LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under Specification Lead's applicable intellectual property rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation. This includes (i) developing applications intended to run on an implementation of the Specification, provided that such applications do not themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts do not in the aggregate constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below, patent rights it may have covering the Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully implements the Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of the applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification, other than to the extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks, service marks, or trade names of Specification Lead or Specification Lead's licensors is granted hereunder. Java, and Java-related logos, marks and names are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass through" requirements in any license You grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to Independent Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under Specification Lead's applicable intellectual property rights; nor (b) authorize your licensees to make any claims concerning their implementation's compliance with the Specification in question.

 a. With respect to any patent claims covered by the license granted under subparagraph 2 above that
 would be infringed by all technically feasible implementations of the Specification, such license is
 conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
 from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which
 are or would be infringed by all technically feasible implementations of the Specification to develop,
 distribute and use a Compliant Implementation.

 b. With respect to any patent claims owned by Specification Lead and covered by the license granted
 under subparagraph 2, whether or not their infringement can be avoided in a technically feasible manner
 when implementing the Specification, such license shall terminate with respect to such claims if You
 initiate a claim against Specification Lead that it has, in the course of performing its responsibilities as the
 Specification Lead, induced any other entity to infringe Your patent rights.

 c. Also with respect to any patent claims owned by Specification Lead and covered by the license
 granted under subparagraph 2 above, where the infringement of such claims can be avoided in a
 technically feasible manner when implementing the Specification such license, with respect to such
 claims, shall terminate if You initiate a claim against Specification Lead that its making, having made,
 using, offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: “Independent Implementation” shall mean an
 implementation of the Specification that neither derives from any of Specification Lead's source code or
 binary code materials nor, except with an appropriate and separate license from Specification Lead,
 includes any of Specification Lead's source code or binary code materials; "Licensor Name Space" shall
 mean the public class or interface declarations whose names begin with "java", "javax", "com.sun" and
 "com.oracle" or their equivalents in any subsequent naming convention adopted by Oracle America, Inc.
 through the Java Community Process, or any recognized successors or replacements thereof; and
 "Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User's Guide
 provided by Specification Lead which corresponds to the Specification and that was available either (i)
 from Specification Lead's 120 days before the first release of Your Independent Implementation that
 allows its use for commercial purposes, or (ii) more recently than 120 days from such release but against
 which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR
IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any product. In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be required after delivery to Licensee.

This Agreement is the parties' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other communication between the parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding, unless in writing and signed by an authorized representative of each party.
Java™ Platform, Enterprise Edition (Java EE) Specification, v7

EE.1 Introduction1
 EE.1.1 Acknowledgements for the Initial Version 2
 EE.1.2 Acknowledgements for Version 1.3 2
 EE.1.3 Acknowledgements for Version 1.4 2
 EE.1.4 Acknowledgements for Version 5 3
 EE.1.5 Acknowledgements for Version 6 4
 EE.1.6 Acknowledgements for Version 7 4

EE.2 Platform Overview5
 EE.2.1 Architecture .. 5
 EE.2.2 Profiles ... 6
 EE.2.3 Application Components .. 8
 EE.2.3.1 Java EE Server Support for Application Components 9
 EE.2.4 Containers ... 9
 EE.2.4.1 Container Requirements 10
 EE.2.4.2 Java EE Servers ... 10
 EE.2.5 Resource Adapters ... 10
 EE.2.6 Database .. 11
 EE.2.7 Java EE Standard Services ... 11
 EE.2.7.1 HTTP .. 11
 EE.2.7.2 HTTPS .. 11
 EE.2.7.3 Javatm Transaction API (JTA) 11
 EE.2.7.4 RMI-IIOP ... 12
 EE.2.7.5 Java IDL ... 12
 EE.2.7.6 JDBC™ API .. 12
 EE.2.7.7 Javatm Persistence API 13
 EE.2.7.8 Java™ Message Service (JMS) 13
 EE.2.7.9 Java Naming and Directory Interface™ (JNDI) 13
 EE.2.7.10 JavaMail™ .. 13
 EE.2.7.11 JavaBeans™ Activation Framework (JAF) 14
 EE.2.7.12 XML Processing ... 14
 EE.2.7.13 Java EETM Connector Architecture 14
 EE.2.7.14 Security Services .. 15
 EE.2.7.15 Web Services .. 15
 EE.2.7.16 Concurrency Utilities 16
 EE.2.7.17 Batch .. 16
EE.2.7.18 Management .. 16
EE.2.7.19 Deployment .. 17
EE.2.8 Interoperability 18
EE.2.9 Flexibility of Product Requirements 18
EE.2.10 Java EE Product Extensions 18
EE.2.11 Platform Roles 19
 EE.2.11.1 Java EE Product Provider 19
 EE.2.11.2 Application Component Provider 20
 EE.2.11.3 Application Assembler 20
 EE.2.11.4 Deployer ... 20
 EE.2.11.5 System Administrator 21
 EE.2.11.6 Tool Provider 21
 EE.2.11.7 System Component Provider 22
EE.2.12 Platform Contracts 22
 EE.2.12.1 Java EE APIs 22
 EE.2.12.2 Java EE Service Provider Interfaces (SPIs) 22
 EE.2.12.3 Network Protocols 23
 EE.2.12.4 Deployment Descriptors and Annotations 23
EE.2.13 Changes in J2EE 1.3 23
EE.2.14 Changes in J2EE 1.4 24
EE.2.15 Changes in Java EE 5 24
EE.2.16 Changes in Java EE 6 25
EE.2.17 Changes in Java EE 7 26

EE.3 Security .. 29
EE.3.1 Introduction .. 29
EE.3.2 A Simple Example 30
EE.3.3 Security Architecture 33
 EE.3.3.1 Goals ... 33
 EE.3.3.2 Non Goals .. 34
 EE.3.3.3 Terminology 34
 EE.3.3.4 Container Based Security 35
 EE.3.3.5 Distributed Security 37
 EE.3.3.6 Authorization Model 37
 EE.3.3.7 HTTP Login Gateways 39
 EE.3.3.8 User Authentication 39
 EE.3.3.9 Lazy Authentication 41
EE.3.4 User Authentication Requirements 42
 EE.3.4.1 Login Sessions 42

Final Release
EE.3.4.2 Required Login Mechanisms 42
EE.3.4.3 Unauthenticated Users 43
EE.3.4.4 Application Client User Authentication 44
EE.3.4.5 Resource Authentication Requirements 45
EE.3.5 Authorization Requirements 46
EE.3.5.1 Code Authorization 46
EE.3.5.2 Caller Authorization 47
EE.3.5.3 Propagated Caller Identities 47
EE.3.5.4 Run As Identities 47
EE.3.6 Deployment Requirements 48
EE.3.7 Future Directions 49
EE.3.7.1 Auditing 49
EE.3.7.2 Instance-based Access Control 49
EE.3.7.3 User Registration 49

EE.4 Transaction Management 51
EE.4.1 Overview 51
EE.4.2 Requirements 53
EE.4.2.1 Web Components 53
EE.4.2.2 Transactions in Web Component Life Cycles 54
EE.4.2.3 Transactions and Threads 55
EE.4.2.4 Enterprise JavaBeans™ Components 56
EE.4.2.5 Application Clients 56
EE.4.2.6 Applet Clients 56
EE.4.2.7 Transactional JDBC™ Technology Support 56
EE.4.2.8 Transactional JMS Support 57
EE.4.2.9 Transactional Resource Adapter (Connector) Support 57
EE.4.3 Transaction Interoperability 57
EE.4.3.1 Multiple Java EE Platform Interoperability 57
EE.4.3.2 Support for Transactional Resource Managers .. 58
EE.4.4 Local Transaction Optimization 58
EE.4.4.1 Requirements 58
EE.4.4.2 A Possible Design 58
EE.4.5 Connection Sharing 59
EE.4.6 JDBC and JMS Deployment Issues 60
EE.4.7 Two-Phase Commit Support 61
EE.4.8 System Administration Tools 61

EE.5 Resources, Naming, and Injection 63
Final Release
EE.5.10	Application Component Provider’s Responsibilities	112
EE.5.10.2	Java EE Product Provider’s Responsibilities	112
EE.5.11	TransactionSynchronizationRegistry References	112
EE.5.11.1	Application Component Provider’s Responsibilities	113
EE.5.11.2	Java EE Product Provider’s Responsibilities	113
EE.5.12	ORB References	113
EE.5.12.1	Application Component Provider’s Responsibilities	114
EE.5.12.2	Java EE Product Provider’s Responsibilities	114
EE.5.13	Persistence Unit References	115
EE.5.13.1	Application Component Provider’s Responsibilities	115
EE.5.13.2	Application Assembler’s Responsibilities	118
EE.5.13.3	Deployer’s Responsibility	119
EE.5.13.4	Java EE Product Provider’s Responsibility	119
EE.5.13.5	System Administrator’s Responsibility	119
EE.5.14	Persistence Context References	120
EE.5.14.1	Application Component Provider’s Responsibilities	120
EE.5.14.2	Application Assembler’s Responsibilities	123
EE.5.14.3	Deployer’s Responsibility	124
EE.5.14.4	Java EE Product Provider’s Responsibility	125
EE.5.14.5	System Administrator’s Responsibility	125
EE.5.15	Application Name and Module Name References	125
EE.5.15.1	Application Component Provider’s Responsibilities	126
EE.5.15.2	Java EE Product Provider’s Responsibilities	126
EE.5.16	Application Client Container Property	126
EE.5.16.1	Application Component Provider’s Responsibilities	126
EE.5.16.2	Java EE Product Provider’s Responsibilities	126
EE.5.17	Validator and Validator Factory References	126
EE.5.17.1	Application Component Provider’s Responsibilities	128
EE.5.17.2	Java EE Product Provider’s Responsibilities	128
EE.5.18	Resource Definition and Configuration	128
EE.5.18.1	Guidelines	130
EE.5.18.2	Requirements Common to All Resource Definition	130
EE.5.18.3	DataSource Resource Definition	132
EE.5.18.4	JMS Connection Factory Resource Definition	134
EE.5.18.5	JMS Destination Definition	136
EE.5.18.6	Mail Session Definition	138
EE.5.18.7	Connector Connection Factory Definition	140
EE.5.18.8	Connector Administered Object Definition	142
EE.5.19 Default Data Source .. 144
EE.5.19.1 Java EE Product Provider's Responsibilities 144
EE.5.20 Default JMS Connection Factory 145
EE.5.20.1 Java EE Product Provider's Responsibilities 145
EE.5.21 Default Concurrency Utilities Objects 146
EE.5.21.1 Java EE Product Provider's Responsibilities 146
EE.5.22 Managed Bean References 147
EE.5.22.1 Application Component Provider’s Responsibilities 148
EE.5.22.2 Java EE Product Provider’s Responsibilities 148
EE.5.23 Bean Manager References 149
EE.5.23.1 Application Component Provider’s Responsibilities 149
EE.5.23.2 Java EE Product Provider’s Responsibilities 149
EE.5.24 Support for Dependency Injection 149

EE.6 Application Programming Interface 153
EE.6.1 Required APIs ... 153
EE.6.1.1 Java Compatible APIs 153
EE.6.1.2 Required Java Technologies 154
EE.6.1.3 Pruned Java Technologies 157
EE.6.2 Java Platform, Standard Edition (Java SE) Requirements . 157
EE.6.2.1 Programming Restrictions 157
EE.6.2.2 Java EE Security Manager Related Requirements 158
EE.6.2.3 Additional Requirements 164
EE.6.3 Enterprise JavaBeans™ (EJB) 3.2 Requirements 172
EE.6.4 Servlet 3.1 Requirements 173
EE.6.5 JavaServer Pages™ (JSP) 2.3 Requirements 174
EE.6.6 Expression Language (EL) 3.0 Requirements 174
EE.6.7 Java™ Message Service (JMS) 2.0 Requirements 175
EE.6.8 Java™ Transaction API (JTA) 1.2 Requirements 176
EE.6.9 JavaMail™ 1.5 Requirements 177
EE.6.10 Java EE™ Connector Architecture 1.7 Requirements ... 178
EE.6.11 Web Services for Java EE 1.4 Requirements 179
EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements (Optional) .. 179
EE.6.13 Java™ API for XML Web Services (JAX-WS) 2.2 Requirements 180
EE.6.14 Java™ API for RESTful Web Services (JAX-RS) 2.0 Requirements .. 180

Final Release
EE.6.15 Java API for WebSocket 1.0 (WebSocket) Requirements . . . 181
EE.6.16 Java API for JSON Processing 1.0 (JSON-P) Requirements . 181
EE.6.17 Concurrency Utilities for Java EE 1.0 (Concurrency Utilities) Requirements ... 181
EE.6.18 Batch Applications for the Java Platform 1.0 (Batch) Requirements ... 182
EE.6.19 Java™ Architecture for XML Binding (JAXB) 2.2 Requirements 182
EE.6.20 Java™ API for XML Registries (JAXR) 1.0 Requirements (Optional) ... 182
EE.6.21 Java™ Platform, Enterprise Edition Management API 1.1 Requirements ... 183
EE.6.22 Java™ Platform, Enterprise Edition Deployment API 1.2 Requirements (Optional) .. 183
EE.6.23 Java™ Authorization Contract for Containers (JACC) 1.5 Requirements ... 183
EE.6.24 Java™ Authentication Service Provider Interface for Containers (JASPIC) 1.1 Requirements 184
EE.6.25 Debugging Support for Other Languages (JSR-45) Requirements 184
EE.6.26 Standard Tag Library for JavaServer Pages™ (JSTL) 1.2 Requirements ... 184
EE.6.27 Web Services Metadata for the Java™ Platform 2.1 Requirements ... 185
EE.6.28 JavaServer Faces™ 2.2 Requirements 185
EE.6.29 Common Annotations for the Java™ Platform 1.2 Requirements 185
EE.6.30 Java™ Persistence API 2.1 Requirements 186
EE.6.31 Bean Validation 1.1 Requirements 187
EE.6.32 Managed Beans 1.0 Requirements 187
EE.6.33 Interceptors 1.2 Requirements 187
EE.6.34 Contexts and Dependency Injection for the Java EE Platform 1.1 Requirements .. 188
EE.6.35 Dependency Injection for Java 1.0 Requirements 188

EE.7 Interoperability .. 189
EE.7.1 Introduction to Interoperability 189
EE.7.2 Interoperability Protocols .. 190
EE.7.2.1 Internet and Web Protocols 190
EE.7.2.2 OMG Protocols 191
EE.7.2.3 Java Technology Protocols 192
EE.7.2.4 Data Formats 192

EE.8 Application Assembly and Deployment 195
EE.8.1 Application Development Life Cycle 196
EE.8.1.1 Component Creation 197
EE.8.1.2 Application Assembly 199
EE.8.1.3 Deployment 200
EE.8.2 Library Support 200
EE.8.2.1 Bundled Libraries 201
EE.8.2.2 Installed Libraries 202
EE.8.2.3 Library Conflicts 203
EE.8.2.4 Library Resources 203
EE.8.2.5 Dynamic Class Loading 203
EE.8.2.6 Examples 204
EE.8.3 Class Loading Requirements 206
EE.8.3.1 Web Container Class Loading Requirements 206
EE.8.3.2 EJB Container Class Loading Requirements 208
EE.8.3.3 Application Client Container Class Loading Require-
ments .. 209
EE.8.3.4 Applet Container Class Loading Requirements 210
EE.8.4 Application Assembly 211
EE.8.4.1 Assembling a Java EE Application 211
EE.8.4.2 Adding and Removing Modules 214
EE.8.5 Deployment .. 214
EE.8.5.1 Deploying a Stand-Alone Java EE Module 216
EE.8.5.2 Deploying a Java EE Application 217
EE.8.5.3 Deploying a Library 220
EE.8.5.4 Module Initialization 220
EE.8.6 Java EE Application XML Schema 221
EE.8.7 Common Java EE XML Schema Definitions 224

EE.9 Profiles ... 225
EE.9.1 Introduction ... 225
EE.9.2 Profile Definition 226
EE.9.3 General Rules for Profiles 226
EE.9.4 Expression of Requirements 227
Enterprises today need to extend their reach, reduce their costs, and lower the response times of their services to customers, employees, and suppliers.

Typically, applications that provide these services must combine existing enterprise information systems (EISs) with new business functions that deliver services to a broad range of users. The services need to be:

- **Highly available**, to meet the needs of today’s global business environment.
- **Secure**, to protect the privacy of users and the integrity of the enterprise.
- **Reliable and scalable**, to ensure that business transactions are accurately and promptly processed.

In most cases, enterprise services are implemented as multitier applications. The middle tiers integrate existing EISs with the business functions and data of the new service. Maturing web technologies are used to provide first tier users with easy access to business complexities, and eliminate or drastically reduce user administration and training.

The Java™ Platform, Enterprise Edition (Java™ EE) reduces the cost and complexity of developing multitier, enterprise services. Java EE applications can be rapidly deployed and easily enhanced as the enterprise responds to competitive pressures.

Java EE achieves these benefits by defining a standard architecture with the following elements:

- **Java EE Platform** - A standard platform for hosting Java EE applications.
- **Java EE Compatibility Test Suite** - A suite of compatibility tests for verifying that a Java EE platform product complies with the Java EE platform standard.
• **Java EE Reference Implementation** - A reference implementation for prototyping Java EE applications and for providing an operational definition of the Java EE platform.

This document is the Java EE platform specification. It sets out the requirements that a Java EE platform product must meet.

EE.1.1 Acknowledgements for the Initial Version

This specification is the work of many people. Vlada Matena wrote the first draft as well as the Transaction Management and Naming chapters. Sekhar Vajjhala, Kevin Osborn, and Ron Monzillo wrote the Security chapter. Hans Hrasna wrote the Application Assembly and Deployment chapter. Seth White wrote the JDBC API requirements. Jim Inscor, Eric Jendrock, and Beth Stearns provided editorial assistance. Shel Finkelstein, Mark Hapner, Danny Coward, Tom Kincaid, and Tony Ng provided feedback on many drafts. And of course this specification was formed and molded based on conversations with and review feedback from our many industry partners.

EE.1.2 Acknowledgements for Version 1.3

Version 1.3 of this specification grew out of discussions with our partners during the creation of version 1.2, as well as meetings with those partners subsequent to the final release of version 1.2. Version 1.3 was created under the Java Community Process as JSR-058. The JSR-058 Expert Group included representatives from the following companies and organizations: Allaire, BEA Systems, Bluestone Software, Borland, Bull S.A., Exoffice, Fujitsu Limited, GemStone Systems, Inc., IBM, Inline Software, IONA Technologies, iPlanet, jGuru.com, Orion Application Server, Persistence, POET Software, SilverStream, Sun, and Sybase. In addition, most of the people who helped with the previous version continued to help with this version, along with Jon Ellis and Ram Jeyaraman. Alfred Towell provided significant editorial assistance with this version.

EE.1.3 Acknowledgements for Version 1.4

Version 1.4 of this specification was created under the Java Community Process as JSR-151. The JSR-151 Expert Group included the following members: Larry W. Allen (SilverStream Software), Karl Avedal (Individual), Charlton Barreto
(Borland Software Corporation), Edward Cobb (BEA), Alan Davies (SeeBeyond Technology Corporation), Sreeram Duvvuru (iPlanet), B.J. Fesq (Individual), Mark Field (Macromedia), Mark Hapner (Sun Microsystems, Inc.), Pierce Hickey (IONA), Hemant Khandelwal (Pramati Technologies), Jim Knutson (IBM), Elika S. Kohen (Individual), Ramesh Loganathan (Pramati Technologies), Jasen Minton (Oracle Corporation), Jeff Mischkinsky (Oracle Corporation), Richard Monson-Haefel (Individual), Sean Neville (Macromedia), Bill Shannon (Sun Microsystems, Inc.), Simon Tuffs (Lutris Technologies), Jeffrey Wang (Persistence Software, Inc.), and Ingo Zenz (SAP AG). My colleagues at Sun provided invaluable assistance: Umit Yalcinalp converted the deployment descriptors to XML Schema; Tony Ng and Sanjeev Krishnan helped with transaction requirements; Jonathan Bruce helped with JDBC requirements; Suzette Pelouch, Eric Jendrock, and Ian Evans provided editorial assistance. Thanks also to all the external reviewers, including Jeff Estefan (Adecco Technical Services).

EE.1.4 Acknowledgements for Version 5

Version 5 (originally known as version 1.5) of this specification was created under the Java Community Process as JSR-244. The JSR-244 Expert Group included the following members: Kilin Alkan (Individual), Rama Murthy Amar Pratap (Individual), Charlton Barreto (Individual), Michael Bechauf (SAP AG), Florent Benoit (INRIA), Bill Burke (JBoss, Inc.), Muralidharan Chandrasekaran (Individual), Yongmin Chen (Novell, Inc.), Jun Ho Cho (TmaxSoft), Ed Cobb (BEA), Ugo Corda (SeeBeyond Technology Corporation), Scott Crawford (Individual), Arulazi Dhesiaseelan (Hewlett-Packard Company), Bill Dudney (Individual), Francois Exertier (INRIA), Jeff Genender (The Apache Software Foundation), Evan Ireland (Sybase, Inc.), Vishy Kasar (Borland Software Corporation), Michael Keith (Oracle Corporation), Wonseok Kim (TmaxSoft, Inc.), Jim Knutson (IBM), Elika Kohen (Individual), Felipe Leme (Individual), Geir Magnusson Jr. (The Apache Software Foundation), Scott Marlow (Novell, Inc.), Jasen Minton (Oracle Corporation), Jishnu Mitra (Borland Software Corp), David Morandi (E.piphany), Nathan Pahucki (Novell, Inc.), David Morandi (E.piphany, Inc.), Ricardo Morin (Intel Corporation), Nathan Pahucki (Novell, Inc.), Matt Raible (Individual), Dirk Reinshagen (Individual), Narinder Sahota (Cap Gemini), Suneet Shah (Individual), Bill Shannon (Sun Microsystems, Inc.), Rajiv Shivane (Pramati Technologies), Scott Stark (Jboss, Inc), Hani Suleiman (Ironflare AB), Kresten Krab Thorup (Trifork), Ashish Kumar Tiwari (Individual), Sivasundaram Umapathy (Individual), Steve Weston (Cap Gemini), Seth White (BEA Systems), and Umit Yalcinalp (SAP AG). Once again, my colleagues at Sun provided...
invaluable assistance: Roberto Chinnici provided draft proposals for many issues related to dependency injection.

EE.1.5 Acknowledgements for Version 6

Version 6 of this specification was created under the Java Community Process as JSR-316. The spec leads for the JSR-316 Expert Group were Bill Shannon (Sun Microsystems, Inc.) and Roberto Chinnici (Sun Microsystems, Inc.). The expert group included the following members: Florent Benoit (Inria), Adam Bien (Individual), David Blevins (Individual), Bill Burke (Red Hat Middleware LLC), Larry Cable (BEA Systems), Bongjae Chang (Tmax Soft, Inc.), Rejeev Divakaran (Individual), Francois Exertier (Inria), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason Greene (Red Hat Middleware LLC), Gang Huang (Peking University), Rod Johnson (SpringSource), Werner Keil (Individual), Michael Keith (Oracle), Wonseok Kim (Tmax Soft, Inc.), Jim Knutson (IBM), Elika S. Kohen (Individual), Peter Kristiansson (Ericsson AB), Changshin Lee (NCsoft Corporation), Felipe Leme (Individual), Ming Li (TongTech Ltd.), Vladimir Pavlov (SAP AG), Dhanji R. Prasanna (Google), Reza Rahman (Individual), Rajiv Shivane (Pramati Technologies), Hani Suleiman (Individual).

EE.1.6 Acknowledgements for Version 7

Version 7 of this specification was created under the Java Community Process as JSR-342. The Expert Group work for this specification was conducted by means of the http://javaee-spec.java.net project in order to provide transparency to the Java community. The specification leads for the JSR-342 Expert Group were Bill Shannon (Oracle) and Linda DeMichiel (Oracle). The expert group included the following members: Deepak Anupalli (Pramati Technologies), Anton Arhipov (ZeroTurnaround), Florent Benoit (OW2), Adam Bien (Individual), David Blevins (Individual), Markus Eisele (Individual), Jeff Genender (Individual), Antonio Goncalves (Individual), Jason Greene (Red Hat, Inc.), Alex Heneveld (Individual), Minehiko Iida (Fujitsu), Jevgeni Kabanov (Individual), Ingyu Kang (Tmax Soft, Inc.), Werner Keil (Individual), Jim Knutson (IBM), Ming Li (TongTech Ltd.), Pete Muir (Red Hat, Inc.), Minoru Nitta (Fujitsu), Reza Rahman (Cauchlo Technology, Inc), Kristoffer Sjogren (Ericsson AB), Kevin Sutter (IBM), Spike Washburn (Individual), Kyung Koo Yoon (TmaxSoft).
CHAPTER EE.2
Platform Overview

This chapter provides an overview of the Java™ Platform, Enterprise Edition (Java EE™).

EE.2.1 Architecture

The required relationships of architectural elements of the Java EE platform are shown in Figure EE.2-1. Note that this figure shows the logical relationships of the elements; it is not meant to imply a physical partitioning of the elements into separate machines, processes, address spaces, or virtual machines.

The Containers, denoted by the separate rectangles, are Java EE runtime environments that provide required services to the application components represented in the upper half of the rectangle. The services provided are denoted by the boxes in the lower half of the rectangle. For example, the Application Client Container provides Java Message Service (JMS) APIs to Application Clients, as well as the other services represented. All these services are explained below. See Section EE.2.7, “Java EE Standard Services”.

The arrows represent required access to other parts of the Java EE platform. The Application Client Container provides Application Clients with direct access to the Java EE required Database through the Java API for connectivity with database systems, the JDBC™ API. Similar access to databases is provided to JSP pages, JSF applications, and servlets by the Web Container, and to enterprise beans by the EJB Container.

As indicated, the APIs of the Java™ Platform, Standard Edition (Java SE), are supported by Java SE runtime environments for each type of application component.
The following sections describe the Java EE Platform requirements for each kind of Java EE platform element.

EE.2.2 Profiles

The Java EE 6 specification introduced the notion of “profiles” (see Chapter EE.9, “Profiles”).
A profile is a configuration of the Java EE platform targeted at a specific class of applications.

Profiles are not a new concept, nor are they unique to the Java EE platform. The Java Community Process Document (version 2.8) gives the following definition of a profile: “A Specification that references one of the Platform Edition Specifications and zero or more other JCP Specifications (that are not already a part of a Platform Edition Specification). APIs from the referenced Platform Edition must be included according to the referencing rules set out in that Platform Edition Specification. Other referenced specifications must be referenced in their entirety.”

All Java EE profiles share a set of common features, such as naming and resource injection, packaging rules, security requirements, etc. This guarantees a degree of uniformity across all products and, indirectly, applications that fall under the “Java EE platform” umbrella. This also ensures that developers who are familiar with a certain profile, or with the full platform, can move easily to other profiles, avoiding excessive compartmentalization of skills and experience.

Beyond the basic functionality outlined above, profiles are free to include any set of technologies that are part of the platform, provided that all rules in the present specification that pertain to the included technologies—either alone or in combination with others—are followed.

This last point is worth stressing. If profiles only included pointwise technologies, they would be little more than bundles of APIs with few or no ties-ins. Instead, the definition of profiles adopted here guarantees that whenever this specification defines requirements on combinations of technologies, these requirements will be honored in all products based on Java EE profiles.

As a concrete example, consider the use of transactions in a servlet container. In isolation, neither the Servlet specification nor the Java Transaction API specification defines a complete programming model for portable applications. This specification fills that gap by introducing its own set of requirements that pertain to the combination of Servlets and JTA. These requirements must be satisfied by any Java EE profile-based product that includes those two technologies, thus offering application developers a more complete programming model shared across all relevant Java EE profiles.

A separate specification, the Java EE Web Profile Specification, defines the Java EE Web Profile, the first profile of the Java EE platform. Additional profiles may be defined in accordance with the rules of the Java Community Process and those contained in the present specification. In particular, profiles are initiated by submitting a Java Specification Request and are released at completion on their own schedule, independently of any concurrent revision of
the platform itself or of other profiles. This ensures maximum flexibility in defining and releasing a new profile or an updated version of an existing one.

In accordance with the definition of profiles given above, a profile may end up being either a proper subset or a proper superset of the platform, or it may overlap with it to a certain extent. This flexibility guarantees that future profiles will be able to cover uses well beyond those originally envisioned by the platform specification.

As the previous paragraphs made clear, creating a new profile is a significant undertaking. The decision to create a profile should take into account its potential drawbacks, especially in terms of fragmentation and developer confusion. In general, a profile should be created only when there is a natural developer constituency and a well-understood class of applications that can benefit from it. It is also recommended that a profile cast a comprehensive net on its area of interest, to minimize the occurrence of overlapping or competing profiles. Java EE platform features such as optional components and extensibility can be used by profiles to achieve a better fit to their intended target.

EE.2.3 Application Components

The Java EE runtime environment defines four application component types that a Java EE product must support:

- **Application clients** are Java programming language programs that are typically GUI programs that execute on a desktop computer. Application clients offer a user experience similar to that of native applications and have access to all of the facilities of the Java EE middle tier.

- **Applets** are GUI components that typically execute in a web browser, but can execute in a variety of other applications or devices that support the applet programming model. Applets can be used to provide a powerful user interface for Java EE applications. (Simple HTML pages can also be used to provide a more limited user interface for Java EE applications.)

- **Servlets, JSP pages, JSF applications, filters, and web event listeners** typically execute in a web container and may respond to HTTP requests from web clients. Servlets, JSP pages, JSF applications, and filters may be used to generate HTML pages that are an application’s user interface. They may also be used to generate XML or other format data that is consumed by other application components. A special kind of servlet provides support for web services using the SOAP/HTTP protocol. Servlets, pages created with the JavaServer Pag-
es™ technology or JavaServer™ Faces technology, web filters, and web event listeners are referred to collectively in this specification as “web components.” Web applications are composed of web components and other data such as HTML pages. Web components execute in a web container. A web server includes a web container and other protocol support, security support, and so on, as required by Java EE specifications.

- Enterprise JavaBeans™ (EJB) components execute in a managed environment that supports transactions. Enterprise beans typically contain the business logic for a Java EE application. Enterprise beans may directly provide web services using the SOAP/HTTP protocol.

EE.2.3.1 Java EE Server Support for Application Components

The Java EE servers provide deployment, management, and execution support for conforming application components. Application components can be divided into three categories according to their dependence on a Java EE server:

- Components that are deployed, managed, and executed on a Java EE server. These components include web components and Enterprise JavaBeans components. See the separate specifications for these components.
- Components that are deployed and managed on a Java EE server, but are loaded to and executed on a client machine. These components include web resources such as HTML pages and applets embedded in HTML pages.
- Components whose deployment and management is not completely defined by this specification. Application Clients fall into this category. Future versions of this specification may more fully define deployment and management of Application Clients. See Chapter EE.10, “Application Clients,” for a description of Application Clients.

EE.2.4 Containers

Containers provide the runtime support for Java EE application components. Containers provide a federated view of the underlying Java EE APIs to the application components. Java EE application components never interact directly with other Java EE application components. They use the protocols and methods of the container for interacting with each other and with platform services. Interposing a container between the application components and the Java EE services allows the container to transparently inject the services required by the component, such as
declarative transaction management, security checks, resource pooling, and state management.

A typical Java EE product will provide a container for each application component type: application client container, applet container, web component container, and enterprise bean container.

EE.2.4.1 Container Requirements

This specification requires that containers provide a Java Compatible™ runtime environment, as defined by the Java Platform, Standard Edition, v7 specification (Java SE). The applet container may use the Java Plugin product to provide this environment, or it may provide it natively. The use of applet containers providing JDK™ 1.1 APIs is outside the scope of this specification.

The container tools must understand the file formats for the packaging of application components for deployment.

The containers are implemented by a Java EE Product Provider. See the description of the Product Provider role in Section EE.2.11.1, “Java EE Product Provider”.

This specification defines a set of standard services that each Java EE product must support. These standard services are described below. The Java EE containers provide the APIs that application components use to access these services. This specification also describes standard ways to extend Java EE services with connectors to other non-Java EE application systems, such as mainframe systems and ERP systems.

EE.2.4.2 Java EE Servers

Underlying a Java EE container is the server of which it is a part. A Java EE Product Provider typically implements the Java EE server-side functionality using an existing transaction processing infrastructure in combination with Java Platform, Standard Edition (Java SE) technology. The Java EE client functionality is typically built on Java SE technology.

EE.2.5 Resource Adapters

A resource adapter is a system-level software component that typically implements network connectivity to an external resource manager. A resource adapter can extend the functionality of the Java EE platform either by implementing one of the Java EE standard service APIs (such as a JDBC™ driver), or by defining and
implementing a resource adapter for a connector to an external application system. Resource adapters may also provide services that are entirely local, perhaps interacting with native resources. Resource adapters interface with the Java EE platform through the Java EE service provider interfaces (Java EE SPI). A resource adapter that uses the Java EE SPIs to attach to the Java EE platform will be able to work with all Java EE products.

EE.2.6 Database

The Java EE platform requires a database, accessible through the JDBC API, for the storage of business data. The database is accessible from web components, enterprise beans, and application client components. The database need not be accessible from applets. The Java EE Product Provider must also provide a preconfigured, default data source for use by the application in accessing this database. See Section EE.5.19, “Default Data Source”.

EE.2.7 Java EE Standard Services

The Java EE standard services include the following (specified in more detail later in this document). Some of these standard services are actually provided by Java SE.

EE.2.7.1 HTTP

The HTTP client-side API is defined by the java.net package. The HTTP server-side API is defined by the servlet, JSP, and JSF interfaces and by the web services support that is a part of the Java EE platform.

EE.2.7.2 HTTPS

Use of the HTTP protocol over the SSL protocol is supported by the same client and server APIs as HTTP.

EE.2.7.3 Java™ Transaction API (JTA)

The Java Transaction API consists of two parts:
• An application-level demarcation interface that is used by the container and application components to demarcate transaction boundaries.

• An interface between the transaction manager and a resource manager used at the Java EE SPI level.

EE.2.7.4 RMI-IIOP

The RMI-IIOP subsystem is composed of APIs that allow for the use of RMI-style programming that is independent of the underlying protocol, as well as an implementation of those APIs that supports both the Java SE native RMI protocol (JRMP) and the CORBA IIOP protocol. Java EE applications can use RMI-IIOP, with IIOP protocol support, to access CORBA services that are compatible with the RMI programming restrictions (see the RMI-IIOP specification for details). Such CORBA services would typically be defined by components that live outside of a Java EE product, usually in a legacy system. Only Java EE application clients are required to be able to define their own CORBA services directly, using the RMI-IIOP APIs. Typically such CORBA objects would be used for callbacks when accessing other CORBA objects.

Java EE products must be capable of exporting Enterprise JavaBeans components using the IIOP protocol and accessing enterprise beans using the IIOP protocol, as specified in the EJB specification. The ability to use the IIOP protocol is required to enable interoperability between Java EE products, however a Java EE product may also use other protocols. Requirements for use of the RMI-IIOP APIs when accessing Enterprise JavaBeans components have been relaxed as of EJB 3.0. See the Enterprise JavaBeans specification for details.

EE.2.7.5 Java IDL

Java IDL allows Java EE application components to invoke external CORBA objects using the IIOP protocol. These CORBA objects may be written in any language and typically live outside a Java EE product. Java EE applications may use Java IDL to act as clients of CORBA services, but only Java EE application clients are required to be allowed to use Java IDL directly to present CORBA services themselves.

EE.2.7.6 JDBC™ API

The JDBC API is the API for connectivity with relational database systems. The JDBC API has two parts: an application-level interface used by the application
components to access a database, and a service provider interface to attach a JDBC driver to the Java EE platform. Support for the service provider interface is not required in Java EE products. Instead, JDBC drivers should be packaged as resource adapters that use the facilities of the Connector API to interface with a Java EE product. The JDBC API is included in Java SE, but this specification includes additional requirements on JDBC device drivers.

EE.2.7.7 Java™ Persistence API

The Java Persistence API is the standard API for the management of persistence and object/relational mapping. It provides an object/relational mapping facility for application developers using a Java domain model to manage a relational database. The Java Persistence API is required to be supported in Java EE. It can also be used in Java SE environments.

EE.2.7.8 Java™ Message Service (JMS)

The Java Message Service is a standard API for messaging that supports reliable point-to-point messaging as well as the publish-subscribe model. This specification requires a JMS provider that implements both point-to-point messaging as well as publish-subscribe messaging. The Java EE Product Provider must also provide a preconfigured, default JMS connection factory for use by the application in accessing this JMS provider. See Section EE.5.20, “Default JMS Connection Factory”.

EE.2.7.9 Java Naming and Directory Interface™ (JNDI)

The JNDI API is the standard API for naming and directory access. The JNDI API has two parts: an application-level interface used by the application components to access naming and directory services and a service provider interface to attach a provider of a naming and directory service. The JNDI API is included in Java SE, but this specification defines additional requirements.

EE.2.7.10 JavaMail™

Many Internet applications require the ability to send email notifications, so the Java EE platform includes the JavaMail API along with a JavaMail service provider that allows an application component to send Internet mail. The JavaMail API has two parts: an application-level interface used by the application components to send mail, and a service provider interface used at the Java EE SPI level.
EE.2.7.11 JavaBeans™ Activation Framework (JAF)

The JAF API provides a framework for handling data in different MIME types, originating in different formats and locations. The JavaMail API makes use of the JAF API. The JAF API is included in Java SE and so is available to Java EE applications.

EE.2.7.12 XML Processing

The Java™ API for XML Processing (JAXP) provides support for the industry standard SAX and DOM APIs for parsing XML documents, as well as support for XSLT transform engines. The Streaming API for XML (StAX) provides a pull-parsing API for XML. The JAXP and StAX APIs are included in Java SE and so are available to Java EE applications.

EE.2.7.13 Java EE™ Connector Architecture

The Connector architecture is a Java EE SPI that allows resource adapters that support access to Enterprise Information Systems to be plugged in to any Java EE product. The Connector architecture defines a standard set of system-level contracts between a Java EE server and a resource adapter. The standard contracts include:

- A connection management contract that lets a Java EE server pool connections to an underlying EIS, and lets application components connect to an EIS. This leads to a scalable application environment that can support a large number of clients requiring access to EIS systems.
- A transaction management contract between the transaction manager and an EIS that supports transactional access to EIS resource managers. This contract lets a Java EE server use a transaction manager to manage transactions across multiple resource managers. This contract also supports transactions that are managed internal to an EIS resource manager without the necessity of involving an external transaction manager.
- A security contract that enables secure access to an EIS. This contract provides support for a secure application environment, which reduces security threats to the EIS and protects valuable information resources managed by the EIS.
- A thread management contract that allows a resource adapter to delegate work to other threads and allows the application server to manage a pool of threads.

Final Release
The resource adapter can control the security context and transaction context used by the worker thread.

- A contract that allows a resource adapter to deliver messages to message driven beans independent of the specific messaging style, messaging semantics, and messaging infrastructure used to deliver messages. This contract also serves as the standard message provider pluggability contract that allows a message provider to be plugged into any Java EE server via a resource adapter.

- A contract that allows a resource adapter to propagate an imported transaction context to the Java EE server such that its interactions with the server and any application components are part of the imported transaction. This contract preserves the ACID (atomicity, consistency, isolation, durability) properties of the imported transaction.

- An optional contract providing a generic command interface between an application program and a resource adapter.

EE.2.7.14 Security Services

The Java™ Authentication and Authorization Service (JAAS) enables services to authenticate and enforce access controls upon users. It implements a Java technology version of the standard Pluggable Authentication Module (PAM) framework and supports user-based authorization. The Java™ Authorization Service Provider Contract for Containers (JACC) defines a contract between a Java EE application server and an authorization service provider, allowing custom authorization service providers to be plugged into any Java EE product. The Java™ Authentication Service Provider Interface for Containers (JASPIC) defines an SPI by which authentication providers implementing message authentication mechanisms may be integrated in client or server message processing containers or runtimes.

EE.2.7.15 Web Services

Java EE provides full support for both clients of web services as well as web service endpoints. Several Java technologies work together to provide support for web services. The Java API for XML Web Services (JAX-WS) and the Java API for XML-based RPC (JAX-RPC) both provide support for web service calls using the SOAP/HTTP protocol. JAX-WS is the primary API for web services and is a follow-on to JAX-RPC. JAX-WS offers extensive web services functionality, with support for multiple bindings/protocols. JAX-WS and JAX-RPC are fully
interoperable when using the SOAP 1.1 over HTTP protocol as constrained by the WS-I Basic Profile specification. Support for JAX-RPC has been made optional as of Java EE 7. See Section EE.6.1.3, “Pruned Java Technologies”.

JAX-WS and the Java Architecture for XML Binding (JAXB) define the mapping between Java classes and XML as used in SOAP calls, and provide support for 100% of XML Schema. The SOAP with Attachments API for Java (SAAJ) provides support for manipulating low level SOAP messages. The Web Services for Java EE specification fully defines the deployment of web service clients and web service endpoints in Java EE, as well as the implementation of web service endpoints using enterprise beans. The Web Services Metadata specification defines Java language annotations that make it easier to develop web services. The Java API for XML Registries (JAXR) provides client access to XML registry servers. Support for JAXR has been made optional as of Java EE 7. See Section EE.6.1.3, “Pruned Java Technologies”.

The Java API for JSON Processing (JSON-P) provides a convenient way to process (parse, generate, transform, and query) JSON text. The Java API for WebSocket (WebSocket) is a standard API for creating WebSocket applications. The Java API for RESTful Web Services (JAX-RS) provides support for web services using the REST style. RESTful web services better match the design style of the web and are often easier to access using a wide variety of programming languages. JAX-RS provides a simple high-level API for writing such web services as well as a low-level API that can be used to control the details of the web service interaction.

EE.2.7.16 Concurrency Utilities

The Concurrency Utilities for Java EE is a standard API for providing asynchronous capabilities to Java EE application components through the following types of objects: managed executor service, managed scheduled executor service, managed thread factory, and context service.

EE.2.7.17 Batch

The Batch Applications for the Java Platform API (Batch) provides a programming model for batch applications and a runtime for scheduling and executing jobs.

EE.2.7.18 Management

The Java 2 Platform, Enterprise Edition Management Specification defines APIs for managing Java EE servers using a special management enterprise bean. The Java™
Management Extensions (JMX) API is also used to provide some management support.

EE.2.7.19 Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines a contract between deployment tools and Java EE products. The Java EE products provide plug-in components that run in the deployment tool and allow the deployment tool to deploy applications into the Java EE product. The deployment tool provides services used by these plug-in components. Support for the Deployment Specification has been made optional as of Java EE 7. See Section EE.6.1.3, “Pruned Java Technologies”.

Figure EE.2-2 Java EE Interoperability
EE.2.8 Interoperability

Many of the APIs described above provide interoperability with components that are not a part of the Java EE platform, such as external web or CORBA services. Figure EE.2-2 illustrates the interoperability facilities of the Java EE platform. (The directions of the arrows indicate the client/server relationships of the components.)

EE.2.9 Flexibility of Product Requirements

This specification doesn’t require that a Java EE product be implemented by a single program, a single server, or even a single machine. In general, this specification doesn’t describe the partitioning of services or functions between machines, servers, or processes. As long as the requirements in this specification are met, Java EE Product Providers can partition the functionality however they see fit. A Java EE product must be able to deploy application components that execute with the semantics described by this specification.

A typical low end Java EE product will support applets using the Java Plugin in one of the popular browsers, application clients each in their own Java virtual machine, and will provide a single server that supports both web components and enterprise beans. A high end Java EE product might split the server components into multiple servers, each of which can be distributed and load-balanced across a collection of machines. While such machines might exist on-site in an enterprise, they might also reside, for example, in a public cloud. This specification does not prescribe or preclude any of these configurations.

A wide variety of Java EE product configurations and implementations, all of which meet the requirements of this specification, are possible. A portable Java EE application will function correctly when successfully deployed in any of these products.

