

Agile e6.0

Upgrade Tool 3.0

Copyrights and Trademarks
Copyright © 1992-2005 Agile Software Corporation. All rights reserved.

You shall not create any derivative works of this publication nor shall any part of this publication be copied,
reproduced, distributed, published, licensed, sold, stored in a retrieval system or transmitted in any form or
by any means: electronic, mechanical, photocopying, or otherwise, without the prior written consent of
Agile Software Corporation, 6373 San Ignacio Avenue, San Jose, California 95119-1200 U.S.A.; Telephone
408.284.4000, Facsimile 408.284.4002, or <http://www.agile.com/>.

The material in this document is for information only and is subject to change without notice. While
reasonable efforts have been made in the preparation of this document to ensure its accuracy, Agile
Software Corporation assumes no liability resulting from errors or omissions in this document or from the
use of the information contained herein. Agile Software Corporation reserves the right to make changes in
the product design without reservation and without notification to its users.

Agile Software is a registered trademark and Agile, Agile Product Collaboration, Agile Product Cost
Management, Agile Product Service & Improvement, Agile Program Execution, Agile Product Interchange,
AgileMD, and the Agile Logo are trademarks of Agile Software Corporation in the U.S. and/or other
countries. Guaranteed Business Results is a service mark of Agile Software Corporation. All other brands or
product names are trademarks or registered trademarks of their respective holders.

Java and Solaris are registered trademarks of Sun Corporation.

Microsoft, Microsoft Windows, Microsoft Word, Microsoft Excel, Internet Explorer and SQL Server are
registered trademarks of Microsoft Corporation.

Oracle and Oracle8i are registered trademarks of Oracle Corporation.

NOTICE OF RESTRICTED RIGHTS:
The Software is a “commercial item,” as that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
“commercial computer software” and “commercial computer software documentation” as such terms are
used in 48 C.F.R. 12.212 (SEPT 1995) and when provided to the U. S. Government, is provided (a) for
acquisition by or on behalf of civilian agencies, consistent with the policy set forth in 48 C.F.R. 12.212; or
(b) for acquisition by or on behalf of units of the Department of Defense, consistent with the policies set
forth in 48 C.F.R. 227.7202-1 (JUN 1995) and 227.7202-4 (JUN 1995).

July 27, 2005

ii

CONTENTS

Chapter 1 Introduction 1

Overview 1
Architecture 1
Upgrade tool 2

Control and Log files in XML 2
GUI 3

Upgrade Process 3
Preactions on original production environment 4
Customization Upgrade 4
Test 6
Transfer Data from production system 6

Special Upgrade: Classification 7
Adapt original production environment 7
Upgrade Pool Concept 7
Migration concept 8
Take Over Data from the production system 9

Chapter 2 Installation 10

Prerequisites 10
Installing the Upgrade Tool 10

Chapter 3 Configuration of Upgrade Tool 12

Check database settings 12
Check database settings in Oracle 12

Prepare environments 14
Prepare reference environments 14

Define Database Connections 15
Define Source Master/Target Master/Customer Connections 16
Define Production DB 18

Define Parameters 19
Configure control and log files 20

Control and log files for comparing/updating repository tables20
Control and log file for Synchronizing repository 21
Configure special.xml for synchronizing repository 23

Special Upgrade: Classification 26
Configuration file for Special replace.xml 27
Configure take over data from the production system 27

iii

Chapter 4 Migration 29

Performing Customizing Upgrade 29
Step Run preaction scripts 29
Step DTV-upgrade 30
Adapt physic. table definition acc. to DataView table definition31
Step Run before-common-scripts 33
Step EDB-UPD 33

Special Upgrade: Classification 33
Transfer data from production system 34

Define reference tables 34
Perform transfer 35
Synchronize repository 35
Script Run after takeover 36

Special Upgrade: Classification 36
Upgrade classification lists only 36
Upgrade complete classification 37

Chapter 5 Annex 38

Convert XML files to HTML 38
Directory structure 38
Shell scripts / Log files 39
SQL scripts 41
Folders Contents “upgrade/conf” and “upgrade/conf/template” 43

Contents of the folder “upgrade/conf” 43
Contents of the folder “upgrade/conf/template” 45

Configuration parameters 45
Migration Rules 46

Standard Rules for Delete 46
Standard Rules for Update 46
Standard Rules for Insert 47
Special Rules 47

iv

Chapter 1
Introduction

Part I provides an introduction and an overview to the Agile e6 Upgrade Tool. It includes
the following chapters:
� Overview of Upgrade Tool

� Architecture

� Upgrade process

� Additional Documentation

Overview
The Upgrade tool allows a direct upgrade to Agile e6.0 from earlier releases (CADIM/EDB 2.3.2 or
higher, axalant 2000 SPx, Eigner PLM 5.x).

The Upgrade Tool addresses experienced project engineers and PLM administrators with
customizing and database experience. Do not use the tool without the necessary knowledge. Read
the complete manual in order to get all necessary information. Do not attach to or even change
the production system. Always work on a copy of the production database dump. Avoid working
on production computers to exclude any influence on the system. Never insert database
connections of production database users in any configuration file or script except for exporting
the dump or a source for copying tables (Production Database).

Do not use the software in any situation where significant damage to property or business could
occur from a software error. In no event will AGILE or any other party who has been involved in
the creation, production or delivery of the software be liable for special, direct, indirect,
incidental, punitive or consequential damages, including loss of profits, revenue, business,
goodwill, data or computer programs or inability to use the software, however caused and
regardless of the theory of liability even if AGILE or such other party has been advised of the
possibility of such damages.

Architecture
The Upgrade Tool comprises the following components

� The upgrade tool itself

� Control and Log files in XML

� GUI

1

Agile e6.0

Upgrade tool
The upgrade tool is implemented in Java. It accesses the databases directly using a JDBC
connection. Through JRE to XML and log files and command scripts which call SQL scripts are
executed.

Control and Log files in XML

The configuration of all upgrade steps is stored in a set of xml control files. When executing a step,
a log files is created in XML containing the error messages.

A set of control and log files is defined for each upgrade step. The location of the files is stored in
the main configuration file upgrade\conf\ApplicationParameter.xml.

The log and error files are mainly in XML format and can be found in the directory
Upgrade/log/…

For all actions (see Action tab) that compare table content (Create files) and change repository
information (Perform Insert, Update, Delete) a common set of control and log files is used.

You can convert the XML files created as log and configuration files to HTML and view them with
a browser. The batch file xml2html.bat creates HTML files for insert, update and delete for each
table. This function is available on Windows platforms only.

Note: You need memory for approximately sixth times the XML file size!

See Annex for a description on converting XML files to HTML.

2 Upgrade Tool 3.0

Chapter 1 Introduction

GUI

The user can execute the migration steps easily from the user interface of the Upgrade Tool.

Upgrade Process
To upgrade from an earlier release to Agile e6. you carry out the following steps:

� Preactions
where you make a copy of your original production environment

� Performing Customizing upgrade
Customization and configuration stored in the database is updated to Agile e6.0.

� Test phase

� Taking over your production data to finish the process.

3

Agile e6.0

Preactions on original production environment

Make a copy of your production database dump . Do not attach your production system. Always
work on a copy of your data.

Start the upgrade on this copy. The minimum passing time will be 4-5 hours (depending on the
system, main parameter is memory!).

The Upgrade Tool will create a dump on which you can run Agile e6.0. This dump is not error
free. You have to check all functionalities and clear out the errors caused by setting up the upgrade
tool.

Customization Upgrade

The Upgrade Tool opens three database connections:

� Source Master (Source reference):
A CADIM/EDB / axalant 2000 / Eigner PLM dump with Agile e6.0 ”n” table structure.
The necessary SQL scripts have been executed to adjust the DataView tables. LogiView
standard models have been deleted so that standard LogiView models will be completely
reloaded. This is already done in reference dumps delivered with this upgrade tool.

4 Upgrade Tool 3.0

Chapter 1 Introduction

Target Master
Eigner PLM50
DBU:„plm50“

Source Master
axalant SPx

DBU:„AXASP3REF“

Eigner PLM
Upgradetool

modify

compare

customerspecific

DBU: „CUSTOMER“

� Target Master (PLM reference):
This is an standard Agile e6.0 dump.

