
 

1 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

 

Business / Technical Brief 

Oracle AI Database 26ai 
vectors in node-oracledb 

 

Driving Generative AI through vector support in Node.js applications running Oracle 

AI Database 26ai and beyond 

November 2025, Version 4.0 

Copyright © 2025, Oracle and/or its affiliates 

Public 

  



 

2 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Disclaimer 

This document in any form, software or printed matter, contains proprietary information that is the 

exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms 

and conditions of your Oracle software license and service agreement, which has been executed and 

with which you agree to comply. This document and information contained herein may not be disclosed, 

copied, reproduced, or distributed to anyone outside Oracle without the prior written consent of Oracle. 

This document is not part of your license agreement, nor can it be incorporated into any contractual 

agreement with Oracle or its subsidiaries or affiliates. 

This document is for informational purposes only and is intended solely to assist you in planning for the 

implementation and upgrade of the product features described. It is not a commitment to deliver any 

material, code, or functionality, and should not be relied upon in making purchasing decisions. The 

development, release, and timing of any features or functionality described in this document remains at 

the sole discretion of Oracle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

3 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Table of Contents 

Introduction 4 

Vector data in Oracle Database 4 

Sparse vector support in Oracle AI Database 26ai 4 

Installing the node-oracledb driver 5 

Vector support in node-oracledb 5 

Sample Node.js programs using vectors 7 

Dense vectors 7 

Sparse vectors 11 

Using embedding models with vectors for intuitive applications 15 

Create source dataset 15 

Generate and Embed vectors into Oracle Database 15 

Run Similarity Search with user inputs 19 

Conclusion 24 

References 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

4 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Introduction 

Oracle AI Database 26ai provides a VECTOR data type for advanced AI/ML1 search operations as part of its Oracle 

AI Vector Search feature set. Vectors are commonly used in AI to represent the semantics of unstructured data such 

as images, documents, video, and audio. They are generated using vector embedding models. This data type is a 

homogeneous array of 8-bit unsigned integers, 8-bit signed integers, 32-bit floating-point numbers, or 64-bit 

floating-point numbers. The storage format of a vector can be specified as Dense (default) or Sparse. See the 

introductory blog from Oracle's AI Vector Search team on the comprehensive list of benefits and use cases for 

Oracle AI Database 26ai vector support. 

The node-oracledb add-on for Node.js is a database driver module for high-performance Oracle Database 

applications written in JavaScript or TypeScript. You can quickly write complex applications or build sophisticated 

web services that expose REST or GraphQL endpoints. Check the node-oracledb documentation for complete 

details on the driver. 

 

Vector data in Oracle Database 

VECTOR columns in Oracle AI Database 26ai can be created as type: 

VECTOR(<vectorDimensions>, <vectorFormat>, [SPARSE]) 

where the attributes are: 

• vectorDimensions: defines the number of dimensions for the vector data. For example, a point in 3D 

space is defined by vector data of 3 dimensions, i.e., the (x,y,z) coordinates. For the BINARY vector 

format, the number of dimensions should be a multiple of 8. 

• vectorFormat: one of the keywords BINARY, INT8, FLOAT32, or FLOAT64 to define the storage format2 

of each dimension value in the vector. The INT8, FLOAT32, or FLOAT64 formats are supported from 

Oracle Database 23.4 onwards. The BINARY format is supported starting from Oracle Database 23.5 

onwards. 

• SPARSE: optional keyword to identify if the vector is a SPARSE VECTOR column. It is available from Oracle 

Database 23.7 onwards. 

For example: 

To create and insert data into a table with a single default (dense) FLOAT32 vector column: 

CREATE TABLE vecTab(dataVec VECTOR(3, FLOAT32)); 

 

INSERT INTO vecTab VALUES ('[1.1, 2.9, 3.14]'); 

For more information about using vectors, refer to the Oracle Documentation: 

Oracle Database AI Vector Search User Guide 

 

Sparse vector support in Oracle AI Database 26ai  

Sparse vectors provide an efficient way to represent VECTOR data where most dimensions have zero values.  They 

are characterized by the total number of dimensions (including zero and non-zero values), indices of non-zero 

values, and the non-zero values at the specified indices. This compact representation ensures that only essential 

data is stored. The indices are zero-based, meaning they start at zero. 