EE.2.10 Java EE Product Extensions

This specification describes a minimum set of facilities available to all Java EE products. A Java EE profile may include some or all of these facilities, as described in Chapter EE.9, “Profiles”. Products implementing the full Java EE platform must provide all of them (see Section EE.9.7, “Full Java EE Product Requirements”). Most Java EE products will provide facilities beyond the minimum required by this specification. This specification includes only a few limits to the ability of a product
to provide extensions. In particular, it includes the same restrictions as Java SE on extensions to Java APIs. A Java EE product must not add classes to the Java programming language packages included in this specification, and must not add methods or otherwise alter the signatures of the specified classes.

However, many other extensions are allowed. A Java EE product may provide additional Java APIs, either other Java optional packages or other (appropriately named) packages. A Java EE product may include support for additional protocols or services not specified here. A Java EE product may support applications written in other languages, or may support connectivity to other platforms or applications.

Of course, portable applications will not make use of any platform extensions. Applications that do make use of facilities not required by this specification will be less portable. Depending on the facility used, the loss of portability may be minor or it may be significant.

We expect Java EE products to vary widely and compete vigorously on various aspects of quality of service. Products will provide different levels of performance, scalability, robustness, availability, and security. In some cases this specification requires minimum levels of service. Future versions of this specification may allow applications to describe their requirements in these areas.

EE.2.11 Platform Roles

This section describes typical Java Platform, Enterprise Edition roles. In an actual instance, an organization may divide role functionality differently to match that organization’s application development and deployment workflow.

The roles are described in greater detail in later sections of this specification.

EE.2.11.1 Java EE Product Provider

A Java EE Product Provider is the implementor and supplier of a Java EE product that includes the component containers, Java EE platform APIs, and other features defined in this specification. A Java EE Product Provider is typically an application server vendor, a web server vendor, a database system vendor, or an operating system vendor. A Java EE Product Provider must make available the Java EE APIs to the application components through containers. A Product Provider frequently bases their implementation on an existing infrastructure.

A Java EE Product Provider must provide the mapping of the application components to the network protocols as specified by this specification. A Java EE
product is free to implement interfaces that are not specified by this specification in an implementation-specific way.

A Java EE Product Provider must provide application deployment and management tools. Deployment tools enable a Deployer (see Section EE.2.11.4, “Deployer”) to deploy application components on the Java EE product. Management tools allow a System Administrator (see Section EE.2.11.5, “System Administrator”) to manage the Java EE product and the applications deployed on the Java EE product. The form of these tools is not prescribed by this specification.

EE.2.11.2 Application Component Provider

There are multiple roles for Application Component Providers, including, for example, HTML document designers, document programmers, and enterprise bean developers. These roles use tools to produce Java EE applications and components.

EE.2.11.3 Application Assembler

The Application Assembler takes a set of components developed by Application Component Providers and assembles them into a complete Java EE application delivered in the form of an Enterprise Archive (.ear) file. The Application Assembler will generally use GUI tools provided by either a Platform Provider or Tool Provider. The Application Assembler is responsible for providing assembly instructions describing external dependencies of the application that the Deployer must resolve in the deployment process.

EE.2.11.4 Deployer

The Deployer is responsible for deploying application clients, web applications, and Enterprise JavaBeans components into a specific operational environment. The Deployer uses tools supplied by the Java EE Product Provider to carry out deployment tasks. Deployment is typically a three-stage process:

1. During Installation the Deployer moves application media to the server, generates the additional container-specific classes and interfaces that enable the container to manage the application components at runtime, and installs application components, and additional classes and interfaces, into the appropriate Java EE containers.

2. During Configuration, external dependencies declared by the Application Component Provider are resolved and application assembly instructions de-
fined by the Application Assembler are followed. For example, the Deployer is responsible for mapping security roles defined by the Application Assembler onto user groups and accounts that exist in the target operational environment.

3. Finally, the Deployer starts up **Execution** of the newly installed and configured application.

 In some cases, a specially qualified Deployer may customize the business logic of the application’s components at deployment time. For example, using tools provided with a Java EE product, the Deployer may provide simple application code that wraps an enterprise bean’s business methods, or customizes the appearance of a JSP or JSF page.

 The Deployer’s output is web applications, enterprise beans, applets, and application clients that have been customized for the target operational environment and are deployed in a specific Java EE container.

 For example, in the case of cloud deployments, the Deployer would be responsible for configuring the application to run in the cloud environment. The Deployer would install the application into the cloud environment, configure its external dependencies, and might handle aspects of provisioning its required resources.

EE.2.11.5 System Administrator

The System Administrator is responsible for the configuration and administration of the enterprise’s computing and networking infrastructure. The System Administrator is also responsible for overseeing the runtime well-being of the deployed Java EE applications. The System Administrator typically uses runtime monitoring and management tools provided by the Java EE Product Provider to accomplish these tasks.

 For example, in a cloud scenario, the System Administrator would be responsible for installing, configuring, managing, and maintaining the cloud environment, including the resources that are made available to applications running in the environment.

EE.2.11.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of application components. A variety of tools are anticipated, corresponding to the types of application components supported by the Java EE platform. Platform independent tools can be used for all phases of development through the
deployment of an application and the management and monitoring of an application server.

EE.2.11.7 System Component Provider

A variety of system level components may be provided by System Component Providers. The Connector Architecture defines the primary APIs used to provide resource adapters of many types. These resource adapters may connect to existing enterprise information systems of many types, including databases and messaging systems. Another type of system component is an authorization policy provider as defined by the Java Authorization Service Provider Contract for Containers specification.

EE.2.12 Platform Contracts

This section describes the Java Platform, Enterprise Edition contracts that must be fulfilled by a Java EE Product Provider implementing the full Java EE platform. Java EE profiles may include some or all of these facilities, as described in Chapter EE.9, “Profiles”.

EE.2.12.1 Java EE APIs

The Java EE APIs define the contract between the Java EE application components and the Java EE platform. The contract specifies both the runtime and deployment interfaces.

The Java EE Product Provider must implement the Java EE APIs in a way that supports the semantics and policies described in this specification. The Application Component Provider provides components that conform to these APIs and policies.

EE.2.12.2 Java EE Service Provider Interfaces (SPIs)

The Java EE Service Provider Interfaces (SPIs) define the contract between the Java EE platform and service providers that may be plugged into a Java EE product. The Connector APIs define service provider interfaces for integrating resource adapters with a Java EE application server. Resource adapter components implementing the Connector APIs are called Connectors. The Java EE Authorization APIs define service provider interfaces for integrating security authorization mechanisms with a Java EE application server.
The Java EE Product Provider must implement the Java EE SPIs in a way that supports the semantics and policies described in this specification. A provider of Service Provider components (for example, a Connector Provider) should provide components that conform to these SPIs and policies.

EE.2.12.3 Network Protocols

This specification defines the mapping of application components to industry-standard network protocols. The mapping allows client access to the application components from systems that have not installed Java EE product technology. See Chapter EE.7, “Interoperability,” for details on the network protocol support required for interoperability.

The Java EE Product Provider is required to publish the installed application components on the industry-standard protocols. This specification defines the mapping of servlets and JSP pages to the HTTP and HTTPS protocols, and the mapping of EJB components to IIOP and SOAP protocols.

EE.2.12.4 Deployment Descriptors and Annotations

Deployment descriptors and Java language annotations are used to communicate the needs of application components to the Deployer. The deployment descriptor and class file annotations are a contract between the Application Component Provider or Assembler and the Deployer. The Application Component Provider or Assembler is required to specify the application component’s external resource requirements, security requirements, environment parameters, and so forth in the component’s deployment descriptor or through class file annotations. The Java EE Product Provider is required to provide a deployment tool that interprets the Java EE deployment descriptors and class file annotations and allows the Deployer to map the application component’s requirements to the capabilities of a specific Java EE product and environment.

EE.2.13 Changes in J2EE 1.3

The J2EE 1.3 specification extends the J2EE platform with additional enterprise integration facilities. The Connector API supports integration with external enterprise information systems. A JMS provider is now required. The JAXP API provides support for processing XML documents. The JAAS API provides security support for the Connector API. The EJB specification now requires support for interoperability using the IIOP protocol.
Significant changes have been made to the EJB specification. The EJB specification has a new container-managed persistence model, support for message driven beans, and support for local enterprise beans.

Other existing J2EE APIs have been updated as well. See the individual API specifications for details. Finally, J2EE 1.3 requires support for J2SE 1.3.

EE.2.14 Changes in J2EE 1.4

The primary focus of J2EE 1.4 is support for web services. The JAX-RPC and SAAJ APIs provide the basic web services interoperability support. The Web Services for J2EE specification describes the packaging and deployment requirements for J2EE applications that provide and use web services. The EJB specification was also extended to support implementing web services using stateless session beans. The JAXR API supports access to registries and repositories.

Several other APIs have been added to J2EE 1.4. The J2EE Management and J2EE Deployment APIs enable enhanced tool support for J2EE products. The JMX API supports the J2EE Management API. The J2EE Authorization Contract for Containers provides an SPI for security providers.

Many of the existing J2EE APIs have been enhanced in J2EE 1.4. J2EE 1.4 builds on J2SE 1.4. The JSP specification has been enhanced to simplify the development of web applications. The Connector API now supports integration with asynchronous messaging systems, including the ability to plug in JMS providers.

Changes in this J2EE platform specification include support for deploying class libraries independently of any application and the conversion of deployment descriptor DTDs to XML Schemas.

Other J2EE APIs have been enhanced as well. For additional details, see each of the referenced specifications.

EE.2.15 Changes in Java EE 5

With this release, the platform has a new name – Java Platform, Enterprise Edition, or Java EE for short. This new name gets rid of the confusing “2” while emphasizing even in the short name that this is a Java platform. Previous versions are still referred to using the old name “J2EE”.

The focus of Java EE 5 is ease of development. To simplify the development process for programmers just starting with Java EE, or developing small to
medium applications, Java EE 5 makes extensive use of Java language annotations, which were introduced by J2SE 5.0. Annotations reduce or eliminate the need to deal with Java EE deployment descriptors in many cases. Even large applications can benefit from the simplifications provided by annotations.

One of the major uses of annotations is to specify injection of resources and other dependencies into Java EE components. Injection augments the existing JNDI lookup capability to provide a new simplified model for applications to gain access to the resources needed from the operational environment. Injection also works with deployment descriptors to allow the deployer to customize or override resource settings specified in the application’s source code.

The use of annotations is made even more effective by providing better defaults. Better default behavior and better default configuration allows most applications to get the behavior they want most of the time, without the use of either annotations or deployment descriptors in many cases. When the default is not what the application wants, a simple annotation can be used to specify the required behavior or configuration.

The combination of annotations and better defaults has greatly simplified the development of applications using Enterprise JavaBeans technology and applications defining or using web services. Enterprise beans are now dramatically simpler to develop. Web services are much easier to develop using the annotations defined by the Web Services Metadata specification.

The area of web services continues to evolve at a rapid pace. To provide the latest web services support, the JAX-RPC technology has evolved into the JAX-WS technology, which makes heavy use of the JAXB technology to bind Java objects to XML data. Both JAX-WS and JAXB are new to this version of the platform.

Major additions to Java EE 5 include the JSTL and JSF technologies that simplify development of web applications, and the Java Persistence API developed by the EJB 3.0 expert group, which greatly simplifies mapping Java objects to databases.

Minor additions include the StAX API for XML parsing. Most APIs from previous versions have been updated with small to medium improvements.

EE.2.16 Changes in Java EE 6

Java EE 6 continues the “ease of development” focus of Java EE 5.

One of the major improvements introduced in Java EE 6 is the Contexts and Dependency Injection (CDI) technology, which provides a uniform framework for the dependency injection and lifecycle management of “managed beans”.
The Java EE 6 Managed Bean specification defines the commonalities across
the spectrum of Java EE managed objects, extending from basic managed beans
through EJB components.

The Bean Validation specification, introduced in this release, provides a
facility for validation of managed objects. Bean Validation is integrated into the
Java Persistence API, where it provides an automated facility for the validation of
JPA entities.

Java EE 6 adds the JAX-RS API as a required technology of the Java EE
Platform. JAX-RS is the API for the development of Web services built according
to the Representational State Transfer (REST) architectural style.

Java EE 6 also introduces the Java EE Web Profile, the first new profile of the
Java EE Platform.

EE.2.17 Changes in Java EE 7

Since its inception, the Java EE platform has been targeted at offloading the
developer from common infrastructure tasks through its container-based model and
abstraction of resource access. In recent releases the platform has considerably
simplified the APIs for access to container services while broadening the range of
the services available. In this release we continue the direction of improved
simplification, while extending the range of the Java EE platform to encompass
emerging technologies in the web space.

The Java EE 7 platform adds first-class support for recent developments in
web standards, including Web Sockets and JSON, which provide the
underpinnings for HTML 5 support in Java EE. Java EE 7 also adds a modern
HTTP client API as defined by JAX-RS 2.0.

Also new in the Java EE 7 platform is the Batch API, which provides a
programming model for batch applications and a runtime for scheduling and
executing jobs, and the Concurrency Utilities API, which provides asynchronous
capabilities by means of managed executor service, managed scheduled executor
service, managed thread factory, and context service.

The CDI dependency injection facility introduced in Java EE 6 is enhanced as
well as more broadly utilized by the Java EE 7 platform technologies, and the
managed bean model is further aligned to remove inconsistencies among Java EE
component classes in aspects of CDI injection and interceptor support. The
declarative transaction functionality introduced by EJB is been made available in
a more general way through CDI interceptors, so that it may be leveraged by other
managed beans. The Bean Validation facility is extended to the automatic
validation of method invocations and likewise made available via CDI interceptors.

Java EE 7 also continues the "ease of development" focus of Java EE 5 and Java EE 6. Most notably, Java EE 7 includes a revised and greatly simplified JMS 2.0 API. Ease of development encompasses ease of configuration as well. To that end, Java EE 7 broadens the resource definition facilities introduced in Java EE 6 to encompass more of the standard platform resource types, and also provides default database and JMS connection factory resources. It also improves the configuration of application security, including new descriptors for security permissions. Java EE 7 further simplifies the platform by making optional the technologies that were identified as candidates for pruning in Java EE 6, namely: EJB Entity Beans, JAX-RPC 1.1, JAXR 1.0, and JSR-88 1.2.

Finally, Java EE 7 lays groundwork for enhancements to the platform for use in cloud environments in a future release. Such features include resource definition metadata, improved security configuration, and support for database schema generation via the Java Persistence API.
CHAPTER EE.3
Security

This chapter describes the security requirements for the Java™ Platform, Enterprise Edition (Java EE) that must be satisfied by Java EE products.

In addition to the Java EE requirements, each Java EE Product Provider will determine the level of security and security assurances that will be provided by their implementation.

EE.3.1 Introduction

Almost every enterprise has security requirements and specific mechanisms and infrastructure to meet them. Sensitive resources that can be accessed by many users or that often traverse unprotected open networks (such as the Internet) need to be protected.

Although the quality assurances and implementation details may vary, they all share some of the following characteristics:

- **Authentication**: The means by which communicating entities (for example, client and server) prove to one another that they are acting on behalf of specific identities that are authorized for access.

- **Access control for resources**: The means by which interactions with resources are limited to collections of users or programs for the purpose of enforcing integrity, confidentiality, or availability constraints.

- **Data integrity**: The means used to prove that information has not been modified by a third party (some entity other than the source of the information). For example, a recipient of data sent over an open network must be able to detect and discard messages that were modified after they were sent.
• **Confidentiality or Data Privacy**: The means used to ensure that information is made available only to users who are authorized to access it.

• **Non-repudiation**: The means used to prove that a user performed some action such that the user cannot reasonably deny having done so.

• **Auditing**: The means used to capture a tamper-resistant record of security-related events for the purpose of being able to evaluate the effectiveness of security policies and mechanisms.

This chapter specifies how Java EE platform requirements address security requirements, and identifies requirements that may be addressed by Java EE Product Providers. Finally, issues being considered for future versions of this specification are briefly mentioned in Section EE.3.7, “Future Directions”.

EE.3.2 A Simple Example

The security behavior of a Java EE environment may be better understood by examining what happens in a simple application with a web client, a JSP user interface, and enterprise bean business logic. (The example is not meant to specify requirements.)

In this example, the web client relies on the web server to act as its authentication proxy by collecting user authentication data from the client and using it to establish an authenticated session.

Step 1: Initial Request

The web client requests the main application URL, shown in Figure EE.3-1.

![Figure EE.3-1](image)

Figure EE.3-1 Initial Request

Since the client has not yet authenticated itself to the application environment, the server responsible for delivering the web portion of the application (hereafter referred to as “web server”) detects this and invokes the appropriate authentication mechanism for this resource.

Step 2: Initial Authentication

The web server returns a form that the web client uses to collect authentica-
tion data (for example, username and password) from the user. The web client forwards the authentication data to the web server, where it is validated by the web server, as shown in Figure EE.3-2.

![Figure EE.3-2](image)

Figure EE.3-2 Initial Authentication

The validation mechanism may be local to the server, or it may leverage the underlying security services. On the basis of the validation, the web server sets a credential for the user.

Step 3: URL Authorization

The credential is used for future determinations of whether the user is authorized to access restricted resources it may request. The web server consults the security policy (derived from the deployment descriptor) associated with the web resource to determine the security roles that are permitted access to the resource. The web container then tests the user’s credential against each role to determine if it can map the user to the role. Figure EE.3-3 shows this process.

![Figure EE.3-3](image)

Figure EE.3-3 URL Authorization

The web server’s evaluation stops with an “is authorized” outcome when the web server is able to map the user to a role. A “not authorized” outcome is reached if the web server is unable to map the user to any of the permitted roles.

Step 4: Fulfilling the Original Request

If the user is authorized, the web server returns the result of the original URL-
request, as shown in Figure EE.3-4.

![Figure EE.3-4 Fulfilling the Original Request](image)

In our example, the response URL of a JSP page is returned, enabling the user to post form data that needs to be handled by the business logic component of the application.

Step 5: Invoking Enterprise Bean Business Methods

The JSP page performs the remote method call to the enterprise bean, using the user’s credential to establish a secure association between the JSP page and the enterprise bean (as shown in Figure EE.3-5). The association is implemented as two related security contexts, one in the web server and one in the EJB container.

![Figure EE.3-5 Invoking an Enterprise Bean Business Method](image)

The EJB container is responsible for enforcing access control on the enterprise bean method. It consults the security policy (derived from the deployment descriptor) associated with the enterprise bean to determine the security roles that are permitted access to the method. For each role, the EJB container uses the security context associated with the call to determine if it can map the caller to the role.

The container’s evaluation stops with an “is authorized” outcome when the container is able to map the caller’s credential to a role. A “not authorized” outcome is reached if the container is unable to map the caller to any of the...
permitted roles. A “not authorized” result causes an exception to be thrown by the container, and propagated back to the calling JSP page.

If the call “is authorized”, the container dispatches control to the enterprise bean method. The result of the bean’s execution of the call is returned to the JSP, and ultimately to the user by the web server and the web client.

EE.3.3 Security Architecture

This section describes the Java EE security architecture on which the security requirements defined by this specification are based.

EE.3.3.1 Goals

The following are goals for the Java EE security architecture:

1. Portability: The Java EE security architecture must support the Write Once, Run Anywhere™ application property.
2. Transparency: Application Component Providers should not have to know anything about security to write an application.
3. Isolation: The Java EE platform should be able to perform authentication and access control according to instructions established by the Deployer using deployment attributes, and managed by the System Administrator. Note that divorcing the application from responsibility for security ensures greater portability of Java EE applications.
4. Extensibility: The use of platform services by security-aware applications must not compromise application portability.
 This specification provides APIs in the component programming model for interacting with container/server security information. Applications that restrict their interactions to the provided APIs will retain portability.
5. Flexibility: The security mechanisms and declarations used by applications under this specification should not impose a particular security policy, but facilitate the implementation of security policies specific to the particular Java EE installation or application.
6. Abstraction: An application component’s security requirements will be logically specified using Java language annotations or deployment descriptors. Java language annotations or deployment descriptors will specify how security roles and access requirements are to be mapped into environment-specific se-
security roles, users, and policies. A Deployer may choose to modify the security properties in ways consistent with the deployment environment. The annotations or deployment descriptor should document which security properties can be modified and which cannot.

7. Independence: Required security behaviors and deployment contracts should be implementable using a variety of popular security technologies.

8. Compatibility testing: The Java EE security requirements architecture must be expressed in a manner that allows for an unambiguous determination of whether or not an implementation is compatible.

9. Secure interoperability: Application components executing in a Java EE product must be able to invoke services provided in a Java EE product from a different vendor, whether with the same or a different security policy. The services may be provided by web components or enterprise beans.

EE.3.3.2 Non Goals

The following are not goals for the Java EE security architecture:

1. This specification does not dictate a specific security policy. Security policies for applications and for enterprise information systems vary for many reasons unconnected with this specification. Product Providers can provide the technology needed to implement and administer desired security policies while adhering to the requirements of this specification.

2. This specification does not mandate a specific security technology, such as Kerberos, PK, NIS+, or NTLM.

3. This specification does not require that the Java EE security behaviors be universally implementable using any or all security technologies.

4. This specification does not provide any warranty or assurance of the effective security of a Java EE product.

EE.3.3.3 Terminology

This section introduces the terminology that is used to describe the security requirements of the Java EE platform.

Principal

A principal is an entity that can be authenticated by an authentication protocol in a security service that is deployed in an enterprise. A principal is identified
using a principal name and authenticated using authentication data. The content and format of the principal name and the authentication data can vary depending upon the authentication protocol.

Security Policy Domain

A security policy domain, also referred to as a security domain, is a scope over which a common security policy is defined and enforced by the security administrator of the security service.

A security policy domain is also sometimes referred to as a realm. This specification uses the security policy domain, or security domain, terminology.

Security Technology Domain

A security technology domain is the scope over which the same security mechanism (for example Kerberos) is used to enforce a security policy.

A single security technology domain may include multiple security policy domains, for example.

Security Attributes

A set of security attributes is associated with every principal. The security attributes have many uses (for example, access to protected resources and auditing of users). Security attributes can be associated with a principal by an authentication protocol and/or by the Java EE Product Provider.

The Java EE platform does not specify what security attributes are associated with a principal.

Credential

A credential contains or references information (security attributes) used to authenticate a principal for Java EE product services. A principal acquires a credential upon authentication, or from another principal that allows its credential to be used (delegation).

This specification does not specify the contents or the format of a credential. The contents and format of a credential can vary widely.

EE.3.3.4 Container Based Security

Security for components is provided by their containers in order to achieve the goals for security specified above in a Java EE environment. A container provides two kinds of security (discussed in the following sections):
• Declarative security
• Programmatic security

EE.3.3.4.1 Declarative Security

Declarative security refers to the means of expressing an application’s security structure, including security roles, access control, and authentication requirements in non-programmatic form. Java language annotations and the deployment descriptor are the primary vehicles for declarative security in the Java EE platform.

Java language annotations and the deployment descriptor are a contract between an Application Component Provider and a Deployer or Application Assembler. They can be used by an application programmer to represent an application’s security related environmental requirements. A deployment descriptor can be associated with groups of components.

A Deployer maps the declarative representation of the application’s security policy to a security structure specific to the particular environment. A Deployer uses a deployment tool to process the annotations and deployment descriptor.

At runtime, the container uses the security policy security structure derived from the declarative security information expressed in annotations and the deployment descriptor and configured by the Deployer to enforce authorization (see Section EE.3.3.6, “Authorization Model”).

EE.3.3.4.2 Programmatic Security

Programmatic security refers to security decisions made by security aware applications. Programmatic security is useful when declarative security alone is not sufficient to express the security model of the application. The API for programmatic security consists of two methods of the EJB `EJBContext` interface and two methods of the servlet `HttpServletRequest` interface:

- `isCallerInRole (EJBContext)`
- `getCallerPrincipal (EJBContext)`
- `isUserInRole (HttpServletRequest)`
- `getUserPrincipal (HttpServletRequest)`

These methods allow components to make business logic decisions based on the security role of the caller or remote user. For example they allow the component to determine the principal name of the caller or remote user to use as a database key. (Note that the form and content of principal names will vary widely between products and enterprises, and portable components will not depend on the actual contents of a principal name. Due to principal name mapping, the same
logical principal may have different names in different containers, although usually it will be possible to configure a single product to use consistent principal names. In particular, if a principal name is used as a key into a database table, and that database table is accessed from multiple components, containers, or products, the same logical principal may map to different entries in the database.)

EE.3.3.5 Distributed Security

Some Product Providers may produce Java EE products in which the containers for various component types are distributed. In a distributed environment, communication between Java EE components can be subject to security attacks (for example, data modification and replay attacks).

Such threats can be countered by using a secure association to secure communications. A secure association is shared security state information that establishes the basis of a secure communication between components. Establishing a secure association could involve several steps, such as:

1. Authenticating the target principal to the client and/or authenticating the client to the target principal.
2. Negotiating a quality of protection, such as confidentiality or integrity.
3. Setting up a security context for the association between the components.

Since a container provides security in Java EE, secure associations for a component are typically established by a container. Secure associations for web access are specified here. Secure associations for access to enterprise beans are described in the EJB specification.

Product Providers may allow for control over the quality of protection or other aspects of secure association at deployment time. Applications can specify their requirements for access to web resources using annotations or elements in their deployment descriptor.

This specification does not define mechanisms that an Application Component Provider can use to communicate requirements for secure associations with an enterprise bean.

EE.3.3.6 Authorization Model

The Java EE authorization model is based on the concept of security roles. A security role is a logical grouping of users that is defined by an Application Component Provider or Assembler. A Deployer maps roles to security identities (for
example principals, and groups) in the operational environment. Security roles are used with both declarative security and programmatic security.

Declarative authorization can be used to control access to an enterprise bean method and is specified in annotations or in the enterprise bean deployment descriptor. The RolesAllows, PermitAll, and DenyAll annotations are used to specify method permissions. An enterprise bean method can also be associated with a method-permission element in the deployment descriptor. The method-permission element contains a list of methods that can be accessed by a given security role. If the calling principal is in one of the security roles allowed access to a method, the principal is allowed to execute the method. Conversely, if the calling principal is in none of the roles, the caller is not allowed to execute the method. Access to web resources can be protected in a similar manner.

Security roles are used in the EJBContext method isCallerInRole and the HttpServletRequest method isUserInRole. Each method returns true if the calling principal is in the specified security role.

EE.3.3.6.1 Role Mapping

Enforcement of security constraints on web resources or enterprise beans, whether programmatic or declarative, depends upon determination of whether the principal associated with an incoming request is in a given security role. A container makes this determination based on the security attributes of the calling principal. For example,

1. A Deployer may have mapped a security role to a user group in the operational environment. In this case, the user group of the calling principal is retrieved from its security attributes. The principal is in the security role if the principal’s user group matches a user group to which the security role has been mapped.

2. A Deployer may have mapped a security role to a principal name in a security policy domain. In this case, the principal name of the calling principal is retrieved from its security attributes. If this principal name is the same as a principal name to which the security role was mapped, the calling principal is in the security role.

The source of security attributes may vary across implementations of the Java EE platform. Security attributes may be transmitted in the calling principal’s credential or in the security context. In other cases, security attributes may be retrieved from a trusted third party, such as a directory service or a security service.
EE.3.3.7 HTTP Login Gateways

Secure interoperability between enterprise beans in different security policy domains is addressed in the EJB specification. In addition, a component may choose to log in to a foreign server via HTTP. An application component can be configured to use SSL mutual authentication for security when accessing a remote resource using HTTP. Applications using HTTP in this way may choose to use XML or some other structured format, rather than HTML.

We call the use of HTTP with SSL mutual authentication to access a remote service an HTTP Login Gateway. Requirements in this area are specified in Section EE.3.3.8.1, “Authentication by Web Clients.”

EE.3.3.8 User Authentication

User authentication is the process by which a user proves his or her identity to the system. This authenticated identity is then used to perform authorization decisions for accessing Java EE application components. An end user can authenticate using either of the two supported client types:

- Web client
- Application client

EE.3.3.8.1 Authentication by Web Clients

It is required that a web client be able to authenticate a user to a web server using any of the following mechanisms. The Deployer or System Administrator determines which method to apply to an application or to a group of applications.

- HTTP Basic Authentication

HTTP Basic Authentication is the authentication mechanism supported by the HTTP protocol. This mechanism is based on a username and password. A web server requests a web client to authenticate the user. As part of the request, the web server passes the realm in which the user is to be authenticated. The web client obtains the username and the password from the user and transmits them to the web server. The web server then authenticates the user in the specified realm (referred to as HTTP Realm in this document).

HTTP Basic Authentication is not secure. Passwords are sent in simple base64 encoding. The target server is not authenticated. Additional protection can be applied to overcome these weaknesses. The password may be protected by applying security at the transport layer (for example HTTPS) or at
the network layer (for example, IPSEC or VPN).

Despite its limitations, the HTTP Basic Authentication mechanism is included in this specification because it is widely used in form based applications.

- **HTTPS Client Authentication**

 End user authentication using HTTPS (HTTP over SSL) is a strong authentication mechanism. This mechanism requires the user to possess a Public Key Certificate (PKC). Currently, a PKC is rarely used by end users on the Internet. However, it is useful for e-commerce applications and also for a single-signon from within the browser. For these reasons, HTTPS client authentication is a required feature of the Java EE platform.

- **Form Based Authentication**

 The look and feel of a login screen cannot be varied using the web browser’s built-in authentication mechanisms. This specification introduces the ability to package standard HTML or servlet/JSP/JSF based forms for logging in, allowing customization of the user interface. The form based authentication mechanism introduced by this specification is described in the Servlet specification.

 HTTP Digest Authentication is not widely supported by web browsers and hence is not required.

 A web client can employ a web server as its authentication proxy. In this case, a client’s credential is established in the server, where it may be used by the server for various purposes: to perform authorization decisions, to act as the client in calls to enterprise beans, or to negotiate secure associations with resources. Current web browsers commonly rely on proxy authentication.

EE.3.3.8.2 Web Single Signon

HTTP is a stateless protocol. However, many web applications need support for sessions that can maintain state across multiple requests from a client. Therefore, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web application is deployed in.
2. Be able to use the same login session to represent a user to all the applications that he or she accesses.
3. Require re-authentication of users only when a security policy domain bound-
ary has been crossed.

Credentials that are acquired through a web login process are associated with a session. The container uses the credentials to establish a security context for the session. The container uses the security context to determine authorization for access to web resources and for the establishment of secure associations with other components (including enterprise beans).

EE.3.3.8.3 Login Session

In the Java EE platform, login session support is provided by a web container. When a user successfully authenticates with a web server, the container establishes a login session context for the user. The login session contains the credentials associated with the user.¹

EE.3.3.8.4 Authentication by Application Clients

Application clients (described in detail in Chapter EE.10, “Application Clients”) are client programs that may interact with enterprise beans directly (that is, without the help of a web browser and without traversing a web server). Application clients may also access web resources.

Application clients, like the other Java EE application component types, execute in a managed environment that is provided by an appropriate container. Application clients are expected to have access to a graphical display and input device, and are expected to communicate with a human user.

Application clients are used to authenticate end users to the Java EE platform, when the users access protected web resources or enterprise beans.

EE.3.3.9 Lazy Authentication

There is a cost associated with authentication. For example, an authentication process may require exchanging multiple messages across the network. Therefore, it is desirable to use lazy authentication, that is, to perform authentication only when it

¹ While the client is stateless with respect to authentication, the client requires that the server act as its proxy and maintain its login context. A reference to the login session state is made available to the client through cookies or URL re-writing. If SSL mutual authentication is used as the authentication protocol, the client can manage its own authentication context, and need not depend on references to the login session state.
is needed. With lazy authentication, a user is not required to authenticate until there is a request to access a protected resource.

Lazy authentication can be used with first-tier clients (applets, application clients) when they request access to protected resources that require authentication. At that point the user can be asked to provide appropriate authentication data. If a user is successfully authenticated, the user is allowed to access the resource.

EE.3.4 User Authentication Requirements

The Java EE Product Provider must meet the following requirements concerning user authentication.

EE.3.4.1 Login Sessions

All Java EE web servers must maintain a login session for each web user. It must be possible for a login session to span more than one application, allowing a user to log in once and access multiple applications. The required login session support is described in the Servlet specification. This requirement of a session for each web user supports single signon.

Applications can remain independent of the details of implementing the security and maintenance of login information. The Java EE Product Provider has the flexibility to choose authentication mechanisms independent of the applications secured by these mechanisms.

Lazy authentication must be supported by web servers for protected web resources. When authentication is required, one of the three required login mechanisms listed in the next section may be used.

EE.3.4.2 Required Login Mechanisms

All Java EE products are required to support three login mechanisms: HTTP basic authentication, SSL mutual authentication, and form-based login. An application is not required to use any of these mechanisms, but they are required to be available for any application’s use.

EE.3.4.2.1 HTTP Basic Authentication

All Java EE products are required to support HTTP basic authentication (RFC2068). Platform Providers are also required to support basic authentication over SSL.
EE.3.4.2.2 SSL Mutual Authentication

SSL 3.0\(^2\) and the means to perform mutual (client and server) certificate based authentication are required by this specification.

All Java EE products must support the following cipher suites to ensure interoperable authentication with clients:

- TLS_RSA_WITH_RC4_128_MD5
- SSL_RSA_WITH_RC4_128_MD5
- TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
- TLS_RSA_EXPORT_WITH_RC4_40_MD5
- SSL_RSA_EXPORT_WITH_RC4_40_MD5
- TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
- SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

These cipher suites are supported by the major web browsers and meet the U.S. government export restrictions.

EE.3.4.2.3 Form Based Login

The web application deployment descriptor contains an element that causes a Java EE product to associate an HTML form resource (perhaps dynamically generated) with the web application. If the Deployer chooses this form of authentication (over HTTP basic, or SSL certificate based authentication), this form must be used as the user interface for login to the application.

The form based login mechanism and web application deployment descriptors are described in the Servlet specification.

EE.3.4.3 Unauthenticated Users

Web containers are required to support access to web resources by clients that have not authenticated themselves to the container. This is the common mode of access to web resources on the Internet.

A web container reports that no user has been authenticated by returning null from the HttpServletRequest method getUserPrincipal. This is different than the corresponding result for EJB containers. The EJB specification requires that the EJBContext method getCallerPrincipal always return a valid Principal object. The method can never return null.

In Java EE products that contain both a web container and an EJB container, components running in a web container must be able to call enterprise beans even when no user has been authenticated in the web container. When a call is made in such a case from a component in a web container to an enterprise bean, a Java EE product must provide a principal for use in the call.

A Java EE product may provide a principal for use by unauthenticated callers using many approaches, including, but not limited to:

- Always use a single distinguished principal.
- Use a different distinguished principal per server, or per session, or per application.
- Allow the deployer or system administrator to choose which principal to use through the Run As capability of the web and enterprise bean containers.

This specification does not specify how a Java EE product should choose a principal to represent unauthenticated users, although future versions of this specification may add requirements in this area. Note that the EJB specification does include requirements in this area when using the EJB interoperability protocol. Applications are encouraged to use the Run As capability in cases where the web component may be unauthenticated and needs to call EJB components.

EE.3.4.4 Application Client User Authentication

The application client container must provide authentication of application users to satisfy the authentication and authorization constraints enforced by the enterprise bean containers and web containers. The techniques used may vary with the implementation of the application client container, and are beyond the control of the application. The application client container may integrate with a Java EE product’s authentication system, to provide a single signon capability, or the container may authenticate the user when the application is started. The container may delay authentication until there is a request to access a protected resource or enterprise bean.

The container will provide an appropriate user interface for interactions with the user to gather authentication data. In addition, an application client may provide a class that implements the `javax.security.auth.callback.CallbackHandler` interface and specify the class name in its deployment descriptor (see Section EE.10.7, “Java EE Application Client XML Schema” for details). The Deployer may override the callback...
handler specified by the application and require use of the container’s default authentication user interface instead.

If use of a callback handler has been configured by the Deployer, the application client container must instantiate an object of this class and use it for all authentication interactions with the user. The application’s callback handler must support all the Callback objects specified in the javax.security.auth.callback package.

Application clients may execute in an environment controlled by a Java SE security manager and are subject to the security permissions defined in Section EE.6.2, “Java Platform, Standard Edition (Java SE) Requirements.” Although this specification does not define the relationship between the operating system identity associated with a running application client and the authenticated user identity, support for single signon requires that the Java EE product be able to relate these identities. Additional application client requirements are described in Chapter 10 of this specification.

EE.3.4.5 Resource Authentication Requirements

Resources within an enterprise are often deployed in security policy domains different from the security policy domain of the application component. The wide variance of authentication mechanisms used to authenticate the caller to resources leads to the requirement that a Java EE product provide the means to authenticate in the security policy domain of the resource.

A Product Provider must support both of the following:

1. **Configured Identity.** A Java EE container must be able to authenticate for access to the resource using a principal and authentication data specified by a Deployer at deployment time. The authentication must not depend in any way on data provided by the application components. Providing for the confidential storage of the authentication information is the responsibility of the Product Provider.

2. **Programmatic Authentication.** The Java EE product must provide for specification of the principal and authentication data for a resource by the application component at runtime using appropriate APIs. The application may obtain the principal and authentication data through a variety of mechanisms, including receiving them as parameters, obtaining them from the component’s environment, and so forth.

In addition, the following techniques are recommended but not required by this specification:
3. **Principal Mapping.** A resource can have a principal and attributes that are determined by a mapping from the identity and security attributes of the requesting principal. In this case, a resource principal is not based on inheritance of the identity or security attributes from a requesting principal, but gets its identity and security attributes based on the mapping.

4. **Caller Impersonation.** A resource principal acts on behalf of a requesting principal. Acting on behalf of a caller principal requires delegation of the caller’s identity and credentials to the underlying resource manager. In some scenarios, a requesting principal can be a delegate of an initiating principal and the resource principal is transitively impersonating an initiating principal.

 The support for principal delegation is typically specific to a security mechanism. For example, Kerberos supports a mechanism for the delegation of authentication. (Refer to the Kerberos v5 specification for more details.)

5. **Credentials Mapping.** This technique may be used when an application server and an EIS support different authentication domains. For example:

 a. The initiating principal may have been authenticated and have public key certificate-based credentials.
 b. The security environment for the resource manager may be configured with the Kerberos authentication service.

 The application server is configured to map the public key certificate-based credentials associated with the initiating principal to the Kerberos credentials.

 Additional information on resource authentication requirements can be found in the Connector specification.

EE.3.5 Authorization Requirements

To support the authorization models described in this chapter, the following requirements are imposed on Java EE products.

EE.3.5.1 Code Authorization

A Java EE product may restrict the use of certain Java SE classes and methods to secure and ensure proper operation of the system. The minimum set of permissions that a Java EE product is required to grant to a Java EE application is defined in
Section EE.6.2, “Java Platform, Standard Edition (Java SE) Requirements.” All Java EE products must be capable of deploying application components with exactly these permissions.

A Java EE Product Provider may choose to enable selective access to resources using the Java protection model. The mechanism used is Java EE product dependent.

The permissions.xml descriptor (see Section EE.6.2.2.6, “Declaring Permissions Required by Application Components”) makes it possible to express permissions that a component needs for access.

EE.3.5.2 Caller Authorization

A Java EE product must enforce the access control rules specified at deployment time (see Section EE.3.6, “Deployment Requirements”) and more fully described in the EJB and Servlet specifications.

EE.3.5.3 Propagated Caller Identities.

In a Java EE product that contains an EJB container, it must be possible to configure the Java EE product so that a propagated caller identity is used in all authorization decisions. With this configuration, for all calls to all enterprise beans from a single application within a single Java EE product, the principal name returned by the EJBContext method getCallerPrincipal must be the same as that returned by the first enterprise bean in the call chain. If the first enterprise bean in the call chain is called by a servlet or JSP page, the principal name must be the same as that returned by the HttpServletRequest method getUserPrincipal in the calling servlet or JSP page. (However, if the HttpServletRequest method getUserPrincipal returns null, the principal used in calls to enterprise beans is not specified by this specification, although it must still be possible to configure enterprise beans to be callable by such components.)

Note that this does not require delegation of credentials, only identification of the caller. A single principal must be the principal used in authorization decisions for access to all enterprise beans in the call chain. The requirements in this section apply only when a Java EE product has been configured to propagate caller identity.

EE.3.5.4 Run As Identities

Java EE products must also support the Run As capability that allows the Application Component Provider and the Deployer to specify an identity under
which an enterprise bean or web component must run. In this case it is the Run As identity that is propagated to subsequent EJB components, rather than the original caller identity.

Note that this specification doesn’t specify any relationship between the Run As identity and any underlying operating system identity that may be used to access system resources such as files. However, the Java Authorization Contract for Containers specification does specify the relationship between the Run As identity and the access control context used by the Java SE security manager.

EE.3.6 Deployment Requirements

All Java EE products must implement the access control semantics described in all included component specifications, such as the EJB, JSP, and Servlet specifications, and provide a means of mapping the security roles specified in metadata annotations or the deployment descriptor to the actual roles exposed by a Java EE product.

While most Java EE products will allow the Deployer to customize the role mappings and change the assignment of roles to methods, all Java EE products must support the ability to deploy applications and components using exactly the mappings and assignments specified in their metadata annotations or deployment descriptors.

As described in the EJB specification and the Servlet specification, a Java EE product must provide a deployment tool or tools capable of assigning the security roles in metadata annotations or deployment descriptors to the entities that are used to determine role membership at authorization time.

Application developers will need to specify (in the application’s metadata annotations or deployment descriptors) the security requirements of an application in which some components may be accessed by unauthenticated users as well as authenticated users (as described above in Section EE.3.4.3, “Unauthenticated Users”). Applications express their security requirements in terms of security roles, which the Deployer maps to users (principals) in the operational environment at deployment time. An application might define a role representing all authenticated and unauthenticated users and configure some enterprise bean methods to be accessible by this role.

To support such usage, this specification requires that it be possible to map an application defined security role to the universal set of application principals independent of authentication.
EE.3.7 Future Directions

EE.3.7.1 Auditing

This specification does not specify requirements for the auditing of security relevant events, nor APIs for application components to generate audit records. A future version of this specification may include such a specification for products that choose to provide auditing.

EE.3.7.2 Instance-based Access Control

Some applications need to control access to their data based on the content of the data, rather than simply the type of the data. We refer to this as “instance-based” rather than “class-based” access control. We hope to address this in a future release.

EE.3.7.3 User Registration

Web-based internet applications often need to manage a set of customers dynamically, allowing users to register themselves as new customers. This scenario was widely discussed in the Servlet expert group (JSR-53) but we were unable to achieve consensus on the appropriate solution. We had to abandon this work for J2EE 1.3, and were not able to address it for J2EE 1.4, but hope to pursue it further in a future release.
This chapter describes the required Java™ Platform, Enterprise Edition (Java EE) transaction management and runtime environment.

Product Providers must transparently support transactions that involve multiple components and transactional resources within a single Java EE product, as described in this chapter. This requirement must be met regardless of whether the Java EE product is implemented as a single process, multiple processes on the same network node, or multiple processes on multiple network nodes.

If the following components are included in a Java EE product, they are considered transactional resources and must behave as specified here:

- JDBC connections
- JMS sessions
- Resource adapter connections for resource adapters specifying the XATransaction transaction level

EE.4.1 Overview

A Java EE Product that includes both a servlet container and an EJB container must support a transactional application comprised of combinations of web application components accessing multiple enterprise beans within a single transaction. If the Java EE product also includes support for the Connectors specification, each component may also acquire one or more connections to access one or more transactional resource managers.

For example, in Figure EE.4-1, the call tree starts from a servlet or JSP page accessing multiple enterprise beans, which in turn may access other enterprise beans. The components access resource managers via connections.
The Application Component Provider specifies, using a combination of programmatic and declarative transaction demarcation APIs, how the platform must manage transactions on behalf of the application.

For example, the application may require that all the components in Figure EE.4-1 access resources as part of a single transaction. The Platform Provider must provide the transaction capabilities to support such a scenario.

This specification does not define how the components and the resources are partitioned or distributed within a single Java EE product. In order to achieve the transactional semantics required by the application, the Java EE Product Provider is free to execute the application components sharing a transaction in the same Java virtual machine, or distribute them across multiple virtual machines, in accordance with the requirements of the component specifications.

The rest of this chapter describes the transactional requirements for a Java EE product in more detail.