� Customer (CUSTOMER):

The customer dump has the version of the Source Master at the beginning of the upgrade
process. At the end it has the version of the Target Master.

XML-files

SQL-scripts

edb234upgref plm50upgref

CADIM/EDB 2.3.4

Upgrade
Toollogfiles

customercustomer
PLM50

process

The Upgrade Tool selects each row from the Source and the Target Master dump, compares the
data sets from both dumps to identify the differences and checks if the customer has modified
these data.

The upgrade action (Insert, Update, Delete) is determined for each record and the information is
stored in a set of XML files. The migration rules are listed in the Annex.

The Upgrade Tool is only able to compare tables with the same table structure. Therefore the
DataView tables in the reference dumps (edb234upgref …) have Agile e6.0 structure. The

5

Agile e6.0

customer dump will be formatted during the upgrade (execution of SQL scripts and step
synchronize repository).

The customization upgrade is generally split into two steps:

� Comparison of the data sets from the different dumps and storing the changes in an XML
file for the three possible operations: delete, insert and upgrade (e.g.: dtvdel.xml,
dtvins.xml, dtvupg.xml).

� The Upgrade Tool reads the XML information and performs the corresponding SQL-
statements. After this step the changes are available in the Agile e6.0 dump.

Test

Take over the data from the production system for a first test and let the user test all
functionalities, maybe during training. If errors occur, remove them via customizing. Not
everything might be done automatically.

If testing does not raise any error you can plan to change to productivity. Shut down your
CADIM/EDB, axalant or Eigner PLM system. Take over your data from the production system
(and the files!) again and Agile e6.0 is your production system.

Transfer Data from production system

All tables containing production data like document and item master data are copied from the
production system to your Agile e6.0 installation. They will be adapted so that you can work on
this data within Agile e6.0.

After finishing the test of the new custom-specific Agile e6.0 functionality, the customer can go
live with the new version.

During the test period a lot of new data is created in the production system. This data must be
copied again from the old production system into the new environment and adapted to the new
Agile e6.0 table structure. This step is called Takeover Production data.

The Upgrade Tool supports the following actions:

� Definition of a list of reference tables containing production data.

� Dropping the reference tables in the customer environment and copy the table from the
production system.

� Adapting the table structure to Agile e6.0.

� Post-actions like migrate production classification data.

For this step the tool opens two database connections:

� Production Database

This database connection is used as source for the tables copied into the new Agile e6.0
environment. No changes are made in the production database.

� Customer

Connection to the new production environment. The reference tables will be dropped. This
becomes the new production Agile e6.0 environment.

6 Upgrade Tool 3.0

Chapter 1 Introduction

Special Upgrade: Classification
If you use the Classification module, the following steps are necessary in addition to the standard
upgrade process.

� Adapt original production environment

� Upgrade Pool Concept

� Migration concept

� Take Over Data from the production system

Adapt original production environment

Since Agile e5.0 UIC and GIC <=1000 are reserved for the standard development. Existing users
or groups use such C_IC must be migrated to an higher Value. This migration must be executed
in your production system before you start any other upgrade activity.

This update can be very time consuming ! In a big customer dump it takes 1h/6 users. To solve the
time conflict, breakdown the update into different sub sets and try to run it in parallel .

1. To do this Adapt the following statement in the sql script

INSERT INTO TEMP_U (OLD_U) SELECT C_IC FROM T_USER a
WHERE
C_IC > 200 AND C_IC < 1000 AND C_NAME NOT LIKE 'EDB%' AND
C_NAME NOT LIKE 'DEMOEP%';

2. To execute the UIC/GIC Migration execute the

PC RUN update_uic.cmd
UNIX run update_uic.sh

Upgrade Pool Concept

With Agile e5.1 a new classification concept (Pool concept) has been introduced. If you are
upgrading from CADIM and axalant to Agile e6.0, you need to adapt the classification data from
the ATT concept to the new pool concept. The following table shows a comparison between the
old ATT Concept and the new Pool concept:

Overview ATT concept (Old) Overview new Pool concept

� Attributes are defined class specific in
the ATT concept

� Domain values for an attribute are
defined in static menus

� No release procedures and status
management for classes and
attributes

� Attributes can be defined class
independent

� Pool attributes can be assigned to more
then one class

� Domain values for a pool attribute can
be stored in special domain table

� For every class can be specified which
domain value is valid

Note: Migration of changes in the attribute inheritance must be executed for all version

7

Agile e6.0

Migration concept

The migration includes

� Merge of Attribute definition

Attributes are considered as identical if the following values are identical

z C_LETTER

z C_TITLE

z C_TYPE

If you have defined C-Letter and C_TITLE as multi language fields(Standard beginning with
axalant 2000) you define with the Parameter DB language which language is used as basic for
the merge. (see installation and configuration manual for more information how to define
parameters)

� Initial Load of the attribute value pool including the activation of the attributes for
special classes

� Update classification lists

� Update used field name

� Set of attribute ATT_VAL_REF in the classification Lists

� Update field and Mask definition (if you have defined own forms for classes

E D B -G R O U P
T _ G R O U P _ D A T
C lassific . G ro u p s

E D B -C L A A T T R
T _ C L A _D A T

C lass A ttrib u tes

E D B -A T T R V A L
T _A V L _ D A T

A ttrib u te V alu es

E D B -F IE L D
N o T able

N u ll E n tity

E D B -F IE L D
N o T ab le

N u ll E ntity

S T R
T _ G R P _ F L D

S T R
T _ G R P _ C L A

E D B -C L A -A V L
E D B _ID

S T R
T _ A V L _ F L D

S T R
T _ A V L _ H IS

S T R
T _ C L A _ H IS

E D B -H IS T O R Y
N o T ab le

N u ll E n tity

S T R
T _ G R P _H IS

If possible do not create or modify basic definition of classes and attributes between
customization upgrade and take over data from production system.

This influences the migration steps must be executed after the takeover process.

� No new classes and attributes are created

8 Upgrade Tool 3.0

Chapter 1 Introduction

Only classification list tables must be defined as reference table

z T_GRP_ART

z T_GRP_DOC

z T_GRP_ORD

z T_GRP_PRO

� Customers have created new classes and attributes in the production system after the
customization upgrade

In addition to the classification list tables classes, attributes and domain values must be
copied and migrated

z T_GROUP_DAT

z T_GROUP_STR

z T_GRP_FLD

Take Over Data from the production system

If you created new users and or groups since the date when the dump was exported form
production system the following DataView-tables must be migrated !

� T_USER,

� T_GROUP,

� T_GRP_USR,

� T_PROFILE

� Related tables of the PLM – person management

Attention: new plm- or axalant-user like EDB-WFL, EDB-DFM, EDB-DDM, EDB-GDM, EDB-
EER, DODEKERNEL will be lost. Export these users first with the binary loader (T_USER,
T_GROUP, T_GRP_USR) and reload them after the upgrade. Table T_DEFAULT should be
migrated by the loader (import/overload) otherwise new defaults will be missing.

9

Agile e6.0

Chapter 2
Installation

Prerequisites
The Upgrade tool runs on the following software:

� Server platforms

z Windows 2003 Server

z Unix (all platforms supported by Agile e6.0)

� Memory

z The upgrade tool needs at least 512 MB of memory

� Databases

z Oracle 8.1.7 / 9.2.0.4 or higher (Source database)

z Oracle 10.1.4 (Target database)

The best performance is reached when installing the upgrade tool on your database server. It is
also possible to work on any machine in the LAN. The machine should have at least 1GB memory.

To install the Upgrade Tool you need at least

� 250 MB disk space for the software and generated log and data files

sufficient disc space to store copies of your production database and the reference dumps on your
database.

Installing the Upgrade Tool
1. Extract the software (upgrade.zip) to a folder Upgrade on your database server.

The following structure is created:

10 Upgrade Tool 3.0

Chapter 2 Installation

The file upgrade\cmd\upg_env.cmd (PC) or upgrade/scripts/upg_env.sh (Unix) contains the
environment definition for your upgrade process.

