
<Insert Picture Here>

HK2 and configuration

Jerome Dochez
GlassFish architect

HK2

• Services for server side Java
• HK2 = Hundred Kilobytes Kernel = HKK = HK^2
• Started as a full fledge module runtime
• Scoped reduced after OSGi adoption :

– Module management
– OSGi API isolation
– Service based runtime provider
– Component definition
– Configuration handling

• Separate project from GlassFish

Agenda

• Module Management and OSGi
• Startup/shutdown
• Hk2 Components
• Configuration

– Definition
– Extensibility
– REST

• Admin commands framework
• Deployment framework

Module Management

• Module Repository
– Directory
– Maven repository

• Lazy startup of modules based on service lookup
• Use OSGi runtime underneath
• Service Lookup resolve to module, module gets

loaded in OSGi

GlassFish V3 Module management

RepositoryRepository
RepositoryRepository

RepositoryRepository

HK2 ServicesHK2 Services

OSGi
Runtime

OSGi
Runtime

1. loadModule

2.Get 3.Install

4. return class loader

OSGi API isolation

• Started from 277-like implementation
• When running embedded, GlassFish modules are all

collapsed into one uber-jar.
– No dynamic feature
– Basic module management (remember only one jar).
– Super fast startup (700 ms)

• Easy to provide different implementations for different
OSGi runtime (not necessary up to now).

• OSGi is complicated, better to hide it to mainstream
developers in GlassFish

GlassFish V3 Runtime

GlassFish V3 modules
(OSGi + extra metadata)

GlassFish V3 modules
(OSGi + extra metadata)

HK2 Service layerHK2 Service layer OSGi
Service Layer

OSGi
Service Layer

OSGi Bundle managementOSGi Bundle management

Random OSGi BundleRandom OSGi Bundle

Service
Mapper

Startup/Shutdown sequences

• Startup and shutdown use special contracts
• Based on run-level or priority
• Multi-threaded
• Some startup services are optionals, others failure to

start will provoke an immediate server shutdown.
• Different distributions can have a different set of

services (hence startup/shutdown sequences).

Service Based Runtime

• Services are declared with @Contract Annotation

@Contract

public interface Wombat {

 void someContractMethod(String param);

}

• Tag interface that denotes a startup service

Service Based Runtime

• Contracts implementations are annotated with @Service
– Optional name
– Scope (singleton, perLookup, threaded)
– No scope annotation = singleton

@Service

Public class AustralianWombat implements Wombat {

 void someContractMethod(String param) {

 …

 }

}

Service Lookup

• Habitat contains all the known services in GlassFish v3.
– habitat.getAllByContract(Startup.class);

will return List<Startup>

• V3 startup code (simplified)

for (Startup startup : habitat.getAllByContract(Startup.class)) {

 Logger.info(“Started “ + startup);

}

Component

• Services are components, they have a scope
(lifecycle), the have dependencies and provide
contracts implementation

• Dependencies of a service are expressed with
– @Inject

• Injected resources can be resources themselves
• Service allocation cascading based on dependencies

resolution.
• Injected resources are looked up from the Habitat

Server Initialization

• On startup, modules are introspected to determine :
– List of available contracts (indexes)
– List of services implementing such contracts.

• Lazy lookup of services is performed, even no class-
loader is created until a service is actually requested
(use of a manifest style service information file called
the inhabitant file).

• Experimenting with ASM to be able to use normal jar
rather than enforcing hk2-jar (presence of the
inhabitant file is mandatory so far).

Component Lifecycle

• PostContruct
– Interface implemented to have a postConstruct method called

after injection is performed.
– Constructor cannot be intercepted.
– After postConstruct is called, service is installed in the habitat.

• PreDestroy
– Interface called when service is removed from the habitat.
– Hook for cleanup.

Tricks to remember

• Nobody calls services any more, they call contracts
implementation.

• Services are dynamic, remove a optional jar from the
modules directory and its services are not available.

• Services use injection to get initialized, very little
lookup exists in v3.

• Services initialization will result in multiple sub
services cascade initialization :
– No multi-threading
– No circular references support

Configuration

• Special type of components to read/write
configuration data to the domain.xml

• Mapping is defined via interfaces (kind of like JAXB)
• Interfaces are annotated with @Configured

annotation
– Fields are annotated with @Attribute
– Sub-elements are annotated with @Element

• Supports subclassing and extensibility

Configuration Example

@Configured
public interface Server extends … {

@Attribute(key=true)
String name();

@Attribute String description();

@Element Replication replication;
}

@Configured public interface Replication extends....

