
Version 2 Page 1 of 40

JMS 2.0: Injection of JMS objects

About this document
1. This working document suggests how JMS objects might be injected into applications,

written from the perspective of an application developer.

2. It considers both Java EE and Java SE applications.

3. It focuses on how the API might appear to the application, and doesn’t worry too much
about how this may be implemented.

4. The main purpose of this document is to define the full range of possible annotations
what would be needed to allow all JMS objects to be injected. A summary can be found in
“Summary of annotations” on page 31.

5. However this leaves several important issues unresolved, and it is must be stressed that
this document in its current form does not define a usable API. Amongst other issues,
the API presented here contains an undesirable number of duplicate annotations, and it
doesn’t attempt to define how the relationships between injected objects can be
specified. For a discussion of these and other unresolved issues, see “Unresolved issues”
on page 33.

6. This next step in developing this API is to discuss how these issues can be resolved, and
how it can be implemented.

Annotations to inject individual JMS objects
First of all, let’s consider each JMS object in turn and what annotations we would need to allow
them to be injected. This discussion focuses on the pieces of information that needs to be
supplied to allow each object to be injected, and how

Injecting a Connection:
Let’s start by considering you might inject a JMS connection. The current JMS API provides the
following two methods to create a Connection, both on ConnectionFactory:

connectionFactory.createConnection()

and

connectionFactory.createConnection(userName,password)

where the connectionFactory may be obtained using a @Resource annotation.

This suggests that the annotation to inject a Connection could be:

Version 2 Page 2 of 40

@Inject @JMSConnection(lookup="jms/connFactory")
Connection connection;

or

@Inject @JMSConnection (lookup="jms/connFactory", user="admin", password="secret")
Connection connection;

Example 1: Creating a Connection with default credentials (Java EE)

This example considers a use case in which a Java EE application creates a connection using
default credentials.

Here’s how you might do this using the existing JMS 1.1 API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

public void oldWay1() throws JMSException{
 Connection connection = connectionFactory.createConnection();

 // do stuff with connection

 connection.close();
}

Here’s how you might do this using the new API.

@Inject @JMSConnection(lookup="jms/connFactory")
Connection connection;

public void newWay1(){
 // do stuff with connection
}

Note that we don’t need to call the close() method when using an injected connection. The
connection will be automatically closed when it falls out of scope.

This example illustrates the following unresolved issues:

• The use of injection has made it necessary to change the Connection object from a
local variable to an instance variable, despite the application only using it in a single
method. This does not reflect the true semantics and is potentially misleading. In
particular it raises the possibility of the same Connection object inadvertently being
used concurrently from multiple threads to create a Session, which is illegal in Java
EE.

• This example does not consider what the scope of the injected object would be. For a
discussion of scope, see “Scope of injected variables” on page 36.

Example 2: Creating a connection with user and password (Java EE)

Version 2 Page 3 of 40

This example considers a use case in which a Java EE application creates a connection,
specifying a user and password.

Here’s how you might do this using the existing JMS 1.1 API.

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

public void oldWay2() throws JMSException{
 Connection connection2 = connFact.createConnection("admin","secret");

 // do stuff with connection

 connection.close();
}

Here’s how you might do this using the new API.

@Inject @JMSConnection (lookup="jms/connFactory", user="admin", password="secret")
Connection connection2;

public void newWay2(){

 // do stuff with connection

}

Unresolved issue:

• (Repeated point) The use of injection has made it necessary to change the Connection
object from a local variable to an instance variable, despite the application only using it
in a single method. See Example 1 for more observations on this issue.

• The restriction that that username and password need to be declared in an instance
variable prevents the user and password being set at runtime. It is inconvenient and
insecure to hardcode passwords in the code. This is probably not an issue with Java EE,
where user and password authentication is not particularly useful, but it may be with
Java SE.

Injecting a Session
Now let’s consider how you might inject a JMS session. The JMS API provides the following
method on Connection to create a Session:

createSession(boolean transacted, int acknowledgeMode)

However these arguments are mutually exclusive and so JMS 2.0 (issue JMS_Spec-45) proposes
a new method which combines these into a single argument:

createSession(int sessionMode)

This suggests that an appropriate annotation to inject a Session could be:

Version 2 Page 4 of 40

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
Session session;

As can be seen, the Session is injected using two separate annotations: @JMSConnection and
@JMSSession. The @JMSConnection annotation is used to configure the connection used by
this session, and the @JMSSession abbotation is used to configure the session itself.

This is considered preferable to defining a single annotation which allows both sets of
information to be defined:

@Inject // this idea rejected
@JMSSession(lookup="jms/connectionFactory"), sessionMode=Session.AUTO_ACKNOWLEDGE)
Session session;

The use of two separate annotations was considered preferable to this because it more
accurately reflected the underlying objects (of which users will need to remain aware) and it
allowed the same annotation to be used to inject different objects which was considered
preferable to having multiple annotations which define the same attribute.

In a Java EE transaction the arguments to createSession arguments are ignored altogether.
and so JMS 2.0 (issue JMS_Spec-45) proposes a further new method with no arguments:

createSession()

The suggested meaning of this method would be:

• In a Java EE transaction, the session would be part of a transaction managed by the
container.

• In a Java EE undefined transaction context, the session will have a sessionMode of
Session.AUTO_ACKNOWLEDGE.

• In a normal Java SE environmentm this is equivalent to calling
createSession(Session.AUTO_ACKNOWLEDGE)

The equivalent in annotation to using this method is simply to omit the @JMSSession
annotation completely:

@Inject
@JMSConnection(lookup="jms/connectionFactory")
Session session;

Example 3a: Creating a Session (Java SE)

This example considers a use case in which a Java SE application creates a connection (with
default credentials) and uses it to create a session with a particular acknowledgement mode.

Here’s how you might do this using the existing JMS 1.1 API.

Version 2 Page 5 of 40

public void oldWay3a() throws JMSException{

 InitialContext initialContext = ... // DETAILS OMITTED

 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,Session.AUTO_ACKNOWLEDGE);

 // do stuff with session

 // close connection after use
 connection.close();
}

Here’s how you might do this using the new API.

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
Session session;

public void newWay3a(){

 // do stuff with session

}

Note that the injected Session is specified using a single attribute, sessionMode.

This example illustrates the following unresolved issue:

• These annotations include the JNDI names of administered objects. However, whereas a
Java EE environment comes with a ready-configured JNDI provider, a Java SE
environment does not. This implies that the use of these annotations in a Java SE
environment is dependent on a suitable JNDI provider being available and configured.

• The use of injection has made it necessary to change the Session object from a local
variable to an instance variable, despite the application only using it in a single method.
This does not reflect the true semantics and is potentially misleading. In particular it
raises the possibility of the same Session object inadvertently being used concurrently
from multiple threads, which is illegal in JMS.

