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HK2

• Services for server side Java
• HK2 = Hundred Kilobytes Kernel = HKK = HK^2
• Started as a full fledge module runtime
• Scoped reduced after OSGi adoption :

– Module management
– OSGi API isolation
– Service based runtime provider
– Component definition
– Configuration handling

• Separate project from GlassFish



Agenda

• Module Management and OSGi
• Startup/shutdown
• Hk2 Components
• Configuration

– Definition
– Extensibility
– REST

• Admin commands framework
• Deployment framework



Module Management

• Module Repository 
– Directory
– Maven repository

• Lazy startup of modules based on service lookup
• Use OSGi runtime underneath
• Service Lookup resolve to module, module gets 

loaded in OSGi
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OSGi API isolation

• Started from 277-like implementation
• When running embedded, GlassFish modules are all 

collapsed into one uber-jar. 
– No dynamic feature
– Basic module management (remember only one jar).
– Super fast startup (700 ms)

• Easy to provide different implementations for different 
OSGi runtime (not necessary up to now).

• OSGi is complicated, better to hide it to mainstream 
developers in GlassFish
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Startup/Shutdown sequences

• Startup and shutdown use special contracts
• Based on run-level or priority
• Multi-threaded
• Some startup services are optionals, others failure to 

start will provoke an immediate server shutdown.
• Different distributions can have a different set of 

services (hence startup/shutdown sequences).



Service Based Runtime

• Services are declared with @Contract Annotation

@Contract

public interface Wombat {

     void someContractMethod(String param);

}

• Tag interface that denotes a startup service



Service Based Runtime

• Contracts implementations are annotated with @Service 
– Optional name
– Scope (singleton, perLookup, threaded)
– No scope annotation = singleton

@Service

Public class AustralianWombat implements Wombat {

   void someContractMethod(String param) {

      …

   }

}



Service Lookup

• Habitat contains all the known services in GlassFish v3. 
– habitat.getAllByContract(Startup.class);

will return List<Startup>

• V3 startup code (simplified) 

for (Startup startup : habitat.getAllByContract(Startup.class)) {  

     Logger.info(“Started “ + startup);

}



Component

• Services are components, they have a scope 
(lifecycle), the have dependencies and provide 
contracts implementation

• Dependencies of a service are expressed with 
– @Inject

• Injected resources can be resources themselves
• Service allocation cascading based on dependencies 

resolution.
• Injected resources are looked up from the Habitat



Server Initialization

• On startup, modules are introspected to determine :
– List of available contracts (indexes)
– List of services implementing such contracts.

• Lazy lookup of services is performed, even no class-
loader is created until a service is actually requested 
(use of a manifest style service information file called 
the inhabitant file).

• Experimenting with ASM to be able to use normal jar 
rather than enforcing hk2-jar (presence of the 
inhabitant file is mandatory so far).



Component Lifecycle

• PostContruct
– Interface implemented to have a postConstruct method called 

after injection is performed.
– Constructor cannot be intercepted.
– After postConstruct is called, service is installed in the habitat.

• PreDestroy
– Interface called when service is removed from the habitat. 
– Hook for cleanup.



Tricks to remember

• Nobody calls services any more, they call contracts 
implementation.

• Services are dynamic, remove a optional jar from the 
modules directory and its services are not available. 

• Services use injection to get initialized, very little 
lookup exists in v3.

• Services initialization will result in multiple sub 
services cascade initialization :
– No multi-threading
– No circular references support



Configuration

• Special type of components to read/write 
configuration data to the domain.xml

• Mapping is defined via interfaces (kind of like JAXB)
• Interfaces are annotated with @Configured 

annotation
– Fields are annotated with @Attribute
– Sub-elements are annotated with @Element

• Supports subclassing and extensibility 



Configuration Example

@Configured
public interface Server extends … {

@Attribute(key=true)
String name();

@Attribute String description();

@Element Replication replication;
}

@Configured public interface Replication extends....



Configuration extensibility

@Configured
public interface Server extends … {

@Element(“*”)
public List<Module> modules

}

@Configured 
public interface RailsModule extends Module {

@Attribute String name();
}
@Configured
public interface WebModule extends Module {...}



Configuration Extensibility (2)

<server>
<rails-module name=”foo”/>
<rails-module name=”bar”/>
<web-module name=”xyz”/>

</server



Existing extensible hooks

• Container to add container specific configuration
– In Config.java :

•     @Element("*")
•     List<Container> getContainers();

• Application to add per application per container 
configuration
– In Engine.java

•     @Element("*")
•     List<ApplicationConfig> getApplicationConfigs();

• Monitoring, to add application/container monitoring 
configuration (tbd)



Configuration implementation

• Based on streaming parser
• One class implements all @Configured interface 

(Dom.java)
• Each instance of Dom creates a proxy view of the 

data, the proxy type is the @Configured annotated 
type. 