Configuration extensibility

@Configured
public interface Server extends … {

@Element(“*”)
public List<Module> modules

}

@Configured
public interface RailsModule extends Module {

@Attribute String name();
}
@Configured
public interface WebModule extends Module {...}

Configuration Extensibility (2)

<server>
<rails-module name=”foo”/>
<rails-module name=”bar”/>
<web-module name=”xyz”/>

</server

Existing extensible hooks

• Container to add container specific configuration
– In Config.java :

• @Element("*")
• List<Container> getContainers();

• Application to add per application per container
configuration
– In Engine.java

• @Element("*")
• List<ApplicationConfig> getApplicationConfigs();

• Monitoring, to add application/container monitoring
configuration (tbd)

Configuration implementation

• Based on streaming parser
• One class implements all @Configured interface

(Dom.java)
• Each instance of Dom creates a proxy view of the

data, the proxy type is the @Configured annotated
type.

• User's code use interface based access, all
configuration data is stored in a network of Dom
instances.

Views

• Configuration data has different “Views” attached to
dom instances
– Default view → TranslatedView

all ${propertyname} properties are resolved, user's get the
translated values.

– RawView
all ${propertyname} properties are not resolved, user's will
see the domain.xml raw values like ${propertname}

– WriteableView
Used to mutate a configuration objects (always within a
Transaction semantics).

@DuckTyped

• Ability to add methods implementation to an interface.
• To the interface implementation, the methods is

already implemented.
• Users invoke such methods like any other interface

methods.
• Works because @Configured interfaces are managed

objects so we can intercept all calls and redirect them

Transactions

• Simple transactions must be started to change
configuration objects.

• Mutated object must be identified to the transaction.
• Concurrent transactions can happen as long as they

don't mutate the same configuration instances.
• Transaction are either committed or rollbacked.
• Committed transaction are written to the domain.xml

and listeners are notified

Configuration Listener

• Code that wish to be notified when configured
instances are mutated must implement a
ConfigListener interface

• 1 method : changed(PropertyChangeEvent[] events)
• Listeners can consume a change or deny it

– Denied changes involves a server restart.
– Listener cannot revert changes, changes have been applied

and they are just notified after the facts.

Configuration Upgrade

• ConfigurationUpgrade is a contract
• Upgrades are ran on startup, very early

– Before Init and Startup services are executed.
– V3 code never has to deal with old configuration, by the time

V3 is executed, the domain.xml has been upgraded.

• Asadmin start-domain –upgrade to run the upgrade
and exit the application server

• @DuckTyped methods can help API backward
compatibility.

Configuration Additional services

• Mbeans
– All configured interfaces instances can be automatically

registered in the mbean server.

• Generic admin commands
– CRUD style commands can be provided by the framework

allowing to change, create or delete configuration entries with
no extra code.

• REST
– All configured interfaces instances are automatically

accessible through our REST interface

REST Interface

• Domain level configuration available at :
– http://localhost:4848/management/domain

• Binding automatic for all @configured interface
• @RestRedirect when rest commands are expected to

trigger a command invocation rather than just
changing the configuration (e.g. deploy).

•

Rest Redirect example

@Confgured

@RestRedirects(

 {

 @RestRedirect(opType= RestRedirect.OpType.DELETE,
commandName="undeploy"),

 @RestRedirect(opType= RestRedirect.OpType.POST,
commandName = "redeploy")

 }

)

public interface Application extends Injectable,
ApplicationName, PropertyBag {...}

Admin command framework

• CLI framework:
– Command invocation engine
– Parameter parsing
– Remote invocation and result display

• Server Side framework
– Leverage HK2 components
– Contract : AdminCommand
– One Method :

• ActionResult execute(Context context).
– Parameters are injected, using the @Param annotation

More information

• hk2.dev.java.net

For the motivated readers :
– OSGi R4

• Similar technologies
– Xbeans, web-beans, spring all have used component

definition, injections and other similar techniques to help
developer's productivity

Admin Command Example

@Service(name = "create-http")

@Scoped(PerLookup.class)

@I18n("create.http")

public class CreateHttp implements AdminCommand {

 @Param(name = "protocolname", primary = true)

 String protocolName;

 @Param(name = "request-timeout-seconds", defaultValue = "30",
optional = true)

 String requestTimeoutSeconds;

 @Inject

 Confgs confgs;

Deployment framework

• Java EE agnostic
• Handles any type of container and jar format
• Comes with :

– Admin commands to deploy/undeploy
– Configuration entries to be added in central configuration
– Pluggable interfaces for containers

• See my blog : wombat container
– http://blogs.sun.com/dochez

What's next

• CDI in place of HK2 components
• Removal of hk2-jar (plain old jar file support)
• Moving reusable pieces from v3 code base into hk2.
• Better Mbean support (if customer demand)
• Multi-threaded components initialization (when

cascading).
• Requirements from WLS and CEP

	Title of Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

