JMS Support for AtInject
JMS

HYPERLINK \l "h.qguymaqqjov2"

HYPERLINK \l "h.qguymaqqjov2"Support

HYPERLINK \l "h.qguymaqqjov2"

HYPERLINK \l "h.qguymaqqjov2"for

HYPERLINK \l "h.qguymaqqjov2"

HYPERLINK \l "h.qguymaqqjov2"AtInject
Assumptions
API

HYPERLINK \l "h.7g9t0jwymv5m"

HYPERLINK \l "h.7g9t0jwymv5m"Modifications
New

HYPERLINK \l "h.vjnekqiy1w1h"

HYPERLINK \l "h.vjnekqiy1w1h"Enumerations
New

HYPERLINK \l "h.nq3w59b3vfsr"

HYPERLINK \l "h.nq3w59b3vfsr"Annotations
javax

HYPERLINK \l "h.1wmbheh8wojl".

HYPERLINK \l "h.1wmbheh8wojl"jms

HYPERLINK \l "h.1wmbheh8wojl".

HYPERLINK \l "h.1wmbheh8wojl"JmsConnection
javax

HYPERLINK \l "h.3rx6aw4tff62".

HYPERLINK \l "h.3rx6aw4tff62"jms

HYPERLINK \l "h.3rx6aw4tff62".

HYPERLINK \l "h.3rx6aw4tff62"JmsDestination
javax

HYPERLINK \l "h.8lpjwjnol6n4".

HYPERLINK \l "h.8lpjwjnol6n4"jms

HYPERLINK \l "h.8lpjwjnol6n4".

HYPERLINK \l "h.8lpjwjnol6n4"JmsCredentials
javax

HYPERLINK \l "h.8lpjwjnol6n4".

HYPERLINK \l "h.8lpjwjnol6n4"jms

HYPERLINK \l "h.8lpjwjnol6n4".

HYPERLINK \l "h.8lpjwjnol6n4"JmsMessageSelector
New

HYPERLINK \l "h.ubynx36t6wey"

HYPERLINK \l "h.ubynx36t6wey"classes
javax

HYPERLINK \l "h.8ui62n1lnbho".

HYPERLINK \l "h.8ui62n1lnbho"jms

HYPERLINK \l "h.8ui62n1lnbho".

HYPERLINK \l "h.8ui62n1lnbho"MessageFactory
javax

HYPERLINK \l "h.cbkr6c4b3s6r".

HYPERLINK \l "h.cbkr6c4b3s6r"jms

HYPERLINK \l "h.cbkr6c4b3s6r".

HYPERLINK \l "h.cbkr6c4b3s6r"spi

HYPERLINK \l "h.cbkr6c4b3s6r".

HYPERLINK \l "h.cbkr6c4b3s6r"JmsDestinationLiteral
javax

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"jms

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"spi

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"JmsConnectionLiteral
javax

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"jms

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"spi

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"JmsCredentialsLiteral
javax

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"jms

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"spi

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"JmsMessageSelectorLiteral
javax

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"jms

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"spi

HYPERLINK \l "h.64inqd59nj6w".

HYPERLINK \l "h.64inqd59nj6w"ConnectionProducer
Methods

HYPERLINK \l "h.rnbkowrglu2r":
Extended

HYPERLINK \l "h.bwbgim301rrp"

HYPERLINK \l "h.bwbgim301rrp"interfaces
javax

HYPERLINK \l "h.kkgqw62hrszz".

HYPERLINK \l "h.kkgqw62hrszz"jms

HYPERLINK \l "h.kkgqw62hrszz".

HYPERLINK \l "h.kkgqw62hrszz"MessageProducer
Behavior

HYPERLINK \l "h.y0wvzv7lqmog"

HYPERLINK \l "h.y0wvzv7lqmog"Changes
Implicit

HYPERLINK \l "h.8z5xiqru9e1s"

HYPERLINK \l "h.8z5xiqru9e1s"Conversion
AtInject

HYPERLINK \l "h.5b5kt717ib1y"/

HYPERLINK \l "h.5b5kt717ib1y"CDI

HYPERLINK \l "h.5b5kt717ib1y"

HYPERLINK \l "h.5b5kt717ib1y"Support
Annotations
Sample

HYPERLINK \l "h.cqree0e3rspy"

