
Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.2, Public Draft Message-Driven Bean

133 July 23, 2012 4:01 pm

Oracle

When a message-driven bean using bean-managed transaction demarcation uses the javax.trans-
action.UserTransaction interface to demarcate transactions, the message receipt that causes
the bean to be invoked is not part of the transaction. If the message receipt is to be part of the transac-
tion, container-managed transaction demarcation with the REQUIRED transaction attribute must be
used.

The newInstance method, the setMessageDrivenContext method, the message-driven
bean’s dependency injection methods, and lifecycle callback methods are called with an unspecified
transaction context. Refer to Subsection 8.6.5 for how the container executes methods with an unspeci-
fied transaction context.

5.4.13 Security Context of Message-Driven Bean Methods

A caller principal may propagate into a message-driven bean’s message listener methods. Whether this
occurs is a function of the specific message-listener interface and associated messaging provider, but is
not governed by this specification.

The Bean Provider can use the RunAs metadata annotation (or corresponding deployment descriptor
element) to define a run-as identity for the enterprise bean. The run-as identity applies to the bean’s
message listener methods and timeout methods. Run-as identity behavior is further defined in section
12.3.4.1.

5.4.14 Association of a Message-Driven Bean with a Destination or Endpoint

A message-driven bean is associated with a destination or endpoint when the bean is deployed in the
container. It is the responsibility of the Deployer to associate the message-driven bean with a destination
or endpoint.

5.4.15 Activation Configuration Properties

The Bean Provider may provide information to the Deployer about the configuration of the mes-
sage-driven bean in its operational environment. This may include information about message acknowl-
edgement modes, message selectors, expected destination or endpoint types, etc.

Activation configuration properties are specified by means of the activationConfig element of
the MessageDriven annotation or activation-config deployment descriptor element. Activa-
tion configuration properties specified in the deployment descriptor are added to those specified by
means of the MessageDriven annotation. If a property of the same name is specified in both, the
deployment descriptor value overrides the value specified in the annotation.

5.4.16 JMS Message-Driven Beans

This section describes activation configuration properties specific to the JMS message-driven beans.

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft Protocol Between a Message-Driven Bean

 7/23/12 134

Oracle

The container remains free to decide whether to support its built-in JMS provider using a resource
adapter or not. However it must allow the application to configure a MDB that uses the built-in JMS
provider using the activation properties defined here.

Both the container and any JMS resource adapters are free to support activation properties in addition to
those listed here. However applications which use non-standard activation properties may not be porta-
ble.

5.4.16.1 Message Acknowledgment

JMS message-driven beans should not attempt to use the JMS API for message acknowledgment. Mes-
sage acknowledgment is automatically handled by the container. If the message-driven bean uses con-
tainer-managed transaction demarcation, message acknowledgment is handled automatically as a part of
the transaction commit. If bean-managed transaction demarcation is used, the message receipt cannot be
part of the bean-managed transaction, and, in this case, the receipt is acknowledged by the container. If
bean-managed transaction demarcation is used, the Bean Provider can indicate whether JMS
AUTO_ACKNOWLEDGE semantics or DUPS_OK_ACKNOWLEDGE semantics should apply by using the
activationConfig element of the MessageDriven annotation or by using the activa-
tion-config-property deployment descriptor element. The property name used to specify the
acknowledgment mode is acknowledgeMode. If the acknowledgeMode property is not specified,
JMS AUTO_ACKNOWLEDGE semantics are assumed. The value of the acknowledgeMode property
must be either Auto-acknowledge or Dups-ok-acknowledge for a JMS message-driven bean.

5.4.16.2 Message Selectors

The Bean Provider may declare the JMS message selector to be used in determining which messages a
JMS message-driven bean is to receive. If the Bean Provider wishes to restrict the messages that a JMS
message-driven bean receives, the Bean Provider can specify the value of the message selector by using
the activationConfig element of the MessageDriven annotation or by using the activa-
tion-config-property deployment descriptor element. The property name used to specify the
message selector is messageSelector.

For example:

@MessageDriven(activationConfig={
@ActivationConfigProperty(

propertyName="messageSelector",
propertyValue="JMSType = ‘car’ AND color = ‘blue’ AND weight

> 2500")})

<activation-config>
<activation-config-property>
<activation-config-property-name>messageSelector</activation-con-
fig-property-name>
<activation-config-property-value>JMSType = ‘car’ AND color = ‘blue’
AND weight > 2500</activation-config-property-value>
</activation-config-property>
</activation-config>

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.2, Public Draft Message-Driven Bean

135 July 23, 2012 4:01 pm

Oracle

The Application Assembler may further restrict, but not replace, the value of the messageSelector
property of a JMS message-driven bean.