• User's code use interface based access, all 
configuration data is stored in a network of Dom 
instances.



Views

• Configuration data has different “Views” attached to 
dom instances
– Default view → TranslatedView 

all ${propertyname} properties are resolved, user's get the 
translated values.

– RawView
all ${propertyname} properties are not resolved, user's will 
see the domain.xml raw values like ${propertname}

– WriteableView
Used to mutate a configuration objects (always within a 
Transaction semantics).



@DuckTyped

• Ability to add methods implementation to an interface. 
• To the interface implementation, the methods is 

already implemented.
• Users invoke such methods like any other interface 

methods.
• Works because @Configured interfaces are managed 

objects so we can intercept all calls and redirect them



Transactions

• Simple transactions must be started to change 
configuration objects. 

• Mutated object must be identified to the transaction.
• Concurrent transactions can happen as long as they 

don't mutate the same configuration instances.
• Transaction are either committed or rollbacked.
• Committed transaction are written to the domain.xml 

and listeners are notified



Configuration Listener

• Code that wish to be notified when configured 
instances are mutated must implement a 
ConfigListener interface

• 1 method : changed(PropertyChangeEvent[] events)
• Listeners can consume a change or deny it

– Denied changes involves a server restart.
– Listener cannot revert changes, changes have been applied 

and they are just notified after the facts.



Configuration Upgrade

• ConfigurationUpgrade is a contract
• Upgrades are ran on startup, very early

– Before Init and Startup services are executed.
– V3 code never has to deal with old configuration, by the time 

V3 is executed, the domain.xml has been upgraded.

• Asadmin start-domain –upgrade to run the upgrade 
and exit the application server

• @DuckTyped methods can help API backward 
compatibility.



Configuration Additional services

• Mbeans
– All configured interfaces instances can be automatically 

registered in the mbean server.  

• Generic admin commands
– CRUD style commands can be provided by the framework 

allowing to change, create or delete configuration entries with 
no extra code. 

• REST 
– All configured interfaces instances are automatically 

accessible through our REST interface 



REST Interface

• Domain level configuration available at :
– http://localhost:4848/management/domain 

• Binding automatic for all @configured interface
• @RestRedirect when rest commands are expected to 

trigger a command invocation rather than just 
changing the configuration (e.g. deploy).

•



Rest Redirect example

@Confgured

@RestRedirects(

        {

          @RestRedirect(opType= RestRedirect.OpType.DELETE, 
commandName="undeploy"),

          @RestRedirect(opType= RestRedirect.OpType.POST, 
commandName = "redeploy")

        }

)

public interface Application extends Injectable, 
ApplicationName, PropertyBag {...}



Admin command framework

• CLI framework:
– Command invocation engine
– Parameter parsing
– Remote invocation and result display

• Server Side framework
– Leverage HK2 components
– Contract : AdminCommand
– One Method : 

• ActionResult execute(Context context).
– Parameters are injected, using the @Param annotation



More information

• hk2.dev.java.net

For the motivated readers :
– OSGi R4

• Similar technologies
– Xbeans, web-beans, spring all have used component 

definition, injections and other similar techniques to help 
developer's productivity



Admin Command Example

@Service(name = "create-http")

@Scoped(PerLookup.class)

@I18n("create.http")

public class CreateHttp implements AdminCommand {

    

    @Param(name = "protocolname", primary = true)

    String protocolName;

    @Param(name = "request-timeout-seconds", defaultValue = "30", 
optional = true)

    String requestTimeoutSeconds;

    

    @Inject

    Confgs confgs;



Deployment framework

• Java EE agnostic
• Handles any type of container and jar format
• Comes with :

– Admin commands to deploy/undeploy
– Configuration entries to be added in central configuration
– Pluggable interfaces for containers

• See my blog : wombat container
– http://blogs.sun.com/dochez



What's next

• CDI in place of HK2 components
• Removal of hk2-jar (plain old jar file support)
• Moving reusable pieces from v3 code base into hk2.
• Better Mbean support (if customer demand)
• Multi-threaded components initialization (when 

cascading).
• Requirements from WLS and CEP
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