JMS

HYPERLINK \l "h.4ra90q48ireo" 2.0

HYPERLINK \l "h.4ra90q48ireo"Event

HYPERLINK \l "h.4ra90q48ireo"

HYPERLINK \l "h.4ra90q48ireo"Messaging
Object

HYPERLINK \l "h.iv45vtovz4re"

HYPERLINK \l "h.iv45vtovz4re"Mapping
Provider

HYPERLINK \l "h.l5opvmr3ku7d"

HYPERLINK \l "h.l5opvmr3ku7d"Requirements
Support

HYPERLINK \l "h.2ma2vkweel3x"

HYPERLINK \l "h.2ma2vkweel3x"for

HYPERLINK \l "h.2ma2vkweel3x"

HYPERLINK \l "h.2ma2vkweel3x"Native

HYPERLINK \l "h.2ma2vkweel3x"

HYPERLINK \l "h.2ma2vkweel3x"Messages
API

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"Changes

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"in

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"Support

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"of

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"Event

HYPERLINK \l "h.yz8n169yg7sl"

HYPERLINK \l "h.yz8n169yg7sl"Messaging
New

HYPERLINK "http://#"

HYPERLINK "http://#"Enumerations
New

HYPERLINK "http://#"

HYPERLINK "http://#"Annotations
javax

HYPERLINK "http://#".

HYPERLINK "http://#"jms

HYPERLINK "http://#".

HYPERLINK "http://#"JmsConnection
javax

HYPERLINK "http://#".

HYPERLINK "http://#"jms

HYPERLINK "http://#".

HYPERLINK "http://#"JmsDestination
javax

HYPERLINK "http://#".

HYPERLINK "http://#"jms

HYPERLINK "http://#".

HYPERLINK "http://#"JmsCredentials
javax

HYPERLINK "http://#".

HYPERLINK "http://#"jms

HYPERLINK "http://#".

HYPERLINK "http://#"JmsMessageSelector
javax

HYPERLINK \l "h.tez95jgip9lt".

HYPERLINK \l "h.tez95jgip9lt"jms

HYPERLINK \l "h.tez95jgip9lt".

HYPERLINK \l "h.tez95jgip9lt"event

HYPERLINK \l "h.tez95jgip9lt".

HYPERLINK \l "h.tez95jgip9lt"JmsMessage
javax

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"jms

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"event

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"JmsHeader
javax

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"jms

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"event

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"JmsProperty
javax

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"jms

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"event

HYPERLINK \l "h.aa30pqwbh6rf".

HYPERLINK \l "h.aa30pqwbh6rf"JmsPayload
New

HYPERLINK "http://#"

HYPERLINK "http://#"classes
javax

HYPERLINK "http://#".

HYPERLINK "http://#"jms

HYPERLINK "http://#".

HYPERLINK "http://#"MessageFactory
JMS 2.0 Event Messaging
This document describes the Event Messaging Model that is new to JMS 2.0. Event Messaging is designed to simplify the Message, MessageConsumer and MessageProducer interfaces in to simple POJOs that can be interacted with using CDI events.
CDI Events are defined as the following, per JSR-299:
http

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"://

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"docs

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events".

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"jboss

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events".

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"org

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"/

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"cdi

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"/

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"spec

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"/1.0/

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"html

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"_

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"single

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"/#

HYPERLINK "http://docs.jboss.org/cdi/spec/1.0/html_single/#events"events
In order to understand this document fully, please also review the JMS 2.0 AtInject Support Document. Some annotations are reused. If AtInject support is not chosen, then it is assumed that any annotations referenced in both documents may belong to either implementation.
Object Mapping
The goal is to reduce Messages to simple POJOs (Plain Old Java Objects) that can be mapped by a local CDI implementation working with the JMS implementation (in the case of SE) or provide EE support in a full container. The strategy to object mapping is very similar to entity bindings in JPA, mapping objects to tables; in this case messages. The application developer may define their own POJOs to map to concrete messages by placing annotations on to both fields and methods that define what the field or method is related to. It is required for any class that is to be sent that it be denoted with an annotation, @javax.jms.JMSMessage. JmsMessage is a marker annotation, indicating that this class is to be used for Messaging. For example, see this possible message class:
@JmsMessage
public class StatusIdMessage {

