQL

cont>

cont> PROCEDURE P (IN :A INTEGER, IN :B INTEGER, OUT :C INTEGER);
cont> BEGIN

cont> SET :C = :A + B;

cont> END;

cont>

cont> FUNCTION F () RETURNS INTEGER
cont> COMMENT IS ’expect F to always return 2';
cont> BEGIN

cont> DECLARE :B INTEGER;

cont> CALL P (1, 1, :B);

cont> TRACE 'RETURNING ', :B;

cont> RETURN :B;

cont> END;

cont> END MODULE;

SQL>

SQL> SET FLAGS 'TRACE'

SQL> BEGIN

cont> DECLARE :CC INTEGER;

cont> CALL P (2, F(), :CC),

cont> TRACE 'Expected 4, got ', :CC;

cont> END;

~Xt: returning 2

~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written
to the called routine’s parameter area before complex expression values are
calculated. These calculations may (as in the example) overwrite previously
copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for
the routine. The following example shows the workaround:

SQL> BEGIN

cont> DECLARE :BB, :CC INTEGER;
cont> SET :BB = F();

cont> CALL P (2, :BB, :CC);

cont> TRACE 'Expected 4, got ', :CC;
cont> END;

~Xt: returning 2

~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb7.

5-30 Known Problems and Restrictions

5.0.53 Nested Correlated Subquery Outer References Incorrect

This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected. Outer references
from aggregation subqueries contained within nested queries could receive
incorrect values, causing the overall query to return incorrect results. The
general symptom for an outer query that returned rows 1 to n was that the inner
aggregation query would operate with the nt - 1 row data (usually NULL for row
1) when it should have been using the n" row data.

This problem has existed in various forms for all previous versions of Oracle
Rdb7, but only appears in Release 6.1 and later when the inner of the nested
queries contains an UPDATE statement.

The following example demonstrates the problem:

SQL> ATTACH 'FILENAME SHIPPING’,
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR

cont> VOYAGE_NUM = 4909;
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR 1200
4904 311 FIR 690
4909 291 IRON ORE 3000
4909 350 BAUXITE 1100
4909 350 COPPER 1200
4909 355 MANGANESE 550
4909 355 TIN 500

7 rows selected

SQL> BEGIN

cont> FOR :A AS EACH ROW OF

cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = 'SANDRA C. OR

cont> V.SHIP_NAME = 'DAFFODIL’ DO

cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCUR1 FOR

cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE_NUM = :AVOYAGE_NUM DO
cont> UPDATE MANIFEST

cont> SET TONNAGE = (SELECT (AVG (M1.EXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :A.VOYAGE_NUM)
cont> WHERE CURRENT OF MODCURL,

cont> END FOR;
cont> END FOR;

cont> END;

SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR

cont> VOYAGE_NUM = 4909;

VOYAGE_NUM EXP_NUM MATERIAL TONNAGE

4904 311 CEDAR NULL
4904 311 FIR NULL
4909 291 IRON ORE 933
4909 350 BAUXITE 933
4909 350 COPPER 933
4909 355 MANGANESE 933
4909 355 TIN 933

7 rows selected

The correct value for TONNAGE on both rows for VOYAGE_NUM 4904 (outer
query row 1) is AVG (311+311)*3=933. However, Oracle Rdb7 calculates it as AVG
(NULL+NULL)*3=NULL. In addition, the TONNAGE value for VOYAGE_NUM
4909 (outer query row 2) is actually the TONNAGE value for outer query row 1.

Known Problems and Restrictions 5-31

A workaround is to declare a variable of the same type as the outer reference
data item, assign the outer reference data into the variable before the inner query
that contains the correlated aggregation subquery, and reference the variable

in the aggregation subquery. Keep in mind the restriction on the use of local
variables in FOR cursor loops.

For example:

SQL> DECLARE :VN INTEGER;
SQL> BEGIN

cont> FOR :A AS EACH ROW OF

cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = 'SANDRA C. DO

cont> SET :VN = :AVOYAGE_NUM;

cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCURL FOR

cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE NUM = :AVOYAGE_NUM DO
cont> UPDATE MANIFEST

cont> SET TONNAGE = (SELECT (AVG (MLEXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :\N)
cont> WHERE CURRENT OF MODCURL;

cont> END FOR;
cont> END FOR;

cont> END;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904,
VOYAGE_NUM EXP_NUM MATERIAL TONNAGE
4904 311 CEDAR 933
4904 311 FIR 933

This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected.

5.0.54 Considerations when Using Holdable Cursors

If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may

not remain stable. That is, rows may be inserted, updated, and deleted by other
users because no locks are held on the rows selected by the holdable cursor after
a commit or rollback occurs. Moreover, depending on the access strategy, rows not
yet fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in
a concurrent user environment:

= If the access strategy forces Oracle Rdb to take a data snapshot, the data
read and cached may be inaccurate by the time the cursor fetches the data.

For example, user 1 opens a cursor and commits the transaction. User
2 deletes rows read by user 1 (this is possible because the read locks are
released). It is possible for user 1 to report data now deleted and committed.

= If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.

Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the
data that was fetched. However, the duplicates chain could be revised by the
time Oracle Rdb returns to using it.

Holdable cursors are a very powerful feature for read-only or predominantly read-
only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

5-32 Known Problems and Restrictions

You can define the logical name RDMS$BIND _HOLD_ CURSOR_SNAP or
configuration parameter RDB_BIND_HOLD CURSOR_SNAP to the value 1 to
force all hold cursors to fetch the result set into a cached data area. (The cached
data area appears as a “Temporary Relation” in the optimizer strategy displayed
by the SET FLAGS STRATEGY statement or the RDMS$DEBUG_FLAGS S flag.)
This logical name or configuration parameter helps to stabilize the cursor to some
degree.

5.0.55 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for
PL/l in Oracle Rdb Release 5.0 or Higher

The SQL statement INCLUDE SQLDAZ2 is not supported for use with the PL/I
precompiler in Oracle Rdb Release 5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle
Rdb.

5.0.56 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations
Incorrectly

The Pascal precompiler for SQL gives an incorrect %SQL-I-UNMATEND error
when it parses a declaration of an array of records. The precompiler does not
associate the END statement with the record definition, and the resulting
confusion in host variable scoping causes a fatal error.

A workaround for the problem is to declare the record as a type and then define
your array of that type. For example:
main.spa:
program main (input,output);

type
exec sql include 'had_def.pin’; lgives error
exec sql include 'good def.pin’; lok
var
a : char;
begin
end.
bad_def.pin
x_record = record
. char;
variable_a: array [1..50] of record
a fldl : char;
b fld2 : record;
t : record
Vv @ integer;
end;
end;
end;
end;
good_def.pin

Known Problems and Restrictions 5-33

good_rec = record
a fldl : char;
b fld2 : record
t : record
V. integer;
end;
end;
end;

x_record = record
y : char
variable_a : array [1..50] of good_rec;
end;
5.0.57 RMU Parallel Backup Command Not Supported for Use with SLS

The RMU Parallel Backup command is not supported for use with the Storage
Library System (SLS) for OpenVMS.

5.0.58 Oracle RMU Commands Pause During Tape Rewind
Digital UNIX Systems

For Oracle Rdb Release 6.1 or higher on Digital UNIX, the Oracle RMU Backup
and Restore commands pause under certain conditions.

If multiple tape drives are used for RMU Backup or RMU Restore commands
and a tape needs to rewind, the Oracle RMU command pauses until the rewind
is complete. This is different from behavior on OpenVMS systems where the
command continues to write to tape drives that are not rewinding.

There is no workaround for this problem.

5.0.59 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX
Digital UNIX Systems

When rewinding or unloading tapes using either TA90 and TA92 drives, Digital
UNIX intermittently returns an EIO error causing the Oracle RMU operation
to abort. This problem occurs most often when Oracle RMU accesses multiple
tape drives in parallel. However, the problem occurs even with single-tape drive
access.

As a result of this problem, Oracle Rdb on Digital UNIX supports neither TA90
nor TA92 tape drives.

5.1 Oracle CDD/Repository Restrictions

This section describes known problems and restrictions in Oracle CDD/Repository
Release 7.0 and earlier.

5.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features

Some Oracle Rdb features are not fully supported by all versions of Oracle
CDD/Repository. Table 5-1 shows which versions of Oracle CDD/Repository
support Oracle Rdb features and the extent of support.

In Table 5-1, repository support for Oracle Rdb7 features can vary as follows:

= Explicit support—The repository recognizes and integrates the feature, and
you can use the repository to manipulate the item.

< Implicit support—The repository recognizes and integrates the feature, but
you cannot use any repository interface to manipulate the item.

5-34 Known Problems and Restrictions

e Pass-through support—The repository does not recognize or integrate the
feature, but allows the Oracle Rdb7 operation to complete without aborting or
overwriting metadata. With pass-through support, a CDD-I-MBLRSYNINFO
informational message may be returned.

Table 5-1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Minimum Release Minimum Release of

Oracle Rdb Feature of Oracle Rdb Oracle CDD/Repository Support
CASE, NULLIF, and 6.0 6.1 Implicit
COALESCE expressions

CAST function 4.1 7.0 Explicit
Character data types to support 4.2 6.1 Implicit
character sets

Collating sequences 3.1 6.1 Explicit
Constraints (PRIMARY KEY, 3.1 5.2 Explicit

UNIQUE, NOT NULL, CHECK,
FOREIGN KEY)

CURRENT_DATE, CURRENT _ 4.1 7.0 Explicit
TIME, and CURRENT_
TIMESTAMP functions

CURRENT_USER, SESSION_ 6.0 7.0 Explict

USER, SYSTEM_USER

functions

Date arithmetic 4.1 6.1 Pass-through

DATE ANSI, TIME, 4.1 6.1 Explicit

TIMESTAMP, and INTERVAL

data types

Delimited identifiers 4.2 6.11 Explicit

External functions 6.0 6.1 Pass-through

External procedures 7.0 6.1 Pass-through

EXTRACT, CHAR_LENGTH, 4.1 6.1 Explicit

and OCTET_LENGTH functions

GRANT/REVOKE privileges 4.0 5.0 accepts but does not Pass-through
store information

Indexes 1.0 5.2 Explicit

INTEGRATE DOMAIN 6.1 6.1 Explicit

INTEGRATE TABLE 6.1 6.1 Explicit

Logical area thresholds for 4.1 5.2 Pass-through

storage maps and indexes

Multinational character set 3.1 4.0 Explicit

Multiversion environment 4.1 5.1 Explicit

(multiple Rdb versions)

NULL keyword 2.2 7.0 Explicit

Oracle7 compatibility functions, 7.0 7.0 Explicit

such as CONCAT, CONVERT,
DECODE, and SYSDATE

1The repository does not preserve the distinction between uppercase and lowercase identifiers. If you
use delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not
include objects with names that are duplicates except for case.

(continued on next page)

Known Problems and Restrictions 5-35

Table 5-1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Minimum Release Minimum Release of

Oracle Rdb Feature of Oracle Rdb Oracle CDD/Repository Support

Outer joins, derived tables 6.0 7.0 Pass-through
Query outlines 6.0 6.1 Pass-through
Storage map definitions correctly 3.0 5.1 Explicit
restored

Stored functions 7.0 6.1 Pass-through
Stored procedures 6.0 6.1 Pass-through
SUBSTRING function 4.0 7.0 supports all features Explicit

5.0 supports all but 4.2
MIA features 2

Temporary tables 7.0 6.1 Pass-through
Triggers 3.1 5.2 Pass-through
TRUNCATE TABLE 7.0 6.1 Pass-through
TRIM and POSITION functions 6.1 7.0 Explicit
UPPER, LOWER, TRANSLATE 4.2 7.0 Explicit
functions

USER function 2.2 7.0 Explict

2Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

5.1.2 Multischema Databases and CDD/Repository

You cannot use multischema databases with CDD/Repository and Oracle Rdb
release 7.0 and earlier. This problem will be corrected in a future release of
Oracle Rdb.

5.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU
Privileges Access Control Lists
Oracle Rdb provides special Oracle RMU privileges that use the unused portion

of the OpenVMS access control list (ACL) to manage access to Oracle RMU
operations.

You can use the RMU Set Privilege and RMU Show Privilege commands

to set and show the Oracle RMU privileges. The DCL SHOW ACL and
DIRECTORY/ACL commands also show the added access control information;
however, these tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the
root file for access control entries (ACESs) that possess the SECURITY and
DBADM (ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the
CDDS$SYSTEM rights identifier on each file created within the anchor directory.
CDDS$SYSTEM is a special, reserved rights identifier created by Oracle
CDD/Repository.

5-36 Known Problems and Restrictions

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it
adds (or augments) an OpenVMS default ACL to the anchor directory. Typically,
this ACL allows access to the repository files for CDD$SYSTEM and denies access
to everyone else. All files created in the anchor directory inherit this default ACL,
including the repository database.

Unfortunately, there is an interaction between the default ACL placed on the
repository database by Oracle CDD/Repository and the Oracle RMU privileges
ACL processing.

Within the ACL on the repository database, the default access control entries
(ACEs) that were inherited from the anchor directory will precede the ACEs
added by RMU Restore. As a result, the CDD$SYSTEM identifier will not have
any Oracle RMU privileges granted to it. Without these privileges, if the user
does not have the OpenVMS SYSPRYV privilege enabled, Oracle RMU operations,
such as Convert and Restore, will not be allowed on the repository database.

The following problems may be observed by users who do not have the SYSPRV
privilege enabled:

= While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY
command:

— If the COD$STEMPLATEDB backup (.rbf) file was created by a previous
version of Oracle Rdb7, the automatic RMU Convert operation that will be
carried out on the .rbf file will fail because SYSPRYV privilege is required.

— If the CDD$TEMPLATEDB backup (.rbf) file was created by the current
version of Oracle Rdb7, the restore of the repository database will fail
because the default ACEs that already existed on the repository file that
was backed up will take precedence, preventing RMU$SCONVERT and
RMUSRESTORE privileges from being granted to CDD$SYSTEM or the
user.

— If no CDD$TEMPLATEDB is available, the repository database will be
created without a template, inheriting the default ACL from the parent
directory. The ACE containing all the required Oracle RMU privileges
will be added to the end of the ACL; however, the preexisting default
ACEs will prevent any Oracle RMU privilege from being granted.

= You must use the RMU Convert command to upgrade the database disk
format to Oracle Rdb7 after installing Release 7.0. This operation requires
the SYSPRYV privilege.

During the conversion, RMU Convert adds the ACE containing the Oracle
RMU privileges at the end of the ACL. Because the repository database
already has the default Oracle CDD/Repository ACL associated with it, the
Oracle CDD/Repository ACL will take precedence, preventing the granting of
the Oracle RMU privileges.

= During a CDO MOVE REPOSITORY command, the Oracle RMU privilege
checking may prevent the move, as the RMU$COPY privilege has not been
granted on the repository database.

= When you execute the CDD template builder CDD_BUILD_TEMPLATE, the
step involving RMU Backup privilege has not been granted.

Oracle CDD/Repository Releases 5.2 and higher correct this problem. A version
of the Oracle CDD/Repository software that corrects this problem and allows new
repositories to be created using Oracle Rdb7 is provided on the Oracle Rdb7 kit
for use on OpenVMS VAX systems. See Section 5.1.3.1 for details.

Known Problems and Restrictions 5-37

5.1.3.1 Installing the Corrected CDDSHR Images
OpenVMS VAX Systems

Note

The following procedure must be carried out if you have installed or plan
to install Oracle Rdb7 and have already installed CDD/Repository Release
5.1 software on your system.

Due to the enhanced security checking associated with Oracle RMU commands
in Oracle Rdb on OpenVMS VAX, existing CDDSHR images for CDD/Repository
Release 5.1 must be upgraded to ensure that the correct Oracle RMU privileges
are applied to newly created or copied repository databases.

Included in the Oracle Rdb7 for OpenVMS VAX distribution kit is a CDD
upgraded image kit, called CDDRDBO042, that must be installed after you have
installed the Oracle Rdb7 for OpenVMS VAX Kkit.

This upgrade kit should be installed by using VMSINSTAL. It automatically
checks which version of CDDSHR you have installed and replaces the existing
CDDSHR.EXE with the corrected image file. The existing CDDSHR.EXE will be
renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD TEMPLATE.COM
procedure in SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install
Oracle Rdb7 V7.0, you must install the corrected CDDSHR image again
to ensure that the correct CDDSHR images have been made available.

The CDD/Repository upgrade kit determines which version of
CDD/Repository is installed and replaces the existing CDDSHR.EXE
with the appropriate version of the corrected image.

5.1.3.2 CDD Conversion Procedure
OpenVMS VAX Systems

Oracle Rdb7 provides RDB$CONVERT_CDD$DATABASE.COM, a command
procedure that both corrects the anchor directory ACL and performs the RMU
Convert operation. The command procedure is located in SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs
an RMU Convert operation.

Use the procedure RDBSCONVERT_CDD$DATABASE.COM to process the
anchor directory and update the ACLs for both the directory and, if available, the
repository database.

5-38 Known Problems and Restrictions

This procedure accepts one parameter: the name of the anchor directory that
contains, or will contain, the repository files. For example:

$ @SYSS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command
procedure to locate them, set the Oracle RMU privileges ACL, and convert the
databases. Use DCL commands similar to the following:

$ LOOP:

$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")

$ IF REP_SPEC .NES. ™

$ THEN

$ @SYS$LIBRARY:DECRDBSCONVERT CDD$DATABASE
'F$PARSE(REP_SPEC,,,"DIRECTORY")’

$ GOTO LOOP

$ ENDIF

Known Problems and Restrictions 5-39

6

Enhancements

This chapter describes the enhancements that are introduced in Oracle Rdb7
Release 7.0.4.

6.1 Enhancements Provided in Oracle Rdb7 Release 7.0.4
6.1.1 Suggestion To Increase Field Size On RMU SHOW STATISTIC

The RMU/Show Statistic utility, in the menu under “Logical Area Information”
sub-menu, “Logical Area Overview (Tables)” option, the “Logical Area Name” is
limited to 20 characters. Customers frequently have table names that are larger
than 20 characters, or they might have a tablename.areaname, and if this table
is partitioned, some of their area files might have the same beginning part of the
name with the end being different. It would be nice to have that 20 characters
extend out further. Added per customer request.

The following example shows the current display:
Node: ALPHA3 (1/1/24) Oracle Rdb X7.1-00 Perf. Monitor 2-NOV-1999 13:44:58.20

Rate: 1.00 Second Logical Area Overview (Tables Elapsed: 14 07:07:01.47
Page: 1 of 5 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
Logical.Area.Name... record fetch record store record erase discarded CurTot
RDBS$RELATIONS.RDB$SY 24565 0 0 0
RDBS$FIELD VERSIONS.R 223904 0 0 0
RDBSINDICES.RDB$SYST 31495 15 23 0
RDBS$INDEX_SEGMENTS.R 31064 45 69 0
RDBS$FIELDS.RDB$SYSTE 27114 0 0 0
RDB$RELATION_FIELDS. 22520 0 0 0
RDB$DATABASE.RDB$SYS 1244 0 0 0
RDB$VIEW_RELATIONS.R 0 0 0 0
RDBSCONSTRAINT_RELAT 0 0 0 0
RDB$CONSTRAINTS.RDB$ 0 0 0 0
RDB$STORAGE_MAPS.RDB 2056 15 23 0
RDB$STORAGE_MAP_AREA 524 15 23 0
RDBS$INTERRELATIONS.R 0 0 0 0
RDB$COLLATIONS.RDB$S 0 0 0 0
RDB$TRIGGERS.RDB$SYS 0 0 0 0
RDB$RELATION_CONSTRA 0 0 0 0
RDB$RELATION_CONSTRA 0 0 0 0

Config Exit Help Menu >next_page <prev_page Options Pause Reset Set rate Write
There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. By increasing
the terminal display width, the RMU/Show Statistic utility will display a larger
portion of the logical area name. For example, with the terminal width set to 90
columns, the above screen appears as follows:

Enhancements 6-1

Node: ALPHA3 (1/1/24) Oracle Rdb X7.1-00 Perf. Monitor 2-NOV-1999 13:47:15.35

Rate: 1.00 Second Logical Area Overview (Tables) Elapsed: 14 07:09:18.62
Page: 1 of 5 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
Logical. Area.Name............. record fetch record store record erase discarded CurTot
RDBSRELATIONS.RDB$SYSTEM 24565 0 0 0
RDB$FIELD_VERSIONS.RDB$SYSTEM 223904 0 0 0
RDBSINDICES.RDB$SYSTEM 31495 15 23 0
RDB$INDEX_SEGMENTS.RDB$SYSTEM 31064 45 69 0
RDBS$FIELDS.RDB$SYSTEM 27114 0 0 0
RDB$RELATION_FIELDS.RDB$SYSTEM 22520 0 0 0
RDB$DATABASE.RDB$SYSTEM 1244 0 0 0
RDB$VIEW _RELATIONS.RDB$SYSTEM 0 0 0 0
RDB$CONSTRAINT_RELATIONS.RDB$S 0 0 0 0
RDB$CONSTRAINTS.RDB$SYSTEM 0 0 0 0
RDB$STORAGE_MAPS.RDB$SYSTEM 2056 15 23 0
RDB$STORAGE_MAP_AREAS.RDB$SYST 524 15 23 0
RDBSINTERRELATIONS.RDB$SYSTEM 0 0 0 0
RDB$COLLATIONS.RDB$SYSTEM 0 0 0 0
RDBSTRIGGERS.RDB$SYSTEM 0 0 0 0
RDB$RELATION_CONSTRAINTS.RDB$S 0 0 0 0
RDB$RELATION_CONSTRAINT_FLDS.R 0 0 0 0

Config Exit Help Menu >next_page <prev_page Options Pause Reset Set rate Write Zoom !

6.1.2 SHOW STATS "Logical Area Overview" Enhancements

Currently, the RMU Show Statistic Utility “Logical Area Overview” screen can
only be sorted in alphabetical order. This is ideal for finding statistic information
for a particular logical area, but is less than ideal when the screen is used for
performance analysis.

The RMU Show Statistic Utility “Logical Area Overview” screen has been
enhanced to provide the ability to sort the display based on any of the displayed
column information. Since the user can configure the screen to display any
statistic information in any column, this enhancement provides an extremely
powerful tool for performance analysis.

Use the “Config” on-screen menu option to display the available sort options.

The following example shows a sample “Logical Area Overview” screen sorted on
column one, records fetched:

6-2 Enhancements

Node: ALPHA3 (1/1/1) Oracle Rdb X7.1-00 Perf. Monitor 5-NOV-1999 12:55:34.87

Rate: 0.50 Seconds Logical Area Overview (Tables) Elapsed: 2 03:00:48.99
Page: 1 of 4 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
Logical.Area.Name... record fetch record store record erase discarded CurTot
TRAN_SUMMARY_RECON2 43278 53187 0 0
TRAN_SUMMARY_RECON4 41732 53187 0 0
TRAN_SUMMARY_RECONG6 35282 53187 0 0
TRAN_SUMMARY_RECONS 28196 8192 0 0
TRAN_SUMMARY_RECON12 16384 16384 0 0
TRAN_SUMMARY_RECON14 8192 16384 0 0
TRAN_SUMMARY_RECON16 8192 16384 0 0
LANE_MESSAGE_ID 0 0 0 0
STATS_FILE_INDEX 0 0 0 0
SERIAL_KEY_INDEX 0 0 0 0
LANE 0 0 0 0
XFER_CONTROL 0 0 0 0
SCHEDULE_MASTER 0 0 0 0
POOL_CARD 0 0 0 0
EMPLOYEES 0 196552 0 0
CSC_RECON 0 0 0 0
SECURITY_MODULES 0 0 0 0

Config Exit Help Menu >next_page <prev_page Options Pause Reset Set rate Write

6.1.3 RCS Can Map All Caches at Database Open

By default, when the Oracle Rdb7 Row Cache feature is enabled, the first process
to access a cached table or storage area will create and map the associated row
cache(s). However, it is possible to cause the RCS process to create and map all
defined row caches when the database is opened.

If the system-wide logical name RDM$BIND_RCS_INITIAL_MAP_ALL_CACHES
is defined to the value "1" when the RCS process starts, the RCS process will
create and map all defined row caches for the database.

The RCS process sorts the cache definitions for 32-bit address space usage from
largest to smallest before the caches are created. This should help reduce memory
fragmentation when using the SHARED MEMORY IS SYSTEM option.

6.1.4 Performance Enhancements When Number of Cluster Nodes is 1

Several performance enhancements have been made to Oracle Rdb7. The
majority of these improvements are available for databases allowing access from
only one node in a cluster (ie, the database is set to NUMBER OF CLUSTER
NODES IS 1).

In particular, when the database is set to NUMBER OF CLUSTER NODES IS 1,
various locks and root file write operations have been eliminated. Particularly in
environments where this is a mix of read-only and read-write transactions, this
can have a significant performance impact.

The logical name RDM$BIND_AWL_TSNBLK_LOCKING can be set to "1" to
avoid several of these performance optimizations if desired.

Additionally, several internal data structures have been further aligned in
memory for improved memory access patterns and shorter code sequences on
Alpha processors.