Figure EE.4-1 Servlets/JSP Pages Accessing Enterprise Beans
EE.4.2 Requirements

This section defines the transaction support requirements of Java EE Products that must be supported by Product Providers.

EE.4.2.1 Web Components

Web components may demarcate transactions using the javax.transaction.UserTransaction interface or transactional interceptors, which are defined in the JTA specification. They may access multiple resource managers and invoke multiple enterprise beans within a single transaction. The specified transaction context is automatically propagated to the enterprise beans and transactional resource managers. The result of the propagation may be subject to the enterprise bean transaction attributes (for example, a bean may be required to use Container Managed Transactions).

Web application event listeners and upgrade handlers must not demarcate transactions using the javax.transaction.UserTransaction interface or transactional interceptors. Servlet filters may use transactional resources within their doFilter methods but should not use any transactional resources in the methods of any objects used to wrap the request or response objects.

EE.4.2.1.1 Transaction Requirements

The Java EE platform must meet the following requirements:

• The Java EE platform must provide an object implementing the javax.transaction.UserTransaction interface to all web components. The platform must publish the UserTransaction object in the Java™ Naming and Directory Interface (JNDI) name space available to web components under the name java:comp/UserTransaction.

• The Java EE platform must provide classes that implement the transactional interceptors, as defined by the JTA specification.

• If a web component invokes an enterprise bean from a thread associated with a JTA transaction, the Java EE platform must propagate the transaction context with the enterprise bean invocation. Whether the target enterprise bean will be invoked in this transaction context or not is determined by the rules defined in the EJB specification.

Note that this transaction propagation requirement applies only to invocations of enterprise beans in the same Java EE product instance as the invoking...
component. Invocations of enterprise beans in another Java EE product instance (for example, using the EJB interoperability protocol) need not propagate the transaction context. See the EJB specification for details.

- If a web component accesses a transactional resource manager from a thread associated with a JTA transaction, the Java EE platform must ensure that the resource access is included as part of the JTA transaction.
- If a web component creates a thread, the Java EE platform must ensure that the newly created thread is not associated with any JTA transaction.

EE.4.2.1.2 Transaction Non-Requirements

The Product Provider is not required to support the importing of a transaction context from a client to a web component.

The Product Provider is not required to support transaction context propagation via an HTTP request across web components. The HTTP protocol does not support such transaction context propagation. When a web component associated with a transaction makes an HTTP request to another web component, the transaction context is not propagated to the target servlet or page.

However, when a web component is invoked through the RequestDispatcher interface, any active transaction context must be propagated to the called servlet or JSP page.

EE.4.2.2 Transactions in Web Component Life Cycles

Transactions may not span web requests from a client on the network. If a web component starts a transaction in the service or doFilter method (or transactional interceptor of service or doFilter method), it must be completed before the service or doFilter method returns to the network client. Returning from the

1 A product instance corresponds to a single installation of a Java EE product. A single product instance might use multiple operating system processes, or might support multiple host machines as part of a distributed container. In contrast, it might be possible to run multiple instances of a product on a single host machine, or possibly even in a single Java virtual machine, for example, as part of a virtual hosting solution. The transaction propagation requirement applies within a single product instance and is independent of the number of Java virtual machines, operating system processes, or host machines used by the product instance.

2 For a JSP page, this requirement applies to the service method of the equivalent JSP page Implementation Class.
service or doFilter method to the network client with an active transaction context is an error. The web container is required to detect this error and abort the transaction.

As specified above in Section EE.4.2.1.2, “Transaction Non-Requirements,” requests made within a web container using the RequestDispatcher must propagate any transaction context to the called class. Unless the called class commits or aborts the transaction, the transaction must remain active when the called class returns.

If a servlet that is called via the RequestDispatcher starts a transaction, the behavior of the container with regard to that transaction is unspecified when the servlet returns from its service method. The web container may throw an exception to the caller, abort the transaction and return to the caller without error, or propagate the transaction context back to the caller. Portable servlets will complete any transaction they start before returning from the service method.

EE.4.2.3 Transactions and Threads

There are many subtle and complex interactions between the use of transactional resources and threads. To ensure correct operation, web components should obey the following guidelines, and the web container must support at least these usages.

- JTA transactions should be started and completed in the thread in which the service method is called. Additional threads that are created for any purpose should not attempt to start JTA transactions.
- Transactional resources may be acquired and released by a thread other than the service method thread, but should not be shared between threads.
- Transactional resource objects (for example, JDBC Connection objects) should not be stored in static fields. Such objects can only be associated with one transaction at a time. Storing them in static fields would make it easy to erroneously share them between threads in different transactions.
- Web components implementing SingleThreadModel may store top-level transactional resource objects in class instance fields. A top-level object is one acquired directly from a container managed connection factory object (for example, a JDBC Connection acquired from a JDBC ConnectionFactory), as opposed to other objects acquired from these top-level objects (for example, a JDBC Statement acquired from a JDBC Connection). The web container ensures that requests to a SingleThreadModel servlet are serialized and thus only one thread and one transaction will be able to use the object at a time, and that
the top-level object will be enlisted in any new transaction started by the component.

- In web components not implementing SingleThreadModel, transactional resource objects, as well as Java Persistence EntityManager objects, should not be stored in class instance fields, and should be acquired and released within the same invocation of the service method.
- Web components that are called by other web components (using the forward or include methods) should not store transactional resource objects in class instance fields.
- Enterprise beans may be invoked from any thread used by a web component. Transaction context propagation requirements are described above and in the EJB specification.

EE.4.2.4 Enterprise JavaBeans™ Components

The Java EE Product Provider must provide support for transactions as defined in the EJB specification.

EE.4.2.5 Application Clients

The Java EE Product Provider is not required to provide transaction management support for application clients.

EE.4.2.6 Applet Clients

The Java EE Product Provider is not required to provide transaction management support for applets.

EE.4.2.7 Transactional JDBC™ Technology Support

A Java EE product must support a JDBC technology database as a transactional resource manager. The platform must enable transactional JDBC API access from web components and enterprise beans.

It must be possible to access the JDBC technology database from multiple application components within a single transaction. For example, a servlet may wish to start a transaction, access a database, invoke an enterprise bean that accesses the same database as part of the same transaction, and, finally, commit the transaction.
A Java EE product must provide a transaction manager that is capable of coordinating two-phase commit operations across multiple XA-capable JDBC databases. If a JDBC driver supports the Java Transaction API’s XA interfaces (in the `javax.transaction.xa` package), then the Java EE product must be capable of using the XA interfaces provided by the JDBC driver to accomplish two-phase commit operations. The Java EE product may discover the XA capabilities of JDBC drivers through product-specific means, although normally such JDBC drivers would be delivered as resource adapters using the Connector API.

EE.4.2.8 Transactional JMS Support

A Java EE product must support a JMS provider as a transactional resource manager. The platform must enable transactional JMS access from servlets, JSP pages, and enterprise beans.

It must be possible to access the JMS provider from multiple application components within a single transaction. For example, a servlet may wish to start a transaction, send a JMS message, invoke an enterprise bean that also sends a JMS message as part of the same transaction, and, finally, commit the transaction.

EE.4.2.9 Transactional Resource Adapter (Connector) Support

A Java EE product must support resource adapters that use `XATransaction` mode as transactional resource managers. The platform must enable transactional access to the resource adapter from servlets, JSP pages, and enterprise beans.

It must be possible to access the resource adapter from multiple application components within a single transaction. For example, a servlet may wish to start a transaction, access the resource adapter, invoke an enterprise bean that also accesses the resource adapter as part of the same transaction, and, finally, commit the transaction.

EE.4.3 Transaction Interoperability

EE.4.3.1 Multiple Java EE Platform Interoperability

This specification does not require the Product Provider to implement any particular protocol for transaction interoperability across multiple Java EE products. Java EE compatibility requires neither interoperability among identical Java EE products from the same Product Provider, nor among heterogeneous Java EE products from multiple Product Providers.
We recommend that Java EE Product Providers use the IIOP transaction propagation protocol defined by OMG and described in the OTS specification (and implemented by the Java Transaction Service), for transaction interoperability when using the EJB interoperability protocol based on RMI-IIOP.

EE.4.3.2 Support for Transactional Resource Managers

This specification requires all Java EE products to support the `javax.transaction.xa.XAResource` interface, as specified in the Connector specification. This specification also requires all Java EE products to support the `javax.transaction.xa.XAResource` interface for performing two-phase commit operations on JDBC drivers that support the JTA XA APIs. This specification does not require that JDBC drivers or JMS providers use the `javax.transaction.xa.XAResource` interface, although they may use this interface and in all cases they must meet the transactional resource manager requirements described in this chapter. In particular, it must be possible to combine operations on one or more JDBC databases, one or more JMS sessions, one or more enterprise beans, and multiple resource adapters supporting the `XATransaction` mode in a single JTA transaction.

EE.4.4 Local Transaction Optimization

EE.4.4.1 Requirements

If a transaction uses a single resource manager, performance may be improved by using a resource manager specific local optimization. A local transaction is typically more efficient than a global transaction and provides better performance. Local optimization is not available for transactions that are imported from a different container.

Containers may choose to provide local transaction optimization, but are not required to do so. Local transaction optimization must be transparent to a Java EE application.

The following section describes a possible mechanism for local transaction optimization by containers.

EE.4.4.2 A Possible Design

This section illustrates how the previously described requirements might be implemented.
When the first connection to a resource manager is established as part of the transaction, a resource manager specific local transaction is started on the connection. Any subsequent connection acquired as part of the transaction that can share the local transaction on the first connection is allowed to share the local transaction.

A global transaction is started lazily under the following conditions:

- When a subsequent connection cannot share the resource manager local transaction on the first connection, or if it uses a different resource manager.
- When a transaction is exported to a different container.

After the lazy start of a global transaction, any subsequent connection acquired may either share the local transaction on the first connection, or be part of the global transaction, depending on the resource manager it accesses.

When a transaction completion (commit or rollback) is attempted, there are two possibilities:

- If only a single resource manager had been accessed as part of the transaction, the transaction is completed using the resource manager specific local transaction mechanism.
- If a global transaction had been started, the transaction is completed treating the resource manager local transaction as a last resource in the global 2-phase commit protocol, that is using the last resource 2-phase commit optimization.

EE.4.5 Connection Sharing

When multiple connections acquired by a Java EE application use the same resource manager, containers may choose to provide connection sharing within the same transaction scope. Sharing connections typically results in efficient usage of resources and better performance. Containers are required to provide connection sharing in certain situations; see the Connector specification for details.

Connections to resource managers acquired by Java EE applications are considered potentially shared or shareable. A Java EE application component that intends to use a connection in an unshareable way must provide deployment information to that effect, to prevent the connection from being shared by the container. Examples of when this may be needed include situations with changed security attributes, isolation levels, character settings, and localization configuration. Containers must not attempt to share connections that are marked
unshareable. If a connection is not marked unshareable, it must be transparent to the application whether the connection is actually shared or not.

Java EE application components may use the optional `shareable` element of the `Resource` annotation or the optional deployment descriptor element `res-sharing-scope` to indicate whether a connection to a resource manager is shareable or unshareable. Containers must assume connections to be shareable if no deployment hint is provided. Section EE.10.7, “Java EE Application Client XML Schema”, the EJB specification, and the Servlet specification provide descriptions of the deployment descriptor element.

Java EE application components may cache connection objects and reuse them across multiple transactions. Containers that provide connection sharing must transparently switch such cached connection objects (at dispatch time) to point to an appropriate shared connection with the correct transaction scope. Refer to the Connector specification for a detailed description of connection sharing.

EE.4.6 JDBC and JMS Deployment Issues

The JDBC transaction requirements in Section EE.4.2.7, “Transactional JDBC™ Technology Support” and the JMS transaction requirements in Section EE.4.2.8, “Transactional JMS Support” may impose some restrictions on a Deployer’s configuration of an application’s JDBC and JMS resources. Java EE Product Providers may impose the restrictions described in this section to meet these requirements.

If the deployer configures a non-XA-capable JDBC resource manager in a transaction, then a Java EE Product Provider may restrict all JDBC access within that transaction to that non-XA-capable JDBC resource manager. Otherwise, a Java EE Product Provider must support use of multiple XA-capable JDBC resource managers within a transaction. In addition, a Java EE Product Provider may restrict the security configuration of all JDBC connections within a transaction to a single user identity. A Java EE Product Provider is not required to support transactions where more than one JDBC identity is used. Specifically, this means that transactions that require the use of more than one JDBC security identity (which can be done explicitly via component provided user name and password) may not be portable.

A Java EE Product Provider may make the same restrictions as above, resulting in a transaction being restricted to a single JMS resource manager and user identity.

In addition, when both a JDBC resource manager and a JMS resource manager are used in the same transaction, a Java EE Product Provider may restrict
both to a pairing that allows their combination to deliver the full transactional semantics required by the application, and may restrict the security identity of both to a single identity. To fully support such usage, portable applications that wish to include JDBC and JMS access in a single global transaction must not mark the corresponding transactional resources as “unshareable”.

Although these restrictions are allowed, it is recommended that Java EE Product Providers support JDBC and JMS resource managers that provide full two-phase commit functionality and, as a result, do not impose these restrictions.

EE.4.7 Two-Phase Commit Support

A Java EE product must support the use of multiple XA-capable resource adapters in a single transaction. To support such a scenario, full two-phase commit support is required. A JMS provider may be provided as an XA-capable resource adapter. In such a case, it must be possible to include JMS operations in the same global transaction as other resource adapters. While JDBC drivers are not required to be XA-capable, a JDBC driver may be delivered as an XA-capable resource adapter. In such a case, it must be possible to include JDBC operations in the same global transaction as other XA-capable resource adapters. See also Section EE.4.2.7, “Transactional JDBC™ Technology Support.”

EE.4.8 System Administration Tools

Although there are no compatibility requirements for system administration capabilities, the Java EE Product Provider will typically include tools that allow the System Administrator to perform the following tasks:

- Integrate transactional resource managers with the platform.
- Configure the transaction management parts of the platform.
- Monitor transactions at runtime.
- Receive notifications of abnormal transaction processing conditions (such as abnormally high number of transaction rollbacks).
This chapter describes how applications declare dependencies on external resources and configuration parameters, and how those items are represented in the Java EE naming system and can be injected into application components. These requirements are based on annotations defined in the Java Metadata specification and features defined in the Java Naming and Directory Interface™ (JNDI) specification. The `Resource` annotation described here is defined in more detail in the Common Annotations specification. The `EJB` annotation described here is defined in more detail in the Enterprise JavaBeans specification. The `PersistenceUnit` and `PersistenceContext` annotations described here are defined in more detail in the Java Persistence specification. The `Inject` annotation described here is defined in the Dependency Injection for Java specification, and its usage in Java EE applications is defined in the Contexts and Dependency Injection for the Java EE Platform specification.

EE.5.1 Overview

The requirements defined in this chapter address the following two issues:

- The Application Assembler and Deployer should be able to customize the behavior of an application’s business logic without accessing the application’s source code. Typically this will involve specification of parameter values, connection to external resources, and so on. Deployment descriptors provide this capability.
- Applications must be able to access resources and external information in their
operational environment without knowledge of how the external information is named and organized in that environment. The JNDI naming context and Java language annotations provide this capability.

EE.5.1.1 Chapter Organization

The following sections contain the Java EE platform solutions to the above issues:

- Section EE.5.2, “JNDI Naming Context,” defines general rules for the use of the JNDI naming context and its interaction with Java language annotations that reference entries in the naming context.
- Section EE.5.3, “Responsibilities by Java EE Role,” defines the general responsibilities for each of the Java EE roles such as Application Component Provider, Application Assembler, Deployer, and Java EE Product Provider.
- Section EE.5.4, “Simple Environment Entries,” defines the basic interfaces that specify and access the application component’s naming environment. The section illustrates the use of the application component’s naming environment for generic customization of the application component’s business logic.
- Section EE.5.5, “Enterprise JavaBeans™ (EJB) References,” defines the interfaces for obtaining the business interface, no-interface view, or home interface of an enterprise bean using an EJB reference. An EJB reference is a special entry in the application component’s environment.
- Section EE.5.6, “Web Service References,” refers to the specification for web service references.
- Section EE.5.7, “Resource Manager Connection Factory References,” defines the interfaces for obtaining a resource manager connection factory using a resource manager connection factory reference. A resource manager connection factory reference is a special entry in the application component’s environment.
- Section EE.5.8, “Resource Environment References,” defines the interfaces for obtaining an administered object that is associated with a resource using a resource environment reference. A resource environment reference is a special entry in the application component’s environment.
- Section EE.5.9, “Message Destination References,” defines the interfaces for declaring and using message destination references.
- Section EE.5.10, “UserTransaction References,” describes the use by eligible application components of references to a UserTransaction object in the component’s environment to start, commit, and abort transactions.
• Section EE.5.11, “TransactionSynchronizationRegistry References,” describes the use by eligible application components of references to a TransactionSynchronizationRegistry object in the component’s environment.

• Section EE.5.12, “ORB References,” describes the use by eligible application components of references to a CORBA ORB object in the component’s environment.

• Section EE.5.13, “Persistence Unit References,” describes the use by eligible application components of references to an EntityManagerFactory object in the component’s environment.

• Section EE.5.14, “Persistence Context References,” describes the use by eligible application components of references to an EntityManager object in the component’s environment.

• Section EE.5.15, “Application Name and Module Name References,” describes the use by eligible application components of references to the names of the current application and module.

• Section EE.5.16, “Application Client Container Property,” describes the use by eligible application components of references to the application client container property.

• Section EE.5.17, “Validator and Validator Factory References,” describes the use by eligible application components of references to the Validator and ValidatorFactory objects in the component’s environment.

• Section EE.5.18, “Resource Definition and Configuration,” describes the use by eligible application components of metadata that may be used to define resources in the component’s environment.

• Section EE.5.18.3, “DataSource Resource Definition,” describes the use by eligible application components of references to DataSource resources in the component’s environment.

• Section EE.5.18.4, “JMS Connection Factory Resource Definition,” describes the use by eligible application components of references to JMS ConnectionFactory resources in the component’s environment.

• Section EE.5.18.5, “JMS Destination Definition,” describes the use by eligible application components of references to JMS Destination resources in the component’s environment.

• Section EE.5.18.6, “Mail Session Definition,” describes the use by eligible application components of references to Mail Session resources in the component’s environment.
• Section EE.5.18.7, “Connector Connection Factory Definition,” describes the use by eligible application components of references to Connector connection factory resources in the component’s environment.

• Section EE.5.18.8, “Connector Administered Object Definition,” describes the use by eligible application components of references to Connector administered object resources in the component’s environment.

• Section EE.5.19, “Default Data Source,” describes the use by eligible application components of references to the default DataSource in the component’s environment.

• Section EE.5.20, “Default JMS Connection Factory,” describes the use by eligible application components of references to the default JMS Connection Factory in the component’s environment.

• Section EE.5.21, “Default Concurrency Utilities Objects,” describes the use by eligible application components of references to the default Concurrency Utilities objects in the component’s environment.

• Section EE.5.22, “Managed Bean References,” describes the use by eligible application components of references to Managed Beans.

• Section EE.5.23, “Bean Manager References,” describes the use by eligible application components of references to a BeanManager object in the component’s environment.

• Section EE.5.24, “Support for Dependency Injection,” describes support for the use of the Dependency Injection APIs.

EE.5.1.2 Required Access to the JNDI Naming Environment

Java EE application clients, enterprise beans, and web components are required to have access to a JNDI naming environment. The containers for these application component types are required to provide the naming environment support described here.

Annotations and deployment descriptors are the main vehicles for conveying access information to the Application Assembler and Deployer about application components’ requirements for customization of business logic and access to external information. The annotations described here are available for use by all application component types. The deployment descriptor entries described here are present in identical form in the deployment descriptor schemas for each of

1. Note that Java EE Managed Beans are required to have access to the JNDI naming environment of their calling component.
these application component types. See the corresponding specification of each application component type for the details.

EE.5.2 JNDI Naming Context

The application component’s naming environment is a mechanism that allows customization of the application component’s business logic during deployment or assembly. Use of the application component’s environment allows the application component to be customized without the need to access or change the application component’s source code.

EE.5.2.1 The Application Component’s Environment

The container implements the application component’s environment, and provides it to the application component instance as a JNDI naming context. The application component’s environment is used as follows:

1. The application component’s business methods make use of entries from the environment. The business methods may access the environment using the JNDI interfaces or lookup methods on component-specific context objects. Also, entries from the environment may be injected into the application component’s fields or methods. The Application Component Provider declares in the deployment descriptor, or via annotations, all the environment entries that the application component expects to be provided in its environment at runtime. For each environment entry, the Application Component Provider can also specify in the deployment descriptor, or via annotations, the JNDI name of another environment entry whose value should be used to initialize the environment entry being defined (“lookup” functionality).

2. The container provides an implementation of the JNDI naming context that stores the application component environment. The container also provides the tools that allow the Deployer to create and manage the environment of each application component.

3. The Deployer uses the tools provided by the container to initialize the environment entries that are declared in the application component’s deployment descriptor or via annotations. The Deployer can set and modify the values of the environment entries. As part of this process, the Deployer is allowed to override any “lookup” information associated with the application component.

4. The container injects entries from the environment into application component
fields or methods as specified by the application component’s deployment descriptor or by annotations on the application component class.

5. The container also makes the environment naming context available to the application component instances at runtime. The application component’s instances may use the JNDI interfaces or component context lookup methods to obtain the values of the environment entries.

EE.5.2.2 Application Component Environment Namespaces

The application component’s naming environment is composed of four logical namespaces, representing naming environments with different scopes. The four namespaces are:

- `java:comp` – Names in this namespace are per-component (for example, per enterprise bean). Except for components in a web module, each component gets its own `java:comp` namespace, not shared with any other component. Components in a web module do not have their own private component namespace. See note below.

- `java:module` – Names in this namespace are shared by all components in a module (for example, all enterprise beans in a single EJB module, or all components in a web module).

- `java:app` – Names in this namespace are shared by all components in all modules in a single application, where “single application” means a single deployment unit, such as a single ear file, a single module deployed standalone, etc. For example, a war file and an EJB jar file in the same ear file would both have access to resources in the `java:app` namespace.

- `java:global` – Names in this namespace are shared by all applications deployed in an application server instance. Note that an application server instance may represent a single server, a cluster of servers, an administrative domain containing many servers, or even more. The scope of an application server instance is product-dependent, but it must be possible to deploy multiple applications to a single application server instance.

Note that in environments in which an application is deployed multiple times—such as, for example, in cloud environments, where multiple instances of the same application might be deployed on behalf of multiple tenants—the namespace for each application instance would be disjoint from the namespace of any other instance of that same application.

Final Release
For historical reasons, the java:comp namespace is shared by all components in a web module. To preserve compatibility, this specification doesn't change that. In a web module, java:comp refers to the same namespace as java:module.

It is recommended that resources in a web module that are intended to be shared by more than one component be declared in the java:module/env namespace.

Note that an application client is a module with only a single component.

Note also that resource adapter (connector) modules may not define resources in any of the component namespaces, but may look up resources defined by other components. All the java: namespaces accessible in a resource adapter are the namespaces of the component that called the resource adapter (when called in the context of a component).

If multiple application components declare an environment entry in one of the shared namespaces, all attributes of that entry must be identical in each declaration. For example, if multiple components declare a resource reference with the same java:app name, the authentication and shareable attributes must be identical.

If all attributes of each declaration of a shared environment entry are not identical, this must be reported as a deployment error to the Deployer. The deployment tool may allow the Deployer to correct the error and continue deployment.

By default, environment entries declared by application components are created in the java:comp/env namespace. Environment entries may be declared in any one of the defined namespaces by explicitly including the namespace prefix before the name. It is recommended but not required that environment entries be created in the env subcontext of the corresponding naming context. For example, entries shared within a module should be declared in the java:module/env context. Note that names that are not under the env subcontext may conflict with the current or future versions of this specification, with server-defined names, such as the names of applications or modules, or with server-defined resources. Names in the env subcontexts of any of the namespaces must only be created by an explicit declaration in an application or by an explicit action by an administrator; the application server must not predefine any names in the env subcontext of any of the namespaces, or in any subcontext of any such env context.

An environment entry declared in the application.xml descriptor must specify a JNDI name in the java:app or java:global namespace, for example: java:app/env/myString or java:global/someValue. The specification of a java:comp or java:module name for an environment entry declared in the
application.xml descriptor must be reported as a deployment error to the Deployer.

A Java EE product may impose security restrictions on access of resources in the shared namespaces. However, it must be possible to deploy applications that define resources in the shared namespaces that are usable by different entities at the given scope. For example, it must be possible to deploy an application that defines a resource, using various forms of metadata declaration, in the java:global namespace that is usable by a separate application.

EE.5.2.3 Accessibility of Environment Entry Types

All objects defined in environment entries of any kind (either in deployment descriptors or through annotations) must be specified to be of a Java type that is accessible to the component. Accessibility of Java classes is specified in section Section EE.8.3, “Class Loading Requirements.” If the object is of type java.lang.Class, the Class object must refer to a class that is accessible to the component. Note that in cases where the container may return an implementation subtype of the requested type, the implementation subtype might not be accessible to the component.

EE.5.2.4 Sharing of Environment Entries

Each application component defines its own set of dependencies that must appear as entries in the application component’s environment. All instances of an application component within the same application instance within the same container share the same environment entries. Application component instances are not allowed to modify the environment at runtime.

In general, lookups of objects in the JNDI java: namespace are required to return a new instance of the requested object every time. Exceptions are allowed for the following:

- The container knows the object is immutable (for example, objects of type java.lang.String), or knows that the application can’t change the state of the object.
- The object is defined to be a singleton, such that only one instance of the object may exist in the JVM.
- The name used for the lookup is defined to return an instance of the object that might be shared. The names java:comp/ORB, java:comp/ValidatorFactory, and java:comp/BeanManager are such names.
In these cases, a shared instance of the object may be returned. In all other
cases, a new instance of the requested object must be returned on each lookup.
Note that, in the case of resource adapter connection objects, it is the resource
adapter’s ManagedConnectionFactory implementation that is responsible for
satisfying this requirement.

Each injection of an object corresponds to a JNDI lookup. Whether a new
instance of the requested object is injected, or whether a shared instance is
injected, is determined by the rules described above.

EE.5.2.5 Annotations and Injection

As described in the following sections, a field or method of certain container-
managed component classes may be annotated to request that an entry from the
application component’s environment be injected into the class. The specifications
for the different containers indicate which classes are considered container-managed
classes; not all classes of a given type are necessarily managed by the container.

Any of the types of resources described in this chapter may be injected.
Injection may also be requested using entries in the deployment descriptor
corresponding to each of these resource types. The field or method may have any
access qualifier (public, private, etc.). For all classes except application client
main classes, the fields or methods must not be static. Because application
clients use the same lifecycle as Java SE applications, no instance of the
application client main class is created by the application client container. Instead,
the static main method is invoked. To support injection for the application client
main class, the fields or methods annotated for injection must be static.

A field of a class may be the target of injection. The field must not be final.
By default, the name of the field is combined with the fully qualified name of the
class and used directly as the name in the application component’s naming
context. For example, a field named myDatabase in the class MyApp in the package
com.example would correspond to the JNDI name java:comp/env/
com.example.MyApp/myDatabase. The annotation also allows the JNDI name to be
specified explicitly. When a deployment descriptor entry is used to specify
injection, the JNDI name and the field name are both specified explicitly. Note
that, by default, the JNDI name is relative to the java:comp/env naming context.

Environment entries may also be injected into a class through methods that
follow the naming conventions for JavaBeans properties. The annotation is
applied to the set method for the property, which is the method that is called to
inject the environment entry into the class. The JavaBeans property name (not the
method name) is used as the default JNDI name. For example, a method named
setMyDatabase in the same MyApp class would correspond to the same JNDI name java:comp/env/com.example.MyApp/myDatabase as the field myDatabase.

Each resource may only be injected into a single field or method of a given name in a given class. Requesting injection of the java:comp/env/com.example.MyApp/myDatabase resource into both the setMyDatabase method and the myDatabase field is an error. Note, however, that either the field or the method could request injection of a resource of a different (non-default) name. By explicitly specifying the JNDI name of a resource, a single resource may be injected into multiple fields or methods of multiple classes.

The specifications for the various application component types describe which classes may be annotated for injection, as summarized in Table EE.5-1.

The component classes listed in Table EE.5-1 with support level “Standard” all support Java EE resource injection, as well as PostConstruct and PreDestroy callbacks. In addition, if CDI is enabled—which it is by default—these classes also support CDI injection, as described in Section EE.5.24, “Support for Dependency Injection”, and the use of interceptors². The component classes listed with support level “Limited” only support Java EE field injection and the PostConstruct callback. Note that these are application client main classes, where field injection is into static fields.

The specifications for the various application component types also describe when injection occurs in the lifecycle of the component. Typically injection will occur after an instance of the class is constructed, but before any business methods are called. If the container fails to find a resource needed for injection, initialization of the class must fail, and the class must not be put into service.

² Note that the use of interceptors defined by means of the Interceptors annotation is supported in the absence of CDI for EJB and Managed Bean components.
Annotations may also be applied to the class itself. These annotations declare an entry in the application component’s environment but do not cause the resource to be injected. Instead, the application component is expected to use JNDI or a component context lookup method to lookup the entry. When the annotation is

<table>
<thead>
<tr>
<th>Spec</th>
<th>Classes supporting injection</th>
<th>Support level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servlet</td>
<td>servlets</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>servlet filters</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>event listeners</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>HTTP upgrade handlers</td>
<td>Standard</td>
</tr>
<tr>
<td>JSP</td>
<td>tag handlers</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>tag library event listeners</td>
<td>Standard</td>
</tr>
<tr>
<td>JSF</td>
<td>managed classes(^b)</td>
<td>Standard</td>
</tr>
<tr>
<td>JAX-WS</td>
<td>service endpoints</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>handlers</td>
<td>Standard</td>
</tr>
<tr>
<td>JAX-RS</td>
<td>JAX-RS components(^c)</td>
<td>Standard</td>
</tr>
<tr>
<td>WebSocket</td>
<td>endpoints</td>
<td>Standard</td>
</tr>
<tr>
<td>EJB</td>
<td>beans</td>
<td>Standard</td>
</tr>
<tr>
<td>Interceptor</td>
<td>interceptors(^d)</td>
<td>Standard</td>
</tr>
<tr>
<td>Java Persistence</td>
<td>entity listeners</td>
<td>Standard</td>
</tr>
<tr>
<td>Managed Beans</td>
<td>managed beans</td>
<td>Standard</td>
</tr>
<tr>
<td>CDI(^e)</td>
<td>CDI-style managed beans(^e)</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>decorators(^f)</td>
<td>Standard</td>
</tr>
<tr>
<td>Java EE platform</td>
<td>main class (static)</td>
<td>Limited</td>
</tr>
<tr>
<td></td>
<td>login callback handler</td>
<td>Standard</td>
</tr>
</tbody>
</table>

\(^a\) See the CDI specification for requirements related to resource injection in CDI managed beans.

\(^b\) See the JSF specification section “JSF Managed Classes and Java EE Annotations” for a list of these managed classes.

\(^c\) Resource and CDI injection is supported only in JAX-RS components managed by CDI.

\(^d\) Interceptors cannot be bound to other interceptors.

\(^e\) We use this term to refer to classes that become managed beans per the rules in the CDI specification, thus excluding managed beans declared using the ManagedBean annotation as well as EJB session beans, both of which would be managed beans even in the absence of CDI.

\(^f\) Interceptors cannot be bound to decorators.
Resource annotations may appear on any of the classes listed above, or on any superclass of any class listed above. A resource annotation on any class in the inheritance hierarchy defines a resource needed by the application component. However, injection of resources follows the Java language overriding rules for visibility of fields and methods. A method definition that overrides a method on a superclass defines the resource, if any, to be injected into that method. An overriding method may request injection even though the superclass method does not request injection, it may request injection of a different resource than is requested by the superclass, or it may request no injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a subclass may still request injection. This allows, for example, a private field to be the target of injection and that field to be used in the implementation of the superclass, even though the subclass has no visibility into that field and doesn’t know that the implementation of the superclass is using an injected resource. Note a declaration of a field in a subclass with the same name as a field in a superclass always causes the field in the superclass to be hidden.

In some cases a class may need to perform initialization of its own after all resources have been injected. To support this case, one method of the class may be annotated with the `PostConstruct` annotation (or, equivalently, specified using the `post-construct` entry of a deployment descriptor). This method will be called after all injections have occurred and before the class is put into service. This method will be called even if the class doesn’t request any resources to be injected. Similarly, for classes whose lifecycle is managed by the container, the `PreDestroy` annotation (or, equivalently, the `pre-destroy` entry of a deployment descriptor) may be applied to one method that will be called when the class is taken out of service and will no longer be used by the container. Each class in a class hierarchy may have `PostConstruct` and `PreDestroy` methods. The order in which the methods are called matches the order of the class hierarchy with methods on a superclass being called before methods on a subclass.

The `PostConstruct` and `PreDestroy` annotations are specified by the Common Annotations specification. All classes that support injection also support the `PostConstruct` annotation. All classes for which the container manages the full lifecycle of the object also support the `PreDestroy` annotation.

Starting with Java EE 7, CDI support is enabled by default. CDI bean-defining annotations and the `beans.xml` descriptor are used to determine which classes are CDI beans and eligible for injection into other objects. Similarly, the
annotation metadata and the `beans.xml` descriptor are used by CDI to determine which interceptors are eligible to be applied. See the CDI specification and the Interceptors specification for the rules that determine which classes are CDI beans and the treatment of interceptors.

EE.5.2.6 Annotations and Deployment Descriptors

Environment entries may be declared by use of annotations, without need for any deployment descriptor entries. Environment entries may also be declared by deployment descriptor entries. The same environment entry may be declared using both an annotation and a deployment descriptor entry. In this case, the information in the deployment descriptor entry may be used to override some of the information provided in the annotation. This approach may be used by an Application Assembler or Deployer to override information provided by the Application Component Developer. Applications should not use deployment descriptor entries to request injection of a resource into a field or method that has not been designed for injection.

The following list describes the rules for how a deployment descriptor entry may override a `Resource` annotation.

- The relevant deployment descriptor entry is located based on the JNDI name used with the annotation (either defaulted or provided explicitly).
- The type specified in the deployment descriptor must be assignable to the type of the field or property.
- The description, if specified, overrides the description element of the annotation.
- The injection target, if specified, defines additional injection points for the resource.
- The `mapped-name` element, if specified, overrides the `mappedName` element of the annotation.
- The `res-sharing-scope` element, if specified, overrides the `shareable` element of the annotation. In general, the Application Assembler or Deployer should not change this value as doing so is likely to break the application.
- The `res-auth` element, if specified, overrides the `authenticationType` element of the annotation. In general, the Application Assembler or Deployer should not change this value as doing so is likely to break the application.
- The `lookup-name` element, if specified, overrides the `lookup` element of the annotation.
It is an error to request injection of two resources into the same target. The behavior of an application that does so is undefined.

The rules for how a deployment descriptor entry may override an EJB annotation are included in the EJB specification. The rules for how a deployment descriptor entry may override a WebServiceRef annotation are included in the Web Services for Java EE specification.

A PostConstruct method may be specified using either the PostConstruct annotation on the method or the post-construct deployment descriptor entry. Similarly, a PreDestroy method may be specified using either the PreDestroy annotation on the method or the pre-destroy deployment descriptor entry.

EE.5.2.7 Other Naming Context Entries

In addition to environment entries declared by application components, other items will appear in the naming context, as specified by this and other specifications. Following are some of these entries. This is not an exhaustive list; consult the corresponding specification for details.

- All enterprise beans in an application are given entries in the shared namespaces. See the EJB specification for details.
- All web applications are given names in the shared namespaces. The names correspond to the complete URL of the web application. See the Servlet specification for details.
- Objects representing several container services are defined in the java:comp namespace. See, for example, Section EE.5.10, “UserTransaction References,” Section EE.5.11, “TransactionSynchronizationRegistry References,” and Section EE.5.12, “ORB References.”
- Strings providing the current module name and application name are defined in the java:comp namespace. See Section EE.5.15, “Application Name and Module Name References.”

EE.5.3 Responsibilities by Java EE Role

This section describes the responsibilities for each Java EE role that apply to all uses of the Java EE naming context. The sections that follow describe the responsibilities that are specific to the different types of objects that may be stored in the naming context.
EE.5.3.1 Application Component Provider’s Responsibilities

The Application Component Provider may make use of three techniques for accessing and managing the naming context. First, the Application Component Provider may use Java language annotations to request injection of a resource from the naming context, or to declare elements that are needed in the naming context. Second, the component may use the JNDI APIs to access entries in the naming context. Third, deployment descriptor entries may be used to declare entries needed in the naming context, and to request injection of these entries into application components. Deployment descriptor entries may also be used to override information provided by annotations.

As part of the declaration of elements in the naming context, the Application Component Provider can specify the JNDI name of a resource to be looked up in the naming context to initialize the element being declared. The JNDI name in question may belong to any of the namespaces that compose the application component environment.

To ensure that it has access to the correct javax.naming.InitialContext implementation provided by the container, a portable application component must not specify the java.naming.factory.initial property, must not specify a URLContextFactory for the "java" scheme-id, and must not call the javax.naming.spi.NamingManager.setInitialContextFactoryBuilder method.

EE.5.3.2 Application Assembler’s Responsibilities

The Application Assembler is allowed to modify the entries in the naming context set by the Application Component Provider, and is allowed to set the values of those entries for which the Application Component Provider has not specified any values. The Application Assembler may use the deployment descriptor to override settings made by the Application Component Provider in the source code using annotations.

EE.5.3.3 Deployer’s Responsibilities

The Deployer must ensure that all the entries declared by an application component are created and properly initialized.

The Deployer can modify the entries that have been previously set by the Application Component Provider and/or Application Assembler, and must set the values of those entries for which a required value has not been specified. If an annotation contains the lookup element or a deployment descriptor entry includes the lookup-name element, the Deployer should bind it to the entry specified as the target of the lookup.
The description deployment descriptor elements and annotation elements provided by the Application Component Provider or Application Assembler help the Deployer with this task.

EE.5.3.4 Java EE Product Provider’s Responsibilities

The Java EE Product Provider has the following responsibilities:

- Provide a deployment tool that allows the Deployer to set and modify the entries of the application component’s naming context.
- Implement the `java:comp`, `java:module`, `java:app` and `java:global` environment naming contexts, and provide them to the application component instances at runtime. The naming context must include all the entries declared by the Application Component Provider, with their values supplied in the deployment descriptor or set by the Deployer. The environment naming context must allow the Deployer to create subcontexts if they are needed by an application component. Certain entries in the naming context may have to be initialized with the values of other entries, specifically when the “lookup” facility is used. In this case, it is an error if there are any circular dependencies between entries. Similarly, it is an error if looking up the specified JNDI name results in a resource whose type is not compatible with the entry being created. The deployment tool may allow the deployer to correct either of these classes of errors and continue the deployment.
- Ensure that, in the absence of any properties specified by the application, the `javax.naming.InitialContext` implementation meets the requirements described in this specification.
- Inject entries from the naming environment into the application component, as specified by the deployment descriptor or annotations on the application component classes.
- The container must ensure that the application component instances have only read access to their naming context. The container must throw the `javax.naming.OperationNotSupportedException` from all the methods of the `javax.naming.Context` interface that modify the environment naming context and its subcontexts.
EE.5.4 Simple Environment Entries

A simple environment entry is a configuration parameter used to customize an application component’s business logic. The environment entry values may be one of the following Java types: String, Character, Byte, Short, Integer, Long, Boolean, Double, Float, Class, and any subclass of Enum.

The following subsections describe the responsibilities of each Java EE Role.

EE.5.4.1 Application Component Provider’s Responsibilities

This section describes the Application Component Provider’s view of the application component’s environment, and defines his or her responsibilities. It does so in three sections, the first describing annotations for injecting environment entries, the second describing the API for accessing environment entries, and the third describing syntax for declaring the environment entries in a deployment descriptor.

EE.5.4.1.1 Injection of Simple Environment Entries

A field or a method of an application component may be annotated with the Resource annotation. The name and type of the environment entry are as described above. Note that the container will unbox the environment entry as required to match it to a primitive type used for the injection field or method. The authenticationType and shareable elements of the Resource annotation must not be specified; simple environment entries are not shareable and do not require authentication.

The following code example illustrates how an application component uses annotations to declare environment entries.

```java
// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions;

// The minimum number of tax exemptions, configured by the Deployer.
@Resource int minExemptions;

public void setTaxInfo(int numberOfExemptions,...) throws InvalidNumberOfExemptionsException {
    ...  
    // Use the environment entries to
    // customize business logic.
    if (numberOfExemptions > maxExemptions || numberOfExemptions < minExemptions)
        throw new InvalidNumberOfExemptionsException();
```
The following code example illustrates how an environment entry can be assigned a value by referring to another entry, potentially in a different namespace.

```java
// an entry that gets its value from an application-wide entry
@Resource(lookup="java:app/env/timeout") int timeout;
```

EE.5.4.1.2 Programming Interfaces for Accessing Simple Environment Entries

In addition to the injection based approach described above, an application component may access environment entries dynamically. An application component instance locates the environment naming context using the JNDI interfaces. An instance creates a `javax.naming.InitialContext` object by using the constructor with no arguments, and looks up the naming environment via the `InitialContext` under the name `java:comp/env`. The application component’s environment entries are stored directly in the environment naming context, or in its direct or indirect subcontexts.

Environment entries have the Java programming language type declared by the Application Component Provider in the deployment descriptor.

The following code example illustrates how an application component accesses its environment entries.

```java
public void setTaxInfo(int numberOfExemptions,...) throws InvalidNumberOfExemptionsException {
    ...
    // Obtain the application component's
    // environment naming context.
    Context initCtx = new InitialContext();
    Context myEnv = (Context)initCtx.lookup("java:comp/env");

    // Obtain the maximum number of tax exemptions
    // configured by the Deployer.
    Integer max = (Integer)myEnv.lookup("maxExemptions");

    // Obtain the minimum number of tax exemptions
    // configured by the Deployer.
    Integer min = (Integer)myEnv.lookup("minExemptions");

    // Use the environment entries to
```
// customize business logic.
if (numberOfExemptions > max.intValue() ||
 numberOfExemptions < min.intValue())
 throw new InvalidNumberOfExemptionsException();

// Get some more environment entries. These environment
// entries are stored in subcontexts.
String val1 = (String)myEnv.lookup("foo/name1");
Boolean val2 = (Boolean)myEnv.lookup("foo/bar/name2");

// The application component can also
// lookup using full pathnames.
Integer val3 = (Integer)initCtx.lookup("java:comp/env/name3");
Integer val4 =
 (Integer)initCtx.lookup("java:comp/env/foo/name4");
...
}

EE.5.4.1.3 Declaration of Simple Environment Entries

The Application Component Provider must declare all the environment entries accessed from the application component’s code. The environment entries are declared using either annotations on the application component’s code, or using the env-entry elements in the deployment descriptor. Each env-entry element describes a single environment entry. The env-entry element consists of an optional description of the environment entry, the environment entry name, which by default is relative to the java:comp/env context, the expected Java programming language type of the environment entry value (the type of the object returned from the JNDI lookup method), and an optional environment entry value.

An environment entry is scoped to the application component whose declaration contains the env-entry element. This means that the environment entry is not accessible from other application components at runtime, and that other application components may define env-entry elements with the same env-entry-name without causing a name conflict.

If the Application Component Provider provides a value for an environment entry using the env-entry-value element, the value can be changed later by the Application Assembler or Deployer. The value must be a string that is valid for the constructor of the specified type that takes a single String parameter, or in the case of Character, a single character.

The following example is the declaration of environment entries used by the application component whose code was illustrated in the previous subsection.
...<env-entry>
 <description>
 The maximum number of tax exemptions allowed to be set.
 </description>
 <env-entry-name>maxExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
</env-entry>
<env-entry>
 <description>
 The minimum number of tax exemptions allowed to be set.
 </description>
 <env-entry-name>minExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>foo/name1</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>value1</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>foo/bar/name2</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
</env-entry>
<env-entry>
 <description>Some description.</description>
 <env-entry-name>name3</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>foo/name4</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10</env-entry-value>
</env-entry>
<env-entry>
 <env-entry-name>helperClass</env-entry-name>
 <env-entry-type>java.lang.Class</env-entry-type>
 <env-entry-value>com.acme.helper.Helper</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>timeUnit</env-entry-name>
<env-entry-type>java.util.concurrent.TimeUnit</env-entry-type>
<env-entry-value>NANOSECONDS</env-entry-value>
</env-entry>

<env-entry>
<env-entry-name>bar</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<lookup-name>java:app/env/appBar</lookup-name>
</env-entry>

... Injection of environment entries may also be specified using the deployment descriptor, without need for Java language annotations. The following example is the declaration of environment entries corresponding to the earlier injection example.