Example 3b: Creating a Session in a Java EE container-managed
transaction (Java EE)

This example considers a use case in which a Java EE session bean method which uses a
container-managed transaction creates a connection (with default credentials) and uses it to
create a session.

Here’s how you might do this using the existing JMS 1.1 API.

Version 2 Page 6 of 40

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void oldWay3b() throws JMSException{

Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true,Session.TRANSACTED);

 // do stuff with session

 connection.close();
}

Note that since the session is created within a Java EE transaction, the arguments to
createSession are ignored so it doesn’t actually matter what they are, so the argument
supplied are dummies.

Here’s how you might do this using the new API.

@Inject
@JMSConnection(lookup="jms/connectionFactory")
// No need for @JMSSession annotation in Java EE
Session session;

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void newWay3b(){

 // do stuff with session

}

Note that since the session is created within a Java EE transaction, there is no need to define a
sessionMode attribute and therefore no need to specify a @JMSSession annotation at all.

This example illustrates the following unresolved issue:

• (Repeated point) The use of injection has made it necessary to change the Session
object from a local variable to an instance variable, despite the application only using it
in a single method. See Example 3a for more observations on this issue.

• The runtime must not create the session until after the container managed transaction
has started.

Example 3c: Creating a Session in a Java EE bean-managed transaction
(Java EE)

This example considers a use case in which a Java EE session bean method which uses a bean-
managed transaction creates a connection (with default credentials) and uses it to create a
session.

Here’s how you might do this using the existing JMS 1.1 API.

Version 2 Page 7 of 40

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ExampleSessionBean implements ExampleSessionBeanLocal {

 @Resource(lookup = "jms/connectionFactory")
 ConnectionFactory connectionFactory;

 @Resource
 UserTransaction userTransaction;

 public void oldWay3c() throws JMSException{
 userTransaction.begin();

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true,Session.TRANSACTED);

 // do stuff with session

 connection.close();
 userTransaction.commit();
 }
}

Note that since the session is created within a Java EE transaction, the arguments to
createSession are ignored so it doesn’t actually matter what they are, so the argument
supplied are dummies.

Here’s how you might do this using the new API.

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ExampleSessionBean implements ExampleSessionBeanLocal {

 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 No need for @JMSSession annotation in Java EE
 Session session;

 @Resource
 UserTransaction userTransaction;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void newWay3b(){
 userTransaction.begin();

 // do stuff with session

 userTransaction.commit();
 }
}

Note that since the session is created within a Java EE transaction, there is no need to define a
sessionMode attribute and therefore no need to specify a @JMSSession annotation at all.

This example illustrates the following unresolved issue:

Version 2 Page 8 of 40

• (Repeated point) The use of injection has made it necessary to change the Session
object from a local variable to an instance variable, despite the application only using it
in a single method. See Example 3a for more observations on this issue.

• The runtime must not create the session until after userTransaction.begin() has
been called to start the bean managed transaction.

Example 3d: Creating a Session in a Java EE unspecified transaction
context (Java EE)

This example considers a use case in which a Java EE session bean method which executes in an
unspecified transaction context and which creates a connection (with default credentials) and
uses it to create a session with a session mode of DUPS_OK_ACKNOWLEDGE.

Here’s how you might do this using the existing JMS 1.1 API.

@Resource(lookup = "jms/connectionFactory")
ConnectionFactory connectionFactory;

@TransactionAttribute(TransactionAttributeType.NEVER)
public void oldWay3b() throws JMSException{
 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,Session.DUPS_OK_ACKNOWLEDGE);

 // do stuff with session

 connection.close();
}

The EJB specification does not explicitly describe how createSession should behave when
run in an unspecified transaction context. However the interpretation being followed for JMS
2.0 is that can be used to create a non-transacted session with an acknowledgement mode of
either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE.

Here’s how you might do this using the new API.

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.DUPS_OK_ACKNOWLEDGE)
Session session;

@TransactionAttribute(TransactionAttributeType.NEVER)
public void newWay3b(){

 // do stuff with session

}

Note that if we wanted the session mode to be AUTO_ACKNOWLEDGE we could have omitted the
@JMSSession annotation since AUTO_ACKNOWLEDGE would be used by default. when there
was no transactional context.

Version 2 Page 9 of 40

This example illustrates the following unresolved issue:

• (Repeated point) The use of injection has made it necessary to change the Session
object from a local variable to an instance variable, despite the application only using it
in a single method. See Example 3a for more observations on this issue.

Injecting a MessageProducer
The current JMS API provides the following method on Session to create a
MessageProducer:

session.createProducer(destination)

The destination parameter may be null, in which case the producer is referred to as
“unidentified”.

The annotation to inject an unidentified MessageProducer could be:

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
MessageProducer producer;

Note that no additional annotation is necessary to inject an unidentified MessageProducer
beyond the @JMSConnection and @JMSSession annotations needed to define its Session.

The annotation to inject an identified MessageProducer could be:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
MessageProducer producer;

Note that in this case we need to specify the Destination to which the MessageProducer will
send messages. This is specified using a @JMSDestination annotation.

Example 4: Creating an unidentified MessageProducer (Java EE)

Here’s an example using the existing API:

Version 2 Page 10 of 40

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

public void oldWay4() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(null);
 // do stuff with producer

 connection.close();
}

Here’s the same example using the new API:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
MessageProducer producer;

public void newWay4(){
 // do stuff with producer
}

Example 5: Creating an identified MessageProducer (Java EE)

Here’s an example using the existing API

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public void oldWay5() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(destination);
 // do stuff with producer

 connection.close();
}

Here’s the same example using the new API:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
MessageProducer producer;

public void newWay5(){
 // do stuff with producer
}

Injecting a Message

Version 2 Page 11 of 40

The current JMS API provides the following methods on Session to create a Message and its
various subtypes:

session.createMessage()
session.createBytesMessage()
session.createMapMessage()
session.createObjectMessage()
session.createObjectMessage(serializableObject)
session.createStreamMessage()
session.createTextMessage()
session.createTextMessage(text)

The annotation to inject each type of Message could be:

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject Message message;

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject BytesMessage bytesMessage;

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject MapMessage mapMessage;

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject ObjectMessage objectMessage;

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject StreamMessage streamMessage;

@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@Inject TextMessage textMessage;

Unresolved issues:

• It might seem excessive to expect users to have to specify the @JMSConnection and
@JMSSession annotations when they wish to inject a method, but this is a direct
reflection of the JMS API which requires you to create a connection and session before
you can create a message.