Enhancements 6-3

6.1.5 New ROW LENGTH Default Calculated for CREATE CACHE

In prior versions of Oracle Rdb, when CREATE CACHE was used to define a
logical cache for an existing table or index but the ROW LENGTH IS clause was
omitted, the default length used was determined from the Area Inventory Page
(AIP) entry for the logical area. Use RMU/DUMP/LAREA=RDBS$AIP to see these
length values. This default would sometimes be an inaccurate measure of the row
or node size.

With Oracle Rdb7 Release 7.0.4, the defaulting has been changed so that the row
length is derived from the Rdb metadata.

6-4 Enhancements

When creating a logical cache, if a table already exists with the same name as
the cache, then that table’s current row length is calculated. This will account
for any table changes which may have been made since the table was created,
i.e. a column was added, dropped or altered in data type or size.

In prior releases, the value used from the AIP may have been out-of-date and
may have been too small (rows would not be cached) or too large (memory
would be wasted).

The default ROW LENGTH does not take into account the compression
attributes of the table. Database administrators are encouraged to compare
the default chosen with the actual rows on disk because row compression may
allow a smaller row length to be used.

Note

If data in the row is not compressible then it is possible that the
compression markers added to the row data will cause the length of

the stored row to exceed the default ROW LENGTH. Please examine the
stored data to see if this is a concern.

If the table is vertically partitioned then this new default will represent

the full row size, not the size of individual partitions. Oracle recommends
that care be taken to calculate appropriate ROW LENGTH when caching
vertically partitioned tables. In previous versions, the length used was for the
first matching logical area which didn't necessarily provide a useful length.

System tables do not explicitly use row compression but are stored in an
internal abbreviated format. Therefore, Oracle does not recommend using
the default ROW LENGTH for Oracle Rdb system tables but rather database
administrators should calculate an appropriate value using the existing data
in the system table.

When creating a logical cache, if a SORTED index exists with the same name
as the row cache, then the NODE SIZE specified by the CREATE or ALTER
INDEX statement will be used for the ROW LENGTH. If none was used then
the default size provided by Rdb will be used (typically this is 430 bytes).

In prior releases the value used from the AIP for a SORTED index allowing
duplicates was 215 bytes which was too small to cache the index nodes and
may have only allowed the duplicate nodes to be cached.

Note

If an index and a table are given the same name, then Oracle Rdb will
use the length from the table and not the index. In this case you must

use an explicit ROW LENGTH clause to provide an acceptable length.

= In all other cases, the ROW LENGTH will default to 256. Oracle recommends
that you calculate and specify an appropriate ROW LENGTH when creating
physical caches or when creating logical caches for hashed index nodes.

These changes will have no affect on existing row cache definitions.

6.1.6 RMU /CHECKPOINT /WAIT /UNTIL

A new qualifier “/UNTIL=date-and-time” has been added to the “"RMU
/CHECKPOINT /WAIT” command. The UNTIL qualifier specifies the time at
which the RMU /CHECKPOINT /WAIT command will stop waiting for the
checkpoint and will return an error back to the user.

If you do not specify the UNTIL qualifier, the wait is indefinite.

6.1.7 RMU Extract Supports New AUDIT_COMMENT Option

Oracle Rdb7 Release 7.0.4 adds new functionality to RMU Extract. A new
AUDIT_COMMENT option has been added that annotates the extracted
objects with the creation and last alter timestamps as well as the username
of the creator. The date/time values are displayed using the current settings of
SYS$LANGUAGE and LIB$DT_FORMAT.

The default is /OPTION=NOAUDIT_COMMENT.

The following example shows an extract from the generated script when the
SYS$LANGUAGE and LIB$DT_FORMAT are defined. The language and format
will default to ENGLISH and the standard OpenVMS format if these logical
names are not defined.

$ define LIB$DT_FORMAT LIB$DATE_FORMAT 002,LIB$TIME_FORMAT 001
$ define SYSSLANGUAGE french
$ rmu/extract/out=sys$output/item=domain mf_personnel/opt=audit_comment

- Created on 8 janvier 1998 13:01:31.20
-- Never altered
-- Created by RDB_EXECUTE

create domain ADDRESS_DATA_1
CHAR (25);
comment on domain ADDRESS_DATA 1 is
" Street name’;

6.1.8 Revised Oracle Rdb for OpenVMS Client Kit

The content of the Oracle Rdb for OpenVMS Client kit has been revised to reflect
current software. This release of the client kit contains the following software:

e DBAPack V7.0.1 for the Windows NT on Intel, Windows 95 and Windows 98
platforms

e SQL/Services for Oracle Rdb Version 7.0-4
= SQL/Services Client for Compaq Tru64 UNIX Version 4.0

e SQL/Services Client for Sun Solaris

Enhancements 6-5

e Oracle Rdb ODBC Version 2.10.17 (32 bit version)
e Oracle Rdb ODBC for Mac OS
= Oracle Installer Version 3.3.1.2.4 (replaces Version 3.3.1.0.0)
The following software is no longer provided as part of the Oracle Rdb on OpenVMS Client kit.
< DBAPack for the Windows NT on DEC Alpha platform
= DBAPack for the Windows 3.1 platform
e Oracle Enterprise Manager Version 1.3.5

e Personal Oracle7 Version 7.0.3

6.2 Enhancements Provided in Oracle Rdb7 Release 7.0.3.1

6.2.1 Per-Process Monitoring for SHOW STATS

The purpose of the Per-Process Monitoring facility is to provide a powerful drill-
down capability to allow the DBA to analyze process-specific information for a
single process, class of processes, or all attached database processes. The facility
also provides several screens that display a side-by-side comparison of individual
process statistic information, such as 1/O, transaction, and record statistics. The
Per-Process Monitoring facility presents real-time information and, consequently,
does not write its information to the binary output file. Therefore, the Per-Process
Monitoring facility is not available during the replay of a binary input file.

The Per-Process Monitoring facility is not available if clusterwide statistic
collection is active. Conversely, the clusterwide statistic collection facility is not
available when the Per-Process Monitoring facility is active.

For a complete description of the various methods by which the Per-Process
Monitoring facility can be activated, see the white paper, RMU SHOW
STATISTIC Utility Per-Process Monitoring Facility on MetaLink.

6.2.2 New DOMAINS Option for RMU/EXTRACT

In Oracle Rdb7 Release 7.0.4, RMU Extract adds more control over the way
domain definitions are handled. A new /OPTION=NODOMAINS can be used to
eliminate the domain name from within metadata objects. When used the domain
name is replaced by the underlying data type. This option is designed for use
with tools that do not understand the SQL92 SQL language domain feature.

e Affect on /ILANGUAGE=SQL output.
The default is /OPTION=DOMAINS.

A SQL script generated when using /OPTION=NODOMAINS no longer
includes the domain name in the CREATE TABLE column definition,
CREATE FUNCTION or CREATE PROCEDURE parameter definitions,
and any other value expression which uses the CAST function to convert
expression to a domain data type (such as a CREATE VIEW or CREATE
TRIGGER).

The output for CREATE MODULE is not affected by /OPTION=NODOMAINS
because it is based on the original source SQL which is not edited by RMU
Extract.

= Affect on the /[LANGUAGE=ANSI_SQL output.

6-6 Enhancements

The default is /OPTION=NODOMAINS when /OPTION=NORMAL is specified
or is the default.

In prior versions, ANSI_SQL would attempt to extract the definition using
syntax from ANSI SQL89 if /OPTION=NORMAL was specified or was the
default. This SQL language standard does not support domain definitions but
RMU Extract would still output the definitions if /ITEM=ALL was specified.
In this release of Oracle Rdb RMU Extract no longer generates a list of
CREATE DOMAIN statements if ITEM=DOMAINS or /ITEM=ALL is used.

To get the behavior of previous versions use the /OPTION=DOMAINS
qualifier to have domains generated. For example:

$ RMU/EXTRACT/LANGUAGE=ANSI_SQL/OPTION=DOMAINS databasename

Use the /OPTION=FULL qualifier to have syntax generated for SQL92 to
include the use of domains.

6.2.3 New NO REORGANIZE clause for ALTER STORAGE MAP

In Oracle Rdb V7.0.2, support was added to allow an existing storage map to
be converted to a strictly partitioned storage map using the ALTER STORAGE
MAP...PARTITIONING IS NOT UPDATABLE clause of the ALTER STORAGE
MAP statement.

This statement implicitly performs a REORGANIZE on the base table, moving
rows within the map if necessary, scanning the storage areas to make sure all the
stored data conforms to the storage map definition. This allows the the Oracle
Rdb optimizer to use this type of table efficiently when a sequential scan uses a
subset of the storage areas.

In many cases the database administrator knows that a large table is already
strictly partitioned but it is prohibitive to reorganize the table (the amount

of 1/0 alone might last several hours). Therefore, in this release of Oracle

Rdb, we have allowed the database administrator to bypass the automatic
REORGANIZE performed by the ALTER STORAGE MAP ... PARTITIONING IS
NOT UPDATABLE statement using a new NO REORGANIZE clause.

There is an associated risk because Oracle Rdb has not validated the table
partitioning. It is possible that rows will be missed by sequential scans.
The database administrator must take this risk into account when using
this new clause. Oracle Corporation suggests that an ALTER STORAGE
MAP...REORGANIZE be carried out as soon as practical.

When the NO REORGANIZE clause is used, Oracle Rdb records this information
in the Oracle Rdb system tables. The SHOW STORAGE MAP statement will
display informational text.

The following example shows an ALTER STORAGE MAP statement which
disabled the area scan for PARTITIONING IS NOT UPDATABLE and the
informational text from the SHOW STORAGE MAP statement:

Enhancements 6-7

SQL> set flags 'stomap_stats’;
SQL> alter storage map EMPLOYEES MAP

cont> partitioning is not updatable

cont> no reorganize

cont> store

cont> using (EMPLOYEE_ID)

cont> in EMPIDS_LOW

cont> with limit of ('00200")
cont> in EMPIDS_MID

cont> with limit of ('00400")
cont> otherwise in EMPIDS_OVER;

~As: starting map restructure...

~As: REORGANIZE needed to preserve strict partitioning

~As: NO REORGANIZE was used to override scan

~As: reads: async 0 synch 21, writes: async 7 synch 3

SQL>

SQL> show storage map EMPLOYEES_MAP
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES HASH
Partitioning is: NOT UPDATABLE
Strict partitioning was not validated for this table
Comment: employees partitioned by "00200" "00400"
Store clause: STORE
using (EMPLOYEE_ID)
in EMPIDS_LOW
with limit of ('00200")
in EMPIDS_MID

with limit of (00400
otherwise in EMPIDS_OVER

Compression is: ENABLED

SQL>

Entering a subsequent ALTER STORAGE MAP...REORGANIZE will validate the
partitioning:

SQL> alter storage map EMPLOYEES MAP

cont> partitioning is not updatable

cont reorganize;

~As: starting map restructure...

~As: starting REORGANIZE...

~As: reorganize AREAS...

~As: processing rows from area 69

~As: processing rows from area 70

~As: processing rows from area 71

~As: reads; async 408 synch 22, writes: async 3 synch 0
SQL>

Usage Notes

e The NO REORGANIZE clause is ignored unless used with PARTITIONING
IS NOT UPDATABLE. This is because either no automatic reorganize is
required, or a full rebuild of the table is needed to implement the new map
structure.

e REORGANIZE and NO REORGANIZE may not appear in the same ALTER
STORAGE MAP command.

6-8 Enhancements

SQL> alter storage map EMPLOYEES_MAP

cont> partitioning is not updatable

cont> no reorganize

cont> reorganize areas

cont> store

cont> using (EMPLOYEE_ID)

cont> in EMPIDS_LOW

cont> with limit of (00200
cont> in EMPIDS_MID

cont> with limit of (00400
cont> otherwise in EMPIDS_OVER;

%SQL-F-MULTSPECATR, Multiple specified attribute. "REORGANIZE" was specified
more than once

The SET FLAGS option STOMAP_STATS will output an indication that NO
REORGANIZE was used.

The SHOW STORAGE MAP command will output an indication that NO
REORGANIZE was used. For example:

SQL> show storage map EMPLOYEES_MAP
EMPLOYEES_MAP

For Table: EMPLOYEES
Placement Via Index: EMPLOYEES HASH
Partitioning is: NOT UPDATABLE

Strict partitioning was not validated for this table

6.2.4 New Options for the GET DIAGNOSTICS Statement

For Oracle Rdb7 Release 7.0.3.1, two new options have been added to the GET
DIAGNOSTICS statement:

TRANSACTION_TIMESTAMP

This option returns the date and time that the last transaction was started.
If a transaction is not active, then this may be a prior transaction. The
database server will start transactions when performing database operations
and, therefore, this timestamp may reflect the time of an internal transaction.

If the default date format is SQL92, this option returns a value with the
data type TIMESTAMP(2); otherwise, it returns a DATE (VMS) data type.
The default date format can be changed using either the SET DIALECT or
SET DEFAULT DATE FORMAT statements, or one of the associated module
attributes.

TRANSACTION_SEQUENCE

This is the transaction sequence number (TSN) assigned to the most recently
started transaction. The TSN is a unique indicator of database transaction
activity; however, note that the TSN may be reused in some cases. The TSN
for a read-only transaction reflects the transaction state which is visible to
the transaction, and therefore it could have been previously assigned to a
read/write transaction. If a read/write transaction performs no database 1/0,
or was rolled back, then that TSN may be reused by a subsequent read/write
transaction.

This option returns a BIGINT data type.

Enhancements 6-9

The following example uses both these new options:

SQL> set transaction read write;
SQL> show transaction
Transaction information:
Statement constraint evaluation is off
On the default alias
Transaction characteristics:
Read Write
Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 0:256
- snapshot space for TSNs less than 0:256 can be reclaimed
- recovery unit journal filename is USER2:[RDM$RUJISCRATCH$00018679B3AD.RUJ;1
- session ID number is 8
SQL>
SQL> declare :x date vms;
SQL>
SQL> begin get diagnostics :x = transaction_timestamp; end;
SQL> print :X;
X

27-MAY-1999 22:39:17.02

SQL>
SQL> declare :y bigint;
SQL>
SQL> begin get diagnostics :y = transaction_sequence; end;
SQL> print :y;
Y

256

SQL>

SQL> select current_timestamp from rdb$database;

27-MAY-1999 22:39:18.20
1 row selected

SQL>

SQL> commit;

6.2.5 RMU/SHOW Statistic OPCOM Message Tracking

The RMU/SHOW Statistic utility has been enhanced to provide tracking of
database-related OPCOM messages. OPCOM messages are tracked using two
independent methods:

1. New "OPCOM Messages” Screen. Located in the “Process Information”
submenu, the “OPCOM Messages” screen identifies the last broadcast
OPCOM message for each active process. If a single process is attached to the
database multiple times, the OPCOM messages are displayed for the attach
that issued the broadcast.

2. New /OPCOM_LOG qualifier. This qualifier specifies the file specification
of the log file to record various OPCOM messages broadcast by attached
database processes.

The following is an example of the “OPCOM Messages” screen:

6-10 Enhancements

Oracle Rdb X7.1-00 Performance Monitor OPCOM Log

Database KODA_TEST:[R_ANDERSON.TCS_MASTER]|TCS.RDB;2

OPCOM Log created 7-JUN-1999 06:25:10.61

06:25:12.13 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS2.AlJ;1"
(missed 4)

06:25:12.13 2A526A05:1 AlJ Log Catch-Up Server activated (missed 4)

06:25:21.07 2A53D804:1 Opening "KODA TEST:[R_ANDERSON.TCS_MASTER]TCS3.AlJ;1"
06:27:50.11 2A53D804:1 After-image journal 14 switch-over in progress (to 15)
06:27:51.26 2A53D804:1 After-image journal switch-over complete

06:28:53.44 2A47061D:1 AlJ backup operation started

06:28:59.00 2A53D804:1 Automatic backup utility cannot be invoked for TCS3

ABS AlJ backup

06:30:29.27 2A53D804:1 After-image journal 15 switch-over in progress (to 16)
06:30:30.41 2A53D804:1 After-image journal switch-over complete (missed 2)

06:31:40.23 2A53DE21:1 AlJ backup operation started

06:31:54.56 2A53D804:1 Automatic backup utility cannot be invoked for TCS4

ABS AlJ backup

06:32:20.88 2A53DE21:1 AlJ backup operation completed

06:34:17.52 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS1.AlJ;1"
06:36:56.55 2A51E222:1 AlJ backup operation started

06:37:30.46 2A51E222:1 AlJ backup operation completed

06:37:44.74 2A53D804:1 Replication server stalled waiting for MSN 5700 (AlJ

17:12526)

06:37:44.74 2A526A05:1 Replication server stalled waiting for MSN 5700 (AlJ

17:12526)

06:41:38.39 2A53D34B:1 After-image journal 17 switch-over in progress (to 18)
06:42:13.87 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS2.AlJ;1"
06:42:15.49 2A53D34B:1 After-image journal switch-over complete (missed 2)

06:42:19.96 2A53D34B:1 After-image journal 18 switch-over in progress (to 19)
06:42:23.31 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS3.AlJ;1"
06:42:23.31 2A53D34B:1 After-image journal switch-over complete

06:42:46.27 2A4D3423:1 AlJ backup operation started

06:44:26.61 2A53D804:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:32.13 2A53D804:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:33.27 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]|TCS4.AlJ;1"
(missed 2)

06:44:34.45 2A53D804:1 After-image journal switch-over complete

06:44:34.45 2A532216:31 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:35.66 2A4F9A1A:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:35.66 2A461220:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:36.88 2A505617:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:36.88 2A517218:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:36.88 2A462C1F:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:40.29 2A46ECLC:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:41.45 2A4EBA19:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:44:43.71 2A4F361E:1 Automatic backup utility cannot be invoked for TCS2

ABS AlJ backup

06:46:10.60 2A53E224:1 AlJ backup operation started

06:46:20.53 2A53D804:1 Automatic backup utility cannot be invoked for TCS3

ABS AlJ backup

06:46:42.36 2A53E224:1 AlJ backup operation completed

06:47:11.60 2A53D804:1 Opening "KODA TEST:[R_ANDERSON.TCS_MASTER]TCS5.AlJ;1"
06:48:16.92 2A4D7825:1 AlJ backup operation started

06:48:47.36 2A4D7825:1 AlJ backup operation completed

06:49:40.60 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS1.AlJ;1"

Enhancements 6-11

(missed 2)

06:49:41.76 2A53D804:1 After-image journal switch-over complete

06:52:45.64 2A53D34B:1 After-image journal 22 switch-over in progress (to 23)
06:52:50.04 2A53D804:1 Opening "KODA_TEST:[R_ANDERSON.TCS_MASTER]|TCS2.AlJ;1"
06:52:50.04 2A53D34B:1 After-image journal switch-over complete

06:53:49.82 2A474E26:1 AlJ backup operation started

06:54:29.37 2A53D804:1 Automatic backup utility cannot be invoked for TCS1
ABS AlJ backup

06:55:14.93 2A53D804:1 Automatic backup utility cannot be invoked for TCS1
ABS AlJ backup

06:55:29.91 2A53D804:1 Automatic backup utility cannot be invoked for TCS1
ABS AlJ backup

The following is an example of the /OPCOM_LOG qualifier log file contents:

Oracle Rdb X7.1-00 Performance Monitor OPCOM Log

Database KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;2

OPCOM Log created 4-JUN-1999 14:52:16.81

14:52:26.87 2A506125:1 After-image journal 33 switch-over in progress (to 34)
14:52:28.44 2A506125:1 After-image journal switch-over complete

14:53:40.79 2A506125:1 After-image journal 34 switch-over in progress (to 35)
14:53:42.22 2A506125:1 After-image journal switch-over complete

15:03:21.67 2A506125:1 After-image journal 36 switch-over in progress (to 37)
15:03:23.16 2A506125:1 After-image journal switch-over complete

15:03:24.82 2A459220:1 AlJ backup operation started

15:03:27.82 2A459220:1 AlJ backup operation completed

When recording OPCOM messages, it is possible to occassionally miss a few
messages for a specific process. When this occurs, the message “n missed” will be
displayed in the log file.

It is possible to record specific operator classes of OPCOM messages if you specify
the /OPTION=VERBOSE qualifier. This qualifier records only those messages
that can be received by the process executing the RMU/SHOW Statistic utility.
For example, if the process is enabled to receive operator class CENTRAL,

then specifying /OPCOM_LOG=opcom.log/OPTION=VERBOSE will record

all CENTRAL operator messages. Conversely, specifying only the /OPCOM _
LOG=opcom.log qualifier will record all database-specific OPCOM messages
generated from this node.

The operator-specific log file output format is different from the database-specific
contents, because the output is being captured directly from OpenVMS. The
following is an example of the operator-specific log file contents for the CLUSTER
and CENTRAL operator classes:

6-12 Enhancements

Oracle Rdb X7.1-00 Performance Monitor OPCOM Log

Database KODA_TEST:[R_ANDERSON.TCS_MASTER]|TCS.RDB;2

OPCOM Log created 11-JUN-1999 10:52:07.53

11-JUN-1999 10:52:23.85) Message from user RDBVMS on ALPHA4 Oracle Rdb
X8.0-00 Event Notification for Database _111DUA368:[BBENTON.TEST]
MF_PERSONNEL.RDB;1 AlJ Log Server terminated

11-JUN-1999 10:52:25.49) Message from user RDBVMS on ALPHA4 Oracle Rdb
X8.0-00 Event Notification for Database _111DUA368:[BBENTON.TEST]
MF_PERSONNEL.RDB;1 ~ AlJ Log Roll-Forward Server started

11-JUN-1999 10:52:26.06) Message from user RDBVMS on ALPHA4 Oracle Rdb
X8.0-00 Event Notification for Database _111DUA368:[BBENTON.TEST]
MF_PERSONNEL.RDB;1 AlJ Log Roll-Forward Server failed

11-JUN-1999 10:54:16.05) Message from user INTERnet on ALPHA4 TELNET Login
Request from Remote Host: 138.2.136.180 Port: 1252

11-JUN-1999 10:54:16.36) Message from user RDBVMS on ALPHA4 Oracle Rdb
X8.0-00 Event Notification for Database _111DUA368:[BBENTON.TEST]
MF_PERSONNEL.RDB;1 AlJ Log Catch-Up Server terminated

6.2.6 New Restricted_Access Qualifier for RMU/LOAD

RMU Load now supports the Restricted_Access qualifier when attaching to an
Oracle Rdb database. This option allows a single process to load data and enables
some optimizations available only when Restricted Access is in use.

If you are loading a table from an RMU Unload file which contains LIST OF
BYTE VARYING data then the Restricted_Access qualifier will reserve the
LIST areas for exclusive access. This reduces the virtual memory used by long
transactions in RMU Load and also eliminates 1/0 to the snapshot files for the
LIST storage areas.

The Restricted_Access and Parallel qualifiers are mutually exclusive and may not
both be specified on the RMU Load command line, or within a plan file. While
RMU Load is running with this option enabled, no other user may attach to the
database. The default is Norestricted_Access.

6.2.7 RDO EDT Editor on OpenVMS Alpha Now Available

Previously, on OpenVMS Alpha, the RDO editor was restricted to the TPU editor.
The EDT editor was not available via the RDO$EDIT logical name.

This problem has been corrected. The RDOS$EDIT logical name controls the editor
selection between EDT and TPU as it does on OpenVMS VAX.

6.2.8 New Options Added to SQL EXTRACT Function

In Oracle Rdb7 Release 7.0.3.1, the SQL EXTRACT function is being enhanced
with two new options: WEEK_NUMBER and YEAR_WEEK. These options return
the week number as defined by the International Standard 1SO 8601:1988 "Data
elements and interchange formats - Information interchange - Representation of
dates and times".

Section 3.17 of this standard defines a week as "week, calendar: A seven day
period within a calendar year, starting on a Monday and identified by its ordinal
number within a year; the first calendar week of the year is the one that includes
the first Thursday of that year. In the Gregorian calendar, this is equivalent to
the week which includes 4 January."

WEEK_NUMBER is a number between 1 and 53 representing the week of the
year (most years only have 52 weeks). A week starts on Monday and has most of
its days falling in a specific year.

Enhancements 6-13

YEAR_WEEK is a variation of the WEEK_NUMBER that includes the year
(including the century) in which the week logically falls. The values range from
185901 through 999952 (higher values are possible if dates are constructed with
a year beyond 9999). The last two digits of the value are identical to the value
returned by the WEEK_NUMBER option.

The following example shows the new function results:

SQL> select dt,

cont> extract (week_number from dt),
cont> extract (year week from dt)
cont> from week_sample

cont> order by dt;

DT

1859-01-07 1 185901
1999-01-01 53 199853
1999-01-04 1 199901
1999-01-10 1 199901
1999-12-31 52 199952
2000-01-01 52 199952
2000-01-03 1 200001
2000-02-28 9 200009
2000-02-29 9 200009
2000-03-01 9 200009
9999-12-31 52 999952

11 rows selected
Usage Notes

= The source date/time expression must include a date component; DATE
(ANSI), TIMESTAMP, or DATE (VMS). Attempts to use other data types will
result in an error. For example:

SQL> select extract (week_number from current_time) from ...;
%RDB-E-CONVERT_ERROR, invalid or unsupported data conversion
-RDMS-E-EXT_WEEKDAY_TS, invalid type for EXTRACT - must be DATE or TIMESTAMP

< Note that neither WEEK_NUMBER nor YEAR_WEEK can be calculated for
the year 1858, or the first few days of 1859 because the Oracle Rdb date only
supports part of the year 1858, and therefore the calculation cannot be made.
For example:

SQL> select extract (week_number from date’1859-1-1) from ...;
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-IVTIME, invalid date or time

= Note that the year in which the week falls may not be the same as the
extracted year from the date/time value because days at the start of a
calendar year may logically fall in the last week of the previous year, and
days at the end of a calendar year may logically fall in the first week of the
following year.