...
<env-entry>
<description>
The maximum number of tax exemptions allowed to be set.
</description>
<env-entry-name>com.example.PayrollService/maxExemptions</env-entry-name>
</env-entry>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>
<injection-target>
<injection-target-class>com.example.PayrollService</injection-target-class>
<injection-target-name>maxExemptions</injection-target-name>
</injection-target>
</env-entry>

<env-entry>
<description>
The minimum number of tax exemptions allowed to be set.
</description>
<env-entry-name>com.example.PayrollService/minExemptions</env-entry-name>
</env-entry>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>1</env-entry-value>

It’s often convenient to declare a field or method as an injection target, but specify a default value in the code, as illustrated in the following example.

// The maximum number of tax exemptions, configured by the Deployer.
@Resource int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject a value for this resource if the deployer has specified a value to override the default value. The env-entry-value element in the deployment descriptor is optional when an injection target is specified. If the element is not specified, no value will be injected. In addition, if the element is not specified, the named resource is not initialized in the naming context; explicit lookups of the named resource will fail.

The deployment descriptor equivalent of the lookup element of the @Resource annotation is lookup-name. The following deployment descriptor fragment is equivalent to the earlier example that used lookup.

<env-entry>
 <env-entry-name>somePackage.SomeClass/timeout</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <injection-target>
 <injection-target-class>
 somePackage.SomeClass
 </injection-target-class>
 <injection-target-name>timeout</injection-target-name>
 </injection-target>
 <lookup-name>java:app/env/timeout</lookup-name>
</env-entry>

It is an error for both the env-entry-value and lookup-name elements to be specified for a given env-entry element. If either element exists, an eventual lookup element of the corresponding Resource annotation (if any) must be
ignored. In other words, assignment of a value to an environment entry via a
deployment descriptor, either directly (env-entry-value) or indirectly (lookup-
name), overrides any assignments made via annotations.

EE.5.5 Enterprise JavaBeans™ (EJB) References

This section describes the programming and deployment descriptor interfaces that
allow the Application Component Provider to refer to the homes of enterprise beans
or to enterprise bean instances using “logical” names called EJB references. The
EJB references are special entries in the application component’s naming
environment. The Deployer binds the EJB reference to the enterprise bean’s
business interface, no-interface view, or home interface in the target operational
environment.

The deployment descriptor also allows the Application Assembler to link an
EJB reference declared in one application component to an enterprise bean
contained in an ejb-jar file in the same Java EE application. The link is an
instruction to the tools used by the Deployer describing the binding of the EJB
reference to the business interface, no-interface view, or home interface of the
specified target enterprise bean. The same linking can also be specified by the
Application Component Provider using annotations in the source code of the
component.

The requirements in this section only apply to Java EE products that include
an EJB container.

EE.5.5.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and
responsibilities with respect to EJB references. It does so in three sections, the first
describing annotations for injecting EJB references, the second describing the API
for accessing EJB references, and the third describing the syntax for declaring the
EJB references in a deployment descriptor.

EE.5.5.1.1 Injection of EJB Entries

A field or a method of an application component may be annotated with the EJB
annotation. The EJB annotation represents a reference to an EJB session bean or
entity bean. The reference may be to a session bean’s business interface, to a session
bean’s no-interface view, or to the local or remote home interface of a session bean
or entity bean.
The following example illustrates how an application component uses the EJB annotation to reference an instance of an enterprise bean. The referenced bean is a stateful session bean. The enterprise bean reference will have the name java:comp/env/com.example.ExampleBean/myCart in the naming context, where ExampleBean is the name of the class of the referencing bean and com.acme.example is its package. The target of the reference is not named and must be resolved by the Deployer, unless there is only one session bean component within the application that exposes a client view type that matches the EJB reference.

```java
package com.acme.example;

@Stateless public class ExampleBean implements Example {
    ...
    @EJB private ShoppingCart myCart;
    ...
}
```

The following example illustrates use of almost all elements of the EJB annotation.

```java
@EJB(
    name = "ejb/shopping-cart",
    beanName = "cart1",
    beanInterface = ShoppingCart.class,
    description = "The shopping cart for this application"
)
private ShoppingCart myCart;
```

As an alternative to `beanName`, a reference to an EJB can use the global JNDI name for that EJB, or any of the other names mandated by the EJB specifications, by means of the `lookup` annotation element. The following example uses a JNDI name in the application namespace.

```java
@EJB(
    lookup="java:app/cartModule/ShoppingCart",
    description = "The shopping cart for this application"
)
private ShoppingCart myOtherCart;
```

If the `ShoppingCart` bean were instead written to the EJB 2.x client view, the EJB reference would be to the bean’s home interface. For example:
@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartHome.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartHome myCartHome;

If the ShoppingCart bean were instead written to the no-interface client view and implemented by bean class ShoppingCartBean.class, the EJB reference would have type ShoppingCartBean.class. For example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartBean.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartBean myCart;

EE.5.5.1.2 Programming Interfaces for EJB References

The Application Component Provider may use EJB references to locate the business interface, no-interface view, or home interface of an enterprise bean as follows.

- Assign an entry in the application component’s environment to the reference. (See subsection 5.5.1.3 for information on how EJB references are declared in the deployment descriptor.)
- This specification recommends, but does not require, that references to enterprise beans be organized in the ejb subcontext of the application component’s environment (that is, in the java:comp/env/ejb JNDI context). Note that enterprise bean references declared via annotations will not, by default, be in any subcontext.
- Look up the business interface, no-interface view, or home interface of the referenced enterprise bean in the application component’s environment using JNDI.

The following example illustrates how an application component uses an EJB reference to locate the home interface of an enterprise bean.
public void changePhoneNumber(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the home interface of the EmployeeRecord
 // enterprise bean in the environment.
 Object result = initCtx.lookup("java:comp/env/ejb/EmplRecord");

 // Convert the result to the proper type.
 EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
 javax.rmi.PortableRemoteObject.narrow(result, EmployeeRecordHome.class);
 ...
}

In the example, the Application Component Provider assigned the
environment entry ejb/EmplRecord as the EJB reference name to refer to the
remote home interface of an enterprise bean.

EE.5.5.1.3 Declaration of EJB References

Although the EJB reference is an entry in the application component’s environment,
the Application Component Provider must not use a env-entry element to declare
it. Instead, the Application Component Provider must declare all the EJB references
using either annotations on the application component’s code or the ejb-ref or ejb-
local-ref elements of the deployment descriptor. This allows the consumer of the
application component’s JAR file (the Application Assembler or Deploier) to
discover all the EJB references used by the application component. Deployment
descriptor entries may also be used to specify injection of an EJB reference into an
application component.

Each ejb-ref or ejb-local-ref element describes the interface requirements
that the referencing application component has for the referenced enterprise bean.
The ejb-ref element is used for referencing an enterprise bean that is accessed
through its remote business interface or remote home and component interfaces.
The ejb-local-ref element is used for referencing an enterprise bean that is
accessed through its local business interface, no-interface view, or local home and
component interfaces. The ejb-ref element contains a description element and
the ejb-ref-name, ejb-ref-type, home, and remote elements. The ejb-local-ref
element contains a description element and the ejb-ref-name, ejb-ref-type,
local-home, and local elements
The `ejb-ref-name` element specifies the EJB reference name. Its value is the environment entry name used in the application component code. The optional `ejb-ref-type` element specifies the expected type of the enterprise bean. Its value must be either `Entity` or `Session`. The `home` and `remote` or `local-home` and `local` elements specify the expected Java programming language types of the referenced enterprise bean’s interface(s). If the reference is to an EJB 2.x remote client view interface, the `home` element is required. Likewise, if the reference is to an EJB 2.x local client view interface, the `local-home` element is required. The `remote` element of the `ejb-ref` element refers to either the business interface type or the component interface, depending on whether the reference is to a bean’s EJB 3.x or EJB 2.x remote client view. Likewise, the `local` element of the `ejb-local-ref` element refers to either the business interface type, bean class type, or the component interface type, depending on whether the reference is to a bean’s EJB 3.x local business interface, no-interface view, or EJB 2.x local client view respectively.

An EJB reference is scoped to the application component whose declaration contains the `ejb-ref` or `ejb-local-ref` element. This means that the EJB reference is not accessible from other application components at runtime and that other application components may define `ejb-ref` or `ejb-local-ref` elements with the same `ejb-ref-name` without causing a name conflict.

The `lookup-name` element specifies the JNDI name of an environment entry that provides a value for the reference.

The following example illustrates the declaration of EJB references in the deployment descriptor.

```xml
<ejb-ref>
  <description>
    This is a reference to the entity bean that encapsulates access to employee records.
  </description>
  <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
  <ejb-ref-type>Entity</ejb-ref-type>
  <home>com.wombat.empl.EmployeeRecordHome</home>
  <remote>com.wombat.empl.EmployeeRecord</remote>
</ejb-ref>

<ejb-ref>
  <ejb-ref-name>ejb/Payroll</ejb-ref-name>
  <ejb-ref-type>Entity</ejb-ref-type>
  <home>com.aardvark.payroll.PayrollHome</home>
  <remote>com.aardvark.payroll.Payroll</remote>
</ejb-ref>
```
EE.5.5.2 Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment descriptor to link an EJB reference to a target enterprise bean.

The Application Assembler specifies the link to an enterprise bean as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref or ejb-local-ref element of the referencing application component. The value of the ejb-link element is the name of the target enterprise bean. This is the name as defined by the metadata annotation (or default) on the bean class or in the ejb-name element for the target enterprise bean. The target enterprise bean can be in any ejb-jar file or war file in the same Java EE application as the referencing application component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names within an entire Java EE application, the Application Assembler may use either of the following two syntaxes in the ejb-link element of the referencing application component.

 • The Application Assembler specifies the module name of the ejb-jar file or war file containing the referenced enterprise bean and appends the ejb-name of the target bean separated by “/”. The module name is the base name of the bundle with no filename extension, unless specified in the deployment descriptor.

 • The Application Assembler specifies the path name of the ejb-jar file containing the referenced enterprise bean and appends the ejb-name of the target bean separated from the path name by “#”. The path name is relative to the referencing application component JAR file. In this manner, multiple beans with the same ejb-name may be uniquely identified when the Application Assembler cannot change ejb-names.
• Alternatively to the use of ejb-link, the Application Assembler may use the lookup-name element to reference the target EJB component by means of one of its JNDI names. It is an error for both ejb-link and lookup-name to appear inside an ejb-ref element.

• The Application Assembler must ensure that the target enterprise bean is type-compatible with the declared EJB reference. This means that the target enterprise bean must be of the type indicated in the ejb-ref-type element, if present, and that the business interface, no-interface view, or home and remote interfaces of the target enterprise bean must be Java type-compatible with the type declared in the EJB reference.

The following example illustrates the use of the ejb-link element in the deployment descriptor. The enterprise bean reference should be satisfied by the bean named EmployeeRecord. The EmployeeRecord enterprise bean may be packaged in the same module as the component making this reference, or it may be packaged in another module within the same Java EE application as the component making this reference.

...<ejb-ref>
 <description>
 This is a reference to the entity bean that encapsulates access to employee records. It has been linked to the entity bean named EmployeeRecord in this application.
 </description>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 <ejb-link>EmployeeRecord</ejb-link>
</ejb-ref>
...

The following example illustrates using the ejb-link element to indicate an enterprise bean reference to the ProductEJB enterprise bean that is in the same Java EE application unit but in a different ejb-jar file.

...<ejb-ref>
 <description>
 This is a reference to the entity bean that
encapsulates access to a product. It has been linked to the entity bean named ProductEJB in the product.jar file in this application.
</description>
<ejb-ref-name>ejb/Product</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>com.acme.products.ProductHome</home>
<remote>com.acme.products.Product</remote>
<ejb-link>../products/product.jar#ProductEJB</ejb-link>
</ejb-ref>
...

The following example illustrates using the ejb-link element to indicate an enterprise bean reference to the ShoppingCart enterprise bean that is in the same Java EE application unit but in a different ejb-jar file. The reference was originally declared in the application component’s code using an annotation. The Assembler provides only the link to the bean.

...<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <ejb-link>../products/product.jar#ShoppingCart</ejb-link>
</ejb-ref>
...

The same effect can be obtained by using the lookup-name element instead, using an appropriate JNDI name for the target bean.

...<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:app/products/ShoppingCart</lookup-name>
</ejb-ref>
...

EE.5.5.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the business interfaces, no-interface views, or home interfaces of enterprise beans that exist in the operational environment. The Deployer may use, for example,
the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the target enterprise bean.

- The Deployer must ensure that the target enterprise bean is type-compatible with the types declared for the EJB reference. This means that the target enterprise bean must be of the type indicated in the ejb-ref-type element or specified via the EJB annotation, and that the business interface, no-interface view, or home and remote interfaces of the target enterprise bean must be Java type-compatible with the type declared in the EJB reference (if specified).

- If an EJB reference declaration includes the ejb-link element, the Deployer should bind the enterprise bean reference to the enterprise bean specified as the link’s target. If an EJB annotation includes the lookup element or the EJB reference declaration includes the lookup-name element, the Deployer should bind the enterprise bean reference to the enterprise bean specified as the target of the lookup. It is an error for an EJB reference declaration to include both an ejb-link and a lookup-name element.

The following example illustrates the use of the lookup-name element to bind an ejb-ref to a target enterprise bean in the operational environment. The reference was originally declared in the bean’s code using an annotation. The target enterprise bean has ejb-name ShoppingCart and is deployed in the stand-alone module products.jar.

```xml
...<ejb-ref>
  <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
  <lookup-name>java:global/products/ShoppingCart</lookup-name>
</ejb-ref>
```

EE.5.5.4 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection. The deployment tools provided by the Java EE Product Provider must be able to process the information supplied in class file annotations and in the ejb-ref and ejb-local-ref elements in the deployment descriptor.

At the minimum, the tools must be able to:

- Preserve the application assembly information in annotations or in the ejb-link elements by binding an EJB reference to the business interface, no-interface view, or home interface of the specified target enterprise bean.
- Inform the Deployer of any unresolved EJB references, and allow him or her
to resolve an EJB reference by binding it to a specified compatible target enterprise bean.

EE.5.6 Web Service References

A web service reference is similar to an Enterprise JavaBeans reference, but is used to reference a web service. Web service references are fully specified in the Web Service specification and the JAX-WS specification.

EE.5.7 Resource Manager Connection Factory References

A resource manager connection factory is an object that is used to create connections to a resource manager. For example, an object that implements the javax.sql.DataSource interface is a resource manager connection factory for java.sql.Connection objects that implement connections to a database management system.

This section describes the application component programming and deployment descriptor interfaces that allow the application component code to refer to resource factories using logical names called resource manager connection factory references. The resource manager connection factory references are special entries in the application component's environment. The Deployer binds the resource manager connection factory references to the actual resource manager connection factories that exist in the target operational environment. Because these resource manager connection factories allow the Container to affect resource management, the connections acquired through the resource manager connection factory references are called managed resources (for example, these resource manager connection factories allow the Container to implement connection pooling and automatic enlistment of the connection with a transaction).

Resource manager connection factory objects accessed through the naming environment are only valid within the component instance that performed the lookup. See the individual component specifications for additional restrictions that may apply.

EE.5.7.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating resource factories and defines his or her responsibilities. It does so in three sections,
the first describing the annotations used to inject resource manager connection factory references, the second describing the API for accessing resource manager connection factory references, and the third describing the syntax for declaring the factory references in a deployment descriptor.

EE.5.7.1.1 Injection of Resource Manager Connection Factory References

A field or a method of an application component may be annotated with the `Resource` annotation. The name and type of the factory are as described above. The `authenticationType` and `shareable` elements of the `Resource` annotation may be used to control the type of authentication desired for the resource and the shareability of connection acquired from the factory, as described in the following sections.

The following code example illustrates how an application component uses annotations to declare resource manager connection factory references.

```java
// The employee database.
@Resource javax.sql.DataSource employeeAppDB;
public void changePhoneNumber(...) {
    ...
    // Invoke factory to obtain a resource. The security
    // principal for the resource is not given, and
    // therefore it will be configured by the Deployer.
    java.sql.Connection con = employeeAppDB.getConnection();
    ...
}
```

It is possible to specify as part of the `@Resource` annotation the JNDI name of an entry to which the resource being defined will be bound.

```java
// The customer database, looked up in the application environment.
@Resource(lookup="java:app/env/customerDB")
javax.sql.DataSource customerAppDB;
```

The data source object being looked up in the previous example may have been declared as follows.

```java
@Resource(name="java:app/env/customerDB",
    type=javax.sql.DataSource.class)
public class AnApplicationClass {
    ...
}
```
From a practical standpoint, declaring a commonly used data source at the application level and referring to it using lookup from multiple components may simplify the task of deploying the application, since now the Deployer will have to perform a single binding operation for the application-level resource, instead of multiple ones. The task can be further simplified by using a data source resource definition, see Chapter EE.5, “DataSource Resource Definition”. Of course, nothing prevents the Deployer from separately binding each data source reference if necessary.

EE.5.7.1.2 Programming Interfaces for Resource Manager Connection Factory References

The Application Component Provider may use resource manager connection factory references to obtain connections to resources as follows.

- Assign an entry in the application component’s naming environment to the resource manager connection factory reference. (See subsection 5.7.1.3 for information on how resource manager connection factory references are declared in the deployment descriptor.)
- This specification recommends, but does not require, that all resource manager connection factory references be organized in the subcontexts of the application component’s environment, using a different subcontext for each resource manager type. For example, all JDBC™ DataSource references should be declared in the java:comp/env/jdbc subcontext, all JMS connection factories in the java:comp/env/jms subcontext, all JavaMail connection factories in the java:comp/env/mail subcontext, and all URL connection factories in the java:comp/env/url subcontext. Note that resource manager connection factory references declared via annotations will not, by default, appear in any subcontext.
- Lookup the resource manager connection factory object in the application component’s environment using the JNDI interface.
- Invoke the appropriate method on the resource manager connection factory object to obtain a connection to the resource. The factory method is specific to the resource type. It is possible to obtain multiple connections by calling the factory object multiple times.

The Application Component Provider can control the shareability of the connections acquired from the resource manager connection factory. By default, connections to a resource manager are shareable across other application
components in the application that use the same resource in the same transaction context. The Application Component Provider can specify that connections obtained from a resource manager connection factory reference are not shareable by specifying the value of the shareable annotation element to `false` or the `res-sharing-scope` deployment descriptor element to be `Unshareable`. The sharing of connections to a resource manager allows the container to optimize the use of connections and enables the container’s use of local transaction optimizations.

The Application Component Provider has two choices with respect to dealing with associating a principal with the resource manager access:

- Allow the Deployer to set up principal mapping or resource manager sign on information. In this case, the application component code invokes a resource manager connection factory method that has no security-related parameters.
- Sign on to the resource from the application component code. In this case, the application component invokes the appropriate resource manager connection factory method that takes the sign on information as method parameters.

The Application Component Provider uses the `authenticationType` annotation element or the `res-auth` deployment descriptor element to indicate which of the two resource authentication approaches is used.

We expect that the first form (that is letting the Deployer set up the resource sign on information) will be the approach used by most application components.

The following code sample illustrates obtaining a JDBC connection.

```java
public void changePhoneNumber(...) {
    ...

    // obtain the initial JNDI context
    Context initCtx = new InitialContext();

    // perform JNDI lookup to obtain resource manager
    // connection factory
    javax.sql.DataSource ds = (javax.sql.DataSource) initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

    // Invoke factory to obtain a resource. The security
    // principal for the resource is not given, and
    // therefore it will be configured by the Deployer.
    java.sql.Connection con = ds.getConnection();

    ...
}
```
EE.5.7.1.3 Declaration of Resource Manager Connection Factory References in Deployment Descriptor

Although a resource manager connection factory reference is an entry in the application component’s environment, the Application Component Provider must not use an env-entry element to declare it.

Instead, the Application Component Provider must declare all the resource manager connection factory references using either annotations on the application component’s code or in the deployment descriptor using the resource-ref elements. This allows the consumer of the application component’s JAR file (the Application Assembler or Deployer) to discover all the resource manager connection factory references used by an application component. Deployment descriptor entries may also be used to specify injection of a resource manager connection factory reference into an application component.

Each resource-ref element describes a single resource manager connection factory reference. The resource-ref element consists of the description element, the mandatory res-ref-name element, and the optional res-sharing-scope, res-type, and res-auth elements. The res-ref-name element contains the name of the environment entry used in the application component’s code. The name of the environment entry is relative to the java:comp/env context (for example, the name should be jdbc/EmployeeAppDB rather than java:comp/env/jdbc/EmployeeAppDB). The res-type element contains the Java programming language type of the resource manager connection factory that the application component code expects. The res-type element is optional if an injection target is specified for this resource; in this case the res-type defaults to the type of the injection target. The res-auth element indicates whether the application component code performs resource sign on programmatically, or whether the container signs on to the resource based on the principal mapping information supplied by the Deployer. The Application Component Provider indicates the sign on responsibility by setting the value of the res-auth element to Application or Container. If not specified, the default is Container. The res-sharing-scope element indicates whether connections to the resource manager obtained through the given resource manager connection factory reference can be shared or whether connections are unshareable. The value of the res-sharing-scope element is Shareable or Unshareable. If the res-sharing-scope element is not specified, connections are assumed to be shareable.

A resource manager connection factory reference is scoped to the application component whose declaration contains the resource-ref element. This means that the resource manager connection factory reference is not accessible from other application components at runtime, and that other application components...
may define resource-ref elements with the same res-ref-name without causing a name conflict.

The type declaration allows the Deployer to identify the type of the resource manager connection factory.

Note that the indicated type is the Java programming language type of the resource manager connection factory, not the type of the connection.

The following example is the declaration of the resource reference used by the application component illustrated in the previous subsection.

```xml
<resource-ref>
  <description>
    A data source for the database in which the EmployeeService enterprise bean will record a log of all transactions.
  </description>
  <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
  <res-type>javax.sql.DataSource</res-type>
  <res-auth>Container</res-auth>
  <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>
```

The following example modifies the previous one by linking the resource reference being defined to another one, using a well-known JNDI name for the latter.

```xml
<resource-ref>
  <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
  <res-type>javax.sql.DataSource</res-type>
  <res-auth>Container</res-auth>
  <res-sharing-scope>Shareable</res-sharing-scope>
  <lookup-name>java:app/env/TheEmployeeDB</lookup-name>
</resource-ref>
```

EE.5.7.1.4 Standard Resource Manager Connection Factory Types

The Application Component Provider must use the `javax.sql.DataSource` resource manager connection factory type for obtaining JDBC API connections.

The Application Component Provider must use the `javax.jms.ConnectionFactory`, the `javax.jms.QueueConnectionFactory`, or the `javax.jms.TopicConnectionFactory` for obtaining JMS connections.
The Application Component Provider must use the `javax.mail.Session` resource manager connection factory type for obtaining JavaMail API connections.

The Application Component Provider must use the `java.net.URL` resource manager connection factory type for obtaining URL connections.

It is recommended that the Application Component Provider name JDBC API data sources in the `java:comp/env/jdbc` subcontext, all JMS connection factories in the `java:comp/env.jms` subcontext, all JavaMail API connection factories in the `java:comp/env/mail` subcontext, and all URL connection factories in the `java:comp/env/url` subcontext. Note that resource manager connection factory references declared via annotations will not, by default, appear in any subcontext.

The Java EE Connector Architecture allows an application component to use the annotation or API described in this section to obtain resource objects that provide access to additional back-end systems.

EE.5.7.2 Deployer’s Responsibilities

The Deployer uses deployment tools to bind the resource manager connection factory references to the actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory reference declared in the deployment descriptor:

- Bind the resource manager connection factory reference to a resource manager connection factory that exists in the operational environment. The Deployer may use, for example, the JNDI `LinkRef` mechanism to create a symbolic link to the actual JNDI name of the resource manager connection factory. The resource manager connection factory type must be compatible with the type declared in the source code or in the `res-type` element. If the resource manager connection factory references includes a `lookup` annotation element or a `lookup-name` deployment descriptor element, the Deployer may choose whether to honor it and have the corresponding lookup be performed, or override it with a binding of his or her own choosing.

- Provide any additional configuration information that the resource manager needs for opening and managing the resource. The configuration mechanism is resource manager specific, and is beyond the scope of this specification.

- If the value of the `Resource annotation authenticationType` element is `AuthenticationType.CONTAINER` or the deployment descriptor’s `res-auth` element is `Container`, the Deployer is responsible for configuring the sign on in-
formation for the resource manager. This is performed in a manner specific to the container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at the application component level to the security domain and principal realm of the resource manager, the Deployer or System Administrator must define the mapping. The mapping is performed in a manner specific to the container and resource manager; it is beyond the scope of this specification.

EE.5.7.3 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for the following:

- Provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection.
- Provide the implementation of the resource manager connection factory classes that are required by this specification.
- If the Application Component Provider sets the authenticationType element of the Resource annotation to AuthenticationType.APPLICATION or the res-auth of a resource reference to Application, the container must allow the application component to perform explicit programmatic sign on using the resource manager’s API.
- If the Application Component Provider sets the shareable element of the Resource annotation to false or sets the res-sharing-scope of a resource manager connection factory reference to Unshareable, the container must not attempt to share the connections obtained from the resource manager connection factory reference.
- The container must provide tools that allow the Deployer to set up resource sign on information for the resource manager references whose authenticationType is set to AuthenticationType.CONTAINER or whose res-auth element is set to Container. The minimum requirement is that the Deployer must be able to specify the username/password information for each resource manager connection factory reference declared by the application component, and the container must be able to use the username/password com-

3. Connections obtained from the same resource manager connection factory through a different resource manager connection factory reference may be shareable.
bination for user authentication when obtaining a connection by invoking the resource manager connection factory.

Although not required by this specification, we expect that containers will support some form of a single sign on mechanism that spans the application server and the resource managers. The container will allow the Deployer to set up the resources such that the principal can be propagated (directly or through principal mapping) to a resource manager, if required by the application.

While not required by this specification, most Java EE products will provide the following features:

- A tool to allow the System Administrator to add, remove, and configure a resource manager for the Java EE Server.
- A mechanism to pool resources for the application components and otherwise manage the use of resources by the container. The pooling must be transparent to the application components.

EE.5.7.4 System Administrator’s Responsibilities

The System Administrator is typically responsible for the following:

- Add, remove, and configure resource managers in the Java EE Server environment.

In some scenarios, these tasks can be performed by the Deployer.

EE.5.8 Resource Environment References

This section describes the programming and deployment descriptor interfaces that allow the Application Component Provider to refer to administered objects that are associated with a resource (for example, a Connector CCI InteractionSpec instance) by using “logical” names called resource environment references. The resource environment references are special entries in the application component’s environment. The Deployer binds the resource environment references to administered objects in the target operational environment.

EE.5.8.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and responsibilities with respect to resource environment references.
EE.5.8.1.1 Injection of Resource Environment References

A field or a method of an application component may be annotated with the `Resource` annotation to request injection of a resource environment reference. The name and type of the resource environment reference are as described earlier. The `authenticationType` and `shareable` elements of the `Resource` annotation must not be specified; resource environment entries are not shareable and do not require authentication. The use of the `Resource` annotation to declare a resource environment reference differs from the use of the `Resource` annotation to declare other environment references only in that the type of a resource environment reference is not one of the Java language types used for other environment references.

EE.5.8.1.2 Resource Environment Reference Programming Interfaces

The Application Component Provider may use resource environment references to locate administered objects that are associated with resources as follows.

- Assign an entry in the application component’s environment to the reference. (See subsection 5.8.1.3 for information on how resource environment references are declared in the deployment descriptor.)
- This specification recommends, but does not require, that all resource environment references be organized in the appropriate subcontext of the component’s environment for the resource type. Note that resource environment references declared via annotations will not, by default, appear in any subcontext.
- Look up the administered object in the application component’s environment using JNDI.

EE.5.8.1.3 Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the application component’s environment, the Application Component Provider must not use a `env-entry` element to declare it. Instead, the Application Component Provider must declare all references to administered objects associated with resources using either annotations on the application component’s code or the `resource-env-ref` elements of the deployment descriptor. This allows the application component’s JAR file consumer to discover all the resource environment references used by the application component. Deployment descriptor entries may also be used to specify injection of a resource environment reference into an application component.
Each `resource-env-ref` element describes the requirements that the referencing application component has for the referenced administered object. The `resource-env-ref` element contains optional `description` and `resource-env-ref-type` elements and the mandatory `resource-env-ref-name` element. The `resource-env-ref-type` element is optional if an injection target is specified for this resource; in this case the `resource-env-ref-type` defaults to the type of the injection target.

The `resource-env-ref-name` element specifies the resource environment reference name. Its value is the environment entry name used in the application component code. The name of the resource environment reference is relative to the `java:comp/env` context. The `resource-env-ref-type` element specifies the expected type of the referenced object.

A resource environment reference is scoped to the application component whose declaration contains the `resource-env-ref` element. This means that the resource environment reference is not accessible to other application components at runtime, and that other application components may define `resource-env-ref` elements with the same `resource-env-ref-name` without causing a name conflict.

A resource environment reference may specify a `lookup-name` to link the reference being defined to another one via a JNDI name.

EE.5.8.2 Deployer's Responsibilities

The Deployer is responsible for the following:

- The Deployer must ensure that all the declared resource environment references are bound to administered objects that exist in the operational environment. The Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the target object. The Deployer may override the linkage preferences of a resource environment reference that includes a `lookup` annotation element or `lookup-name` deployment descriptor element.
- The Deployer must ensure that the target object is type-compatible with the type declared for the resource environment reference. This means that the target object must be of the type indicated in the `Resource` annotation or the `resource-env-ref-type` element.
EE.5.8.3 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection. The deployment tools provided by the Java EE Product Provider must be able to process the information supplied in the class file annotations and the resource-env-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource environment references, and allow him or her to resolve a resource environment reference by binding it to a specified compatible target object in the environment.

EE.5.9 Message Destination References

This section describes the programming and deployment descriptor interfaces that allow the Application Component Provider to refer to message destination objects by using “logical” names called message destination references. Message destination references are special entries in the application component’s environment. The Deployer binds the message destination references to administered message destinations in the target operational environment.

The requirements in this section only apply to Java EE products that include support for JMS.

EE.5.9.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view and responsibilities with respect to message destination references.

EE.5.9.1.1 Injection of Message Destination References

A field or a method of an application component may be annotated with the Resource annotation to request injection of a message destination reference. The name and type of the resource environment reference are as described earlier. The authenticationType and shareable elements of the Resource annotation must not be specified; message destination references are not shareable and do not require authentication.

Note that when using the Resource annotation to declare a message destination reference it is not possible to link the reference to other references to the same message destination or to specify whether the message destination is used to produce or consume messages. The deployment descriptor entries
described later do provide a way to associate many message destination references with a single message destination and to specify whether each message destination reference is used to produce, consume, or both produce and consume messages, so that the entire message flow of an application may be specified. The Application Assembler may use these message destination links to link together message destination references that have been declared using the Resource annotation. A message destination reference declared via the Resource annotation is assumed to be used to both produce and consume messages; this default may be overridden using a deployment descriptor entry.

The following example illustrates how an application component uses the Resource annotation to request injection of a message destination reference.

```java
@Resource javax.jms.Queue stockQueue;
```

The following example illustrates how a message destination reference can be linked to another one by specifying its JNDI name, perhaps in a different namespace, as a value for the `lookup` element.

```java
@Resource(lookup="java:app/env/TheOrderQueue")
javax.jms.Queue orderQueue;
```

EE.5.9.1.2 Message Destination Reference Programming Interfaces

The Application Component Provider may use message destination references to locate message destinations, as follows.

- Assign an entry in the application component’s environment to the reference. (See subsection 5.9.1.3 for information on how message destination references are declared in the deployment descriptor.)
- This specification recommends, but does not require, that all message destination references be organized in the appropriate subcontext of the component’s environment for the resource type (for example, in the `java:comp/env/jms` JNDI context for JMS Destinations). Note that message destination references declared via annotations will not, by default, appear in any subcontext.
- Look up the administered object in the application component’s environment using JNDI.

The following example illustrates how an application component uses a message destination reference to locate a JMS Destination.
// Obtain the default initial JNDI context.
Context initCtx = new InitialContext();

// Look up the JMS StockQueue in the environment.
Object result = initCtx.lookup("java:comp/env/jms/StockQueue");

// Convert the result to the proper type.
javax.jms.Queue queue = (javax.jms.Queue)result;

In the example, the Application Component Provider assigned the environment entry jms/StockQueue as the message destination reference name to refer to a JMS queue.

EE.5.9.1.3 Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the application component’s environment, the Application Component Provider must not use a env-entry element to declare it. Instead, the Application Component Provider should declare all references to message destinations using either the Resource annotation in the application component’s code or the message-destination-ref elements of the deployment descriptor. This allows the application component’s JAR file consumer to discover all the message destination references used by the application component. Deployment descriptor entries may also be used to specify injection of a message destination reference into an application component.

Each message-destination-ref element describes the requirements that the referencing application component has for the referenced destination. The message-destination-ref element contains optional description, message-destination-type, and message-destination-usage elements and the mandatory message-destination-ref-name element.

The message-destination-ref-name element specifies the message destination reference name. Its value is the environment entry name used in the application component code. By default, the name of the message destination reference is relative to the java:comp/env context (for example, the name should be jms/StockQueue rather than java:comp/env/jms/StockQueue). The message-destination-type element specifies the expected type of the referenced destination. For example, in the case of a JMS Destination, its value might be javax.jms.Queue. The message-destination-type element is optional if an injection target is specified for this message destination reference; in this case the message-destination-type defaults to the type of the injection target. The message-destination-usage element specifies whether messages are consumed...
from the message destination, produced for the destination, or both. If not specified, messages are assumed to be both consumed and produced.

A message destination reference is scoped to the application component whose declaration contains the message-destination-ref element. This means that the message destination reference is not accessible to other application components at runtime, and that other application components may define message-destination-ref elements with the same message-destination-ref-name without causing a name conflict.

The following example illustrates the declaration of message destination references in the deployment descriptor.

```xml
...<message-destination-ref>
   <description>
      This is a reference to a JMS queue used in the processing of Stock info
   </description>
   <message-destination-ref-name>
      jms/StockInfo
   </message-destination-ref-name>
   <message-destination-type>
      javax.jms.Queue
   </message-destination-type>
   <message-destination-usage>
      Produces
   </message-destination-usage>
</message-destination-ref>
...```

**EE.5.9.2 Application Assembler’s Responsibilities**

By means of linking message consumers and producers to one or more common logical destinations specified in the enterprise bean deployment descriptor, the Application Assembler can specify the flow of messages within an application. The Application Assembler uses the message-destination element, the message-destination-link element of the message-destination-ref element, and the message-destination-link element of an ejb-jar’s message-driven element to link message destination references to a common logical destination.

The Application Assembler specifies the link between message consumers and producers as follows:
• The Application Assembler uses the `message-destination` element to specify a logical message destination within the application. The `message-destination` element defines a `message-destination-name`, which is used for the purpose of linking.

• The Application Assembler uses the `message-destination-link` element of the `message-destination-ref` element of an application component that produces messages to link it to the target destination. The value of the `message-destination-link` element is the name of the target destination, as defined in the `message-destination-name` element of the `message-destination` element. The `message-destination` element can be in any module in the same Java EE application as the referencing component. The Application Assembler uses the `message-destination-usage` element of the `message-destination-ref` element to indicate that the referencing application component produces messages to the referenced destination.

• If the consumer of messages from the common destination is a message-driven bean, the Application Assembler uses the `message-destination-link` element of the `message-driven` element to reference the logical destination. If the Application Assembler links a message-driven bean to its source destination, he or she should use the `message-destination-type` element of the `message-driven` element to specify the expected destination type. Otherwise, the Application Assembler uses the `message-destination-link` element of the `message-destination-ref` element of the application component that consumes messages to link to the common destination. In the latter case, the Application Assembler uses the `message-destination-usage` element of the `message-destination-ref` element to indicate that the application component consumes messages from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an entire Java EE application, the Application Assembler may use the following syntax in the `message-destination-link` element of the referencing application component. The Application Assembler specifies the path name of the JAR file containing the referenced message destination and appends the `message-destination-name` of the target destination separated from the path name by #. The path name is relative to the referencing application component JAR file. In this manner, multiple destinations with the same `message-destination-name` may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure that the consumers and producers for the destination require a message destination of the same or compatible type, as determined by the messaging system.
EE.5.9.3 Deployer’s Responsibilities

The Deployer is responsible for the following:

- The Deployer must ensure that all the declared message destination references are bound to administered objects that exist in the operational environment. The Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the target object. The Deployer may override the linkage preferences of a message destination reference that includes a lookup-name element.
- The Deployer must ensure that the target object is type-compatible with the type declared for the message destination reference. This means that the target object must be of the type indicated in the message-destination-type element.
- The Deployer must observe the message destination links specified by the Application Assembler.

EE.5.9.4 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection. The deployment tools provided by the Java EE Product Provider must be able to process the information supplied in the message-destination-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved message destination references, and allow him or her to resolve a message destination reference by binding it to a specified compatible target object in the environment.

EE.5.10 UserTransaction References

Certain Java EE application component types are allowed to use the JTA UserTransaction interface to start, commit, and abort transactions. Such application components can find an appropriate object implementing the UserTransaction interface by looking up the JNDI name java:comp/UserTransaction or by requesting injection of a UserTransaction object using the Resource annotation. The authenticationType and shareable elements of the Resource annotation must not be specified. The container is only required to provide the java:comp/UserTransaction name, or inject a UserTransaction.
object, for those components that can validly make use of it. Any such reference to a UserTransaction object is only valid within the component instance that performed the lookup. See the individual component definitions for further information.

The following example illustrates how an application component acquires and uses a UserTransaction object via injection.

```java
@Resource UserTransaction tx;

public void updateData(...) {
 ...
 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}
```

The following example illustrates how an application component acquires and uses a UserTransaction object using a JNDI lookup.

```java
public void updateData(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the UserTransaction object.
 UserTransaction tx = (UserTransaction)initCtx.lookup("java:comp/UserTransaction");

 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}
```
A UserTransaction object reference may also be declared in a deployment descriptor in the same way as a resource environment reference. Such a deployment descriptor entry may be used to specify injection of a UserTransaction object.

The requirements in this section only apply to Java EE products that include support for JTA.

EE.5.10.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a UserTransaction object using a Resource annotation, or using the defined name to look up the UserTransaction object.

Only some application component types are required to be able to access a UserTransaction object; see Table EE.6-1 in this specification and the EJB specification for details.

EE.5.10.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing an appropriate UserTransaction object as required by this specification.

EE.5.11 TransactionSynchronizationRegistry References

The JTA TransactionSynchronizationRegistry interface may be used by system level components such as persistence managers that may be packaged with EJB or web application components. Such components can find an appropriate object implementing the TransactionSynchronizationRegistry interface by looking up the JNDI name java:comp/TransactionSynchronizationRegistry or by requesting injection of a TransactionSynchronizationRegistry object using the Resource annotation. The authenticationType and shareable elements of the Resource annotation must not be specified. The container is only required to provide the java:comp/TransactionSynchronizationRegistry name, or inject a TransactionSynchronizationRegistry object, for those components that can validly make use of it. Any such reference to a TransactionSynchronizationRegistry object is only valid within the component instance that performed the lookup. See the individual component definitions for further information.

A TransactionSynchronizationRegistry object reference may also be declared in a deployment descriptor in the same way as a resource environment reference.
reference. Such a deployment descriptor entry may be used to specify injection of a TransactionSynchronizationRegistry object.

The requirements in this section only apply to Java EE products that include support for JTA.

### EE.5.11.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a TransactionSynchronizationRegistry object using a Resource annotation, or using the defined name to look up the TransactionSynchronizationRegistry object.

Only some application component types are required to be able to access a TransactionSynchronizationRegistry object; see Table EE.6-1 in this specification for details.

### EE.5.11.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing an appropriate TransactionSynchronizationRegistry object as required by this specification.

### EE.5.12 ORB References

Some Java EE applications will need to make use of the CORBA ORB to perform certain operations. Such applications can find an appropriate object implementing the ORB interface by looking up the JNDI name java:comp/ORB or by requesting injection of an ORB object. The container is required to provide the java:comp/ORB name for all components except applets. Any such reference to a ORB object is only valid within the component instance that performed the lookup.

The following example illustrates how an application component acquires and uses an ORB object via injection.

```java
@Resource ORB orb;

public void method(...) {
 ...
 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}
```
The following example illustrates how an application component acquires and uses an ORB object using a JNDI lookup.

```java
public void method(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the ORB object.
 ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}
```

An ORB object reference may also be declared in a deployment descriptor in the same way as a resource manager connection factory reference. Such a deployment descriptor entry may be used to specify injection of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always be a shared instance. By default, the ORB instance injected into a component or declared via a deployment descriptor entry may also be a shared instance. However, the application may set the shareable element of the Resource annotation to false, or may set the res-sharing-scope element in the deployment descriptor to Unshareable, to request a non-shared ORB instance.

The requirements in this section only apply to Java EE products that include support for interoperability using CORBA.

**EE.5.12.1 Application Component Provider’s Responsibilities**

The Application Component Provider is responsible for requesting injection of the ORB object using the Resource annotation, or using the defined name to look up the ORB object. If the shareable element of the Resource annotation is set to false, the ORB object injected will not be the shared instance used by other components in the application but instead will be a private ORB instance used only by this component.

**EE.5.12.2 Java EE Product Provider’s Responsibilities**

The Java EE Product Provider is responsible for providing an appropriate ORB object as required by this specification.
EE.5.13 Persistence Unit References

This section describes the metadata annotations and deployment descriptor elements that allow the application component code to refer to the entity manager factory for a persistence unit using a logical name called a persistence unit reference. Persistence unit references are special entries in the application component’s environment. The Deployer binds the persistence unit references to entity manager factories that are configured in accordance with the persistence.xml specification for the persistence unit, as described in the Java Persistence specification.

The requirements in this section only apply to Java EE products that include support for the Java Persistence API.

EE.5.13.1 Application Component Provider’s Responsibilities

This subsection describes the Application Component Provider’s view of locating the entity manager factory for a persistence unit and defines his or her responsibilities. The first subsection describes annotations for injecting references to an entity manager factory for a persistence unit; the second describes the API for accessing an entity manager factory using a persistence unit reference; and the third describes syntax for declaring persistence unit references in a deployment descriptor.

EE.5.13.1.1 Injection of Persistence Unit References

A field or a method of an application component may be annotated with the PersistenceUnit annotation. The name element specifies the name under which the entity manager factory for the referenced persistence unit may be located in the JNDI naming context. The optional unitName element specifies the name of the persistence unit as declared in the persistence.xml file that defines the persistence unit.

The following code example illustrates how an application component uses annotations to declare persistence unit references.

```java
@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;
```
**EE.5.13.1.2 Programming Interfaces for Persistence Unit References**

The Application Component Provider must use persistence unit references to obtain references to entity manager factories as follows.

- Assign an entry in the application component’s environment to the persistence unit reference. (See subsection 5.13.1.3 for information on how persistence unit references are declared in the deployment descriptor.) It is recommended that the Application Component Provider organize all persistence unit references in the `java:comp/env/persistence` subcontext of the component’s environment.
- Lookup the entity manager factory for the persistence unit in the application component’s environment using JNDI.
- Invoke the appropriate method on the entity manager factory to obtain an entity manager instance.

The following code sample illustrates obtaining an entity manager factory.