 
1 Artificial Intelligence / Machine Learning 

2 BINARY – 8-bit unsigned integer, INT8 – 8 bit signed integer, FLOAT32 – 32-bit floating point number, FLOAT64 – 64-bit floating point number 

https://blogs.oracle.com/database/oracle-announces-oracle-ai-database-26ai
https://www.oracle.com/in/database/ai-vector-search/
https://www.oracle.com/in/database/ai-vector-search/
https://blogs.oracle.com/database/post/oracle-announces-general-availability-of-ai-vector-search-in-oracle-database-23ai
https://www.npmjs.com/package/oracledb
https://blogs.oracle.com/oraclemagazine/post/build-rest-apis-for-nodejs-part-1
https://blogs.oracle.com/opal/post/demo-graphql-with-oracle-database-and-node-oracledb
https://node-oracledb.readthedocs.io/en/latest/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/26/vecse/sparse-vectors.html
https://docs.oracle.com/en/database/oracle/oracle-database/26/vecse/index.html


 

5 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

For example: 

CREATE TABLE vecSparse (float32sparseCol VECTOR(25, FLOAT64, SPARSE));  

  

An example of a sparse vector represented in string form, with 25 dimensions, non-zero values at indices 5, 8, and 

11, and non-zero values 25.25, 6.125, and 8.25, corresponding to their respective indices is:  

[25, [5, 8, 11], [25.25, 6.125, 8.25]]  

  

Installing the node-oracledb driver 

Please make sure that Node.js (version 14.17 or later) and npm are installed on your machine and that you have 

the connection details to an Oracle AI Database 26ai (or later) release that supports the VECTOR data type. 

The node-oracledb driver with vector support is available on npm or GitHub. 

To install the driver, use the npm module. Run the following in a command line terminal: 

 

 npm install oracledb 

This command installs the 'oracledb' Node.js package. 

For more details on installing the driver, refer to the node-oracledb installation manual. 

 

Vector support in node-oracledb 

The node-oracledb driver provides direct access to Oracle Database through its default Thin mode, which is 

implemented purely in JavaScript. An optional Thick mode can also be enabled at runtime in node-oracledb, which 

uses Oracle Client libraries to connect to the Oracle Database. 

The node-oracledb 6.5 release introduced support for binding and fetching the VECTOR data type. Further 

enhancements, such as Binary Vector Support, were made in the 6.6 release. In version 6.8, Sparse Vector support 

was introduced. Vectors are represented as Node.js TypedArray objects or JavaScript Arrays in both the Thin and 

Thick modes of node-oracledb.  

Vectors can be fetched and inserted using standard node-oracledb APIs. Vector data will be returned or fetched as 

TypedArrays of unsigned integer (8-bit), signed integer (8-bit), float (32-bit), or double (64-bit) values depending 

on whether the VECTOR column in Oracle Database has a BINARY, INT8, FLOAT32, or FLOAT64 format. 

The code snippets in this section use the vecTab table created in an earlier section.  

The code below returns the data type and value of the vector array in the dataVec column of the vecTab table. 

const result = await connection.execute('select dataVec from vecTab'); 

const vec = result.rows[0].dataVec; 

console.log('Returned Array Type:', vec.constructor); 

console.log('Returned Array:', vec); 

 

This code snippet will give the output: 

Returned Array type: [Function: Float32Array] 

Returned Array: Float32Array(3) [ 

  1.100000023841858, 

  2.190000057220459, 

  3.140000104904175 

] 

This output indicates that a TypedArray of 32-bit floating point numbers is being returned since the dataVec 

column is a FLOAT32 VECTOR column. 

https://www.npmjs.com/package/oracledb
https://github.com/oracle/node-oracledb
https://node-oracledb.readthedocs.io/en/latest/user_guide/installation.html
https://medium.com/oracledevs/usher-in-a-new-era-with-the-node-oracledb-6-0-pure-javascript-thin-driver-e10e2af693b2
https://node-oracledb.readthedocs.io/en/latest/user_guide/initialization.html#enabling-node-oracledb-thick-mode
https://medium.com/@sharad-chandran/node-oracledb-6-5-now-supports-the-new-vector-search-capabilities-of-oracle-database-23ai-2a504d2fb279
https://node-oracledb.readthedocs.io/en/latest/user_guide/vector_data_type.html#using-binary-vectors
https://node-oracledb.readthedocs.io/en/latest/user_guide/vector_data_type.html#using-sparse-vectors
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray


 

6 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

A new node-oracledb constant, oracledb.DB_TYPE_VECTOR has been created for vectors. This type will be 

returned as an attribute in the metadata returned for queries and can be used as a type in bind information 

supplied by the developer. 

 

A fetchTypeHandler function can be used to convert the vector data to a JavaScript object if required. For 

example, the following code snippet converts a TypedArray object to a JavaScript array: 

oracledb.fetchTypeHandler = function(metadata) { 

  if (metadata.dbType === oracledb.DB_TYPE_VECTOR) { 

    const myConverter = (v) => { 

      if (v !== null) { 

        return Array.from(v); 

      } 

      return v; 

    }; 

    return {converter: myConverter}; 

  } 

}; 

 

const result = await connection.execute('select dataVec from vecTab'); 

const vec = result.rows[0].dataVec; 

console.log('Returned Array Type:', vec.constructor); 

console.log('Returned Array:', vec); 

 

Running this code gives the output: 

Returned Array type: [Function: Array] 

Returned Array: [ 1.100000023841858, 2.190000057220459, 3.140000104904175 ] 

 

The attributes vectorDimensions and vectorFormat have also been added to the metadata returned for queries. 