5.4.16.3 Destination Type

A JMS message-driven bean is associated with a JMS Destination (Queue or Topic) when the bean is
deployed in the container. It is the responsibility of the Deployer to associate the message-driven bean
with a Queue or Topic.

The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is intended
to be associated with a queue or a topic by using the activationConfig element of the Mes-
sageDriven annotation or by using the activation-config-property deployment descrip-
tor element. The property name used to specify the destination type associated with the bean is
destinationType. The value for this property must be either javax.jms.Queue or
javax.jms.Topic for a JMS message-driven bean.

5.4.16.4 Destination Lookup

The bean provider or deployer may specify the JMS queue or topic from which a JMS message-driven
bean is to receive messages.

The lookup name of an administratively-defined Queue or Topic object may be specified by using
the activationConfig element of the MessageDriven annotation or by using the activa-
tion-config-property deployment descriptor element. The property name used to specify the
lookup name is destinationLookup.

5.4.16.5 Connection Factory Lookup

The bean provider or deployer may specify the JMS connection factory that will be used to connect to
the JMS provider from which a JMS message-driven bean is to receive messages.

The lookup name of an administratively-defined ConnectionFactory object may be specified by
using the activationConfig element of the MessageDriven annotation or by using the
activation-config-property deployment descriptor element. The property name used to
specify the lookup name is connectionFactoryLookup.

5.4.16.6 Subscription Durability

If the message-driven bean is intended to be used with a topic, the Bean Provider may further indicate
whether a durable or non-durable subscription should be used by using the activationConfig ele-
ment of the MessageDriven annotation or by using the activation-config-property
deployment descriptor element. The property name used to specify whether a durable or non-durable
subscription should be used is subscriptionDurability. The value for this property must be
either Durable or NonDurable for a JMS message-driven bean. If a topic subscription is specified
and subscriptionDurability is not specified, a non-durable subscription is assumed.

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft Protocol Between a Message-Driven Bean

 7/23/12 136

Oracle

• Durable topic subscriptions, as well as queues, ensure that messages are not missed even if the
EJB server is not running. Reliable applications will typically make use of queues or durable
topic subscriptions rather than non-durable topic subscriptions.

• If a non-durable topic subscription is used, it is the container’s responsibility to make sure that
the message-driven bean subscription is active (i.e., that there is a message-driven bean avail-
able to service the message) in order to ensure that messages are not missed as long as the EJB
server is running. Messages may be missed, however, when a bean is not available to service
them. This will occur, for example, if the EJB server goes down for any period of time.

The Deployer should avoid associating more than one message-driven bean with the same JMS Queue.
If there are multiple JMS consumers for a queue, JMS does not define how messages are distribued
between the queue receivers.

5.4.16.7 Subscription Name

If the message-driven bean is intended to be used with a Topic, and the bean provider has indicated that
a durable subscription should be used by specifying the subscriptionDurability property to
Durable, then the bean provider or deployer may specify the name of the durable subscription.

The name of the durable subscription may be specified by using the activationConfig element of
the MessageDriven annotation or by using the activation-config-property deployment
descriptor element. The property name used to specify the name of the durable subscription is sub-
scriptionName.

If a durable subscription is specified but subscriptionName is not specified then the container will
set the name of the durable subscription to be a name which is unique to the deployed MDB (see 5.7.3).
If the message-driven bean is deployed into a clustered application server then the shareSubscrip-
tions property will be used to determine whether the durable subscription name generated by the con-
tainer will be the same or different for each instance in the cluster.

5.4.16.8 Durable Subscription Name in Clustered Deployment

If message-driven bean is intended to be used with a Topic and the bean provider or deployer has speci-
fied that a durable subscription be used but has not specified a durable subscription name then the bean
provider or deployer may specify whether the durable subscription name generated by the container will
be the same or different for each instance in the cluster.

If message-driven bean is intended to be used with a topic and the bean provider or deployer has speci-
fied that a non-durable subscription be used then the bean provider or deployer may specify whether the
same non-durable subscription should be used for each instance in the cluster.