6-14 Enhancements

v

LogMiner for Rdb

Oracle Rdb after-image journal (.aij) files contain a wealth of useful information
about the history of transactions in a database. After-image journal files

contain all of the data needed to perform database recovery. These files record
every change made to data and metadata in the database. The LogMiner for

Rdb feature provides an interface to the data record contents of Oracle Rdb
after-image journal files. Data records that are added, updated, or deleted by
committed transactions may be extracted (unloaded) from the .aij files in a format
suitable for subsequent loading into another database or for use by user-written
application programs.

Oracle Rdb after-image journaling protects the integrity of your data by
recording all changes made by committed transactions to a database in a
sequential log or journal file. Oracle Corporation recommends that you enable
after-image journaling to record your database transaction activity between full
backup operations as part of your database restore and recovery strategy. The
after-image journal file is also used to enable several database performance
enhancements (such as the fast commit, row cache, and hot standby features).

See the Oracle Rdb7 Guide to Database Maintenance for more information about
setting up after-image journaling.

To use LogMiner for Rdb, follow these steps:

1. Enable the database for LogMiner operation using the RMU Set Logminer
command. See RMU Set Logminer Command for additional information.

2. Back up the after-image journal file using the Quiet_Point qualifier to the
RMU Backup command.

3. Extract changed records using the RMU Unload After_Journal command. See
RMU Unload After_Journal Command for additional information.

LogMiner for Rdb 7-1

RMU Set Logminer Command

RMU Set Logminer Command

Format

Description

Allows you to change the LogMiner state of a database.

RMU/Set Logminer root-file-spec

Command Qualifiers Defaults

[Disable See description

/Enable See description
/[No]Log Current DCL verify value

Use this command to enable or disable LogMiner operations on an Oracle Rdb
database. When LogMiner is enabled, the Oracle Rdb database software writes
additional information to the after-image journal file when records are added,
modified, and deleted from the database. This information is used during the
unload operation.

Command Parameters

root-file-spec
The root file specification of the database. The default file extension is .rdb.

Command Qualifiers

Usage Notes

Disable

Specifies that LogMiner operations are to be disabled for the database. When
LogMiner is disabled, the Oracle Rdb software does not journal information
required for LogMiner operations. When LogMiner is disabled for a database, the
RMU Unload After_Journal command is not functional on that database.

Enable

Specifies that LogMiner operations are to be enabled for the database. When
LogMiner is enabled, the Oracle Rdb database software logs additional
information to the after-image journal file. This information allows LogMiner to
extract records. The database must already have after-image journaling enabled.

Log

Nolog

Specifies that the setting of the LogMiner state for the database be reported
to SYS$OUTPUT. The default is the setting of the DCL VERIFY flag, which is
controlled by the DCL SET VERIFY command.

= To use the RMU Set Logminer command, you must have the RMU$BACKUP,
RMUS$RESTORE, or RMUSALTER privilege in the root file access control list
(ACL) for the database or the OpenVMS SYSPRV or BYPASS privilege.

7-2 LogMiner for Rdb

RMU Set Logminer Command

e The RMU Set Logminer command requires offline access to the database. The
database must be closed and no other users may be accessing the database.

= Execute a full database backup operation after issuing an RMU Set Logminer
command that displays the RMU-W-DOFULLBCK warning message.
Immediately after enabling LogMiner, you should perform a database
after-image journal backup using the RMU Backup After_Journal command.

Examples
Example 1
The following example enables a database for LogMiner for Rdb operation.
$ RMU /SET LOGMINER /ENABLE OLTPDB.RDB

LogMiner for Rdb 7-3

RMU Unload After_Journal Command

RMU Unload After _Journal Command

Allows you to extract added, modified, and deleted record contents from
committed transactions from specified tables in one or more after-image journal

files.

Format

RMU/Unload/After_Journal root-file-spec aij-file-name

Command Qualifiers

IBefore=date-time
[Extend_Size=integer
/10_Buffers=integer
/[No]Log
[Options=File=file-spec
[Output=file-spec
ISelect=selection-type
[Since=date-time
ISort_Workfiles=integer
[Statistics_Interval=integer
[Table=(Name=table-name, [table-options ...])
/[No]Trace

Description

Defaults

None
[Extend_Size=1000
/10_Buffers=2

Current DCL verify value
See description
[Output=SYS$OUTPUT
ISelect=Commit_Transaction
None

[/Sort_Workfiles=2

See description

See description
INotrace

The RMU Unload After_Journal command translates the binary data record
contents of an after-image journal (.aij) file into an output file. Data records
for the specified tables for committed transactions are extracted to an output
stream (file, device, or application callback) in the order that the transactions
were committed.

To use the RMU Unload After_Journal command, you must have first enabled
the database for LogMiner extraction. Use the RMU Set Logminer command
to enable the LogMiner for Rdb feature for the database. See the RMU Set
Logminer Command for more information.

Data records extracted from the .aij file are those records that transactions added,
modified, or deleted in base database tables. Index nodes, database metadata,
segmented strings (BLOB), views, COMPUTED BY columns, system records, and
temporary tables cannot be unloaded from after-image journal files.

Only the final content of a record for each transaction is extracted. Multiple
changes to a single record within a transaction are condensed so that only the
last revision of the record appears in the output stream. It is not possible to
determine which columns were changed in a data record directly from the after-
image journal file. The record itself would have to be compared to the content of
a previous record in order to determine which columns were changed.

The database used to create the after-image journal files being extracted must
be available during the RMU Unload After_Journal command execution. The
database is used to obtain metadata information (such as table names, column
counts, record version, and record compression) needed to extract data records
from the .aij file. The database may be accessed either locally (on the same
computer system) or remotely (over a network connection). The database is used

7-4 LogMiner for Rdb

RMU Unload After_Journal Command

only as a metadata reference. The database is read solely to load the metadata
and is then detached.

The after-image journal file or files are processed sequentially, and all specified
tables are extracted in one pass through the after-image journal file.

As each transaction commit record is processed, all modified and deleted records
for the specified tables are sorted to remove duplicates and then the modified and
deleted records are written to the output streams. Transactions that were rolled
back are discarded. Data records for tables not being extracted are discarded.
The actual order of output records within a transaction is not predictable.

In the extracted output, records that were modified or added are returned as
being modified. It is not possible to distinguish between inserted and updated
records in the output stream. Deleted (erased) records are returned as being
deleted. A transaction that modifies and deletes a record generates only a deleted
record. A transaction that adds a new record to the database and then deletes it
within the same transaction generates only a deleted record.

LogMiner signals that a row has been deleted by placing a D in the RDB$LM_
ACTION field and then recording the contents of the row at the instant before
the delete operation in the user fields of the output record. If a row was modified
several times within a transaction before being deleted, the output record will
contain only the delete indicator and the results of the last modify operation.

If a row is inserted and deleted in the same transaction, only the delete record
appears in the output.

Records from multiple tables may be output to the same or to different
destination streams. Possible output destination streams include the following:

= File
e OpenVMS Mailbox
= OpenVMS Pipe

« Direct callback to an application through a run-time activated sharable image

Command Parameters

root-file-spec
The root file specification of the database for the after-image journal file from
which tables will be unloaded. The default file extension is .rdb.

The database must be the same database that was used to create the after-image
journal files. The database is required so that the table metadata (information
about data) is available to the RMU Unload After_Journal command. In
particular, the names and relation identification of valid tables within the
database is required along with the number of columns in the table and the
compression information for the table in various storage areas.

The process attaches to the database briefly at the beginning of the extraction
operation in order to read the metadata. Once the metadata has been read, the
process disconnects from the database for the remainder of the operation.

aij-file-name

One or more input after-image journal backup files to be used as the source of
the extraction operation. Multiple journal files can be extracted by specifying
a comma-separated list of file specifications. OpenVMS wildcard specifications
(using the * and % characters) are supported to extract a group of files. A

LogMiner for Rdb 7-5

RMU Unload After_Journal Command

file specification beginning with the at (@) character refers to an options file
containing a list of after-image journal files (rather than the file specification of
an after-image journal itself). If you use the at (@) character syntax, you must
enclose the at (@) character and the file name in double quotation marks (for
example, specify aij-file-name as "@files.opt”). The default file extension is .aij.

Command Qualifiers

Before=date-time

Specifies the ending time and date for transactions to be extracted. Based on
the Select qualifier, transactions that committed or started prior to the specified
Before date are selected. Information changed due to transactions that committed
or started after the Before date is not included in the output.

Extend_Size=integer

Specifies the file allocation and extension quantity for the output data files. The
default extension size is 1000 blocks. Using a larger value can help reduce output
file fragmentation and can improve performance when large amounts of data are
extracted.

IO_Buffers=integer

Specifies the number of 1/0 buffers used for the output data files. The default
number of buffers is 2. The default value is generally adequate. With sufficiently
fast 1/0 subsystem hardware, additional buffers may improve performance.
However, using a larger number of buffers will also consume additional virtual
memory and process working set.

Log

Nolog

Specifies that the extraction of the .aij file be reported to SYS$SOUTPUT or the
destination specified with the Output qualifier. When activity is logged, the
output from the Log qualifier provides the number of transactions committed
and rolled back. The default is the setting of the DCL VERIFY flag, which is
controlled by the DCL SET VERIFY command.

Options=File=file-spec

An options file contains a list of tables and output destinations. The options file
may be used instead of, or along with, the Table qualifier to specify the tables
to be extracted. Each line of the options file must specify a table name prefixed
with "Table=". After the table name, the output destination is specified as either
"Output=" or "Callback_Module=" and "Callback Routine=".

TABLE=thiname,CALLBACK_MODULE=image,CALLBACK_ROUTINE=routine
TABLE=thlname,OUTPUT=outfile

The Record_Definition=file-spec option from the Table qualifier can be used to
create a record definition file for the output data. The default file type is .rrd and
the default file name is the name of the table.

The Table_Definition=file-spec option from the Table qualifier can be used to
create a file with an SQL statement to create a table to hold transaction data.
The default file type is .sql and the default file name is the name of the table.

Each option in the Options=File qualifier must be fully specified (no abbreviations
are allowed) and followed with an equal sign (=) and a value string. The value
string must be followed by a comma or the end of a line. Continuation lines
may be specified by using a trailing dash. Comments are indicated by using the
exclamation point (!) character.

7-6 LogMiner for Rdb

RMU Unload After_Journal Command

Output=file-spec

Redirects the log and trace output (selected with the Log and Trace qualifiers) to
the named file. If this qualifier is not specified, the output generated by the Log
and Trace qualifiers, which can be voluminous, is displayed to SYS$OUTPUT.

Select=selection-type
Specifies if the date and time of the Before and Since qualifiers refers to
transaction start time or transaction commit time.

The following options can be specified as the selection-type of the Select qualifier:

e Commit_Transaction

Specifies that the Before and Since qualifiers select transactions based on the
time of the transaction commit.

e Start_Transaction

Specifies that the Before and Since qualifiers select transactions based on the
time of the transaction start.

The default for date selection is Commit_Transaction.

Since=date-time

Specifies the starting time for transactions to be extracted. Based on the Select
qualifier, transactions that committed on or after the specified Since date are
selected. Information from transactions that committed or started prior to the
specified Since date is not included in the output.

Sort_Workfiles=integer

Specifies the number of sort work files. The default number of sort work files is
2. When large transactions are being extracted, using additional sort work files
may improve performance by distributing 1/0 loads over multiple disk devices.
Use the SORTWORKnN (where n is a number from 0 to 9) logical names to specify
the location of the sort work files.

Statistics_Interval=integer
Specifies that statistics are to be displayed at regular intervals so that you can
evaluate the progress of the unload operation.

The displayed statistics include:

= Elapsed time

e CPU time
e Buffered I/O
e Direct 1/0

= Page faults
e Number of records unloaded for a table

If the Statistics_Interval qualifier is specified, the default interval is 60 seconds (1
minute). The minimum value is 1 second. If the unload operation completes
successfully before the first time interval has passed, you will receive an
informational message on the number of files unloaded. If the unload operation
is unsuccessful before the first time interval has passed, you will receive error
messages and statistics on the number of records unloaded.

At any time during the unload operation, you can press Ctrl/T to display the
current statistics.

LogMiner for Rdb 7-7

RMU Unload After_Journal Command

Table=(Name=table-name, table-options)

Specifies the name of a table to be unloaded and an output destination. The
table-name must be a table within the database. Views, indexes, and system
tables may not be unloaded from the after-image journal file.

The following table-options can be specified with the Table qualifier:

Output=file-spec

If an Output file specification is present, unloaded records are written to the
specified location.

Callback_Module=image-name, Callback_Routine=routine-name

LogMiner for Rdb uses the OpenVMS library routine LIB$FIND_IMAGE_
SYMBOL to activate the specified sharable image and locate the specified
entry point routine name. This routine will be called with each extracted
record. A final call is made with the "Action” field set to "E" to indicate the
end of the output stream. These options must be specified together.

Record_Definition=file-spec

The Record_Definition=file-spec option can be used to create a record
definition .rrd file for the output data. The default file type is .rrd and
the default file name is the name of the table.

Table_Definition=file-spec

The Table_Definition=file-spec option can be used to create a file with an SQL
statement to create a table to hold transaction data. The default file type is
.sql and the default file name is the name of the table.

Note that, unlike other qualifiers where only the final occurrence of the qualifier
is used by an application, the Table qualifier may be specified multiple times for
the RMU Unload After_Journal command. Each occurrence of the Table qualifier
must specify a different table.

Trace

NoTrace

Specifies that the unloading of the .aij file be traced. The default is Notrace.
When the unload operation is traced, the output from the Trace qualifier identifies
transactions in the .aij file by transaction sequence numbers (TSNs) and describes
what Oracle RMU did with each transaction during the unload process. You can
specify the Log qualifier with the Trace qualifier.

Usage Notes

To use the RMU Unload After_Journal command for a database, you must
have the RMU$DUMP privilege in the root file access control list (ACL) for
the database or the OpenVMS SYSPRV or BYPASS privilege.

You can only extract changed records from a backup copy of the after-image
journal files. You create this file using the RMU Backup After_Journal
command. You also cannot extract from an .aij file that has been optimized
with the RMU Optimize After_Journal command. And, you cannot extract an
active, primary .aij file.

7-8 LogMiner for Rdb

RMU Unload After_Journal Command

As part of the extraction process, Oracle RMU sorts extracted journal records
to remove duplicate record updates. Because .aij file extraction uses the
OpenVMS Sort/Merge Utility (SORT/MERGE) to sort journal records, you
can improve the efficiency of the sort operation by changing the number and
location of the work files used by SORT/MERGE. The number of work files is
controlled by the Sort_Workfiles qualifier of the RMU Unload After_Journal
command. The allowed values are 1 through 10 inclusive, with a default
value of 2. The location of these work files can be specified with device
specifications, using the SORTWORKRnN logical hame (where n is a number
from 0 to 9). See the OpenVMS documentation set for more information on
using SORT/MERGE. See the Oracle Rdb7 Guide to Database Performance
and Tuning for more information on using these Oracle Rdb logical names.

You can redirect the .aij rollforward temporary work files to a different disk
and directory location than the current default directory by assigning a
different directory to the RDM$BIND_AlJ_WORK_FILE logical name in the
LNMS$FILE_DEV name table. This can help to alleviate 1/0O bottlenecks that
might occur on the default disk.

The RMU Unload After_Journal command can read either a backed up .aij
file on disk or a backed up .aij file on tape that is in the Old_File format.

One or more tables can be selected to be extracted from an after-image
journal file. All tables specified by the Table qualifier and all those specified
in the Options file are combined to produce a single list of output streams. A
particular table may be specified only once. Multiple tables may be written
to the same output destination by specifying the exact same output stream
specification (that is, by using an identical file specification).

At the completion of the unload operation, RMU creates a number of DCL
symbols that contain information about the extraction statistics. For each
table extracted, RMU creates the following symbols:

— RMUSUNLOAD_DELETE_COUNT_tablename
— RMUSUNLOAD_MODIFY_COUNT_tablename

- RMUSUNLOAD_OUTPUT tablename

The tablename component of the symbol is the name of the table. When
multiple tables are extracted in one operation, multiple sets of symbols are
created. The value for the symbols RMU$SUNLOAD_MODIFY_COUNT_
tablename and RMUSUNLOAD_DELETE_COUNT _tablename is a character
string containing the number of records returned for modified and deleted
rows. The RMUSUNLOAD_OUTPUT_tablename symbol is a character string
indicating the full file specification for the output destination, or the sharable
image name and routine name when the output destination is an application
callback routine.

When using the Callback_Module and Callback_Routine option, you must
supply a sharable image with a universal symbol or entry point for LogMiner
to be able to call your routine. See the OpenVMS manual discussing the
Linker utility for more information about creating sharable images.

Your Callback_Routine will be called once for each output record. The
Callback_Routine will be passed two parameters:

— The length of the output record, by longword value

— A pointer to the record buffer

LogMiner for Rdb 7-9

RMU Unload After_Journal Command

Examples

The record buffer is a data structure of the same fields and lengths written to
an output destination.

= Because the Oracle RMU image is a known image, your sharable image
must also be a known image. Use the OpenVMS Install Utility to make your
sharable image known. You may wish to establish an exit handler to perform
any required cleanup processing at the end of the extraction.

Example 1

The following example unloads the EMPLOYEES table from the .aij backup file
MFP.AIJBCK.

RMU /UNLOAD /AFTER_JOURNAL MFP.RDB MFP.AIJBCK -
ITABLE = (NAME = EMPLOYEES, OUTPUT = EMPLOYEES.DAT)

Example 2

The following example simultaneously unloads the SALES, STOCK, SHIPPING,
and ORDERS tables from the .aij backup files MFS.AIJBCK_1-JUL-1999 through
MFS.AIJBCK_3-JUL-1999. Note that the input .aij backup files are processed
sequentially in the order specified.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
MFS.AIJBCK_1-JUL-1999, -
MFS.AIJBCK_2-JUL-1999, -
MFS.AIJBCK_3-JUL-1999 -
ITABLE = (NAME = SALES, OUTPUT = SALES.DAT) -

ITABLE = (NAME = STOCK, OUTPUT = STOCK.DAT) -

ITABLE = (NAME = SHIPPING, OUTPUT = SHIPPING.DAT) -

[TABLE = (NAME = ORDER, OUTPUT = ORDER.DAT)
Example 3

To unload data based on a time range, use the Before and Since qualifiers. The
following example extracts changes made to the PLANETS table by transactions
that committed between 1-SEP-1999 at 14:30 and 3-SEP-1999 at 16:00.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB MFS.AIJBCK -
ITABLE = (NAME = PLANETS, OUTPUT = PLANETS.DAT) -
[BEFORE = "3-SEP-1999 16:00:00.00" -
ISINCE = "1-SEP-1999 14:30:00.00"

Example 4

The following example simultaneously unloads the SALES and STOCK tables
from all .aij backup files that match the wildcard specification MFS.AIJBCK _
1999-07-*. The input .aij backup files are processed sequentially in the order
returned from the file system.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
MFS.AIJBCK_1999-07-* -
ITABLE = (NAME = SALES, OUTPUT = SALES.DAT) -
ITABLE = (NAME = STOCK, OUTPUT = STOCK.DAT)

Example 5

The following example unloads the TICKER table from the .aij backup files listed
in the file called AlJ_BACKUP_FILES.DAT (note the double quotation marks
surrounding the at (@) character and the file specification). The input .aij backup
files are processed sequentially. The output records are written to the mailbox

7-10 LogMiner for Rdb

RMU Unload After_Journal Command

device called MBA127:. A separate program is already running on the system,
and it reads and processes the data written to the mailbox.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
"@AIJ_BACKUP_FILES.DAT" -
ITABLE = (NAME = TICKER, OUTPUT = MBA127:)

Example 6

To move transaction data from one database into a change table in another
database, you can use the RMU Unload After_Journal command followed by
RMU Load commands. A record definition (.rrd) file would need to be created for
each table being loaded into the target database. The record definition files can
be created by specifying the Record_Definition option on the Table qualifier.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -
ITABLE = (NAME = MYTBL, -
OUTPUT = MYTBL.DAT, -
RECORD_DEFINITION=MYLOGTBL) -
ITABLE = (NAME = SALE, -
OUTPUT=SALE.DAT, -
RECORD_DEFINITION=SALELOGTBL)

$ RMU /LOAD WAREHOUSE.RDB MYLOGTBL MYTBL.DAT -
/RECORD_DEFINITION = FILE = MYLOGTBL.RRD

$ RMU /LOAD WAREHOUSE.RDB SALELOGTBL SALE.DAT -
/RECORD_DEFINITION = FILE = SALELOGTBL.RRD

Example 7

Instead of the Table qualifier, an Options file can be used to specify the table or
tables to be extracted, as shown in the following example.

$ TYPE TABLES.OPTIONS

TABLE=MYTBL, OUTPUT=MYTBL.DAT

TABLE=SALES, OUTPUT=SALES.DAT

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -
JOPTIONS = FILE = TABLES.OPTIONS

LogMiner for Rdb 7-11

7.1 Restrictions and Limitations with LogMiner for Rdb

The following restrictions exist for the LogMiner for Rdb feature:

Temporary tables cannot be extracted. Modifications to temporary tables are
not written to the after-image journal file and, therefore, are not available to
LogMiner for Rdb.

Optimized after-image journal files cannot be used as input to the LogMiner
for Rdb. Information needed by the RMU Unload After_Journal command is
removed by the optimization process.

Records removed from tables using the SQL TRUNCATE TABLE statement
are not extracted. The SQL TRUNCATE TABLE statement does not journal
each individual data record being removed from the database.

Records removed by dropping tables using the SQL DROP TABLE statement
are not extracted. The SQL DROP TABLE statement does not journal each
individual data record being removed from the database.

Tables that use the vertical record partitioning (VRP) feature cannot be
extracted using LogMiner for Rdb. LogMiner software currently does not
detect these tables. A future release of Oracle Rdb will detect and reject
access to vertically partitioned tables.

Segmented string data (BLOB) cannot be extracted using LogMiner for Rdb.
Because the segmented string data is related to the base table row by means
of a database key, there is no convenient way to determine what data to
extract. Additionally, the data type of an extracted column is changed from
LIST OF BYTE VARYING to BIGINT. This column contains the DBKEY of
the original BLOB data. Therefore, the contents of this column should be
considered unreliable.

COMPUTED BY columns in a table are not extracted. These columns are not
stored in the after-image journal file.

VARCHAR fields are not space padded in the output file. The VARCHAR data
type is extracted as a 2-byte count field and a fixed-length data field. The
2-byte count field indicates the number of valid characters in the fixed-length
data field. Any additional contents in the data field are unpredictable.

You cannot extract changes to a table when the table definition is changed
within an after-image journal file. Data definition language (DDL) changes to
a table are not allowed within an .aij file being extracted. All records in an
.aij file must be the current record version. If you are going to perform DDL
operations on tables that you wish to extract using the LogMiner for Rdb, you
should:

1. Back up your after-image journal files.
2. Extract the .aij files using the RMU Unload After_Journal command.
3. Make the DDL changes.

Do not use the OpenVMS Alpha High Performance Sort/Merge

utility (selected by defining the logical name SORTSHR to
SYS$SHARE:HYPERSORT) when using LogMiner for Rdb. HYPERSORT
supports only a subset of the library sort routines that LogMiner requires.
Make sure that the SORTSHR logical name is not defined to HYPERSORT.

7-12 LogMiner for Rdb

7.2 Information Returned by LogMiner for Rdb

LogMiner for Rdb appends several output fields to the data fields, creating an
output record. The output record contains fixed-length fields in a binary data
format (that is, integer fields are not converted to text strings). The data fields
correspond to the extracted table columns. This information may or may not
be required by all applications and readers of the data. There is currently no
available method to restrict or reorder the output fields.

Extracted data field contents are the fields that are actually stored in the Oracle
Rdb database. COMPUTED BY fields are not extracted because they are not
stored in the database or in the after-image journal file. Segmented string
(BLOB) contents are not extracted.

Table 7-1 describes the output fields and data types of an output record.

Table 7-1 Output Fields
Field Name Data Type Description

ACTION CHAR (1 byte) Indicates record state. "M" indicates an
insert or modify action. "D" indicates a
delete action. "E" indicates stream end-
of-file (EOF) when a callback routine is

being used.

RELATION_NAME CHAR (31 bytes) Table name. Space padded to 31
characters.

RECORD_TYPE LONGWORD INTEGER The Oracle Rdb internal relation
identifier.

DATA LEN WORD INTEGER Length, in bytes, of the data record
content.

NBV_LEN WORD INTEGER Length, in bits, of the null bit vector
content.

DBK DBKEY (64-bit Records logical database key. The

QUADWORD) database key is a 3-field structure

containing a 16-bit line number, a 32-bit
page number and a 16-bit area number.

START_TAD DATE VMS Date/time of the start of the transaction.

COMMIT_TAD DATE VMS Date/time of the commitment of the
transaction.