• The vectorDimensions attribute returns the number of dimensions of the VECTOR column. This attribute 

will contain the value ‘undefined’ for non-VECTOR columns. It will also be undefined for VECTOR columns 

where the number of dimensions is flexible.  

• The vectorFormat attribute defines the storage format of each dimension value in the VECTOR column. 

The storage format will be one of the following node-oracledb global constants – 

VECTOR_FORMAT_BINARY, VECTOR_FORMAT_INT8, VECTOR_FORMAT_FLOAT32, and 

VECTOR_FORMAT_FLOAT64. This attribute will contain the value undefined for non-VECTOR columns 

and also for VECTOR columns whose storage format is flexible. 

In node-oracledb 6.8, a new attribute, isSparseVector, is part of the metadata returned from queries to identify 

the type of data stored in a column. It returns True if the column contains sparse vectors, False if the column 

contains dense vectors, and undefined if the column does not contain vector data. 

 

https://node-oracledb.readthedocs.io/en/latest/api_manual/oracledb.html#oracledb.fetchTypeHandler


 

7 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Continuing with the vecTab table example, to fetch the vectorDimensions and vectorFormat attributes: 

const vecDimensions = result.metadata[0].vectorDimensions; 

const vecStorageFormat = result.metadata[0].vectorFormat; 

let vecStorageFormatString; 

if (vecStorageFormat == oracledb.VECTOR_FORMAT_FLOAT32) 

  vecStorageFormatString = 'FLOAT32'; 

else if (vecStorageFormat == oracledb.VECTOR_FORMAT_FLOAT64) 

  vecStorageFormatString = 'FLOAT64'; 

else if (vecStorageFormat == oracledb.VECTOR_FORMAT_INT8) 

  vecStorageFormatString = 'INT8'; 

else if (vecStorageFormat == oracledb.VECTOR_FORMAT_BINARY) 

  vecStorageFormatString = 'BINARY'; 

else 

  vecStorageFormatString = 'UNKNOWN TYPE'; 

console.log('Vector dimensions for the dataVec column:', vecDimensions); 

console.log('Vector storage format for the dataVec column:', 

vecStorageFormatString); 

 

This will give the output: 

Vector dimensions for the dataVec column: 3 

Vector storage format for the dataVec column: FLOAT32 

The above output indicates that the dataVec column in the vecTab table is a 3-dimensional FLOAT32 vector. 

 

All TypedArray formats (UInt8Array, Int8Array, Float32Array and Float64Array) and JavaScript arrays of numbers 

will be accepted as input for vector data. To pass these arrays as inputs to flexible3 VECTOR columns as bind 

values, pass in oracledb.DB_TYPE_VECTOR as a bind type attribute. For VECTOR columns with a defined 

vector storage format, pass the array directly as the bind value.  

These semantics are shown in the examples in the section ‘Sample Node.js applications using vectors’. 

 

Sample Node.js programs using vectors 

Dense vectors 

The following Node.js app, vectorDense.js, works with VECTOR column data types in the default dense storage 

format of Oracle Database using node-oracledb. 

 

// vectorDense.js sample code 

const oracledb = require('oracledb'); 

 

const tableName = 'sampleVectorTab'; 

 
3 Flexible VECTOR columns do not have their vector storage formats defined at the time of table creation 



 

8 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

 

// To run the script in Thick mode, uncomment the following line: 

// oracledb.initOracleClient() 

 

// Add the DB user credentials and connect string 

const dbConfig = { 

  user: "myuser", 

  password: "mypw", 

  connectString: "db_connectstring" 

}; 

 

oracledb.outFormat = oracledb.OUT_FORMAT_OBJECT; 

 

// By default, TypedArrays are returned. A Fetch Type Handler like 

// below is used to convert TypedArray to JavaScript Array objects. 

// This is optional. 

oracledb.fetchTypeHandler = function(metadata) { 

  if (metadata.dbType === oracledb.DB_TYPE_VECTOR) { 

    const myConverter = (v) => { 

      if (v !== null) { 

        return Array.from(v); 

      } 

      return v; 

    }; 

    return {converter: myConverter}; 

  } 

}; 

 

// Main function 

async function run() { 

  const connection = await oracledb.getConnection(dbConfig); 

  try { 

    let result; 

    const serverVersion = connection.oracleServerVersion; 

    if (serverVersion < 2305000000) { 

      console.log('This DB version does not support all the VECTOR data types'); 



 

9 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

      return; 

    } 

 

    await connection.execute(`DROP TABLE IF EXISTS ${tableName}`); 

    await connection.execute(`CREATE TABLE ${tableName} ( 

      ID NUMBER, 

      VCOL VECTOR(3), 

      VCOL32 VECTOR(3, FLOAT32), 

      VCOL64 VECTOR(3, FLOAT64), 

      VCOL8 VECTOR(3, INT8), 

      VCOLB VECTOR(16, BINARY)  