```java
@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {
 EJBContext ejbContext;
 ...
 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain entity manager factory
 EntityManagerFactory emf = (EntityManagerFactory)
 initCtx.lookup(
 "java:comp/env/persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}
```
EE.5.13.1.3 Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the application component’s environment, the Application Component Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Application Component Provider must declare all the persistence unit references in the deployment descriptor using the persistence-unit-ref elements. This allows the Application Assembler or Deploer to discover all the persistence unit references used by an application component. Deployment descriptor entries may also be used to specify injection of a persistence unit reference into an application component.

Each persistence-unit-ref element describes a single entity manager factory reference for the persistence unit. The persistence-unit-ref element consists of the optional description and persistence-unit-name elements, and the mandatory persistence-unit-ref-name element.

The persistence-unit-ref-name element contains the name of the environment entry used in the application component’s code. The name of the environment entry is relative to the java:comp/env context (e.g., the name should be persistence/InventoryAppDB rather than java:comp/env/persistence/InventoryAppDB). The persistence-unit-name element is the name of the persistence unit, as specified in the persistence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by the InventoryManager enterprise bean illustrated in the previous subsection.

...  
< persistence-unit-ref>  
   < description>  
      Persistence unit for the inventory management application.  
   </ description>  
   < persistence-unit-ref-name>  
      persistence/InventoryAppDB  
   </ persistence-unit-ref-name>  
   < persistence-unit-name>  
      InventoryManagement  
   </ persistence-unit-name>  
</ persistence-unit-ref>  
...
EE.5.13.2  Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor to disambiguate a reference to a persistence unit. The Application Assembler (or Application Component Provider) may use the following syntax in the persistence-unit-name element of the referencing application component to avoid the need to rename persistence units to have unique names within a Java EE application. The Application Assembler specifies the path name of the root of the persistence.xml file for the referenced persistence unit and appends the name of the persistence unit separated from the path name by #. The path name is relative to the referencing application component jar file. In this manner, multiple persistence units with the same persistence unit name may be uniquely identified when the Application Assembler cannot change persistence unit names.

For example,

...<persistence-unit-ref>
  <description>
    Persistence unit for the inventory management application.
  </description>
  <persistence-unit-ref-name>
    persistence/InventoryAppDB
  </persistence-unit-ref-name>
  <persistence-unit-name>
    ../lib/inventory.jar#InventoryManagement
  </persistence-unit-name>
</persistence-unit-ref>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name InventoryManagement declared in the InventoryManagerBean to the persistence unit named InventoryManagement defined in inventory.jar.

The following rules apply to how a deployment descriptor entry may override a PersistenceUnit annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the annotation (either defaulted or provided explicitly).
• The persistence-unit-name overrides the unitName element of the annotation. The Application Assembler or Deploer should exercise caution in changing this value, if specified, as doing so is likely to break the application.
• The injection target, if specified, must name exactly the annotated field or property method.

EE.5.13.3 Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence unit reference to the actual entity manager factory configured for the persistence unit in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the metadata annotations or deployment descriptor:

• Bind the persistence unit reference to an entity manager factory configured for the persistence unit that exists in the operational environment. The Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the entity manager factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit reference to the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for managing the persistence unit, as described in the Java Persistence specification.

EE.5.13.4 Java EE Product Provider’s Responsibility

The Java EE Product Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection.

• Provide the implementation of the entity manager factory classes for the persistence units that are configured with the container. The implementation of the entity manager factory classes may be provided by the container directly or by the container in conjunction with a third-party persistence provider, as described in the Java Persistence specification.

EE.5.13.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:
• Add, remove, and configure entity manager factories in the server environment.
  In some scenarios, these tasks can be performed by the Deployer.

**EE.5.14 Persistence Context References**

This section describes the metadata annotations and deployment descriptor elements that allow the application component code to refer to a container-managed entity manager of a specified persistence context type using a logical name called a *persistence context reference*. Persistence context references are special entries in the application component’s environment. The Deployer binds the persistence context references to container-managed entity managers for persistence contexts of the specified type and configured in accordance with their persistence unit, as described in the Java Persistence specification.

The requirements in this section only apply to Java EE products that include support for the Java Persistence API.

**EE.5.14.1 Application Component Provider’s Responsibilities**

This subsection describes the Application Component Provider’s view of locating container-managed entity managers and defines his or her responsibilities. The first subsection describes annotations for injecting references to container-managed entity managers; the second describes the API for accessing references to container-managed entity managers; and the third describes syntax for declaring these references in a deployment descriptor.

**EE.5.14.1.1 Injection of Persistence Context References**

A field or a method of an application component may be annotated with the `PersistenceContext` annotation. The `name` element specifies the name under which a container-managed entity manager for the referenced persistence unit may be located in the JNDI naming context. The optional `unitName` element specifies the name of the persistence unit as declared in the `persistence.xml` file that defines the persistence unit. The optional `type` element specifies whether a transaction-scoped or extended persistence context is to be used. If the type is not specified, a transaction-scoped persistence context will be used. References to container-managed entity managers with extended persistence contexts can only be injected into stateful session beans. The optional `synchronization` element specifies whether the persistence context is always automatically synchronized with the
current transaction or whether it must be explicitly joined to the transaction. If the synchronization element is not specified, the persistence context will be automatically synchronized. The optional properties element specifies configuration properties to be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an application component uses annotations to declare persistence context references.

```java
@PersistenceContext(type=EXTENDED)
EntityManager em;
```

### EE.5.14.1.2 Programming Interfaces for Persistence Context References

The Application Component Provider may use a persistence context reference to obtain a reference to a container-managed entity manager configured for a persistence unit as follows:

- Assign an entry in the application component’s environment to the persistence context reference. (See subsection 5.14.1.3 for information on how persistence context references are declared in the deployment descriptor.) It is recommended that the Application Component Provider organize all persistence context references in the `java:comp/env/persistence` subcontext of the component’s environment.

- Lookup the container-managed entity manager for the persistence unit in the application component’s environment using the JNDI API.

The following code sample illustrates obtaining an entity manager for a persistence context.

```java
@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {
 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();
 // JNDI lookup to obtain container-managed entity manager
 EntityManager = (EntityManager) initCtx.lookup(
```
"java:comp/env/persistence/InventoryAppMgr");
...
}
}

**EE.5.14.1.3 Declaration of Persistence Context References in Deployment Descriptor**

Although a persistence context reference is an entry in the application component’s environment, the Application Component Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Application Component Provider must declare all the persistence context references in the deployment descriptor using the persistence-context-ref elements. This allows the Application Assembler or Deployer to discover all the persistence context references used by an application component. Deployment descriptor entries may also be used to specify injection of a persistence context reference into a bean.

Each persistence-context-ref element describes a single container-managed entity manager reference. The persistence-context-ref element consists of the optional description, persistence-unit-name, persistence-context-type, persistence-context-synchronization, and persistence-property elements, and the mandatory persistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment entry used in the application component’s code. The name of the environment entry is relative to the java:comp/env context (e.g., the name should be persistence/InventoryAppMgr rather than java:comp/env/persistence/InventoryAppMgr). The persistence-unit-name element is the name of the persistence unit, as specified in the persistence.xml file for the persistence unit. The persistence-context-type element specifies whether a transaction-scoped or extended persistence context is to be used. Its value is either Transaction or Extended. If the persistence context type is not specified, a transaction-scoped persistence context will be used. The optional persistence-context-synchronization element specifies whether the persistence context is automatically synchronized with the current transaction. Its value is either Synchronized or Unsynchronized. If the persistence context synchronization is not specified, the persistence context will be automatically synchronized. The optional persistence-property elements specify configuration properties that are passed to the persistence provider when the entity manager is created.
The following example is the declaration of a persistence context reference used by the InventoryManager enterprise bean illustrated in the previous subsection.

```
...<persistence-context-ref>
 <description>
 Persistence context for the inventory management application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppDB
 </persistence-context-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
</persistence-context-ref>
...```

EE.5.14.2 Application Assembler’s Responsibilities

The Application Assembler can use the `persistence-unit-name` element in the deployment descriptor to specify a reference to a persistence unit using the syntax described in Section EE.5.13.2, “Application Assembler’s Responsibilities.” In this manner, multiple persistence units with the same persistence unit name may be uniquely identified when the persistence unit names cannot be changed.

For example,

```
...<persistence-context-ref>
  <description>
    Persistence context for the inventory management application.
  </description>
  <persistence-context-ref-name>
    persistence/InventoryAppDB
  </persistence-context-ref-name>
  <persistence-unit-name>
    ../lib/inventory.jar#InventoryManagement
  </persistence-unit-name>
</persistence-context-ref>
...```
The Application Assembler uses the `persistence-unit-name` element to link the persistence unit name `InventoryManagement` declared in the `InventoryManagerBean` to the persistence unit named `InventoryManagement` defined in `inventory.jar`.

The following rules apply to how a deployment descriptor entry may override a `PersistenceContext` annotation:

- The relevant deployment descriptor entry is located based on the JNDI name used with the annotation (either defaulted or provided explicitly).
- The `persistence-unit-name` overrides the `unitName` element of the annotation. The Application Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is likely to break the application.
- The `persistence-context-type`, if specified, overrides the `type` element of the annotation. In general, the Application Assembler or Deployer should never change the value of this element, as doing so is likely to break the application.
- The `persistence-context-synchronization`, if specified, overrides the `synchronization` element of the annotation. In general, the Application Assembler or Deployer should never change the value of this element, as doing so is likely to break the application.
- Any `persistence-property` elements are added to those specified by the `PersistenceContext` annotation. If the name of a specified property is the same as one specified by the `PersistenceContext` annotation, the value specified in the annotation is overridden.
- The injection target, if specified, must name exactly the annotated field or property method.

**EE.5.14.3 Deployer’s Responsibility**

The Deployer uses deployment tools to bind a persistence context reference to the container-managed entity manager for the persistence context of the specified type and configured for the persistence unit in the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared in the metadata annotations or deployment descriptor:

- Bind the persistence context reference to a container-managed entity manager for a persistence context of the specified type and configured for the persistence unit as specified in the `persistence.xml` file for the persistence unit that exists in the operational environment. The Deployer may use, for example, the
JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the entity manager.

- If the persistence unit name is specified, the Deployer should bind the persistence context reference to an entity manager for the persistence unit specified as the target.
- Provide any additional configuration information that the entity manager factory needs for creating such an entity manager and for managing the persistence unit, as described in the Java Persistence specification.

EE.5.14.4 Java EE Product Provider’s Responsibility

The Java EE Product Provider is responsible for the following:

- Provide the deployment tools that allow the Deployer to perform the tasks described in the previous subsection.
- Provide the implementation of the entity manager classes for the persistence units that are configured with the container. This implementation may be provided by the container directory or by the container in conjunction with a third-party persistence provider, as described in the Java Persistence specification.

EE.5.14.5 System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

- Add, remove, and configure entity manager factories in the server environment.
  In some scenarios, these tasks can be performed by the Deployer.

EE.5.15 Application Name and Module Name References

A component may access the name of the current application using the pre-defined JNDI name `java:app/AppName`. A component may access the name of the current module using the pre-defined JNDI name `java:module/ModuleName`. Both of these names are represented by `String` objects.
EE.5.15.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the application name or module name using a Resource annotation on a String method or field, or using the defined name to look up the application name or module name.

EE.5.15.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing the correct application name and module name String objects as required by this specification.

EE.5.16 Application Client Container Property

An application may determine whether it is executing in a Java EE application client container by using the pre-defined JNDI name java:comp/InAppClientContainer. This property is represented by a Boolean object. If the application is running in a Java EE application client container, the value of this property is true. If the application is running in a Java EE web or EJB container, the value of this property is false.

EE.5.16.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of the application client container property using a Resource annotation on a Boolean or boolean method or field, or using the defined name to look up the application client container property.

EE.5.16.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing the correct application client container property as required by this specification.

EE.5.17 Validator and Validator Factory References

This section describes the metadata annotations and deployment descriptor entries that allow an application to obtain instances of the Bean Validation Validator and ValidatorFactory types.

Applications that need to use those interfaces can find appropriate objects by looking up the name java:comp/Validator for Validator and java:comp/...
ValidatorFactory for ValidatorFactory, or by requesting the injection of an object of the appropriate type via the Resource annotation. The authenticationType and shareable elements of the Resource annotation must not be specified.

```java
@Resource ValidatorFactory validatorFactory;
@Resource Validator validator;
```

For Validator objects, the default validation context is used. This means that all such Validators will be equivalent to those obtained by first acquiring a ValidatorFactory and then invoking the getValidator method on it with no arguments.

In other words, the following two code snippets are equivalent:

```java
// obtaining a Validator directly
Context initCtx = new InitialContext();
Validator validator = (Validator)initCtx.lookup("java:comp/Validator");

// obtaining a Validator from a ValidatorFactory
Context initCtx = new InitialContext();
Validator validator =
 ((ValidatorFactory) initCtx.lookup("java:comp/ValidatorFactory"))
 .getValidator();
```

A Validator or ValidatorFactory object reference may also be declared in a deployment descriptor in the same way as a resource environment reference. In order to customize the returned ValidatorFactory, an EJB, web or application client module may specify a Bean Validation XML deployment descriptor. The name of the descriptor is WEB-INF/validation.xml for web modules and META-INF/validation.xml for all other types of modules. A validation deployment descriptor only affects ValidatorFactory instances in that module.

There is no per-application validation deployment descriptor.
EE.5.17.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a Validator or of a ValidatorFactory using a Resource annotation, or using the defined names to look up a Validator or ValidatorFactory instance.

The Application Component Provider may customize the ValidatorFactory and (indirectly) Validator instances by including a Bean Validation deployment descriptor inside a specific module of the application.

EE.5.17.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider must make a default ValidatorFactory available at java:comp/ValidatorFactory. The default ValidatorFactory available at java:comp/ValidatorFactory must support use of CDI if CDI is enabled for the module. In particular, all of the classes specified by the javax.validation.BootstrapConfiguration interface must be created as non-contextual objects using CDI, as described in Section EE.5.24, “Support for Dependency Injection”. These objects must be used to configure the default ValidatorFactory available at java:comp/ValidatorFactory in accordance with the bootstrapping APIs described by the Bean Validation specification.

The default ValidatorFactory is a single instance per module; each lookup of java:comp/ValidatorFactory returns the same instance.

The default Validator is created by the default ValidatorFactory using the getValidator method. Each lookup of java:comp/Validator returns a new Validator instance.

EE.5.18 Resource Definition and Configuration

In addition to referencing resources as defined in this chapter, an application may specify the definition and configuration of resources that it requires in its operational environment.

Each application has a set of “physical” resources and services that it depends on (database storage, queueing, mail, etc.) and which need to be made available to it when it is deployed. Such resources may be scoped to the application instance or may be shareable. An application may define a dependency upon such resources in its environment by means of resource definition metadata.

The specification of resource definition metadata provides information that can be used at the application’s deployment to provision and configure the required resource. Further, resource definitions allow an application to be
deployed into a Java EE environment with more minimal administrative configuration.

Resources may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”. For example, a resource may be defined:

- in the java:comp namespace, for use by a single component;
- in the java:module namespace, for use by all components in a module;
- in the java:app namespace, for use by all components in an application;
- in the java:global namespace, for use by all applications.

The following annotations (and corresponding XML deployment descriptor elements) define resources: DataSourceDefinition, JMSCredentialDefinition, JMSConnectionFactoryDefinition, JMSDestinationDefinition, MailSessionDefinition, ConnectionFactoryDefinition, and AdministeredObjectDefinition.

Once defined, a resource may be referenced by a component using the lookup element of the Resource annotation or the lookup-name element of the resource-ref deployment descriptor element in order to bind the logical reference to the resource as referenced in the application code to the resource defined in the environment.

The specificity of the resource definition elements as provided by the Application Component Provider may vary according to the needs of the application. For example:

- An application may require an instance of a resource, but its needs may be general in that while it requires a resource with certain properties, it does not require a particular instance of the resource. It may expect the resource to be provisioned and configured for it by the Deployer or System Administrator.
- An application may require a particular instance of a resource (with specific configuration properties) that already exists. For example, the resource may previously have been created and configured by the Deployer or System Administrator.

The values specified for required annotation elements (and corresponding XML deployment descriptor elements) must be observed when the application is deployed. Changing a value that has been specified for some optional elements (e.g., transactional) may cause the application to work incorrectly. Changing a
value that has been specified for an optional element related to quality of service (e.g., pool size, idle time, etc.) may affect the performance of the application.

The following default values used in the DataSourceDefinition, JMSConnectionFactoryDefinition, JMSDestinationDefinition, MailSessionDefinition, andConnectionFactoryDefinition annotations indicate that an element value is optional and has not been set:

• integer-valued elements: -1
• string-valued elements: ""
• array-valued elements: {}

EE.5.18.1 Guidelines

The following guidelines should be observed with regard to the specification of values for resource definition elements.

• In general, the Application Component Provider or Assembler should specify values for elements which, if changed, would cause the application to break—for example, JNDI name, isolation level. If multiple resource definitions are specified for a given resource, they must be consistent.
• The Java EE Product Provider may choose suitable server-specific default values for optional elements for which values have not been specified.

EE.5.18.2 Requirements Common to All Resource Definition Types

The following requirements apply to the resource definitions described in Sections 5.18.3 through 5.18.8.

When an Application Component Provider or Application Assembler specifies connectivity information to a “physical” resource through a resource definition annotation or deployment descriptor element, it is assumed that the physical resource exists. The automatic provisioning of resources may be supported by an implementation of this specification, but support for this functionality is not required. If automatic provisioning of resources is not supported, it is the Deployer’s responsibility (possibly in conjunction with the System Administrator) to insure that the physical resource is provisioned for use by the application.
**EE.5.18.2.1 JNDI Name**

The Deployer and Java EE Product Provider must not alter the specified JNDI name. The requested resource must be made available in JNDI under the specified name.

**EE.5.18.2.2 Resource Address**

If the Application Component Provider or Application Assembler has specified an address for a resource (server name, port, etc.), a resource at the specified location should already exist. If it does not, and if the automatic provisioning of resources is not supported, it is the Deployer’s responsibility (possibly in conjunction with the System Administrator) to insure that the resource is provisioned for use by the application. If the resource has not been otherwise provisioned and if automatic provisioning of resources is supported, the Java EE Product Provider is responsible for provisioning the resource. If the requested resource cannot be made available or created, the application must fail to deploy.

**EE.5.18.2.3 Quality of Service Elements**

Quality of service elements may be altered by the Deployer. The Java EE Product Provider is permitted to impose restrictions upon quality of service elements in accordance with its implementation limits and quality of service guarantees. If quality of service values that have been specified do not meet these restrictions, the Product Provider must not reject the deployment (but must instead use appropriate values).

**EE.5.18.2.4 Properties**

All resource definition annotations and XML elements support the use of property elements (elements named “properties” or “property”). A Java EE Product Provider is permitted to reject a deployment if a property that it recognizes has a value that it does not support. A Java EE Product Provider must not reject a deployment on the basis of a property that it does not recognize.

---

^4 Note that the Deployer is not prohibited from overriding the resource address.
EE.5.18.3 DataSource Resource Definition

An application may define a DataSource resource. A DataSource resource is used to access a database using a JDBC driver.

The DataSource resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

A DataSource resource may be defined in a web module, EJB module, application client module, or application deployment descriptor using the data-source element.

For example:

```xml
<data-source>
 <description>Sample DataSource definition</description>
 <name>java:app/MyDataSource</name>
 <class-name>com.example.MyDataSource</class-name>
 <server-name>myserver.com</server-name>
 <port-number>6689</port-number>
 <database-name>myDatabase</database-name>
 <user>lance</user>
 <password>secret</password>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
 <login-timeout>0</login-timeout>
 <transactional>false</transactional>
 <isolation-level>TRANSACTION_READ_COMMITTED</isolation-level>
 <initial-pool-size>0</initial-pool-size>
 <max-pool-size>30</max-pool-size>
 <min-pool-size>20</min-pool-size>
 <max-idle-time>0</max-idle-time>
 <max-statements>50</max-statements>
</data-source>
```

A DataSource resource may also be defined using the DataSourceDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:
@DataSourceDefinition(
  name="java:app/MyDataSource",
  className="com.example.MyDataSource",
  portNumber=6689,
  serverName="myserver.com",
  user="lance",
  password="secret")

(Of course, we do not recommend including passwords to production systems in the code, but it's often useful while testing. Passwords, or other parts of the DataSource definition, can be overridden by a deployment descriptor when the application is deployed.)

Once defined, a DataSource resource may be referenced by a component using the resource-ref deployment descriptor element or the Resource annotation. For example, the above DataSource could be referenced as follows:

```java
@Stateless
public class MySessionBean {
 @Resource(lookup = "java:app/MyDataSource")
 DataSource myDB;
 ...
}
```

The following DataSourceDefinition annotation elements (and corresponding XML deployment descriptor elements) are considered to specify an address for a DataSource resource: serverName, portNumber, databaseName, url.

The following DataSourceDefinition annotation elements (and corresponding XML deployment descriptor elements) are considered to be quality of service elements: loginTimeout, initialPoolSize, maxPoolSize, minPoolSize, maxIdleTime, maxStatements.

**EE.5.18.3.1 Application Component Provider’s Responsibilities**

The Application Component Provider is responsible for the definition of a DataSource resource using a DataSourceDefinition annotation or the data-source deployment descriptor element.

If the database has been previously provisioned for the application (e.g., by administrative action), it is the responsibility of the Application Component Provider to specify the class name of the data source implementation class and the server and port at which the database is to be accessed.
A URL should not be specified in conjunction with address elements such as server name and port. If it is, the precedence order is undefined and implementation specific.

EE.5.18.3.2 Deployer’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

- If specified, user name and password should be used as specified.
- The transactional specification and isolation level must be used as specified.

EE.5.18.3.3 Java EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

- If a class name is specified, a resource with the specified implementation class (or a subclass) must be provided. If the class name is specified as XADataSource, an XA datasource must be provided.
- If an isolation level is specified, the Product Provider must satisfy the request or provide a higher level of isolation. If the request cannot be satisfied, the Product Provider must reject the deployment.

EE.5.18.4 JMS Connection Factory Resource Definition

An application may define a JMS ConnectionFactory resource.

The JMS ConnectionFactory resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

A JMS ConnectionFactory resource may be defined in a web module, EJB module, application client module, or application deployment descriptor using the jms-connection-factory element.

For example:

```xml
<jms-connection-factory>
 <description>
 Sample JMS ConnectionFactory definition
 </description>
</jms-connection-factory>
```
A JMS ConnectionFactory resource may also be defined using the JMSConnectionFactoryDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

```java
@JMSConnectionFactoryDefinition(
 name="java:app/MyJMSCF",
 interfaceName="javax.jms.QueueConnectionFactory",
 resourceAdapter="myJMSRA")
```

(As with the DataSource definition, we do not recommend including passwords to production systems in the code, but it's often useful while testing. Passwords, or other parts of the JMSConnectionFactoryDefinition annotation, can be overridden by a deployment descriptor when the application is deployed.)

Once defined, a JMS ConnectionFactory resource may be referenced by a component using the resource-ref deployment descriptor element or the Resource annotation. For example, the above JMS ConnectionFactory could be referenced as follows:
@Stateless
public class MySessionBean {
    @Resource(lookup = "java:app/MyJMSCF")
    ConnectionFactory myCF;
    ...
}

The following JMSConnectionFactoryDefinition annotation elements (and corresponding XML deployment descriptor elements) are considered to specify an address for a JMS ConnectionFactory resource: resourceAdapter.

The following JMSConnectionFactoryDefinition annotation elements (and corresponding XML deployment descriptor elements) are considered to be quality of service elements: maxPoolSize, minPoolSize.

EE.5.18.4.1 Application Component Provider's Responsibilities

The Application Component Provider is responsible for the definition of a JMS ConnectionFactory using a JMSConnectionFactoryDefinition annotation or the jms-connection-factory deployment descriptor element.

EE.5.18.4.2 Deployer's Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

- A resource of the specified interface type (or of the default interface type, if not specified) must be provided.
- If specified, user name and password should be used as specified.
- The transactional specification must be used as specified.
- If specified, the client id should be used as specified.

EE.5.18.4.3 Java EE Product Provider's Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”.

EE.5.18.5 JMS Destination Definition

An application may define a JMS Destination resource. A JMS Destination resource is a JMS Queue or Topic.
The JMS Destination resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

A JMS Destination resource may be defined in a web module, EJB module, application client module, or application deployment descriptor using the jms-destination element.

For example:

```xml
<jms-destination>
 <description>Sample JMS Destination definition</description>
 <name>java:app/MyJMSDestination</name>
 <interface-name>javax.jms.Queue</interface-name>
 <resource-adapter>myJMSRA</resource-adapter>
 <destination-name>myQueue1</destination-name>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
</jms-destination>
```

A JMS Destination resource may also be defined using the JMSDestinationDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

```java
@JMSDestinationDefinition(
 name="java:app/MyJMSQueue",
 interfaceName="javax.jms.Queue",
 destinationName="myQueue1")
```

The JMSDestinationDefinition annotation can be overridden by a deployment descriptor when the application is deployed.

Once defined, a JMS Destination resource may be referenced by a component using either the resource-env-ref or message-destination-ref deployment descriptor element or the Resource annotation. For example, the above Destination could be referenced as follows:
@Stateless
public class MySessionBean {
    @Resource(lookup = "java:app/MyJMSQueue")
    Queue myQueue;
    ...
}

The following JMSDestinationDefinition annotation elements (and corresponding XML deployment descriptor elements) are considered to specify an address for a JMS Destination resource: resourceAdapter, destinationName.

EE.5.18.5.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a JMS Destination using a JMSDestinationDefinition annotation or the jms-destination deployment descriptor element.

EE.5.18.5.2 Deployer’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

- A resource of the specified interface type must be provided.

EE.5.18.5.3 Java EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”.

EE.5.18.6 Mail Session Definition

An application may define a Mail Session resource.

The Mail Session resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

A Mail Session resource may be defined in a web module, EJB module, application client module, or application deployment descriptor using the mail-session element.

For example:
A Mail Session resource may also be defined using the MailSessionDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

```java
@MailSessionDefinition(
 name="java:app/mail/MySession",
 host="somewhere.myco.com",
 from="some.body@myco.com"
)
```

The MailSessionDefinition annotation can be overridden by a deployment descriptor when the application is deployed.

Once defined, a Mail Session resource may be referenced by a component using the resource-ref deployment descriptor element or the Resource annotation. For example, the above Destination could be referenced as follows:

```java
@Stateless
public class MySessionBean {
 @Resource(lookup = "java:app/mail/MySession")
 Session myMailSession;
 ...
}
```
The following `MailSessionDefinition` annotation elements (and corresponding XML deployment descriptor elements) are considered to specify an address for a Mail Session resource: `host`.

**EE.5.18.6.1 Application Component Provider’s Responsibilities**

The Application Component Provider is responsible for the definition of a Mail Session using a `MailSessionDefinition` annotation or the `mail-session` deployment descriptor element.

If a mail session resource has been previously provisioned for the application (e.g., by administrative action), it is the responsibility of the Application Component Provider to specify the mail server host name.

**EE.5.18.6.2 Deployer’s Responsibilities**

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

- If store protocol, store protocol class, transport protocol, or transport protocol class has been specified, a resource with the specified property or properties should be provided.
- If specified, the user name and password should be used as specified.
- If specified, the from address should be used as specified.

**EE.5.18.6.3 Java EE Product Provider’s Responsibilities**

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”.

**EE.5.18.7 Connector Connection Factory Definition**

An application may define Connector connection factory resources.

The resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

A Connector connection factory resource may be defined in a web module, EJB module, or application deployment descriptor using the `connection-factory` element.

For example:
<connection-factory>
  <description>Sample Connector resource definition</description>
  <name>java:app/myConnectionFactory</name>
  <interface-name>com.eis.ConnectionFactory</interface-name>
  <resource-adapter>MyEISRA</resource-adapter>
  <max-pool-size>20</max-pool-size>
  <min-pool-size>10</min-pool-size>
  <transaction-support>XATransaction</transaction-support>
  <property>
    <name>Property1</name>
    <value>prop1val</value>
  </property>
  <property>
    <name>Property2</name>
    <value>prop2val</value>
  </property>
</connection-factory>

A Connector connection factory resource may also be defined using the ConnectionFactoryDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

```java
@ConnectionFactoryDefinition(
 name="java:app/myConnectionFactory",
 interfaceName="com.eis.ConnectionFactory",
 resourceAdapter="MyEISRA")
```

The ConnectionFactoryDefinition annotation can be overridden by a deployment descriptor when the application is deployed.

Once defined, a Connector connection factory resource may be referenced by a component using the resource-ref deployment descriptor element or the Resource annotation. For example, the above Connector connection factory resource could be referenced as follows:

```java
@Stateless
public class MySessionBean {
 @Resource(lookup = "java:app/myConnectionFactory")
 ConnectionFactory myCF;
 ...
}
```
EE.5.18.7.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for the definition of a Connector connection factory resource using aConnectionFactoryDefinition annotation or the connection-factory deployment descriptor element.

EE.5.18.7.2 Deployer’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

• A resource of the specified type must be provided.

EE.5.18.7.3 Java EE Product Provider’s Responsibilities

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”.

EE.5.18.8 Connector Administered Object Definition

An application may define a Connector administered object resource. The administered object resource may be defined in any of the JNDI namespaces described in Section EE.5.2.2, “Application Component Environment Namespaces”.

An administered object resource may be defined in a web module, EJB module, or application deployment descriptor using the administered-object element. Properties that are specified are used in the configuration of the administered object, as described in the Connector specification.

For example:

```xml
<administered-object>
 <description>Sample Admin Object definition</description>
 <name>java:app/MyAdminObject</name>
 <class-name>com.extraServices.AdminObject</class-name>
 <resource-adapter>myESRA</resource-adapter>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
</administered-object>
```
An administered object resource may also be defined using the AdministeredObjectDefinition annotation on a container-managed class, such as a servlet or enterprise bean class.

For example:

```java
@AdministeredObjectDefinition(
 name="java:app/myAdminObject",
 className="com.extraServices.AdminObject",
 resourceAdapter="myESRA")
```

The AdministeredObjectDefinition annotation can be overridden by a deployment descriptor when the application is deployed.

Once defined, an administered object resource may be referenced by a component using the resource-env-ref deployment descriptor element or the Resource annotation. For example, the above administered object resource could be referenced as follows:

```java
@Stateless public class MySessionBean {
 @Resource(lookup = "java:app/myAdminObject")
 AdminObject myAdminObject;
 ...
}
```

**EE.5.18.8.1 Application Component Provider’s Responsibilities**

The Application Component Provider is responsible for the definition of an administered object resource using an AdministeredObjectDefinition annotation or the administered-object deployment descriptor element.

**EE.5.18.8.2 Deployer’s Responsibilities**

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types”. The following additional requirements apply:

If a class name is specified, an administered object resource of the specified class (or a subclass) must be provided.
**EE.5.18.8.3  Java EE Product Provider’s Responsibilities**

Requirements common to all resource definition types are described in Section EE.5.18.2, “Requirements Common to All Resource Definition Types.”

**EE.5.19  Default Data Source**

The Java EE Platform requires that a Java EE Product Provider provide a database in the operational environment (see Section EE.2.6, “Database”). The Java EE Product Provider must also provide a preconfigured, default data source for use by the application in accessing this database.

The Java EE Product Provider must make the default data source accessible to the application under the JNDI name `java:comp/DefaultDataSource`.

The Application Component Provider or Deployer may explicitly bind a DataSource resource reference to the default data source using the `lookup` element of the `Resource` annotation or the `lookup-name` element of the `resource-ref` deployment descriptor element. For example,

```java
@Resource(lookup="java:comp/DefaultDataSource")
DataSource myDS;
```

In the absence of such a binding, the mapping of the reference will default to the product's default data source.

For example, the following will map to a preconfigured data source for the product's default database:

```java
@Resource
DataSource myDS;
```

**EE.5.19.1  Java EE Product Provider's Responsibilities**

The Java EE Product Provider must provide a database in the operational environment. The Java EE Product Provider must also provide a preconfigured, default data source for use by the application in accessing this database under the JNDI name `java:comp/DefaultDataSource`.

If a DataSource resource reference is not mapped to a specific data source by the Application Component Provider or Deployer, it must be mapped by the Java EE Product Provider to a preconfigured data source for the Java EE Product Provider's default database.
EE.5.20  Default JMS Connection Factory

The Java EE Platform requires that a Java EE Product Provider provide a JMS provider in the operational environment (see Section EE.2.7.8, “Java™ Message Service (JMS)”). The Java EE Product Provider must also provide a preconfigured, JMS ConnectionFactory for use by the application in accessing this JMS provider.

The Java EE Product Provider must make the default JMS connection factory accessible to the application under the JNDI name `java:comp/DefaultJMSConnectionFactory`.

The Application Component Provider or Deployer may explicitly bind a JMS ConnectionFactory resource reference to the default connection factory using the `lookup` element of the `Resource` annotation or the `lookup-name` element of the `resource-ref` deployment descriptor element. For example,

```java
@Resource(name="myJMSCF",
 lookup="java:comp/DefaultJMSConnectionFactory")
ConnectionFactory myJMScf;
```

In the absence of such a binding, the mapping of the reference will default to a JMS connection factory for the product's JMS provider.

For example, the following will map to a preconfigured connection factory for the product's default JMS provider:

```java
@Resource(name="myJMSCF")
ConnectionFactory myJMScf;
```

EE.5.20.1  Java EE Product Provider's Responsibilities

The Java EE Product Provider must provide a JMS provider in the operational environment. The Java EE Product Provider must also provide a preconfigured, default JMS connection factory for use by the application in accessing this provider under the JNDI name `java:comp/DefaultJMSConnectionFactory`.

If a JMS ConnectionFactory resource reference is not mapped to a specific JMS connection factory by the Application Component Provider or Deployer, it must be mapped by the Java EE Product Provider to a preconfigured JMS connection factory for the Java EE Product Provider's default JMS provider.
EE.5.21 Default Concurrency Utilities Objects

The Java EE Platform requires that a Java EE Product Provider provide a preconfigured default managed executor service, a preconfigured default managed scheduled executor service, a preconfigured default managed thread factory, and a preconfigured default context service for use by the application.

The Java EE Product Provider must make the default Concurrency Utilities for Java EE objects accessible to the application under the following JNDI names:

- `java:comp/DefaultManagedExecutorService` for the preconfigured managed executor service
- `java:comp/DefaultManagedScheduledExecutorService` for the preconfigured managed scheduled executor service
- `java:comp/DefaultManagedThreadFactory` for the preconfigured managed thread factory
- `java:comp/DefaultContextService` for the preconfigured context service

The Application Component Provider or Deployer may explicitly bind a resource reference to a default Concurrency Utilities object using the `lookup` element of the `Resource` annotation or the `lookup-name` element of the `resource-ref` deployment descriptor element. For example,

```java
@Resource(name="myManagedExecutorService,
lookup="java:comp/DefaultManagedExecutorService")
ManagedExecutorService myManagedExecutorService;
```

In the absence of such a binding, the mapping of the reference will default to the product's default managed executor service.

For example, the following will map to a preconfigured default managed executor service for the product:

```java
@Resource(name="myManagedExecutorService")
ManagedExecutorService myManagedExecutorService;
```

EE.5.21.1 Java EE Product Provider's Responsibilities

The Java EE Product Provider must provide the following:

- a preconfigured, default managed executor service for use by the application in accessing this service under the JNDI name `java:comp/DefaultManagedExecutorService`;
a preconfigured, default managed scheduled executor service for use by the application in accessing this service under the JNDI name java:comp/DefaultManagedScheduledExecutorService;

- a preconfigured, default managed thread factory for use by the application in accessing this factory under the JNDI name java:comp/DefaultManagedThreadFactory;

- a preconfigured, default context service for use by the application in accessing this service under the JNDI name java:comp/DefaultContextService.

If a Concurrency Utilities object resource environment reference is not mapped to a specific configured object by the Application Component Provider or Deployer, it must be mapped by the Java EE Product Provider to a preconfigured Concurrency Utilities object for the Java EE Product Provider.

EE.5.22 Managed Bean References

This section describes the metadata annotations and deployment descriptor entries that allow an application to obtain instances of a Managed Bean.

An instance of a named Managed Bean can be obtained by looking up its name in JNDI using the same naming scheme used for EJB components:

java:app/<module-name>/<bean-name>

java:module/<bean-name>

The latter will only work within the module the Managed Bean is declared in. Each such lookup must return a new instance.

Alternatively, the Resource annotation can be used to request the injection of a Managed Bean given either its type or its name. If a name is specified using the lookup element then the type of the resource can be any of the types that the Managed Bean class implements, including any of its interfaces. If no name is specified, the type must be the Managed Bean class itself. (Note that the name element of the Resource annotation serves an entirely different purpose than the lookup element, consistently with other uses of Resource in this specification.) The authenticationType and shareable elements of the Resource annotation must not be specified.

For example, given a ShoppingCartBean bean named "cart" defined in the same module as the client code and implementing the ShoppingCart interface, a client may use any of the following methods to obtain an instance of the bean class:
@Resource ShoppingCartBean cart;

@Resource(lookup="java:module/cart") ShoppingCart cart;

ShoppingCart cart = (ShoppingCart) context.lookup("java:module/cart");

References to managed beans can be declared in the deployment descriptor using the resource-ref element. The res-type element must contain a type that the managed bean implements. The lookup-name must be present and refer to a managed bean by name. The res-sharing-scope and res-auth elements may be omitted; if present, they must have the values Shareable and Container respectively, so as to match the default values of the corresponding elements of the Resource annotation.

The following example shows how to declare references to the shopping cart bean of the previous example, this time using descriptors. (To make the example somewhat more realistic, one should add an injection-target child element to resource-ref.)

<resource-ref>
  <ref-ref-name>bean/cart</ref-ref-name>
  <ref-type>com.acme.ShoppingCart</ref-type>
  <lookup-name>java:module/cart</lookup-name>
</resource-ref>

EE.5.22.1 Application Component Provider’s Responsibilities

The Application Component Provider is responsible for requesting injection of a Managed Bean or for looking it up in JNDI using an appropriate name.

EE.5.22.2 Java EE Product Provider’s Responsibilities

The Java EE Product Provider is responsible for providing appropriate instances of the requested Managed Bean class as required by this specification.
EE.5.23   **Bean Manager References**

This section describes the metadata annotations and deployment descriptor entries that allow an application to obtain instances of the CDI BeanManager type.

Typically, only portable extensions using the CDI SPI need to access a BeanManager. Application code may occasionally require access to that interface; in that case, the application should either look up a BeanManager instance in JNDI under the name java:comp/BeanManager, or request the injection of an object of type javax.enterprise.inject.spi.BeanManager via the Resource annotation. If the latter, the authenticationType and shareable elements of the Resource annotation must not be specified.

```java
@Resource BeanManager manager;
```

Per the CDI specification, a bean can also request the injection of a BeanManager using the Inject annotation.