TSN QUADWORD INTEGER Transaction sequence number of the
transaction that performed the record
operation.

RECORD_ WORD INTEGER Record version.

VERSION

Record Data Varies Actual data record field contents.

(continued on next page)

LogMiner for Rdb 7-13

Table 7-1 (Cont.) Output Fields

Field Name Data Type Description
Record NBV BIT VECTOR (array of Null bit vector. There is one bit for each
bits) field in the data record. If a bit value is

1, the corresponding field is NULL; if a
bit value is 0, the corresponding field is
not NULL and contains an actual data
value. The null bit vector begins on a
byte boundary. Any extra bits in the
final byte of the vector after the final
null bit are unused.

7.3 Record Definition Prefix for LogMiner Fields

An RMS file containing the record structure definition for the output file can

be used as an input file to the RMU Load command if extracted data is to be
loaded into an Oracle Rdb database. The record description uses the CDO record
and field definition format (this is the format used by the RMU Load and RMU
Unload commands when the Record_Definition qualifier is used). The default file
extension is .rrd.

The record definition for the fields that LogMiner for Rdb writes to the output

is shown in the following example. These fields can be manually appended to a
record definition file for the actual user data fields being unloaded. Alternately,
the Record_Definition qualifier can be used with the Table qualifier or within an
Options file to automatically create the record definition file. This can be used to
load a transaction table within a database. A transaction table is the output
that LogMiner for Rdb writes to a table consisting of sequential transactions
performed in a database.

DEFINE FIELD RDB$LM_ACTION DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
DEFINE FIELD RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RDB$LM_DATA_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_NBV_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_DBK DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_START_TAD DATETYPE IS DATE

DEFINE FIELD RDB$LM_COMMIT_TAD DATATYPE IS DATE

DEFINE FIELD RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.

DEFINE FIELD RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.

7.4 SQL Table Definition Prefix for LogMiner Fields

The SQL record definition for the fields that LogMiner for Rdb writes to the
output is shown in the following example. These fields can be manually appended
to the table creation command for the actual user data fields being unloaded.
Alternately, the Table_Definition qualifier can be used with the Table qualifier or
within an Options file to automatically create the SQL definition file. This can be
used to create a transaction table of changed data.

7-14 LogMiner for Rdb

SQL> create table MYLOGTABLE (
cont> RDB$LM_ACTION

cont> RDB$LM_RELATION_NAME
cont> RDB$LM_RECORD_TYPE
cont> RDB$LM_DATA_LEN

cont> RDB$SLM_NBV_LEN

cont> RDB$LM_DBK

cont> RDB$LM_START_TAD

cont> RDB$LM_COMMIT_TAD
cont> RDB$LM_TSN

cont> RDB$LM_RECORD_VERSION = SMALLINT ...);

7.5 Segmented String Columns

Segmented string (also called BLOB or LIST OF BYTE VARYING) column data
is not extracted. However, the field definition itself is extracted as a quadword
integer representing the database key of the original segmented string data. In
generated table definition or record definition files, a comment is added indicating
that the segmented string data type is not supported by LogMiner for Rdb.

7.6 Additional Examples
The following sections contain additional examples.

7.6.1 Example .rrd for the EMPLOYEES Table

The following example is the transaction table record definition (.rrd) file for the
EMPLOYEES table from the PERSONNEL database:

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

RDB$LM_ACTION

CHAR,
CHAR (31),

INTEGER,
SMALLINT,
SMALLINT,
BIGINT,

DATE VMS,
DATE VMS,
BIGINT,

DATATYPE IS TEXT SIZE IS 1.

RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.

RDB$LM_DATA_LEN
RDB$LM_NBV_LEN
RDB$LM_DBK

DATATYPE IS SIGNED WORD.
DATATYPE IS SIGNED WORD.
DATATYPE IS SIGNED QUADWORD.

RDB$LM_START_TAD DATATYPE IS DATE.
RDB$LM_COMMIT_TAD DATATYPE IS DATE.

RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.
RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.
EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
LAST_NAME DATATYPE IS TEXT SIZE IS 14.
FIRST_NAME DATATYPE IS TEXT SIZE IS 10.
MIDDLE_INITIAL DATATYPE IS TEXT SIZE IS 1.

ADDRESS_DATA 1
ADDRESS_DATA 2
CITY

STATE
POSTAL_CODE
SEX

BIRTHDAY
STATUS_CODE

DATATYPE IS TEXT SIZE IS 25.

DATATYPE IS TEXT SIZE IS 20.
DATATYPE IS TEXT SIZE IS 20.
DATATYPE IS TEXT SIZE IS 2.

DATATYPE IS TEXT SIZE IS 5.
DATATYPE IS TEXT SIZE IS 1.
DATATYPE IS DATE.

DATATYPE IS TEXT SIZE IS 1.

LogMiner for Rdb 7-15

DEFINE RECORD EMPLOYEES.
RDB$LM_ACTION .
RDBSLM_RELATION_NAME .
RDB$LM_RECORD_TYPE .
RDBSLM_DATA_LEN .
RDBSLM_NBV_LEN .
RDBSLM DBK .
RDBSLM_START_TAD .
RDBS$LM_COMMIT_TAD .
RDBSLM_TSN .
RDB$LM_RECORD_VERSION .
EMPLOYEE_ID .
LAST_NAME .

FIRST_NAME .
MIDDLE_INITIAL .
ADDRESS_DATA 1 .
ADDRESS_DATA 2 .
CITY .
STATE .
POSTAL_CODE .
SEX .
BIRTHDAY .
STATUS_CODE .
END EMPLOYEES RECORD.

7.6.2 Callback Module for the EMPLOYEES Table

The following C source code segment demonstrates the structure of a module that
can be used as a callback module and routine to process employee transaction
information from LogMiner for Rdb. The routine, Employees_Callback, would be
called by LogMiner for Rdb for each extracted record. Note that the final time
the callback routine is called, the RDB$LM_ACTION field will be set to "E" to
indicate the end of the output stream.

#include <stdio>

typedef unsigned char date_type[8];
typedef unsigned char dbkey_type[8];
typedef unsigned char tsn_typel[8];

typedef struct {

unsigned char rdb$Im_action;
char rdb$im_relation_name[31];
unsigned int rdb$im_record_type;

unsigned short int rdb$im_data_len;
unsigned short int rdb$im_nbv_len;

dbkey_type rdb$im_dbk;
date_type rdb$Im_start_tad;
date_type rdo$im_commit_tad;
tsn_type rdb$Im_tsn;

unsigned short int rdb$im_record_version;
char employee_id[5];
char last_name[14];

char first_name[10];

char middle_initial[1];
char address_data_1[25];
char address_data_2[20];
char city[20];

char state[2];

char postal_code[5];

char sex[1];

date_type birthday;

char status_code[1];

} transaction_data;

7-16 LogMiner for Rdb

void employees_callback (unsigned int data_len, transaction data data_buf)

return 3

Use the C compiler (either VAX C or DEC C) to compile this module. When
linking this module, the symbol EMPLOYEES_CALLBACK needs to be
externalized in the sharable image. Refer to the OpenVMS manual discussing
the Linker utility for more information about creating sharable images.

On OpenVMS Alpha systems, you can use a LINK command similar to the
following:

$ LINK /SHARABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYSS$INPUT: /OPTIONS
SYMBOL_VECTOR = (EMPLOYEES_CALLBACK = PROCEDURE)
<Ctrliz>

On OpenVMS VAX systems, you can use a LINK command similar to the
following:

$ LINK /SHARABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
UNIVERSAL = EMPLOYEES CALLBACK
<Ctrliz>

7.6.3 Using LogMiner and the RMU Load Command to Replicate Table Data

You can use triggers and a transaction table to construct a method to replicate
table data from one database to another using RMU Unload After_Journal and
RMU Load commands based on transactional changes to the source table. This
data replication method requires no programming. Instead, existing features of
Oracle Rdb can be combined to provide this functionality.

For this example, consider a simple customer information table called CUST with
a unique customer ID value, customer name, address, and postal code. Changes
to this table are to be moved from an OLTP database to a reporting database
system on a periodic (perhaps nightly) basis.

First, in the reporting database, a customer table of the same structure as the
OLTP customer table is created. In this example, this table is called RPT_CUST.
It contains the same fields as the OLTP customer table called CUST.

SQL> CREATE TABLE RPT_CUST

CUST_ID INTEGER,

CUST_NAME CHAR (50),
CUST_ADDRESS CHAR (50),
CUST_POSTAL_CODE INTEGER);

Next, a temporary table is created in the reporting database for the LogMiner
extracted transaction data from the CUST table. This temporary table definition
specifies ON COMMIT DELETE ROWS so that data in the temporary table is
deleted from memory at each transaction commit. A temporary table is used
because there is no need to journal changes to the table.

LogMiner for Rdb 7-17

SQL> CREATE GLOBAL TEMPORARY TABLE RDB_LM_RPT_CUST (
RDBS$LM_ACTION CHAR,
RDB$LM_RELATION_NAME CHAR (31),
RDB$LM_RECORD_TYPE INTEGER,

RDB$LM_DATA_LEN SMALLINT,
RDBSLM_NBV_LEN SMALLINT,
RDBS$LM_DBK BIGINT,
RDBSLM_START_TAD DATE VMS,
RDB$LM_COMMIT_TAD DATE VMS,
RDBSLM_TSN BIGINT,
RDBS$LM_RECORD_VERSION SMALLINT,
CUST_ID INTEGER,
CUST_NAME CHAR (50),
CUST_ADDRESS CHAR (50),
CUST_POSTAL_CODE INTEGER) ON COMMIT DELETE ROWS:

For data to be populated in the RPT_CUST table in the reporting database, a
trigger is created for the RDB_LM_RPT_CUST transaction table. This trigger

is used to insert, update, or delete rows in the RPT_CUST table based on the
transaction information from the OLTP database for the CUST table. The unique
CUST_ID field is used to determine if customer records are to be modified or
added.

SQL> CREATE TRIGGER RDB_LM_RPT_CUST_TRIG
cont> AFTER INSERT ON RDB_LM_RPT_CUST
cont>

cont> -- Modify an existing customer record

cont>

cont> WHEN (RDBSLM_ACTION = 'M" AND

cont> EXISTS (SELECT RPT_CUST.CUST ID FROM RPT_CUST

cont> WHERE RPT_CUST.CUST_ID = RDB_LM RPT_CUST.CUST ID))

cont> (UPDATE RPT_CUST SET

cont> RPT CUST.CUST _NAME = RDB_LM_RPT CUST.CUST NAME,

cont> RPT_CUST.CUST_ADDRESS = RDB_LM_RPT_CUST.CUST ADDRESS,

cont> RPT_CUST.CUST_POSTAL_CODE = RDB_LM_RPT CUST.CUST POSTAL_CODE
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)

cont> FOR EACH ROW

cont>

cont> -- Add a new customer record

cont>

cont> WHEN (RDBSLM_ACTION = "M’ AND NOT

cont> EXISTS (SELECT RPT_CUST.CUST ID FROM RPT_CUST

cont> WHERE RPT_CUST.CUST_ID = RDB_LM RPT_CUST.CUST_ID))
cont> (INSERT INTO RPT_CUST VALUES

cont> (RDB_LM_RPT_CUST.CUST_ID,

cont> RDB_LM_RPT_CUST.CUST NAME,

cont> RDB_LM_RPT_CUST.CUST_ADDRESS,

cont> RDB_LM_RPT_CUST.CUST_POSTAL_CODE))

cont> FOR EACH ROW

cont>

cont> -- Delete an existing customer record

cont>

cont> WHEN (RDB$LM_ACTION = 'D’)

cont> (DELETE FROM RPT_CUST

cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
cont> FOR EACH ROW;

Within the trigger, the action to take (for example, to add, update, or delete a
customer record) is based on the RDB$LM_ACTION field (which will be defined
as D or M) and the existence of the customer record in the reporting database.
For modifications, if the customer record does not exist, it is added; if it does
exist, it is updated. For a deletion on the OLTP database, the customer record is
deleted from the reporting database.

7-18 LogMiner for Rdb

The RMU Load command is used to read the output from LogMiner for Rdb and
load the data into the temporary table where each insert will result in the trigger
executing. The Commit_Every qualifier is used to avoid filling memory with the
customer records in the temporary table because as soon as the trigger executes,
the record in the temporary table is no longer needed.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB OLTP.AIJBCK -
[TABLE = (NAME = CUST,
OUTPUT = CUST.DAT,
RECORD_DEFINITION = RDB_LM_RPT_CUST.RRD)

$ RMU /LOAD REPORT_DATABASE.RDB RDB_LM_RPT_CUST CUST.DAT -
/RECORD_DEFINITION = FILE = RDB_LM_RPT_CUST.RRD -
[COMMIT_EVERY = 1000

7.6.4 Using LogMiner to Minimize Application Downtime for Maintenance

Lengthy offline application or database maintenance operations can pose a
significant problem in high-availability production environments. The LogMiner
for Rdb feature can help reduce the length of downtime to a matter of minutes.

If a back up of the database is used for maintenance operations, the application
can continue to be modified during lengthy maintenance operations. Once the
maintenance is complete, the application can be shut down, the production
system .aij file or files can be backed up, and LogMiner for Rdb can be used to
extract changes made to production tables since the database was backed up.
These changes can then be applied (using an application program or the trigger
technique previously described) to the new database. Once the new database has
been updated, the application can be restarted using the new database.

The sequence of events required would be similar to the following:
1. Perform a full online, quiet-point database backup of the production database.

2. Restore the backup to create a new database that will eventually become the
production database.

3. Perform maintenance operations on the new database. (Note that the
production system continues to run.)

4. Perform an online, quiet-point after-image journal backup of the production
database.

5. Use the RMU Unload After_Journal command to unload all database tables
into individual output files from the .aij backup file.

6. Using either the trigger technique or an application program, update the
tables in the new database with the changed data.

7. Shut down the production application and close the database.

8. Perform an offline, quiet-point after-image journal backup of the production
database.

9. Use the RMU Unload After_Journal command to unload all database tables
into individual output files from the .aij backup file.

10. Using either the trigger technique or an application program, update the
tables in the new database with the changed data.

11. Start an online, quiet-point backup of the new database.

12. Change logical names or the environment to specify the new database root file
as the production database.

LogMiner for Rdb 7-19

13. Restart the application on the new database.

Depending on the amount of application database activity, steps 4, 5, and 6 can be
repeated to limit the amount of data that needs to be applied (and the amount of
downtime required) during the final after-image journal backup and apply stage
in steps 8, 9, and 10.

7.6.5 Using an OpenVMS Pipe

You can use an OpenVMS pipe to pass data from the RMU Unload After_Journal
command to another application (for example, RMU Load). Do not use any
options (such as the Log or Verify qualifiers) that could cause LogMiner to send
extra output to the SYS$OUTPUT device, as that information would be part of
the input data source stream to the next pipeline segment.

You may find that the OpenVMS default size of the pipe is too small if the records
being extracted (including LogMiner fields) are larger than 256 bytes. If the pipe
is too small, increase the SYSGEN parameters MAXBUF and DEFMBXMXMSG,
and then reboot the system.

The following example uses LogMiner for Rdb to direct output to an OpenVMS
pipe device and uses RMU Load to read the pipe device as the input data record
stream. Using the pipeline allows parallel processing and also avoids the need for
an intermediate disk file. Note that you must have created the record definition
(.rrd) file prior to executing the command.

$ PIPE (RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB AIJL.AIJ -
ITABLE = (NAME = MYTBL, OUTPUT = SYS$OUTPUT:)) -
| (RMU /LOAD REPORTS.RDB MYLOGTBL SYS$PIPE: -
/RECORD_DEFINITION = FILE = MYLOGTBL.RRD)

7-20 LogMiner for Rdb

A

Implementing Row Cache

A.1 Overview

A.1.1 Introduction

Oracle Rdb uses buffers to temporarily store database pages during read and
update operations. When you create or modify a database, you can set up buffers
for database pages in either of the following ways:

e Local Buffers

Database users have their own set of private local database page buffers.
Data of interest is read from disk into a local database page buffer. Local
buffers are not shared among users. Sharing occurs only when a database
page is written back to disk and another user retrieves that database page.
The sharing is done at the physical page level and can be 1/O intensive.

e Global Buffers

Database users on the same system share a common set of global database
page buffers that reside in global memory. Database pages that are read
from disk by one user can be seen directly by another user. Little or no 1/O is
needed to share global buffers; however, sharing data is still done at the level
of database page buffers. A database page buffer has a fixed size across all
storage areas in the database. The amount of data in a database page buffer
that is of interest to multiple users may be small compared to its overall size.
Although this model may be more efficient than using local buffers, there are
better ways to share data among users.

Oracle Rdb offers a feature called row caching to enhance the performance

of memory buffers. Because row caching is a cache of rows, you can use it in
conjunction with local or global database page buffers. Please consider, however,
that when using both global buffers and row cache, you could have two copies

of data consuming your global memory—one copy in the row cache and one in a
global buffer. Note also that row caches are not designed to be an “in-memory
database”. As its name implies, a row cache is a set of database rows that reside
in memory between the users and the rest of the database rows on disk. Data
rows, system records, as well as hashed and sorted index nodes, can be cached.
Access to a row in a row cache is through its logical database key (dbkey).

All processes attached to a database share a pool of row occurrences that reside in
shared memory row caches. No disk I/O is needed to share a row in a row cache.
Only the rows of interest, not the physical pages, are kept in shared memory,
thereby increasing the use of shared memory. In addition, you can create many
row caches, each with its own row size. Row caches can be used to efficiently
store rows of specific sizes from specified tables. The Oracle Rdb implementation
of row caches gives you the option to specify portions of row caches to occupy
process private virtual memory, shared global pagefile sections on OpenVMS
systems, or shared physical main memory. Oracle Rdb row caching also allows

Implementing Row Cache A-1

you to use very large memory (VLM) on OpenVMS Alpha systems. Subsequent
sections provide more detail on each of these options.

The row caching feature is designed to improve performance through reduced 1/0
operations by finding rows of interest in the row cache instead of accessing them
on disk. The greater number of times the data is located in the row cache, the
more useful the cache is and better overall performance results.

The next section describes how row caching works with basic Oracle Rdb database
functions.

A.1.2 Database Functions Using Row Cache

The following list describes how common database operations use the row caching
feature.

A-2

Fetching Data

When you request a row from a database, Oracle Rdb first checks to see if the
requested row is located in a row cache. If the row is in a row cache, the row
is retrieved from the cache. If the row is not in a cache, Oracle Rdb checks
the page buffer pool. If the row is not in the page buffer pool, Oracle Rdb
performs a disk 1/0 operation to retrieve the row. The requested row is then
inserted into the row cache, if possible.

Storing Data

When a new row is stored in the database, Oracle Rdb may perform a disk
1/0 operation to find space for the new row and get a dbkey for the row. Once
space has been reserved on a database page, Oracle Rdb checks for a row
cache in which to put the new row. The new row is inserted into a row cache,
if possible.

Modifying Data

If a modification to a row in a cache causes the row to grow (replaces a null
value, for example), then the database page must be modified to reserve
additional space for that row. If the database page does not have room for
the modified row, resulting in fragmentation, then the row is deleted from the
cache. If the modification keeps the row the same size or makes it smaller,
then the modified row remains in the cache and no database page is accessed.
This means that the unused space on the page is not reclaimed and hence is
not immediately available for reuse. Compressed rows and indexes that are
modified are more likely to require database access than uncompressed ones.

Deleting Data

If the row is in a row cache, Oracle Rdb sets the length of the row to zero
to erase it. It is not erased from the database page on disk immediately.
Therefore, the deleted space is not reusable immediately.

When snapshots are enabled

During a read-only transaction, Oracle Rdb first checks to see if the row is
in a row cache. If the row is found and is visible to the transaction, the row
is returned from the row cache and no disk 1/O operation is necessary. If the
row is not visible, Oracle Rdb must find the visible version of this row in the
snapshot file. Information stored in the row cache, however, can shorten the
search and thereby reduce 1/O operations to the snapshot file.

Implementing Row Cache

During a read/write transaction that is performing an update, Oracle Rdb
writes the before-image of the data to the snapshot file. Oracle Rdb writes the
before-image information out to the snapshot file each time a row in the user’s
row cache working set is modified. If a row falls out of the working set list
and is remodified later in the transaction, the before-image information is
written back to the snapshot file when the row re-enters the working set.

Global and local buffers use the least-recently used (LRU) replacement
strategy for database pages. Row caching uses a modified form of the LRU
replacement strategy. Each database user can protect the last 10 rows they
accessed. This group of rows is referred to as a working set. Rows that
belong to a working set are considered to be referenced and are not eligible
for row replacement.

During a read/write transaction that performs a delete operation, the
processing is the same as described in the previous paragraphs.

A.1.3 Writing Modified Rows to Disk

With row caching, many data modifications are performed on the in-memory
copy of the data. Therefore, Oracle Rdb must have a way to write these rows to
storage on disk.

The following list describes the ways that modified rows can be written back to
the database page on disk.

If the page on which a modified row resides is in the user’s buffer pool and
is already locked by the user when the update to that row must be recorded
in the row cache, then the update is made to the row in the cache and on the
database page.

In this case, the row cache entry is not considered to be marked or modified.
This situation occurs when a transaction is committed or when a row is
flushed from a row cache.

During an undo operation, the before-image of each modified row is placed on
the database page.

An undo operation occurs as part of an aborted SQL statement, transaction
rollback, or database recovery of a terminated user’s process.

During a redo operation, the after-image of each modified row is stored on
the database page only if recovering from a node failure. If recovering from
a process failure, no redo is done for in-memory row cache modifications
because the row cache memory is still valid and intact. (Changes made to
database pages are still redone.)

During a row cache checkpoint operation, all modified rows (or all rows) from
the row caches are written to disk storage.

This is the most common method of writing updated rows back to disk
storage.

During a row cache sweep operation, a set of modified rows are written back
to the database from the row cache. After the rows are written back to disk,
the space they occupied is considered selectable for reuse.

A row cache sweep operation is initiated when a user process tries to insert
rows into a row cache and finds no free space available.

Implementing Row Cache A-3

A.1.4 Row Cache Checkpointing and Sweeping

Checkpointing and sweeping operations are critical in performing the operations
necessary to write modified, committed rows back to disk from a row cache. The
row cache server (RCS) process performs these tasks. There is one RCS process
per database. Any failure of the RCS process forces the shutdown of the entire
database.

To monitor the status of rows in a row cache, Oracle Rdb maintains a modification
flag for every row in a cache to indicate which rows have been modified. The
modification flags are shown in the following table:

Modification Flag Meaning

Marked The row has been modified in the row cache only. If this
modification remains only in the row cache at the time the
transaction is committed, then this marked flag indicates this
row in the row cache is not reflected in the database.

Hot The marked row has been modified since the last checkpoint.
Cold The marked row has not been modified since the last
checkpoint.

The RCS process performs three types of operations:

= Synchronous operations where the requester is waiting for the operation to
complete

The following are operations of this type:

= The RCS process checkpoint operation that is part of an AlJ fast-commit
checkpoint

For example, if the RMU Checkpoint command with the Wait qualifier is
issued, then the requester will wait for the RCS process to complete its
checkpoint.

< A checkpoint to the database for all row caches before certain database
utility operations can begin

= Row cache checkpoint operations

Checkpointing is a repetitive, time-driven event that writes rows from all row
caches back to disk storage. The RCS process writes data to a cache backing
file (.rdc) or directly to the database for each cache, depending on how the
row cache was defined. The time interval at which a checkpoint occurs is
also programmable. When the last user detaches from the database, the RCS
process performs a final checkpoint operation to the database (never to the
cache backing files). See Section A.4.2.1 for more details.

< Row cache sweep operations

Sweeping is done to make space available in a particular row cache. When

a transaction requests space and none is available, the RCS process sweeps
marked rows back from the particular row cache to the database. It also
resets row cache reference counts if your database has experienced some user
process failures. This creates free memory for subsequent transactions to
insert rows into each cache. This may never be necessary if checkpointing is
done at appropriate intervals. See Section A.4.2.3 for more details.

The RCS process selects work requests based on their priority; synchronous
operations are checked first, then checkpoints, followed by sweep operations.

A-4 Implementing Row Cache

If a database is opened manually, the RCS process is started as part of the open
operation. If a database is opened automatically, the RCS, by default, is started
when a row cache is referenced for the first time.

When the last user disconnects from the database (with the database open setting
set to automatic) or when the database is closed manually, the RCS process
performs a final checkpoint to the database. When this operation completes, all
marked rows have been written back to the database. The RCS process writes
out its checkpoint information to indicate that backing files are no longer needed
if there is a need to recover from a node failure. At this time, the cache backing
files, if any, are deleted by default. If you want to preserve the backing files and
have them be reused at database startup, define the logical RDM$BIND_RCS
KEEP_BACKING_FILES to “1".

Details of the RCS actions can be seen by creating an RCS process log file. Before
opening the database, define the RDM$BIND_RCS_LOG_FILE system logical
name to indicate the device, directory, and file name of the RCS process log file
you want to create. If no device and directory are specified, the RCS log file is
created in the same directory as that which contains the database root file.

A.1.5 Node and Process Failure Recovery

The following sections describe how the row cache feature interacts with node
and process failure recovery.