      )` 

    ); 

    console.log('Table created'); 

 

    // JavaScript Array 

    const arr = [1.1, 2.2, 3.3]; 

    // 32-bit floating point TypedArray 

    const float32arr = new Float32Array([4.4, 5.51, 6.6]); 

    // 64-bit floating point TypedArray 

    const float64arr = new Float64Array([7.7, 8.8, 9.9]); 

    // 8-bit signed integer TypedArray 

    const int8arr = new Int8Array([126, 125, -23]); 

    // 8-bit unsigned integer TypedArray for binary vector 

    const binarr = new Uint8Array([240, 200]); 

 

 

    result = await connection.execute( 

      `INSERT INTO ${tableName} 

       (ID, VCOL, VCOL32, VCOL64, VCOL8, VCOLB) 

       VALUES (:id, :vec, :vec32, :vec64, :vec8, :vecbinary)`, 

      { id: 1, 

        vec: {type: oracledb.DB_TYPE_VECTOR, val: arr}, 

        vec32: float32arr, 

        vec64: float64arr, 

        vec8: int8arr, 



 

10 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

        vecbinary: binarr 

      }); 

    console.log('Rows inserted: ' + result.rowsAffected); 

 

    result = await connection.execute( 

      `SELECT ID, VCOL, VCOL32, VCOL64, VCOL8, VCOLB FROM ${tableName}` 

    ); 

 

    console.log("Query output:"); 

    console.log(result.rows[0]); 

  } catch (err) { 

    console.error(err); 

  } finally { 

    if (connection) { 

      try { 

        await connection.close(); 

      } catch (err) { 

        console.error(err); 

      } 

    } 

  } 

} 

run(); 

 

The script creates a table 'sampleVectorTab' with four VECTOR columns:  

• VCOL32 is a FLOAT32 format VECTOR column  

• VCOL64 is a FLOAT64 format VECTOR column 

• VCOL8 is an 8-bit signed integer (INT8) format VECTOR column 

• VCOLB is an 8-bit unsigned integer (BINARY) format VECTOR column 

• VCOL is a flexible VECTOR column 

Then, data is inserted into the table. TypedArrays are used as bind values for inserting data into VECTOR columns 

with a specific VectorFormat attribute. To insert data into the VECTOR column with an unspecified VectorFormat 

attribute (VCOL), a JavaScript array is used as a bind value with the type property set to DB_TYPE_VECTOR in this 

example. 

VECTOR columns are fetched as node-oracledb Array objects using the FetchTypeHandler global function. 

 

 

 



 

11 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

The output is similar to: 

$ node vectorDense.js 

Table created 

Rows inserted: 1 

Query output: 

{ 

  ID: 1, 

  VCOL: [ 1.1, 2.2, 3.3 ] 

  VCOL32: [ 4.400000095367432, 5.510000228881836, 6.599999904632568 ], 

  VCOL64: [ 7.7, 8.8, 9.9 ], 

  VCOL8: [ 126, 125, -23 ], 

  VCOLB: [240, 200] 

} 

The minor discrepancies between the input (see the arr variable) and output values of the Float32 TypedArray are 

due to the side effects of floating-point operations in JavaScript. 

 

Sparse vectors 

The following Node.js app, vectorSparse.js, works with the sparse VECTOR column data type in Oracle Database 

using node-oracledb. 

// vectorSparse.js sample code 

const oracledb = require('oracledb'); 

 

const tableName = 'VectorSparseTab'; 

 

// To run the script in Thick mode, uncomment the following line: 

// oracledb.initOracleClient() 

 

// Add the DB user credentials and connect string 

const dbConfig = { 

    user: "myuser", 

    password: "mypw", 

    connectString: "db_connectstring" 

  }; 

 

oracledb.outFormat = oracledb.OUT_FORMAT_OBJECT; 

 



 

12 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

// Main function 

async function run() { 

  const connection = await oracledb.getConnection(dbConfig); 

  try { 

      let result; 

      const serverVersion = connection.oracleServerVersion; 

      if (serverVersion < 2307000000) { 

        console.log('This DB version does not support SPARSE VECTOR data type'); 

      return; 

      } 

 

      await connection.execute(`CREATE TABLE ${tableName} ( 

        ID NUMBER GENERATED ALWAYS AS IDENTITY, 

        FLOAT32SPARSECOL VECTOR(25, float32, sparse), 

        FLOAT64SPARSECOL VECTOR(30, float64, sparse), 

        INT8SPARSECOL VECTOR(35, int8, sparse) 

        )` 

      ); 

      console.log('Table created'); 

 

      // Sparse Vector Object with 32-bit floating point non-zero values 

      const float32arr = new Float32Array([4.4, 5.51, 6.6]); 

      const sparseVecObjFloat32 = new oracledb.SparseVector( 

        { values: float32arr, indices: [1, 3, 7], numDimensions: 25 }); 