2. Adapt the following environment definitions in upg_env.sh / upg_env.cmd:

• JAVA_HOME
At least JRE 1.4.2 is required by upgrade tool.
In the standard configuration of the file the JRE of the Agile e6.0 installation is used
for that.

• ORACLE settings
Make that Oracle 10.1.4 environment is set before proceeding with upgrade.

To check the environment for UNIX execute the following commands

env|grep ORA

Output should look like this:

11

Agile e6.0

Chapter 3
Configuration of Upgrade Tool

Chapter 3 provides the description of how to configure the upgrade tool . It includes the
following chapters:
� Check Database settings

� Prepare Environments

� Define Database Connections

� Define Parameters

� Configure control and log files

� Configure take over data from the production system

� Special Configuration: Classification

Check database settings

Check database settings in Oracle

The Upgrade Tool needs a well-configured database to provide a good performance. The Oracle
standard database settings are not sufficient to run the program within the stated time.

1. Check the Oracle Parameter and verify that at least the following minimum values are set in
your database instance:

� db_cache_size >= 200 000 000 (200MB)

� shared_pool_size >= 100 000 000 100Mbytes

� log_buffer >= 163840 3*64 Kbytes

If database memory consumption is too small, adapt the values.

If you use the server parameter file spfile (like in the Agile e6 standard installation), execute
the following commands to change the values of the initialization parameters.

� Login into sqlplus as user sys
SQL>ALTER SYSTEM SET <parameter name>=>Value> SCOPE=BOTH

Note: Do not change the values of production systems. Make a copy of the initialization
file and adapt the values.

� Read the Oracle online manuals and the Oracle10.1 installation manual from Agile in
addition.

Oracle needs physical memory. If the system starts swapping or paging, the Oracle
performance degrades or causes errors. Examine your free physical memory and prevent the
OS from swapping.

12 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

Some UNIX systems have maximum values for shared memory. Refer to the installation
instructions before changing any value.

2. Check the SQL Net configuration (Oracle only).

The network domain is part of different oracle settings. Please check if the domain is
consistently used for the following settings:

� Global Database

� Service name

� Listener.ora

� Default domain name

Global Database name

� Login as user sys and check the global database name.

The name should contain the network domain.

Sqlplus <system>/<db_passowrd>@<db_service>
SQL>select * from global_name;

Example

GLOBAL_NAME ------------------------
PLM.WORLD

The example uses the default network domain in world. Also possible are values like
agile.agilesoft.com.

Change the global database name login to SQL plus and execute the following commands:

SQL>alter database global name plm.agile.agilesoft.com

Service name

Service name in the SQL net configuration file tnsnames.ora network in the directory
$ORACLE_HOME/network/admin

The service name must also include the network domain. Please check the setting in the sqlnet
configuration file tnsnames.ora

� Change to the directory $ORACLE_HOME/network/admin

� Open the file tnsnames ora and check if the service name is fully defined. That means the
name contains the same network domain as the global database name.

PLM.WORLD =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = PLM.WORLD)
)
)

13

Agile e6.0

listener .ora

� Check if the global database name in the section SID_List of the listener configuration file
contains also the same fully qualified global database name.

SID_LIST_LISTENER_PLM =
 (SID_LIST =
 (SID_DESC =
 (GLOBAL_DBNAME = PLM.WORLD)
 (SID_NAME = plm)
)
)

LISTENER_PLM =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
)

Service name

Default domain name in SQL net configuration file is sqlnet.ora

The default setting for the network domain in the sqlnet.ora file should be the same.

� Change to the directory $ORACLE_HOME/network/admin and Open the file sqlnet.ora
and check the default domain settings.

names.default_domain = world

Prepare environments

Prepare reference environments

The upgrade tool needs the following database environments/users:

Source master CADIM/EDB, axalant or Agile 5.x reference dump

Target master Agile e6.0 reference dump

Customer customer dump

A separate database user is needed for each environment.

1. Download the necessary reference dumps from Agile support website and unzip them in the
upgrade/dumps directory.

Note: Do not change the names of the downloaded reference dump files. The dumps cannot
be imported automatically if a different name for the dump file is used.

2. Check if the following table spaces (Oracle) or file groups (SQL Server) exist in your database

z edb_tmp

z edb_tmpidx

z edb_lob

14 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

If one of them does not exist they have to be created:

Oracle

z Change to the directory upgrade/ora/sql

z Adapt file names, paths and file size in the script cre_axa_tbs.sql

z Login as user system to sqlplus and execute cre_axa_tbs.sql

z sqlplus system/<password>@agile

z SQL> @cre_axa _tbs.sql

3. Import reference and customer dumps

Note: For importing the dumps, do not change the table space names, because the created
table statements on tables containing a blob clause will fail if the original table spaces EDB,
EDB_IDX and EDB_LOB do not exist

z Copy your customer dump file in the directory upgrade/dumps

z Rename the file to <db_user>.dmp where <db_user> is the user name of your customer
dump (e.g. customer.dmp)

z Run imp_dmp.cmd (PC) or imp_dmp.sh (UNIX) to restore the original and target
master databases (oracle and SQL Server) and the customer database (oracle only). To
create your customer environment in SQL Server use Backup/Restore functionality of
SQL Server.

4. Create statistics for all involved database schemas

z Check Language settings
Because of an Oracle bug the setting for the environment variable NLS_LANG must be
AMERICAN_AMERICA.WE8ISO8859P15. Otherwise statistics will not computed
correctly.

z Login as user with dba privilege and perform analyzing.
 sqlplus> EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS (‘<schema>', N);
 N is the sample % for statistics collection(use 100%)

Define Database Connections
The definition of the database connections is done in four steps:

z Source Master:
Standard reference dump corresponding to the version of CADIM / axalant / Agile e-
series customer dump

z Target Master :
Standard reference dump for desired target version

z Customer:
Database environment containing CADIM / axalant / Agile e5.x customer data

z Production Database:
Database environment containing production CADIM / axalant / Agile e5.x . This
connection is used as the source for taking over production data

15

Agile e6.0

Define Source Master/Target Master/Customer Connections

1. Start Upgrade Tool

PC: Run start_upg.cmd

UNIX: Run start_upg.sh

The following screen will be opened:

2. Select the respective tab

z Source Master

z Target Master

z Customer
Important: Make sure not to use a production database dump!

Do not change this connection to a different CADIM /axalant / Eigner PLM dump. The
reference dumps are modified. Use the database dumps delivered with the Upgrade Tool.
Only the reference dumps have the Agile e6.0 table format but CADIM/axalant/Eigner PLM
contents. Standard LGV models are dropped!

16 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

3. Enter the following information:

Database
selection

Select the desired version

Host host name of database server

Port port number of Oracle listener (default 1521) or SQL Server
port number (default 1433)

SID Oracle_SID (uppercase) or database name for SQL Server
(lowercase)

User database user name

Password password of database user

Connection String Service name, which is used to run SQL*PLUS commands on
the machine the upgrade tool is installed on.

Use fully qualified name including the network domain, f.e.
plm.aile.agilesoft.com

Tablespaces:

Note: Name of used tablespaces (Oracle - uppercase) or file groups (SQL Server - lowercase)

Table Default EDB*

17

Agile e6.0

Index Default EDB_IDX*

LOB Default EDB_LOB*

Temporary
table

Default EDB_TMP* (edb on SQL Server until axalant 2000 SP3
)

Temporary
index

EDB_TMPIDX* (edb_idx on SQL Server until axalant 2000
Sp3)

4. Test the connection using the Button “TEST

Note: The Java Connection can only be tested in Version 3.0. The Service Connection via
SQL Net is not tested with the Version 3.0 of the Upgrade Tool.

Define Production DB

This is the database connection to the production system. This connection is used as source for
the transfer of production data.

Compared to other connection definition only the service name of the sqlnet connection must be
defined (defined in tnsnames.ora e.g. agile).

1. Select the tab Production DB

2. Make the following entries

Parameter Name Description

Service Name Oracle service name including network domain e. g. AGILE.AGILESOFT.COM.