@JmsProperty("eventType")

private String eventType;

@JmsHeader("JMSReplyTo")

private Destination replyTo;

@JmsPayload

private long statusId;

public StatusIdMessage() { }

public StatusIdMessage(long statusId, Destination replyTo, String eventType) {

this.eventType = eventType;

this.statusId = statusId;

this.replyTo = replyTo;

}

public StatusIdMessage(long statusId, String eventType) {

this(statusId,null,eventType);

}

public String getEventType() {

return eventType;

}

public void setEventType(String eventType) {

this.eventType = eventType;

}

public Destination getReplyTo() {

return replyTo;

}

public void setReplyTo(Destination replyTo) {

this.replyTo = replyTo;

}

public long getStatusId() {

return statusId;

}

public void setStatusId(long statusId) {

this.statusId = statusId;

}
}
Sending this message via CDI shall be equivalent to sending an ObjectMessage, with appropriate header and properties set. The two additional annotations listed are JmsProperty and JmsHeader; both expected to be applied to either fields or methods of a POJO. JmsProperty fields (and methods) represent the various property types supported in JMS and should be validated as appropriate. The value attribute describes the property name. The JmsHeader annotation can also be applied to fields and methods. The value attribute is a String and represents one of the headers (both standard and implementation specific) of a message. The names and values must be validated as appropriate to ensure type safety and name accurateness.
@JmsHeader(“JMSCorrelationID”)
private String jmsCorrelationId;
This field shall be mapped to the JMSCorrelationID header in the underlying message. The payload and properties must also be specified in a similar way, either on a method or a field.
@JmsProperty(“loaded”)
private boolean loaded;
This field shall be mapped to a boolean property named “loaded” and has the value of the field.
Provider Requirements
Based on the requirements, the JMS provider is required to support a JMS extension that does the following (as either native capabilities or a third party library):
1. Extensions that handle the handling of objects as JmsMessages, by supporting the mapping needs of the provider.
2. Create the necessary observer methods for any appropriate type that may be fired:
· Any type annotated JmsMessage
· Any core sub interface of javax.jms.Message
· Any local implementation of javax.jms.Message.
· Any extended Message type
· Both of these may be searched using service loaders.
3. Bindings necessary for listening to Destinations and converting the incoming message as necessary (e.g. sending it as a converted type). Eseentially re-firing a CDI event for an incoming message on certain destinations.
These extensions may be provided as core functionality to the provider or as a standalone 3rd party implementation. The same deployment rules that apply to CDI Extension shall apply here. At startup, if CDI is running and the provided JMS extension is found (these are checked in META-INF/services/javax.enterprise.inject.Extension) the following behavior is guaranteed to occur at the client level:
1. At the start of ProcessAnnotatedType, if the AnnotatedType being processed is marked @JmsMessage, a local store is built of these types. This should be publically available via a CDI injection point (TBD). Given the example type listed above, it shall be available within a store of all mapped types that can be used by one or more extensions, or within CDI beans.
2. At the start of AfterBeanDiscovery, for each type found in the JmsMessage store, a new Observer method is created that observes these objects coming in, and sends them over JMS. it is expected that the injection point will contain necessary JMS session configuration if default is not enough to determine what session to use, what destinations to send to. The fired object (in the case of 3a) will be converted into a standard JMS message. If none, then default values may be used. It is required to send at least on destination, and the event will be ignored if it has none. This functionality requires CDI to support injecting the annotations of the fired event into the observer. Essentially, this allows the developer to use the CDI Event programming model to send JMS messages. For example:
@Inject @JmsConnection(factory="/ConnectionFactory",transacted=true) Event<MessageObject> messageObjectEvent;
public void notifyOfChangedId(Long id) {
 messageObjectEvent.select(new JmsDestinationLiteral("jms/SomeQueue")).fire(new StatusIdMessage(id,"updated"));
 }
 Where JmsDestinationLiteral is a provided class that extensions the JmsDestination annotation to indicate what destination to use. Application developers are strongly encouraged to provide their own literals in this case. For example:
 public class SomeQueueLiteral extends JmsDestinationLiteral {

 public SomeQueueLiteral() { }

 public String value() {

 return "jms/SomeQueue";