      // Sparse Vector Object with 64-bit floating point non-zero values 

      const float64arr = new Float64Array([7.7, 8.8, 9.9]); 

      const sparseVecObjFloat64 = new oracledb.SparseVector( 

        { values: float64arr, indices: [1, 3, 6], numDimensions: 30 }); 

      // Sparse Vector Object with 8-bit signed integer non-zero values 

      const int8arr = new Int8Array([126, -25]); 

      const sparseVecObjInt8 = new oracledb.SparseVector( 

        { values: int8arr, indices: [4, 7], numDimensions: 35 }); 

 

      result = await connection.execute( 

      `INSERT INTO ${tableName} 

        (FLOAT32SPARSECOL, FLOAT64SPARSECOL, INT8SPARSECOL) 



 

13 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

        VALUES (:sparseVec32, :sparseVec64, :sparseVec8)`, 

        { sparseVec32: sparseVecObjFloat32, 

          sparseVec64: sparseVecObjFloat64, 

          sparseVec8: sparseVecObjInt8, 

        } 

      ); 

      console.log('Rows inserted: ' + result.rowsAffected); 

 

      result = await connection.execute( 

      `SELECT ID, FLOAT32SPARSECOL, FLOAT64SPARSECOL, INT8SPARSECOL FROM   

        ${tableName}` 

      ); 

 

      console.log("Query output:"); 

      console.log("ID:", result.rows[0].ID); 

      console.log("FLOAT32 SPARSE COL:",  

        JSON.stringify(result.rows[0].FLOAT32SPARSECOL)); 

      console.log("FLOAT64 SPARSE COL:",  

        JSON.stringify(result.rows[0].FLOAT64SPARSECOL)); 

      console.log("INT8 SPARSE COL:",  

        JSON.stringify(result.rows[0].INT8SPARSECOL)); 

 

      for (data of result.metaData) { 

        console.log(data.name, "is sparse:", data.isSparseVector); 

      } 

  } catch (err) { 

    console.error(err); 

  } finally { 

    if (connection) { 

      try { 

        await connection.execute(`DROP TABLE IF EXISTS ${tableName}`); 

        console.log("Table dropped"); 

        await connection.close(); 

      } catch (err) { 

        console.error(err); 

      } 



 

14 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

    } 

  } 

} 

 

run(); 

 

 

The script creates a table 'VectorSparseTab' with three SPARSE VECTOR columns and an auto-generated ID 

NUMBER column:  

• FLOAT32SPARSECOL is a FLOAT32 format SPARSE VECTOR column  

• FLOAT64SPARSECOL is a FLOAT64 format SPARSE VECTOR column 

• INT8SPARSECOL is an 8-bit signed integer (INT8) format SPARSE VECTOR column 

Then, data is inserted into the table. Node-oracledb’s oracledb.SparseVector objects of the required data type are 

used as bind values for inserting data into VECTOR columns with a specific VectorFormat (Float64, Float32, and 

Int8 data types) attribute. 

The SPARSE VECTOR columns are fetched as node-oracledb’s oracledb.SparseVector objects. 

In this example, the isSparseVector attribute of the returned result’s metadata property on each column is used to 

check whether the column is a SPARSE VECTOR column. 

Note that if the column is not a VECTOR column, the isSparseVector metadata attribute is undefined. 

 

The output is similar to: 

$ node vectorSparse.js 

Table created 

Rows inserted: 1 

Query output: 

ID: 1 

FLOAT32 SPARSE COL: 

{"numDimensions":25,"indices":{"0":1,"1":3,"2":7},"values":{"0":4.400000095367432

,"1":5.510000228881836,"2":6.599999904632568}} 

FLOAT64 SPARSE COL: 

{"numDimensions":30,"indices":{"0":1,"1":3,"2":6},"values":{"0":7.7,"1":8.8,"2":9

.9}} 

INT8 SPARSE COL: 

{"numDimensions":35,"indices":{"0":4,"1":7},"values":{"0":126,"1":-25}} 

ID is sparse: undefined 

FLOAT32SPARSECOL is sparse: true 

FLOAT64SPARSECOL is sparse: true 

INT8SPARSECOL is sparse: true 

Table dropped 

https://node-oracledb.readthedocs.io/en/latest/api_manual/oracledb.html#oracledbsparsevector
https://node-oracledb.readthedocs.io/en/latest/api_manual/oracledb.html#oracledbsparsevector
https://node-oracledb.readthedocs.io/en/latest/api_manual/connection.html#execmetadata


 

15 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Using embedding models with vectors for intuitive applications 

The vector support in node-oracledb enables Node.js developers to use a variety of embedding models from AI 

frameworks such as Cohere, OpenAI, and HuggingFace. These embedding models can be used to generate vector 

data that can be stored in the Oracle Database. The vectors can empower Node.js applications with similarity search 

and natural language processing capabilities. 