Service name must be defined in tnsnames.ora

18 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

SID Oracle_SID (uppercase) or database name for SQL Server (lowercase)

User database user name

Password password of database user

3. Test the connection using the Button “TEST

Define Parameters
Additional parameters which are available in the file ApplicationParamter.xml can be viewed and
edited.

1. Select the tab Parameter

2. Review and correct the entries if necessary and check the following table for valid entries.

With the “Compute” button, the right values can be determined. Always check the computed
values.

Parameter name Description

PLM-Version The customer dump version
Following values are valid:

1 = CADIB/EDB 2.3.x
2 = AXALANT SP1
3 = AXALANT SP2
4 = AXALANT SP3
5 = PLM 5.0

19

Agile e6.0

6 = Agile e6.0

Logiview Timestamp A Timestamp
All logiview items with a change date after this time point will be deleted. You
can adapt this value manually. Following values are possible:

CADIM/EDB 2.3.2 – 19990329094555
CADIM/EDB 2.3#3 – 19990707174038
CADIM/EDB 2.3#4 – 19990707174038
CADIM/EDB 2.3#5 – 20000329161725
axalant2000 SP1 – 20001109140557
axalant2000 SP2 – 20010723102350
axalant2000 SP3 – 20011113092600
axa2000 SP3 PA1 – 20020808110309
Eigner PLM 5.0 - 20020830153411

The version must correspond to your customer dump version

Classification –
Controlfile

A file name of the control file for the customer dump in the present case
Valid entries are:

cla_ctl.xml (used for CADIM/EDB and no multi language fields for classification
attributes c_letter and Class

cla_ctl_with_repl.xml used for CADIM/EDB and no multi language fields for
classification attributes c_letter and Class, database replication is activated)

cla_ctl_with_multi_lang.xml(axalant 2000 or higher ,c_letter_c_class defined as
multi language fields)

cla_ctl_with_multi_lang_repl.xml (axalant 2000 or higher ,c_letter_c_class
defined as multi language fields; database replication is activated)

Database Language Language for the database dump. This influences the migration of the
classification data.
Values: German, English
Default: German

Level Status, that is set during classification upgrade for records in the tables t_cla_dat
(pool attributes), t_group_dat(classes)

Replication server Null or a valid name of the database server

should be used of an implemented database replication to the environment be
migrated

Configure control and log files
A set of control and log files is defined for each upgrade step. The location of the files is stored in
the main configuration file upgrade\conf\ApplicationParameter.xml.

Control and log files for comparing/updating repository tables

For all actions (see Action tab) that compare table content (Create files) and change repository
information (Perform Insert, Update, Delete) a common set of control and log files is used.

Parameter Name Description Example

Datadictionary Description of data model, defining the objects and their
relationships for upgrade.(all Modules)

upgrade\data\dtv\dtv
DD.xml

20 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

Special.xml Contains information about a table that must be renamed. For
DTV- Upgrade only (DTV Upgrade only)

upgrade\Conf\special.
xml

Deletefile Deleted records in xml format.(all Modules) upgrade\Data\dtv\dtv
_del.xml

Insertfile New records in xml format.(all Modules) upgrade\Data\dtv\dtv
_ins.xml

Updatefile Updated records in xml format.(all Modules) upgrade\Data\dtv\dtv
_upd.xml

Errorlog Errors (all Modules) upgrade\Data\dtv\dtv
_err.xml

Infolog Information (all modules) upgrade\Data\dtv\dtv
_info.xml

Customizing All conflicts for specific columns, which can be not handled by
the upgrade tool automatically are written to customizing.log

(DTV-Upgrade only)

upgrade\Data\dtv\cust
omizing.log

EdbID Replace Generated during dtv upgrade, define the updates for the new
foreign key references (based on new added EDB_ID’s)

(DTV-upgrade and synchronize Repository)

upgrade\Data\dtv\edb
_id_replace.xml\

Note: If necessary update the name and the location of the control and logfiles for the
actions.

Control and log file for Synchronizing repository

This step uses a set of specific control and log files. If the step is executed again, the log files will be
saved and then overwritten. The saved log files extended with a consecutive number for every
version (e.g. sync_all001.log — sync_all002.log — sync_all001.log)

21

Agile e6.0

Parameter
Name

Description Example

sql All SQL statements for creating and altering database objects
are logged. This file is created in step “synchronize
repository”.

upgrade\data\sync\sync_sql.lo
g

all Store all log information. This file is created during step
“synchronize repository”.

upgrade\data\sync\sync_all.lo
g

data Table definition. This file is created during step
“synchronize repository".

upgrade\data\sync\sync_data.l
og

special XML file containing special definitions for repository
upgrade like move of fields.
Default values for the new mandatory columns.

upgrade\conf\special.xml

analysis Analysis.log store inconsistencies between DataView table
definition and physical tables. This file is created in the step
”analyze repository”

upgrade\data\sync\sync_analy
sis

Control file Not used for upgrade to Agile e6.0

Note: If necessary update the name and the location of the control and logfiles for the
actions

22 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

Configure special.xml for synchronizing repository

In the step Synchronize Repository, the following functionality is executed:

� Set static and dynamic default values for new mandatory columns or columns changed
from null to not null

� Rename tables

� Move fields

� Change data type of a field

These functions need a specific configuration. This information is stored in
upgrade\conf\special.xml. The delivery contains a preconfigured special.xml which define
standard setting for all expected cases.

Very often the customer dump contains inconsistency, so that in the analyze mode the tool will
add entries to the special.xml file. You then need to reviewed and adapted the configuration.

If the special.xml is damaged, copy a original special.xml file from the template directory
(upgrade\conf\template) into the directory Upgrade\Conf and start the synchronization again.

Set Static and dynamic default values

Static values

To set a static value the configuration looks like

<FieldDefault>
<FieldName>T_TRE_DAT.CUR_FLAG</FieldName>
<FieldType>S</FieldType>
<FieldSize>1</FieldSize>
<DefaultValue>
<Value>n</Value>
</DefaultValue>
</FieldDefault>

In this case the column T_TRE_DAT_CUR_FLAG is set to ‘n’.

Dynamic values

The field values can be computed dynamically based on

� a Java function
preconfigured function to use the number server to set values are available (see example)

� SQL Statement

Example:

sql statement is used to compute field value

<FieldDefault>
<FieldName>T_CTX_DAT.EDB_SEQ</FieldName>
<FieldType>I</FieldType>
<FieldSize>4</FieldSize>
<DefaultValue>
<Select>DISTINCT (SELECT COUNT(*) FROM T_CTX_DAT T WHERE T.C_ID <=
thisRec.C_ID)*10</Select>

23

Agile e6.0

<Where>C_ID > 0</Where>
</DefaultValue>
</FieldDefault>

Example

Java function is used to compute field values (get a new number from the number server and
fill in the value)

<FieldDefault>
<FieldName>T_MASTER_DOC.EDB_ID</FieldName>
<FieldType>I</FieldType>
<FieldSize>10</FieldSize>
 <DefaultValue>

<Function>GetNewEDBID(EDBEDBID)</Function>
 </DefaultValue>
</FieldDefault>

Rename tables

Specifies the old and the new name for tables.

If you have used DFM already, the following tables must be renamed (for upgrade from cadim to
Agile 6 only).

z T_EER_SIT

z T_EER_SIT_STR

z T_EER_SIT_MED

<RenameTable>
 <TableName>T_EER_SIT</TableName>
 <NewTableName>T_DDM_SIT</NewTableName>
</RenameTable>

<RenameTable>
 <TableName>T_EER_SIT_STR</TableName>
 <NewTableName>T_DDM_SIT_STR</NewTableName>
</RenameTable>

Move fields

This option allows to move a column of a table inclusive stored values to a new location. To move
a field you have to specify:

� Source field (<table_name>.<column_name>)

� Target field (<table_name>.<column_name>)and

� Path (join condition between old and new table)

The sample configuration files show 3 different possibilities to move field values to a new location.