HYPERLINK \l "h.cqree0e3rspy"Injected

HYPERLINK \l "h.cqree0e3rspy"

HYPERLINK \l "h.cqree0e3rspy"Code
Sample

HYPERLINK \l "h.21rsokxugg46"

HYPERLINK \l "h.21rsokxugg46"Two

HYPERLINK \l "h.21rsokxugg46" -

HYPERLINK \l "h.21rsokxugg46"Implied

HYPERLINK \l "h.21rsokxugg46"

HYPERLINK \l "h.21rsokxugg46"Message

HYPERLINK \l "h.21rsokxugg46"

HYPERLINK \l "h.21rsokxugg46"Conversion
This document will describe in full JMS 2.0’s support for AtInject, JSR-330, and integration with CDI 1.1, JSR-346. This document is broken down into a series of assumptions, interfaces added or modified, and behavior changes. The goal is to provide a number of interfaces defined in JMS as injectable components within a bean archive. JMS providers would be required to support injection of these objects either natively or through the use of a 3rd party library; in a fashion that is supportable to CDI. This document also reviews some minor changes to the JMS programming model to ease development on application developers.
Assumptions
1. CDI 1.1 will support a bootstrap API for SE environments.
2. All new API listed in new & changed interfaces/classes will be added.
3. Deprecated interfaces will not be supported for injection.
API Modifications
This section describes all changes to API in support of AtInject/CDI as well as minor changes to the JMS programming model to simplify development. This section is not intended to describe in complete terms the injection behavior of JMS, but instead describe the usefulness and API for each annotation.
New Enumerations
javax.jms.AcknowledgeMode
Describes the acknowledge mode of a session, with values
AutoAcknowledge
ClientAcknowledge
DupsOkAcknowledge
Each mapping to the behavior originally describes in javax.jms.Session. There is no equivalent in a non transacted session.
New Annotations
javax.jms.JmsConnection
An annotation used to describe a javax.jms.Connection or a javax.jms.Session. The factory attribute describes what javax.jms.ConnectionFactory to use. JmsConnect can be applied to any of the injectable objects to control what connection and session configuration to use. If JmsConnection is not used on an injection point, a default container specific configuration may be used. The transacted attribute determines if this should participate in a UserTransaction, if any can be located; default is false. AcknowledgeMode attribute determines what AcknowledgeMode to use, if not transacted; default is AutoAcknowledge but should be ignored when transacted is false.
By default, you should be able to inject, with assumptions that default values would be used for the connection:
@Inject Session session;
However, you can also modify what is injected via a JmsConnection:
@Inject @JmsConnection(factory=”/ConnectionFactory”,acknowledgeMode=ClientAcknowledge)
Session session;
javax.jms.JmsDestination
An annotation that describes the JNDI location to find a Destination. This annotation can be applied to MessageConsumers, MessageProducers and QueueBrowsers to indicate what Destination should be used. Has a value attribute of type String that contains the JNDI location of a Destination. This injects a MessageConsumer that works against the destination found at jms/DevQueue:
@Inject @JmsDestination(“jms/DevQueue”)
MessageConsumer messageConsumer;
javax.jms.JmsCredentials
An annotation that describes the username and password to use on a connection. Can be used anywhere JmsConnection is used, to describe credentials for logging in. Ideally this would be used as the literal, however can also be used for plain injection:
@Inject @JmsCredentials(userName=””,password=””)
Session session;
javax.jms.JmsMessageSelector
For any MessageConsumer (and QueueBrowser) that can be injected, an optional JmsMessageSelector can be added to the injection point to describe the selector to be applied. The annotation has a single String attribute, value, that describes the selector.
@Inject @JmsMessageSelector(“someProperty = false”)
QueueBrowser queueBrowser;
New classes
javax.jms.MessageFactory
Has a single method:
public <T extends Message> T createMessage(Class<T> messageType);
This method creates a stateless message not associated with any Session or Connection. This message should be able to be sent via any means to send a message. This method should use SerivceLoaders to determine the appropriate implementation of a message to create. The format of the ServiceLoader file should match the standard ServiceLoader format, e.g. META-INF/services/javax.jms.TextMessage that contains a single entry indicating the implementation to use. This file must be maintained by the JMS implementation that is in use. If the implementation provides custom message types, both interface and implementation must be provided. The custom message type should be placed in META-INF/services/org.someimplementation.messages.XMLMessage (as an example).
For example, the following code creates a TextMessage.
//Instantiate the default MessageFactory implementation.
MessageFactory messageFactory = new MessageFactory();
TextMessage textMessage = messageFactory.createMessage(TextMessage.class);
This assumes that the implementation has provided a services configuration,
META-INF/services/javax.jms.TextMessage
With an entry pointing to the TextMessageImpl.
javax.jms.spi.JmsDestinationLiteral
Annotation Literals are used in CDI to describe concrete java classes that are implementations of annotations. JMS will provide one for each annotation defined. The JmsDestinationLiteral will be used to have a concrete JmsDestination that can be created programmatically. For example:
private static final JmsDestinationLiteral MY_QUEUE = new JmsDestinationLiteral(“jms/MyQueue”);
@Inject Instance<MessageProducer> msgProducerInstance;
private MessageProducer messageProducer;
@PostConstruct
public void init() {

