
Grizzly-thrift Benchmarking

Grizzly-Thrift Server/Client Modules Benchmarking
This page is for benchmarking various Thrift Server-Client modules which are TSocketServer/Client, TThreadpoolServer,
TTNonblockingServer, Netty Server/Client and Grizzly Server/Client. I used business operations based on Thrift tutorial for test but modified
a bit logic for packet size.

Test Information

Server Type/Client Type: TServer-TSocketClient vs TServer-NettyClient vs TServer-GrizzlyClient vs GrizzlyServer-TSocketClient vs
GrizlzyServer-GrizzlyClient vs etc...
Message Size: About 3M Bytes, 3K Bytes, 300 Bytes
Thrift Protocol: Binary, Compact
Client Connections: 40, 20, 60
Server and Client Test Machine Information

CPU: Intel Xeon 3.3G, 8 Processors, 8 * 4 Cores
Memory: 16G
OS: Linux SentOS
JDK: 1.6.0_29
Network: 1G
Versions: Thrift v0.7.0, Grizzly v2.2(git://java.net/grizzly~git), Netty v4.0.0(git://github.com/netty/netty.git), Netty Tools v1.2.8(

). Most of all are the lastest version(2011/12/05).https://github.com/cgbystrom/netty-tools.git
Scenario

After 1min warming-up, testing 5min and collecting total results.
Please see the sources which I attached.

ThriftServerBenchmark.java: Server modules for benchmarking
ThriftClientBenchmark.java: Client modules for benchmarking
CalculatorHandler.java: Business logic for Thrift services

Benchmarking Results

3M + Compact + 40 Connections

Server Types TSocket Client Netty Client Grizzly Client

TServer 8,637 478 8,510

TThreadPoolServer 11,221 2,273 11,220

TNonblockingServer 11,223 1,832 11,221

Netty 11,220 2,311 11,220

Grizzly 11,221 1,765 11,225

Netty client had the performance problem, so I would exclude it for next benchmarking.
3M + Binary + 40 Connections

Server Types TSocket Client Grizzly Client

TThreadPoolServer 11,219 11,215

TNonblockingServer 11,221 11,221

Netty 11,213 11,221

Grizzly 11,220 11,222

In 3M test, Compact/Binary and Server/Client tests were meaningless for performance.

3K + Compact + 40 Connections

Server Types Grizzly Client

TThreadPoolServer 8,283,705

https://github.com/cgbystrom/netty-tools.git

TNonblockingServer 5,801,319

Netty 9,058,550

Grizzly 8,964,358

Grizzly(SameIO) 9,098,590

TNonblockingServer had the performance problem. And Netty and Grizzlys' results were better than Thrift server modules'.
3K + Binary + 40 Connections

Server Types TSocket Client Grizzly Client

TThreadPoolServer 7,619,693 8,163,692

TNonblockingServer 5,444,630 6,032,290

Netty 8,254,168 8,930,896

Grizzly 8,204,097 8,833,978

Grizzly(SameIO) 8,257,918 8,960,497

Grizzly client module had better performance than TSocket client so I would use only Grizzly client for next benchmarking.

In 3K test, Compact protocol is better than Binary protocol. And Netty and Grizzlys' results were better than Thrift server modules' so I would
use only Netty and Grizzly server for next benchmarking.

300Bytes + Compact + 20 Connections

Server Types Grizzly Client

Netty 10,269,876

Grizzly(SameIO) 10,349,440

Grizzly(LeaderF) 9,654,216

300Bytes + Compact + 40 Connections

Server Types Grizzly Client

Netty 14,569,820

Grizzly(SameIO) 14,770,452

Grizzly(LeaderF) 13,674,641

300Bytes + Compact + 60 Connections

Server Types Grizzly Client

Netty 15,783,774

Grizzly(SameIO) 15,962,425

Grizzly(LeaderF) 15,227,426

300Bytes + Compact + 80 Connections

Server Types Grizzly Client

Netty 16,964,578

Grizzly(SameIO) 16,712,315

Grizzly(Worker) 15,890,537

Grizzly(LeaderF) 16,252,280

300Bytes + Compact + 100 Connections

Server Types Grizzly Client

Netty 15,879,803

Grizzly(SameIO) 15,781,153

Grizzly(Worker) 16,136,977

Grizzly(LeaderF) 16,437,650

300Bytes + Compact + 120 Connections

Server Types Grizzly Client

Netty 15,904,968

Grizzly(SameIO) 15,985,106

Grizzly(Worker) 16,097,609

Grizzly(LeaderF) 16,164,636

300Bytes + Compact + 150 Connections

Server Types Grizzly Client

Netty 15,952,442

Grizzly(SameIO) 16,109,154

Grizzly(Worker) 16,261,584

Grizzly(LeaderF) 15,923,040

300Bytes + Compact + 500 Connections

Server Types Grizzly Client

Netty 12,463,442

Grizzly(SameIO) 12,499,963

Grizzly(Worker) 12,461,131

Grizzly(LeaderF) 12,532,517

300Bytes + Compact + 1000 Connections

Server Types Grizzly Client

Netty 11,867,630

Grizzly(SameIO) 11,903,400

Grizzly(Worker) 11,906,507

Grizzly(LeaderF) 11,812,262

In high connections(more than 120 connections), most of servers didn't receive proper requests of client-side because the client machine of
this environment used too much resouces such as high CPU usages. So I think that more client machines needs to calculate meaningful data
of more connections. In 100 connections, Netty and Grizzly's Same IO Strategy's throughput decreased but Grizzly's Woker Thread IO and
Leader Follower IO's throughput increased.

In our test cases and environments, Worker Thread IO Strategy and Leader Follower IO Strategy are more effective than Same IO Thread
Strategy if servers should have more than 100 connections.

Conclusion

Results of 300Bytes + Compact + 40 Connections

Server Types TSocket Client Netty Client Grizzly Client

TServer 741,417 604,558

TThreadPoolServer 14,731,560 12,747,230

TNonblockingServer 6,060,111 6,723,402

Netty 14,749,519 14,569,820

Grizzly(SameIO) 14,931,745 9,066,525 14,770,452

Results of 3KBytes + Compact + 40 Connections

Server Types TSocket Client Netty Client Grizzly Client

TServer 631,300 526,341

TThreadPoolServer 7,708,088 8,283,705

TNonblockingServer 5,264,995 5,801,319

Netty 8,372,804 9,058,550

Grizzly(SameIO) 8,381,352 3,718,431 9,098,590

300Bytes + Compact + 100 Connections

Server Types Grizzly Client

Netty 15,879,803

Grizzly(SameIO) 15,781,153

Grizzly(Worker) 16,136,977

Grizzly(LeaderF) 16,437,650

Server Module
Grizzly Same IO Strategy is best in low and medium connections. Grizzly LeaderFollower IO Strategy is best in high
connections.
CPU Usages: Netty==GrizzlySameIO < GrizzlyLeaderFollowerIO < GrizzlyWorkerIO

Client Module
In small packets, TSocket is best. In larget packets, Grizzly client is best.

Thrift Protocol
In this scenario, Compact protocol is best.