 <!-- Example transfer from typetable to entitytable. -->
 <MoveField>
 <SourceField>T_DOC_DRW.CRE_USER</SourceField>
 <Path>T_DOC_DRW.C_ID_2</Path>
 <Path>T_DOC_DAT.C_ID</Path>
 <DestField>T_DOC_DAT.CAX_CRE_SYSTEM</DestField>
 </MoveField>

24 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

 <!-- Example transfer from entitytable to entitytable via
releationtable. -->
 <MoveField>
 <SourceField>T_MASTER_DAT.PART_ID</SourceField>
 <Path>T_MASTER_DAT.C_ID</Path>
 <Path>T_MASTER_DOC.C_ID_1</Path>
 <Path>T_MASTER_DOC.C_ID_2</Path>
 <Path>T_DOC_DAT.C_ID</Path>
 <DestField>T_DOC_DAT.CAX_CRE_SYSTEM</DestField>
 </MoveField>
 <!-- Example transfer in table. -->
 <MoveField>
 <SourceField>T_MASTER_DAT.PART_ID</SourceField>
 <DestField>T_MASTER_DAT.EDB_ICON</DestField>
 </MoveField>
</SpecialCases>

If you have a cax interface installed already, please check if one of the columns used to store cax
specific information is defined as a document-type-table-column. These columns are now part of
the standard axalant data-model and included in the document master table
T_DOC_DAT.(migration from CADIM to Agile e6.0)

An example configuration file special_move.xml containing definition of moved fields are stored
in the template directory …\upgrade\conf\template.

Change data type of a field

The upgrade tool allows changing the type definition of columns. The following type changes are
possible:

� IntegerÆString

If the value of a column for all records is null then also incompatible data type changes can be
executed, for example STRING-->Integer

Cutting a string field is only possible if no record contains a longer value. Please check max length
of stored values directly with SQL.

You have to replace “false” by “true” to confirm the change. The type definition “oldType” comes
from the database; “newType” is the DataView definition. (T_FIELD. C_FORMAT)

FieldChange>
 <FieldName>T_DOC_DAT.FOO</FieldName>
 <ConfirmChange oldType="S80.0" newType="S40.0">false</ConfirmChange>
</FieldChange>

25

Agile e6.0

Special Upgrade: Classification
The following control and log files are used for the classification

Parameter
Name

Description example

Control file cla_ctl.xml defines the rules for the classification
upgrade like data field mapping, merge condition,
etc.

upgrade\conf\cla_ctl.xml

Merge
conditions

The file merge_ctl.xml is created during the step
determine merge conditions and stores the new pool
attributes and the original class specific attributes.

upgrade\data\cla\cla_merge_ctl.x
ml

Action log file All actions are written to the log file act_log.xml. upgrade\data\cla\cla_act_log.xml

Errorlog Is not used yet. upgrade\data\cla\cla_errors.log

26 Upgrade Tool 3.0

Chapter 3 Configuration of Upgrade Tool

Configuration file for Special replace.xml
This configuration files contains definition of sub strings in repository columns which should be
replace by an other string

The file can be found in the directory ../conf/specialreplace.xml

Example

Update the strings T_EER_SIT with T_DDM_SIT in LGC Code

<?xml version="1.0" encoding="UTF-8"?>
<special>
 <replace>
 <table>LV_DT_PRC</table>
 <field>MAIN</field>
 <example>T_EER_SIT</example>
 <replacewith>T_DDM_SIT</replacewith>
 </replace>
</special>

Configure take over data from the production system
Select the tab Takeover production data and review the configuration and Log files for this step

27

Agile e6.0

Parameter
Name

Description Example

Reference Data Data Ref_data.xml defines which tables are
proceeded during the step takeover production
data (s. chapter “Take over of reference data”).

upgrade\conf\ref_tables.xml

Reference tables Ref_tables.xml contains the default list of
reference tables.

upgrade\con\templates\ref_tables.xml

Takeover Log Information about all executed commands. upgrade\log\tko_takeover.log

Takeover err
Log

Information about occurred errors. upgrade\log\tko_DataTakeover.sql

Define reference tables

1. Select folder Takeover in the Upgrade Tool and press the button Create Ref File.

The Upgrade Tool will connect to the production database, identify all tables and synchronize
the information with the predefined list (ref_tables). Only tables with data will be written to
the file.

2. To adapt the list, press Edit ref. file

For each table you have to define, if it is a reference table. (ref_data=y.)The called reference
tables will be dropped in the customer dump and copied in from the production system using
the connection to the production DB.

3. Select OK to save the XML file (upgrade/data/ref_data_tab.xml).

For detail information which tables should be copied please refer document Overview
upgrade process.

28 Upgrade Tool 3.0

Chapter 4 Migration

Chapter 4
Migration

Performing Customizing Upgrade
This chapter describes how the Customizing Upgrade is executed interactively. There are different
scripts available for selection under the Action tab which should be executed in the respective
order.

Step Run preaction scripts

This script must be run before the DataView upgrade is run.

1. Select Run preaction scripts.

The Command script upg03_preaction_sql.cmd will be executed. This script executes a set of
SQL scripts (depending on the customer dump version). See Annex file for further
information.

2. Click the Run Preaction Scripts button

29

Agile e6.0

3. Check the created log files that will be stored in the upgrade/log directory.

The following log files are created

z Upg03_preaction.sql
This is the main sql script which includes the calls of other sql script.

z Log files are written for each executed sql script.
The log files use the following naming convention
upg03_%<script name>.log

A complete list of SQL files which can be executed can be found in the annex

Step DTV-upgrade

This script updates the DataView repository.

If you want to rename tables, you have to specify these tables in the file upgrade/conf/special.xml
first. Refer to the Installation and Configuration Manual for further information.

1. Select DTV-upgrade

2. Click the Create Files button.

This step takes around 10 min - 4 hours.

30 Upgrade Tool 3.0

Chapter 4 Migration

3. Check log files in the directory upgrade\data\dtv.

Note: For better readability, it is possible to create HTML files from the XML log files.

4. Click the Perform Delete, Insert, Update button.

This step takes about 15 - 40 min.

5. Check the log files in the directory upgrade\data\dtv

If an error occurs, check the detail error information in upgrade\log\erorrdetail.log and see
the error handling information n the Annex file.

Adapt physic. table definition acc. to DataView table definition

The table definition in DataView is compared to the physical table structure in the database.
SQL statements to create and alter database objects are generated and executed automatically.
The adaptation of the physical data structure will consist of the following steps:

Step Run before sync scripts

1. Select run before-sync scripts.

2. Click the Run before-sync-scripts button.

The command script upg07_sync_update.cmd will be executed. This script executes a sql
script.

3. Check the log files upg07%.log in then upgrade\log directory for possible errors.

31

Agile e6.0

Step Synchronize Repository

1. Select Synchronize Repository.

2. Click the Analyze repository button

If you run the program in the analyze mode you can see which statements the program will
perform.

This creates a special file for defaults and special tasks.

If the program terminates the process and releases the connection because of a server error,
drop the special.xml file in upgrade\conf directory and copy the preconfigured template from
..upgrade\conf\template into the ..\upgrade\conf directory. Restart the process.

The data and log files are placed in the upgrade\data\sync directory. A detailed Description of
the errors can be found in upgrade\log\errordetail.log

This step takes about 1-6 min.

3. Set defaults and configuration parameters in the file special.xml and save the changes.

Note Do not change or delete the default settings.

4. Adapt the following configurations

z Static and dynamic Default values for columns changed from null to not null

z Rename tables

z Move fields

z Change data type of a field

For detail description of the correct configuration, please refer the installation and
configuration manual.

5. Click the Synchronize Repository button.

This script executes all changes in the database using the information from file special.xml. It
takes about 3-20 min.

Data and log files are stored in directory upgrade\data\sync.

Check the file upgrade\log\errordetail.log for possible errors.

Step after-sync-scripts

1. Select Run After-sync-scripts

The command script upg08_postactions will be executed. This script executes a set of sql
scripts.

