1. Introduction

This specification describes the objectives and functionality of the Java™™
Message Service (JMS).-

JMS provides a common way for Java programs to create, send, receive
and read an enterprise messaging system’s messages.

+2-1.1. Overview of JMS

Enterprise messaging products (or as they are sometimes called, message-
oriented middleware products) are beeeming-an essential component for
integrating intra-company operations. They allow separate business
components to be combined into a reliable, yet flexible, system.

JMS was initially developed to provide a standard Java API for the
established messaging products that already existed. Since then many
more messaging products have been developed.

JMS provides a common way for both Java client applications and Java
middle-tier services to use these messaging products. It defines some
messaging semantics and aln-additionto-the traditional MOM-venders;

FMS-is-a corresponding set of Java interfaces-and-associated-semanties

that-detme-how—aIMS-chentaceesses-thetacthtics-ofan-enterprise
messaging-produet-interfaces.

Since messaging is a peer-to-peer technology, all-users of IMS are
referred to generically as clients. A JMS application is made up of a set of
application defined messages and a set of clients that exchange them.

Messaging pProducts that implement JMS do this-so by supplying a
provider that implements the JMS interfaces. Messaging products may
support clients which use programming languages other than Java.
Although such support is beyond the scope of JMS, the design of JMS has
always accommodated the need for messaging products to support
languages other than Java

+24-1.1.1. Isthis-amatAPIWhat is messaging?

The term messaging is quite broadly defined in computing. It is used for
describing various operating system concepts; it is used to describe email
and fax systems; and here, it is used to describe asynchronous
communication between enterprise applications.

Messages, as described here, are asynchronous requests, reports or events
that are consumed by enterprise applications, not humans. They contain

1. Introduction 11




12

vital information needed to coordinate these systems. They contain
precisely formatted data that describe specific business actions. Through
the exchange of these messages each application tracks the progress of the
enterprise.

produets—Itis-erueial- thatThe objectives of IMS inelude-are

e to provide Java the-applications with the messaging functionality
needed to implement sophisticated enterprise applications

——to define -

o JMS-defines-a common set of enterprise-messaging concepts and
facilities

e to —Jtattemptste-minimize the set-ef-concepts a Java language
programmer must learn to use enterprise messaging products

e to —Itstrivesto-maximize the portability of Java messaging applications
between different messaging products-

Java Message Service Version 2.0 (Proposed final draft RC2)



+233-1.1.3.JMS domains

+24-1.14.

JMS supports the two major styles of messaging provided by enterprise
mMessaging products-:

e  Point-to-point (PTP) preduets-messaging are-allows a client to send a
message to another clientbuilt-around-the-concept-of message-queues-
via an intermediate abstraction called a gueue. The client that sends the
message sends it to a specific queue. The client that receives the

Mmessaor Heehesenee Do n s e e oo el
extraetextracts messages-it from the-that queue.(s)-established-to-hold
T

——Publish and subscribe (Pub/Sub) messaging allows a client to send
messages to multiple clients via an intermediate abstraction called a
topic. The client that sends the message publishes it to a specific topic.
The message will then be delivered to all the clients that are subscribed

to that tOplC ehents&dd—ress—messages—te—semﬁedﬁa—a—eeﬂ{em

What JMS does not include

JMS does not address the following -functionality:

1. Introduction 13




Load Bbalancing/fFault tFolerance - Many products provide support for
multiple, cooperating clients implementing a critical service. The JMS
API does not specify how such clients cooperate to appear to be a
single, unified service.

Error/aAdvisory nNotification - Most messaging products define
system messages that provide asynchronous notification of problems or
system events to clients. JMS does not attempt to standardize these
messages. By following the guidelines defined by JMS, clients can
avoid using these messages and thus prevent the portability problems
their use introduces.

Administration - JMS does not define an API for administering
messaging products.

Security - JIMS does not specify an API for controlling the privacy and
integrity of messages. It also does not specify how digital signatures or
keys are distributed to clients. Security is considered to be a JMS
provider-specific feature that is configured by an administrator rather
than controlled via the JMS API by clients.