This may be specified by using the activationConfig element of the MessageDriven annota-
tion or by using the activation-config-property deployment descriptor element. The prop-
erty name used is shareSubscriptions.

This property is only used if the message-driven bean is deployed into a clustered application server.
The property may have the string values true or false.

Protocol Between a Message-Driven Bean Instance and its ContainerEnterprise JavaBeans 3.2, Public Draft Message-Driven Bean

137 July 23, 2012 4:01 pm

Oracle

A value of true means that the same durable subscription name or non-durable subscription will be
used for each instance in the cluster.

A value of false means that a different durable subscription name or non-durable subscription will be
used for each instance in the cluster.

By default a value of true is assumed.

5.4.16.9 Client Identifier

The bean provider or deployer may specify the JMS client identifier that will be used when connecting
to the JMS provider from which a JMS message-driven bean is to receive messages.

The client identifier may be specified by using the activationConfig element of the Mes-
sageDriven annotation or by using the activation-config-property deployment descrip-
tor element. The property name used to specify the client identifier is clientId.

If this property is not specified then the client identifier will be left unset.

5.4.17 Dealing with Exceptions

A message-driven bean’s message listener method must not throw the java.rmi.RemoteExcep-
tion.

Message-driven beans should not, in general, throw RuntimeExceptions.

A RuntimeException that is not an application exception thrown from any method of the mes-
sage-driven bean class (including a message listener method and the callbacks invoked by the container)
results in the transition to the “does not exist” state. If a message-driven bean uses bean-managed trans-
action demarcation and throws a RuntimeException, the container should not acknowledge the
message. Exception handling is described in detail in Chapter 9. See Section 7.5.1 for the rules pertain-
ing to lifecycle callback interceptor methods when more than one such method applies to the bean class.

From the client perspective, the message consumer continues to exist. If the client continues sending
messages to the destination or endpoint associated with the bean, the container can delegate the client’s
messages to another instance.

The message listener methods of some messaging types may throw application exceptions. An applica-
tion exception is propagated by the container to the resource adapter.

5.4.18 Missed PreDestroy Callbacks

The Bean Provider cannot assume that the container will always invoke the PreDestroy callback
method (or ejbRemove method) for a message-driven bean instance. The following scenarios result in
the PreDestroy callback method not being called on an instance:

• A crash of the EJB container.

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft Message-Driven Bean State Diagram

 7/23/12 138

Oracle

• A system exception thrown from the instance’s method to the container.

If the message-driven bean instance allocates resources in the PostConstruct lifecycle callback
method and/or in the message listener method, and releases normally the resources in the PreDes-
troy method, these resources will not be automatically released in the above scenarios. The applica-
tion using the message-driven bean should provide some clean up mechanism to periodically clean up
the unreleased resources.

5.4.19 Replying to a JMS Message

In standard JMS usage scenarios, the messaging mode of a message’s JMSReplyTo destination
(Queue or Topic) is the same as the mode of the destination to which the message has been sent.
Although a message-driven bean is not directly dependent on the mode of the JMS destination from
which it is consuming messages, it may contain code that depends on the mode of its message’s
JMSReplyTo destination. In particular, if a message-driven bean replies to a message, the mode of the
reply’s message producer and the mode of the JMSReplyTo destination must be the same. In order to
implement a message-driven bean that is independent of JMSReplyTo mode, the Bean Provider
should use instanceOf to test whether a JMSReplyTo destination is a Queue or Topic, and then use
a matching message producer for the reply.

5.5 Message-Driven Bean State Diagram

When a client sends a message to a Destination for which a message-driven bean is the consumer, the
container selects one of its method-ready instances and invokes the instance’s message listener method.

The following figure illustrates the life cycle of a message-driven bean instance.

Message-Driven Bean State Diagram Enterprise JavaBeans 3.2, Public Draft Message-Driven Bean Component Contract

139 July 23, 2012 4:01 pm

Oracle

Figure 9 Life Cycle of a Message-Driven Bean.

The following steps describe the life cycle of a message-driven bean instance:

• A message-driven bean instance’s life starts when the container invokes newInstance on
the message-driven bean class to create a new instance. Next, the container injects the bean’s
MessageDrivenContext object, if applicable, and performs any other dependency injec-
tion as specified by metadata annotations on the bean class or by the deployment descriptor.
The container then calls the bean’s PostConstruct lifecycle callback methods, if any.