2. Check the results in the log file. All log files will be stored in the upgrade\log directory.

z Upg08_postactions.sql
This is the main sql script which includes the calls of other sql script

z Log files for every executed sql script. The log files uses the following naming
convention upg08_%<script name>.log

32 Upgrade Tool 3.0

Chapter 4 Migration

Step Run before-common-scripts

1. Select Run before common scripts

The command script upg09_common_get.cmd will be executed. This script starts the sql
script to save and delete standard LogiView Models.

2. Check log files in the directory upgrade \log

z Upg09_common_get.sql

z Sql scripts upgrade\log\upg09%.log

Note: If an error occurs during LogiView upgrade, restart the script and execute LGV
Upgrade again.

Step EDB-UPD

This step upgrades the Agile e6 Application Repository. It inserts and upgrades data in the
application repository of Agile e6. The repository tables are grouped into different upgrade
modules.

The following modules are necessary to migrate to Agile e6

z EDB-upgrade

z BRW-upgrade

z DODE-upgrade

z LGV-upgrade (Logiview

z WFL-upgrade(Workflow),

z CHG-Upgrade (Change Management

z Classification-upgrade(Classification)

z GDM-upgrade(Office Suite)

Note: This step needs to be execute for each module except Classification-upgrade.

1. Select the module e.g. EDB-upgrade

2. Click the Create file button.

3. Click the Perform Insert, Update, Delete button

These steps take about 20 min.

4. Check the log and data files found in the directory upgrade\data\<module short name>,

For an error description see the chapter Handling Of Errors” in the Annex.

Special Upgrade: Classification
Depending on your source version of the Agile system execute on of the following:

� Migrate classification data from the ATT concept to the new pool concept (necessary for
migration from CADIM and axalant to Agile e6.0)

� Migrate changes in attribute inheritance (migration of all source version to Agile e6.0)

33

Agile e6.0

Migrate class data from the ATT concept to the new pool concept

1. Check parameters settings for the Classification Upgrade (for detailed information see
Installation and Configuration manual)

2. Select Classification-upgrade to start the migration.

3. Select Determine Merge conditions

As a result, the file merge_ctl. xml is created. This file contains so-called merge groups. All
attributes mapped onto the same pool attribute are in the same merge group.

4. Select Execute Perform merge conditions.
The file merge_ctl. xml is read. Based on this information all objects and attributes are created
or updated.

5. Check the merge and log files.
These files are located in upgrade\data\cla

Migrate changes in attribute inheritance

1. Select Attribute Inheritance to start the migration.

2. Click the button Perform attribute inheritance to subclasses.

3. Check log files in upgrade\data\cla

Transfer data from production system
After having performed the Customizing Upgrade, you can now start with transferring the
reference data from the production system. Reference data are all tables except customized tables.

Identify the reference data for your system and synchronize the versions. For details which tables
must be copied, see chapter Overview Upgrade process

The data is transferred with the following steps:

� Define reference table

� Perform transfer

� Synchronize repository

� Run after-takeover upgrade steps

� Upgrade Classification

Define reference tables

1. Select folder Takeover in the Upgrade Tool and press the button Create Ref File.

The Upgrade Tool will connect to the production database, identify all tables and synchronize
the information with the predefined list (ref_tables). Only tables with data will be written to
the file.

Note: Depending on your specific configuration, adapt the preconfigured transfer type.

For detail information on which tables should be copied, refer to the chapter Upgrade process

2. To adapt the list, press Edit ref. file

34 Upgrade Tool 3.0

Chapter 4 Migration

Note you have to define, if it is a reference table for each table.

3. Select OK to save the XML file (upgrade/data/ref_data_tab.xml).

Perform transfer

1. Save your customer Agile e6.0 dump.

Oracle: Run the script exp_dmp in the upgrade/scripts directory (upgrade/cmd on windows
machine).

2. Press the Takeover button.

The tables containing non-repository information are dropped in your customers dump. The
tables will be copied from the defined production environment (which is defined in the
production DB) into you customer dump.

3. Check the log files in upgrade\

z Tko:_takeover.log

Synchronize repository

1. Adapt the physical table definition according to the table definition in Data View

The table structure of the newly copied table will be adapted to an Agile e6.0 table structure.

z AFTER TAKEOVER:run before-sync-scripts
The command script upg07_sync_update.cmd will be executed.
Check log files upg07%.log in the upgrade\log directory

35

Agile e6.0

z AFTER TAKEOVER >Synchronize_Repository.
Data and log files will be written into the directory upgrade\data\sync
Check the file upgrade\log\errordetail.log for errors.

z AFTER TAKEOVER > Run after-sync scripts

Script Run after takeover

1. Select Run after takeover scripts

The command script upg15_prod3_postaction.cmd will be executed

2. Check log files upg15%.log in the directory in \upgrade\log

The complete list of sql scripts is described in the annex

3. Recreate own customer specific views, packages, procedures and triggers

If you have implemented own views, packages, procedures or triggers please executes the sql
scripts to create/replace this objects in the database, so that they are valid.

Special Upgrade: Classification
Depending on your processes you have to execute one of the following possibilities.

� Upgrade classification lists only

� Upgrade complete classification including classes and attributes

Please see upgrade process overview for more information which option should be used.

Upgrade classification lists only

1. Select Classification (stage 2).

It is required that the attributes are already migrated and so that only the classification lists
will be updated.

36 Upgrade Tool 3.0

Chapter 4 Migration

2. Click Perform mapping.

Upgrade complete classification

If the customer has created new classes and attributes in the production system after the
customization upgrade also classes, attributes and domain values must be copied and migrated

Migrate classification data from the ATT concept to the new pool concept

Note: Check parameters settings for the classification Upgrade (for detailed information see
Installation and Configuration manual)

1. To start the migration please select action > Fileselection database > Classification

2. Click the Execute Determine Merge conditions button.

As result, the file merge_ctl. xml is created. This file contains so-called merge groups. All
attributes mapped onto the same pool attribute are in the same merge group.

3. Click the Execute Perform merge conditions button.

The file merge_ctl. xml is read. Based on this information all objects and attributes are created
or updated.

4. Check the merge and log files.

These files are located in upgrade\data\cla

Migrate changes in attribute inheritance

1. To start the migration, select action Filesetselection Database > Classification
attributeinheritance

2. Check log files in upgrade\data\cla

37

Agile e6.0

Chapter 5
Annex

Convert XML files to HTML
You can convert the XML files to HTML and view them with a browser. The batch file
xml2html.bat creates HTML files for insert, update and delete. This function is available on
Windows platforms only.

Note: You need memory for approximately sixth times the XML file size!

Run xml2html with one of the following parameter values which specify for module the HTML
file will be created.

The html-xml converter will create one file for insert, update and delete for each table.

The batch job will run several hours. The jre allocates 512MB of memory. You can adjust the
memory allocation by editing the file

� Upgrade\cmd\upg_env.cmd (PC) and

� Upgrade/scripts/upg_env.sh

Directory structure
Directory Description

cmd Windows 2000 shell scripts of the upgrade tool

conf Configuration xml files

conf\template Some templates of xml configuration files. These files are not used by the upgrade tool.
The only Exception is the file ref_tables.xml. It will be read by the tool to recreate
/conf/ref_tables.xml

data This directory contains several subdirectories, each for a module – like BRW, EDB etc.
For each module delete, insert and update xml files are created. After performing of
these operations on the customer database, error xml file will be written. Additionally
html files generated for a module will be saved here. A file customizing.log in this
directory contains conflicts caused by customizing of the original dump

data\dtv Dataview Upgrade files as described above are stored here. Please read carefully the file
customizing.log because it contains user-exit conflicts.

data\sync log files of the synchronize repository upgrade step are stored in this directory

doc Upgrade tool documentation

dumps Database dumps can be stored here. Dumps, which are imported / exported by shell
scripts have to be stored in this directory

lib Upgrade tool java executables

38 Upgrade Tool 3.0

Chapter 5 Annex

log Log files of all sql scripts and common application log files

mssql\sql MS Sql Server sql-scripts

ora\sql Oracle sql-scripts

scripts Unix / linux shell scripts of the upgrade tool

Shell scripts / Log files

Here is a short description of all the shell scripts included in upgrade download package.

Shell script Description Called SQL scripts

chown_mssql.c
md

A script to change the
database owner in MS Sql
Server 2000.