 

Using a random seed dataset, the sample application below implements a similarity search for any text-based input 

from the user. This application uses embedding models from the Cohere AI framework and has three component 

JavaScript files that: 

• Create the source dataset (createSchema.js) 

• Generate and embed vectors into the database based on the source dataset (vectorizeTableCohere.js) 

• Implement similarity search with reranking based on the embedded vectors (similaritySearchCohere.js) 

 

Once the source data is created and vectors are embedded, the application user can run a similarity search on the 

source dataset with any phrase or sentence and get the top N closely matching or similar sentences from the 

source dataset based on the vector comparison. We also use a reranking model on top of the embedding model 

to improve accuracy. 

 

Create source dataset 

The following is a sample file (createSchema.js), which can be used to create a source dataset: 

https://gist.github.com/sharadraju/108275cc79f111ad94b6830948d1fa10  

The file in the link above will create the source dataset (my_data table) with a VECTOR column initialized to null 

values. This VECTOR column will be updated when we embed vector data using the Cohere embedding models. 

You can modify the sample file to add more rows and improve the source dataset. 

 

When the createSchema.js file is run with the node command, a successful output is similar to the following: 

$ node createSchema.js                                                                                                                                                             

Connected to Oracle Database 

Created table and inserted data 

Thin mode selected 

Run at: Mon Sep 09 2024 21:40:25 GMT+0530 (India Standard Time) 

Oracle Database version: 23.5.0.24.5 

 

Generate and Embed vectors into Oracle Database 

Now that the source dataset is ready, the next step is to generate and embed vectors into the source dataset using 

Cohere in this case. First, the user must create an account at http://www.cohere.com and generate the Cohere 

API key. 

The environment variable CO_API_KEY must be set to the Cohere API key. 

 

The cohere-ai npm module must be installed: 

$ npm install cohere-ai 

http://www.cohere.com/
https://platform.openai.com/
https://huggingface.co/docs/transformers.js/index
https://gist.github.com/sharadraju/108275cc79f111ad94b6830948d1fa10
http://www.cohere.com/
https://dashboard.cohere.com/api-keys
https://dashboard.cohere.com/api-keys


 

16 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Note: If the application user is running behind a firewall or a corporate HTTP/HTTPS proxy, a relevant npm 

module to connect to Cohere through the proxy can be downloaded and used in the vectorizeCohere.js file for 

running the embedding models and similarity searches. 

The following program embeds vectors into the source dataset (my_data table in this case): 

// vectorizeCohere.js file 

const oracledb = require('oracledb'); 

const cohere = require('cohere-ai'); 

 

async function vectorize() { 

  let connection; 

 

  // Add the DB user credentials  

  // and connect string 

  const dbConfig = { 

    user: "myuser", 

    password: "mypw", 

    connectString: "db_connectstring" 

  }; 

  // To run the script in Thick mode, uncomment the following line: 

  // oracledb.initOracleClient(); 

 

  // Get your Cohere API Key from the environment 

  const apiKey = process.env.CO_API_KEY; 

 

  // Select/Set your Embedding model below 

  // const embeddingModel = 'embed-english-light-v3.0'; 

  // const embeddingModel = 'embed-english-v3.0'; 

  // const embeddingModel = 'embed-multilingual-light-v3.0'; 

  const embeddingModel = 'embed-multilingual-v3.0'; 

 

  console.log('Using embedding model ' + embeddingModel); 

 

  const co = new cohere.CohereClient({ token: apiKey }); 

 

  try { 

 



 

17 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

    // Get a standalone Oracle Database connection 

    connection = await oracledb.getConnection(dbConfig); 

 

    //Connect only to an Oracle Database version that supports vectors 

    if (connection.oracleServerVersion < 2304000000) { 

      console.log('This example requires Oracle Database 23.4 or later'); 

      process.exit(); 

    } 

    console.log('Connected to Oracle Database'); 

 

    console.log('Vectorizing the following data:'); 

 

    // Loop over the rows and vectorize the VARCHAR2 data 

    const sql = 'SELECT id, info FROM my_data ORDER BY 1'; 

    const result = await connection.execute(sql); 

 

    const binds = []; 

 

    for (const row of result.rows) { 

      // Convert to a format that Cohere wants 

      const data = [row[1]]; 

      console.log(row); 

 

      // Create the vector embedding [a JSON object] 

      const response = await co.embed({ 

        texts: data, 

        model: embeddingModel, 

        inputType: 'search_query', 

      }); 

 

      // Extract the vector from the JSON object & convert it to TypedArray 

      const float32VecArray = new Float32Array(response.embeddings[0]); 

 

      // Record the array and key 

      binds.push([float32VecArray, row[0]]); 

    } 



 

18 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

 

    // Do an update to add or replace the vector values 

    await connection.executeMany('UPDATE my_data SET v = :1 WHERE id = :2',      

      binds, 

      { autoCommit: true }); 

 

    console.log(`Added ${binds.length} vectors to the table`); 

  } catch (err) { 

    console.error(err); 

  } finally { 

    if (connection) 

      await connection.close(); 

  } 

} 

 

vectorize(); 

 

 

This code snippet uses the 'embed-multilingual-v3.0' embedding model of Cohere here. Developers can also use 

other Cohere embedding models depending on their preference. 