• The message-driven bean instance is now ready to be delivered a message sent to its associated
destination or endpoint by any client or a call from the container to a timeout callback method.

• When the container no longer needs the instance (which usually happens when the container
wants to reduce the number of instances in the method-ready pool), the container invokes the
PreDestroy lifecycle callback methods for it, if any. This ends the life of the mes-
sage-driven bean instance.

does not
 exist

method-ready
 pool

1. newInstance()
2. dependency injection, if any
3. PostConstruct callbacks, if any

PreDestroy callbacks, if any

message listener method

message listener

newInstance()

action resulting from client message arrival

action initiated by container
method

Timeout callback method

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft Message-Driven Bean State Diagram

 7/23/12 140

Oracle

5.5.1 Operations Allowed in the Methods of a Message-Driven Bean Class

Table 4 defines the methods of a message-driven bean class in which the message-driven bean instances
can access the methods of the javax.ejb.MessageDrivenContext interface, the
java:comp/env environment naming context, resource managers, TimerService and Timer
methods, the EntityManager and EntityManagerFactory methods, and other enterprise
beans.

If a message-driven bean instance attempts to invoke a method of the MessageDrivenContext
interface, and the access is not allowed in Table 4, the container must throw and log the
java.lang.IllegalStateException.

If a message-driven bean instance attempts to invoke a method of the TimerService or Timer
interface, and the access is not allowed in Table 4, the container must throw the java.lang.Ille-
galStateException.

If a bean instance attempts to access a resource manager, an enterprise bean, or an entity manager or
entity manager factory, and the access is not allowed in Table 4, the behavior is undefined by the EJB
architecture.

Message-Driven Bean State Diagram Enterprise JavaBeans 3.2, Public Draft Message-Driven Bean Component Contract

141 July 23, 2012 4:01 pm

Oracle

Additional restrictions:

• The getRollbackOnly and setRollbackOnly methods of the MessageDriven-
Context interface should be used only in the message-driven bean methods that execute in
the context of a transaction. The container must throw the java.lang.IllegalState-
Exception if the methods are invoked while the instance is not associated with a transac-
tion.

Table 4 Operations Allowed in the Methods of a Message-Driven Bean

Bean method

Bean method can perform the following operations

Container-managed transaction
demarcation

Bean-managed transaction
demarcation

constructor - -

dependency injection
methods (e.g., setMes-
sageDrivenContext)

MessageDrivenContext methods: lookup
JNDI access to java:comp/env

MessageDrivenContext methods: lookup
JNDI access to java:comp/env

PostConstruct, Pre-
Destroy lifecycle call-
back methods

MessageDrivenContext methods: getTim-
erService, lookup, getContextData
JNDI access to java:comp/env
EntityManagerFactory access

MessageDrivenContext methods:
getUserTransaction, getTimerSer-
vice, lookup, getContextData

JNDI access to java:comp/env
EntityManagerFactory access

message listener
method, AroundIn-
voke interceptor
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, isCallerInRole,
getTimerService, lookup, getContext-
Data

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, isCallerInRole, getTimerSer-
vice, lookup, getContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

timeout callback
method

MessageDrivenContext methods:
getRollbackOnly, setRollbackOnly,
getCallerPrincipal, getTimerService,
lookup, getContextData

JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrinci-
pal, getTimerService, lookup, get-
ContextData

UserTransaction methods
JNDI access to java:comp/env
Resource manager access
Enterprise bean access
EntityManagerFactory access
EntityManager access
Timer service or Timer methods

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft The Responsibilities of the Bean Provider

 7/23/12 142

Oracle

The reasons for disallowing operations in Table 4:

• Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the
message-driven bean methods for which the container does not have a meaningful transaction
context, and for all message-driven beans with bean-managed transaction demarcation.

• The UserTransaction interface is unavailable to message-driven beans with con-
tainer-managed transaction demarcation.

• Invoking getEJBHome or getEJBLocalHome is disallowed in message-driven bean meth-
ods because there are no EJBHome or EJBLocalHome objects for message-driven beans. The
container must throw and log the java.lang.IllegalStateException if these meth-
ods are invoked.

5.6 The Responsibilities of the Bean Provider

This section describes the responsibilities of the message-driven Bean Provider to ensure that a mes-
sage-driven bean can be deployed in any EJB container.