However in practice it doesn’t matter which session you use (which will be made
explicit in JMS 2.0 - issue JMS_SPEC-52). It might therefore be simplest if the default
behavior to use any existing Session that was available. However in the rather special
case where there was a choice of sessions from multiple JMS providers then it would be
necessary to allow the application to specify the Session that should be used (since it
may be less efficient to use one vendor’s message implementation with another vendor’s
MessageProducer). The simplest way to specify which JMS provider should be used ti
create an injected message might be to use the @JMSConnection annotation to specify a

Version 2 Page 12 of 40

suitable connection factory.

This issue is discussed further in Example 9.

Example 6: Creating a TextMessage

Here’s an example using the existing API:

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

public void oldWay6() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 TextMessage textMessage = session.createTextMessage();

 // do stuff with textMessage

 connection.close();
}

Here’s an example using the new API:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
TextMessage textMessage;

public void newWay6(){
 // do stuff with textMessage
}

Injecting a MessageConsumer
The current API provides the following methods on Session to create a MessageConsumer:

// Create a consumer on a destination with no message selector:
createConsumer(destination)

// Create a consumer on a destination with a specified message selector:
createConsumer(destination, messageSelector)

// Create a consumer on a destination
// with a message selector and the noLocal flag set
createConsumer(destination, messageSelector, true)

// Create a durable subscriber on a destination
createDurableSubscriber(topic, subscriptionName)

// Create a durable subscriber on a destination
// with a message selector and the noLocal flag set
createDurableSubscriber(topic, subscriptionName, messageSelector, noLocal)

The corresponding annotations to inject a MessageConsumer could be as follows:

Version 2 Page 13 of 40

Creating a consumer on a destination with no message selector:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
MessageConsumer messageConsumer;

Creating a consumer on a destination with a specified message selector:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(messageSelector="foo")
MessageConsumer messageConsumer;

Creating a consumer on a destination with a message selector and the noLocal flag set:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(messageSelector="foo", noLocal=true)
MessageConsumer messageConsumer;

In all the above examples, messages would not be received unless the underlying Conneciton
was somehow obtained and its start() method called. To avoid the need to do this, we could
define an additional annotation on @JMSConsumer which would call start() on the
Connection:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(start=true)
MessageConsumer messageConsumer;

Creating a durable subscriber on a destination:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(messageSelector="foo" noLocal=true)
@JMSDurableSubscriber(name="bar")
MessageConsumer messageConsumer;

Obervations:

• The @JMSDestination annotation is used by both MessageProducer and
MessageConsumer objects.

• There is a @JMSConsumer annotation but no @JMSProducer annotation

Version 2 Page 14 of 40

• We have an additional @DurableSubscriber annotation to allow attributes specific
to durable subscriber to be specified. We could merge this with @JMSConsumer but
that would pollute @JMSConsumer with attributes that were not always relevant.

• To destroy a durable subscription the existing JMS 1.1 API on Session would need to
be used:

unsubscribe(java.lang.String name)

This method can’t be moved to the MessageConsumer object since it can only be used
when there is no active consumer on the subscriber.

Example 7: Creating a consumer on a queue (Java EE)

Here’s an example of creating a consumer on a queue using the existing API:

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public void oldWay7() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(Session.AUTO_ACKNOWLEDGE);
 String messageSelector="color = 'blue'";
 boolean noLocal=true;
 MessageConsumer consumer =

 session.createConsumer(destination,messageSelector,noLocal);
 connection.start();
 // do stuff with consumer

 connection.close();
}

Here’s the same example using the new API:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(messageSelector="color = 'blue'", noLocal=true, start=true)
MessageConsumer consumer;

public void newWay7(){
 // do stuff with consumer
}

In addition, the @JMSTemporaryQueue or @JMSTemporaryTopic annotations can be used
instead of @JMSDestination to specify that the consumer will be on a temporary queue or
topic. For more information see “Injecting a TemporaryQueue or TemporaryTopic” below.

Example 8: Creating a durable subscriber (Java EE)

Version 2 Page 15 of 40

Here’s an example of creating a durable subscriber using the existing API:

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundTopic")
Topic topic;

public void oldWay8() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(Session.AUTO_ACKNOWLEDGE);
 String messageSelector="color = 'blue'";
 boolean noLocal=true;
 MessageConsumer consumer =
 session.createConsumer(topic,messageSelector,noLocal);
 String subscriptionName="mySub";
 consumer = session.createDurableSubscriber(
 topic, subscriptionName, messageSelector, noLocal);

 connection.start();
 // do stuff with consumer

 connection.close();
}

Here an example using the new API:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(messageSelector="foo", noLocal=true, start=true)
@JMSDurableSubscriber(name="mySub")
MessageConsumer consumer;

public void newWay8(){
 // do stuff with consumer
}

Injecting a QueueBrowser
The current API provides the following two methods on Session to create a QueueBrowser:

createBrowser(Queue queue)

createBrowser(Queue queue, java.lang.String messageSelector)

The corresponding annotation to inject a QueueBrowser could be

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
QueueBrowser queueBrowser;

or

Version 2 Page 16 of 40

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSQueueBrowser(messageSelector="foo")
QueueBrowser queueBrowser;

Note that the @QueueBrowser annotation is only needed if a message selector is being
specified.

• Do we need a separate @QueueBrowser annotation, or can we reuse the
@JMSConsumer annotation? This also allows a message selector to be specified but also
allows the noLocal and start attributes to be specified. Since these do not apply to queue
browsers it might be best to have a separate @QueueBrowser annotation as well.

Injecting a destination (Java EE)
The preceding examples suggest that when injecting a producer or consumer, the information
about the destination might be specified using a new @JMSDestination annotation:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
MessageProducer producer;

This requires the destination to be available in a JNDI repository. A possible extension might be
to allow the destination’s provider-specific name to be specified instead:

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(name="inboundQueue")
MessageProducer producer;

• Do we want to allow destinations to be specified using their provider-specific name, or
should this omit this feature since it is contrary to good JMS practice?

The current API allows JMS destinations to be injected using standard @Resource annotations,
so long as the destination object can be looked up in a JNDI repository.

@Resource(lookup="jms/inboundQueue")
Destination destination;

However we may wish to allow JMS destinations to be injected in the same way as other JMS
resources, using the @Inject and @JMSDestination annotations, This might be particularly
useful if the @JMSDestination annotation allowed a provider-specific JNDI name to be specified.

Version 2 Page 17 of 40

@Inject
@JMSDestination(name="inboundQueue")
Destination destination;

• Do we want to allow destinations to be injected using @Inject and @JMSDestination
annotations, or should users be expected to use @Resource annotations?

Injecting a TemporaryQueue or TemporaryTopic
The current API provides two methods on Session to create temporary destinations:

createTemporaryQueue();

createTemporaryTopic();

The corresponding annotations to create a TemporaryQueue or TemporaryTopic could be:

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
TemporaryQueue temporaryQueue;

and

@Inject
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
TemporaryTopic temporaryTopic;

Having created a temporary queue or topic, how would it be used? JMS specifies that a
temporary queue or topic exists for the duration of the Connection used to create it, and can
only be consumed by the Connection that created it.