To understand how database recovery works with row caches, you should
understand the interactions that occur when writing to row caches, writing to
the recovery-unit journal (RUJ) files, and writing to the after-image journal (AlJ)
files. This interaction is identical to the interactions that occur among database
page buffers, RUJ journaling, and AlJ journaling. For more information, see the
Oracle Rdb Guide to Database Performance and Tuning.

The AlJ fast commit feature is a prerequisite for enabling row caching. This
means that updates to the database are not flushed back to the database pages
at the time a transaction is committed. In the case of row caching, the modified
rows reside in the in-memory row caches. However, all after-image (updated
rows) must be flushed to the AlJ file when the transaction is committed. In the
event of a failure, the committed, updated rows can be reapplied to the database
from the AlJ file.

Recovery-unit journaling is critical in ensuring that rows can be returned to their
previous state when either a SQL statement or transaction rolls back or aborts
abnormally. A row’s before-image must be preserved BEFORE any modification is
made to a row on a database page or in a row cache. Before-images are placed in
an in-memory RUJ buffer. Only when that buffer becomes full or when a modified
page or modified row cache entry is being put back must the RUJ information
first be synchronously written to the RUJ file. For a database without row caches,
this means the write 10 to the RUJ file must be performed before a database page
containing a modified row can be written to disk.

With row caches, Oracle Rdb is frequently modifying only memory, not database
pages. The requirement for RUJ information being written BEFORE a
modification is put back into the row cache still exists. Writing synchronous

10s to the RUJ before modifying in-memory row caches doesn't make muct sense.
Oracle Rdb minimizes this behavior in two ways:

= A modification to a row cache entry is first done in a local copy. Only when
this local copy of the row must be flushed back to the row cache is the RUJ
information written out.

Implementing Row Cache A-5

e The RUJ buffer resides in a system-wide, shared memory global section that
is visible to the DBR process. Therefore the before-image rows don't have to
be written to the RUJ file unless an uncommitted modification to a database
page (a store or a modify bigger operation) is forced to disk or when the RUJ
buffer overflows.

The global section created for the RUJ buffers will be about 256 VAX pages or 16
Alpha pages for each allowed user of a database. One global section is created
for each database that has row caching enabled. To disable this optimization for
databases with row caching enabled, define the logical name RDM$BIND_RUJ_
GLOBAL_SECTION_ENABLED to “0” in the system logical name table.

You need to increase several OpenVMS system parameters, as follows:
e GBLSECTIONS

Increase by the maximum number of Oracle Rdb databases open at one time
on the system.

= GBLPAGES

Increase by 256 times the maximum number of users for each database open
at one time on the system.

= GBLPAGFIL

Increase by 256 (on OpenVMS VAX systems) or by 16 (on OpenVMS Alpha
systems), times the maximum number of users for each database open at one
time on the system.

There is no additional virtual memory consumption for database users when the
RUJ global buffers optimization is enabled; each user process continues to use
the same amount of virtual memory (256 blocks) as when the optimization is not
enabled.

Databases that do not have row caching enabled will not have optimization
enabled for the RUJ buffer in a global section.

A.1.5.1 Process Failure

When a process terminates abnormally, Oracle Rdb activates a database recovery
(DBR) process to recover the work done by the terminated user. The DBR
process first performs transaction REDO, reapplying committed transactions’
modifications to the database pages that had only been written to the AlJ file
back to the database. Because the row cache memory is still in tact, in-memory
row cache changes do not have to be redone during REDO. The DBR process then
proceeds to UNDO the user’s outstanding transaction. If the RUJ system-wide
process buffers are enabled, the DBR process first writes the current RUJ buffer
to the RUJ file. It then recovers the RUJ file by placing the before-image of each
row back on the database page. If the dbkey for that row is also found in a row
cache, the before-image is placed back into the row cache too.

A.1.5.2 Node Failure

A-6

There are several events that constitute node failure to Oracle Rdb:
= Machine or operating system fails

e The Oracle Rdb monitor process terminates unexpectedly

e The Oracle Rdb RCS process terminates unexpectedly

< An Oracle Rdb DBR process terminates unexpectedly

= The RMU Monitor Stop command is issued with the Abort=delprc qualifier

Implementing Row Cache

e The RMU Close command is issued with the Abort=delprc qualifier

All of these events cause all access to an Oracle Rdb database to cease
immediately. Recovery from a node failure event is deferred until the next time
the database is attached or opened. Even if the RMU Open command with the
Row_Cache=disabled qualifier is executed next, this will initiate recovery from
the node failure. It will not create nor populate the in-memory row caches during
the recovery. Once recovery has finished, no row caches will be active while the
database stays open in this manner.

Oracle Rdb has several schemes for recovering a database after a node failure.
For a database without row caching enabled and without global buffers enabled,
Oracle Rdb recovers from a node failure by creating one DBR process for each
abnormally terminated user and these DBR processes recover the database in
parallel. For a database without row caching enabled but with global buffers
enabled, Oracle Rdb recovers one database user at a time by creating one DBR
process at a time. For a database with row caching enabled, Oracle Rdb creates
one DBR process and that process performs recovery for all the users.

For recovery from a node failure for a database with row caching enabled, the
DBR process performs recovery in the following steps.

1. Recovers the backing files. For each row cache that is checkpointed to a
backing file, the DBR process:

— Reads each row from the backing file.

— If the row has been updated (marked), then the DBR process writes this
row back to the appropriate database page.

— Inserts this row into the empty row cache in shared memory. If the
database is opened with row caching disabled or if the system logical
name RDM$BIND_DBR_UPDATE_RCACHE is defined to “0”, then the
row caches are not repopulated from the backing files.

— Places this dbkey in a row cache dbkey list.

2. Performs a REDO operation from the oldest user checkpoint. This includes
the RCS process checkpoint when the RCS process last checkpointed the row
caches.

— For each transaction rolled back, the DBR process discards the updates.

— For each transaction committed, the DBR process reapplies those updates
to the database pages.

Please note that ALL committed transactions since the oldest
checkpoint are applied, not just all committed transactions for
the users who were active at the time of the node failure.

— If DBR is re-populating the row caches and this dbkey is found in the row
cache dbkey list, then this occurrence replaces the current one in the row
cache. If a row in a mixed format area is erased, it is removed from the
row cache and its dbkey is removed from the dbkey list. This is necessary
to prevent the physical dbkey that may be reused for a different table or
index from being placed in the prior occurrence’s row cache.

— Once the redo operation is completed, the DBR process updates all users’
checkpoints to be the current AlJ end-of-file.

Implementing Row Cache A-7

3. Performs the UNDO operation for each aborted user’s incomplete transaction,
if any. The DBR process reads the before-images from the user’'s RUJ file and
writes them back to the database. If the dbkey also exists in a row cache,
then the before-image is also written to its row cache entry.

A.1.5.3 The RCS Process and Database Recovery

Because the RCS process and the DBR process both access the row cache
structures, they must coordinate their activities. When a DBR process is
activated, it immediately notifies the RCS process of its existence using a lock.
Then the RCS process aborts whatever request it is performing, requeues the
request at the head of the appropriate queue, and waits for the database recovery
activity to complete. Upon completion of database recovery, the RCS process
resumes its operations by executing the next operation based on priority.

A.1.6 Considerations When Using the Row Cache Feature

A-8

This section contains further information on using the row cache feature.

< Hot Standby

Row caching is not allowed to be active on the standby database. Because
the AIlJ file does not contain logical dbkeys, there is no way to maintain rows
in the cache on the standby system. On the standby system, issue the RMU
Open command with the Row_Cache=Disabled qualifier to open the database
without activating row caching. If failover is necessary, simply close the
standby database and reopen it normally. Your standby database will have
row caches activated.

< Backing files

If you are using row cache backing files, then do not use Hot Standby on the
same machine as the master database. Both databases will attempt to use
the same backing files.

Similarly, do not attempt to use the same directory location for backing files
for two or more databases if any of their row cache names are identical.
Multiple databases will attempt to use the same backing files.

= Utilities that access the database pages directly

Some RMU commands do not access data by logical dbkey but instead read
the database pages directly. These commands cannot access the row caches
directly. Oracle Rdb resolves this problem by having each command request
the RCS process write all marked rows back to the database. The RMU
operation waits for this task to complete.

The RMU commands affected by this are:
— Backup online

— Analyze

— \Verify

— Copy database online

These operations may exhibit a delay in starting. If you specify the RMU log
qualifier, Oracle Rdb will output a message when it is waiting for the RCS
request and when the RCS request has completed. If your database’'s row
caches are set to checkpoint to the database rather than to backing files, then
this delay will be minimized.

e Sequential scans

Implementing Row Cache

When the execution strategy for a query is a sequential scan, Oracle Rdb
scans the physical areas by performing the same 1/O operations it would do if
there were not any row caches. The major reasons for this are as follows:

— Oracle Rdb does not have a list of all dbkeys in an area; it materializes
them by reading all pages and examining all lines on each page. However,
data is returned from the row cache if it is found there. Although Oracle
Rdb reads the database pages to find the dbkeys of rows in the table, it
still needs to look in the cache to see if the row is there. A row in the
cache contains more recent data than that which is on disk.

— There is no guarantee that all rows in a sequential scan can fit in a row
cache. Row caches are often sized to include a percentage of the total
number of rows where the most commonly used rows can be shared in
memory.

Oracle Rdb is designed to avoid populating the cache during a strict
sequential scan. It is designed this way because otherwise a query
performing a sequential scan of a table looking for just a few records
would fill the cache with every record and might force existing data in the
cache back to disk. This would result in a row cache filled with records
that you do not need in the cache.

However, note that a sequential index scan will populate the cache with
data, index rows, or both.

Snapshots enabled

The Oracle Rdb snapshot mechanism of preserving a consistent view of the
database for read-only transactions is not changed by the row cache feature.
The before-images of rows needed by read-only transactions are preserved
when read/write transactions write them to the snapshot files. Therefore,
when snapshots are enabled, update operations are written to the rows in
the row cache and the before-image of the row is written to disk. Oracle Rdb
has optimized the snapshot mechanism with row caches, however, so that
the performance of readers and writers may be better with row caches than
without.

The performance of row caches is typically much faster when snapshots are
disabled. All of the disk I/O operations necessary to read and write to the
snapshot file are eliminated. This is the ideal situation.

Fragmented rows

Fragmented rows are not stored in the row cache. They are created by
fetching the fragments from the database and materializing them in process-
private virtual memory.

Vertical record partitioning

When a logical cache is defined for a vertically partitioned table, each
partition of a row is cached as a separate row cache entry. Only partitions
that your query references and that can fit are inserted into the row cache.

Unexpected storage area growth

Oracle Rdb has optimized row caching to minimize the disk 1/O operations
required. Frequently operations are performed in-memory only. Having the
faster performance of in-memory updates is beneficial. However, when you
make modifications that keep a row at its current size or smaller, or you make
deletions, the database page does not reflect the amount of space that is in
use. Even though the row is logically smaller or erased from the database,

Implementing Row Cache A-9

it has not been physically removed from the database page. The space it
occupies cannot be reused by another transaction until this row is finally
written back to the database, usually by the RCS process during a sweep

or checkpoint operation, depending on your row cache settings. Because of
this, storage areas may grow larger than anticipated. If space reclamation is
critical for some storage areas, then consider checkpointing their row caches
to the database on a regular basis.

A.2 Requirements for Using Row Caches

To use the row cache feature, an Oracle Rdb database must meet the following
configuration requirements:

e The number of cluster nodes must be one.

= After-image journaling must be enabled.

= Fast commit must be enabled.

= One or more row cache slots must be reserved.
= Row caching must be enabled.

Use the RMU Dump command with the Header qualifier to see if you have met
the requirements for using row caches. In the following example, warnings are
displayed for row cache requirements that have not been met.

$ RMU/DUMP/HEADER INVENTORY

Row Caches...
- Active row cache count is 4
- Reserved row cache count is 20
- Checkpoint information
Time interval is 10 seconds
Default source is updated rows
Default target is backing file
Default backing file directory is "DISK1:[CACHE]"
- WARNING: Maximum node count is 16 instead of 1
- WARNING: After-image journaling is disabled
- WARNING: Fast commit is disabled

A.3 Designing and Creating a Row Cache

The following sections describe considerations for designing and creating row
caches.

A.3.1 Reserving Slots for Row Caches

A-10

When you create a database, reserve enough row cache slots for both current
and future needs. To reserve additional slots and to add or drop a row cache, the
database must be closed.

Use the RESERVE n CACHE SLOTS clause of the CREATE DATABASE or
ALTER DATABASE statement to reserve slots for row caches, as shown in the
following example:

Implementing Row Cache

SQL> CREATE DATABASE FILENAME INVENTORY

cont> RESERVE 20 CACHE SLOTS;

If you do not specify a RESERVE n CACHE SLOTS clause, Oracle Rdb reserves
one slot by default.

A.3.2 Row Cache Types
The two types of row caches are described in the following list:

= Physical area

You can create a general row cache that is shared by all row types that reside
in one or more storage areas. This is the basic type of row cache, called a
physical area row cache. Because physical area row caches are defined for
a storage area, multiple storage areas can map to the same physical area row
cache. A physical area row cache can contain all row types in a storage area.
In addition, when a physical area row cache is defined, all rows of different
sizes in the specified storage area are candidates for the row cache.

See Section A.3.2.1 for an example of how to assign a row cache to a storage
area.

= Logical area

You can create logical area row caches when you create a row cache by using
the same name as an existing table or index. A logical area row cache is
associated with all partitions, both horizontal and vertical, of a specific table
or index.

A logical area cache cannot store the system row from a database page in an
mixed format area.

You can use both physical and logical caches to store a table and its index.

The following example shows the reason for using different caches for different
row types. Assume the following sizes for the rows in a table and hashed index:

= System records of 16 bytes
= Hash buckets of 100 bytes
= Data rows of 320 bytes

If you created one cache for all three row types, with a row size of 320 bytes,
much of the allocated memory would be wasted when storing the smaller system
record and the hash bucket. Using this method, the amount of memory, excluding
overhead, used for one row cache is as follows, assuming 15000 rows in the cache:

Total
number = (# of rows in cache * row length of largest row)
of bytes

(15000 * 320)
4800000 hytes

It is more efficient to have three caches, one for each of the row types:
= System records of 16 bytes (PARTS_SYS cache)

e Hash buckets of 100 bytes (PARTS_HASH cache)

= Data rows of 320 bytes (PARTS cache)

Implementing Row Cache A-11

In this example the system records are stored in a physical cache (PARTS_SYS)
while the hash index buckets and data rows are stored in logical caches (PARTS
HASH and PARTYS).

The amount of memory, excluding overhead, used with three row caches is
computed as follows:

Total
number = (# of rows in cache * row length of system record) +
of bytes (# of rows in cache * row length of hash bucket) +

(# of rows in cache * row length of data row)

= (5000 * 16) +
(5000 * 100) +
(5000 * 320)

= 2180000 hytes

A.3.2.1 Assigning Storage Areas to Row Caches

When a storage area is associated with a row cache, the row cache can contain
all types of rows, if they can fit. This is called a physical area row cache. One
storage area can point to one row cache only. Multiple storage areas can be
mapped to the same row cache.

You can also define a default row cache for all of the storage areas in the database
by using one of the following statements:

= ALTER DATABASE ... ADD STORAGE AREA ... CACHE USING
= ALTER DATABASE .. ALTER STORAGE AREA ... CACHE USING
= CREATE DATABASE ... CREATE STORAGE AREA ... CACHE USING

The following example shows how to assign the same physical row cache to
multiple storage areas:

SQL> ALTER STORAGE AREA
cont> PART_ID_A_E CACHE USING PARTS_SYS;
SQL> ALTER STORAGE AREA
cont> PART_ID_F_K CACHE USING PARTS_SYS;

A.3.2.2 Assigning Tables to Row Caches

A-12

A row cache is considered to be a logical area cache if its name is identical to
the name of either a table or an index. If a logical area row cache is created for
a vertically or horizontally partitioned table or horizontally partitioned index,
then all rows in these partitions are mapped to the single logical area row cache.
In the following example, a logical area cache called PARTS is created for the
PARTS table that is horizontally partitioned across five storage areas:

Implementing Row Cache

SQL> CREATE STORAGE MAP PARTS_MAP FOR PARTS

cont> --

cont> -- Parts table partitioned by part id

cont> --

cont> STORE USING (PART_ID)

cont> IN PART_ID_A_E WITH LIMIT OF (F)

cont> IN PART_ID_F K WITH LIMIT OF (L)

cont> IN PART_ID_L_P WITH LIMIT OF (Q)

cont> IN PART_ID_Q_U WITH LIMIT OF (V')
cont> OTHERWISE IN PART_ID_V_Z

cont> PLACEMENT VIA INDEX PARTS_HASH,;

sQL>

SQL> ALTER DATABASE FILENAME INVENTORY
cont> ADD CACHE PARTS

cont> ROW LENGTH IS 100 BYTES
cont> CACHE SIZE IS 5000 ROWS;

Rows from all five partitions of the PARTS table are automatically cached in the
PARTS row cache, if they can fit.

A.3.3 Sizing a Row Cache
When you size a row cache, you specify the following:

Slot Size

The slot size is the fixed length size of each entry in the row cache. This
determines the size of the largest row that can be stored in the row cache.
Oracle Rdb will not cache a row if it is larger than the cache’s slot size. Use
the ROW LENGTH IS parameter of the ADD, ALTER, or CREATE CACHE
clause to specify the slot size of the row cache.

Oracle Rdb automatically rounds up the row length to the next 4-byte
boundary. This is done because longword aligned data structures perform
optimally on its supported platforms.

If you do not specify a slot size when creating a logical cache, Oracle Rdb
generates a slot size based on the size of the table row or index node. Note,
however, that Oracle Rdb finds the nominal row length of tables and indices
using the area inventory page (AIP). Under certain circumstances this AIP
length may not be the actual length of the row. In addition, some index
structures may have no AIP entry at all. If no entry can be found, Oracle
Rdb uses a default length of 256 bytes. Also, if the metadata for a table is
modified, then the AIP length is not automatically updated. This can result
in incorrect cache sizing. See the Oracle Rdb Guide to Database Performance
and Tuning for more details on AIP lengths.

Slot count

The slot count is the number of rows that can be stored in the cache. Use the
CACHE SIZE IS parameter of the ADD, ALTER, or CREATE CACHE clause
to specify the number of rows that can be stored in the cache.

If you do not specify the CACHE SIZE clause, Oracle Rdb creates a cache of
1000 rows by default.

Implementing Row Cache A-13

A-14

The following example shows a row cache definition:

SQL> ADD CACHE PARTS

cont> ROW LENGTH IS 320 BYTES

cont> CACHE SIZE IS 3000 ROWS;

SQL> --

SQL> -- In this example, the slot size is 320 bytes
SQL> -- and the slot count is 3000.

SQL> --

It is important to select a proper slot size for the row cache. As stated previously,
if a row is too large, Oracle Rdb will not cache the row. This can result in poor
system performance because Oracle Rdb always checks the cache for the row
before retrieving the row from disk. Use the RMU Dump Area command to
determine the sizes of the data rows, hash buckets, and B-tree nodes. Keep in
mind that row sizes within a table can vary greatly. If, for example, the largest
row stored in a table is 100 bytes, but the majority of the rows range between 40
and 50 bytes, you may not necessarily want to choose 100 bytes for the slot size.
However, you should account for most of the rows, including overhead. If you
automatically select the largest row size without comparing it to the sizes of the
other rows in the table, you might waste memory.

The following example dumps a few pages from the MY_AREA storage area:
$ RMU/DUMP/AREA=MY_AREA/START=5/END=10 TEST_DB/OUT=rmu_dump_area.out

Search the rmu_dump_area.out file for the occurrences of “total hash bucket” and
“static data” as follows:

$ SEARCH RMU_DUMP_AREA.OUT "total hash bucket"

total hash bucket size: 97
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118
total hash bucket size: 118

$ SEARCH rmu_dump_area.out "static data"

... 311 bytes of static data
311 hytes of static data
311 bytes of static data
311 hytes of static data
311 bytes of static data
311 hytes of static data
311 bytes of static data
311 hytes of static data
311 bytes of static data
311 hytes of static data
311 bytes of static data
311 hytes of static data

The hash bucket size is 118 bytes and the data row size is 311 bytes. Other
rows in this table may require more or less space. It is important to scan a
representative sample of random pages to determine the appropriate row size.
Oracle Rdb rounds row sizes up to the next longword.

Implementing Row Cache

The RMU Show Statistics row caching screens provide performance information
on inserting rows into a cache. One of the statistics, “row too big”, indicates that
a row is too large to fit into the specified cache. This statistic is also set when

a row in a row cache becomes invalid and must be retrieved from the database
page. For example, when a row in the row cache grows to the point where it
becomes fragmented, it must be removed from the row cache. This is done by
“redirecting” this row out of the row cache to disk, by setting its “row too big”
attribute. See Section A.5.1 for more information on the RMU Show Statistics
screens related to row caching.

The slot count multiplied by the slot size specifies the approximate size, in bytes,
of the row cache. You should also take into account additional overhead. See
Section A.3.4.1 for more information about sizing row caches.

A.3.4 Choosing Memory Location

When you create a row cache or modify a row cache definition, you have the
option of specifying where in memory you want Oracle Rdb to create the cache.
Row caches can reside in the following memory locations:

= Process global section on OpenVMS and shared memory partition on Digital
UNIX.

When you use global sections or shared memory created in the process space,
you and other users share virtual memory and the operating system maps a
cache to a private address space for each user.

Use the SHARED MEMORY IS PROCESS parameter to specify that the
cache be created in a process global section or shared memory partition as
shown in the following example:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPIDS_LOW_RCACHE
cont> SHARED MEMORY IS PROCESS;

This is the default.

= System space buffer

The system space global section is located in the OpenVMS Alpha system
space, which means that a system space global section is fully resident, or
pinned in memory and does not affect the quotas of the working set of a
process.

System space is critical to the overall system. System space buffers are not
paged; therefore, they use physical memory, thereby reducing the amount
of physical memory available for other system tasks. This may be an issue
if your system is constrained by memory. You should be careful when you
allocate system space. Nonpaged dynamic pool (NPAGEDYN) and the
VMScluster cache (VCC) are some examples of system parameters that use
system space.

Use the SHARED MEMORY IS SYSTEM parameter to specify that the cache
be created in a system space buffer, as shown in the following example:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPIDS_MID_RCACHE
cont> SHARED MEMORY IS SYSTEM,;

Implementing Row Cache A-15

A-16

Consider allocating small caches that contain heavily accessed data in system
space buffers. When a row cache is stored in a system space buffer, there is
no process overhead and data access is very fast because the data does not
need to be mapped to user windows. Also, OpenVMS Alpha Version 7 systems
and later make additional system space available by moving page tables and
balance slots into VLM space. The Hot Row Information screen in the RMU
Show Statistics command displays a list of the most frequently accessed rows
for a specific row cache.

= Very large memory

Very large memory (VLM) on OpenVMS Alpha systems allows Oracle Rdb
to use as much physical memory as is available on your system and to
dynamically map it to the virtual address space of database users. VLM
provides access to a large amount of physical memory through small virtual
address windows. Even though VLM is defined in physical memory, the
virtual address windows are defined and maintained in each user’s private
virtual address space or system space depending on the memory setting.
Use the LARGE MEMORY parameter to specify that the cache be created in
large memory.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL

cont> ADD CACHE EMPIDS_OVER_RCACHE

cont> LARGE MEMORY IS ENABLED:
sQL>

VLM is useful for large tables with high access rates. The only limiting factor
with VLM is the amount of available physical memory on your system.

You view the physical memory through windows. You can specify the number of
window panes with the WINDOW COUNT parameter. By default, Oracle Rdb
allocates 100 window panes to a process.

Table A—1 summarizes the location in memory of each row cache object and
whether process private virtual address windows are needed to access the data.

Implementing Row Cache

Table A-1 Memory Locations of Row Cache Objects

SHARED LARGE Control Structures Data Rows Windows
PROCESS' DISABLED?® Process global section Process global section No
or shared memory or shared memory
partition partition
PROCESS! ENABLED* Process global section Physical memory Yes
or shared memory
partition
SYSTEM? DISABLED® System space System space No
SYSTEM? ENABLED* System space Physical memory Yes

1SHARED MEMORY IS PROCESS

= The row cache control structures are located in a process global section or shared memory partition.
= The storage of the data rows depends on whether large memory is enabled or disabled.

— If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.

— If large memory is disabled, data is stored in a process global section or shared memory partition
and no windows are needed to access the data.

2SHARED MEMORY IS SYSTEM

= The row cache control structures are stored in system space.
= The storage of the data rows depends on whether large memory is enabled or disabled.

— If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.

— If large memory is disabled, data is stored in system space and no windows are needed to access
the data.

3LARGE MEMORY IS DISABLED

= The storage of the data rows and the row cache control structures depends on whether shared
memory is process or system.

— If shared memory is process, the data and row cache control structures are stored in a process
global section or shared memory partition and no windows are needed to access the data.

— If shared memory is system, the data and row cache control structures are stored in system
space and no windows are needed to access the data.

4LARGE MEMORY IS ENABLED

= The data rows are stored in physical memory and process private virtual address windows are
needed to access the data.

= The storage of the row cache control structures depends on whether shared memory is process or
system.

— If shared memory is process, the control structures are stored in a process global section or
shared memory partition.

— If shared memory is system, the control structures are stored in system space.