 }

 public static final JmsDestination INSTANCE = new SomeQueueLiteral();
 }
 In which case, the example is rewritten as:
 @Inject @JmsConnection(factory="/ConnectionFactory",transacted=true) Event<MessageObject> messageObjectEvent;
 private static final JmsDestination SOMEQUEUE = SomeQueueLiteral.INSTANCE;
 public void notifyOfChangedId(Long id) {

 messageObjectEvent.select(SOMEQUEUE).fire(new StatusIdMessage(id,"updated"));
 }
 this is designed to increase code readability and improvde type safety, making it clearer what's being used where. This code results in an ObjectMessage being sent to the Queue jms/SomeQueue, where the body is the id that was updated, a property "someProperty" is set to "updated".
3. At the start of ProcessObserverMethod, when an observer method is discovered and it observes one of the configured types, a MessageListener will be configured to read messages from <<the configured destination>> and fire the result as an object using CDI events. This is done by searching for a @JmsDestination on the observer method, indicating what Destination to read from. Take the following method as an example:
@JmsDestination("jms/SomeQueue")
public void handleMessageObjects(@Observes MessageObject mo, Annotation[] qualifiers){
//business code goes here.
}
The contract states that:
· CDI-JMS Provider will validate that the MessageObject type is a mapped type, and if not throw a CDI exception.
· All messages coming in on the JMS Queue bound to jms/SomeQueue that can be converted to a MessageObject will be fired as a CDI event of this type, and observed by this method. If the method cannot be converted for some reason, it is ignored. A warning message may be logged.
 Meanwhile, a similar example:
@JmsDestination("jms/SomeQueue")
public void handleUpdatedMessageObjects(@Observes @JmsMessageSelector("someProperty = 'updated'") MessageObject mo, Annotation[] qualifiers) {
}
States essentially the same with only a minor change that a MessageSelector is to be applied to this observer method, where this observer is only invoked in cases where the MessageObject passed in has a JmsProperty("someProperty") set to the String "someValue." The MessageSelector shall be provided as an interceptor over the method that is assigned at start up. This interceptor will do the message filter. You can optionally apply @JmsConnection here to define behavior of the session. As with any other object within CDI, any transactionality will be delegated down to the located UserTransaction (if any).
Support for Native Messages
It shall also be completely valid to fire a standard JMS Message using CDI and expect it to be sent to a JMS Destination. Using the MessageFactory defined in AtInject Support, observe the following behavior:
@Inject MessageFactory messageFactory;
@Inject Event<Message> messageEvent;
public void notifyOfCrash(Exception e, String callingModule, Date occurrence) {

ObjectMessage om = messageFactory.createMessage(ObjectMessage.class);

Event<Message> me = messageEvent.select(JmsSessionLiteral.TRANSACTED);

if(e instanceof RuntimeException) {

me = me.select(new JmsDestinationLiteral(“jms/RuntimeExceptions”));

} else {

me = me.select(new JmsDestinationLiteral(“jms/CheckedExceptions”));

}

om.setStringProperty(“callingModule”,callingModule);

om.setLongProperty(“occurrence”,occurrence.getTime());

om.setObject(e);