This means that it should be possible to inject a TemporaryQueue, and a MessageConsumer on
that temporary queue, and for these to use the same underlying connection. This could be
achieved by annotating the injected message consumer with @JMSTemporaryTopic or
@TemporaryQueue:

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
TemporaryQueue temporaryQueue;

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSTemporaryQueue
MessageConsumer consumer;

Note that @JMSTemporaryQueue and @JMSTemporaryTopic would only be needed when
injecting a consumer, not when injecting the temporary queue or topic itself. However some

Version 2 Page 18 of 40

means would be needed to link the two injected objects together to ensure that they relate to
the same temporary destination.

This raises the following unresolved issue:

• When injecting both a temporary destination and a consumer on that destination, how
does the user specify that these two objects should relate to the same temporary
destination?

Use cases
Example 9: Sending a message (Java EE)

This example compares the old and new API for sending a TextMessage in a Java EE (EJB or
web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public void sendMessageOld(String payload) throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(destination);
 TextMessage textMessage = session.createTextMessage(payload);
 messageProducer.send(textMessage);

 connection.close();
}

Here’s how you might do this using the new API.

Version 2 Page 19 of 40

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
MessageProducer producer;

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
TextMessage textMessage;

public void sendMessageNew(String payload) throws JMSException{
 textMessage.setText(payload);
 producer.send(textMessage);
}

This example illustrates the following unresolved issues:

• (Repeated point) The use of injection has made it necessary to change the
MessageConsumer and TextMessage objects from a local variable to an instance
variable, despite the application only using them in a single method. See Example 3a for
more observations on this issue.

• The JMS spec does not require the injected MessageProducer and TextMessage to
be created using the same Session (this will be made explicit in issue JMS_SPEC-52).
However it would be wasteful of resources to create a second Session, and especially a
second Connection, so applications would need a way of specifying that the injected
MessageProducer and TextMessage must be created using the same Session.

In the special case of injected messages there will never be a requirement to inject
messages using a different Session from that used to create the MessageProducer, so
the default behavior could be to use any existing Session that was available. However
in the rather special case where there was a choice of sessions from multiple JMS
providers then it would be necessary to allow the application to specify the Session that
should be used (since it may be less efficient to use one vendor’s message
implementation with another vendor’s MessageProducer).

• (Repeated point) How can we avoid repeating the same annotations on multiple
injected objects? For example, how can we avoid repeating identical @JMSConnection
and @JMSSession annotations on every injected object (irrespective of whether the
same or multiple Connection and Session objects will be used).

Example 10: Receiving a message synchronously (Java EE)

This example compares the old and new API for synchronously receiving a TextMessage in a
Java EE (EJB or web container) environment.

Here’s how you might do this using the existing JMS 1.1 API.

Version 2 Page 20 of 40

@Resource(lookup = "jms/connFactory")
ConnectionFactory connFact;

@Resource(lookup="jms/inboundQueue")
Destination destination;

public String receiveMessageOld() throws JMSException{
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer messageProducer = session.createConsumer(destination);
 TextMessage textMessage=(TextMessage) messageProducer.receive();
 String payload = textMessage.getText();
 connection.close();
 return payload;
}

Here’s how you might do this using the new API.

@Inject
@JMSConnection(lookup="jms/connFactory")
// No need for @JMSSession annotation in Java EE
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(start=true)
MessageConsumer consumer;

public String receivedMessageNew() throws JMSException{

TextMessage textMessage=(TextMessage) consumer.receive();
 String payload = textMessage.getText();
 return payload;
}

This example illustrates the following unresolved issues:

• (Repeated point) The use of injection has made it necessary to change the
MessageProducer and TextMessage objects from local variables to instance variables,
despite the application only using them in a single method. See Example 3a for more
observations on this issue.

Example 11: Receiving a message asynchronously (Java SE)

This example compares the old and new API for synchronously receiving TextMessage
messages asynchronously in a Java SE environment.

Here’s how you might do this using the existing JMS 1.1 API:

Version 2 Page 21 of 40

private void consumeAsync() throws Exception {
 InitialContext initialContext = ... // DETAILS OMITTED

 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("inboundQueue");

 initialContext.close();

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true, Session.AUTO_ACKNOWLEDGE);
 MessageConsumer messageConsumer = session.createConsumer(inboundQueue);
 AsyncListener messageListener = new MyListener();
 messageConsumer.setMessageListener(messageListener);

 connection.start();
 synchronized (messageListener){
 messageListener.wait();
 }
 connection.close();
}

class MyListener implements MessageListener {

 int numMessagesReceived = 0;

 public void onMessage(Message message) {
 numMessagesReceived++;
 // PROCESS MESSAGE
 if (numMessagesReceived==10){
 synchronized (this){
 notify();
 }
 }
}

Here’s how you might do this using the new API:

@Inject
// MUST USE SAME CONNECTION AS IS INJECTED BELOW
@JMSConnection(lookup="jms/connFactory")
@JMSSession(sessionMode=Session.AUTO_ACKNOWLEDGE)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(start=false)
MessageConsumer consumer;

@Inject
@JMSConnection(lookup="jms/connFactory")
Connection connection;

Version 2 Page 22 of 40

private void consumeAsync() throws Exception {

 AsyncListener messageListener = new MyListener();
 messageConsumer.setMessageListener(messageListener);

 // note that connection is started after message listener is set
 connection.start();
 synchronized (messageListener){
 messageListener.wait();
 }

}

// MyListener class is the same as above

This example illustrates the following unresolved issues:

• (Repeated point) These annotations include the JNDI names of administered objects.
However, whereas a Java EE environment comes with a ready-configured JNDI provider,
a Java SE environment does not. This implies that the use of these annotations in a Java
SE environment is dependent on a suitable JNDI provider being available and
configured.

• (Repeated point) The use of injection has made it necessary to change the
MessageConsumer and Connection objects from local variables to instance
variables, despite the application only using them in a single method. See Example 3a for
more observations on this issue.

• Applications would need a way of specifying that the injected Connection is the one
that was used to create the injected MessageConsumer.

• The only reason we need to inject the Connection in this example is so that we may call
start() after the call to setMessageListener(). Is there a way to avoid having
to do this explicitly?

• (Repeated point) How can we avoid repeating the same annotations on multiple injected
objects? In this example, how can we avoid repeating the @JMSConnection annotation
on both injected objects? Although this is a general issue with this API, it is particularly
important here since this example requires a single connection,, yet uses the same
@JMSConnection annotation twice.