It is important to consider the amount of memory available on your system before
you start creating and using row caches.

On OpenVMS systems, you can use the DCL command SHOW MEMORY
/IPHYSICAL to check the availability and usage of physical memory. This
command displays information on how much memory is used and how much
is free. The free memory is available for VLM row caches in addition to user
applications.

Because VLM row caches can consume a certain amount of system space for their
virtual address windows, Oracle Corporation recommends that you define the
VLM row caches first, so that any VLM system space requirements are satisfied
before you define system space buffer row caches for small tables that contain
frequently accessed data.

Implementing Row Cache A-17

The following example shows a system that has 1.5 gigabytes of memory or a
total of 196608 OpenVMS Alpha memory pages (an OpenVMS Alpha page is 8192
bytes):
$ SHOW MEMORY/PHYSICAL

System Memory Resources on 29-MAY-1996 21:39:35.40

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 183605 12657 346

Of the 1.5 gigabytes, 183605 pages remain on the free list. Most of this free
memory is available for row cache allocation.

Assume a logical area cache has been defined for the MY_TABLE table. The
following SQL statement maps the logical area cache:

SQL> ATTACH °FILE TEST_DB’,
SQL> SELECT * FROM MY_TABLE WHERE MY_HASH_INDEX = 100;

By issuing this SQL statement, the logical area cache has allocated the necessary
memory accounting for 40462 OpenVMS Alpha pages, as shown in the following
SHOW MEMORY/PHYSICAL command output:

$ SHOW MEMORY/PHYSICAL
System Memory Resources on 29-MAY-1996 21:46:07.01

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 143143 52766 699

Notice the amount of free memory has been reduced.

The following SHOW MEMORY/PHYSICAL command was issued after users
attached to the database, allocated their working sets, and began to work:

System Memory Resources on 29-MAY-1996 23:48:06.67
Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 81046 112498 3064

In this example, only 81046 OpenVMS Alpha pages are left on the free list.

A.3.4.1 Sizing Considerations

A-18

The following information is intended to help you determine in which memory
location to place your cache based on system resources. Generally, if your cache
will fit into a process global section or system space buffer, then it will perform
slightly better. If space is an issue, then you should place the cache in VLM.

When a cache is created in a process global section or system space buffer, Oracle
Rdb sizes it using the following values:

e Each slot requires 48 bytes plus the length of the slot rounded to the next
4-byte boundary.

= Each cache requires a hash table of (4 * (the number of cache slots rounded to
the next higher power of 2)) bytes.

e Each cache requires (24 * the maximum number of users) bytes.
When a cache is created in VLM, Oracle Rdb sizes it using the following values:

= Each slot requires 24 bytes plus the length of the slot rounded up to the next
4-byte boundary.

Implementing Row Cache

When VLM is enabled and the cache is created in a process global section or
system buffer space, Oracle Rdb sizes it using the following values:

= Each slot requires 24 bytes.

= Each cache requires a hash table of (4 * (the number of cache slots rounded
up to the next higher power of 2)) bytes.

= Each cache requires (24 * the maximum number of users) bytes.

The following example shows how Oracle Rdb sizes a cache containing 150,000
slots with a slot size of 500 bytes in a process global section or system space
buffer and a maximum of 350 users. (Note that 2 to the 17th power is 262144.)

Example A-1 Sizing a Row Cache in a Global Section or System Space Buffer

Total

number = (150000%(500+48)) + (262144*4) + (24*350)
of

bytes

= 83,256,976 bytes

The following example shows how Oracle Rdb sizes the same cache in VLM.

Example A-2 Sizing a Row Cache in VLM

Total

number = (150000*(500+24))
of

bytes

= 78,600,000 bytes
The following example shows how Oracle Rdb sizes the same cache in a process
global section or system space buffer with VLM enabled.

Example A-3 Sizing a Row Cache in Memory with VLM Enabled

Total

number = (150000%24) + (262144*4) + (24*350)
of

bytes

= 4,656,976 bytes

A.4 Using Row Cache

The following sections describe how to set parameters for the row cache feature.

Implementing Row Cache A-19

A.4.1 Enabling and Disabling Row Cache
There are three ways in which Row Caching can be enabled and/or disabled.

1.

You can enable row caching for a database by using the ROW CACHE IS
ENABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements. The following example shows how to enable the row cache
feature and its requirements:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> NUMBER OF CLUSTER NODES IS 1

cont> JOURNAL ENABLED (FAST COMMIT ENABLED)
cont> RESERVE 20 CACHE SLOTS

cont> ROW CACHE IS ENABLED;

You can disable row caching for a database by using the ROW CACHE IS
DISABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ROW CACHE IS DISABLED;

Row caching is also disabled if one of the conditions described in Section A.2
becomes false.

When row caching is disabled, all previously created and assigned row caches
remain in existence for future use when row caching is enabled again.

The database must be closed when you enable or disable row caching.

The RMU/SET command allows you to enable or disable row caching using
an unjournaled operation. This is needed to disable row caches if you have
system tables mapped to row caches and you need to perform SQL operations
that require exclusive database access.

RMU/SET/ROW_CACHE[/DISABLED|/ENABLED] database_name

For example, adding a row cache to a database requires exclusive database
access. Execute this command before adding a new row cache using SQL then
re-enable row caching.

The RMU/OPEN/ROW_CACHE=DISABLED command is used to keep row
cache enabled in the database but not used for the duration of the open. This
is necessary in order to set up row caching in a Hot Standby environment.
Row caching is not allowed to be active on the standby database. Therefore,
this command should be issued on the standby system to open the database
without activating row caching.

A.4.2 Specifying Checkpointing and Sweeping Options

The following sections provide guidelines for specifying checkpointing and
sweeping options.

A.4.2.1 Choosing the Checkpoint Source and Target Options

For greatest flexibility, provide each row cache with its own checkpoint source
and target options as follows:

A-20

The source rows to read

This determines which source rows in the cache to write back to disk. Only
updated rows or all rows can be selected. By default, only updated rows are
selected.

The target location to write the rows

Implementing Row Cache

This determines whether the source rows are written back to the database
pages or written out to a separate row cache backing file.

You can specify the target location using the following parameters of the ADD,
ALTER, and CREATE CACHE clauses. Note that you cannot specify that all rows
are checkpointed to the database.

= CHECKPOINT UPDATED ROWS TO BACKING FILE
= CHECKPOINT UPDATED ROWS TO DATABASE
= CHECKPOINT ALL ROWS TO BACKING FILE

The following table lists the advantages and disadvantages of each checkpoint
target:

Table A—2 Checkpoint Target Options

Advantages Disadvantages

Checkpoint to Database

Does not require any more disk
space.

Simpler to understand because
it uses the traditional database
page buffers.

Unmarks slots in the row cache
so they can be reused for other
rows.

Writing back to database pages
reclaims space on database
pages from erased or modified
rows that have been reduced in
size.

Is slower due to contention for
database page buffers.

Upon node failure, the row cache is
not re-populated.

Greater conflict with other users
since row and page locks are
maintained. The row cache server
(RCS) process does not respond
to requests to release row or page
locks

Checkpoint to Backing File

Can checkpoint all rows allowing
a way to repopulate row caches
that are predominantly read-
only while recovering from a
node failure.

Faster at writing sequential 1/0
operations to backing file.

Can be placed on different
spindles so that other database
1/0O activity will not be impacted.

Used upon node failure to
repopulate the row cache.

Requires extra disk space to create
two backing files per cache.

Only used for node failure
protection.

Marked rows tend to stay marked.
By definition, rows in a row cache
are only unmarked when they are
written back to the database.

Space on the database pages
resulting from erased rows and
modified rows that are reduced in
size is not reclaimed.

Implementing Row Cache A-21

A.4.2.2 Choosing the Checkpoint Interval

You must specify a checkpoint interval in the following way: use the
CHECKPOINT TIMED EVERY s SECONDS parameter of the ROW CACHE
IS ENABLED clause. This checkpoint parameter applies to the RCS process only.

This value can be overridden by the RDM$BIND_CKPT_TIME logical (this logical
is also used to override the FAST COMMIT checkpoint interval). If nothing is
specified, Oracle Rdb uses a default checkpoint interval of 15 minutes.

A.4.2.3 Specifying Sweeping Parameters

A-22

You set the number of updated rows that will be swept by using the NUMBER
OF SWEEP ROWS IS parameter of the ADD, ALTER, and CREATE CACHE
clause.

SQL> ALTER DATABASE FILENAME INVENTORY
cont> ALTER CACHE PARTS

cont> ROW LENGTH IS 104 BYTES

cont> CACHE SIZE IS 2000 ROWS

cont> CHECKPOINT ALL ROWS TO BACKING FILE
cont> NUMBER OF SWEEP ROWS IS 200;

A row in a row cache cannot be reused if it is marked (modified) or if its reference
count is greater than zero. In the latter case, one or more users have a reference
to this row in their row cache working sets. The RCS sweep operation tries to
eliminate these restrictions from rows in the row cache so these rows can be
reused to insert new rows.

The RCS process writes committed modified rows back to the database, up to

a maximum of the NUMBER OF SWEEP ROWS defined for the row cache. It

is important that this value be set properly so that when a sweep is initiated,
the RCS process clears out enough slots to allow sufficient insertion activity
before another sweep operation is necessary. Typically, a value of 10 percent to 30
percent of the size of the row cache would be sufficient. Make sure that the sweep
count is larger than the value of the row cache’s reserved count, specified by the
NUMBER OF RESERVED ROWS IS N clause.

You can override the row cache’s defined sweep count value by defining the
RDM$BIND_RCS SWEEP_COUNT logical name. Note, however, the value of
this logical name applies to all row caches.

During a sweep operation, the RCS process may also initiate a dialogue with
current users to reset the reference counts of the rows in the cache. The RCS
process will only do this during a sweep operation if the number of database
recovery processes since the last sweep operation of this row cache has exceeded
the number specified by the RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT logical
name. Only processes that have abnormally terminated fail to clean up their
reference counts normally.

An RCS sweep operation is triggered when a row cache is considered “clogged”.
A row cache is considered clogged when a user fails to find any available slots in
which to insert rows. Even after a row cache is considered full, a user may still
be able to insert rows into that row cache if the user still has reserved slots to
use.

The RCS process clears the clogged flag if the sweep operation was successful in
opening up some slots. The clogged flag can also become clear during a checkpoint
operation if the RCS process has detected row cache entries with zero reference
counts. This will only happen if the clogged flag stays set for three consecutive
checkpoint operations.

Implementing Row Cache

A.4.2.4 Specifying the Size and Location of the Cache Backing File
When allocating the size of the cache backing (.RDC) files, consider the following:

= Whether all rows or only marked rows will be checkpointed
e The amount of update activity in the row cache

= Whether you want to create new backing files on each database open or re-use
existing backing files

If you want Oracle Rdb to automatically rebuild an entire row cache in memory
after a node failure, then define the row cache to checkpoint all rows to a cache
backing file. If you want Oracle Rdb to repopulate the row cache with only the
rows that were modified at the time, then define the row cache to checkpoint only
updated rows to the cache backing file.

The decision you make determines how to size the cache backing files.

If all rows are to be checkpointed, use the following formula to determine the
number of blocks to allocate for the cache backing file.

Number of
blocks = (slot count * (row length + 40)) / 512 bytes per block

If only the updated rows are to be written to the backing file, use the following
formula to allocate the backing file, based on the estimated number of updated
rows in the row cache.

Number of
blocks = (# of updated rows * (row length + 40)) / 512 bytes per block

You can overwrite the allocation specified in the row cache definition with

the RDM$BIND_CKPT_FILE_SIZE system logical name. This specifies the
percentage of the row cache size to allocate for the backing file. The default is 40
percent.

Number of
blocks = (0.40 * slot count * (row length + 40)) / 512 bytes per block

When checkpointing to backing files, Oracle Rdb needs two backing files for
each cache. One is used for the last checkpoint (committed rows), and the other
is for the current checkpoint. Make sure there is enough disk space for two
backing files for each cache. By default, Oracle Rdb deletes the backing files upon
successful database shutdown and recreates them when the database is reopened.
If you prefer, you can tell Oracle Rdb to save the backing files and re-use them on
the subsequent database open by defining the system logical RDM$BIND_RCS _
KEEP_BACKING_FILES to “1".

If you are checkpointing a row cache to the database, you do not need to specify
an allocation or location for the cache backing file. Oracle Rdb will ignore these
clauses.

If you have a read-only cache, specify 1 block for the size of the cache backing file
as follows:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RCACHE_2

cont> LOCATION IS WORK$DISKL[RCS]

cont> ALLOCATION IS 1 BLOCK;

Implementing Row Cache A-23

A.4.3 Controlling What is Cached in Memory

The ROW REPLACEMENT parameter of the ADD, ALTER, and CREATE
CACHE clause gives you some control over what happens when a row cache
becomes full. If row replacement is enabled for a particular row cache, new rows
will replace the oldest, unused, unmarked rows once the cache is full. If row
replacement is disabled, new rows are not placed in the cache once the cache is
full; they will always be retrieved from disk.

When you use the ROW REPLACEMENT IS DISABLED parameter, the data
that was memory resident stays that way and therefore all subsequent reads
occur from memory rather than disk.

You can increase performance by making the following types of rows memory
resident.

e Nonleaf nodes of a B-tree index

Be sure to account for the nodes splitting when you specify the size for the
row cache. If a parent node splits and there is no room in the cache for the
new node, the new node will not be held in memory.

= Data that is primarily read-only

Data that does not change very often, such as dimension tables in a data
warehouse environment, is a good candidate for keeping resident in memory.

= Data that is update-intensive; when the entire table can fit in the cache

Oracle Rdb optimizes access when the cache is defined with row replacement
disabled.

Enabling row replacement is beneficial when access patterns of a table are
random. This ensures that the most frequently accessed rows remain in memory.
Often, there may not be enough physical memory to cache an entire table, so
caching the most frequently used rows can improve performance.

A.4.3.1 Row Replacement Strategy

Global and local buffers use the least-recently used (LRU) replacement strategy
for database pages. Row caching uses a modified form of the LRU replacement
strategy. Each database user can protect the last 10 rows they accessed. This
group of rows is referred to as a working set. Rows that belong to a working
set are considered to be referenced and are not eligible for row replacement.
Any row that is in a cache and is not part of a working set is considered an
unreferenced row. The unreferenced rows are eligible for replacement if they
are not marked.

A.4.3.2 Inserting Rows into a Cache

A-24

Each user process requests rows from the database. A user process, which reads
a row from a storage area, tries to insert the row into the cache (if it is not
already there). If a slot is available, the requested row is stored in the cache, if it
fits. If no more slots are available in the cache, one of the following happens:

e |If ROW REPLACEMENT IS ENABLED, and an unmarked, unreferenced row
can be found, that row is replaced by the new row. Oracle Rdb chooses the
unreferenced row randomly.

e If ROW REPLACEMENT IS DISABLED, the row is not stored in the cache.
This means that when the cache fills, it will not accept new rows. Reserved
slots, however, can still be used.

Implementing Row Cache

You can prevent individual processes from inserting new rows into any Oracle
Rdb row cache by defining the process logical RDM$BIND_RCACHE_INSERT _
ENABLED to “0”. When defined, a process can only use what already exists in
the row caches; the process cannot insert a row into a row cache. This option
is useful if, for example, you want to keep nightly batch processes that perform
large reporting functions from filling up row caches that are also used by the
more important, daily, on-line transaction processing servers.

If system usage is lighter at night, you may want to preload row caches so that
the data is available in memory during the day when database activity is at its
peak.

The remainder of this section illustrates how Oracle Rdb inserts rows into a
cache.

The example makes the following assumptions:

= Row caching is enabled.

= Row replacement is enabled.

= A row cache (RCACHE_1) has been created with 25 slots.

= Two processes (Jones and Smith) are attached to the database.
= The rows in the row cache are not modified.

The initial allocation is as follows:

Row Cache RCACHE 1

Slot 1 2 3 45 6 7 8 91011121314 15161718 19 202122 232425
Row

Counter

Working Set of Process Jones
Slot 1 2 3456 7 8 910
Row

Working Set of Process Smith
Slot 1 2 3456 7 8 910

Row

NU-3614A-RA

1. Process Jones executes a query that causes 5 rows to be read into the first 5
slots of the row cache.

Implementing Row Cache A-25

A-26

Counter

Counter[1|1[af1]afofofofofola]afa]a]afa|a]afa]s

Slot 3 6 7 8 91011121314 151617 18 19 2021 22 23 24 25

Row

l—‘ﬂl—\
=]~
=[]
] o

i

Working Set of Process Jones

Sot 1 2 3456 7 8 910

MnEEaE

Each row slot has a working set counter associated with it. The working set

counter indicates whether the row belongs to a working set. A positive value
indicates that the row belongs to a working set. If a row belongs to a working
set, it is not eligible for row replacement.

NU-3615A-RA

Process Smith requests 15 rows from the database. The first 10 rows
requested go into Smith’s working set as follows:

Working Set of Process Smith

Sot 1 2 3456 7 8 910

rou [FJ[elFI o [JrlMe]

NU-3616A-RA

Process Smith's working set has exactly 10 slots, and all 10 are being used.
The least recently used row is replaced by the eleventh row that Process
Smith reads into the cache. Rows 12 through 15 also overwrite the contents
of slots 2 through 5 respectively.

After the 15 rows are read into the cache, the cache appears as follows:

Slot 1 2 3 45 6 7 8 91011121314 15161718 19 20 21 22 23 2425

wou [l R ENFE I B eI

NU-3617A-RA

After the 15 rows are read into the cache, Process Smith’s working set appears
as follows:

Working Set of Process Smith

Sot 1 2 3456 7 8 910

o IREIHIIME

NU-3618A-RA

At this point, rows F, G, H, I, and J are unreferenced. They are in the cache
but they do not belong to the working set of any process. Oracle Rdb sets
the working set counter for an unreferenced row to zero. The unreferenced
rows are eligible for replacement if they have not been modified and row
replacement is enabled. Any process can read rows F, G, H, I, or J without
executing an 1/O operation. However, if a process requires a row that is not
currently in the cache, one of the rows F, G, H, I, or J is replaced with the
new row.

Implementing Row Cache

Each slot in the row cache contains a modification flag. If the row has been

modified, but not yet flushed to disk, it is considered to be dirty. Dirty rows
are not candidates for row replacement either. Modified rows are written

to disk by the row cache server (RCS) process. See Section A.4.2.1 for more

information.

3. Process Jones requests 7 more rows: M, U, V, W, X, Y, and Z. Jones can read
row M without performing any 1/O because M is already in the cache. An
additional slot does not get filled in the row cache, but row M is added to
Process Jones’ working set.

Process Jones’ working set now appears as follows:

Working Set of Process Jones
Slot 1 2 3456 7 8 910

o[

NU-3619A-RA

Rows U, V, W, X, and Y go into the remaining slots in the row cache and the
row cache appears as follows:

Slot 1 2 3 4

row [A][e][c]p]

Counter| 0 1|1 1|

16 17 18 19 20 21 22 23 24 25

FIk @]

11 1] 1] 1] 1

oll<]s

AR
(S

==

Nk
[O]

13
M
2

Hﬂ(ﬂ
o[[m] e
Sl[o] ~
oEoo
o[=] e«
o [E

[

NU-3620A-RA

Note that the working set counter for slot 13 indicates that row M is in two
working sets. This indicates that two processes are accessing the same row.
The number of processes sharing a particular slot is known as the share
count.

At this point, the cache is full. If row replacement were disabled for the
row cache, then row Z could not be inserted. However, in this example, row
replacement is enabled, and there is an unreferenced slot. Therefore, Oracle
Rdb will choose an unreferenced slot to make room for the new row, Z. (In
this example, the unreferenced slots are A, F, G, H, I, and J.)

A.5 Examining Row Cache Information

You can display the attributes using the SHOW CACHE statement as in the
following example:

SQL> SHOW CACHE PARTS;

PARTS
Cache Size: 204 rows
Row Length: 104 bytes
Row Replacement; Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 1004
Allocation: 100 blocks
Extent: 100 blocks

Implementing Row Cache A-27

You can also use the RMU Dump command with the Header qualifier to display
row cache information, as in the following example:

Example A-4 Row Cache Parameters

$ RMU/DUMP/HEADER INVENTORY

Row Caches... 1

- Active row cache count is 4

- Reserved row cache count is 20

- Checkpoint information
Time interval is 10 seconds
Default source is updated rows
Default target is backing file
Default backing file directory is "DISK1:[RDB]"

Row cache "PARTS"
Cache ID number is 4 2
Allocation... 3
- Row slot count is 204
- Maximum row size allowed in cache is 104 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled
Sweeping... 4
- Sweep row count is 1004
- Maximum batch 1/0 count is 0
Checkpointing... 5
- Source is updated rows (database default)
- Target is backing file (database default)
- No checkpoint information available
- Checkpoint sequence is 0
Files... 6
- Default cache file directory is "DISK1:[RDB]"
- File allocation is 100 blocks
- File extension is 100 blocks
Hashing... 7
- Hash value for logical area DBIDs is 211
- Hash value for page numbers is 11
Shared Memory... 8
- System space memory is disabled
- Large memory is disabled
- Large memory window count is 100
Cache-size in different sections of memory... 9
- Without VLM, process or system memory requirement
is 309760 bytes
- With VLM enabled...
- Process or system memory requirement is 38768 bytes
- Physical memory requirement is 280000 bytes
- VLM Virtual memory address space requirement is
approximately 102400 bytes

The following callouts identify the parameters in Example A-4:
1 Row Caches . ..

e Active row cache count is 4

A-28 Implementing Row Cache

This specifies the number of row caches currently defined in this database.

Reserved row cache count is 20

This specifies the number of slots that are available in the database. The
cache slots are reserved with the RESERVE n CACHE SLOTS parameter
of the ALTER or CREATE DATABASE statements.

Checkpoint information

This displays database-level checkpoint information specified using
parameters of the ADD, ALTER, or CREATE CACHE clauses.

— Time interval is 10 seconds

A checkpoint is one full pass through all active row caches, attempting
to write all or just marked rows back to their respective storage areas
or the backing file. The time interval is set with the CHECKPOINT
TIMED EVERY s SECONDS parameter.

— Default source is updated rows

Only updated rows are written to the backing file or back to the
database storage areas.

— Default target is backing file

Specifies that the default target for the checkpoint is the backing
file and not the database. This is the default target when the
CHECKPOINT UPDATED ROWS parameter is not set.

— Default backing file directory is “DISK1:[RDB]".

The default cache file directory is the directory where Oracle Rdb
places the cache backing store files. If you do not explicitly include a
directory specification, Oracle Rdb will place the backing file in the
directory where the database root file is stored.

Cache ID number is

Oracle Rdb assigns an ID to each defined row cache in the database.

Allocation . ..

Row slot count is 204
This is specified with the CACHE SIZE IS n ROWS parameter.

Maximum row size allowed in cache is 104 bytes
This is specified with the ROW LENGTH IS n BYTES parameter.

Working set count is 10

This is the number of “in use” rows that are not eligible for row
replacement.

Maximum slot reservation count is 20

This is specified with the NUMBER OF RESERVED ROWS parameter.
The default value is 20 rows.

The number of reserved rows indicates how many slots in the cache
Oracle Rdb will reserve for each process. Reserving many rows minimizes
row cache locking while rows are inserted into the cache.

Implementing Row Cache A-29

A-30

The number of reserved rows parameter is also used when searching for
available slots in a row cache. The entire row cache is not searched on the
initial pass. This parameter is used as the maximum number of rows that
are searched for a free slot. If at least one free slot is found, the insert
operation can proceed. If no free slots are found in this initial search,
Oracle Rdb will continue searching through the cache until it finds a free
slot.

Row replacement is enabled

This is specified with the ROW REPLACEMENT parameter. Row
replacement is enabled by default.

Sweeping . ..

Sweep row count is

Sets the number of marked rows that will be swept back to the database
or backing file when the row cache is full and a user attempts to find an
empty slot.

Checkpointing . . .

Source is updated rows (database default)

The source of updated rows is the same as the database default.
Target is backing file (database default)

The target for marked rows is the database default.

Files . ..

Default cache file directory is "DISK1:[RDB]"

The LOCATION parameter specifies a directory specification for the cache
backing store file. Oracle Rdb writes to the cache backing store file when
the RCS process checkpoints. Oracle Rdb automatically generates a file
name with a file extension of .rdc. The default location for the cache
backing store file is the directory where the database root file is stored.

The LOCATION parameter can be specified at the database level or at
the row cache level. If you include the LOCATION parameter in the
ADD CACHE or CREATE CACHE clauses of the CREATE or ALTER
DATABASE statements, the directory you specify becomes the default
directory location for all the row caches that are defined for the database.
You can, however, override the default directory location for individual
row caches by specifying the LOCATION parameter in the row cache
definition.

File allocation is 100 blocks

The ALLOCATION parameter specifies the initial size of the cache
backing file. The default allocation is 40 percent of the cache size. The
cache size is determined by multiplying the number of rows in the cache
by the row length.

File extension is 100 blocks

The EXTENT parameter specifies the number of pages by which the cache
backing store file can be extended after the initial allocation has been
reached. The default extent is 127 multiplied by the number of rows in
the cache.

Implementing Row Cache

Hashing . . .
= Hash value for logical area DBIDs is 211

= Hash value for page numbers is 11

The hash values are used by Oracle Rdb to fine-tune the distribution of
hash table queues in the row cache.

