
1. Introduction 11

1. Introduction

1.1. Abstract

This specification describes the objectives and functionality of the Java
TM

Message Service (JMS)..

JMS provides a common way for Java programs to create, send, receive

and read an enterprise messaging system’s messages.

1.2.1.1. Overview of JMS

Enterprise messaging products (or as they are sometimes called, message-

oriented middleware products) are becoming an essential component for

integrating intra-company operations. They allow separate business

components to be combined into a reliable, yet flexible, system.

JMS was initially developed to provide a standard Java API for the

established messaging products that already existed. Since then many

more messaging products have been developed.

JMS provides a common way for both Java client applications and Java

middle-tier services to use these messaging products. It defines some

messaging semantics and aIn addition to the traditional MOM vendors,

enterprise messaging products are also provided by several database

vendors and a number of internet related companies.

Java language clients and Java language middle-tier services must be

capable of using these messaging systems. JMS provides a common way

for Java language programs to access these systems.

JMS is a corresponding set of Java interfaces and associated semantics

that define how a JMS client accesses the facilities of an enterprise

messaging product.interfaces.

Since messaging is a peer-to-peer technology, all users of JMS are

referred to generically as clients. A JMS application is made up of a set of

application defined messages and a set of clients that exchange them.

Messaging pProducts that implement JMS do this so by supplying a

provider that implements the JMS interfaces. Messaging products may

support clients which use programming languages other than Java.

Although such support is beyond the scope of JMS, the design of JMS has

always accommodated the need for messaging products to support

languages other than Java

1.2.1.1.1.1. Is this a mail APIWhat is messaging?

The term messaging is quite broadly defined in computing. It is used for

describing various operating system concepts; it is used to describe email

and fax systems; and here, it is used to describe asynchronous

communication between enterprise applications.

Messages, as described here, are asynchronous requests, reports or events

that are consumed by enterprise applications, not humans. They contain

12 Java Message Service Version 2.0 (Proposed final draft RC2)

vital information needed to coordinate these systems. They contain

precisely formatted data that describe specific business actions. Through

the exchange of these messages each application tracks the progress of the

enterprise.

1.2.2. Existing messaging systems

Messaging systems are peer-to-peer facilities. In general, each client can

send messages to, and receive messages from, any client. Each client

connects to a messaging agent which provides facilities for creating,

sending and receiving messages.

Each system provides a way of addressing messages. Each provides a way

to create a message and fill it with data.

Some systems are capable of broadcasting a message to many

destinations. Others only support sending a message to a single

destination.

Some systems provide facilities for asynchronous receipt of messages

(messages are delivered to a client as they arrive). Others support only

synchronous receipt (a client must request each message).

Each messaging system typically provides a range of service that can be

selected on a per message basis. One important attribute is the lengths to

which the system will go to ensure delivery. This varies from simple best

effort to guaranteed, only once delivery. Other important attributes are

message time-to-live, priority and whether a response is required.

1.2.3.1.1.2. JMSThe objectives of JMS

If JMS provided a union of all the existing features of messaging systems it

would be much too complicated for its intended users. On the other hand,

JMS is more than an intersection of the messaging features common to all

products. It is crucial thatThe objectives of JMS include are

 to provide Java the applications with the messaging functionality

needed to implement sophisticated enterprise applications

 to define .

 JMS defines a common set of enterprise messaging concepts and

facilities

 to . It attempts to minimize the set of concepts a Java language

programmer must learn to use enterprise messaging products

 to . It strives to maximize the portability of Java messaging applications

between different messaging products.

1.2.3.1. JMS provider

As noted earlier, a JMS provider is the entity which implements JMS for a

messaging product.

Ideally, JMS providers will be written in 100% Pure Java so they can run

in applets; simplify installation; and, work across architectures and OS’s.

An important goal of JMS is to minimize the work needed to implement a

provider.

1.2.3.2. JMS messages

1. Introduction 13

JMS defines a set of message interfaces.

Clients use the message implementations supplied by their JMS provider.

A major goal of JMS is that clients have a consistent API for creating and

working with messages which is independent of JMS provider.

1.2.3.3.1.1.3. JMS domains

JMS supports the two major styles of messaging provided by enterprise

mMessaging products :

 can be broadly classified as either point-to-point or publish-subscribe

systems.

 Point-to-point (PTP) products messaging are allows a client to send a

message to another clientbuilt around the concept of message queues.

via an intermediate abstraction called a queue. The client that sends the

message sends it to a specific queue. The client that receives the

message Each message is addressed to a specific queue; clients

extractextracts messages it from the that queue.(s) established to hold

their messages.

 Publish and subscribe (Pub/Sub) messaging allows a client to send

messages to multiple clients via an intermediate abstraction called a

topic. The client that sends the message publishes it to a specific topic.