Example 12: Receiving a message asynchronously (Java EE)

The Java EE 6 and EJB specifications do not allow applications (other than those running in the
application client container) to define their own MessageListener objects and register them
with a producer using producer.setMessageListener. Applications wishing to consume
messages asynchronously are expected to use MDBs. MDBs are configured declaratively rather
than via Java code, without needing to explicitly create any JMS objects that might be injected
such as connections and sessions.

Version 2 Page 23 of 40

For this reason, this document does not need to consider the case where, in a Java EE
application, messages are received asynchronously.

Example 13: Receive synchronously and send a message in the same local
transaction (Java SE only)

This example considers the use case in which a Java SE application repeatedly consumes a
message from one queue and forwards it to another queue. Each message is received and
forwarded in the same local transaction. This means that:

• The MessageConsumer and MessageProducer must both be created using the same
Session

• After each message is sent transaction must be committed by calling the commit()
method on the Session. This means the Session used to create the
MessageConsumer and MessageProducer also needs to be available via injection.

Note that local transactions are not permitted in a Java EE EJB or web container, but are allowed
in a Java SE environment or in the application client container. This particular example is for a
Java SE environment where JMS administered objects must be obtained from JNDI by explicitly
configuring a JNDI InitialContext and performing a lookup.

Here’s how you might do this using the existing JMS 1.1 API. To keep the example short it
consumes the incoming message synchronously. However since this is Java SE the message
could also be consumed asynchronously using a MessageListener.

Version 2 Page 24 of 40

private void execute() throws JMSException, NamingException {

 InitialContext initialContext = ... // DETAILS OMITTED

 ConnectionFactory connectionFactory =
 (ConnectionFactory) initialContext.lookup("jms/connectionFactory");
 Queue inboundQueue = (Queue) initialContext.lookup("jms/inboundQueue");
 Queue outboundQueue = (Queue) initialContext.lookup("jms/outboundQueue");

 initialContext.close();

 Connection connection = connectionFactory.createConnection();
 Session session = connection.createSession(true, Session.SESSION_TRANSACTED);
 MessageConsumer messageConsumer = session.createConsumer(inboundQueue);
 MessageProducer messageProducer = session.createProducer(outboundQueue);

 connection.start();
 TextMessage textMessage = null;
 do {
 textMessage = (TextMessage) messageConsumer.receive(1000);
 if (textMessage!=null){
 messageProducer.send(textMessage);
 session.commit(); }
 } while (textMessage!=null);
 connection.close();
 }

Here’s how the same example might look when using the new API:

Version 2 Page 25 of 40

@Inject
// MUST USE SAME SESSION AS IS INJECTED BELOW
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(start=true)
MessageConsumer messageConsumer;

@Inject
// MUST USE SAME SESSION AS IS INJECTED BELOW
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
@JMSDestination(lookup="jms/outboundQueue")
MessageProducer messageProducer;

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
Session session;

public void execute(){

 TextMessage textMessage = null;
 do {
 textMessage = (TextMessage) messageConsumer.receive(1000);
 if (textMessage!=null){
 messageProducer.send(textMessage);
 session.commit(); }
 } while (textMessage!=null);
 }
}

This example illustrates the following problems:

• (Repeated point) These annotations include the JNDI names of administered objects.
However, whereas a Java EE environment comes with a ready-configured JNDI provider,
a java SE environment does not. This implies that the use of these annotations in a Java
SE environment is dependent on a suitable JNDI provider being available and
configured.

• (Repeated point) The use of injection has made it necessary to change the
MessageConsumer, MessageProducer and Session objects from local variables
to instance variables, despite the application only using them in a single method. See
Example 3a for more observations on this issue.

• Applications would need a way of specifying that the injected MessageProducer and
MessageConsumer must be created using the same Session.

• Applications would need a way of specifying that the injected Session is the one that
was used to create the injected MessageProducer and MessageConsumer.

• (Repeated point) How can we avoid repeating the same annotations on multiple injected
objects? For example, how can we avoid repeating the @JMSConnection and

Version 2 Page 26 of 40

@JMSSession annotations on every injected object? Although this is a general issue
with this API, it is particularly important here since this example requires a single
connection and session, yet uses the same @JMSConnection and @JMSSession
annotations three times.

Example 14: Request/reply pattern using a TemporaryQueue (Java EE)

This example considers how a request/reply pattern might be implemented in Java EE, using
the existing JMS API. In the code below, a method in a session bean (the requestor) sends a
request message to some queue (the request queue). The setJMSReplyTo property of the
request message is set to a TemporaryQueue, to which the reply should be set. After sending the
request, the session bean listens on the temporary queue until it receives the reply.

Since the request message won’t actually be sent until the transaction is committed, the request
message is sent in a separate transaction from that used to receive the reply.

The details of the responder are omitted here. Typically this will be a MDB which receives the
request message, extracts the TemporaryQueue from the setJMSReplyTo property and sends the
response to it.

Here’s how you might implement the requestor this using the existing JMS 1.1 API.

Version 2 Page 27 of 40

@Stateless
public class RequestorSessionBean implements RequestorSessionBeanLocal {

 @Resource(lookup = "jms/connectionFactory")
 ConnectionFactory connFact;

 @Resource(lookup="jms/requestQueue")
 Destination requestQueue;

 @EJB
 private RequestorSessionBeanLocal requestorSessionBean;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public String requestReply(String request) throws JMSException {

 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 TemporaryQueue temporaryReplyQueue = session.createTemporaryQueue();

 // send request in a separate transaction
 requestorSessionBean.sendRequest(request,temporaryReplyQueue);

 // now receive the reply,
 // using the same connection as was used to create the temporary reply queue
 MessageConsumer consumer = session.createConsumer(temporaryReplyQueue);
 connection.start();
 TextMessage reply = (TextMessage) consumer.receive();
 String replyString=reply.getText();
 connection.close();
 return replyString;
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void sendRequest(String requestString,
 TemporaryQueue temporaryReplyQueue) throws JMSException {

 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 TextMessage requestMessage = session.createTextMessage(requestString);
 requestMessage.setJMSReplyTo(temporaryReplyQueue);
 MessageProducer messageProducer = session.createProducer(requestQueue);
 messageProducer.send(requestMessage);
 connection.close();
 }
}

When implementing this pattern, the following features of JMS must be borne in mind:

• The same Connection object that was used to create the TemporaryQueue must also
be used to consume the response message from it. (This is a restriction of temporary
queues).

• If the request message is sent in a transaction then the response message must be
consumed in a separate transaction. That’s why the message is sent in a separate
business which has the transactional attribute REQUIRES_NEW.