Shared Memory . ..

= System space memory is disabled

This is specified with the SHARED MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in shared memory. The row
cache is created in a process global section (OpenVMS) or in a shared
memory partition (Digital UNIX) by default.

= Large memory is disabled

This is specified with the LARGE MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in physical memory. Large
memory is disabled by default.

= Large memory window count is 100

This is specified with the WINDOW COUNT parameter. The default
value is 100 windows. The WINDOW COUNT specifies how many
locations of the physical memory are mapped to each user’s private
window in virtual address space.

Cache-size in different sections of memory . . .

= Without VLM, process or system memory requirement is 309760 bytes

When the cache is created in a process global section or system space
buffer and VLM is not enabled, this is the memory requirement.

e With VLM enabled . . .

— Process or system memory requirement is 38768 bytes

When VLM is enabled and the cache is created in a process global
section or system space buffer, this is the memory requirement.

— Physical memory requirement is 280000 bytes
The actual cached data requires this space in VLM.

— VLM Virtual memory address space is approximately 102400 bytes
This is the address space used by the virtual memory windows.

A.5.1 RMU Show Statistics Screens and Row Caching

The RMU Show Statistics command displays much information regarding row
caches. The following are titles of some of the screens that can be displayed
regarding row cache:

Summary Cache Statistics
Summary Cache Unmark Statistics
Row Cache (One Cache)

Row Cache (One Field)

Row Cache Utilization

Implementing Row Cache A-31

= Hot Row Information

= Row Cache Status

< Row Cache Queue Length
< Row Length Distribution
= RCS Statistics

= Row Cache Dashboard

= RCS Dashboard

e Per-Process Row Cache Dashboard

A.6 Examples

This section includes some practical examples on using the row cache feature of
Oracle Rdb.

A.6.1 Loading a Logical Area Cache

Use the following steps to place an entire table in a row cache:
1. Determine how many rows are in the table.

SQL> SELECT COUNT(*) FROM EMPLOYEES;
100
1 row selected

2. Create a logical cache large enough to hold to the table.

Use the table name as the name of the cache to create the logical cache.
Oracle Rdb will determine the row length from the table.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPLOYEES
cont> CACHE SIZE IS 100 ROWS;

3. Cause Rdb to sort the table by an indexed field.
This causes rows to be read by DBKEY after the sort is complete.

SQL> SELECT * FROM EMPLOYEES ORDER BY EMPLOYEE_ID;

EMPLOYEE ID LAST _NAME FIRST NAME MIDDLE_INITIAL
ADDRESS DATA 1 ADDRESS DATA 2 CITY
STATE POSTAL CODE SEX BIRTHDAY STATUS_CODE
00197 Danzig Chris NULL
136 Beaver Brook Circle Acworth
NH 03601 F 21-Jun-1939 1

A.6.2 Caching Database Metadata

A-32

Because metadata is frequently accessed, you may want to cache some or all of
your database’s metadata. You can map the entire contents of the RDB$SYSTEM
storage area to a physical area row cache. Alternatively, you can map certain
system tables, such as RDB$SRELATIONS and RDBS$INDICES, into separate
logical area row caches.

Implementing Row Cache

To do this, follow these steps.

1. Use the RMU/DUMP/AREA command to display the contents of the storage
area. (Note that the RMU Dump command output uses the term records to
refer to rows.)

$RMU/DUMP/AREA=RDB$SYSTEM/OUT=RMU_DUMP_1.0UT MF_PERSONNEL
$SEARCH/STATISTICS RMU_DUMP_1.0UT "RECORD LENGTH", "STATIC_DATA"

00A2 0050 record length 162 bytes
00E8 008B record length 232 bytes
00C4 00C6 record length 196 bytes
00E4 0101 record length 228 bytes
0088 013C record length 136 bytes
023C 0177 record length 572 bytes
0220 01B2 record length 544 bytes
030C O01ED record length 780 bytes

Files searched: 1 Buffered 1/0 count: 100
Records searched: 62260 Direct I/0 count: 441
Characters searched: 3459752 Page faults: 20
Records matched: 96 Elapsed CPU time: 0 00:00:01.63
Lines printed: 96 Elapsed time: 0 00:00:02.83

2. Determine the row length and slot count.

Keep in mind that other structures may be stored in this area because it can
be specified as the default storage area for Oracle Rdb.

3. Add the physical cache and assign it to the RDB$SYSTEM storage area.

In the following example, row length has been rounded up and the cache size
has been increased to allow for future growth.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RDB_SYSTEM_CACHE

cont> CACHE SIZE IS 9000 ROWS

cont> ROW LENGTH IS 800 BYTES;

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ALTER STORAGE AREA RDB$SYSTEM

cont> CACHE USING RDB_SYSTEM_CACHE;

4. Or, add the logical area caches to the Rdb system tables of interest.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RDB$RELATIONS

cont> CACHE SIZE IS 1000 ROWS
cont> ROW LENGTH IS 500 BYTES
cont> ADD CACHE RDB$INDICES

cont> CACHE SIZE IS 2000 ROWS
cont> ROW LENGTH IS 500 BYTES;

When caching metadata, you will experience conflicts when executing database
operations through SQL that require exclusive database access. For example, adding
new row caches or dropping existing ones requires exclusive database access. When
the SQL command is parsed, the Oracle Rdb system tables are queried. This access to
the system tables creates the row caches and causes the RCS process to come up to
manage those row caches. As a result, the database now has another “user”, the RCS
process. This causes the exclusive database operation to fail.

Implementing Row Cache A-33

To resolve this, you must first turn off row caching temporarily using the RMU Set
command specifying the Row_Cache and Disabled qualifiers. Then, perform the SQL
operation that requires exclusive database access. Finally, re-enable row caching
using the RMU Set command with the Row_Cache and Enabled qualifiers.

A.6.3 Caching a Sorted Index
To cache a sorted index, use the following steps:

1.

Display the number of index nodes using the RMU Analyze Index command.
(Note that the RMU Analyze command uses the term records to refer to
rows.)

$RMU/ANALYZE/INDEX MF_PERSONNEL EMP_LAST_NAME

Index EMP_LAST NAME for relation EMPLOYEES duplicates allowed
Max Level: 2, Nodes: 8, Used/Avail: 1625/3184 (51%), Keys: 90, Records: 67
Duplicate nodes: 16, Used/Avail: 264/312 (85%), Keys: 16, Records: 33

Count the number of nodes and duplicate nodes.

Allocate slots based on the number of nodes currently used and allow for
future growth.

In this example, allocating 28 slots would be reasonable.

Determine node and duplicate node size. Sorted indexes with duplicates
should be sized at 430 bytes rounded up to the next 4-byte interval.

Create a logical cache for the sorted index.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMP_LAST_NAME

cont> ROW LENGTH IS 440 BYTES

cont> CACHE SIZE IS 28 ROWS;

A-34 Implementing Row Cache

B

Row Cache Statements

B.1 ALTER DATABASE Statement

B.1.1 Overview
Alters a database in any of the following ways:

= For single-file and multifile databases, the ALTER DATABASE statement
changes the characteristics of the database root file.

The ALTER DATABASE statement lets you override certain characteristics
specified in the database root file parameters of the CREATE DATABASE
statement, such as whether or not a snapshot file is disabled. In addition,
ALTER DATABASE lets you control other characteristics you cannot specify
in the CREATE DATABASE database root file parameters, such as whether
or not after-image journaling is enabled.

= For single-file and multifile databases, the ALTER DATABASE statement
changes the storage area parameters.

= For multifile databases only, the ALTER DATABASE statement adds, alters,
or deletes storage areas.

B.1.2 Environment
You can use the ALTER DATABASE statement:
e In interactive SQL
e Embedded in host language programs to be precompiled
= As part of a procedure in an SQL module

= In dynamic SQL as a statement to be dynamically executed

Row Cache Statements B-1

B.1.3 Format

FILENAME <file-spec>

ALTER DATABASE _E:

PATHNAME <path-name>

—) k» literal-user-auth

(

1222221122

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
alter-journal-params

alter-storage-area-params
add-row-cache-clause

add-journal-clause
add-storage-area-clause
alter-row-cache-clause

alter-journal-clause
alter-storage-area-clause
drop-clause

<
<

alter-root-file-params2 =

VoYY vvivey

¢

CARDINALITY COLLECTION IS

ENABLED

CARRY OVER LOCKS ARE

G

LOCK PARTITIONING IS

METADATA CHANGES ARE

STATISTICS COLLECTION IS

WORKLOAD COLLECTION IS

LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS

RECOVERY JOURNAL — (—» BUFFER MEMORY IS

RESERVE <n> E

ROW CACHE IS _E:

SET
ALTER

DISABLED :

LOCAL —
_[: GLOBALj->)

CACHE SLOTS
JOURNALS

STORAGE AREAS —
» ENABLED —

DISABLED

row-cache-options =

- (

CHECKPOINT

TIMED EVERY <n> SECONDS
UPDATED ROWS TO _E:

J L» row cache-options J
TRANSACTION MODES —» —ﬂmodf:—») —

BACKING FILE
DATABASE

ALL ROWS TO BACKING FILE

LOCATIONIS —» <directory-spec>

NO LOCATION

<
<

B-2 Row Cache Statements

v

v

alter-storage-area-params =

——> ALLOCATIONIS —» <number-pages> —>» PAGES —>

— extent-params

—» CACHE USING <row-cache-name>

—» NO ROW CACHE

—> LOCKING IS ROW LEVEL

T T baee J

—» READ WRITE

—> READ ONLY

—» SNAPSHOT ALLOCATIONIS ~ —» <snp-pages> —» PAGES ——

—»> SNAPSHOT EXTENT IS <extent-pages> —» PAGES
(extension-options) T

—» CHECKSUM CALCULATION IS ENABLED 7

‘& SNAPSHOT CHECKSUM CALCULATION IS J L» DISABLED

add-row-cache-clause =

v

row-cache-paramsl
row-cache-params2

<

— ADD CACHE <row-cache-name> 1 b

)

<

row-cache-paramsl =

ALLOCATION IS <n>
EXTENT IS <n> _ k: BLOCK
BLOCK

v

CACHE SIZE IS <n> ROW
- _:: ROWS—)

vy oYy

CHECKPOINT UPDATED ROWS TO —(: BACKING FILE
T S
ALL ROWS TO BACKING FILE

LARGE MEMORY IS ﬂ—c: 'ENABLED —
ROW REPLACEMENT IS DISABLED J

LOCATIONIS ~ —» <directory-spec>
NO LOCATION

£¢¢¢

row-cache-params2 =

NUMBER OF _C: RESERVED ROWSIS<n> —>
SWEEP
ROW LENGTH IS <n> ﬂ

—>» BYTE
—> BYTES

SHARED MEMORY IS SYSTEM 77
_:: PROCESS

WINDOW COUNT IS <n>

Row Cache Statements B-3

storage-area-params-2 =

—» CHECKSUM CALCULATION IS] » ENABLED 7
—» SNAPSHOT CHECKSUM CALCULATION IS L» DISABLED
—» SNAPSHOT ALLOCATIONIS ~ —» <snp-pages> ——» PAGES —
—» SNAPSHOT EXTENT IS <extent-pages> — PAGES

_E: (extension-options) J
—» SNAPSHOT FILENAME — <file-spec>
—» THRESHOLDS ARE (<vall> >) —

k» <val2> «ﬁ—)
,<val3>

& WRITE ONCE

L» (—» JOURNALIS _E: ENABLED j—b))

DISABLED

alter-row-cache-clause =

»
»

— ALTER CACHE <row-cache-name>
b row-cache-params1 j
row-cache-params2

<
<

drop-clause =

v

DROP CACHE <row-cache-name> 7
DROP STORAGE AREA <area-name> b CASCADE ﬂ
RESTRICT

DROP JOURNAL <journal-name>

B.1.4 Arguments

B.1.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL | GLOBAL})
The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of ROW CACHE, these buffers can now be
assigned to a shared global section (GLOBAL memory) so that the recovery
process can process this in memory buffer and possibly avoid a disk access.

This buffer memory can be defined a GLOBAL to improve ROW CACHE
performance for recovery. If ROW CACHE is DISABLED then buffer memory
is always LOCAL.

B.1.4.2 RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the database
root file for future use by the ADD CACHE clause. Row caches can be added only
if there are row cache slots available. Slots become available after a DROP
CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row cache cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row caches.

Reserving row cache slots is an offline operation (requiring exclusive database
access).

B-4 Row Cache Statements

B.1.4.3 CACHE USING row-cache-name

Assigns the named row cache as the default physical row cache for all storage
areas in the database. All rows stored in each storage area, whether they consist
of table data, segmented string data, or special rows such as index nodes, are
cached.

The row cache must exist before terminating the ALTER DATABASE statement.

Alter the database and storage area to assign a new physical area row cache to
override the database default physical area row cache. Only one physical area
row cache is allowed for each storage area.

You can have multiple row caches containing rows for a single storage
area by defining logical area row caches, where the row cache name
matches the name of a table or index.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.1.4.4 NO ROW CACHE

Specifies that the database default is not to assign a row cache to all storage
areas in the database. You cannot specify the NO ROW CACHE clause if you
specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.1.4.5 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching feature.

Enabling cache support does not affect database operations until a cache is
created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
caches remain in existence for future use when the row caching feature is
enabled.

Enabling and disabling the row cache feature is an offline operation (requiring
exclusive database access).

B.1.4.5.1 CHECKPOINT TIMED EVERY N SECONDS Specifies the frequency
with which the RCS process checkpoints the contents of the row caches back to
disk. The RCS process does not use the checkpoint frequency options of
the FAST COMMIT clause.

The frequency of RCS checkpointing is important in determining how much of
an AlJ file must be read during a REDO operation following a node failure. It
also affects the frequency that marked records get flushed back to the database,
for those row caches that checkpoint to the database. The default is every 15
minutes (900 seconds).

Row Cache Statements B-5

B.1.4.5.2 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the default source and target for checkpoint operations for
all row caches. If ALL ROWS is specified, then the source records written during
each checkpoint operation are both the modified and the unmodified rows in a
row cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS

is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database level CHECKPOINT clause.

B.1.4.5.3 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.1.4.5.4 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.1.4.6 ADD CACHE clause
Creates a new row cache.

B.1.4.6.1 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS Specifies the
initial allocation of the row cache backing file (.rdc) to which cached rows are
written during a checkpoint operation.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this row cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B—-6 Row Cache Statements

B.1.4.6.2 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS Specifies the
number of rows allocated to the row cache. As the row cache fills, rows more
recently referenced are retained in the row cache while those not referenced
recently are discarded. Adjusting the allocation of the row cache helps to retain
important rows in memory. If not specified, the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines the
amount of memory required for the row cache. (Some additional overhead and
rounding up to page boundaries is performed by the database system.) The row
cache is shared by all processes attached to the database.

B.1.4.6.3 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the source and target for checkpoint operations for the
row cache. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in the row
cache. If UPDATED ROWS is specified, then just the modified rows in the row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS

is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

This CHECKPOINT clause overrides the database level CHECKPOINT clause.

B.1.4.6.4 EXTENT IS n BLOCK/EXTENT IS n BLOCKS Specifies the file extent
size for the row cache backing file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.5 LARGE MEMORY IS ENABLED/LARGE MEMORY IS DISABLED
Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as is
available. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:
e You have enabled row caching.

= You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to the
very large memory (VLM) feature.

Row Cache Statements B-7

B.1.4.6.6 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

This LOCATION clause overrides a previously specified location at the database
level.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.7 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.8 NUMBER OF RESERVED ROWS IS n Specifies the maximum number
of cache rows that each user can reserve. The default is 20 rows.

The number of reserved rows parameter is also used when searching for available
slots in a row cache. The entire row cache is not searched on the initial pass.
This parameter is used as the maximum number of rows that are searched for

a free slot. If at least one free slot is found, the insert operation can proceed. If
no free slots are found in this initial search, Oracle Rdb will continue searching
through the cache until it finds a free slot.

B.1.4.6.9 NUMBER OF SWEEP ROWS IS n Specifies the number of modified
cache rows that will be written back to the database to make space available

in the cache for subsequent transactions to insert rows into the cache. It is
recommended that users initially specify the number of sweep rows to be between
ten and thirty percent of the total number of rows in the cache. Users should
then monitor performance and adjust the number of sweep rows if necessary. The
default setting is 3000 rows.

B.1.4.6.10 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES Specifies the
size of each row allocated to the row cache. Rows are not cached if they are longer
than a row cache row. The ROW LENGTH is an aligned longword rounded up to
the next multiple of 4 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.

B.1.4.6.11 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT IS
DISABLED Specifies whether or not Oracle Rdb replaces rows in the cache.
When the ROW REPLACEMENT IS ENABLED clause is used, rows are
replaced when the row cache becomes full. When the ROW REPLACEMENT
IS DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

B-8 Row Cache Statements

B.1.4.6.12 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS PROCESS
Determines whether cache global sections are created in system space or process
space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps

a row cache to a private address space for each user. As a result, all users are
limited by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using SHARED MEMORY
IS SYSTEM. This gives users more physical memory because they share the
system space of memory and there is none of the overhead associated with the
process space of memory.

B.1.4.6.13 WINDOW COUNT IS n Specifies the number of virtual address
windows used by the LARGE MEMORY clause.

The window is a view into the physical memory used to create the very large
memory (VLM) information. Because the VLM size may be larger than that
which can be addressed by a 32-bit pointer, you need to view the VLM information
through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows.

B.1.4.7 ALTER CACHE row-cache-name
Alters existing row caches.

B.1.4.7.1 row-cache-params For information regarding the row-cache-params,
see the descriptions under the ADD CACHE argument described earlier in this
arguments list.

B.1.4.7.2 DROP CACHE row-cache-name CASCADE

B.1.4.7.3 DROP CACHE row-cache-name RESTRICT Deletes the specified row
cache from the database.

If the mode is RESTRICT, an exception is raised if the row cache is assigned to a
storage area.

If the mode is CASCADE, the row cache is removed from all referencing storage
areas.

The default is RESTRICT if no mode is specified.

B.2 CREATE DATABASE

B.2.1 Overview

Creates database system files, metadata definitions, and user data that comprise
a database. The CREATE DATABASE statement lets you specify in a single
SQL statement all data and privilege definitions for a new database. (You can
also add definitions to the database later.) For information about ways to ensure
good performance and data consistency, see the Oracle Rdb Guide to Database
Performance and Tuning.

Row Cache Statements B-9

B.2.2 Environment
You can use the CREATE DATABASE statement:

B.2.3 Format

CREATE DATABASE

In interactive SQL
Embedded in host language programs to be precompiled
As part of a procedure in an SQL module

In dynamic SQL as a statement to be dynamically executed

L» ALIAS <alias> —)

root-file-params-1 storage-area-params-1
root-file-params-2 storage-area-params-2
root-file-params-3 <

root-file-params-4

<
<

(
L» character-sets —) k-rr database-element jj

v

root-file-params-2 =

B-10 Row Cache

v

—» SNAPSHOT IS ENABLED _E: IMMEDIATE
DEFERRED —;
DISABLED

DICTIONARY IS REQUIRED
_C: NOT REQUIRED —)
ADJUSTABLE LOCK GRANULARITY IS ENABLED —» alg-options _J_
DISABLED

LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING ——» STORAGE AREA IS <area-name>
ST |
DEFAULT ——
PROTECTION IS » ANSI

ACLS
RECOVERY JOURNAL —» (—» BUFFER MEMORY IS LOCAL) —
GLOBAL

I

JOURNALS -
STORAGE AREAS —

SET TRANSACTION MODES —» (txn-modes) —
ALTER E g

RESERVE <n> E CACHE SLOTS

Statements

root-file-params-3 =

v

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
LOCK PARTITIONING IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
SYSTEM INDEX COMPRESSION IS
WORKLOAD COLLECTION IS
ASYNC BATCH WRITES ARE ENABLED —» async-bat-wr-options T
DISABLED

T ASYNC PREFETCH IS)

DETECTED
LE: ENABLED — async-prefetch-options

DISABLED '

ROW CACHE IS ENABLED —
_C: DISABLED J L» row-cache-options J

v ovYviveey

{

row-cache-options =

- CHECKPOINT TIMED EVERY <n> SECONDS
UPDATED ROWS TO BACKING FILE —
DATABASE

ALL ROWS TO BACKING FILE

LOCATIONIS ~— <directory-spec>
NO LOCATION

v

<&
1 v

storage-area-params-1 =

v

—» ALLOCATIONIS —» <number-pages> —» PAGES
—» CACHE USING <row-cache-name>
—» NO ROW CACHE
—» extent-params
—»> INTERVALIS —» <number-data-pages>
—» LOCKING IS —E: ROW LEVEL

PAGE
—» PAGE FORMAT IS » UNIFORM

MIXED —)

p

PAGESIZEIS ~ —— <page-blocks> —» BLOCKS

Row Cache Statements B-11

storage-area-params-2 =

v

CHECKSUM CALCULATION IS] » ENABLED 7
SNAPSHOT CHECKSUM CALCULATION IS L» DISABLED
SNAPSHOT ALLOCATION IS~ —» <snp-pages> ——» PAGES ——
SNAPSHOT EXTENT IS <extent-pages> — PAGES
_E: (extension-options) J
SNAPSHOT FILENAME — <file-spec>

THRESHOLDS ARE (<vall> >) —
k» <val2> «ﬁ—)
<val3>

WRITE ONCE

11z

v

L» (—» JOURNALIS _E: ENABLED j—b))

DISABLED

B.2.4 Arguments

B.2.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL | GLOBAL})

The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of ROW CACHE, these buffers can now be
assigned to a shared global section (GLOBAL memory) so that the recovery
process can process this in memory buffer and possibly avoid a disk access.

This buffer memory can be defined a GLOBAL to improve ROW CACHE
performance for recovery. If ROW CACHE is DISABLED then buffer memory
is always LOCAL.

B.2.4.2 CACHE USING row-cache-name
Assigns the named row cache as the default physical row cache for all storage
areas in the database. All rows stored in each storage area, whether they consist
of table data, segmented string data, or special rows such as index nodes, are
cached.

You must create the row cache before terminating the CREATE DATABASE
statement. For example:

SQL> CREATE DATABASE FILENAME test _db
cont> ROW CACHE IS ENABLED

cont> CACHE USING testl

cont> CREATE CACHE testl

cont> CACHE SIZE IS 100 ROWS

cont> CREATE STORAGE AREA areal;

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

You can override the database default row cache by either specifying the CACHE
USING clause after the CREATE STORAGE AREA clause or by later altering the
database and storage area to assign a new row cache. Only one physical area row
cache is allowed for each storage area.

You can have multiple row caches containing rows for a single storage
area by defining logical area row caches, where the row cache name
matches the name of a table or index.

B-12 Row Cache Statements

B.2.4.2.1 NO ROW CACHE Specifies that the database default is not to assign
a row cache to all storage areas in the database. You cannot specify the NO ROW
CACHE clause if you specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.2.4.3 RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the database
root file for future use by the ADD CACHE clause. Row caches can be added only
if there are row cache slots available. Slots become available after a DROP
CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row caches cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row caches.

Reserving row cache slots is an offline operation (requiring exclusive database
access). See the Section B.1 for more information about row caches.

B.2.4.4 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching feature.

When a database is created or is converted from a previous version of Oracle Rdb
without specifying row cache support, the default is ROW CACHE IS DISABLED.
Enabling row cache support does not affect database operations until a row cache
area is created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
row caches remain in existence for future use when the row caching feature is
enabled.

B.2.4.4.1 CHECKPOINT TIMED EVERY N SECONDS Specifies the frequency
with which the RCS process checkpoints the contents of the row caches back to
disk. The RCS process does not use the checkpoint frequency options of
the FAST COMMIT clause.

The frequency of RCS checkpointing is important in determining how much of
an AlJ file must be read during a REDO operation following a node failure. It
also affects the frequency that marked records get flushed back to the database,
for those row caches that checkpoint to the database. The default is every 15
minutes (900 seconds).

B.2.4.4.2 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the default source and target for checkpoint operations for
all row caches. If ALL ROWS is specified, then the source records written during
each checkpoint operation are both the modified and the unmodified rows in a
row cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is

Row Cache Statements B-13

able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS

is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database level CHECKPOINT clause.

B.2.4.4.3 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.2.4.4.4 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.3 CREATE CACHE Clause

Creates a row cache area that allows frequently referenced rows to remain in
memory even when the associated page has been transferred back to disk. This
saves in memory usage because only the more recently referenced rows are
cached versus caching the entire buffer.

See the Section B.1 and the Section B.2 for more information regarding the row
cache areas.

B.3.1 Environment

You can use the CREATE CACHE clause only within a CREATE DATABASE or
IMPORT statement.

B.3.2 Format

CREATE CACHE <row-cache-name> >
b row-cache-params1 j
row-cache-params2

<

B-14 Row Cache Statements

row-cache-params1 =
ALLOCATION IS <n>

EXTENT IS <n> — BLOCK
BLOCKS

CACHE SIZE IS <n> ROW
T T rows
CHECKPOINT UPDATED ROWS TO —(: BACKING FILE

T: DATABASE —

ALL ROWS TO BACKING FILE

LARGE MEMORY IS ﬂ—c: ENABLED —
ROW REPLACEMENT IS DISABLED —)
LOCATIONIS ~—» <directory-spec>
NO LOCATION

v

vy ¢¢

2%

row-cache-params? =

NUMBER OF _E: RESERVED ROWSIS<n> —>
SWEEP
ROWLENGTHIS <n> — ﬂ

—— BYTE
——— BYTES

SHARED MEMORY IS SYSTEM 77
_:: PROCESS

WINDOW COUNT IS <n>

B.3.3 Arguments
B.3.3.0.1 CACHE row-cache-name Creates a row cache.