```java
@Inject BeanManager manager;
```

A BeanManager object reference may also be declared in a deployment descriptor in the same way as a resource environment reference.

EE.5.23.1   **Application Component Provider’s Responsibilities**

The Application Component Provider is responsible for requesting injection of a BeanManager instance using a Resource annotation, or using the defined name to look up an instance in JNDI.

EE.5.23.2   **Java EE Product Provider’s Responsibilities**

The Java EE Product Provider is responsible for providing appropriate BeanManager instances as required by this specification.

EE.5.24   **Support for Dependency Injection**

In Java EE, support for dependency injection annotations as specified in the Dependency Injection for Java specification is mediated by CDI. Containers must support injection points annotated with the javax.inject.Inject annotation only to the extent dictated by CDI.
Per the CDI specification, dependency injection is supported on managed beans. There are currently three ways for a class to become a managed bean:

1. Being an EJB session bean component.
2. Being annotated with the ManagedBean annotation.
3. Satisfying the conditions described in the CDI specification.

Classes that satisfy at least one of these conditions will be eligible for full dependency injection support as described in the CDI specification.

Component classes listed in Table EE.5-1 that satisfy the third condition above, but neither the first nor the second condition, can also be used as CDI managed beans if they are annotated with a CDI bean-defining annotation or contained in a bean archive for which CDI is enabled. However, if they are used as CDI managed beans (e.g., injected into other managed classes), the instances that are managed by CDI may not be the instances that are managed by the Java EE container.

Therefore, to make injection support more uniform across all Java EE component types, Java EE containers are required to support field, method, and constructor injection using the javax.inject.Inject annotation into all component classes listed in Table EE.5-1 as having the “Standard” level of injection support, as well as the use of interceptors for these classes. Such injection must be performed in the same logical phase as resource injection of fields and methods annotated with the Resource annotation. In particular, dependency injection must precede the invocation of any methods annotated with the PostConstruct annotation. In supporting such injection points, the container must behave as if it carried out the following steps, involving the use of the CDI SPI. Note that using these steps causes the container to create a non-contextual instance, which is not managed by CDI but rather by the Java EE container.

1. Obtain a BeanManager instance.
2. Create an AnnotatedType instance for the component into which injection is to occur.
3. Create an InjectionTarget instance for the annotated type.
4. Create a CreationalContext, passing in null to the BeanManager createContext method.
5. Instantiate the component by calling the InjectionTarget produce method.
6. Inject the component instance by calling the InjectionTarget inject method on the instance.
7. Invoke the PostConstruct callback, if any, by calling the InjectionTarget
postConstruct method on the instance.

When such a non-contextual instance is to be destroyed, the container should behave as if it carried out the following steps.

1. Invoke the PreDestory callback, if any, by calling the InjectionTarget preDestroy method on the instance.
2. Invoke the InjectionTarget dispose method on the instance.
3. Invoke the CreationalContext release method to destroy any dependent objects of the instance.

Containers may optimize the steps above, e.g., by avoiding calls to the actual CDI SPI and relying on container-specific interfaces instead, as long as the outcome is the same.
This chapter describes API requirements for the Java™ Platform, Enterprise Edition (Java EE). Java EE requires the provision of a number of APIs for use by Java EE applications, starting with the core Java APIs and including many additional Java technologies.

EE.6.1 Required APIs

Java EE application components execute in runtime environments provided by the containers that are a part of the Java EE platform. The full Java EE platform supports four types of containers corresponding to Java EE application component types: application client containers; applet containers; web containers for servlets, JSP pages, JSF applications; and enterprise bean containers. A Java EE profile may support only a subset of these component types, as defined by the individual Java EE profile specification.

The per-technology requirements in this chapter apply to any Java EE product that includes the technology. Note that even though a Java EE profile might not require support for a particular technology, a Java EE product based on that Java EE profile might nonetheless include support for the technology. In such a case, the requirements for that technology described in this chapter would apply.

EE.6.1.1 Java Compatible APIs

The containers provide all application components with at least the Java Platform, Standard Edition, v7 (Java SE) APIs. Containers may provide newer versions of the
Java SE platform, provided they meet all the Java EE platform requirements. The Java SE platform includes the following enterprise technologies:

- Java IDL
- JDBC
- RMI-IIOP
- JNDI
- JAXP
- StAX
- JAAS
- JMX
- JAX-WS
- JAXB
- JAF
- SAAJ
- Common Annotations

In particular, the applet execution environment must be Java SE 7 compatible. Since typical browsers don’t yet provide such support, Java EE products may make use of the Java Plugin to provide the required applet execution environment. Use of the Java Plugin is not required, but is one method of meeting the requirement to provide a Java SE 7 compatible applet execution environment. This specification adds no requirements to the applet container beyond those specified by Java SE.

Some of the enterprise technologies that are included in Java SE 7 are also available independently of the Java SE platform, and this specification requires newer versions of some of these technologies, as described in the following section.

The specifications for the Java SE APIs are available at [http://docs.oracle.com/javase/7/docs/](http://docs.oracle.com/javase/7/docs/).

**EE.6.1.2 Required Java Technologies**

The full Java EE platform also provides a number of Java technologies in each of the containers defined by this specification. **Table EE.6-1** indicates the technologies with their required versions, which containers include the technologies, and whether the technology is required (REQ), proposed optional (POPT), or optional (OPT).
Each Java EE profile specification will include a similar table describing which technologies are required for the profile. Note that some technologies are marked Optional, as described in the next section.

<table>
<thead>
<tr>
<th>Java Technology</th>
<th>App Client</th>
<th>Web</th>
<th>EJB</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EJB 3.2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ, OPT</td>
</tr>
<tr>
<td>Servlet 3.1</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>REQ</td>
</tr>
<tr>
<td>JSP 2.3</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>REQ</td>
</tr>
<tr>
<td>EL 3.0</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>REQ</td>
</tr>
<tr>
<td>JMS 2.0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JTA 1.2</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JavaMail 1.5</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>Connector 1.7</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>Web Services 1.4</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JAX-RPC 1.1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>OPT</td>
</tr>
<tr>
<td>JAX-WS 2.2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JAX-RS 2.0</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>REQ</td>
</tr>
<tr>
<td>WebSocket 1.0</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>REQ</td>
</tr>
<tr>
<td>JSON-P 1.0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>Concurrency Utilities for Java EE 1.0</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Req</td>
</tr>
<tr>
<td>Batch 1.0</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JAXB 2.2</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JAXR 1.0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>OPT</td>
</tr>
<tr>
<td>Java EE Management 1.1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>Java EE Deployment 1.2a</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>OPT</td>
</tr>
<tr>
<td>JACC 1.5</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
<tr>
<td>JASPIC 1.1</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>REQ</td>
</tr>
</tbody>
</table>
All classes and interfaces required by the specifications for the APIs must be provided by the Java EE containers indicated above. In some cases, a Java EE product is not required to provide objects that implement interfaces intended to be implemented by an application server, nevertheless, the definitions of such interfaces must be included in the Java EE platform. If an implementation includes support for a technology marked as Optional, that technology must be supported in the containers specified above. If a product implementation does not support a technology marked as Optional, it must not include the APIs for that technology.¹

¹ Note that a component specification is permitted to specify an exception to this in order to accommodate interface type dependencies—for example, the EJB SessionContext dependency on the javax.xml.rpc.handler.MessageContext type.
EE.6.1.3 Pruned Java Technologies

As the Java EE specification has evolved, some of the technologies originally included in Java EE are no longer as relevant as they were when they were introduced to the platform. The Java EE expert group follows a process first defined by the Java SE expert group (http://blogs.oracle.com/mr/entry/removing_features) to prune technologies from the platform in a careful and orderly way that minimizes the impact to developers using these technologies, while allowing the platform to grow even stronger. In short, the process defines two steps:

1. The Umbrella Expert Group (UEG) for release N of the platform decides to propose that a particular feature be removed. The specification for that release documents the proposal.
2. The UEG for release N+1 decides whether to remove the feature from that release, retain it as a required component, or leave it in the "proposed removal" state for the next UEG to decide.

The result of successfully applying this policy to a feature is not the actual deletion of the feature but rather the conversion of the feature from a required component of the platform into an optional component. No actual removal from the specification occurs, although the feature may be removed from products at the choice of the product vendor.

Technologies that have been pruned as of Java EE 7 are marked Optional in Table EE.6-1. Technologies that may be pruned in a future release are marked Proposed Optional in Table EE.6-1.

EE.6.2 Java Platform, Standard Edition (Java SE) Requirements

EE.6.2.1 Programming Restrictions

The Java EE programming model divides responsibilities between Application Component Providers and Java EE Product Providers: Application Component Providers focus on writing business logic and the Java EE Product Providers focus on providing a managed system infrastructure in which the application components can be deployed.

This division leads to a restriction on the functionality that application components can contain. If application components contain the same functionality provided by Java EE system infrastructure, there are clashes and mis-management of the functionality.
For example, if enterprise beans were allowed to manage threads, the Java EE platform could not manage the life cycle of the enterprise beans, and it could not properly manage transactions.

Since we do not want to subset the Java SE platform, and we want Java EE Product Providers to be able to use Java SE products without modification in the Java EE platform, we use the Java SE security permissions mechanism to express the programming restrictions imposed on Application Component Providers.

In this section, we specify the Java SE security permissions that the Java EE Product Provider must provide for each application component type. We call these permissions the Java EE security permissions set. The Java EE security permissions set is a required part of the Java EE API contract. We also specify the set of permissions that the Java EE Product Provider must be able to restrict from being provided to application components. In addition, we specify the means by which application component providers may declare the need for specific permissions and how these declarations must be processed by Java EE products.

The Java SE security permissions are fully described in http://docs.oracle.com/javase/7/docs/technotes/guides/security/permissions.html.

EE.6.2.2 **Java EE Security Manager Related Requirements**

Every Java EE product must be capable of running with a Java security manager that enforces Java security permissions and that prevents application components from performing operations for which they have not been provided the required permissions.

**EE.6.2.2.1 Java EE Product Provider’s Responsibilities**

A Java EE product may allow application components to run without a security manager, but every Java EE product must be capable of running application components with a security manager that enforces security permissions, as described below.

The set of security permissions provided to application components by a particular installation is a matter of policy outside the scope of this specification, however, every Java EE product must be capable of running with a configuration that provides application classes and packaged libraries the permissions defined in Table EE.6-2.

All Java EE products must allow the set of permissions available to application classes in a module to be configurable, providing application
components in some modules with different permissions than those described in Table EE.6-2.

As defined in Section EE.6.2.2.6, “Declaring Permissions Required by Application Components,” a component provider may declare the permissions required by the application classes and libraries packaged in a module. When a component provider has declared the permissions required by a module, on successful deployment of the module, at least the declared permissions must have been granted to the application classes and libraries packaged in the module. If security permissions are declared that conflict with the policy of the product installation, the Java EE product must fail deployment of the application module. If an application module does not contain a declaration of required security permissions and deployment otherwise succeeds, the Java EE product must grant the application classes and libraries the permissions established by the security policy of the installation. The Java EE product must ensure that the system administrator for the installation be able to define the security policy for the installation to include the permissions in Table EE.6-2.

Note that, on some installations of Java EE products, the security policy of the installation may be such that applications are granted fewer permissions than those defined in Table EE.6-2 and, as a result, some applications that declare only the permissions defined in Table EE.6-2 may not be deployable. Other applications that require the same permissions but do not declare them may deploy but will encounter runtime failures when the missing permission is required by the application component.

Every Java EE product must be capable of running with a Java security manager and with an installation policy that does not grant the permissions described in Table EE.6-3 to Web, EJB, and resource adapter components. That environment must otherwise fully support the requirements of this specification.

EE.6.2.2.2 Application Component Provider’s Responsibilities

To ensure that application deployment will only succeed if required permissions are compatible with security policy of the installation environment, application component providers should declare all Java security permissions required by their application components.

Section EE.6.2.2.6, “Declaring Permissions Required by Application Components,” defines the mechanism(s) by which required permissions may be declared.

Note that, while FilePermissions or SocketPermissions for specific resources may be granted as a result of application components declaring them as required, the local operating system or network security policy may restrict access to the
requested resources. This may result in a runtime failure to access these resources even though deployment of the application has succeeded.

**EE.6.2.2.3 System Administrator’s Responsibilities**

Security policy requirements differ from one installation environment to another. The system administrator is responsible for configuring the permissions available to application modules to meet the security policy requirements of the installation environment. For example, cloud environments may require greater restrictions on the system resources available to applications than on-premise enterprise installations. Note that restricting the permissions beyond those in Table EE.6-2 may prevent some applications from working correctly.

Care should be taken by the system administrator to ensure that resources that are expected to be available to application components are appropriately represented in the security policy of the operational environment.

In particular, the temporary file directory made available through the ServletContext attribute `javax.servlet.context.tempdir` should be available to deployed applications. The security policy of the operational environment should grant the application server process access to the corresponding part of the file system. The Java EE Product must be capable of using the security manager to enforce that an application only has access to the part of the filesystem namespace named by the `javax.security.context.tempdir` attribute, and that that part of the filesystem namespace is separate from the corresponding filesystem namespace available to other applications.

**EE.6.2.2.4 Listing of the Java EE Security Permissions Set**

Table EE.6-2 lists the Java permissions that Java EE components (by type) can reliably be granted by a Java EE product, given appropriate local installation configuration.

**Table EE.6-2 Java EE Security Permissions Set**

<table>
<thead>
<tr>
<th>Security Permissions</th>
<th>Target</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>java.awt.AWTPermission</code></td>
<td>accessClipboard</td>
<td></td>
</tr>
<tr>
<td><code>java.awt.AWTPermission</code></td>
<td>accessEventQueue</td>
<td></td>
</tr>
<tr>
<td><code>java.awt.AWTPermission</code></td>
<td>showWindowWithoutWarningBanner</td>
<td></td>
</tr>
</tbody>
</table>

Final Release
Table EE.6-2  Java EE Security Permissions Set

<table>
<thead>
<tr>
<th>Security Permissions</th>
<th>Target</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>java.lang.RuntimePermission</code></td>
<td>exitVM</td>
<td></td>
</tr>
<tr>
<td><code>java.lang.RuntimePermission</code></td>
<td>loadLibrary.*</td>
<td></td>
</tr>
<tr>
<td><code>java.lang.RuntimePermission</code></td>
<td>queuePrintJob</td>
<td></td>
</tr>
<tr>
<td><code>java.net.SocketPermission</code></td>
<td>*</td>
<td>connect</td>
</tr>
<tr>
<td><code>java.net.SocketPermission</code></td>
<td>localhost:1024-</td>
<td>accept, listen</td>
</tr>
<tr>
<td><code>java.io.FilePermission</code></td>
<td>*</td>
<td>read, write</td>
</tr>
<tr>
<td><code>java.util.PropertyPermission</code></td>
<td>*</td>
<td>read</td>
</tr>
<tr>
<td>Applet Clients</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>java.net.SocketPermission</code></td>
<td>codebase</td>
<td>connect</td>
</tr>
<tr>
<td><code>java.util.PropertyPermission</code></td>
<td>limited</td>
<td>read</td>
</tr>
<tr>
<td>Web, EJB, and Resource Adapter Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>java.lang.RuntimePermission</code></td>
<td>loadLibrary.*</td>
<td></td>
</tr>
<tr>
<td><code>java.lang.RuntimePermission</code></td>
<td>queuePrintJob</td>
<td></td>
</tr>
<tr>
<td><code>java.net.SocketPermission</code></td>
<td>*</td>
<td>connect</td>
</tr>
<tr>
<td><code>java.io.FilePermission</code></td>
<td>*</td>
<td>read, write a</td>
</tr>
<tr>
<td><code>java.io.FilePermission</code></td>
<td>file:${javax.servlet.context.tempdir}</td>
<td>read, write b</td>
</tr>
<tr>
<td><code>java.util.PropertyPermission</code></td>
<td>*</td>
<td>read</td>
</tr>
</tbody>
</table>

a. The FilePermission * specifically refers to all files under the current directory.
b. (For Web components only.) It must be possible to grant FilePermission for the tempdir provided to web components through the ServletContext regardless of its physical location. In addition, it must be possible to grant FilePermission for the tempdir without granting it for all files under the current directory.

**EE.6.2.2.5  Restrictable Java EE Security Permissions**

Table EE.6-3 lists the Java permissions that a Java EE product must be capable of restricting when running a Web or EJB application component. If the Target field is empty, a Java EE product must be capable of deploying application modules such
that no instances of that permission are granted to the components in the application module.

**Table EE.6-3  Restrictable Java EE Security Permissions**

<table>
<thead>
<tr>
<th>Security Permissions</th>
<th>Target</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web, EJB, and Resource Adapter Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.AllPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.SecurityPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.UnresolvedPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.awt.AWTPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.io.SerializablePermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.lang.reflect.ReflectPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.lang.RuntimePermission</td>
<td>&lt;any except loadLibrary.* and queue-PrintJob&gt;</td>
<td></td>
</tr>
<tr>
<td>java.net.NetPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.sql.SQLPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.util.PropertyPermission</td>
<td>&lt;any&gt;</td>
<td>write</td>
</tr>
<tr>
<td>java.util.logging.LoggingPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>javax.net.ssl.SSLPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.auth.AuthPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.auth.PrivateCredentialPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.auth.kerberos.DelegationPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>java.security.auth.kerberos.ServicePermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>javax.sound.sampled.AudioPermission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>javax.sound.sampled.AudioPermission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EE.6.2.2.6 Declaring Permissions Required by Application Components

By declaring the permissions required by an application as described in this section, an application component provider is ensured, through the successful deployment of his or her application, that the Java EE Product has granted at least the declared permissions to the classes and libraries packaged in the application module.

Since the specific set of permissions granted to a successfully deployed application is a function of the security policy for the installation and the permissions declared within the permissions.xml files, the application component provider is ensured that the effective permission set consists of at least those permissions that are declared within the application.

Permission declarations must be stored in META-INF/permissions.xml file within an EJB, web, application client, or resource adapter archive in order for them to be located and subsequently processed by the deployment machinery of the Java EE Product.

The permissions for a packaged library are the same as the permissions for the module. Thus, if a library is packaged in a .war file, it gets the permissions of the .war file.

For applications packaged in an .ear file, the declaration of permissions must be at .ear file level. This permission set is applied to all modules and libraries packaged within the .ear file or within its contained modules. Any permissions.xml files within such packaged modules are ignored, regardless of whether a permissions.xml file has been supplied for the .ear file itself.

The fact that these permission declarations are being made from within the context of a particular application implies the codeBase(s) to which the grant should be made. This simplifies the syntax that is needed to just the Permission class name and two String arguments. This aligns the declaration syntax with the default policy language and the constructor signature for permissions that is compliant with the default policy syntax.

permission <class> [<name> [, <action list>]];

The following is an example of a permission set declaration:
...<permissions>
  <permission>
    <class-name>java.io.FilePermission</class-name>
    <name>/tmp/abc</name>
    <actions>read,write</actions>
  </permission>
  <permission>
    <class-name>java.lang.RuntimePermission</class-name>
    <name>createClassLoader</name>
  </permission>
</permissions>
...

The Java EE permissions XML Schema is located at http://xmlns.jcp.org/xml/ns/javaee/permissions_7.xsd.

**EE.6.2.3** Additional Requirements

**EE.6.2.3.1** Networking

The Java SE platform includes a pluggable mechanism for supporting multiple URL protocols through the java.net.URLStreamHandler class and the java.net.URLStreamHandlerFactory interface.

The following URL protocols must be supported:

- **file**: Only reading from a file URL need be supported. That is, the corresponding URLConnection object’s getOutputStream method may fail with an UnknownServiceException. File access is restricted according to the permissions described above.
- **http**: Version 1.1 of the HTTP protocol must be supported. An http URL must support both input and output.
- **https**: SSL version 3.0 and TLS version 1.0 must be supported by https URL objects. Both input and output must be supported.

The Java SE platform also includes a mechanism for converting a URL’s byte stream to an appropriate object, using the java.net.ContentHandler class and java.net.ContentHandlerFactory interface. A ContentHandler object can convert a MIME byte stream to an object. ContentHandler objects are typically accessed indirectly using the getContent method of URL and URLConnection.
When accessing data of the following MIME types using the `getcontent` method, objects of the corresponding Java type listed in **Table EE.6-4** must be returned.

**Table EE.6-4**  
Java Type of Objects Returned When Using the `getcontent` Method

<table>
<thead>
<tr>
<th>MIME Type</th>
<th>Java Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>image/gif</td>
<td>java.awt.Image</td>
</tr>
<tr>
<td>image/jpeg</td>
<td>java.awt.Image</td>
</tr>
<tr>
<td>image/png</td>
<td>java.awt.Image</td>
</tr>
</tbody>
</table>

Many environments will use HTTP proxies rather than connecting directly to HTTP servers. If HTTP proxies are being used in the local environment, the HTTP support in the Java SE platform should be configured to use the proxy appropriately. Application components must not be required to configure proxy support in order to use an `http` URL.

Most enterprise environments will include a firewall that limits access from the internal network (intranet) to the public Internet, and vice versa. It is typical for access using the HTTP protocol to pass through such firewalls, perhaps by using proxy servers. It is not typical that general TCP/IP traffic, including RMI-JRMP, and RMI-IIOP, can pass through firewalls.

These considerations have implications on the use of various protocols to communicate between application components. This specification requires that HTTP access through firewalls be possible where local policy allows. Some Java EE products may provide support for tunneling other communication through firewalls, but this is neither specified nor required. Application developers should consider the impact of these issues in the design of applications, particularly in view of cloud environments, where a cloud platform provider might only allow HTTP-based access.

**EE.6.2.3.2 JDBC™ API**

The JDBC API, which is part of the Java SE platform, allows for access to a wide range of data storage systems. The Java SE platform, however, does not require that a system meeting the Java Compatible™ quality standards provide a database that is accessible through the JDBC API.

To allow for the development of portable applications, the Java EE specification does require that such a database be available and accessible from a
Java EE product through the JDBC API. Such a database must be accessible from web components, enterprise beans, and application clients, but need not be accessible from applets. In addition, the driver for the database must meet the JDBC Compatible requirements in the JDBC specification.

Java EE applications should not attempt to load JDBC drivers directly. Instead, they should use the technique recommended in the JDBC specification and perform a JNDI lookup to locate a `DataSource` object. The JNDI name of the `DataSource` object should be chosen as described in Section EE.5.7, “Resource Manager Connection Factory References.” The Java EE platform must be able to supply a `DataSource` that does not require the application to supply any authentication information when obtaining a database connection. Of course, applications may also supply a user name and password when connecting to the database.

When a JDBC API connection is used in an enterprise bean, the transaction characteristics will typically be controlled by the container. The component should not attempt to change the transaction characteristics of the connection, commit the transaction, roll back the transaction, or set autocommit mode. Attempts to make changes that are incompatible with the current transaction context may result in a `SQLException` being thrown. The EJB specification contains the precise rules for enterprise beans.

Note that the same restrictions apply when a component creates a transaction using the JTA `UserTransaction` interface. The component should not attempt the operations listed above on the JDBC `Connection` object that would conflict with the transaction context.

Drivers supporting the JDBC API in a Java EE environment must meet the JDBC 4.1 API Compliance requirements as specified in Section 6.4, Java EE JDBC Compliance, of the JDBC 4.1 specification.

The JDBC API includes APIs for connection naming via JNDI, connection pooling, and distributed transaction support. The connection pooling and distributed transaction features are intended for use by JDBC drivers to coordinate with an application server. Java EE products are not required to support the application server facilities described by these APIs, although they may prove useful.

The Connector architecture defines an SPI that essentially extends the functionality of the JDBC SPI with additional security functionality, and a full packaging and deployment functionality for resource adapters. A Java EE product that supports the Connector architecture must support deploying and using a JDBC driver that has been written and packaged as a resource adapter using the Connector architecture.
The JDBC 4.1 specification is available at http://jcp.org/aboutJava/communityprocess/mrel/jsr221/index.html.

**EE.6.2.3.3 Java IDL**

The requirements in this section only apply to Java EE products that support interoperability using CORBA.

Java IDL allows applications to access any CORBA object, written in any language, using the standard IIOP protocol. The Java EE security restrictions typically prevent all application component types except application clients from creating and exporting a CORBA object, but all Java EE application component types can be clients of CORBA objects.


The IIOP protocol supports the ability to multiplex calls over a single connection. All Java EE products must support requests from clients that multiplex calls on a connection to either Java IDL server objects or RMI-IIOP server objects (such as enterprise beans). The server must allow replies to be sent in any order, to avoid deadlocks where one call would be blocked waiting for another call to complete. Java EE clients are not required to multiplex calls, although such support is highly recommended.

A Java EE product must provide support for a CORBA Portable Object Adapter (POA) to support portable stub, skeleton, and tie classes. A Java EE application that defines or uses CORBA objects other than enterprise beans must include such portable stub, skeleton, and tie classes in the application package.

Java EE applications need to use an instance of `org.omg.CORBA.ORB` to perform many Java IDL and RMI-IIOP operations. The default ORB returned by a call to `ORB.init(new String[0], null)` must be usable for such purposes; an application need not be aware of the implementation classes used for the ORB and RMI-IIOP support.

In addition, for performance reasons it is often advantageous to share an ORB instance among components in an application. To support such usage, all web, enterprise bean, and application client containers are required to provide an ORB instance in the JNDI namespace under the name `java:comp/ORB`. The container is allowed, but not required, to share this instance between components. The container may also use this ORB instance itself. To support isolation between applications, an ORB instance should not be shared between components in different applications. To allow this ORB instance to be safely shared between
components, portable components must restrict their usage of certain ORB APIs and functionality:

- Do not call the ORB shutdown method.
- Do not call the org.omg.CORBA_2_3.ORB methods register_value_factory and unregister_value_factory with an id used by the container.

A Java EE product must provide a COSNaming service to support the EJB interoperability requirements. It must be possible to access this COSNaming service using the Java IDL COSNaming APIs. Applications with appropriate privileges must be able to lookup objects in the COSNaming service. COSNaming is defined in the Interoperable Naming Service specification, available at http://www.omg.org/cgi-bin/doc?formal/2000-06-19.

**EE.6.2.3.4 RMI-JRMP**

JRMP is the Java technology-specific Remote Method Invocation (RMI) protocol. The Java EE security restrictions typically prevent all application component types except application clients from creating and exporting an RMI object, but all Java EE application component types can be clients of RMI objects.

**EE.6.2.3.5 RMI-IIOP**

The requirements in this section only apply to Java EE products that include an EJB container and support interoperability using RMI-IIOP.

RMI-IIOP allows objects defined using RMI style interfaces to be accessed using the IIOP protocol. It must be possible to make any remote enterprise bean accessible via RMI-IIOP. Some Java EE products will simply make all remote enterprise beans always (and only) accessible via RMI-IIOP; other products might control this via an administrative or deployment action. These and other approaches are allowed, provided that any remote enterprise bean (or by extension, all remote enterprise beans) can be made accessible using RMI-IIOP.

Components accessing remote enterprise beans may need to use the narrow method of the javax.rmi.PortableRemoteObject class, under circumstances described in the EJB specification. Because remote enterprise beans may be deployed using other RMI protocols, portable applications must not depend on the characteristics of RMI-IIOP objects (for example, the use of the Stub and Tie base classes) beyond what is specified in the EJB specification.

The Java EE security restrictions typically prevent all application component types, except application clients, from creating and exporting an RMI-IIOP
object. All Java EE application component types can be clients of RMI-IIOP objects. Java EE applications should also use JNDI to lookup non-EJB RMI-IIOP objects. The JNDI names used for such non-EJB RMI-IIOP objects should be configured at deployment time using the standard environment entries mechanism (see Section EE.5.2, “JNDI Naming Context”). The application should fetch a name from JNDI using an environment entry, and use the name to lookup the RMI-IIOP object. Typically such names will be configured to be names in the COSNaming name service.

This specification does not provide a portable way for applications to bind objects to names in a name service. Some products may support use of JNDI and COSNaming for binding objects, but this is not required. Portable Java EE application clients can create non-EJB RMI-IIOP server objects for use as callback objects, or to pass in calls to other RMI-IIOP objects.

Note that while RMI-IIOP doesn’t specify how to propagate the current security context or transaction context, the EJB interoperability specification does define such context propagation. This specification only requires that the propagation of context information as defined in the EJB specification be supported in the use of RMI-IIOP to access enterprise beans. The propagation of context information is not required in the uses of RMI-IIOP to access objects other than enterprise beans.

The RMI-IIOP specification describes how portable Stub and Tie classes can be created. To be portable to all implementations that use a CORBA Portable Object Adapter (POA), the Tie classes must extend the `org.omg.PortableServer.Servant` class. This is typically done by using the `-poa` option to the `rmic` command. A Java EE product must provide support for these portable Stub and Tie classes, typically using the required CORBA POA. However, for portability to systems that do not use a POA to implement RMI-IIOP, applications should not depend on the fact that the Tie extends the Servant class. A Java EE application that defines or uses RMI-IIOP objects other than enterprise beans must include such portable Stub and Tie classes in the application package. Stub and Tie objects for enterprise beans, however, must not be included with the application: they will be generated, if needed, by the Java EE product at deployment time or at run time.

**EE.6.2.3.6 JNDI**

A Java EE product that supports the following types of objects must be able to make them available in the application’s JNDI namespace: EJBHome objects, EJBLocalHome objects, EJB business interface objects, JTA UserTransaction objects, JDBC API DataSource objects, JMSConnectionFactory and Destination objects, JavaMail Session objects, URL objects, resource manager ConnectionFactory objects (as specified in the Connector specification), ORB objects, EntityManagerFactory objects, and other Java language objects as described in Chapter EE.5, “Resources, Naming, and Injection.” The JNDI implementation in a Java EE product must be capable of supporting all of these uses in a single application component using a single JNDI InitialContext. Application components will generally create a JNDI InitialContext using the default constructor with no arguments. The application component may then perform lookups on that InitialContext to find objects as specified above.

The names used to perform lookups for Java EE objects are application dependent. The application component’s metadata annotations and/or deployment descriptor are used to list the names and types of objects expected. The Deployer configures the JNDI namespace to make appropriate components available. The JNDI names used to lookup such objects must be in the JNDI java: namespace. See Chapter EE.5, “Resources, Naming, and Injection” for details.

Particular names are defined by this specification for the cases when the Java EE product includes the corresponding technology. For all application components that have access to the JTA UserTransaction interface, the appropriate UserTransaction object can be found using the name java:comp/UserTransaction. In all containers except the applet container, application components may lookup a CORBA ORB instance using the name java:comp/ORB. For all application components that have access to the CDI BeanManager interface, the appropriate BeanManager object can be found using the name java:comp/BeanManager. For all application components that have access to the Validation APIs, the appropriate Validator and ValidatorFactory objects can be found using the names java:comp/Validator and java:comp/ValidatorFactory respectively.

The name used to lookup a particular Java EE object may be different in different application components. In general, JNDI names can not be meaningfully passed as arguments in remote calls from one application component to another remote component (for example, in a call to an enterprise bean).

The JNDI java: namespace is commonly implemented as *symbolic links* to other naming systems. Different underlying naming services may be used to store
different kinds of objects, or even different instances of objects. It is up to a Java EE product to provide the necessary JNDI service providers for accessing the various objects defined in this specification.

This specification requires that the Java EE platform provide the ability to perform lookup operations as described above. Different JNDI service providers may provide different capabilities, for instance, some service providers may provide only read-only access to the data in the name service.

A Java EE product may be required to provide a COSNaming name service to meet the EJB interoperability requirements. In such a case, a COSNaming JNDI service provider must be available through the web, EJB, and application client containers. It will also typically be available in the applet container, but this is not required.

A COSNaming JNDI service provider is a part of the Java SE 7 SDK and JRE from Oracle, but is not a required component of the Java SE specification. The COSNaming JNDI service provider specification is available at http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/jndi-cos.html.

See Chapter EE.5, “Resources, Naming, and Injection” for the complete naming requirements for the Java EE platform. The JNDI specification is available at http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html.

EE.6.2.3.7 Context Class Loader

This specification requires that Java EE containers provide a per thread context class loader for the use of system or library classes in dynamically loading classes provided by the application. The EJB specification requires that all EJB client containers provide a per thread context class loader for dynamically loading system value classes. The per thread context class loader is accessed using the Thread method getApplicationContext.

The classes used by an application will typically be loaded by a hierarchy of class loaders. There may be a top level application class loader, an extension class loader, and so on, down to a system class loader. The top level application class loader delegates to the lower class loaders as needed. Classes loaded by lower class loaders, such as portable EJB system value classes, need to be able to discover the top level application class loader used to dynamically load application classes.

This specification requires that containers provide a per thread context class loader that can be used to load top level application classes as described above. See Section EE.8.2.5, “Dynamic Class Loading” for recommendations for libraries that dynamically load classes.
EE.6.2.3.8  Java™ Authentication and Authorization Service (JAAS) Requirements

All EJB containers and all web containers must support the use of the JAAS APIs as specified in the Connector specification. All application client containers must support use of the JAAS APIs as specified in Chapter EE.10, “Application Clients.”

A reference guide to the JAAS APIs is available at http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html.

EE.6.2.3.9  Logging API Requirements

The Logging API provides classes and interfaces in the java.util.logging package that are the Java™ platform’s core logging facilities. This specification does not require any additional support for logging. A Java EE application typically will not have the LoggingPermission necessary to control the logging configuration, but may use the logging API to produce log records. A future version of this specification may require that the Java EE containers use the logging API to log certain events.

EE.6.2.3.10  Preferences API Requirements

The Preferences API in the java.util.prefs package allows applications to store and retrieve user and system preference and configuration data. A Java EE application typically will not have the RuntimePermission("preferences") necessary to use the Preferences API. This specification does not define any relationship between the principal used by a Java EE application and the user preferences tree defined by the Preferences API. A future version of this specification may define the use of the Preferences API by Java EE applications.

EE.6.3  Enterprise JavaBeans™ (EJB) 3.2 Requirements

This specification requires that a Java EE product provide support for enterprise beans as specified in the EJB specification. The EJB specification is available at http://jcp.org/en/jsr/summary?id=345.

This specification does not impose any additional requirements at this time. Note that the EJB specification includes the specification of the EJB interoperability protocol based on RMI-IIOP. All containers that support EJB clients must be capable of using the EJB interoperability protocol to invoke enterprise beans. All EJB containers must support the invocation of enterprise...
beans using the EJB interoperability protocol. A Java EE product may also support other protocols for the invocation of enterprise beans.

A Java EE product may support multiple object systems (for example, RMI-IIOP and RMI-JRMP). It may not always be possible to pass object references from one object system to objects in another object system. However, when an enterprise bean is using the RMI-IIOP protocol, it must be possible to pass object references for RMI-IIOP or Java IDL objects as arguments to methods on such an enterprise bean, and to return such object references as return values of a method on such an enterprise bean. In addition, it must be possible to pass a reference to an RMI-IIOP-based enterprise bean’s Home or Remote interface to a method on an RMI-IIOP or Java IDL object, or to return such an enterprise bean object reference as a return value from such an RMI-IIOP or Java IDL object.

In a Java EE product that includes both an EJB container and a web container, both containers are required to support access to local enterprise beans. No support is provided for access to local enterprise beans from the application client container or the applet container.

EE.6.4 Servlet 3.1 Requirements

The Servlet specification defines the packaging and deployment of web applications, whether standalone or as part of a Java EE application. The Servlet specification also addresses security, both standalone and within the Java EE platform. These optional components of the Servlet specification are requirements of the Java EE platform.

The Servlet specification includes additional requirements for web containers that are part of a Java EE product and a Java EE product must meet these requirements as well.

The Servlet specification defines distributable web applications. To support Java EE applications that are distributable, this specification adds the following requirements.

Web containers must support Java EE distributable web applications placing objects of any of the following types (when supported by the Java EE product) into a javax.servlet.http.HttpSession object using the setAttribute or putValue methods:
• java.io.Serializable
• javax.ejb.EJBObject
• javax.ejb.EJBHome
• javax.ejb.EJBLocalObject
• javax.ejb.EJBLocalHome
• javax.transaction.UserTransaction
• a javax.naming.Context object for the java:comp/env context
• a reference to an EJB local or remote business interface or no-interface view

Web containers may support objects of other types as well. Web containers must throw a java.lang.IllegalArgumentException if an object that is not one of the above types, or another type supported by the container, is passed to the setAttribute or putValue methods of an HttpSession object corresponding to a Java EE distributable session. This exception indicates to the programmer that the web container does not support moving the object between VMs. A web container that supports multi-VM operation must ensure that, when a session is moved from one VM to another, all objects of supported types are accurately recreated on the target VM.

The Servlet specification defines access to local enterprise beans as an optional feature. This specification requires that all Java EE products that include both a web container and an EJB container provide support for access to local enterprise beans from the web container.


EE.6.5 JavaServer Pages™ (JSP) 2.3 Requirements

The JSP specification depends on and builds on the servlet framework. A Java EE product must support the entire JSP specification.


EE.6.6 Expression Language (EL) 3.0 Requirements

The Expression Language specification was formerly a part of the JavaServer Pages specification. It was split off into its own specification so that it could be used
independently of JavaServer Pages. A Java EE product must support the Expression Language.


EE.6.7 Java™ Message Service (JMS) 2.0 Requirements

A Java Message Service provider must be included in a Java EE product that requires support for JMS. The JMS implementation must provide support for both JMS point-to-point and publish/subscribe messaging, and thus must make those facilities available using the ConnectionFactory and Destination APIs.

The JMS specification defines several interfaces intended for integration with an application server. A Java EE product need not provide objects that implement these interfaces, and portable Java EE applications must not use the following interfaces:

- javax.jms.ServerSession
- javax.jms.ServerSessionPool
- javax.jms.ConnectionConsumer
- all javax.jms XA interfaces

The following methods may only be used by application components executing in the application client container:

- javax.jms.MessageConsumer method getMessageListener
- javax.jms.MessageConsumer method setMessageListener
- javax.jms.JMSContext method getMessageListener
- javax.jms.JMSContext method setMessageListener
- javax.jms.Connection method setExceptionListener
- javax.jms.Connection method stop
- javax.jms.Connection method setClientID
- javax.jms.JMSContext method stop
- javax.jms.JMSContext method setClientID
- javax.jms.JMSContext method setExceptionListener
- javax.jms.JMSContext method createContext

The following methods may only be used by application components executing in the application client container. Note, however, that these methods
provide an expert facility not used by ordinary applications. See the JMS specification for further detail.

- javax.jms.Session method setMessageListener
- javax.jms.Session method getMessageListener
- javax.jms.Session method run
- javax.jms.Connection method createConnectionConsumer
- javax.jms.Connection method createSharedConnectionConsumer
- javax.jms.Connection method createDurableConnectionConsumer
- javax.jms.Connection method createSharedDurableConnectionConsumer

A Java EE container may throw a JMSException (if allowed by the method) or a JMSRuntimeException (if throwing a JMSException is not allowed by the method) if the application component violates any of the above restrictions.

Application components in the web and EJB containers must not attempt to create more than one active (not closed) Session object per connection. An attempt to use the Connection object's createSession method when an active Session object exists for that connection should be prohibited by the container. The container should throw a JMSException if the application component violates this restriction. An attempt to use the JMSContext object's createContext method should be prohibited by the container. The container should throw a JMSRuntimeException, since the first JMSContext already contains a connection and session and this method would create a second session on the same connection. Application client containers must support the creation of multiple sessions for each connection.

The JMS specification defines further restrictions on the use of JMS in the EJB and web containers. In general, the behavior of a JMS provider should be the same in both the EJB container and the web container.


**EE.6.8 Java™ Transaction API (JTA) 1.2 Requirements**

JTA defines the UserTransaction interface that is used by applications to start, and commit or abort transactions. Application components get a UserTransaction object through a JNDI lookup using the name java:comp/UserTransaction or by requesting injection of a UserTransaction object.
JTA also defines the TransactionSynchronizationRegistry interface that can be used by system level components such as persistence managers to interact with the transaction manager. These components get a TransactionSynchronizationRegistry object through a JNDI lookup using the name java:comp/TransactionSynchronizationRegistry or by requesting injection of a TransactionSynchronizationRegistry object.

A number of interfaces defined by JTA are used by an application server to communicate with a transaction manager, and for a transaction manager to interact with a resource manager. These interfaces must be supported as described in the Connector specification. In addition, support for other transaction facilities may be provided transparently to the application by a Java EE product.


### EE.6.9 JavaMail™ 1.5 Requirements

The JavaMail API allows for access to email messages contained in message stores, and for the creation and sending of email messages using a message transport. Specific support is included for Internet standard MIME messages. Access to message stores and transports is through protocol providers supporting specific store and transport protocols. The JavaMail API specification does not require any specific protocol providers, but the JavaMail reference implementation includes an IMAP message store provider, a POP3 message store provider, and an SMTP message transport provider.

Configuration of the JavaMail API is typically done by setting properties in a Properties object that is used to create a javax.mail.Session object using a static factory method. To allow the Java EE platform to configure and manage JavaMail API sessions, an application component that uses the JavaMail API should request a Session object using JNDI, and should list its need for a Session object in its deployment descriptor using a resource-ref element, or by using a Resource annotation. A JavaMail API Session object should be considered a resource factory, as described in Section EE.5.7, “Resource Manager Connection Factory References.” This specification requires that the Java EE platform support javax.mail.Session objects as resource factories, as described in that section.

The Java EE platform requires that a message transport be provided that is capable of handling addresses of type javax.mail.internet.InternetAddress and messages of type javax.mail.internet.MimeMessage. The default message transport must be properly configured to send such messages using the send method of the javax.mail.Transport class. Any authentication needed by the
default transport must be handled without need for the application to provide a javax.mail.Authenticator or to explicitly connect to the transport and supply authentication information.

This specification does not require that a Java EE product support any message store protocols.

Note that the JavaMail API creates threads to deliver notifications of Store, Folder, and Transport events. The use of these notification facilities may be limited by the restrictions on the use of threads in various containers. In EJB containers, for instance, it is typically not possible to create threads.

The JavaMail API uses the JavaBeans Activation Framework API to support various MIME data types. The JavaMail API must include javax.activation.DataContentHandlers for the following MIME data types, corresponding to the Java programming language type indicated in Table EE.6-5.

**Table EE.6-5** JavaMail API MIME Data Type to Java Type Mappings

<table>
<thead>
<tr>
<th>Mime Type</th>
<th>Java Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>text/plain</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>text/html</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>text/xml</td>
<td>java.lang.String</td>
</tr>
<tr>
<td>multipart/*</td>
<td>javax.mail.internet.MimeMultipart</td>
</tr>
<tr>
<td>message/rfc822</td>
<td>javax.mail.internet.MimeMessage</td>
</tr>
</tbody>
</table>


**EE.6.10  Java EE™ Connector Architecture 1.7 Requirements**

In full Java EE products, all EJB containers and all web containers must support the full set of Connector APIs. All such containers must support Resource Adapters that use any of the specified transaction capabilities. The Java EE deployment tools must support deployment of Resource Adapters, as defined in the Connector specification, and must support the deployment of applications that use Resource Adapters.

EE.6.11 Web Services for Java EE 1.4 Requirements

The Web Services for Java EE specification defines the capabilities a Java EE application server must support for deployment of web service endpoints. A complete deployment model is defined, including several new deployment descriptors. All Java EE products must support the deployment and execution of web services as specified by the Web Services for Java EE specification (JSR-109).


EE.6.12 Java™ API for XML-based RPC (JAX-RPC) 1.1 Requirements (Optional)

The JAX-RPC specification defines client APIs for accessing web services as well as techniques for implementing web service endpoints. The Web Services for Java EE specification describes the deployment of JAX-RPC-based services and clients. The EJB and Servlet specifications also describe aspects of such deployment. In Java EE products that support JAX-RPC, it must be possible to deploy JAX-RPC-based applications using any of these deployment models.

The JAX-RPC specification describes the support for message handlers that can process message requests and responses. In general, these message handlers execute in the same container and with the same privileges and execution context as the JAX-RPC client or endpoint component with which they are associated. These message handlers have access to the same JNDI java:comp/env namespace as their associated component. Custom serializers and deserializers, if supported, are treated in the same way as message handlers.

Note that neither web service annotations nor injection is supported for JAX-RPC service endpoints and handlers. New applications are encouraged to use JAX-WS to take advantage of these new facilities that make it easier to write web services.

EE.6.13  **Java™ API for XML Web Services (JAX-WS) 2.2 Requirements**

The JAX-WS specification provides support for web services that use the JAXB API for binding XML data to Java objects. The JAX-WS specification defines client APIs for accessing web services as well as techniques for implementing web service endpoints. The Web Services for Java EE specification describes the deployment of JAX-WS-based services and clients. The EJB and Servlet specifications also describe aspects of such deployment. It must be possible to deploy JAX-WS-based applications using any of these deployment models.

The JAX-WS specification describes the support for message handlers that can process message requests and responses. In general, these message handlers execute in the same container and with the same privileges and execution context as the JAX-WS client or endpoint component with which they are associated. These message handlers have access to the same JNDI `java:comp/env` namespace as their associated component. Custom serializers and deserializers, if supported, are treated in the same way as message handlers.


EE.6.14  **Java™ API for RESTful Web Services (JAX-RS) 2.0 Requirements**

JAX-RS defines APIs for the development of Web services built according to the Representational State Transfer (REST) architectural style.

In a full Java EE product, all Java EE web containers are required to support applications that use JAX-RS technology.

The specification describes the deployment of services as a servlet. It must be possible to deploy JAX-RS-based applications using this deployment model with the `servlet-class` element of the web.xml descriptor naming the application-supplied extension of the JAX-RS Application abstract class.

The specification defines a set of optional container-managed facilities and resources that are intended to be available in a Java EE container — all such features and resources must be made available.

EE.6.15  Java API for WebSocket 1.0 (WebSocket) Requirements

The Java API for WebSocket (WebSocket) is a standard API for creating WebSocket applications. In a full Java EE product, all Java EE web containers are required to support the WebSocket API.

The Java API for WebSocket specification can be found at http://jcp.org/en/jsr/detail?id=356.

EE.6.16  Java API for JSON Processing 1.0 (JSON-P) Requirements

JSON (JavaScript Object Notation) is a lightweight data-interchange format used by many web services. The Java API for JSON Processing (JSON-P) provides a convenient way to process (parse, generate, transform, and query) JSON text.

In a full Java EE product, all Java EE application client containers, web containers, and EJB containers are required to support the JSON-P API.

The Java API for JSON Processing specification can be found at http://jcp.org/en/jsr/detail?id=353.

EE.6.17  Concurrency Utilities for Java EE 1.0 (Concurrency Utilities) Requirements

Concurrency Utilities for Java EE is a standard API for providing asynchronous capabilities to Java EE application components through the following types of objects: managed executor service, managed scheduled executor service, managed thread factory, and context service. In a full Java EE product, all Java EE web containers and EJB containers are required to support the Concurrency Utilities API. The Java EE Product Provider must provide preconfigured default managed executor service, managed scheduled executor service, managed thread factory, and context service objects for use by the application in the containers in which the Concurrency Utilities API is required to be supported.

The Concurrency Utilities for Java EE specification can be found at http://jcp.org/en/jsr/detail?id=236.
**EE.6.18 Batch Applications for the Java Platform 1.0 (Batch) Requirements**

The Batch Applications for the Java Platform API (Batch) provides a programming model for batch applications and a runtime for scheduling and executing jobs.

In a full Java EE product, all Java EE web containers and EJB containers are required to support the Batch API.


**EE.6.19 Java™ Architecture for XML Binding (JAXB) 2.2 Requirements**

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML schema to a representation in Java language programs. JAXB can be used independently or in combination with JAX-WS, where it provides a standard data binding for web service messages. In a full Java EE product, all Java EE application client containers, web containers, and EJB containers are required to support the JAXB API.


**EE.6.20 Java™ API for XML Registries (JAXR) 1.0 Requirements (Optional)**

The JAXR specification defines APIs for client access to XML-based registries such as ebXML registries and UDDI registries. Java EE products that support JAXR must include a JAXR registry provider that meets at least the JAXR level 0 requirements.

EE.6.21 Java™ Platform, Enterprise Edition Management API 1.1 Requirements

The Java EE Management API provides APIs for management tools to query a Java EE application server to determine its current status, applications deployed, and so on. All Java EE products must support this API as described in its specification.


EE.6.22 Java™ Platform, Enterprise Edition Deployment API 1.2 Requirements (Optional)

The Java EE Deployment API defines the interfaces between the runtime environment of a deployment tool and plug-in components provided by a Java EE application server. These plug-in components execute in the deployment tool and implement the Java EE product-specific deployment mechanisms. Java EE products that support the Java EE Deployment API are required to supply these plug-in components for use in tools from other vendors.

Note that the Java EE Deployment specification does not define new APIs for direct use by Java EE applications. However, it would be possible to create a Java EE application that acts as a deployment tool and provides the runtime environment required by the Java EE Deployment specification.


EE.6.23 Java™ Authorization Contract for Containers (JACC) 1.5 Requirements

The JACC specification defines a contract between a Java EE application server and an authorization policy provider. In a full Java EE product, all Java EE application containers, web containers, and enterprise bean containers are required to support this contract.

The JACC specification can be found at http://jcp.org/en/jsr/detail?id=115.
EE.6.24 Java™ Authentication Service Provider Interface for Containers (JASPIC) 1.1 Requirements

The JASPIC specification defines a service provider interface (SPI) by which authentication providers implementing message authentication mechanisms may be integrated in client or server message processing containers or runtimes. Authentication providers integrated through this interface operate on network messages provided to them by their calling container. They transform outgoing messages such that the source of the message may be authenticated by the receiving container, and the recipient of the message may be authenticated by the message sender. They authenticate incoming messages and return to their calling container the identity established as a result of the message authentication.

In a full Java EE product, all Java EE application containers, web containers, and enterprise bean containers are required to support the baseline compatibility requirements as defined by the JASPIC specification. In a full Java EE product, all web containers must also support the Servlet Container Profile as defined in the JASPIC specification.

The JASPIC specification can be found at http://jcp.org/en/jsr/detail?id=196.

EE.6.25 Debugging Support for Other Languages (JSR-45) Requirements

JSP pages are usually translated into Java language pages and then compiled to create class files. The Debugging Support for Other Languages specification describes information that can be included in a class file to relate class file data to data in the original source file. All Java EE products are required to be able to include such information in class files that are generated from JSP pages.

The Debugging Support for Other Languages specification can be found at http://jcp.org/en/jsr/detail?id=45.

EE.6.26 Standard Tag Library for JavaServer Pages™ (JSTL) 1.2 Requirements

JSTL defines a standard tag library that makes it easier to develop JSP pages. All Java EE products are required to provide JSTL for use by all JSP pages.

EE.6.27 Web Services Metadata for the Java™ Platform 2.1 Requirements

The Web Services Metadata for the Java Platform specification defines Java language annotations that can be used to simplify the development of web services. These annotations can be used with JAX-WS web service components.


EE.6.28 JavaServer Faces™ 2.2 Requirements

JavaServer Faces technology simplifies building user interfaces for JavaServer applications. Developers of various skill levels can quickly build web applications by: assembling reusable UI components in a page; connecting these components to an application data source; and wiring client-generated events to server-side event handlers. In a full Java EE product, all Java EE web containers are required to support applications that use the JavaServer Faces technology.


EE.6.29 Common Annotations for the Java™ Platform 1.2 Requirements

The Common Annotations specification defines Java language annotations that are used by several other specifications, including this specification. The specifications that use these annotations fully define the requirements for these annotations. The applet container need not support any of these annotations. All other containers must provide definitions for all of these annotations, and must support the semantics of these annotations as described in the corresponding specifications and summarized in the following table.

<table>
<thead>
<tr>
<th>Annotation</th>
<th>App Client</th>
<th>Web</th>
<th>EJB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Resources</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PostConstruct</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

**EE.6.30 Java™ Persistence API 2.1 Requirements**

Java Persistence is the standard API for the management of persistence and object/relational mapping. The Java Persistence specification provides an object/relational mapping facility for application developers using a Java domain model to manage a relational database.

As mandated by the Java Persistence specification, in a Java EE environment the classes of the persistence unit should not be loaded by the application class loader or any of its parent class loaders until after the entity manager factory for the persistence unit has been created.


---

### Table EE.6-6  Common Annotations Support by Container

<table>
<thead>
<tr>
<th>Annotation</th>
<th>App Client</th>
<th>Web</th>
<th>EJB</th>
</tr>
</thead>
<tbody>
<tr>
<td>PreDestroy</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Generated</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>RunAs</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DeclareRoles</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RolesAllowed</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>PermitAll</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DenyAll</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>ManagedBean</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DataSourceDefinition</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>DataSourceDefinitions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Priority</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

EE.6.31   Bean Validation 1.1 Requirements

The Bean Validation specification defines a metadata model and API for JavaBean validation. The default metadata source is annotations, with the ability to override and extend the metadata through the use of XML validation descriptors.

The Java EE platform requires that web containers make an instance of ValidatorFactory available to JSF implementations by storing it in a servlet context attribute named javax.faces.validator.beanValidator.ValidatorFactory.

The Java EE platform also requires that an instance of ValidatorFactory be made available to JPA providers as a property in the map that is passed as the second argument to the createContainerEntityManagerFactory(PersistenceUnitInfo, Map) method of the PersistenceProvider interface, under the name javax.persistence.validation.factory.

Additional requirements on Java EE platform containers are specified in the Bean Validation specification, which can be found at http://jcp.org/en/jsr/detail?id=349.

EE.6.32   Managed Beans 1.0 Requirements

The Managed Beans specification defines a lightweight component model that supports the basic lifecycle model, resource injection facility and interceptor service present in the Java EE platform.

The Managed Beans specification can be found at http://jcp.org/en/jsr/detail?id=316.

EE.6.33   Interceptors 1.2 Requirements

The Interceptors specification makes more generally available the interceptor facility originally defined as part of the EJB 3.0 specification.

The Interceptors specification can be found at http://jcp.org/en/jsr/detail?id=318.
EE.6.34  Contexts and Dependency Injection for the Java EE Platform 1.1 Requirements

The Contexts and Dependency Injection (CDI) specification defines a set of contextual services, provided by Java EE containers, aimed at simplifying the creation of applications that use both web tier and business tier technologies.

The CDI specification can be found at http://jcp.org/en/jsr/detail?id=346.

EE.6.35  Dependency Injection for Java 1.0 Requirements

The Dependency Injection for Java (DI) specification defines a standard set of annotations (and one interface) for use on injectable classes.

In the Java EE platform, support for Dependency Injection is mediated by CDI. See Section EE.5.24, “Support for Dependency Injection” for more detail.

This chapter describes the interoperability requirements for the Java™ Platform, Enterprise Edition (Java EE).

EE.7.1 Introduction to Interoperability

The Java EE platform will be used by enterprise environments that support clients of many different types. The enterprise environments will add new services to existing Enterprise Information Systems (EISs). They will be using various hardware platforms and applications written in various languages.

In particular, the Java EE platform may be used in enterprise environments to bring together any of the following kinds of applications:

- applications written in such languages as C++ and Visual Basic.
- applications running on a personal computer platform, or Unix® workstation.
- standalone Java technology-based applications that are not directly supported by the Java EE platform.

It is the interoperability requirements of the Java EE platform, set out in this chapter, that make it possible for it to provide indirect support for various types of clients, different hardware platforms, and a multitude of software applications. The interoperability features of the Java EE platform permit the underlying disparate systems to work together seamlessly, while hiding much of the complexity required to join these pieces together.

The interoperability requirements for the current Java EE platform release allow:
• Java EE applications to connect to legacy systems using CORBA or low-level socket interfaces.
• Java EE applications to connect to other Java EE applications across multiple Java EE products, whether from different Product Providers or from the same Provider, and multiple Java EE platforms.

In this version of the specification, interoperability between Java EE applications running in different platforms is accomplished through the HTTP protocol, possibly using SSL, or the EJB interoperability protocol based on IIOP.

**EE.7.2 Interoperability Protocols**

This specification requires that a Java EE product support a standard set of protocols and formats to ensure interoperability between Java EE applications and with other applications that also implement these protocols and formats. The specification requires support for the following groups of protocols and formats:

• Internet and web protocols
• OMG protocols
• Java technology protocols
• Data formats

Most of these protocols and formats are supported by Java SE and by the underlying operating system.

**EE.7.2.1 Internet and Web Protocols**

Standards based Internet protocols are the means by which different pieces of the platform communicate. The Java EE platform typically supports the following Internet protocols, as described in the corresponding technology specifications:

• TCP/IP protocol family—This is the core component of Internet communication. TCP/IP and UDP/IP are the standard transport protocols for the Internet. TCP/IP is supported by Java SE and the underlying operating system.
• HTTP 1.1—This is the core protocol of web communication. As with TCP/IP, HTTP 1.1 is supported by Java SE and the underlying operating system. A Java EE web container must be capable of advertising its HTTP services on the standard HTTP port, port 80.
• SSL 3.0, TLS 1.0—SSL 3.0 (Secure Socket Layer) represents the security layer for Web communication. It is available indirectly when using the https URL as opposed to the http URL. A Java EE web container must be capable of advertising its HTTPS service on the standard HTTPS port, port 443. SSL 3.0 and TLS 1.0 are also required as part of the EJB interoperability protocol in the EJB specification.

• SOAP 1.1—SOAP is a presentation layer protocol for the exchange of XML messages. Support for SOAP layered on HTTP is required, as described in the JAX-RPC and JAX-WS specifications.

• SOAP 1.2—SOAP 1.2 is the version of the SOAP protocol standardized through W3C and supported by JAX-WS.

• WS-I Basic Profile 1.1—The WS-I Basic Profile, in combination with the Simple SOAP Binding Profile and Attachment Profile, describes interoperability requirements for the use of SOAP 1.1, WSDL 1.1, and MIME-based SOAP with Attachments. It is required by the JAX-RPC and JAX-WS specifications.

• WebSocket protocol—The WebSocket protocol enables two-way communication layered over TCP. It enables bi-directional communication over a single connection established by an initial HTTP handshake and upgrade request. The WebSocket protocol has been standardized by IETF under RFC 6455.

EE.7.2.2 OMG Protocols

This specification requires the a full Java EE product to support the following Object Management Group (OMG) based protocols:

• IIOP (Internet Inter-ORB Protocol)—Supported by Java IDL and RMI-IIOP in Java SE. Java IDL provides standards-based interoperability and connectivity through the Common Object Request Broker Architecture (CORBA). CORBA specifies the Object Request Broker (ORB) which allows applications to communicate with each other regardless of location. This interoperability is delivered through IIOP, and is typically found in an intranet setting. IIOP can be used as an RMI protocol using the RMI-IIOP technology. IIOP is defined in Chapters 13 and 15 of the CORBA 2.3.1 specification, available at http://omg.org/cgi-bin/doc?formal/99-10-07.

• EJB interoperability protocol—The EJB interoperability protocol is based on IIOP (GIOP 1.2) and the CSIv2 CORBA Secure Interoperability specification. The EJB interoperability protocol is defined in the EJB specification.
• CORBA Interoperable Naming Service protocol—The COSNaming-based INS protocol is an IIOP-based protocol for accessing a name service. The EJB interoperability protocol requires the use of the INS protocol for lookup of EJB objects using the JNDI API. In addition, it must be possible to use the Java IDL COSNaming API to access the INS name service. All Java EE products must provide a name service that meets the requirements of the Interoperable Naming Service specification, available at http://.omg.org/cgi-bin/doc?formal/2000-06-19. This name service may be provided as a separate name server or as a protocol bridge or gateway to another name service. Either approach is consistent with this specification.

EE.7.2.3 Java Technology Protocols
This specification requires the Java EE platform to support the JRMP protocol, which is the Java technology-specific Remote Method Invocation (RMI) protocol. JRMP is a required component of Java SE and is one of two required RMI protocols. (IIOP is the other required RMI protocol, see above.)

JRMP is a distributed object model for the Java programming language. Distributed systems, running in different address spaces and often on different hosts, must be able to communicate with each other. JRMP permits program-level objects in different address spaces to invoke remote objects using the semantics of the Java programming language object model.

Complete information on the JRMP specification can be found at http://docs.oracle.com/javase/7/docs/technotes/guides/rmi.

EE.7.2.4 Data Formats
In addition to the protocols that allow communication between components, this specification requires Java EE platform support for a number of data formats. These formats provide the definition for data exchanged between components.

The following data formats must be supported:

• XML 1.0—The XML format can be used to construct documents, RPC messages, etc. The JAXP API provides support for processing XML format data. The JAX-RPC API provides support for XML RPC messages, as well as a mapping between Java classes and XML.
• JSON—JSON is a language-neutral plain text format commonly used to transfer structured data between a server and web application. The JSON-P
API provides support for the parsing, generation, transformation, and querying of JSON text.

- HTML 3.2—This represents the minimum web browser standard document format. While not directly supported by Java EE APIs, Java EE web clients must be able to display HTML 3.2 documents.

- Image file formats—The Java EE platform must support GIF, JPEG, and PNG images. Support for these formats is provided by the java.awt.image APIs (see the URL: http://docs.oracle.com/javase/7/docs/api/java/awt/image/package-summary.html) and by Java EE web clients.

- JAR files—JAR (Java Archive) files are the standard packaging format for Java technology-based application components, including the ejb-jar specialized format, the Web application archive (WAR) format, the Resource Adapter archive (RAR), and the Java EE enterprise application archive (EAR) format. JAR is a platform-independent file format that permits many files to be aggregated into one file. This allows multiple Java components to be bundled into one JAR file and downloaded to a browser in a single HTTP transaction. JAR file formats are supported by the java.util.jar and java.util.zip packages. For complete information on the JAR specification, see http://docs.oracle.com/javase/7/docs/technote guides/jar.

- Class file format—The class file format is specified in the Java Virtual Machine specification. Each class file contains one Java programming language type—either a class or an interface—and consists of a stream of 8-bit bytes. For complete information on the class file format, see http://docs.oracle.com/javase/specs/.
CHAPTER EE.8

Application Assembly and Deployment

This chapter specifies Java™ Platform, Enterprise Edition (Java EE) requirements for assembling, packaging, and deploying a Java EE application. The main goal of these requirements is to provide scalable and modular application assembly, and portable deployment of Java EE applications into any Java EE product.

Java EE applications are composed of one or more Java EE components and an optional Java EE application deployment descriptor. The deployment descriptor, if present, lists the application’s components as modules. If the deployment descriptor is not present, the application’s modules are discovered using default naming rules. A Java EE module represents the basic unit of composition of a Java EE application. Java EE modules consist of one or more Java EE components and an optional module level deployment descriptor. The flexibility and extensibility of the Java EE component model facilitates the packaging and deployment of Java EE components as individual components, component libraries, or Java EE applications.

A full Java EE product must support all the facilities described in this chapter. A Java EE profile may support only a subset of the Java EE module types. Any requirements related to a module type not supported by a product based on a particular Java EE profile should be understood to not apply to such a product.

Figure EE.8-1 shows the composition model for Java EE deployment units and includes the optional use of alternate deployment descriptors by the application package to preserve any digital signatures of the original Java EE modules. An alternate deployment descriptor may also be provided external to the application package as described in Section EE.8.4.1, “Assembling a Java EE Application.”
EE.8.1 Application Development Life Cycle

The development life cycle of a Java EE application begins with the creation of discrete Java EE components. These components may then be packaged with a module level deployment descriptor to create a Java EE module. Java EE modules can be deployed as stand-alone units or can be assembled with a Java EE application deployment descriptor and deployed as a Java EE application.

Figure EE.8-2 shows the life cycle of a Java EE application.
EE.8.1.1 Component Creation

The EJB, servlet, application client, and Connector specifications include the XML Schema definition of the associated module level deployment descriptors and component packaging architecture required to produce Java EE modules. (The application client specification is found in Chapter EE.10 of this document.)

A Java EE module is a collection of one or more Java EE components (web, EJB, application client, or Connector) with an optional module deployment descriptor of that type. Any number of components of the same container type can be packaged together with a single Java EE deployment descriptor appropriate to that container type to produce a Java EE module. Components of different container types may not be mixed in a single Java EE module, except for the packaging of EJB components within a web module.

- A Java EE module represents the basic unit of composition of a Java EE application. In some cases a single Java EE module (not necessarily packaged into a Java EE application package) will contain an entire application. In other cases an application will be composed of multiple Java EE modules.
- The deployment descriptor for a Java EE module contains declarative data required to deploy the components in the module. The deployment descriptor for a Java EE module also contains assembly instructions that describe how the components are composed into an application.
• Starting with version 5 of the Java EE platform, a web application module, an enterprise bean module, or an application client module need not contain a deployment descriptor. Instead, the deployment information may be specified by annotations present in the class files of the module.

• Starting with version 5 of the Java EE platform, a Java EE enterprise application archive need not contain a deployment descriptor. Instead, the deployment information may be determined using default naming rules for embedded modules.

• An individual Java EE module can be deployed as a stand-alone Java EE module without an application level deployment descriptor and represents a valid Java EE application.

• Java EE modules may express dependencies on libraries as described below in Section EE.8.2, “Library Support.”

All Java EE modules have a name. The name can be explicitly set in the deployment descriptor for the module. If not set, the name of the module is the pathname of the module in the ear file with any filename extension (.jar, .war, .rar) removed, but with any directory names included. The name of a module must be unique within an application. If and only if the name is not unique (e.g., because two names are identical after removing different filename extensions) the deployment tool may choose new unique names for any of the conflicting modules; module names that do not conflict must not be changed. The algorithm for choosing unique names in such a case is product specific. Applications that depend on the names of their modules must ensure that their module names are unique.

For example, an application with this structure:

```
myapp.ear
 inventory.jar
 ui.war
```

has a default application name of "myapp", and defines two modules with default names "inventory" and "ui".

An application with this structure:

```
bigapp.ear
 ejbs
 inventory.jar
 accounts.jar
 ui
```

has a default application name of "bigapp", and defines three modules with default names "ejbs", "inventory", and "accounts", along with a module named "ui".

Final Release
has a default application name of "bigapp", and defines four modules with
default names "ejbs/inventory", "ejbs/accounts", "ui/store", and "ui/admin".

EE.8.1.2 Application Assembly

A Java EE application may consist of one or more Java EE modules and one Java
EE application deployment descriptor. A Java EE application is packaged using the
Java Archive (JAR) file format into a file with a .ear (Enterprise ARchive)
filename extension. A minimal Java EE application package will only contain Java
EE modules and, optionally, the application deployment descriptor. A Java EE
application package may also include libraries referenced by Java EE modules
(using the Class-Path mechanism described below in Section EE.8.2, “Library
Support”), help files, and documentation to aid the deployer.

The deployment of a portable Java EE application should not depend on any
entities that may be contained in the package other than those defined by this
specification. Deployment of a portable Java EE application must be possible
using only the application deployment descriptor, if any, and the Java EE modules
(and their dependent libraries) and descriptors listed in it.

The Java EE application deployment descriptor represents the top level view
of a Java EE application’s contents. The Java EE application deployment
descriptor is specified by an XML schema or document type definition (see
Section EE.8.6, “Java EE Application XML Schema”).

In certain cases, a Java EE application will need customization before it can
be deployed into the enterprise. New Java EE modules may be added to the
application. Existing modules may be removed from the application. Some Java
EE modules may need custom content created, changed, or replaced. For example,
an application consumer may need to use an HTML editor to add company
graphics to a template login page that was provided with a Java EE web
application.

All Java EE applications have a name. The name can be explicitly set in the
application deployment descriptor. If not set, the name of the application is the
base name of the ear file with any .ear extension removed and with any directory
names removed. The name of an application must be unique in an application
server instance. If an attempt is made to deploy an application with a name that
conflicts with an already deployed application, the deployment tool may choose a
new unique name for the application. The deployment tool may also allow a
different name to be specified at deployment time. A deployment tool may use
product-specific means to decide whether a deployment operation is a deployment of a new application, in which case the name must be unique, or a redeployment of an existing application, in which case the name may match the existing application.

Similarly, when a stand-alone module is deployed, the module name is used as the application name, and obeys the same rules as described above for application names. The module name can be explicitly set in the module deployment descriptor. If not set, the name of the module is the base name of the module file with any extension (.war, .jar, .rar) removed and with any directory names removed.

EE.8.1.3 Deployment

During the deployment phase of an application’s life cycle, the application is installed on the Java EE platform and then is configured and integrated into the existing infrastructure. Each Java EE module listed in the application deployment descriptor (or discovered using the default rules described below) must be deployed according to the requirements of the specification for the respective Java EE module type. Each module listed must be installed in the appropriate container type and the environment properties of each module must be set appropriately in the target container to reflect the values declared by the deployment descriptor element for each component.

EE.8.2 Library Support

The Java EE platform provides several mechanisms for applications to use optional packages and shared libraries (hereafter referred to as libraries). Libraries may be bundled with an application or may be installed separately for use by any application.

Java EE products are required to support the use of bundled and installed libraries as specified in the Extension Mechanism Architecture and Optional Package Versioning specifications (available at http://docs.oracle.com/javase/7/docs/technote/guides/extensions/) and the JAR File Specification (available at http://docs.oracle.com/javase/7/docs/technote/guides/jar/jar.html). Using this mechanism a Java EE JAR file can reference utility classes or other shared classes or resources packaged in a separate .jar file or directory that is included in the same Java EE application package, or that has been previously installed in the Java EE containers.
EE.8.2.1 Bundled Libraries

Libraries bundled with an application may be referenced in the following ways:

1. A JAR format file (such as a .jar file, .war file, or .rar file) may reference a .jar file or directory by naming the referenced .jar file or directory in a Class-Path header in the referencing JAR file’s Manifest file. The referenced .jar file or directory is named using a URL relative to the URL of the referencing JAR file. The Manifest file is named META-INF/MANIFEST.MF in the JAR file. The Class-Path entry in the Manifest file is of the form

Class-Path: list-of-jar-files-or-directories-separated-by-spaces

(See the JAR File Specification for important details and limitations of the syntax of Class-Path headers.) The Java EE deployment tools must process all such referenced files and directories when processing a Java EE module. Any deployment descriptors in referenced .jar files must be ignored when processing the referencing .jar file. The deployment tool must install the .jar files and directories in a way that preserves the relative references between the files. Typically this is done by installing the .jar files into a directory hierarchy that matches the original application directory hierarchy. All referenced .jar files or directories must appear in the logical class path of the referencing JAR files at runtime.

Only JAR format files or directories containing class files or resources to be loaded directly by a standard class loader should be the target of a Class-Path reference; such files are always named with a .jar extension. Top level JAR files that are processed by a deployment tool should not contain Class-Path entries; such entries would, by definition, reference other files external to the deployment unit. A deployment tool is not required to process such external references.

2. A .ear file may contain a directory that contains libraries packaged in JAR files. The library-directory element of the .ear file’s deployment descriptor contains the name of this directory. If a library-directory element isn’t specified, or if the .ear file does not contain a deployment descriptor, the directory named lib is used. An empty library-directory element may be used to specify that there is no library directory.

All files in this directory (but not subdirectories) with a .jar extension must be made available to all components packaged in the EAR file, including application clients. These libraries may reference other libraries, either bun-
dled with the application or installed separately, using any of the techniques described herein.

3. A web application may include libraries in the `WEB-INF/lib` directory. See the Servlet specification for details. These libraries may reference other libraries, either bundled with the application or installed separately, using any of the techniques described herein.

EE.8.2.2 Installed Libraries

Libraries that have been installed separately may be referenced in the following way:

1. JAR format files of all types may contain an `Extension-List` attribute in their Manifest file, indicating a dependency on an installed library. The `JAR File Specification` defines the semantics of such attributes for use by applets; this specification requires support for such attributes for all component types and corresponding JAR format files. The deployment tool is required to check such dependency information and reject the deployment of any component for which the dependency cannot be met. Portable applications should not assume that any installed libraries will be available to a component unless the component’s JAR format file, or one of the containing JAR format files, expresses a dependency on the library using the `Extension-List` and related attributes.

The referenced libraries must be made available to all components contained within the referencing file, including any components contained within other JAR format files within the referencing file. For example, if a `.ear` file references an installed library, the library must be made available to all components in all `.war` files, EJB `.jar` files, application `.jar` files, and resource adapter `.rar` files within the `.ear` file.

A Java EE product is not required to support downloading of libraries (using the `<extension>-Implementation-URL` header) at deployment time or runtime. A Java EE product is also not required to support more than a single version of an installed library at once. A Java EE product is not required to limit access to installed libraries to only those for which the application has expressed a dependency; the application may be given access to more installed libraries than it has requested. In all of these cases, such support is highly recommended and may be required in a future version of this specification. In particular, we recommend that a Java EE product support multiple versions of an installed library, and by default only allow applications to access the installed libraries for which they have expressed a dependency.
EE.8.2.3 Library Conflicts

If an application includes a bundled version of a library, and the same library exists as an installed library, the instance of the library bundled with the application should be used in preference to any installed version of the library. This allows an application to bundle exactly the version of a library it requires without being influenced by any installed libraries. Note that if the library is also a required component of the Java EE platform version on which the application is being deployed, the platform version may (and typically will) take precedence.

EE.8.2.4 Library Resources

In addition to allowing access to referenced classes, as described above, any resources contained in the referenced JAR files must also be accessible using the Class and ClassLoader getResource methods, as allowed by the security permissions of the application. An application will typically have the security permissions required to access resources in any of the JAR files packaged with the application.

EE.8.2.5 Dynamic Class Loading

Libraries that dynamically load classes must consider the class loading environment of a Java EE application. Libraries will often be loaded by a class loader that is a parent class loader of the class loader that is used to load application classes and thus will not have direct visibility to classes of the application modules. A library that only needs to dynamically load classes provided by the library itself can safely use the Class method forName. However, libraries that need to dynamically load classes that have been provided as a part of the application need to use the context class loader to load the classes. Note that the context class loader may be different in each module of an application. Access to the context class loader requires RuntimePermission("getClassLoader"), which is not normally granted to applications, but should be granted to libraries that need to dynamically load classes. Libraries can use a method such as the following to assert their privilege when accessing the context class loader. This technique will work in both Java SE and Java EE.