Version 2 Page 28 of 40

Here’s how the same example might look when using the new API:

@Stateless
public class RequestorSessionBean implements RequestorSessionBeanLocal {

 // temporary reply queue
 // USED BY requestReply METHOD ONLY
 // MUST USE SAME CONNECTION AS MESSAGE CONSUMER BELOW
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 TemporaryQueue temporaryReplyQueue;

 // consumer used to receive replies
 // USED BY requestReply METHOD ONLY
 // MUST USE SAME CONNECTION AS TEMPORARY QUEUE ABOVE
 // MUST USE SAME TEMPORARY QUEUE AS IS INJECTED ABOVE
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 @JMSTemporaryQueue
 MessageConsumer messageConsumer;

 // request message
 // USED BY sendRequest METHOD ONLY
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 TextMessage requestMessage;

 // producer used to send the request
 // USED BY sendRequest METHOD ONLY
 // HAS NO ASSOCIATION WITH ANY OTHER INJECTED OBJECT
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 @JMSDestination(lookup="jms/requestQueue")
 MessageProducer producer;

 @EJB
 private RequestorSessionBeanLocal requestorSessionBean;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public String requestReply(String request) throws JMSException {

 // send request in a separate transaction
 requestorSessionBean.sendRequest(request,temporaryReplyQueue);

 // now receive the reply
 TextMessage replyMessage = (TextMessage) messageConsumer.receive();
 return replyMessage.getText();
 }

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void sendRequest(String requestString,
 TemporaryQueue temporaryReplyQueue) throws JMSException {

 requestMessage.setText(requestString);

Version 2 Page 29 of 40

 requestMessage.setJMSReplyTo(temporaryReplyQueue);
 messageProducer.send(requestMessage);
 }
}

This example illustrates the following unresolved issues:

• (Repeated point) The use of injection has made it necessary to change the
TemporaryQueue , MessageConsumer,. TextMessage and MessageProducer
objects from local variables to instance variables, despite the application only using the
first two in the requestReply method and the last two in the sendRequest method.
The use of instance variables therefore loses this association of each such object with a
specific method. See Example 3a for more observations on this issue.

• (Repeated point) The injected TextMessage does not need to be created using a
particular Session (this will be made explicit in issue JMS_SPEC-52), though to avoid
wasting resources is a suitable Session is available then this should be used. See
Example 9 for more observations on this issue.

• Applications would need a way of specifying that the injected MessageConsumer uses
the same TemporaryQueue as is injected., and that both use the same underlying
Connection (which is not injected).

• (Repeated point) How can we avoid repeating the same annotations on multiple injected
objects? For example, how can we avoid repeating the @JMSConnection and
@JMSSession annotations on every injected object?

Example 15: Sending messages in a bean-managed transaction (Java EE)

This example considers the case in which a session bean sends several messages in a single
bean-managed transaction.

Here’s how you might implement this using the existing JMS 1.1 API:

Version 2 Page 30 of 40

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class MessageSenderBean implements MessageSenderBeanLocal {

 @Resource(lookup = "jms/connectionFactory")
 ConnectionFactory connFact;

 @Resource(lookup="jms/inboundQueue")
 Destination queue;

 @Resource
 UserTransaction userTransaction;

 public void sendMessages() throws Exception {

 userTransaction.begin();
 Connection connection = connFact.createConnection();
 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer messageProducer = session.createProducer(queue);

 for (int i = 0; i < 10; i++) {
 TextMessage textMessage = session.createTextMessage();
 textMessage.setText("Message "+i);
 messageProducer.send(textMessage);
 }
 userTransaction.commit();;
 }
}

Here’s how the same example might look when using the new API.

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class MessageSenderBean implements MessageSenderBeanLocal {

 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 No need for @JMSSession annotation in Java EE
 TextMessage requestMessage;

 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 No need for @JMSSession annotation in Java EE
 @JMSDestination(lookup="jms/inboundQueue")
 MessageProducer producer;

 @Resource
 UserTransaction userTransaction;

Version 2 Page 31 of 40

 public void sendMessages() throws Exception {

 userTransaction.begin();
 for (int i = 0; i < 10; i++) {
 textMessage.setText("Message "+i);
 messageProducer.send(textMessage);
 }
 userTransaction.commit();;
 }
}

This example illustrates the following unresolved issues:

• Since this method uses a bean-managed transaction, the underlying Session object can
be created using the proposed new method Connection.createSession() with no
arguments. There is therefore to provide a @JMSSession annotation to specify a
sessionMode. However since that method is only valid after the transaction has started,
the runtime must not attempt to create the Session until after the call to
UserTransaction.begin().

• (Repeated point) The use of injection has made it necessary to change the
MessageConsumer and TextMessage objects from a local variable to an instance
variable, despite the application only using them in a single method. See Example 3a for
more observations on this issue.

• There is an additional issue regarding the injected TextMessage. In the JMS 1.1
version, a new TextMessage is created for each iteration round the loop. However in
the proposed new version, the same TextMessage will be used repeatedly unless
some way is devised to allow the injected message to be scoped to the for block.

• (Repeated point) The injected TextMessage does not need to be created using a
particular Session (this will be made explicit in issue JMS_SPEC-52), though to avoid
wasting resources is a suitable Session is available then this should be used. See
Example 9 for more observations on this issue.

• (Repeated point) How can we avoid repeating the same annotations on multiple injected
objects? For example, how can we avoid repeating identical @JMSConnection
annotations on every injected object (irrespective of whether the same or multiple
Connection objects will be used).

Summary of annotations
The following table lists the objects that can be injected, and the annotations that may be
specified when injecting each type of object:.

Object being
injected

Available annotations

Version 2 Page 32 of 40

Connection @JMSConnection

Session @JMSConnection @JMSSession

Message
Producer

@JMSConnection @JMSSession @JMSDestination

Message
Consumer

@JMSConnection @JMSSession @JMSDestination
or
@JMSTemporaryQueue
or
@JMSTemporaryTopic

@JMSConsumer

and

@JMSDurable
Subscriber

Queue
Browser

@JMSConnection @JMSSession @JMSDestination @JMSQueueBrowser

Temporary
Queue

@JMSConnection @JMSSession

Temporary
Topic

@JMSConnection @JMSSession

Message @JMSConnection @JMSSession

Object
Message

@JMSConnection @JMSSession

Stream
Message

@JMSConnection @JMSSession

Bytes
Message

@JMSConnection @JMSSession

Map
Message

@JMSConnection @JMSSession

Text
Message

@JMSConnection @JMSSession

The following table lists the various annotations and their parameters

Annotation Attributes Meaning
@JMSConnection lookup JNDI name of connection factory

 name User name (optional)

 password Password (optional)

Version 2 Page 33 of 40

@JMSSession sessionMode One of Session.TRANSACTED,
Session.AUTO_ACKNOWLEDGE,
Session.CLIENT_ACKNOWLEDGE, and
Session.DUPS_OK_ACKNOWLEDGE
(all are optional. If sessionMode or
@JMSSession omitted, default is auto-ack
except in a Java EE transaction, when that
transaction is used)

@JMSDestination lookup JNDI name of destination

 name Provider-specific name of destination.
Only allowed if lookup not supplied.