--

convert_it.cmd Convert XML data file for a
single table to HTML files.
This script is called from
xml2html.cmd.

--

exp_dmp.cmd This script helps you to export
oracle database to a dump file.

--

imp_dmp.cmd This script helps you to
import oracle dump files.

--

missing_f.cmd Create missing file groups in
MS SQL Server.

--

preaction_temp
late.cmd

This file is for upgrade
internal use only!. It is used as
a template for creating the file
preaction.cmd, which is
needed if one or all upgrade
steps are not executed within
the standard graphical user
interface.

--

start_upg.cmd Start upgrade user interface. --

upg01_pre_clea
nlog.cmd

Cleanup all log files within
current upgrade project.

--

upg02_setup.c
md

Quick check of database
connections – this can be
performed in the standard
user interface too.

--

upg03_preactio
n_sql.cmd

Run several SQL scripts
depending on source, target
and customer product
versions. Called SQL scripts

source: TRUNC_LVTABS.SQL >
03_PREACTION_SQL.LOG

source: GRANT_SELECT_T_CONSTRAINT.SQL
source

39

Agile e6.0

Shell script Description Called SQL scripts

are saved in the file
03_preaction_sql.log

03_14_GRANT_SELECT_T_CONSTRAINT.LOG

source: CRE_REP_EDB.SQL source
03_12_CRE_REP_EDB.LOG

target: GRANT_SELECT_T_CONSTRAINT.SQL >
03_13_GRANT_SELECT_T_CONSTRAINT.LOG

CRE_REP_EDB.SQL > 03_01_CRE_REP_EDB.LOG

CLEANUP_C_ID_NULL.SQL >
03_03_CLEANUP_C_ID_NULL.LOG

ANA_LV.SQL > 03_04_ANA_LV.LOG

<=CADIM: ORA3-4.SQL > 03_05_ORA3-4.LOG

<=AXA SP 1: PST10P2TOP3.SQL >
03_06_PST10P2TOP3.LOG

<=AXA SP 1: ORA403-404.SQL > 03_07_ORA403-
404.LOG

<=AXA SP 1: AXASP1_TO_SP2.SQL >
03_08_AXASP1_TO_SP2.LOG

<=AXA SP 2: GDM_UPD_MAS_FLD_ORA.SQL >
03_09_GDM_UPD_MAS_FLD_ORA.LOG

<=AXA SP 3: DTV405-406.SQL > 03_10_DTV405-
406.LOG

<=AXA SP 3: UPD_T_SELECTION.SQL >
03_11_UPD_T_SELECTION.LOG

upg04_dtv_get.
cmd

Get XML files for the step
“DTV-Upgrade” in shell
mode.

--

upg05_dtv_upd
ate.cmd

Proceed XML files for the step
“DTV-Upgrade” in shell
mode.

--

upg06_sync_get
.cmd

Run the step “Analyze
repository” in shell mode.

upg07_sync_up
date.cmd

Run the step “Synchronize
repository” in shell mode.
Called SQL scripts are saved
in the file 07_sync_update.log

<= PLM5.x: before_sync.sql >
07_01_before_sync.log

upg08_postacti
on.cmd

Run some SQL scripts, which
are necessary after performing
“Synchronize repository”
upgrade step. Called SQL
scripts are saved in the file
08_postaction.log

cleanup.sql > 08_02_cleanup.log
cre_rep_edb.sql > 08_01_cre_rep_edb.log

upg09_commo Generate XML files for several
del_and_save_lvmodel.sql >
09_01_del_and_save_lvmodel.log

40 Upgrade Tool 3.0

Chapter 5 Annex

Shell script Description Called SQL scripts

n_get.cmd upgrade steps, one for each
common PLM module. Called
SQL scripts are saved in the
file 09_common_get.log

upg10_commo
n_update.cmd

Proceed common PLM
modules XML files. Called
SQL scripts are saved in the
file 10_common_update.log

<=PLM5.x: edb_explorer.sql >
10_edb_explorer.log

<=PLM5.x: levind_in_stalut.sql >
10_levind_in_stalut.log

upg11_cla.cmd Upgrade PLM Classification.
--

upg13_prod1_t
akeover.cmd

Start a user interface to
proceed with “Takeover
production data”. Scripts
upg14_prod2_rep_update and
upg15_prod3_postaction have
to be executed after that.

--

upg14_prod2_r
ep_update.cmd

Synchronize repository (this
script includes all necessary
preaction and postaction
calls).

SQL Files of upg07_sync_update.cmd and
upg08_postaction.cmd are called again

upg15_prod3_p
ostaction.cmd

Run SQL scripts that are
needed to be executed after
takeover step.

get_compile_view.sql >
post_prod_compile_view.log
get_compile_proc.sql >
post_prod_compile_proc.log
get_compile_trigger.sql >
post_prod_compile_trigger.sql.log
get_numvalue.sql > post_prod_numvalue.log

upg_env.cmd Common upgrade settings,
like Java, JRE, Path, etc.

--

xml2drop.cmd Generates ora/
ref_data_tab.par and
ora/ref_data_tab_drop.sql
files for manually
import/export of production
tables. You have to configure
which tables are relevant for
the takeover step before.

--

xml2html.cmd Converts generated XML files
to HTML format for a
module. Example:
“xml2html.cmd dtv” Or
“xml2html.cmd all”

--

SQL scripts
Here is a short description of SQL scripts delivered with the Agile Upgrade tool. All Script
executions creates a log file in the upgrade/log directory which are named like the script itself with
a prefix like pre_cst – which means it is a preaction script and it was executed on the customer
dump.

41

Agile e6.0

ana_lv.sql Analyze LogiView Content in the customer dump. Please
control the log file of this script as described in the manual.

axasp1_to_sp2.sql Upgrade axalant sp1 to axalant sp2.

before_sync.sql This script has to be executed before running the step
“Synchronize Repository”. It is done by default with the
standard upgrade configuration. It prepares the Table
T_STA_LUT and drops triggers, because otherwise it’s
impossible to insert rows in the involved tables.

cleanup.sql This script cleans up some dump content and is executed
automatically after the step “Synchronize Repository”.

cleanup_c_id_null.sql This script cleans up some inconsistencies in the customer
dump (like rows with negative C_ID values). It must be
executed before DTV-upgrade.

cre_plm_tbs.sql Creates missing oracle tablespaces.

cre_plm_usr.sql Create a database user. This script need 2 Parameters:
username and password

cre_rep_edb.sql Create all schema object (tables, views, indexes, Packages,
Triggers, Sequences etc.) and insert number server rows, the
most of them already exist, so a lot of errors will be logged
after executing this script.

del_and_save_lvmodel.sql Delete standard LogiView content and save customized
models with a prefix “SAVE-“.

del_dtv.sql Truncate all internal DTV-tables.

dtv405-406.sql Preaction script, has to be executed before DTV-upgrade for
customer dump version <= axalant SP3.

edb_explorer.sql Converts DTV explorer to Agile e6.0 EDB-explorer. This step
is executed once after common modules upgrade.

gdm_upd_mas_fld_ora.sql Preaction script has to be executed before DTV-upgrade for
customer dump version <= axalant SP2.

getoradrop.sql Get script “dropall.sql” which cleans up a complete database
schema.

get_compile_proc.sql Generates a script to recompile all packages/functions.

get_compile_trigger.sql Generates a script to recompile all triggers.

get_compile_view.sql Generates a script to recompile all views.

get_numvalue.sql This script is executed in the production database and
generates a file named “ set_numvalue.sql ” after takeover step.
This file updates number server values in the customer
database.

42 Upgrade Tool 3.0

Chapter 5 Annex

get_rebuildidx.sql This script generates a file named “ rebuildidx.sql ” to rebuild
all indexes in a right tablespace of a schema. It has 5
parameters for tablespaces:
EDB EDB_IDX EDB_LOB EDB_TMP EDB_TMPIDX

grant_select_t_constraint.sql This script grants a select on table T_CONSTRAINT for the
customer Database. This permission is needed for constraint
conversion.

levind_in_stalut.sql This script is called automatically after “Synchronize
Repository” and converts records in the table T_STA_LUT. It
is needed only for upgrades form <= Eigner PLM to >= Agile
e6.0.

ora3-4.sql This preaction-script is called automatically if the customer
dump is a CADIM dump.

ora403-404.sql Preaction script, has to be executed before DTV-upgrade for
customer dump version <= axalant SP1.