B.3.3.0.2 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS Specifies
the initial allocation of the row cache file (.rdc) to which cached rows are written
during a checkpoint operation.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.3 EXTENT IS n BLOCK/EXTENT IS n BLOCKS Specifies the file extent
size for the row cache backing file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.4 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS Specifies the
number of rows allocated to the row cache. As the row cache fills, rows more
recently referenced are retained in the row cache while those not referenced
recently are discarded. Adjusting the allocation of the row cache helps to retain
important rows in memory. If not specified, the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines the
amount of memory required for the row cache. (Some additional overhead and
rounding up to page boundaries is performed by the database system.) The row
cache is shared by all processes attached to the database.

Row Cache Statements B-15

B.3.3.0.5 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the source and target for checkpoint operations for the row
cache. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in the row
cache. If UPDATED ROWS is specified, then just the modified rows in the row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS

is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

This CHECKPOINT clause overrides the database level CHECKPOINT clause.

B.3.3.0.6 LARGE MEMORY IS ENABLED/LARGE MEMORY IS DISABLED
Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as is
available. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:
= You have enabled row caching.

< You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED.

See the Usage Notes for restrictions pertaining to the very large memory (VLM)
feature.

B.3.3.0.7 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT IS
DISABLED Specifies whether or not Oracle Rdb replaces rows in the cache.
When the ROW REPLACEMENT IS ENABLED clause is used, rows are
replaced when the row cache becomes full. When the ROW REPLACEMENT
IS DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

B.3.3.0.8 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

This LOCATION clause overrides a previously specified location at the database
level.

B-16 Row Cache Statements

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.9 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.10 NUMBER OF RESERVED ROWS IS n Specifies the maximum
number of cache rows that each user can reserve. The default is 20 rows.

The number of reserved rows parameter is also used when searching for available
slots in a row cache. The entire row cache is not searched on the initial pass.
This parameter is used as the maximum number of rows that are searched for

a free slot. If at least one free slot is found, the insert operation can proceed. If
no free slots are found in this initial search, Oracle Rdb will continue searching
through the cache until it finds a free slot.

B.3.3.0.11 NUMBER OF SWEEP ROWS IS n Specifies the number of modified
cache rows that will be written back to the database to make space available

in the cache for subsequent transactions to insert rows into the cache. It is
recommended that users initially specify the number of sweep rows to be between
ten and thirty percent of the total number of rows in the cache. Users should
then monitor performance and adjust the number of sweep rows if necessary. The
default setting is 3000 rows.

B.3.3.0.12 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES Specifies

the size of each row allocated to the row cache. Rows are not cached if they are
longer than a row cache row. The ROW LENGTH is an aligned longword rounded
up to the next multiple of 4 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.
The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.

B.3.3.0.13 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS PROCESS
Determines whether cache global sections are created in system space or process
space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache to a private address space for each user. As a result, all users are
limited by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using SHARED MEMORY
IS SYSTEM. This gives users more physical memory because they share the
system space of memory and there is none of the overhead associated with the
process space of memory.

B.3.3.0.14 WINDOW COUNT IS n Specifies the number of virtual address
windows used by the LARGE MEMORY clause.

The window is a view into the physical memory used to create the very large
memory (VLM) information. Because the VLM size may be larger than that
which can be addressed by a 32-bit pointer, you need to view the VLM information
through small virtual address windows.

Row Cache Statements B-17

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows.

B.3.4 Usage Notes

= If the name of the row cache is the same as any logical area (for example a
table name, index name, storage map name, RDB$SEGMENTED_STRINGS,
RDB$SYSTEM_RECORD, and so forth), then this is a logical area cache and
the named logical area is cached automatically. Otherwise, a storage area
needs to be associated with the cache.

e The CREATE CACHE clause does not assign the row cache to a storage area.
You must use the CACHE USING clause with the CREATE STORAGE AREA
clause of the CREATE DATABASE statement or the CACHE USING clause
with the ADD STORAGE AREA or ALTER STORAGE AREA clauses of the
ALTER DATABASE statement.

e The product of the CACHE SIZE and the ROW LENGTH settings determines
the amount of memory required for the row cache (some additional overhead
and rounding up to page boundaries is performed by the database system).

= The row cache is shared by all processes attached to the database on any one
node.

= The following are requirements when using the row caching feature:
— After-image journaling must be enabled
— Fast commit must be enabled
— Number of cluster nodes must equal 1

e Use the SHOW CACHE statement to view information about a cache.

B-18 Row Cache Statements

C

Release Notes Relating to the Row Cache
Feature

This section describes software errors that were fixed by Oracle Rdb7 Release
7.0.1.5 and 7.0.1.6 relating specifically to the row cache feature.

C.1 Software Errors Fixed That Apply to All Interfaces

C.1.1 RCS Maximum Log File Size Control Logical

In prior versions of Oracle Rdb7, the Row Cache Server (RCS) process log file
(enabled via the RDM$BIND_RCS_LOG_FILE logical name) would continue to
grow until the database was shut down. This would be a significant problem
because when the disk containing the log file would become full, the RCS process
could fail.

The RCS process log file maximum size can now be controlled with the system
logical name RDM$BIND_RCS_LOG_REOPEN_SIZE. This logical, when defined
before the database is opened, limits the allocated size of the RCS log file. When
the log file allocation reaches the specified number of disk blocks, the current log
file will be closed and a new log file opened. Older log files can be archived or
purged as needed.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.5.

C.1.2 New RMU /SET ROW_CACHE [/[ENABLE | /DISABLE] Command

A new RMU /SET command “ROW_CACHE” has been added to allow the
database Row Cache feature to be enabled or disabled without requiring that
the database be opened. This command requires exclusive database access (the
database can not be open or be accessed by other users).

Valid qualifiers for the “"RMU /SET ROW_CACHE" command are:

e /ENABLE to enable row caching

< /DISABLE to disable row caching

< /LOG to display a log message at the completion of the RMU /SET operation
The /ENABLE and /DISABLE qualifiers are mutually exclusive.

This command has been added to Oracle Rdb7 Release 7.0.1.5.

C.1.3 RCS Clearing "GRIC" Reference Counts

When the Oracle Rdb7 Row Cache feature is enabled, the Row Cache Server
(RCS) process will attempt to clear the reference count field in a data structure
called a GRIC. The reference count will be cleared periodically based on the
number of DBR (Database Recovery) processes run. If enough DBR processes
have run, a Row Cache "sweep" request can trigger the reference count clearing.

Release Notes Relating to the Row Cache Feature C-1

When a process that uses a row cache abnormally terminates (via STOP/ID, for
example), it can leave references in the cache that would prevent rows in the
cache from being removed. This can cause the cache to become full of rows that
are not really referenced by any process though they appear to be referenced due
to an elevated reference count.

A Row Cache "sweep" request to the RCS process indicates that a cache is "full"
and there is no more room to insert new rows into the cache. When the RCS
process receives the sweep request, it will see if a number of DBRs have run since
the last sweep. If enough DBRs have run (the default is 25 DBRs since the last
sweep for the cache), the RCS will initiate a "Release GRICs" operation.

This operation can have a minor performance impact to users of the cache and
can also delay the RCS from performing other operations. This is why it is a
periodic event.

The system logical name RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT can be
used to control the number of DBRs that must elapse before the RCS will initiate
clearing of the GRIC reference counts. The maximum value of the logical name is
"100000". The default value (if the logical name is not defined) is "25". Defining
the logical name with a value of "0" disables clearing the reference counts.

For most systems, the default value is adequate. However, systems with very
frequent database recoveries may need a high value of the logical name to reduce
the frequency that the reference counts are cleared. The RCS process log file can
be used to determine how often the reference counts are cleared.

This new logical name has been included in Oracle Rdb7 Release 7.0.1.5.

C.1.4 Row Cache RDC File Name Change

In the previous release of Oracle Rdb7, the Row Cache backing store file used a
file type of “.RDC". This behavior caused a file name conflict when a database was
replicated either with the RMU/COPY command or when using the “Hot Standby”
feature.

This conflict has been resolved in Oracle Rdb7 Release 7.0.1.5. The Row Cache
backing store file type has been extended to include the root file device name and
file ID in a BASE32 format (where valid characters are 0 to 9 and A to W).

For example, a row cache backing store file name may now have a format similar
to the following:

EMPIDX_10_0.RDC_0C1H85848N000063228L;1

In this example, the value “0C1H85848N0O00063228L" represents the device
name and file ID of the root file for the database. The file type is always prefixed
with “.RDC_" All Row Cache backing store files for a database have this same
exact file type. Another database using the same location for backing store files
would use a different file type (perhaps “.RDC_4D87HD234FSD0063228L").

To associate a database with a Row Cache backing store file, the “RMU /DUMP
/CACHE_FILE” command can be used to display the Row Cache backing store file
header when the full name of the database root file is stored.

Because existing Row Cache backing store files have a file type of “.RDC", if
you use the RDM$BIND_RCS_KEEP_BACKING_FILES logical to keep existing
backing store files from being deleted when a database is closed, you should
deassign the logical prior to closing the database(s) in preparation for installing
Oracle Rdb7 Release 7.0.1.5. This will allow existing “.RDC" files to be deleted

properly.

C-2 Release Notes Relating to the Row Cache Feature

C.1.5 VLM or System Space Buffer Corruption

Very rarely, small portions of cache memory could be incorrectly left un-initialized
when using the Row Cache Feature with the Very Large Memory (VLM) or
System Space Buffers (SSB) options on multi-processor (SMP) Alpha systems.

This problem could occur more often with large caches, under heavy system loads,
on multi-processor systems. If the process that was initializing a row cache was
rescheduled onto another CPU, it was possible that the CPU translation buffer
(TB) on one of the processors was not correctly invalidated. If the process were
to be rescheduled back on to the original processor, there was an outside chance
that a memory page within the cache would not be correctly erased.

Because the first process to access a row cache creates and initializes the cache, a
possible workaround is to stop all but the primary CPU on the system while row
caches are being initially accessed.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6. During VLM
or SSB creation, the process prevents itself from being rescheduled while it is
invalidating the system translation buffers.

Invisible Row After Erase and Store With Row Cache

If a row cache was created with a row length smaller than the largest data row
to be stored and if the row had previously been erased from the cache, it was
possible for the row to become “invisible”.

The following example demonstrates the problem.

SQL> create data file foo
cont> number of cluster nodes is 1
cont> reserve 1 cache slot;
SQL> create table ¢l (t1 char (100));
SQL> commit;
SQL> disconnect all;
SQL> alter data file foo
cont> row cache enable
cont> add journal j1 file j1
cont> journal enable (fast commit enable)
cont> add cache c1 row length is 50;
SQL> attach ‘file foo’,
SQL> insert into ¢l
cont> values (‘ab)
cont> returning dbkey;
DBKEY
47:554:0
1 row inserted
SQL> commit;
SQL> delete from cl;
1 row deleted
SQL> commit;
SQL> disconnect all;
SQL> attach ‘file foo’
SQL> insert into cl
cont> values (‘abababababababababaababababababababababababababa’)
cont> returning dbkey;
DBKEY
47:554:0
1 row inserted
SQL> commit;
SQL> select * from cl,;
0 rows selected
SQL> commit;

Release Notes Relating to the Row Cache Feature C-3

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6. The erased
row is now correctly detected and the row that is too large for the cache is now
returned from disk.

C.1.7 Overriding RCS Checkpoint Timer Interval

In the prior versions of Oracle Rdb7, the Row Cache Server (RCS) process’
checkpoint timer interval could be overridden by the system logical "RDM$BIND _
CKPT_TIME". This is the logical that allows the fast commit checkpoint timer
interval to be overridden. Using the same logical for the RCS checkpoint timer
was confusing and error prone.

Beginning with Oracle Rdb7 Release 7.0.1.6, the RCS process’ checkpoint timer
interval can be overridden with a new system logical name, "RDM$BIND_RCS _
CKPT_TIME".

If neither this logical nor the “ROW CACHE IS ENABLED (CHECKPOINT
TIMED EVERY n SECONDS)” database clause is specified, then the RCS process
will use the "RDM$BIND_CKPT_TIME" logical name or its associated dashboard
value.

If RCS still has a zero checkpoint timer interval, then it will default to a fixed 15
minute interval.

C.1.8 Refresh RCS Metadata Information

In the prior versions of Oracle Rdb7, the Row Cache Server (RCS) process
would maintain its metadata structures across checkpoint and sweep requests.
While the RCS process was active, however, Oracle Rdb7 would allow tables,
indices, and storage areas to be dropped and recreated. In these situations, it
was possible for the RCS process to not notice the metadata changes and use
the original metadata to write modified records from the row caches back to the
original database storage areas. This would result in database corruptions and
bugcheck dumps.

In Oracle Rdb7 Release 7.0.1.6, the RCS now recognizes that if it is not holding
the corresponding logical or physical area locks, its metadata may be obsolete.
When this occurs, the RCS process refreshes its metadata structures from the
AIP and root file information.

C.1.9 RCS ACCVIO When Checkpointing All Row Caches to Database

Begining with Release 7.0.1.5 of Oracle Rdb7, the Row Cache Server (RCS)
process would inadvertently access violate after completing its final checkpoint to
the database as part of a database shutdown operation. It was access violating
while trying to clean up a data structure that had not been allocated.

This problem does not corrupt the database. Simply reopen the database and
database access will be fine until the database is closed again, whereupon this
problem will be hit again. A workaround to this problem is to have at least one
row cache checkpoint to a backing file.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6.

C-4 Release Notes Relating to the Row Cache Feature

D

Known Problems and Restrictions Relating to
the Row Cache Feature

This section describes known problems and restrictions relating to the row cache
feature and includes workarounds where appropriate. Unless otherwise noted, all
notes apply to all platforms.

D.1 Known Problems and Restrictions

D.1.1 RMU Online Verification Operations and Row Cache

When using row caches, some RMU online verification operations may report
errors in the database structure and may not be generally reliable in all
verifications. These errors may be due to RMU validating the on-disk database
structure and not the actual logical database structure including the row cache
contents.

For example, one of the verifications that is performed by RMU/VERIFY is to
ensure that system records in mixed format areas have a “system record” record
ID. However, when a physical row cache is being used, the row on the database
page may be marked as “reserved by record cache” because the row has been
modified in the row cache but has not yet been flushed to disk.

In the following example, the database ID of 00002011 refers to the “reserved by
record cache” record type and 00002001 refers to the system record type:

$ RMU/VERIFY/ONLINE DKAOQ:[DBJMYDB.RDB;1

%RMU-E-PAGSYSREC, area INDEX_MIXED _AREA, page 3
system record contains an invalid database 1D
expected: 00002001 (hex), found: 00002011 (hex)

D.1.2 Limitation: Online RMU /VERIFY and Row Cache

Performing online RMU /VERIFY operations on a database with the Row Cache
feature enabled may report errors even though there is actually no problem.
RMU /VERIFY is not fully integrated with the Row Cache feature in this release.
Because of this, if there is database modification activity occurring while the
verify is running, misleading error messages may be displayed.

If possible, limit online RMU /VERIFY operations to times when the database is
not being actively modified or perform an offline database verification.

This problem will be corrected in a future Oracle Rdb release.

Known Problems and Restrictions Relating to the Row Cache Feature D-1

D.1.3 Adding Row Caches Requires Exclusive Database Access

Adding a row cache with the ALTER DATABASE ADD CACHE command now
requires exclusive database access.

Previously, it was possible for a new row cache to be added online. This new cache
would be seen by users attaching to the database after the cache was created, but
users that were already attached to the database would not be able to access the
cache and would return results from the database without referencing the cache.
This situation resulted in database corruption.

D.1.4 Conflicts When Caching Metadata and Executing Certain SQL Database
Operations

When caching metadata, you will experience conflicts when executing database
operations through SQL that require exclusive database access. For example,
adding new row caches or dropping existing ones requires exclusive database
access. When the SQL command is parsed, the Oracle Rdb system tables are
gueried. This access to the system tables creates the row caches and causes the
RCS process to come up to manage those row caches. As a result, the database
now has another “user”, the RCS process. This causes the exclusive database
operation to fail.

To resolve this, you must first turn off row caching temporarily using the RMU
Set command specifying the Row_Cache and Disabled qualifiers. Then, perform
the SQL operation that requires exclusive database access. Finally, re-enable
row caching using the RMU Set command with the Row_Cache and Enabled
qualifiers.

D-2 Known Problems and Restrictions Relating to the Row Cache Feature

E

Logical Names Relating to the Row Cache
Feature

This section describes logical names relating specifically to the row cache feature
and explains when and how to use them. Note that the fields following the logical
name list the table name in which the logical must be defined and the value of
the logical with defaults given where applicable.

E.1 RDM$BIND CKPT FILE_SIZE
RDM$BIND_CKPT FILE_SIZE LNM$FILE_DEV INTEGER

This logical represents the percentage of the row cache size that you want the
backing file allocation to be. Applied to all backing files. This overrides the
backing file's allocation specified in the CREATE/ADD CACHE definition.

E.2 RDM$BIND_CKPT_TIME
RDM$BIND_CKPT_TIME LNMSFILE_DEV INTEGER (Default=0)

This logical represents the frequency of RCS checkpoint. It overrides the "Alter
database row cache is enabled (checkpoint timed every N seconds)" value.

E.3 RDM$BIND DBR_UPDATE_RCACHE
RDMS$BIND_DBR_UPDATE_RCACHE LNM$SYSTEM_TABLE 0 or 1(Default)

If the logical is set to 0, during recovery from node failure, don't repopulate
in-memory row caches from their backing files (only recover the database). If
the logical is set to 1 (the default), during recovery from node failure, repopulate
in-memory row caches from backing files and from REDO operations.

E.4 RDM$BIND_RCACHE_INSERT_ENABLED
RDM$BIND_RCACHE_INSERT_ENABLED LNM$FILE_DEV 0 or 1(Defaul)

This is a process logical. If the logical is set to 0, this process cannot insert any
rows into the row caches; this process can only use what is already there. If
the logical is set to 1 (the default), the process can insert new rows into the row
cache, if they fit.

E.5 RDM$BIND RCACHE LATCH_SPIN_COUNT
RDM$BIND_RCACHE_LATCH_SPIN_COUNT LNMS$FILE_DEV INTEGER ~ (Default=1024)

This logical represents how many iterations to retry getting the row cache latch
before hibernating. This consumes CPU but can acquire the latch faster. Set in
1000s.

Logical Names Relating to the Row Cache Feature E-1

E.6 RDM$BIND_RCACHE_RCRL_COUNT
RDMS$BIND_RCACHE_RCRL_COUNT LNM$FILE_DEV INTEGER (Default=0)

This logical represents the number of rows to reserve when acquiring empty
slots in a row cache. This overrides the “NUMBER OF RESERVE ROWS IS N”

clause.
E.7 RDM$BIND _RCS BATCH_COUNT
RDM$BIND_RCS BATCH_COUNT LNM$SYSTEM_TABLE INTEGER (Default=3000)

This logical represents the number of rows RCS attempts to write out at a time
during the course of a checkpoint or sweep.

E.8 RDM$BIND_RCS_CARRYOVER_ENABLED
RDM$BIND_RCS_CARRYOVER_ENABLED ~LNM$SYSTEM_TABLE 0 or 1(Defaul)

If the logical is set to 0, RCS doesn’t honor carryover locks for logical/physical
areas. It continues to hold them (good for RCS performance, but prevents
exclusive access to these logical/physical areas). If the logical is set to 1 (the
default), RCS honors carryover locks and gives up logical/physical area locks it is
holding that it is not using but that simply remain from a prior operation.

E.9 RDM$BIND RCS CKPT_COLD_ONLY
RDMS$BIND_RCS_CKPT_COLD_ONLY ~ LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to O (the default), checkpoint/sweep all marked records in a
row cache. If the logical is set to 1, only checkpoint records marked before the
PRIOR ckpt interval (only checkpoint the older/colder data, but this also keeps
the RCS ckpt farther behind causing more AlJ to read during REDO).

E.10 RDM$BIND RCS CKPT_BUFFER _CNT
RDMS$BIND_RCS_CKPT BUFFER_CNT LNM$SYSTEM_TABLE INTEGER (Default=15)

This logical represents the number of buffers to use to write records to backing
files during checkpoints.

E.11 RDM$BIND RCS_CKPT_TIME
RDM$BIND_RCS_CKPT_TIME LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical overrides the RCS process’ checkpoint timer interval. This logical
was added in Release 7.0.1.6. If neither this logical nor the “ROW CACHE IS
ENABLED (CHECKPOINT TIMED EVERY n SECONDS)” database clause is
specified, then the RCS process will use the “RDM$BIND_CKPT_TIME" logical
name or its associated dashboard value. If RCS still has a zero checkpoint timer
interval, then it will default to a fixed 15 minute interval.

E.12 RDM$BIND_RCS_CLEAR_GRICS DBR_CNT
RDM$BIND_RCS CLEAR_GRICS DBR_CNT LNM$SYSTEM_ TABLE INTEGER (Default=25)

This logical represents the frequency (based on the number of DBR processes
that run) with which the RCS will attempt to release references in the cache left
by abnormally terminated processes. For each sweep request for a cache, if at
least this number of DBR processes have run since the last sweep for the cache,
the RCS will initiate a "Release GRICs" operation. This operation can have a
minor performance impact to users of the cache and can also delay the RCS from

E-2 Logical Names Relating to the Row Cache Feature

E.13

E.14

E.15

E.16

E.17

E.18

E.19

performing other operations. This is why it is a periodic event. The maximum
value of the logical is 100000. The default value is 25. Defining the logical name
with a value of 0 will disable the clearing of reference counts.

RDM$BIND_RCS_CREATION_IMMEDIATE
RDM$BIND_RCS_CREATION_IMMEDIATE ~ LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to O (the default), for automatic open database, create RCS
process on first reference to a row cache. If the logical is set to 1, for automatic
open database, create RCS process on initial attach. If the logical is set to 1, for
manual open database, RCS is started immediately.

RDM$BIND RCS KEEP_BACKING_FILES
RDM$BIND_RCS_KEEP_BACKING_FILES ~ LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to O (the default), the RCS creates/deletes backing files on
each startup/shutdown. If the logical is set to 1, the RCS retains backing files on
shutdown and reuses them on startup.

RDM$BIND RCS_LOG_FILE
RDM$BIND_RCS_LOG _FILE LNM$SYSTEM_TABLE File Name

This logical specifies the location and name of the optional RCS process log file. If
the logical is not defined, no RCS logging is done. It is recommended that logging
be turned on. If a location is not specified along with the file name, the log file is
created in the same location as the database root file.

RDM$BIND RCS LOG_HEADER
RDM$BIND_RCS_LOG_HEADER ~ LNMS$SYSTEM_TABLE 0 or 1(Default)

If the logical is set to 0, don't insert header sections in RCS log file. If the logical
is set to 1 (the default), insert normal header sections into the RCS log file.

RDM$BIND_RCS_LOG_REOPEN_SIZE
RDM$BIND_RCS LOG_REOPEN_SIZE LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical represents the maximum block size of the RCS log file before the RCS
opens a new log file.

RDM$BIND RCS_LOG_REOPEN_SECS
RDM$BIND_RCS_LOG_REOPEN_SECS LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical, when defined before the database is opened, causes the RCS log
file to be reopened after every 'n’ seconds as specified by the value of the logical
name. If the value of the logical is O or it is not defined, then the RCS Log file is
not reopened based on time. The maximum value allowed is 31449600 (which is
one year noted in seconds).

RDM$BIND_RCS_PRIORITY
RDM$BIND_RCS_PRIORITY LNM$SYSTEM_TABLE INTEGER

This logical represents the base priority of the RCS process.

Logical Names Relating to the Row Cache Feature E-3

E.20 RDM$BIND_RCS_SWEEP_COUNT
RDMS$BIND_RCS_SWEEP_COUNT LNM$SYSTEM_TABLE INTEGER

This logical represents the number of rows to sweep. It overrides the "NUMBER
OF SWEEP ROWS IS N" clause.

E.21 RDM$BIND_RCS_VALIDATE_SECS
RDM$BIND_RCS_VALIDATE_SECS LNM$SYSTEM_TABLE INTEGER

This logical defines the number of seconds between each cache validation pass. A
value in the range of 300 (5 minutes) to 86400 (24 hours) is suggested. A value
of O disables the cache validations. Once initiated, the interval can be re-set by
changing the logical name definition; the logical is translated at each validation.

E.22 RDM$BIND_RUJ_GLOBAL_SECTION_ENABLED

RDM$BIND_RUJ GLOBAL _SECTION_ENABLED LNM$SYSTEM TABLE 0 or 1
(Default=1 if row cache enabled)
(Default=0 if row cache disabled)

If the logical is set to 0, don’t place RUJ 1/O buffers in global section so DBR can
see them. If the logical is set to 1, place RUJ 1I/O buffers in global section so DBR
can see them.

E-4 Logical Names Relating to the Row Cache Feature