The message will then be delivered to all the clients that are subscribed

to that topic.clients address messages to some node in a content

hierarchy. Publishers and subscribers are generally anonymous and may

dynamically publish or subscribe to the content hierarchy. The system

takes care of distributing the messages arriving from a node’s multiple

publishers to its multiple subscribers.

 JMS provides a set of interfaces that allow the client to send and

receive messages in both domains, while supporting the semantics of

each domain. JMS also provides client interfaces tailored for each

domain. Prior to version 1.1 of the JMS specification, only the client

interfaces that were tailored to each domain were available. These

interfaces continue to be supported to provide backward compatibility

for those who have already implemented JMS clients using them. The

preferred approach for implementing clients is to use the domain-

independent interfaces. These interfaces, referred to as the “common

interfaces”, are parents of the domain-specific interfaces.

1.2.3.4. Portability

The primary portability objective is that new, JMS only, applications are

portable across products within the same messaging domain.

This is in addition to the expected portability of a JMS client across

machine architectures and operating systems (when using the same JMS

provider).

Although JMS is designed to allow clients to work with existing message

formats used in a mixed language application, portability of such clients is

not generally achievable (porting a mixed language application from one

product to another is beyond the scope of JMS).

1.2.4.1.1.4. What JMS does not include

JMS does not address the following functionality:

14 Java Message Service Version 2.0 (Proposed final draft RC2)

 Load Bbalancing/fFault tTolerance - Many products provide support for

multiple, cooperating clients implementing a critical service. The JMS

API does not specify how such clients cooperate to appear to be a

single, unified service.

 Error/aAdvisory nNotification - Most messaging products define

system messages that provide asynchronous notification of problems or

system events to clients. JMS does not attempt to standardize these

messages. By following the guidelines defined by JMS, clients can

avoid using these messages and thus prevent the portability problems

their use introduces.

 Administration - JMS does not define an API for administering

messaging products.

 Security - JMS does not specify an API for controlling the privacy and

integrity of messages. It also does not specify how digital signatures or

keys are distributed to clients. Security is considered to be a JMS

provider-specific feature that is configured by an administrator rather

than controlled via the JMS API by clients.

 Wire Pprotocol - JMS does not define a wire protocol for messaging.

 Message Ttype rRepository - JMS does not define a repository for

storing message type definitions and it does not define a language for

creating message type definitions.

1.2. What is required by JMS

The functionality discussed in the specification is required of all JMS

providers unless it is explicitly noted otherwise.

JMS is also used within the Java Platform, Enterprise Edition (Java EE). See

section 1.4 "Relationship to other Java APIs" for additional requirements for

JMS when it is integrated into a Java EE environment.

1.3. Relationship to other Java APIs

1.3.1. Java DataBase Connectivity (JDBCTM) software

JMS clients may also use the JDBC API. They may desire to include the

use of both the JDBC API and the JMS API in the same transaction. In

most cases, this will be achieved automatically by implementing these

clients as Enterprise JavaBeansTM
 components. It is also possible to do this

directly with the Java Transaction API (JTA).

1.3.2. JavaBeansTM components

JavaBeans components can use a JMS session to send/receive messages.

JMS itself is an API and the interfaces it defines are not designed to be

used directly as JavaBeans components.

1.3.3. Enterprise JavaBeansTM component model

The JMS API is an important resource available to Enterprise Java Beans

(EJBTM
) component developers. It can be used in conjunction with other

resources like JDBC to implement enterprise services.

The EJB specification defines beans that are invoked synchronously via

method calls from EJB clients. It also defines a form of asynchronous

1. Introduction 15

bean that is invoked when a JMS client sends it a message, called a

message-driven bean. The EJB specification supports both synchronous

and asynchronous message consumption. In addition, EJB specifies how

the JMS API participates in bean-managed or container-managed

transactions. The EJB specification restricts how to use JMS interfaces

when implementing EJB clients. Refer to the EJB specification for the

details.

1.3.4. Java Transaction API (JTA)

The javax.transaction package provides a client API for delimiting

distributed transactions and an API for accessing a resource’s ability to

participate in a distributed transaction.

A JMS client may use JTA to delimit distributed transactions; however,

this is a function of the transaction environment the client is running in. It

is not a feature of JMS.

A JMS provider can optionally support distributed transactions via JTA.

The JTA specification also defines a scope @TransactionScope which is

referred to in section 12.4.4 "Scope of injected JMSContext objects".

1.3.5. Java Transaction Service (JTS)

JMS can be used in conjunction with JTS to form distributed transactions

that combine message sends and receives with database updates and other

JTS aware services. This should be handled automatically when a JMS

client is run from within an application server such as an Enterprise

JavaBeans server; however, it is also possible for JMS clients to program

this explicitly.