Wire Pprotocol - IMS does not define a wire protocol for messaging.

Message Ftype rRepository - JMS does not define a repository for
storing message type definitions and it does not define a language for
creating message type definitions.

Java Message Service Version 2.0 (Proposed final draft RC2)



1.1.5.

Java SE and Java EE support

The JMS API is designed to be suitable for use by both Java client
applications using the Java™ Platform, Standard Edition (Java SE), and
Java middle-tier services using the Java™ Platform, Enterprise Edition
(Java EE).

All IMS providers must support its use by Java client applications
using Java SE. It is optional whether a given JMS provider supports its use
by middle-tier applications using Java EE.

TheJavat™ Platform;Enterprise Edition (Java EE) Specification requires

a full Java EE platform implementation to include a messaging provider
which supports the JMS API in both Java SE and Java EE applications.

1. Introduction 15




16

Java EE makes a number of additional features available to messaging
applications in addition to those defined in the JMS specification itself,
most notably message-driven beans (MDBs) and JTA transactions. Java
EE also imposes a number of restrictions on the use of the JMS API.

For more information on the use of JMS by Java EE applications, see
chapter 12 "Use of IMS API in Java EE applications".

What is new in JMS 2.0?

A full list of the new features, changes and clarifications introduced in JMS
2.0 is given in section A.1 "Version 2.0" of the "Change historyChange
histery" chapter. Here is a summary:

The JMS 2.0 specification now requires JMS providers to implement both
P2P and Pub-Sub.

The following new messaging features have been added in JMS 2.0:

e Delivery delay: a message producer can now specify that a message
must not be delivered until after a specified time interval.

e New send methods have been added to allow an application to send
messages asynchronously.

e JMS providers must now set the JMSXDeliveryCount message
property.

The following change has been made to aid scalability:

e Applications are now permitted to create multiple consumers on the
same durable or non-durable topic subscription. In previous versions of
JMS only a single consumer was permitted.

Several changes have been made to the JMS API to make it simpler and
easier to use:

e Connection, Session and other objects with a close () method now
implement the java.jang.AutoCloseable interface to allow them to
be used in a Java SE 7 try-with-resources statement.

e A new "simplified API" has been added which offers a simpler
alternative to the previous API, especially in Java EE applications.

e New methods have been added to create a session without the need to
supply redundant arguments.

e Although setting client ID remains mandatory when creating an
unshared durable subscription, it is optional when creating a shared
durable subscription.

e A new method getBody has been added to allow an application to
extract the body directly from a Message without the need to cast it
first to an appropriate subtype.

Java Message Service Version 2.0 (Proposed final draft RC2)



A new chapter has been added which describes some additional restrictions
and behaviour which apply when using the JMS API in the Java EE web or
EJB container. This information was previously only available in the EJB
and Java EE platform specifications.

A new chapter has been added which adds a new recommendation for a
JMS provider to include a resource adapter, and which defines a number of
activation configuration properties.

New methods have been added to Session which return a
MessageConsumer on a durable topic subscription. Applications could
previously only obtain a domain-specific TopicSubscriber, even though
its use was discouraged.

The specification has been clarified in various places.

1. Introduction 17



	1. Introduction
	1.1. Abstract
	1.1. Overview of JMS
	1.1.1. Is this a mail APIWhat is messaging?
	1.1.1. Existing messaging systems
	1.1.2. JMSThe objectives of JMS
	1.1.1.1. JMS provider
	1.1.1.1. JMS messages

	1.1.3. JMS domains
	1.1.1.1. Portability

	1.1.4. What JMS does not include

	1.1. What is required by JMS
	1.3. Relationship to other Java APIs
	1.1.1. Java DataBase Connectivity (JDBCTM) software
	1.1.2. JavaBeansTM components
	1.1.3. Enterprise JavaBeansTM component model
	1.1.4. Java Transaction API (JTA)
	1.1.5. Java Transaction Service (JTS)
	1.1.6. Java Naming and Directory InterfaceTM (JNDI) API
	1.1.5. Java SE and Java EE support
	1.1.1. Contexts and dependency injection (CDI)

	1.2. What is new in JMS 2.0?