messageProducer = msgProducerInstance.select(MY_QUEUE).get();
}
javax.jms.spi.JmsConnectionLiteral
An implementation of JmsConnection as a concrete object allowing for dynamic lookup.
private static final JmsConnectionLiteral STANDARD_CONNECTION = new JmsConnectionLiteral(“/ConnectionFactory”,false,AcknowledgeMode.ClientAcknowledge);
@Inject Instance<Session> sessionInstance;
private Session session;
@PostConstruct
public void init() {

session = sessionInstance.select(STANDARD_CONNECTION).get();
}
javax.jms.spi.JmsCredentialsLiteral
An implementation of JmsCredentials as a concrete object allowing for dynamic lookup.
@Inject Instance<Session> sessionInstance;
private Session session;
@PostConstruct
public void init() {

session = sessionInstance.select(new JmsCredentialsLiteral(myUser,myPass)).get();
}
javax.jms.spi.JmsMessageSelectorLiteral
An implementation of JmsMessageSelector as a concrete object allowing for dynamic lookup.
@Inject Instance<MessageConsumer> messageConsumerInstance;
private MessageConsumer messageConsumer;
@PostConstruct
public void init() {

messageConsumer = messageConsumerInstance.select(new JmsMessageSelectorLiteral(“someProperty = true”)).get();
}
javax.jms.spi.ConnectionProducer
The base CDI bean responsible for producing Connections. May be extended to change the default behavior using Specialization in CDI.
Methods:
/**
* Gets the default username for this JMS Provider
*/
public String getDefaultUsername();
/**
 * Gets the default password for this JMS Provider
*/
public String getDefaultPassword();
/**
 * Gets the default transacted state for this JMS Provider
 * Given the deployment currently running (SE or EE).
*/
public boolean getDefaultTransacted();
/**
 * gets the default acknowledge mode for this JMS Provider
*/
public AcknowledgeMode getDefaultAcknowledgeMode();
/**
 * Gets the default ConnectionFactory for this JMS Provider.
*/
public ConnectionFactory getDefaultConnectionFactory();
@Produces
/**
 * Produces a new JMS Connection. If JmsConnection is provided in
 * the injection point, then uses connection details. If
 * JmsCredentials are found, uses these for logins. Otherwise uses
 * defaults.
*/
public Connection produceConnection();
This class allows you to override default behavior within only your application, controlling the standard injection behavior.
Extended interfaces
javax.jms.MessageProducer
MessageProducer.send(Object);
Based on the rules in Implicit Conversion, sends a non Message object to a Destination by wrapping it in a Message.
Behavior Changes
Implicit Conversion
In this case, the overloaded version of message producer is called, allowing the client to only need to specify the payload. The JMS server shall process this and choose the appropriate message type automatically, based on the following rules:
· byte[], Byte[] => BytesMessage
· InputStream => StreamMessage
· CharSequence, char[], Character[] => TextMessage
· Map, and any implementation of => MapMessage
· Otherwise, an ObjectMessage is used.
AtInject/CDI Support
JMS Providers shall support an external CDI extension that supports producers for the following JMS Objects:
· javax.jms.Connection
· javax.jms.Session
· javax.jms.MessageProducer
· javax.jms.MessageConsumer
· javax.jms.QueueBrowser
Objects that can be retrieved direct from JNDI (Destinations, ConnectionFactories) do not apply. The new class MessageFactory is also injectable.
Annotations
Annotations can be used within a JMS client to define configuration of an injection point. When used in CDI, these annotations are known as Qualifiers. The following Qualifiers have been identified to support JMS:
@JmsConnection(factory=””,transacted=boolean,acknowledgeMode=AcknowledgeMode)
Assuming that when transacted=true, then acknowledgeMode is ignored, and if transacted is not passed in (false by default) then AcknowledgeMode must be present. Each parameter is nonbinding, meaning that CDI will look for anything that returns the appropriate objects with this.