@JMSTemporaryQueue no attributes

@JMSTemporaryTopic no attributes

@JMSConsumer messageSelector (Optional) Message selector

 noLocal (optional) If set, inhibits the delivery of
messages published by its own
connection

 start (optional) If set, causes
connection.start() to be called.

@QueueBrowser messageSelector Message selector

@JMSDurableSubscription name The name used to identify this durable
subscription

Unresolved issues

Major unresolved issues

The relationship between injected objects

This document leaves unresolved the issue how the relationship between injected objects (e.g.
sessions and connections) will be managed, and what facilities will be offered to applications to
control the relationship between such objects.

The simplest case is when we inject two objects, one of which is dependent on the other., or
injecting three objects, two of which are dependent on the third.

Version 2 Page 34 of 40

There’s an example of this in “Example 13: Receive synchronously and send a message in the
same local transaction (Java SE only)” on page 23. In this example it is essential that the injected
producer and consumer objects are created using the injected session object.

@Inject
// MUST USE SAME SESSION AS IS INJECTED BELOW
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
@JMSDestination(lookup="jms/inboundQueue")
@JMSConsumer(start=true)
MessageConsumer messageConsumer;

@Inject
// MUST USE SAME SESSION AS IS INJECTED BELOW
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
@JMSDestination(lookup="jms/outboundQueue")
MessageProducer messageProducer;

@Inject
@JMSConnection(lookup="jms/connectionFactory")
@JMSSession(sessionMode=Session.TRANSACTED)
Session session;

We need to devise a way:

• To specify that messageConsumer and messageProducer are dependent on session

• To avoid having to repeat the @JMSConnection and @JMSSession annotations on both
messageConsumer and messageProducer, since they are already defined on the
connection.

A second and more complex case is when we inject two objects, both of which are dependent on
a third, which is not injected. There’s an example of this in “Example 14: Request/reply pattern
using a TemporaryQueue (Java EE)” in page 26. In this example, a temporary queue and a
consumer are injected. It is essential that these are created using the same underlying
connection (which is not explicitly injected).

 // temporary reply queue
 // USED BY requestReply METHOD ONLY
 // MUST USE SAME CONNECTION AS MESSAGE CONSUMER BELOW
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 TemporaryQueue temporaryReplyQueue;

 // consumer used to receive replies
 // USED BY requestReply METHOD ONLY
 // MUST USE SAME CONNECTION AS TEMPORARY QUEUE ABOVE
 // MUST USE SAME TEMPORARY QUEUE AS IS INJECTED ABOVE
 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 // No need for @JMSSession annotation in Java EE
 @JMSTemporaryQueue
 MessageConsumer messageConsumer;

Version 2 Page 35 of 40

We need to devise a way:

• To specify that temporaryReplyQueue and messageConsumer are dependent on the
same Connection, even though it is not injected.

• To avoid repeating the @JMSConnection annotation on both temporaryReplyQueue and
messageConsumer

However this might not be possible to avoid repeating the @JMSConnection annotation without
injecting the Connection. Similarly it might not be possible to avoid repeating the @JMSSession
annotation injecting the Session.

Finally, there’s a third case which is the opposite of the previous two: when we wish to ensure
that two injected objects do not use the same dependent objects. So can we inject, say, two
Session objects and be sure that they will use different underlying connections?

Avoiding repetition on annotations

This is a slightly different topic to that discussed immediately above. The issue is: if multiple
unrelated objects are injected which have identical @JMSConnection or @JMSSession (or other)
annotations, is there a way to avoid repeating the same annotation?

Consider this extract from “Example 15: Sending messages in a bean-managed transaction (Java
EE)” on page 29:

 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 TextMessage requestMessage;

 @Inject
 @JMSConnection(lookup="jms/connectionFactory")
 @JMSDestination(lookup="jms/inboundQueue")
 MessageProducer producer;

In this particular example, the same @JMSConnection annotation is specified for both injected
objects. Strictly speaking this is correct: both objects are dependent on a connection factory.
However given that the annotations are identical, is there a way to avoid having to repeat it?

Now let us consider for the moment that we don’t want these two injected objects to use the
same underlying session and connection objects. However we do want them to use the same
connection factory. How can we avoid having to specify the same @JMSConnection annotation
in both places?

(Note that a connection factory can itself be injected using an old-style @Resource annotation. I
don’t know whether this helps).

Injected objects cannot be local variables

This document assumes that because of the nature of dependency injection, injected objects
must be declared as instance variables even though they are only used by a single method and
should really be declared as local variables in a method.

Version 2 Page 36 of 40

This breaks the encapsulation of the method. A good example of this can be seen in “Example
14: Request/reply pattern using a TemporaryQueue (Java EE)” on page 26, in which some
injected variables are used only by one method whilst some other injected variables are used
only by another, but since they are all declared as instance variables this encapsulation is lost.

In addition, declaring injected JMS objects as instance variables introduces the danger of these
objects being inadvertently used concurrently from multiple threads even though in most cases
this is often neither permitted nor safe.

Scope of injected variables

This document also does not attempt to resolve the issue of what scope the injected objects
should have.

The examples in this document assume that they come into scope when the method is entered
and that they go out of scope when they have it, though it is not clear whether this would be
possible to implement.

However, “Example 15: Sending messages in a bean-managed transaction (Java EE)” on page 29
includes an example of an injected object that should really have a lower scope than this: the
scope of a for block.

Here are some possible scoping options: (this list contributed by Reza):

• @ApplicationScoped - doesn't fit the JMS model very well at all.

• @SessionScoped - HTTP bound and does not fit the JMS model well.

• @Dependent - not scalable, I don't think it is a real candidate. However, maybe we can
think about a parallel to the JPA extended persistence context that is only allowed in
certain cases.

• @RequestScoped - might work, but the issue is that's it is all-or-nothing. There's no way
to have multiple JMS sessions in a given request, for example, even in nested EJB calls.

• @ThreadScoped - Has the same problem as request scoped.

• @ConversationScoped - Might be workable but puts more work on the developer for all
cases. Also very similar to the BMT model using transaction scope.

• @TransactionScoped - Works like the JPA transactional persistence context. The down-
side is that it is JTA transaction bound, just like the JPA container managed entity
manager (vs. the application managed entity manager which can use local transactions).
We can think about having a "best effort" mode when a transaction is not present to try
to simulate "auto-commit"/stateless mode.

• @MethodLocalScoped - The downside is that life-cycle granularity is limited to a method
(unlike the transaction scope). Would also definitely need to be standardized via CDI
because it requires changes in the behavior of the EJB, Servlet and all other managed
beans to add additional built-in call-backs to CDI on method entry/exit.