 

Running this file will embed the vectors in the VECTOR column of the my_data table. 

When the vectorizeCohere.js file is run with the node command, a successful output is similar to the following: 

$ node vectorizeTableCohere.js 

Using embedding model embed-multilingual-v3.0 

Connected to Oracle Database 

Vectorizing the following data: 

[ 1, 'San Francisco is in California.' ] 

[ 2, 'San Jose is in California.' ] 

[ 3, 'Los Angeles is in California.' ] 

[ 4, 'Buffalo is in New York.' ] 

[ 5, 'Brooklyn is in New York.' ] 

... 

[ 100, 'Ferraris are often red.' ] 

[ 101, 'Teslas are electric.' ] 

[ 102, 'Mini coopers are small.' ] 



 

19 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

[ 103, 'Fiat 500s are small.' ] 

[ 104, 'Dodge Vipers are wide.' ] 

... 

[ 1100, 'Mumbai is in India.' ] 

[ 

  1101, 

  'Mumbai is the capital city of the Indian state of Maharashtra.' 

] 

[ 1102, 'Mumbai is the Indian state of Maharashtra.' ] 

[ 1103, 'Mumbai is on the west coast of India.' ] 

[ 1104, 'Mumbai is the de facto financial centre of India.' ] 

[ 1105, 'Mumbai has a population of about 12.5 million people.' ] 

[ 

  1106, 

  'Mumbai is hot with an average minimum temperature of 24 degrees Celsius.' 

] 

[ 

  1107, 

 'Common languages in Mumbai are Marathi, Hindi, Gujarati, Urdu, Bambaiya and 

English.' 

] 

Added 134 vectors to the table 

Note: A compressed version of the output is shown above, as the original output can span multiple lines 

depending on the amount of data in the my_data table. 

This file will have updated the VECTOR columns in the source dataset (my_data table). 

 

Run Similarity Search with user inputs 

Finally, we run the similaritySearchCohere.js file to enable the application users to search for similar information to 

their questions or inputs in the source dataset (my_data table). We also use a reranking model to improve the 

accuracy of the similarity search results. 

// similaritySearchCohere.js file 

const oracledb = require('oracledb'); 

const cohere = require('cohere-ai'); 

const readline = require('readline'); 

 

const readLineAsync = () => { 

  const rl = readline.createInterface({ 



 

20 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

    input: process.stdin 

  }); 

 

  return new Promise((resolve) => { 

    rl.prompt(); 

    rl.on('line', (line) => { 

      rl.close(); 

      resolve(line); 

    }); 

  }); 

}; 

 

async function runSimilaritySearch() { 

  let connection; 

 

  // Add the DB user credentials 

  // and connect string 

  const dbConfig = { 

    user: "myuser", 

    password: "mypw", 

    connectString: "db_connectstring" 

  }; 

 

  const topK = 5; // Return the top 5 similar results 

  let reRank = true; 

 

  // Get your Cohere API Key from the environment 

  const apiKey = process.env.CO_API_KEY; 

 

  // Select/Set your Embedding model here 

  // const embeddingModel = 'embed-english-light-v3.0'; 

  // const embeddingModel = 'embed-english-v3.0'; 

  // const embeddingModel = 'embed-multilingual-light-v3.0'; 

  const embeddingModel = 'embed-multilingual-v3.0'; 

 

  // Cohere re-ranking models 



 

21 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

  // const rerankModel = 'rerank-english-v2.0'; 

  const rerankModel = 'rerank-multilingual-v2.0'; 

 

  console.log('Using embedding model ' + embeddingModel); 

 

  if (reRank) 

    console.log('Using reranker ' + rerankModel); 

  else 

    console.log('Not using reranking'); 

 

  console.log('TopK = ' + topK); 

 

  const co = new cohere.CohereClient({ token: apiKey }); 

 

  try { 

    // To run the script in Thick mode, uncomment the following line: 

    // oracledb.initOracleClient(); 

 

    // Get a standalone Oracle Database connection 

    connection = await oracledb.getConnection(dbConfig); 

 

    // Connect only to an Oracle Database version that supports vectors 

    if (connection.oracleServerVersion < 2304000000) { 

      console.log('This example requires Oracle Database 23.4 or later'); 

      process.exit(); 

    } 

    console.log('Connected to Oracle Database'); 

 

 

    // Using the EUCLIDEAN Vector Distance function 

    const sql = `SELECT info FROM my_data 

                  ORDER BY VECTOR_DISTANCE(v, :1, EUCLIDEAN) 