@Inject @JmsConnection(factory=”/JmsXA”)
Connection connection;
//suitable in an EE environment.
@Inject @JmsConnection(factory=”/JmsXA”,transacted=true)
Session session;
//suitable in an SE environment.
@Inject @JmsConnection(factory=”/ConnectionFactory”,acknowledgeMode=ClientAcknowledge)
Session session;
This should provide enough characteristics to inject sessions and connections. Alternatively, these annotations could be treated as just annotations, and not qualifiers. Then the retrieval of the object happens over CDI, but the resolution never takes into account the annotation. To inject consumers and producers, the following qualifier must be added:
@JmsDestination(value=“”)
This indicates a Destination’s JNDI entry name, allowing a consumer or a producer to know what Destination to bind against. In the case of a generic consumer or producer, the following should work:
@Inject
@JmsConnection(factory=”/JmsXA”,transacted=true)
@JmsDestination(“jms/SomeGenericDestination”)
MessageConsumer genericConsumer;
@Inject
@JmsConnection(factory=”/ConnectionFactory”,acknowledgeMode=AutoAcknowledge)
@JmsDestination(“jms/SomeStaticDestination”)
MessageProducer staticProducer;
In the case of a remote JNDI provider, the destination is retrieved. Some sample code usage, from a client side, using MessageFactory and MessageProducer/MessageConsumer:
Sample Injected Code
///bind this class to an HTTP Request Scope
@RequestScoped
public class DistributeMessages {
@Inject
@JmsConnection(factory=”/JmsXA”,transacted=true)
@JmsDestination(“jms/SomeStaticDestination”)
MessageProducer staticProducer;
@Inject
MessageFactory messageFactory;
public void sendString(String msg) {
TextMessage tm = messageFactory.createMessage(TextMessage.class);
tm.setText(msg);
staticProducer.send(tm);
}
}
//bind this class at the ApplicationScope
@ApplicationScoped
public class HandleMessages {
@Inject
@JmsConnection(factory=”/JmsXA”,transacted=true)
@JmsDestination(“jms/SomeStaticDestination”)
MessageConsumer genericConsumer;
//handles a generic application driven event to look for messages and process them.
//MyApplicationEvent is an event raised by the application and defined by the application itself.
public void lookForMessages(@Observes MyApplicationEvent evt) {
TextMessage received = null;
while((received = genericConsumer.receive(3000l,TextMessage.class)) != null) {
String text = received.getText();
doWork(text);
}
}
}
In this example, a CDI RequestScoped object has a method executed that distributes the String arguments over JMS as a TextMessage created from the new MessageFactory interface. The MessageFactory class remains useful for any case where a message must have headers or properties set. In the case where no properties or headers are needed, the following example exists:
Sample Two - Implied Message Conversion
///bind this class to an HTTP Request Scope
@RequestScoped
public class DistributeMessages {
@Inject
@JmsConnection(factory=”/JmsXA”,transacted=true)
@JmsDestination(“jms/SomeStaticDestination”)
MessageProducer staticProducer;
public void sendString(String msg) {
staticProducer.send(msg);
}
}
//bind this class at the ApplicationScope
@ApplicationScoped
public class HandleMessages {
@Inject
@JmsConnection(factory=”/JmsXA”,transacted=true)
@JmsDestination(“jms/SomeStaticDestination”)
MessageConsumer genericConsumer;
//handles a generic application driven event to look for messages and process them.
//MyApplicationEvent is an event raised by the application and defined by the application itself.
public void lookForMessages(@Observes MyApplicationEvent evt) {
TextMessage received = null;
while((received = genericConsumer.receive(3000l,TextMessage.class)) != null) {
String text = received.getText();
doWork(text);
}
}
}