Version 2 Page 37 of 40

Java SE Support for JNDI

The @JMSConnection and @JMSDestination annotations defined in this document allow the
JNDI names of administered objects to be specified.

However, whereas a Java EE environment comes with a ready-configured JNDI provider, a Java
SE environment does not.

This implies that the use of these annotations in a Java SE environment is dependent on a
suitable JNDI provider being available and configured.

Minor unresolved issues

@JMSConsumer: what is the default value of the start attribute?

It is proposed that the @JMSConsumer annotation has an attribute start.

• If set to false, the underlying connection will not be automatically started. Instead
the application must inject the Connection and call start() explicitly.

• If set to true, its underlying Connection will be automatically started (if not already
started) as soon as the first injected consumer to use that connection is created, or
earlier. This avoids the need for the application to call connection.start() and
probably avoids the need to inject the connection at all

What should be the default value of the start attribute?

A connection needs to be started before messages will be delivered to a consumer on that
connection. The main reason users might not want start() to be called automatically is when
setting up an async MessageListener. In this case they might wish to defer the call to
connection.start() until after they have called
messageConsumer.setMessageListener. (This is discussed in section 4.3.3 “Connection
Setup” in the JMS 1.1 specification)..

Since messageConsumer.setMessageListener is not permitted in Java EE, it might be
approrpiate to have start=true as default in Java EE, and start=false as default in Java
SE. However this might be confusing.

Using user/password authentication with an injected connection

If a connection is injected with the user and password attributes

@Inject @JMSConnection (lookup="jms/connFactory", user="admin", password="secret")
Connection connection2;

then since the connection must be an instance variable the user and password cannot be set at
runtime. This is inflexible and limits the usefulness of this feature.

Version 2 Page 38 of 40

This is probably not an issue with Java EE, where user and password authentication is not
particularly useful, but it may be with Java SE.

Temporary Destinations

There’s a specific issue regarding temporary destinations. When injecting both a temporary
destination and a consumer on that destination, how does the user specify that these two
objects should relate to the same temporary destination?

This is described in more detail in “Injecting a TemporaryQueue or TemporaryTopic” on page
17.

JMS objects which are do not require
injection
This section lists some other JMS objects which were considered to not require injection.

Domain-specific interfaces proposed for removal
The following domain-specific interfaces are (in JMS 2.0) proposed for removal and so it is
unnecessary and probably inappropriate, to allow them to be injected:

QueueConnection
QueueConnectionFactory

QueueReceiver
QueueSender
QueueSession

TopicConnection
TopicConnectionFactory

TopicPublisher
TopicSession
TopicSubscriber

Application server interfaces
The following interfaces are not for direct use by applications and so it is not appropriate to
allow them to be injected. Six of them are also proposed for removal.

ConnectionConsumer
ServerSession
ServerSessionPool

XAConnection
XAConnectionFactory

Version 2 Page 39 of 40

XAQueueConnection
XAQueueConnectionFactory
XAQueueSession
XASession
XATopicConnection
XATopicConnectionFactory
XATopicSession

JMS objects which are unsuitable for
injection
This section lists some other JMS objects which were considered unsuitable for injection.

 ConnectionMetaData

ConnectionMetaData: can be created by calling connection.getMetaData(). It holds
static information about the JMS provider being used. Creating one doesn't use up system
resources so instances can be created without limit, and don't need to be closed or cleaned up
after use. There is no benefit on allowing these to be injected.

ExceptionListener
ExceptionListener: The implementation of this interface is provided by the application.
JMS doesn't define how instances are instantiated: it is up to the application to define how an
instance is obtained and what its scope is (i.e. whether each connection requires a different
ExceptionListener instance or whether they all use the same ExceptionListener
instance). It is also up to the application to define whether instances need closing or cleaning up
after use. Because this is an application object, it is not appropriate to attempt to add features to
JMS to allow it to be managed.

MessageListener
MessageListener: The implementation of this interface is provided by the application.
In Java EE, these are provided as MDBs, whose implementation is provided by the application.
The EJB spec already defines a declarative API which defines how they are instantiated,
associated with consumers, and cleaned up after use which should be adequate at least for the
first version of this new API.

In Java SE, JMS doesn't define how instances are instantiated: it is up to the application to define
how an instance is obtained and what its scope is (i.e. whether each consumer requires a
different MessageListener instance or whether they all use the same MessageListener
instance). It is also up to the application to define whether instances need closing or cleaning up
after use. Because this is an application object, it is not appropriate to attempt to add features to
JMS to allow it to be managed.

DeliveryMode

Version 2 Page 40 of 40

DeliveryMode : This interface is never instantiated and so is unsuitable for injection.

	JMS 2.0: Injection of JMS objects
	About this document

	Annotations to inject individual JMS objects
	Injecting a Connection:
	Example 1: Creating a Connection with default credentials (Java EE)
	Example 2: Creating a connection with user and password (Java EE)

	Injecting a Session
	Example 3a: Creating a Session (Java SE)
	Example 3b: Creating a Session in a Java EE container-managed transaction (Java EE)
	Example 3c: Creating a Session in a Java EE bean-managed transaction (Java EE)
	Example 3d: Creating a Session in a Java EE unspecified transaction context (Java EE)

	Injecting a MessageProducer
	Example 4: Creating an unidentified MessageProducer (Java EE)
	Example 5: Creating an identified MessageProducer (Java EE)

	Injecting a Message
	Example 6: Creating a TextMessage

	Injecting a MessageConsumer
	Example 7: Creating a consumer on a queue (Java EE)
	Example 8: Creating a durable subscriber (Java EE)

	Injecting a QueueBrowser
	Injecting a destination (Java EE)
	Injecting a TemporaryQueue or TemporaryTopic

	Use cases
	Example 9: Sending a message (Java EE)
	Example 10: Receiving a message synchronously (Java EE)
	Example 11: Receiving a message asynchronously (Java SE)
	Example 12: Receiving a message asynchronously (Java EE)
	Example 13: Receive synchronously and send a message in the same local transaction (Java SE only)
	Example 14: Request/reply pattern using a TemporaryQueue (Java EE)
	Example 15: Sending messages in a bean-managed transaction (Java EE)

	Summary of annotations
	Unresolved issues
	Major unresolved issues
	The relationship between injected objects
	Avoiding repetition on annotations
	Injected objects cannot be local variables
	Scope of injected variables
	Java SE Support for JNDI

	Minor unresolved issues
	@JMSConsumer: what is the default value of the start attribute?
	Using user/password authentication with an injected connection
	Temporary Destinations

	JMS objects which are do not require injection
	Domain-specific interfaces proposed for removal
	Application server interfaces

	JMS objects which are unsuitable for injection
	ExceptionListener
	MessageListener
	DeliveryMode

