Grizzly-thrift Benchmarking

Grizzly-Thrift Server/Client Modules Benchmarking

This page is for benchmarking various Thrift Server-Client modules which are TSocketServer/Client, TThreadpoolServer,
TTNonblockingServer, Netty Server/Client and Grizzly Server/Client. | used business operations based on Thrift tutorial for test but modified
a bit logic for packet size.

Test Information

® Server Type/Client Type: TServer-TSocketClient vs TServer-NettyClient vs TServer-GrizzlyClient vs GrizzlyServer-TSocketClient vs
GrizlzyServer-GrizzlyClient vs etc...
Message Size: About 3M Bytes, 3K Bytes, 300 Bytes
Thrift Protocol: Binary, Compact
Client Connections: 40, 20, 60
Server and Client Test Machine Information
® CPU: Intel Xeon 3.3G, 8 Processors, 8 * 4 Cores
Memory: 16G
OS: Linux SentOS
JDK: 1.6.0_29
Network: 1G
Versions: Thrift v0.7.0, Grizzly v2.2(git://java.net/grizzly~git), Netty v4.0.0(git://github.com/netty/netty.qgit), Netty Tools v1.2.8(
https://github.com/cgbystrom/netty-tools.git). Most of all are the lastest version(2011/12/05).
® Scenario
® After Imin warming-up, testing 5min and collecting total results.
® Please see the sources which | attached.
® ThriftServerBenchmark.java: Server modules for benchmarking
* ThriftClientBenchmark.java: Client modules for benchmarking
® CalculatorHandler.java: Business logic for Thrift services

Benchmarking Results

® 3M + Compact + 40 Connections

Server Types TSocket Client = Netty Client = Grizzly Client
TServer 8,637 478 8,510
TThreadPoolServer = 11,221 2,273 11,220
TNonblockingServer = 11,223 1,832 11,221

Netty 11,220 2,311 11,220
Grizzly 11,221 1,765 11,225

® Netty client had the performance problem, so | would exclude it for next benchmarking.
® 3M + Binary + 40 Connections

Server Types TSocket Client = Grizzly Client
TThreadPoolServer = 11,219 11,215
TNonblockingServer = 11,221 11,221
Netty 11,213 11,221
Grizzly 11,220 11,222

In 3M test, Compact/Binary and Server/Client tests were meaningless for performance.

® 3K + Compact + 40 Connections

Server Types Grizzly Client

TThreadPoolServer = 8,283,705


https://github.com/cgbystrom/netty-tools.git

TNonblockingServer | 5,801,319
Netty 9,058,550
Grizzly 8,964,358

Grizzly(SamelO) 9.098.590

® TNonblockingServer had the performance problem. And Netty and Grizzlys' results were better than Thrift server modules'.
® 3K + Binary + 40 Connections

Server Types TSocket Client = Grizzly Client
TThreadPoolServer = 7,619,693 8,163,692
TNonblockingServer = 5,444,630 6,032,290
Netty 8,254,168 8,930,896
Grizzly 8,204,097 8,833,978
Grizzly(SamelO) 8,257,918 8.960,497

® Grizzly client module had better performance than TSocket client so | would use only Grizzly client for next benchmarking.

In 3K test, Compact protocol is better than Binary protocol. And Netty and Grizzlys' results were better than Thrift server modules' so | would
use only Netty and Grizzly server for next benchmarking.

® 300Bytes + Compact + 20 Connections

Server Types Grizzly Client

Netty 10,269,876

Grizzly(SamelO) = 10,349,440

Grizzly(LeaderF) 9,654,216
® 300Bytes + Compact + 40 Connections

Server Types Grizzly Client

Netty 14,569,820

Grizzly(SamelO) 14,770,452

Grizzly(LeaderF) 13,674,641
® 300Bytes + Compact + 60 Connections

Server Types Grizzly Client

Netty 15,783,774

Grizzly(SamelO) 15,962,425

Grizzly(LeaderF) 15,227,426
® 300Bytes + Compact + 80 Connections

Server Types Grizzly Client

Netty 16,964,578

Grizzly(SamelO) 16,712,315
Grizzly(Worker) = 15,890,537

Grizzly(LeaderF) 16,252,280

® 300Bytes + Compact + 100 Connections



Server Types Grizzly Client

Netty 15,879,803
Grizzly(SamelO) 15,781,153
Grizzly(Worker) 16,136,977

Grizzly(LeaderF) 16,437,650

® 300Bytes + Compact + 120 Connections

Server Types Grizzly Client

Netty 15,904,968
Grizzly(SamelO) 15,985,106
Grizzly(Worker) 16,097,609

Grizzly(LeaderF) 16,164,636

® 300Bytes + Compact + 150 Connections

Server Types Grizzly Client

Netty 15,952,442
Grizzly(SamelO) 16,109,154
Grizzly(Worker) = 16,261,584

Grizzly(LeaderF) 15,923,040
® 300Bytes + Compact + 500 Connections

Server Types Grizzly Client

Netty 12,463,442
Grizzly(SamelO) 12,499,963
Grizzly(Worker) 12,461,131

Grizzly(LeaderF) 12,532,517

® 300Bytes + Compact + 1000 Connections
Server Types Grizzly Client
Netty 11,867,630

Grizzly(SamelO) 11,903,400

Grizzly(Worker) = 11,906,507

Grizzly(LeaderF) 11,812,262

In high connections(more than 120 connections), most of servers didn't receive proper requests of client-side because the client machine of
this environment used too much resouces such as high CPU usages. So | think that more client machines needs to calculate meaningful data
of more connections. In 100 connections, Netty and Grizzly's Same 10 Strategy's throughput decreased but Grizzly's Woker Thread 10 and
Leader Follower 10's throughput increased.

In our test cases and environments, Worker Thread 10 Strategy and Leader Follower 10 Strategy are more effective than Same 10 Thread
Strategy if servers should have more than 100 connections.

Conclusion

® Results of 300Bytes + Compact + 40 Connections



Server Types TSocket Client = Netty Client Grizzly Client

TServer 741,417 604,558
TThreadPoolServer | 14,731,560 12,747,230
TNonblockingServer = 6,060,111 6,723,402
Netty 14,749,519 14,569,820
Grizzly(SamelO) 14,931,745 9,066,525 14,770,452

® Results of 3KBytes + Compact + 40 Connections

Server Types TSocket Client = Netty Client = Grizzly Client
TServer 631,300 526,341
TThreadPoolServer | 7,708,088 8,283,705
TNonblockingServer | 5,264,995 5,801,319
Netty 8,372,804 9,058,550
Grizzly(SamelO) 8,381,352 3,718,431 9,098,590

® 300Bytes + Compact + 100 Connections

Server Types Grizzly Client

Netty 15,879,803
Grizzly(SamelO) 15,781,153
Grizzly(Worker) = 16,136,977

Grizzly(LeaderF) 16,437,650

® Server Module
® Grizzly Same |0 Strategy is best in low and medium connections. Grizzly LeaderFollower 10 Strategy is best in high
connections.
® CPU Usages: Netty==GrizzlySamelO < GrizzlyLeaderFollowerlO < GrizzlyWorkerlO
¢ Client Module
® In small packets, TSocket is best. In larget packets, Grizzly client is best.
® Thrift Protocol
® In this scenario, Compact protocol is best.