Pst10P2ToP3.sql Preaction script, has to be executed before DTV-upgrade for
customer dump version <= axalant SP1.

reference_tabs.sql Is used by shell script del2xml. It creates an oracle parameter
file for production data tables export.

trunc_lvtabs.sql Truncate all LogiView tables. This script is executed on
reference dumps only!

update_customers_UIC.sql This script has to be executed on the customer dump before
proceeding with upgrade

upd_t_selection.sql This script is a workaround for incompatible changes for
Table T_SELECTION in Eigner PLM5.0 This script is already
executed on all reference dumps delivered with Agile Upgrade
Tool. It will be automatically executed id necessary in the step
“preaction-scripts”

Folders Contents “upgrade/conf” and “upgrade/conf/template”

Contents of the folder “upgrade/conf”

ApplicationParameter.xml Global application configuration file

brwDD.xml Configuration file for upgrade module
BRW (Explorer)

chgDD.xml configuration file for upgrade module CHG
(Change Management)

wflDD.xml configuration file for upgrade module WFL
(Workflow)

dodeDD.xml configuration file for upgrade module DODE

43

Agile e6.0

(Print Studio)

dtvDD.xml configuration file for upgrade module DTV
(Dataview Repository)

edbDD.xml configuration file for upgrade module EDB
(Agile PLM configuration)

gdmDD.xml configuration file for upgrade module GDM
(Office integration)

gtmDD.xml configuration file for upgrade module GTM

lgvDD.xml configuration file for upgrade module LGV
(LogiView)

special.xml Configuration file for the step “Synchronize
Repository”

specialreplace.xml A sample configuration file for special replace
cases

ref_tables.xml Configuration file for the upgrade step
“Takeover production data”

wfl_ctl.xml Configuration file for Workflow mapping

cla_ctl.xml Configuration file for Classification Upgrade
(Axalant 2000 to PLM5.x)

cla_post_ctl.xml Configuration file for Classification Upgrade
(Axalant 2000 to PLM5.x)

insert.xsl, delete.xsl, update.xsl, upgrade.xsl XSL-Stylesheet for converting XML control
files to HTML, used by xml2html.cmd script

ref_data_tab_drop.xsl XSL-Stylesheet for generating SQL script,
which drops production data tables in the
customer dump. This style sheet is used by
xml2drop.cmd

ref_data_tab_par.xsl XSL-Stylesheet for generating table list clause
for oracle EXP command, which can be use
alternatively to transfer production data tables
from production database. This style sheet is
used by xml2drop.cmd

cla_stl.xsl XSL-Stylesheet for Configuration file for
Classification Upgrade (Axalant 2000 to
PLM5.x), which generates a HTML output of
performed mapping operations

44 Upgrade Tool 3.0

Chapter 5 Annex

dtv_dd.dtd Document type definition file for module
control files

Contents of the folder “upgrade/conf/template”

ApplicationParameter.xml Upgrade tool settings file with standard values.
Copy this file to upgrade/conf to reset the
application settings.

cla_ctl_with_multi_lang.xml Example for the classification control file (with
multi-language definition of the attributes).

cla_ctl_with multi_lang_repl.xml Example for the classification control file (with
multi language definition of the attributes and
additional fields for database replication).

cla_ctl_with_repl.xml Example for the classification control file (with
additional fields for database replication).

special_move.xml Examples for the special case with table field
moving.

special_rename.xml Examples for the special case with table field
renaming.

Special.xml Default template.

specialreplace.xml Examples for special replace cases.

Configuration parameters
PLM-Version The customer dump version

Following values are valid:

1 = CADIB/EDB 2.3.x
2 = AXALANT SP1
3 = AXALANT SP2
4 = AXALANT SP3
5 = PLM 5.0
6 = Agile e6.0

Logiview
Timestamp

A Timestamp
All logiview items with a change date after this time point will be
deleted. You can adapt this value manually. Following values are
possible:

CADIM/EDB 2.3.2 – 19990329094555
CADIM/EDB 2.3#3 – 19990707174038
CADIM/EDB 2.3#4 – 19990707174038

45

Agile e6.0

CADIM/EDB 2.3#5 – 20000329161725
axalant2000 SP1 – 20001109140557
axalant2000 SP2 – 20010723102350
axalant2000 SP3 – 20011113092600
axa2000 SP3 PA1 – 20020808110309
Eigner PLM 5.0 - 20020830153411

Classification –
Controlfile

A file name of the control file for the customer dump in the
present case
Valid entries are:

cla_ctl.xml
cla_ctl_with_multi_lang.xml
cla_ctl_with_multi_lang_repl.xml
cla_ctl_with_repl.xml

Database Language Language for the database dump. This influences the migration of
the classification date.
Values: German, English
Default: German

Level Status that is set during classification upgrade for records in the
tables t_cla_dat (pool attributes), t_group_dat(classes)

Replication server The valid name of the database server should in case of an
implemented database replication to the environment be
migrated.

Migration Rules
Standard rules are available for insert, update und delete and these rules are verified during the
comparison of the table contents.

They can be overwritten by special definitions.

Standard Rules for Delete

Data records deleted in the standard are also deleted in the customer dump.

Customer-specific
dump

EignerPLM CUSTOMER Action

Selection - + Delete

Standard Rules for Update

Data records existing in CADIM/EDB or axalant that were deleted in the customer dump are not
re-created. Existing data records are updated.

The standard changes overwrite the customer changes.

Customer-specific
dump

EignerPLM CUSTOMER Action

Selection + + Update

Special rules apply on field level to protect customer-specific changes.

46 Upgrade Tool 3.0

Chapter 5 Annex

Standard Rules for Insert

Data records not existing in CADIM/EDB or axalant or in the customer dump are added.

Customer-specific
dump

Agile e6.0 CUSTOMER Action

Selection - -

Special Rules

Customer changes that will not be overwritten by standard changes are:

z Field defaults and check strings

z Customizings hints for fields containing user exits

z Special handling for mask components

z Replacements of strings ... (-> specialreplace.xml)

47

	Introduction
	Overview
	Architecture
	Upgrade tool
	Control and Log files in XML
	GUI

	Upgrade Process
	Preactions on original production environment
	Customization Upgrade
	Test
	Transfer Data from production system

	Special Upgrade: Classification
	Adapt original production environment
	Upgrade Pool Concept
	Migration concept
	Take Over Data from the production system

	Installation
	Prerequisites
	Installing the Upgrade Tool

	Configuration of Upgrade Tool
	Check database settings
	Check database settings in Oracle

	Prepare environments
	Prepare reference environments

	Define Database Connections
	Define Source Master/Target Master/Customer Connections
	Define Production DB

	Define Parameters
	Configure control and log files
	Control and log files for comparing/updating repository tabl
	Control and log file for Synchronizing repository
	Configure special.xml for synchronizing repository

	Special Upgrade: Classification
	Configuration file for Special replace.xml
	Configure take over data from the production system

	Migration
	Performing Customizing Upgrade
	Step Run preaction scripts
	Step DTV-upgrade
	Adapt physic. table definition acc. to DataView table defini
	Step Run before-common-scripts
	Step EDB-UPD

	Special Upgrade: Classification
	Transfer data from production system
	Define reference tables
	Perform transfer
	Synchronize repository
	Script Run after takeover

	Special Upgrade: Classification
	Upgrade classification lists only
	Upgrade complete classification

	Annex
	Convert XML files to HTML
	Directory structure
	Shell scripts / Log files
	SQL scripts
	Folders Contents “upgrade/conf” and “upgrade/conf/template”
	Contents of the folder “upgrade/conf”
	Contents of the folder “upgrade/conf/template”

	Configuration parameters
	Migration Rules
	Standard Rules for Delete
	Standard Rules for Update
	Standard Rules for Insert
	Special Rules