1.3.6. Java Naming and Directory InterfaceTM (JNDI) API

JMS clients look up configured JMS objects using the JNDI API. JMS

administrators use provider-specific facilities for creating and configuring

these objects.

This division of work maximizes the portability of clients by delegating

provider specific work to the administrator. It also leads to more

administrable applications because clients do not need to embed

administrative values in their code.

1.1.5. Java SE and Java EE support

 The JMS API is designed to be suitable for use by both Java client

applications using the Java™ Platform, Standard Edition (Java SE), and

Java middle-tier services using the Java™ Platform, Enterprise Edition

(Java EE).

 All JMS providers must support its use by Java client applications

using Java SE. It is optional whether a given JMS provider supports its use

by middle-tier applications using Java EE.

1.3.7. Java Platform, Enterprise Edition (Java EE)

The Java™ Platform, Enterprise Edition (Java EE) Specification requires

a full Java EE platform implementation to include a messaging provider

which supports the JMS API in both Java SE and Java EE applications.

16 Java Message Service Version 2.0 (Proposed final draft RC2)

Java EE makes a number of additional features available to messaging

applications in addition to those defined in the JMS specification itself,

most notably message-driven beans (MDBs) and JTA transactions. Java

EE also imposes a number of restrictions on the use of the JMS API.

For more information on the use of JMS by Java EE applications, see

chapter 12 "Use of JMS API in Java EE applications".

1.3.8. Contexts and dependency injection (CDI)

This specification defines how JMSContext objects may be injected into

Java EE web or EJB applications. See section 12.4 "Injection of

JMSContext objects" for more information. The CDI (Contexts and

dependency injection) specification defines the concepts and technology on

which this is based.

1.4.1.2. What is new in JMS 2.0?

A full list of the new features, changes and clarifications introduced in JMS

2.0 is given in section A.1 "Version 2.0" of the "Change historyChange

history" chapter. Here is a summary:

The JMS 2.0 specification now requires JMS providers to implement both

P2P and Pub-Sub.

The following new messaging features have been added in JMS 2.0:

 Delivery delay: a message producer can now specify that a message

must not be delivered until after a specified time interval.

 New send methods have been added to allow an application to send

messages asynchronously.

 JMS providers must now set the JMSXDeliveryCount message

property.

The following change has been made to aid scalability:

 Applications are now permitted to create multiple consumers on the

same durable or non-durable topic subscription. In previous versions of

JMS only a single consumer was permitted.

Several changes have been made to the JMS API to make it simpler and

easier to use:

 Connection, Session and other objects with a close() method now

implement the java.jang.AutoCloseable interface to allow them to

be used in a Java SE 7 try-with-resources statement.

 A new "simplified API" has been added which offers a simpler

alternative to the previous API, especially in Java EE applications.

 New methods have been added to create a session without the need to

supply redundant arguments.

 Although setting client ID remains mandatory when creating an

unshared durable subscription, it is optional when creating a shared

durable subscription.

 A new method getBody has been added to allow an application to

extract the body directly from a Message without the need to cast it

first to an appropriate subtype.

1. Introduction 17

A new chapter has been added which describes some additional restrictions

and behaviour which apply when using the JMS API in the Java EE web or

EJB container. This information was previously only available in the EJB

and Java EE platform specifications.

A new chapter has been added which adds a new recommendation for a

JMS provider to include a resource adapter, and which defines a number of

activation configuration properties.

New methods have been added to Session which return a

MessageConsumer on a durable topic subscription. Applications could

previously only obtain a domain-specific TopicSubscriber, even though

its use was discouraged.

The specification has been clarified in various places.

	1. Introduction
	1.1. Abstract
	1.1. Overview of JMS
	1.1.1. Is this a mail APIWhat is messaging?
	1.1.1. Existing messaging systems
	1.1.2. JMSThe objectives of JMS
	1.1.1.1. JMS provider
	1.1.1.1. JMS messages

	1.1.3. JMS domains
	1.1.1.1. Portability

	1.1.4. What JMS does not include

	1.1. What is required by JMS
	1.3. Relationship to other Java APIs
	1.1.1. Java DataBase Connectivity (JDBCTM) software
	1.1.2. JavaBeansTM components
	1.1.3. Enterprise JavaBeansTM component model
	1.1.4. Java Transaction API (JTA)
	1.1.5. Java Transaction Service (JTS)
	1.1.6. Java Naming and Directory InterfaceTM (JNDI) API
	1.1.5. Java SE and Java EE support
	1.1.1. Contexts and dependency injection (CDI)

	1.2. What is new in JMS 2.0?