5.6.1 Classes and Interfaces

The message-driven Bean Provider is responsible for providing the following class files:

• Message-driven bean class.

• Interceptor classes, if any.

5.6.2 Message-Driven Bean Class

The following are the requirements for the message-driven bean class:

• The class must implement, directly or indirectly, the message listener interface required by the
messaging type that it supports or the methods of the message listener interface. In the case of
JMS, this is the javax.jms.MessageListener interface.

• The class must be defined as public, must not be final, and must not be abstract. The
class must be a top level class.

• The class must have a public constructor that takes no arguments. The container uses this
constructor to create instances of the message-driven bean class.

• The class must not define the finalize method.

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.2, Public Draft Message-Driven Bean Component Contract

143 July 23, 2012 4:01 pm

Oracle

Optionally:

• The class may implement, directly or indirectly, the javax.ejb.MessageDrivenBean
interface.

• The class may implement, directly or indirectly, the javax.ejb.TimedObject interface.

• The class may implement the ejbCreate method.

The message-driven bean class may have superclasses and/or superinterfaces. If the message-driven
bean has superclasses, the methods of the message listener interface, lifecycle callback interceptor
methods, timeout callback methods, the ejbCreate method, and the methods of the Mes-
sageDrivenBean interface may be defined in the message-driven bean class or in any of its super-
classes. A message-driven bean class must not have a superclass that is itself a message-driven bean
class

The message-driven bean class is allowed to implement other methods (for example, helper methods
invoked internally by the message listener method) in addition to the methods required by the EJB spec-
ification.

5.6.3 Message-Driven Bean Superclasses

A message-driven bean class is permitted to have superclasses that are themselves message-driven bean
classes. However, there are no special rules that apply to the processing of annotations or the deploy-
ment descriptor for this case. For the purposes of processing a particular message-driven bean class, all
superclass processing is identical regardless of whether the superclasses are themselves message-driven
bean classes. In this regard, the use of message-driven bean classes as superclasses merely represents a
convenient use of implementation inheritance, but does not have component inheritance semantics.

5.6.4 Message Listener Method

The message-driven bean class must define the message listener methods. The signature of a message
listener method must follow these rules:

The method must be declared as public.

The method must not be declared as final or static.

5.6.5 Lifecycle Callback Interceptor Methods

PostConstruct and PreDestroy lifecycle callback interceptor methods may be defined for mes-
sage-driven beans. If PrePassivate or PostActivate lifecycle callbacks are defined, they are
ignored.[31]

[31] This might result from the use of default interceptor classes, for example.

Message-Driven Bean Component Contract Enterprise JavaBeans 3.2, Public Draft The Responsibilities of the Container Provider

 7/23/12 144

Oracle

Compatibility Note: If the PostConstruct lifecycle callback interceptor method is the ejbCreate
method, or if the PreDestroy lifecycle callback interceptor method is the ejbRemove method, these
callback methods must be implemented on the bean class itself (or on its superclasses). Except for these
cases, the method names can be arbitrary, but must not start with “ejb” to avoid conflicts with the call-
back methods defined by the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an interceptor class
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defined in
Section 7.5, “Interceptors for LifeCycle Event Callbacks” .

5.7 The Responsibilities of the Container Provider

This section describes the responsibilities of the Container Provider to support a message-driven bean.
The Container Provider is responsible for providing the deployment tools, and for managing the mes-
sage-driven bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the deployment
tools may be provided by a different vendor who uses the container vendor’s specific API.

5.7.1 Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional classes
when the message-driven bean is deployed. The tools obtain the information that they need for genera-
tion of the additional classes by introspecting the classes and interfaces provided by the Enterprise Bean
Provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the mes-
sage-driven bean class. This code may, for example, help the container to manage the bean instances at
runtime. Subclassing, delegation, and code generation can be used by the tools.

5.7.2 Deployment of JMS Message-Driven Beans

The Container Provider must support the deployment of a JMS message-driven bean as the consumer of
a JMS queue or a durable subscription.

5.7.3 Unique Identifier for JMS Message-Driven Bean

The Container Provider must make a name which uniquely identifies the deployed MDB in an applica-
tion server instance, available in the JNDI naming context under java:comp/UniqueMDBName so
that it can be looked up by the resource adapter when its endpointActivation method is called.

The resource adapter may use this name when constructing a default durable subscription name.