me.fire(om);
}
In this case, we use the standard JMS Message objects combined with the CDI annotations configuring a session as well as choosing destinations to send to. In this case, the destination is determined based on the type of exception.
API Changes in Support of Event Messaging
The below list is a set of changed classes, interfaces, annotations in support of the Event Messaging capabilities. This includes any relevant changes from AtInject, those are copied here as well.
New Enumerations
javax.jms.AcknowledgeMode
Describes the acknowledge mode of a session, with values
AutoAcknowledge
ClientAcknowledge
DupsOkAcknowledge
Each mapping to the behavior originally describes in javax.jms.Session.
New Annotations
javax.jms.JmsConnection
An annotation used to describe a javax.jms.Connection or a javax.jms.Session. The factory attribute describes what javax.jms.ConnectionFactory to use. JmsConnect can be applied to any of the injectable objects to control what connection and session configuration to use. This annotation applies to the field or parameter level. If JmsConnection is not used on an injection point, a default container specific configuration may be used. The transacted attribute determines if this should participate in a UserTransaction, if any can be located; default is false. AcknowledgeMode attribute determines what AcknowledgeMode to use, if not transacted; default is AutoAcknowledge.
By default, you should be able to inject:
@Inject Session session;
However, you can also modify what is injected via a JmsConnection:
@Inject @JmsConnection(factory=”/ConnectionFactory”,acknowledgeMode=ClientAcknowledge)
Session session;
javax.jms.JmsDestination
An annotation that describes the JNDI location to find a Destination. This annotation can be applied to MessageConsumers and MessageProducers to indicate what Destination should be used. Has a value attribute of type String that contains the JNDI location of a Destination. This annotation applies to the field, parameter, or method level. This injects a MessageConsumer that works against the destination found at jms/DevQueue:
@Inject @JmsDestination(“jms/DevQueue”)
MessageConsumer messageConsumer;
javax.jms.JmsCredentials
An annotation that describes the username and password to use on a connection. Can be used anywhere JmsConnection is used, to describe credentials for logging in. This annotation applies to the field or parameter level. Ideally this would be used as the literal, however can also be used for plain injection:
@Inject @JmsCredentials(userName=””,password=””)
Session session;
javax.jms.JmsMessageSelector
For any MessageConsumer (and QueueBrowser) that can be injected, an optional JmsMessageSelector can be added to the injection point to describe the selector to be applied. The annotation has a single String attribute, value, that describes the selector. This annotation applies to the field or parameter level.
@Inject @JmsMessageSelector(“someProperty = false”)
QueueBrowser queueBrowser;
javax.jms.event.JmsMessage
Represents a JmsMessage bound to a POJO. Has fields representing each header and property, as well as the message payload. This annotation applies to the class level.
javax.jms.event.JmsHeader
Represents a header of a JMS message. The header needs to be validated. The value attribute is a String representing a header name. It is a String to easily support vendor specific headers. The headers annotated on the target POJO must be validated to ensure typesafety as well as proper names. the same header must not be repeated within a POJO.
javax.jms.event.JmsProperty
Represents a property in a JMS message. Property type must be validated based on the underlying field or method. Has a single value attribute representing a property name. Assume that you have
@JmsProperty(“annualSalary”)
private double salary;
Then that will be the equivalent of
message.setDouble(“annualSalary”,salary);
javax.jms.event.JmsPayload
Represents the payload of the message, and determines message type. See AtInject Support, changes to MessageProducer, to understand the correlation between returned type and message type created.
New classes
javax.jms.MessageFactory
Has a single method:
public <T extends Message> T createMessage(Class<T> messageType);
This method creates a stateless message not associated with any Session or Connection. This message should be able to be sent via any means to send a message. This method should use SerivceLoaders to determine the appropriate implementation of a message to create. The format of the ServiceLoader file should match the standard ServiceLoader format, e.g. META-INF/services/javax.jms.TextMessage that contains a single entry indicating the implementation to use. This file must be maintained by the JMS implementation that is in use. If the implementation provides custom message types, both interface and implementation must be provided. The custom message type should be placed in META-INF/services/org.someimplementation.messages.XMLMessage (as an example).
For example, the following code creates a TextMessage.
//Instantiate the default MessageFactory implementation.
MessageFactory messageFactory = new MessageFactory();
TextMessage textMessage = messageFactory.createMessage(TextMessage.class);
This assumes that the implementation has provided a services configuration,
META-INF/services/javax.jms.TextMessage
With an entry pointing to the TextMessageImpl.