                  FETCH FIRST :2 ROWS ONLY`; 

 

    while (true) { 

      // Get the text input to vectorize 



 

22 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

      console.log("\nEnter a phrase. Type 'quit' or 'exit' to exit: "); 

      const text = await readLineAsync(); 

 

      if (text === 'quit' || text === 'exit') 

        break; 

      if (text === '') 

        continue; 

 

      // Create the vector embedding [a JSON object] 

      const sentence = [text]; 

      const response = await co.embed({ 

        texts: sentence, 

        model: embeddingModel, 

        inputType: 'search_query', 

      }); 

 

      // Extract the vector from the JSON object 

      const float64VecArray = new Float64Array(response.embeddings[0]); 

 

      const docs = []; 

 

      // Do the Similarity Search 

      const rows = (await connection.execute(sql, [float64VecArray, topK])).rows; 

      for (const row of rows) { 

        docs.push(row[0]); 

      } 

 

 

 

      if (!reRank) { 

        // Rely on the vector distance for the resultset order 

        console.log('\nWithout ReRanking'); 

        console.log('================='); 

 

        for (const hit of docs) { 

          console.log(hit); 



 

23 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

        } 

      } else { 

 

        // Rerank for better results 

        const { results } = await co.rerank({ query: text, documents: docs, topN: 

topK, model: rerankModel }); 

 

        console.log('\nReranked results'); 

        console.log('================='); 

 

        for (const hit of results) { 

          console.log(docs[hit.index]); 

        } 

      } 

    } // End of while loop 

  } catch (err) { 

    console.error(err); 

  } finally { 

    if (connection) 

      await connection.close(); 

  } 

} 

 

runSimilaritySearch(); 

 

Note: If the application user is running behind a firewall or a corporate HTTP/HTTPS proxy, a relevant npm 

module to connect to Cohere through the proxy can be downloaded and used in the vectorizeCohere.js file for 

running the embedding models and similarity searches. 

Based on the user input, the similarity search function will give the top five most closely related sentences from 

the source dataset based on the semantics and context obtained from the embedding models. 

When the similaritySearchCohere.js file is run with the node command, the output is similar to the following: 

$ node similaritySearchCohere.js 

Using embedding model embed-multilingual-v3.0 

Using reranker rerank-multilingual-v2.0 

TopK = 5 

Connected to Oracle Database 

 



 

24 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

Enter a phrase. Type 'quit' or 'exit' to exit: 

Talk about Cars 

 

Reranked results 

================= 

Porsches are fast and reliable. 

Nissan GTRs are great. 

Toyotas are reliable. 

Ford 150s are popular. 

Alfa Romeos are fun. 

 

Enter a phrase. Type 'quit' or 'exit' to exit: 

Tell me something about the Middle East 

 

Reranked results 

================= 

The United Arab Emirates consists of seven Emirates. 

Emirates is the largest airline in the Middle East. 

Dubai is in the Persian Gulf. 

Dubai is in the United Arab Emirates. 

Sheikh Mohamed bin Zayed Al Nahyan is the president of the United Arab Emirates. 

 

Enter a phrase. Type 'quit' or 'exit' to exit: 

quit 

Based on the user input (e.g.,' Talk about Cars' or 'Tell me something about the Middle East'), 

the top five semantically and contextually similar statements from the source dataset are displayed. 

 

Conclusion 

Oracle AI Vector Search, with Oracle AI Database 26ai, enables a new class of applications powered by semantic 

searches using LLMs augmented with existing business data. Node-oracledb brings that capability to JavaScript 

and TypeScript developers. 

 

References 

• Oracle AI Vector Search User's Guide 

• node-oracledb documentation 

 

 

https://docs.oracle.com/en/database/oracle/oracle-database/23/vecse/
https://node-oracledb.readthedocs.io/en/latest/index.html


 

25 Business / Technical Brief  / Oracle AI Database 26ai vectors in node-oracledb  /  

        Version 4.0  

 Copyright © 2025, Oracle and/or its affiliates / Public 

Confidential – Oracle Internal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Connect with us 

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at: oracle.com/contact. 

 blogs.oracle.com facebook.com/oracle twitter.com/oracle 

 

Copyright © 2025, Oracle and/or its affiliates. All rights reserved. This document is 

provided for information purposes only, and the contents hereof are subject to 

change without notice. This document is not warranted to be error-free, nor subject 

to any other warranties or conditions, whether expressed orally or implied in law, 

including implied warranties and conditions of merchantability or fitness for a 

particular purpose. We specifically disclaim any liability with respect to this 

document, and no contractual obligations are formed either directly or indirectly by 

this document. This document may not be reproduced or transmitted in any form or 

by any means, electronic or mechanical, for any purpose, without our prior written 

permission. 

  

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may 

be trademarks of their respective owners. 

https://blogs.oracle.com/
https://www.facebook.com/Oracle/
https://twitter.com/oracle