```java
public ClassLoader getContextClassLoader() {
 return AccessController.doPrivileged(
 new PrivilegedAction<ClassLoader>() {
 public ClassLoader run() {
 ClassLoader cl = null;
 // Code to set the context class loader
 return cl;
 }
 }
);
}
```
try {
    cl = Thread.currentThread().
    getContextClassLoader();
} catch (SecurityException ex) { }
return cl;
}

Libraries should then use the following technique to load classes.

ClassLoader cl = getContextClassLoader();
if (cl != null) {
    try {
        clazz = Class.forName(name, false, cl);
    } catch (ClassNotFoundException ex) {
        clazz = Class.forName(name);
    }
} else
    clazz = Class.forName(name);

EE.8.2.6 Examples

The following example illustrates a simple use of the bundled library mechanism to reference a library of utility classes that are shared between enterprise beans in two separate ejb-jar files.

app1.ear:
META-INF/application.xml
ejb1.jar Class-Path: util.jar
ejb2.jar Class-Path: util.jar
util.jar

The next example illustrates a more complex use of the Class-Path mechanism. In this example the Developer has chosen to package the enterprise bean client view classes in a separate JAR file and reference that JAR file from the other JAR files that need those classes. Those classes are needed both by ejb2.jar, packaged in the same application as ejb1.jar, and by ejb3.jar and servlet1.jar, packaged in a different application. Those classes are also needed by ejb1.jar itself because they define the remote interface of the enterprise beans in ejb1.jar, and the developer has chosen the by reference model of making these
classes available, as described in the EJB spec. The deployment descriptor for ejb1.jar names the client view JAR file in the ejb-client-jar element.

The Class-Path mechanism must be used by components in app3.ear to reference the client view JAR file that corresponds to the enterprise beans packaged in ejb1.jar of app2.ear. These enterprise beans are referenced by enterprise beans in ejb3.jar and by the servlets packaged in webapp.war.

app2.ear:
META-INF/application.xml
ejb1.jar Class-Path: ejb1_client.jar
deployment descriptor contains:
<ejb-client-jar>ejb1_client.jar</ejb-client-jar>
ejb1_client.jar

ejb2.jar Class-Path: ejb1_client.jar

app3.ear:
META-INF/application.xml
ejb1_client.jar
ejb3.jar Class-Path: ejb1_client.jar
webapp.war Class-Path: ejb1_client.jar
WEB-INF/web.xml
WEB-INF/lib/servlet1.jar

The following example illustrates a simple use of the installed library mechanism to reference a library of utility classes that is installed separately.

app1.ear:
META-INF/application.xml
ejb1.jar:
META-INF/MANIFEST.MF:
Extension-List: util
util-Extension-Name: com/example/util
util-Specification-Version: 1.4
META-INF/ejb-jar.xml

util.jar:
META-INF/MANIFEST.MF:
Extension-Name: com/example/util
Specification-Title: example.com's util package
Specification-Version: 1.4
Specification-Vendor: example.com
Implementation-Version: build96
EE.8.3 Class Loading Requirements

The Java EE specification purposely does not define the exact types and arrangements of class loaders that must be used by a Java EE product. Instead, the specification defines requirements in terms of what classes must or must not be visible to components. A Java EE product is free to use whatever class loaders it chooses to meet these requirements. Portable applications must not depend on the types of class loaders used or the hierarchical arrangement of class loaders, if any. Portable applications must not depend on the order in which classes and resources are loaded. Applications should use the techniques described in Section EE.8.2.5, “Dynamic Class Loading” if they need to load classes dynamically.

In addition to the required classes specified below, a Java EE product must provide a way to allow an application to access a class library installed in the application server, even if it has not expressed a dependency on that library. This supports the use of old applications and extension libraries that do not use the defined extension dependency mechanism.

The following sections describe the requirements for each container type. In all cases, access to classes is governed by the rules of the Java language and the Java virtual machine. In all cases, access to classes and resources is governed by the rules of the Java security model.

Note that while libraries must be accessible to application classes as described below, it may be necessary to use the techniques described in Section EE.8.2.5, “Dynamic Class Loading” if libraries need to access classes packaged in the application modules.

EE.8.3.1 Web Container Class Loading Requirements

Components in the web container must have access to the following classes and resources. Note that as of Java EE 6, EJB components may be packaged in a web component module. Such EJB components have the same access as other components in the web container. See the EJB specification for further detail.

- The content of the WEB-INF/classes directory of the containing war file.
- The content of all jar files in the WEB-INF/lib directory of the containing war file, but not any subdirectories.
- The transitive closure of any libraries referenced by the above jar files (as specified in Section EE.8.2, “Library Support”).
- The transitive closure of any libraries referenced by the war file itself (as specified in Section EE.8.2, “Library Support”).

Final Release
CLASS LOADING REQUIREMENTS

- The transitive closure of any libraries specified by or referenced by the containing ear file (as specified in Section EE.8.2, “Library Support”).
- The contents of all jar files included in any resource adapter archives (rar files) included in the same ear file.
- The contents of all jar files included in each resource adapter archive (rar file) deployed separately to the application server, if that resource adapter is used to satisfy any resource references in the module.
- The contents of all jar files included in each resource adapter archive (rar file) deployed separately to the application server, if any jar file in that rar file is used to satisfy any reference from the module using the Extension Mechanism Architecture (as specified in Section EE.8.2, “Library Support”).
- The transitive closure of any libraries referenced by the jar files in the rar files above (as specified in Section EE.8.2, “Library Support”).
- The transitive closure of any libraries referenced by the rar files themselves (as specified in Section EE.8.2, “Library Support”).
- The Java EE API classes specified in Table EE.6-1 for the web container.
- All Java SE 7 API classes.

Components in the web container may have access to the following classes and resources. Portable applications must not depend on having or not having access to these classes or resources.

- The classes and resources accessible to any other web modules included in the same ear file, as described above.
- The content of any EJB jar files included in the same ear file.
- The content of any client jar files specified by the above EJB jar files.
- The transitive closure of any libraries referenced by the above EJB jar files and client jar files (as specified in Section EE.8.2, “Library Support”).
- The contents of any jar files included in any resource adapter archives (rar files) deployed separately to the application server.
- The transitive closure of any libraries referenced by the jar files in the rar files above (as specified in Section EE.8.2, “Library Support”).
- The transitive closure of any libraries referenced by the rar files above themselves (as specified in Section EE.8.2, “Library Support”).
- The Java EE API classes specified in Table EE.6-1 for the containers other than the web container.
• Any installed libraries available in the application server.
• Other classes or resources contained in the application package, and specified by an explicit use of an extension not defined by this specification.
• Other classes and resources that are part of the implementation of the application server.

Components in the web container must not have access to the following classes and resources, unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application should not have access to the classes in application client jar files.

EE.8.3.2 EJB Container Class Loading Requirements

Components in the EJB container must have access to the following classes and resources.

• The content of the EJB jar file.
• The transitive closure of any libraries referenced by the EJB jar file (as specified in Section EE.8.2, “Library Support”).
• The transitive closure of any libraries specified by or referenced by the containing ear file (as specified in Section EE.8.2, “Library Support”).
• The contents of all jar files included in any resource adapter archives (rar files) included in the same ear file.
• The contents of all jar files included in each resource adapter archive (rar file) deployed separately to the application server, if that resource adapter is used to satisfy any resource references in the module.
• The contents of all jar files included in each resource adapter archive (rar file) deployed separately to the application server, if any jar file in that rar file is used to satisfy any reference from the module using the Extension Mechanism Architecture (as specified in Section EE.8.2, “Library Support”).
• The transitive closure of any libraries referenced by the jar files in the rar files above (as specified in Section EE.8.2, “Library Support”).
• The transitive closure of any libraries referenced by the rar files themselves (as specified in Section EE.8.2, “Library Support”).
• The Java EE API classes specified in Table EE.6-1 for the EJB container.
• All Java SE 7 API classes.

Components in the EJB container may have access to the following classes and resources. Portable applications must not depend on having or not having access to these classes or resources.

• The classes and resources accessible to any web modules included in the same ear file, as described in Section EE.8.3.1, “Web Container Class Loading Requirements” above.
• The content of any EJB jar files included in the same ear file.
• The content of any client jar files specified by the above EJB jar files.
• The transitive closure of any libraries referenced by the above EJB jar files and client jar files (as specified in Section EE.8.2, “Library Support”).
• The contents of any jar files included in any resource adapter archives (rar files) deployed separately to the application server.
• The transitive closure of any libraries referenced by the jar files in the rar files above (as specified in Section EE.8.2, “Library Support”).
• The transitive closure of any libraries referenced by the rar files above themselves (as specified in Section EE.8.2, “Library Support”).
• The Java EE API classes specified in Table EE.6-1 for the containers other than the EJB container.
• Any installed libraries available in the application server.
• Other classes or resources contained in the application package, and specified by an explicit use of an extension not defined by this specification.
• Other classes and resources that are part of the implementation of the application server.

Components in the EJB container must not have access to the following classes and resources, unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application should not have access to the classes in application client jar files.

EE.8.3.3 Application Client Container Class Loading Requirements
Components in the application client container must have access to the following classes and resources.
• The content of the application client jar file.
• The transitive closure of any libraries referenced by the above jar file (as specified in Section EE.8.2, “Library Support”).
• The transitive closure of any libraries specified by or referenced by the containing ear file (as specified in Section EE.8.2, “Library Support”).
• The Java EE API classes specified in Table EE.6-1 for the application client container.
• All Java SE 7 API classes.

Components in the application client container may have access to the following classes and resources. Portable applications must not depend on having or not having access to these classes or resources.

• The Java EE API classes specified in Table EE.6-1 for the containers other than the application client container.
• Any installed libraries available in the application server.
• Other classes or resources contained in the application package, and specified by an explicit use of an extension not defined by this specification.
• Other classes and resources that are part of the implementation of the application server.

Components in the application client container must not have access to the following classes and resources, unless such classes or resources are covered by one of the rules above.

• Other classes or resources in the application package. For example, the application client should not have access to the classes in other application client jar files in the same ear file, nor should it have access to the classes in web applications or ejb jar files in the same ear file.

EE.8.3.4 Applet Container Class Loading Requirements

The requirements for the applet container are completely specified by the Java SE 7 specification. This specification adds no new requirements for the applet container.
EE.8.4 Application Assembly

This section specifies the sequence of steps that are typically followed when composing a Java EE application.

EE.8.4.1 Assembling a Java EE Application

1. Select the Java EE modules that will be used by the application.
2. Create an application directory structure.
   The directory structure of an application is arbitrary, but by following some simple conventions a deployment descriptor may not be needed. The structure should be designed around the requirements of the contained components.
3. Reconcile Java EE module deployment descriptors.
   The deployment descriptors for the Java EE modules must be edited to link internally satisfied dependencies and eliminate any redundant security role names. An optional element alt-dd (described in Section EE.8.6, “Java EE Application XML Schema”) may be used when it is desirable to preserve the original deployment descriptor. The element alt-dd specifies an alternate deployment descriptor to use at deployment time. The edited copy of the deployment descriptor file may be saved in the application directory tree in a location determined by the Application Assembler. If the alt-dd element is not present, the Deployer must read the deployment descriptor directly from the module package.
   a. Choose unique names for the modules contained in the application. If two modules specify conflicting names in their deployment descriptors, create an alternate deployment descriptor for at least one of the modules and change its name. If two modules in the same directory of the ear file have the same base name (e.g., foo.jar and foo.war), rename one of the modules or create an alternate deployment descriptor to specify a unique name for one of the modules.
   b. Link the internally satisfied dependencies of all components in every module contained in the application. For each component dependency, there must only be one corresponding component that fulfills that dependency in the scope of the application.
      i. For each ejb-link, there must be only one matching ejb-name in the scope of the entire application (see Section EE.5.5, “Enterprise
ii. Dependencies that are not linked to internal components must be handled by the Deployer as external dependencies that must be met by resources previously installed on the platform. External dependencies must be linked to the resources on the platform during deployment.

c. Synchronize security role-names across the application. Rename unique role-names with redundant meaning to a common name. Rename role-names with common names but different meanings to unique names. Descriptions of role-names that are used by many components of the application can be included in the application-level deployment descriptor.

d. Assign a context root for each web module included in the Java EE application. The context root is a relative name in the web namespace for the application. Each web module must be given a distinct and non-overlapping name for its context root. The web modules will be assigned a complete name in the namespace of the web server at deployment time. If there is only one web module in the Java EE application, the context root may be the empty string. If no deployment descriptor is included in the application package, the context root of the web module will be the module name. See the Servlet specification for detailed requirements of context root naming.

e. Make sure that each component in the application properly describes any dependencies it may have on other components in the application. A Java EE application should not assume that all components in the application will be available on the class path of the application at run time. Each component might be loaded into a separate class loader with a separate namespace. If the classes in a JAR file depend on classes in another JAR file, the first JAR file should reference the second JAR file using the Class-Path mechanism. A notable exception to this rule is JAR files located in the WEB-INF/lib directory of a web application. All such JAR files are included in the class path of the web application at runtime; explicit references to them using the Class-Path mechanism are not needed. Another exception to this rule is JAR files located in the library directory (usually named lib) in the application package. Note that the presence of component-declaring annotations in shared artifacts, such as libraries in the library directory and libraries referenced by more than one module through Class-Path references, can have unintended and undesirable consequences and is not recommended.

f. There must be only one version of each class in an application. If one
APPLICATION ASSEMBLY 213

componeent depends on one version of a library, and another component
depends on another version, it may not be possible to deploy an application
containing both components. With the exception of application clients, a
Java EE application should not assume that each component is loaded in a
separate class loader and has a separate namespace. All components in a
single application may be loaded in a single class loader and share a single
namespace. Note, however, that it must be possible to deploy an
application such that all components of the application are in a namespace
(or namespaces) separate from that of other applications. Typically, this
will be the normal method of deployment. By default, application clients
are each deployed into their own Java virtual machine instance, and thus
each application client has its own class namespace, and the classes from
application clients are not visible in the class namespace of other
components.

4. (Optional) Create an XML deployment descriptor for the application.
The deployment descriptor must be named application.xml and must reside
in the top level of the META-INF directory of the application .ear file. The
deployment descriptor must be a valid XML document according to the XML
schema for a Java EE application XML document. (Alternatively, the deploy-
ment descriptor may meet the requirements of previous versions of Java EE.)

Many applications that follow the conventions described below will not need
a deployment descriptor for the application. The deployment tool will deter-
mine the components of the application using some simple rules.

5. Package the application.

a. Place the Java EE modules and the deployment descriptor in the
appropriate directories.
b. Package the application directory hierarchy in a file using the JAR file
format. The file should be named with a .ear filename extension.

6. (Optional) Create an alternate deployment descriptor (“alt-dd”) for the appli-
cation, external to the packaged application.
EE.8.4.2 Adding and Removing Modules

After the application is created, Java EE modules may be added or removed before deployment. When adding or removing a module the following steps must be performed:

1. Decide on a location in the application package for the new module. Optionally create new directories in the application package hierarchy to contain any Java EE modules that are being added to the application.

2. Ensure that the name of the new module does not conflict with any of the existing modules, either by choosing an appropriate default filename for the module or by explicitly specifying the module name in the module’s deployment descriptor or in an alternate deployment descriptor.

3. Copy the new Java EE modules to the desired location in the application package. The packaged modules are inserted directly in the desired location; the modules are not unpackaged.

4. Edit the deployment descriptors for the Java EE modules to link the dependencies which are internally satisfied by the Java EE modules included in the application.

5. Edit the Java EE application deployment descriptor (if included) to meet the content requirements of the Java EE platform and the validity requirements of the Java EE application XML DTD or schema.

EE.8.5 Deployment

The Java EE platform supports three types of deployment units:

- Stand-alone Java EE modules.
- Java EE applications, consisting of one or more Java EE modules.
- Class libraries packaged as .jar files according to the Extension Mechanism Architecture. These class libraries then become installed libraries.

Any Java EE product must be able to accept a Java EE application delivered as a .ear file or a stand-alone Java EE module delivered as a .jar, .war, or .rar file (as appropriate to its type), together with an optional alternate deployment descriptor external to the application or standalone Java EE module. If the application is delivered as a .ear, an enterprise bean module delivered as a .jar file, a web application delivered as a .war file, or an application client delivered as
a .jar file, the deployment tool must be able to deploy the application such that the Java classes in the application are in a separate namespace from classes in other Java applications. Typically this will require the use of a separate class loader for each application. Standalone resource adapters delivered in .rar files and standalone class libraries delivered in .jar files that become installed libraries will of necessity appear in the class namespaces of applications that use them, and may appear in the class namespace of any application depending on the level of isolation supported by the Java EE product.

In all cases, the deployment of a Java EE application must be complete before the container delivers requests to any of the application’s components. When an application is started, the container must first initialize all startup-time singleton session bean components before delivering any requests to enterprise bean components. Containers must deliver requests to web components and resource adapters only after initialization of the component has completed.

The optional Java EE Deployment API describes how a product-independent deployment tool accepts plugins for a specific Java EE product, and how the tool and those plugins cooperate to deploy Java EE applications. The requirements in this specification that refer to a deployment tool are meant to refer to the combination of any vendor-provided product-independent deployment tool and the vendor-specific deployment plugin for this tool, as well as any other vendor-specific deployment tools provided with the Java EE product.

Typically a deployment tool will copy the deployed application or module to a product-specific location, along with the configuration settings and customizations specified by the Deploier. In some cases a deployment tool might include Application Assembly functionality as well, allowing the Deploier to construct, modify, or customize the application before deployment. Still, it must be possible to deploy a portable Java EE application, module, or library containing no product-specific deployment information without modifying the original files or artifacts that the Deploier specified to the deployment tool.

The deployment tools for Java EE containers must validate the deployment descriptors against the Java EE deployment descriptor schemas or DTDs that correspond to the deployment descriptors being processed. The appropriate schema or DTD is chosen by analyzing the deployment descriptor to determine which version it claims to conform to. Validation errors must cause an error to be reported to the Deploier. The deployment tool may allow the Deploier to correct the error and continue deployment. Note that the deployment descriptor version refers only to the version of the XML schema or DTD against which the descriptor is to be validated. It does not provide any information as to what version of the Java EE platform the application is written to.
Some deployment descriptors are optional. The required deployment information is determined by using default rules, or by annotations present on application class files. Some deployment descriptors that are included in an application may exist in either complete or incomplete forms. A complete deployment descriptor provides a complete description of the deployment information; a deployment tool must not examine class files for this deployment information. An incomplete deployment descriptor provides only a subset of the required deployment information; a deployment tool must examine the application class files for annotations that specify deployment information. Any deployment information specified in a deployment descriptor overrides any deployment information specified in an application's class files. The Java EE component specifications, including this specification, describe when deployment descriptors are optional and which deployment descriptors may exist in either complete or incomplete forms. The attribute metadata-complete is used in the deployment descriptor to specify whether the descriptor is complete.

The scope of the metadata-complete attribute is the descriptor it appears in. For historical reasons, the webservices.xml deployment descriptor does not have its own metadata-complete attribute; instead, it defers to the value of the metadata-complete attribute in the module's deployment descriptor. Specifications that define their own additional deployment descriptors should provide a metadata-complete attribute of their own, if deemed useful, with the appropriate semantics.

EE.8.5.1 Deploying a Stand-Alone Java EE Module

This section specifies the requirements for deploying a stand-alone Java EE module.

1. The deployment tool must first read the Java EE module deployment descriptor if provided externally to the package or if present in the package. See the component specifications for the required location and name of the deployment descriptor for each component type.

2. If the deployment descriptor is absent, or is present and is a Java EE 5 or later version descriptor and the metadata-complete attribute is not set to true, the deployment tool must examine all the class files in the application package. Any annotations that specify deployment information must be logically merged with the information in the deployment descriptor (if present). The correspondence of annotation information with deployment descriptor information, as well as the overriding rules, are described in this and other Java EE specifications. The result of this logical merge process provides the deploy-
ment information used in subsequent deployment steps. Note that there is no requirement for the merge process to produce a new deployment descriptor, although that might be a common implementation technique.

3. When deploying a standalone module, the module name is used as the application name. The deployment tool must ensure that the application name is unique in the application server instance. If the name is not unique, the deployment tool may automatically choose a unique name or allow the Deployer to choose a unique name, but must not fail the deployment. This ensures that existing modules continue to be deployable.

4. The deployment tool must deploy all of the components listed in the Java EE module deployment descriptor, or marked via annotations and discovered as described in the previous requirement, according to the deployment requirements of the respective Java EE component specification. If the module is a type that contains JAR format files (for example, web and Connector modules), all classes in .jar files within the module referenced from other JAR files within the module using the Class-Path manifest header must be included in the deployment. If the module, or any JAR format files within the module, declares a dependency on an installed library, that dependency must be satisfied.

5. The deployment tool must allow the Deployer to configure the container to provide the resources and configuration values needed for each component. The required resources and configuration parameters are specified in the deployment descriptor or via annotations discovered in requirement 2.

6. The deployment tool must allow the Deployer to deploy the same module multiple times, as multiple independent applications, possibly with different configurations. For example, the enterprise beans in an ejb-jar file might be deployed multiple times under different JNDI names and with different configurations of their resources.

**EE.8.5.2 Deploying a Java EE Application**

This section specifies the requirements for deploying a Java EE application.

1. The deployment tool must first read the Java EE application deployment descriptor provided externally to the application .ear file or from within the application .ear file (META-INF/application.xml). If the deployment descriptor is present, it fully specifies the modules included in the application. If no deployment descriptor is present, the deployment tool uses the following rules to determine the modules included in the application.
a. All files in the application package with a filename extension of .war are considered web modules. The context root of the web module is the module name (see Section EE.8.1.1, “Component Creation”).

b. All files in the application package with a filename extension of .rar are considered resource adapters.

c. A directory named lib is considered to be the library directory, as described in Section EE.8.2.1, “Bundled Libraries.”

d. For all files in the application package with a filename extension of .jar, but not contained in the lib directory, do the following:

   i. If the JAR file contains a META-INF/MANIFEST.MF file with a Main-Class attribute, or contains a META-INF/application-client.xml file, consider the JAR file to be an application client module.

   ii. If the JAR file contains a META-INF/ejb-jar.xml file, or contains any class with an EJB component-defining annotation (Stateless, etc.), consider the JAR file to be an EJB module.

   iii. All other JAR files are ignored unless referenced by a JAR file discovered above using one of the JAR file reference mechanisms such as the Class-Path header in a manifest file.

2. The deployment tool must ensure that the application name is unique in the application server instance. If the name is not unique, the deployment tool may automatically choose a unique name or allow the Deployer to choose a unique name, but must not fail the deployment. This ensures that existing applications continue to be deployable.

3. The deployment tool must open each of the Java EE modules listed in the Java EE application deployment descriptor or discovered using the rules above and read the Java EE module deployment descriptor, if present in the package. See the Enterprise JavaBeans, servlet, Java EE Connector and application client specifications for the required location and name of the deployment descriptor for each component type. Deployment descriptors are optional for all module types. (The application client specification is Chapter EE.10, “Application Clients”.)

4. If the module deployment descriptor is absent, or is present and is a Java EE 5 or later version descriptor and the metadata-complete attribute is not set to true, the deployment tool must examine all the class files in the application package that can be used by the module (that is, all class files that are included in the .ear file and can be referenced by the module, such as the class files in-
cluded in the module itself, class files referenced from the module by use of a 
\texttt{Class-Path} reference, class files included in the library directory, etc.). Any 
annotations that specify deployment information must be logically merged 
with the information in the deployment descriptor (if present). Note that the 
presence of component-declaring annotations in shared artifacts, such as li-
braries in the library directory and libraries referenced by more than one mod-
ule through \texttt{Class-Path} references, can have unintended and undesirable 
consequences and is not recommended. The correspondence of annotation in-
formation with deployment descriptor information, as well as the overriding 
rules, are described in this and other Java EE specifications. The result of this 
logical merge process provides the deployment information used in subsequent 
deployment steps. Note that there is no requirement for the merge process to 
produce a new deployment descriptor, although that might be a common im-
plementation technique.

5. The deployment tool must install all of the components described by each 
module deployment descriptor, or marked via annotations and discovered as 
described in the previous requirement, into the appropriate container according 
to the deployment requirements of the respective Java EE component specifi-
cation. All classes in .jar files or directories referenced from other JAR files 
using the \texttt{Class-Path} manifest header must be included in the deployment. If 
the .ear file, or any JAR format files within the .ear file, declares a dependen-
cy on an installed library, that dependency must be satisfied.

6. The deployment tool must allow the Deployer to configure the container to 
provide the resources and configuration values needed for each component. 
The required resources and configuration parameters are specified in the de-
ployment descriptor or via annotations discovered in requirement 3.

7. The deployment tool must allow the Deployer to deploy the same Java EE ap-
lication multiple times, as multiple independent applications, possibly with 
different configurations. For example, the enterprise beans in an ejb-jar file 
might be deployed multiple times under different JNDI names and with differ-
ent configurations of their resources.

8. When presenting security role descriptions to the Deployer, the deployment 
tool must use the descriptions in the Java EE application deployment descriptor 
rather than the descriptions in any module deployment descriptors for security 
roles with the same name. However, for security roles that appear in a module 
deployment descriptor but do not appear in the application deployment de-
scriptor, the deployment tool must use the description provided in the module 
deployment descriptor.
EE.8.5.3 Deploying a Library

This section specifies the requirements for deploying a library.

1. The deployment tool must record the extension name and version information from the manifest file of the library JAR file. The deployment tool must make the library available to other Java EE deployment units that request it according to the version matching rules described in the Optional Package Versioning specification. Note that the library itself may include dependencies on other libraries and these dependencies must also be satisfied.

2. The deployment tool must make the library available with at least the same security permissions as any application or module that uses it. The library may be installed with the full security permissions of the container.

3. Not all libraries will be deployable on all Java EE products at all times. Libraries that conflict with the operation of the Java EE product may not be deployable. For example, an attempt to deploy an older version of a library that has subsequently been included in the Java EE platform specification may be rejected. Similarly, deployment of a library that is also used in the implementation of the Java EE product may be rejected. Deployment of a library that is in active use by an application may be rejected.

EE.8.5.4 Module Initialization

After a successful deployment, all the modules of an application other than application client modules are initialized. The specifications for the different module types describe the steps required to initialize a module. By default, the order of initialization of modules in an application is unspecified. In rare cases it may be important that modules are initialized in a certain order, for example, if a component in one modules uses a component in another module during its initialization. An application can declare that modules must be initialized in the order they’re listed in the application deployment descriptor by including the <initialize-in-order>true</initialize-in-order> element in the application deployment descriptor. If the application deployment descriptor specifies a module initialization order that conflicts with the initialization order specified by any of the modules (for example, by the use of the EJB DependsOn annotation), the deployment tool must report an error. Application client modules are initialized on their own schedule, typically when an end user invokes them; as such, they are excluded from any initialization ordering requirements.
EE.8.6 Java EE Application XML Schema

The XML grammar for a Java EE application deployment descriptor is defined by the Java EE application schema. The root element of the deployment descriptor for a Java EE application is application. The granularity of composition for Java EE application assembly is the Java EE module. A Java EE application deployment descriptor contains a name and description for the application and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the application. The content of the XML elements is in general case sensitive. This means, for example, that <role-name>Manager</role-name> is a different role than <role-name>manager</role-name>.

All valid Java EE application deployment descriptors must conform to the XML Schema definition, or the DTD or schema definition from a previous version of this specification. (See Appendix EE.A, “Previous Version Deployment Descriptors.”) The deployment descriptor must be named META-INF/application.xml in the .ear file. Note that this name is case-sensitive. The XML Schema located at http://xmlns.jcp.org/xml/ns/javaee/application_7.xsd defines the XML grammar for a Java EE application deployment descriptor.

Figure EE.8-3 shows a graphic representation of the structure of the Java EE application XML schema.
Figure EE.8-3  Java EE Application XML Schema Structure
EE.8.7 Common Java EE XML Schema Definitions

The XML Schema located at http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd defines types that are used by many other Java EE deployment descriptor schemas, both in this specification and in other specifications.
This chapter describes the requirements common to all Java EE profiles. It does not define any concrete profiles, delegating this task to separate specifications.

The Java EE Web Profile Specification, published in conjunction with the present specification, defines the first Java EE profile, the Web Profile.

The definition of other profiles is left to future specifications.

EE.9.1 Introduction

A Java EE profile (from now on, simply “a profile”) represents a configuration of the platform suited to a particular class of applications.

A profile may contain a proper subset of the technologies contained in the platform. By doing so, a profile can effectively drop technologies which the platform supports but which are not generally useful in a particular domain.

A profile may also add one or more technologies which are not present in the platform itself. For example, a hypothetical Java EE Portal Profile would likely include the Portlet API (JSR-286).

Additionally, a profile may tag certain technologies as optional. In this case, products implementing the profile may or may not include the technology in question. Naturally, if they do, they need to obey all the relevant requirements mandated by the profile specification.

A product may implement two or more Java EE profiles, or the full platform and one or more Java EE profiles, as long as their combined requirements do not give rise to conflicts.
EE.9.2 Profile Definition

A profile is defined in accordance with the rules of the Java Community Process. Typically, a proposal to create a new profile, or to revise an existing one, will be submitted as a Java Specification Request (JSR). Once the JSR is approved, an expert group will be formed and conduct work as dictated by the process. The JSR for a profile must mention the version of the Java EE Platform that it builds on. Additionally, if it builds on an existing profile, it must mention this fact as well.

Although profiles can be created and evolved independently of the Java EE platform, modulo the rules contained in this specification, it is envisioned that profiles will maintain a reasonable level of alignment with the platform itself, in order to avoid fragmenting the development space into progressively incompatible islands. To this end, a profile must build on the most recent version of the Java EE platform available at the time the JSR for the profile is approved. It is also recommended that profile expert groups go beyond this requirement and, as much as it is practical, ensure that their profile builds on the most recent version of the Java EE platform at the time the profile is finalized.

EE.9.3 General Rules for Profiles

A profile must include all technologies that are required components of the Java EE platform or of any profiles on which it builds. These technologies will be listed as required in the profile.

A profile may promote to required status any technologies that are optional components of the Java EE platform or of any profile on which it builds.

Unless otherwise mandated by a profile, any technologies that are optional components of the Java EE platform, or of any profile on which the profile in question builds, must be optional components of the profile itself.

A profile may include as a required or as an optional component any technology outside of those included in the Java EE platform or any profile on which it builds, as long as the corresponding compatibility requirements are satisfied.

A profile must preserve any requirements defined in the Java EE platform specification, or in the specification of any profile on which it builds, as long as the preconditions for those requirements are satisfied. Typically, the preconditions will involve the presence of one or more technologies among those included in the profile. Unconditional requirements must be obeyed unconditionally.

A profile may add any requirements that pertain to one or more technologies whose inclusion it allows or requires. Such requirements must not conflict with
those set by the Java EE platform or by any profile on which the present one builds.

The specification for individual technologies may allow for certain features of the technology in question to be optional. In this case, a profile may promote one or more of these features to required status, assuming the Java EE platform or any profile on which it builds hasn’t done so already.

A profile must not conflict with the specifications for any technologies it includes either as required or optional components. Therefore, unless the specification for an individual technology explicitly allows for certain features or sets of requirements to be optionally implementable, a profile must not itself attempt to redefine any such features or requirements. For example, a profile may not allow omitting a package or type or method from an API specified elsewhere, unless the specification for that API explicitly allows for this to happen.

Although this specification does not define any APIs, a profile may do so. Since such an API would be available only in profiles that build on the one that defines it, this approach limits the reusability of the API and thus is discouraged.

**EE.9.4 Expression of Requirements**

The present specification uses the following conventions when expressing requirements that pertain to one or more technologies included in the platform:

- Chapters or sections which are conditional on the presence of a specific technology are marked as such at the very beginning. The condition is then intended to stay in force until the next textual unit at the same logical level (e.g. the following chapter, or section, etc.).

- Individual paragraphs and sentences are deemed to be conditional on any technologies they mention, unless otherwise indicated.

- Section or paragraphs which discuss examples, or are otherwise non-normative, do not contain any requirements.

**EE.9.5 Requirements for All Java EE Profiles**

The Java Platform, Standard Edition 7 is the required foundation for any Java EE 7 profile.

The following technologies are required to be present in all Java EE profiles:

- Resource and component lifecycle annotations defined by the Common Annotations specification (Resource, Resources, PostConstruct, PreDestroy)
The following functionality is required to be supported in all Java EE profiles:

- JNDI “java:” naming context (see Section EE.5.2, “JNDI Naming Context”)
- Java Transaction API (JTA)

### EE.9.6 Optional Features for Java EE Profiles

All the technologies listed in Section EE.6.1, “Required APIs”, and not designated as required in Section EE.9.5, “Requirements for All Java EE Profiles”, are designated as optional for use in Java EE profiles.

The following functionality is designated as optional for use in Java EE profiles:

- RMI/IIOP interoperability requirements (see Section EE.7.2.2, “OMG Protocols”)
- Support for java:comp/ORB (see Section EE.5.12, “ORB References”)

### EE.9.7 Full Java EE Product Requirements

This section defines the requirements for full Java EE platform products. These requirements correspond to the full set of requirements in previous versions of the Java EE platform specification and update those requirements for this new version of the platform.

Please note that, due to the effects of the pruning process, future versions of the Java EE specification will likely relax the requirements given here, specifically by marking as optional technologies that have been subject to pruning and that are required by the present specification. The set of technologies that have been made optional and/or identified as candidates for pruning is given in Section EE.6.1.3, “Pruned Java Technologies”.

The following technologies are required:

- EJB 3.2 (except for EJB entity beans and associated EJB QL, which have been made optional)
- Servlet 3.1
- JSP 2.3
- EL 3.0
- JMS 2.0
- JTA 1.2
• JavaMail 1.5
• Connector 1.7
• Web Services 1.4
• JAX-WS 2.2
• JAX-RS 2.0
• WebSocket 1.0
• JSON-P 1.0
• Concurrency Utilities 1.0
• Batch 1.0
• JAXB 2.2
• Java EE Management 1.1
• JACC 1.5
• JASPI 1.1
• JSP Debugging 1.0
• JSTL 1.2
• Web Services Metadata 2.1
• JSF 2.2
• Common Annotations 1.2
• Java Persistence 2.1
• Bean Validation 1.1
• Managed Beans 1.0
• Interceptors 1.2
• Contexts and Dependency Injection for Java EE 1.1
• Dependency Injection for Java 1.0

The following technologies are optional:

• EJB 3.2 entity beans and associated EJB QL
• JAX-RPC 1.1
• JAXR 1.0
• Java EE Deployment 1.2
This chapter describes application clients in the Java™ Platform, Enterprise Edition (Java EE).

A full Java EE product must support the application client container as described in this chapter. A Java EE profile may or may not require support for the application client container.

EE.10.1 Overview

Application clients are first tier client programs that execute in their own Java™ virtual machines. Application clients follow the model for Java technology-based applications: they are invoked at their main method and run until the virtual machine is terminated. However, like other Java EE application components, application clients depend on a container to provide system services. The application client container may be very light-weight compared to other Java EE containers, providing only the security and deployment services described below.

EE.10.2 Security

The Java EE authentication requirements for application clients are the same as for other Java EE components, and the same authentication techniques may be used as for other Java EE application components.

No authentication is necessary when accessing unprotected web resources. When accessing protected web resources, the usual varieties of authentication may be used, namely HTTP Basic authentication, SSL client authentication, or HTTP Login Form authentication. Lazy authentication may be used.
Authentication is required when accessing protected enterprise beans. The authentication mechanisms for enterprise beans include those required in the EJB specification for enterprise bean interoperability. Lazy authentication may be used.

An application client makes use of an authentication service provided by the application client container for authenticating its users. The container’s service may be integrated with the native platform’s authentication system, so that a single signon capability is employed. The container may authenticate the user when the application is started, or it may use lazy authentication, authenticating the user when a protected resource is accessed. This specification does not describe the technique used to authenticate the user, although a later version may do so.

If the container interacts with the user to gather authentication data, the container must provide an appropriate user interface. In addition, an application client may provide a class that implements the java.security.auth.callback.CallbackHandler interface and specify the class name in its deployment descriptor (see Section EE.10.7, “Java EE Application Client XML Schema” for details). The Deployer may override the callback handler specified by the application and use the container’s default authentication user interface instead.

If a callback handler is configured by the Deployer, the application client container must instantiate an object of this class and use it for all authentication interactions with the user. The application’s callback handler must fully support Callback objects specified in the java.security.auth.callback package.

Note that when HTTP Login Form authentication is used, the authentication user interface provided by the server (in the form of an HTML page delivered in response to an HTTP request) must be displayed by the application client.

Application clients typically execute in an environment with a SecurityManager installed, and have similar security permission requirements as servlets. The security permission requirements are described fully in Section EE.6.2, “Java Platform, Standard Edition (Java SE) Requirements.”

EE.10.3 Transactions

Application clients are not required to have direct access to the transaction facilities of the Java EE platform. A Java EE product is not required to provide a JTA UserTransaction object for use by application clients. Application clients can invoke enterprise beans that start transactions, and they can use the transaction facilities of the JDBC API. If a JDBC API transaction is open when an application
client invokes an enterprise bean, the transaction context is not required to be propagated to the EJB server.

EE.10.4 Resources, Naming, and Injection

As with all Java EE components, application clients use JNDI to look up enterprise beans, get access to resource managers, reference configurable parameters set at deployment time, and so on. Application clients use the java: JNDI namespace to access these items (see Chapter EE.5, “Resources, Naming, and Injection” for details).

Injection is also supported for the application client main class. Because the application client container does not create instances of the application client main class, but merely loads the class and invokes the static main method, injection into the application client class uses static fields and methods, unlike other Java EE components. Injection occurs before the main method is called.

EE.10.5 Application Programming Interfaces

Application clients have all the facilities of the Java™ Platform, Standard Edition (subject to security restrictions), as well as various standard extensions, as described in Chapter EE.6 “Application Programming Interface.” Each application client executes in its own Java virtual machine. Application clients start execution at the main method of the class specified in the Main-Class attribute in the manifest file of the application client’s JAR file (although note that application client container code will typically execute before the application client itself, in order to prepare the environment of the container, install a SecurityManager, initialize the name service client library, and so on).

EE.10.6 Packaging and Deployment

Application clients are packaged in JAR format files with a .jar extension and may include a deployment descriptor similar to other Java EE application components. The deployment descriptor describes the enterprise beans, web services, and other types of external resources referenced by the application. If the deployment descriptor is not included, or is included but not marked metadata-complete, annotations on the main class of the application client may also be used to describe the resources needed by the application. As with other Java EE application
components, access to resources must be configured at deployment time, names assigned for enterprise beans and resources, and so on.

The following table describes the cases the deployment tool must consider when deciding whether or not to process annotations on the application client main class.

Table EE.10-1  Deployment Descriptor Processing Requirements

<table>
<thead>
<tr>
<th>Deployment descriptor</th>
<th>metadata-complete?</th>
<th>process annotations?</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-client_1_2</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>application-client_1_3</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>application-client_1_4</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>application-client_5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>application-client_5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>application-client_6</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>application-client_7</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>none</td>
<td>N/A</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The tool used to deploy an application client to the client machine, and the mechanism used to install the application client, is not specified. Very sophisticated Java EE products may allow the application client to be deployed on a Java EE server and automatically made available to some set of (usually intranet) clients. Other Java EE products may require the Java EE application bundle containing the application client to be manually deployed and installed on each client machine. And yet another approach would be for the deployment tool on the Java EE server to produce an installation package that could be used by each client to install the application client. There are many possibilities here and this specification doesn’t prescribe any one. It only defines the package format for the application client and the things that must be possible during the deployment process.

How an application client is invoked by an end user is unspecified. Typically a Java EE Product Provider will provide an application launcher that integrates with the application client machine’s native operating system, but the level of such integration is unspecified.
EE.10.7 Java EE Application Client XML Schema

The XML grammar for a Java EE application client deployment descriptor is defined by the Java EE application-client schema. The root element of the deployment descriptor for an application client is application-client. The content of the XML elements is in general case sensitive. This means, for example, that
<res-auth>Container</res-auth>
must be used, rather than
<res-auth>container</res-auth>.

All valid application-client deployment descriptors must conform to the XML Schema definition, or to a DTD or schema definition from a previous version of this specification. (See Appendix EE.A, “Previous Version Deployment Descriptors.”) The deployment descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note that this name is case-sensitive.

Figure EE.10-1 shows the structure of the Java EE application-client XML Schema. The Java EE application-client XML Schema is located at http://xmlns.jcp.org/xml/ns/javaee/application-client_7.xsd.
Figure EE.10-1  Java EE Application Client XML Schema Structure
CHAPTER EE.11

Service Provider Interface

The Java™ Platform, Enterprise Edition (Java EE) includes several technologies that are primarily intended to be used to extend the capabilities of the Java EE containers. In addition, some Java EE technologies include service provider interfaces along with their application programming interfaces. A Java EE profile may include some or all of these facilities, as described in Chapter EE.9, “Profiles”.

EE.11.1 Java™ EE Connector Architecture

The Connector API defines how resource adapters are packaged and integrated with any Java EE product. Many types of service providers can be provided using the Connector API and packaging, including JDBC drivers, JMS providers, and JAXR providers. All Java EE products must support the Connector APIs, as specified in the Connector specification.


EE.11.2 Java™ Authorization Service Provider Contract for Containers

The JACC specification defines the contract between a Java EE container and an authorization policy provider.

EE.11.3  Java™ Transaction API

The Java Transaction API defines the TransactionSynchronizationRegistry interface that is intended for use by system level application server components such as persistence managers, resource adapters, as well as EJB and Web application components. This provides the ability to register synchronization objects with special ordering semantics, associate resource objects with the current transaction, get the transaction context of the current transaction, get current transaction status, and mark the current transaction for rollback.


EE.11.4  Java™ Persistence

Java Persistence provides interfaces in the javax.persistence.spi package that allow a persistence provider to be plugged into the Java Persistence framework.


EE.11.5  Java™ API for XML Web Services

JAX-WS provides interfaces in the javax.xml.ws.spi package that support pluggability of JAX-WS implementations.


EE.11.6  JavaMail™

The JavaMail specification describes how JavaMail protocol providers can be packaged and distributed so that they can be discovered and used through the JavaMail API. This allows the JavaMail API to be extended with support for new mail protocols and mailbox formats.

This chapter summarizes compatibility and migration issues for the Java EE platform. The specifications for each of the component technologies included in Java EE also describe compatibility and migration issues for that technology in much more detail.

EE.12.1 Compatibility

The word *compatibility* covers many different concepts. Java EE products are compatible with the Java EE specification if they implement the APIs and behavior required by the specification. Applications are compatible with a release of the Java EE platform if they only depend on APIs and behavior defined by that release of the platform. A new release of the Java EE platform is compatible with previous releases of the platform if all portable applications written to the previous release of the platform will also run unchanged and with identical behavior on the new release of the platform.

Compatibility is a core value of the Java EE platform. A Java EE product is required to support portable applications written to previous versions of the platform. Compatibility and portability work together to provide the Write Once, Run Anywhere value of the Java EE platform. Java EE products conform to the Java EE specifications by providing APIs and behavior as required by the specifications. Portable applications depend only on the APIs and behavior required by the Java EE specifications. In general, portable applications written to a previous version of the platform will continue to work without change and with identical behavior on the current version of the platform.
EE.12.2 Migration

Migration is the act of converting an application to use new facilities introduced in this release of the platform. Given the strong level of compatibility in this release of the Java EE platform, migration is largely an optional exercise. Still, an application may be improved (better performance, simpler to develop, more flexible, etc.) by converting it to use newer facilities of the Java EE platform.

EE.12.2.1 Java Persistence

Java Persistence provides a much richer set of modeling capabilities and object/relational mapping capabilities than EJB CMP entity beans and is significantly easier to use. Support for EJB CMP and BMP entity beans has been made optional with the Java EE 7 release. Support for EJB CMP 1.1 entity beans has been deprecated since Java EE 5. Applications are strongly encouraged to migrate applications using EJB entity beans to the Java Persistence API.

EE.12.2.2 JAX-WS

JAX-WS, along with JAXB and the Metadata for Web Services specification, provides simpler and more complete support for web services than is available using the JAX-RPC technology. Support for JAX-RPC has been made optional with the Java EE 7 release. Applications that provide web services using JAX-RPC should consider migrating to the JAX-WS API. Note that because both technologies support the same web service interoperability standards, clients and services can be migrated to the new API independently.
CHAPTER EE.13

Future Directions

This version of the Java™ Platform, Enterprise Edition (Java EE) specification includes most of the facilities needed by enterprise applications. Still, there is always more to be done. This chapter briefly describes our plans for future versions of this specification. Please keep in mind that all of this is subject to change. Your feedback is encouraged.

The following sections describe additional facilities we would like to include in future versions of this specification. Many of the APIs included in the Java EE platform will continue to evolve on their own and we will include the latest version of each API.

EE.13.1 JNLP (Java™ Web Start)

The Java Network Launch Protocol defines a mechanism for deploying Java applications on a server and launching them from a client. A future version of this specification may require that Java EE products be able to deploy application clients in a way that allows them to be launched by a JNLP client, and that application client containers be able to launch application clients deployed using the JNLP technology. Java™ Web Start is the reference implementation of a JNLP client.


EE.13.2 Java EE SPI

Many of the APIs that make up the Java EE platform include an SPI layer that allows service providers or other system level components to be plugged in. This
specification does not describe the execution environment for all such service providers, nor the packaging and deployment requirements for all service providers. However, the Java EE Connector Architecture does define the requirements for certain types of service providers called resource adapters, and the Java Authorization Contract for Containers defines requirements for security service providers. Future versions of this specification will more fully define the Java EE SPI.
This appendix describes Document Type Definitions and XML schemas for Deployment Descriptors from previous versions of the Java EE specification. All Java EE products are required to support these DTDs and schemas as well as the schemas specified in this version of the specification. This ensures that applications written to previous versions of this specification can be deployed on products supporting the current version of this specification. In addition, there are no restrictions on mixing versions of deployment descriptors in a single application; any combination of valid deployment descriptor versions must be supported.

EE.A.1 Java EE 6 Application XML Schema

The XML grammar for a Java EE application deployment descriptor is defined by the Java EE application schema. The root element of the deployment descriptor for a Java EE application is `application`. The granularity of composition for Java EE application assembly is the Java EE module. A Java EE application deployment descriptor contains a name and description for the application and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the application. The content of the XML elements is in general case sensitive. This means, for example, that `<role-name>Manager</role-name>` is a different role than `<role-name>manager</role-name>`.

All valid Java EE application deployment descriptors must conform to the XML Schema definition, or the DTD or schema definition from a previous version of this specification. The deployment descriptor must be named `META-INF/application.xml` in the `.ear` file. Note that this name is case-sensitive.
Figure EE.A-1 shows a graphic representation of the structure of the Java EE application XML Schema.
Figure EE.A-1  Java EE Application XML Schema Structure

**EE.A.2 Common Java EE XML Schema Definitions**

The XML Schema located at http://java.sun.com/xml/ns/javaee/javaee_6.xsd defines types that are used by many other Java EE deployment descriptor schemas, both in this specification and in other specifications.

**EE.A.3 Java EE 6 Application Client XML Schema**

The XML grammar for a Java EE application client deployment descriptor is defined by the Java EE application-client schema. The root element of the deployment descriptor for an application client is `application-client`. The content of the XML elements is in general case sensitive. This means, for example, that `<res-auth>Container</res-auth>` must be used, rather than `<res-auth>container</res-auth>`.

All valid `application-client` deployment descriptors must conform to the XML Schema definition, or to a DTD or schema definition from a previous version of this specification. The deployment descriptor must be named `META-INF/application-client.xml` in the application client’s `.jar` file. Note that this name is case-sensitive.

**Figure EE.A-4** shows the structure of the Java EE application-client XML Schema. The Java EE application-client XML Schema is located at http://java.sun.com/xml/ns/javaee/application-client_6.xsd.
Figure EE.A-2  Java EE Application Client XML Schema Structure
EE.A.4  Java EE 5 Application XML Schema

The XML grammar for a Java EE application deployment descriptor is defined by the Java EE application schema. The root element of the deployment descriptor for a Java EE application is `application`. The granularity of composition for Java EE application assembly is the Java EE module. A Java EE application deployment descriptor contains a name and description for the application and the URI of a UI icon for the application, as well a list of the Java EE modules that comprise the application. The content of the XML elements is in general case sensitive. This means, for example, that `<role-name>Manager</role-name>` is a different role than `<role-name>manager</role-name>`.

A valid Java EE 5 application deployment descriptors must conform to this XML Schema definition.

The deployment descriptor must be named `META-INF/application.xml` in the `.ear` file. Note that this name is case-sensitive.

**Figure EE.A-3** shows a graphic representation of the structure of the Java EE application XML Schema.

![Java EE Application XML Schema Structure](image)

The XML Schema located at `http://java.sun.com/xml/ns/javaee/application_5.xsd` defines the XML grammar for a Java EE application deployment descriptor.
EE.A.5 Common Java EE 5 XML Schema Definitions

The XML Schema located at http://java.sun.com/xml/ns/javaee/javaee_5.xsd defines types that are used by many other Java EE deployment descriptor schemas, both in this specification and in other specifications.

EE.A.6 Java EE 5 Application Client XML Schema

The XML grammar for a Java EE application client deployment descriptor is defined by the Java EE application-client schema. The root element of the deployment descriptor for an application client is application-client. The content of the XML elements is in general case sensitive. This means, for example, that <res-auth>Container</res-auth> must be used, rather than <res-auth>container</res-auth>.

All valid application-client deployment descriptors must conform to the XML Schema definition, or to a DTD or schema definition from a previous version of this specification. The deployment descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note that this name is case-sensitive.

Figure EE.A-4 shows the structure of the Java EE application-client XML Schema. The Java EE application-client XML Schema is located at http://java.sun.com/xml/ns/javaee/application-client_5.xsd.
Figure EE.A-4  Java EE Application Client XML Schema Structure
EE.A.7 J2EE 1.4 Application XML Schema

This section provides the XML Schema for the J2EE application deployment descriptor. The XML grammar for a J2EE application deployment descriptor is defined by the J2EE:application schema. The granularity of composition for J2EE application assembly is the J2EE module. A J2EE:application deployment descriptor contains a name and description for the application and the URI of a UI icon for the application, as well a list of the J2EE modules that comprise the application. The content of the XML elements is in general case sensitive. This means, for example, that `<role-name>Manager</role-name>` is a different role than `<role-name>manager</role-name>`.

A valid J2EE application deployment descriptors may conform to the XML Schema definition below. The deployment descriptor must be named `META-INF/application.xml` in the .ear file. Note that this name is case-sensitive.

Figure EE.A-5 shows a graphic representation of the structure of the J2EE application XML Schema.

![Diagram of J2EE Application XML Schema Structure]

The XML Schema that defines the XML grammar for a J2EE 1.4 application deployment descriptor is located at `http://java.sun.com/xml/ns/j2ee/application_1_4.xsd`. 

Final Release
EE.A.8 Common J2EE 1.4 XML Schema Definitions

The XML Schema that defines types that are used by many other J2EE 1.4 deployment descriptor schemas, both in this specification and in other specifications, is located at http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd.

EE.A.9 J2EE:application 1.3 XML DTD

This section provides the XML DTD for the J2EE 1.3 application deployment descriptor. The XML grammar for a J2EE application deployment descriptor is defined by the J2EE:application document type definition. The granularity of composition for J2EE application assembly is the J2EE module. A J2EE:application deployment descriptor contains a name and description for the application and the URI of a UI icon for the application, as well as a list of the J2EE modules that comprise the application. The content of the XML elements is in general case sensitive. This means, for example, that <role-name>Manager</role-name> is a different role than <role-name>Manager</role-name>.

A valid J2EE 1.3 application deployment descriptor may contain the following DOCTYPE declaration:

```xml
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN" "http://java.sun.com/dtd/application_1_3.dtd">
```

The deployment descriptor must be named META-INF/application.xml in the .ear file.

Figure EE.A-6 shows a graphic representation of the structure of the J2EE:application XML DTD.
254

The DTD that defines the XML grammar for a J2EE 1.3 application
deployment descriptor is available at http://java.sun.com/dtd/
application_1_3.dtd.

EE.A.10

J2EE:application 1.2 XML DTD

This section provides the XML DTD for the J2EE 1.2 version of the application
deployment descriptor. A valid J2EE 1.2 application deployment descriptor may
contain the following DOCTYPE declaration:
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/
application_1_2.dtd">

Figure EE.A-7 shows a graphic representation of the structure of the
XML DTD.

J2EE:application

application

icon?

small-icon?

display-name

large-icon?

description?

ejb | java | web

web-uri

Figure EE.A-7

module+

alt-dd?

security-role*

description?

role-name

context-root

J2EE:application XML DTD Structure

The DTD that defines the XML grammar for a J2EE 1.2 application
deployment descriptor is available at http://java.sun.com/j2ee/dtds/
application_1_2.dtd.

EE.A.11

J2EE 1.4 Application Client XML Schema

The XML grammar for a J2EE application client deployment descriptor is defined
by the J2EE application-client schema. The root element of the deployment
Final Release


descriptor for an application client is application-client. The content of the XML elements is in general case sensitive. This means, for example, that <res-auth>Container</res-auth> must be used, rather than <res-auth>container</res-auth>.

A valid application-client deployment descriptors may conform to the following XML Schema definition. The deployment descriptor must be named META-INF/application-client.xml in the application client’s .jar file. Note that this name is case-sensitive.

Figure EE.A-8 shows the structure of the J2EE 1.4 application-client XML Schema, which is available at http://java.sun.com/xml/ns/j2ee/application-client_1_4.xsd.
Figure EE.A-8  J2EE Application Client XML Schema Structure
This section describes the XML DTD for the J2EE 1.3 version of the application client deployment descriptor. The XML grammar for a J2EE application client deployment descriptor is defined by the J2EE:application-client document type definition. The root element of the deployment descriptor for an application client is application-client. The content of the XML elements is in general case sensitive. This means, for example, that `<res-auth>Container</res-auth>` must be used, rather than `<res-auth>container</res-auth>`.

A valid application-client deployment descriptor may contain the following DOCTYPE declaration:

```xml
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN" "http://java.sun.com/dtd/application-client_1_3.dtd">
```

The deployment descriptor must be named META-INF/application-client.xml in the application client’s .jar file.

**Figure EE.A-9** shows the structure of the J2EE:application-client XML DTD, which is available at [http://java.sun.com/dtd/application-client_1_3.dtd](http://java.sun.com/dtd/application-client_1_3.dtd).

![Figure EE.A-9 J2EE:application-client XML DTD Structure](image-url)
EE.A.13  J2EE:application-client 1.2 XML DTD

This section describes the XML DTD for the J2EE 1.2 version of the application client deployment descriptor. A valid application client deployment descriptor may contain the following DOCTYPE declaration:

```xml
<!DOCTYPE application-client PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.2//EN" "http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">
```

Figure EE.A-10 shows the structure of the J2EE:application-client XML DTD, which is available at http://java.sun.com/j2ee/dtds/application-client_1_2.dtd.

![J2EE:application-client XML DTD Structure](image)

**Figure EE.A-10**  J2EE:application-client XML DTD Structure
Revision History

**EE.B.1 Changes in Early Draft 1**

**EE.B.1.1 Additional Requirements**

- Java EE 7 requires Java SE 7.
- Many updates to reflect required version numbers of technologies that have been updated for inclusion in Java EE 7.
- Added Section, “Support for Java EE Products in Cloud Environments”.
- Added roles for cloud environments; updated old roles.
- Updated Section EE.5.2.2, “Application Component Environment Namespaces” to reflect requirement that namespaces are tenant-specific.
- Added Section EE.5.18, “Resource Definition and Configuration.”
- Added new resource configuration definitions in the following sections: Section EE.5.18.4, “JMS Connection Factory Resource Definition”; Section EE.5.18.5, “JMS Destination Definition”; Section EE.5.18.6, “Mail Session Definition”; Section EE.5.18.7, “Connector Connection Factory Definition”; Section EE.5.18.8, “Connector Administered Object Definition.
- Updated Section EE.5.14, “Persistence Context References” to reflect JPA requirements for metadata to specify unsynchronized persistence contexts.
- Updated Section EE.6.7, “Java™ Message Service (JMS) 2.0 Requirements” to reflect new JMS requirements.
- Added to Chapter EE.8, “Application Assembly and Deployment”, the requirement that an alternate deployment descriptor may be used external to the application.
• Added Section “Tenant Identifier References”, to reflect requirement that identifier for current tenant be made available as java:comp/tenantId.
• Updated rules in Section EE.5.2.6, “Annotations and Deployment Descriptors,” for overriding Resource annotations to include mapped names.
• Added Section EE.5.19, “Default Data Source,” to reflect requirement that a default data source be made available to the application.
• Added Section EE.5.20, “Default JMS Connection Factory,” to reflect requirement that a default JMS connection factory be made available to the application.

EE.B.1.2 Removed Requirements

• Support for EJB entity beans and associated EJB QL has been made optional.
• Support for JAX-RPC has been made optional.
• Support for the Deployment API has been made optional.
• Support for JAXR has been made optional.
• Removed restriction against use of UserTransaction in Servlet filters.

EE.B.1.3 Editorial Changes

• Updated URLs for many referenced documents
• Updated Section EE.2.7.4, “RMI-IIOP” to reflect changes made in Java EE 5”.
• Added content for Section EE.2.16, “Changes in Java EE 6”.
• Added reference to JASPIC in Section EE.2.7.14, “Security Services”.
• Updated Section EE.3.3.4.1, “Declarative Security”, Section EE.3.3.6, “Authorization Model”, and Section EE.3.6, “Deployment Requirements”, to include use of annotations.
• Updated Table EE.5-1 to indicate that CDI decorators support use of PostConstruct and PreDestroy.
• Updated Section EE.5.5, “Enterprise JavaBeans™ (EJB) References”, and subsections to reflect changes made in EJB 3.0 and 3.1; clarified terminology.
• Updated Table EE.6-6 to reflect additions to Common Annotations in Java EE 6.
• Updated Section EE.6.7, “Java™ Message Service (JMS) 2.0 Requirements”, to clarify which JMS methods are not intended for use by ordinary applications.

• Clarified that EJB 3.0 relaxed requirements for use of PortableRemoteObject narrow method.

• Clarified Section EE.8.3, “Class Loading Requirements”, to reflect that class loading order is undefined.


• Clarified Section EE.6.14, “Java™ API for RESTful Web Services (JAX-RS) 2.0 Requirements”: JAX-RS abstract class is Application, not ApplicationConfig.

• Clarified Section EE.8.5, “Deployment”: Initialization of startup-time singletons session beans must occur before requests are delivered to enterprise bean components.

• Clarified in Section EE.5.2.2, “Application Component Environment Namespaces” that environment entries declared in the application.xml descriptor must specify the java:app or java:global namespace.

• Clarified in Section EE.5.2.4, “Sharing of Environment Entries,” that instances of BeanManager and ValidatorFactory acquired by JNDI lookup or injection may be shared.

• Clarified Section EE.8.5, “Deployment” with regard to semantics of deployment descriptor version number.

## EE.B.2 Changes in Early Draft 2

### EE.B.2.1 Additional Requirements

• Updated Section EE.6.2.2, “Java EE Security Manager Related Requirements”, to reflect new security manager related requirements and permission declaration syntax.

• Added Section “Application Instance Name” and Section EE.5.16, “Application Client Container Property.”

• Added Section “Password Aliasing and Management,” to reflect new requirements for support of password aliasing syntax.
• Added Section EE.6.15, “Java API for WebSocket 1.0 (WebSocket) Requirements.”
• Added Section EE.6.16, “Java API for JSON Processing 1.0 (JSON-P) Requirements.”
• Added Section EE.6.18, “Batch Applications for the Java Platform 1.0 (Batch) Requirements.”
• Updated Table EE.6-1 to include required support for WebSocket 1.0, Batch 1.0, and JSON-P 1.0.

EE.B.2.2 Removed Requirements
• Removed requirements made in Early Draft 1 regarding support for Java EE Products in Cloud Environments
• Removed requirements made in Early Draft 1 regarding support for tenant identifier references.

EE.B.2.3 Editorial Changes
• Added further clarifications to requirements in Section EE.6.1.2, “Required Java Technologies” for technologies marked as Optional.
• Updated Section EE.6.7, “Java™ Message Service (JMS) 2.0 Requirements to reflect JMS 2.0 APIs.
• Corrected capitalization: DefaultDataSource, DefaultJMSConnectionFactory.
• Removed reference to Bean Validation ValidatorFactoryBuilder interface in Section 5.17.2. as no such interface in Bean Validation.
• Removed description of roles for cloud environments, which was added in Early Draft 1.
• Updated figures.
EE.B.3 Changes in Public Review Draft

EE.B.3.1 Additional Requirements

• Added requirement for support of constructor injection in Section EE.5.24, “Support for Dependency Injection.”
• Made further updates to reflect required versions numbers of technologies that have been updated for inclusion into Java EE 7.

EE.B.3.2 Editorial Changes

• Corrected steps for container behavior in support of dependency injection to conform to use of CDI SPIs in Section EE.5.24, “Support for Dependency Injection.”
• Clarified that the permissions.xml is stored within an ejb, web, or application client archive, and that the permissions available to a library are those of the calling component.
• Updated material in Chapter 12.

EE.B.4 Changes in Proposed Final Draft

EE.B.4.1 Additional Requirements

• Added requirement in Table EE.5-1 for servlet HTTP upgrade handlers and WebSocket endpoints to support injection.
• Added Section EE.6.17, “Concurrent Utilities for Java EE 1.0 (Concurrent Utilities) Requirements.”
• Added requirements for Java EE Product Providers to provide default Concurrent Utilities objects in the operational environment (Section EE.5.21, “Default Concurrency Utilities Objects”).
• Made further updates to reflect required version numbers of technologies that have been updated for inclusion into Java EE 7.
EE.B.4.2 Removed Requirements

- Removed requirement for password aliasing introduced in Early Draft.
- Removed requirement for support of java:comp/InstanceName introduced in Early Draft 2.

EE.B.4.3 Editorial Changes

- Changed resourceAdapterName to resourceAdapter and resource-adapter-name to resource-adapter in resource definition metadata to reflect changes in Connector 1.7 and JMS 2.0.
- Updated Section EE.5.18.7, “Connector Connection Factory Definition” and Section EE.5.18.8, “Connector Administered Object Definition” to reflect changes in Connector API metadata.
- Updated references for Java EE 7 XML Schemas.
- Clarified requirements for use of permissions.xml declarations.
- Added WebSocket to list of supported interoperability protocols.
- Clarified steps for destroying non-contextual instances.

EE.B.5 Changes in Final Release Draft

EE.B.5.1 Additional Requirements

- Added requirement that the ValidatorFactory provided by the Java EE Product Provider must support use of CDI if CDI is enabled.
- Updated restrictions on use of JMS in Section EE.6.7, “Java™ Message Service (JMS) 2.0 Requirements” to conform to requirements of the JMS specification.

EE.B.5.2 Editorial Changes

- Changes to examples for JMS Connection Factory Definition and Destination Definition to reflect changes to JMS metadata.
- Changes to examples for Connector Connection Factory Definition to reflect changes to Connector metadata.
This specification refers to the following documents. The terms used to refer to the documents in this specification are included in parentheses.


SOAP with Attachments API for Java™ 1.3 (SAAJ specification). Available at http://java.net/projects/saaj/.


Debugging Support for Other Languages 1.0. Available at http://jcp.org/en/jsr/detail?id=45.


Streaming API for XML 1.0 (StAX specification). Available at http://jcp.org/en/jsr/detail?id=173.


Extension Mechanism Architecture, Available at http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/index.html.

Optional Package Versioning, Available at http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/index.html.


CORBA 2.6 - Chapter 26 - Secure Interoperability, Available at http://www.omg.org/cgi-bin/doc?formal/01-12-30.


Architectural Styles and the Design of Network-based Software
