
deploydir– deploys an exploded format of application archive

deploydir

[--help]

[--virtualservers virtual-servers]
[--contextroot context-root] [--force={false|true}]

[--verify ={false|true}][--precompilejsp ={false|true}]

[--name component-name] [--uniquetablenames={true|false}]

[--dbvendorname dbvendorname]
[--createtables={false|true}| --dropandcreatetables ={false|true}]

[--generatermistubs ={false|true}] [--availabilityenabled ={false|true}]

[--libraries jar-file[,jar-file]*] [--target target]
[--type pkg-type]
[--properties(name=value)[:name=value]*]
dirpath

Note – The deploydir subcommand is deprecated. Use the deploy(1) subcommand instead.

The deploydir subcommand deploys an application directly from a development directory.
The appropriate directory hierarchy and deployment descriptors conforming to the JavaTM EE
specification must exist in the deployment directory.

Directory deployment is for advanced developers only. Do not use it in production
environments. In production environments, use the deploy subcommand. Directory
deployment is only supported on localhost, that is, the client and server must reside on the
same machine. For this reason, the only values for the --host option are:

■ localhost

■ The value of the $HOSTNAME environment variable
■ The IP address of the machine

The --force option makes sure the component is forcefully (re)deployed even if the specified
component has already been deployed or already exists. Set the --force option to false for an
initial deployment. If the specified application is running and the --force option is set to
false, the subcommand fails.

This subcommand is supported in remote mode only.

--help

Displays the help text for the subcommand.

--virtualservers

Comma-separated list of virtual server IDs.

--contextroot

Valid only if the archive is a web module. It is ignored for other archive types; defaults to
filename without extension.

Name

Synopsis

Description

Options

deploydir(1)

deploydir • Last Revised 31 Aug 20091

--force

Makes sure the component is forcefully (re)deployed even if the specified component has
already been deployed or already exists. The default is false.

--verify

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

--precompilejsp

By default, this option is set to false, which does not allow the JSP to precompile during
deployment. Instead, JSPs are compiled during runtime.

--name

Name of the deployable component.

--uniquetablenames

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

--dbvendorname

Specifies the name of the database vendor for which tables are created. Supported values
include db2, mssql, oracle, derby, javadb, postgresql, pointbase and sybase,
case-insensitive. If not specified, the value of the database-vendor-name attribute in
sun-ejb-jar.xml is used. If no value is specified, a connection is made to the resource
specified by the jndi-name subelement of the cmp-resource element in the
sun-ejb-jar.xml file, and the database vendor name is read. If the connection cannot be
established, or if the value is not recognized, SQL-92 compliance is presumed.

--createtables

Creates tables at deployment of an application with unmapped CMP beans. Default is the
create-tables-at-deploy entry in the cmp-resource element of the sun-ejb-jar.xml
file.

--dropandcreatetables

Drops existing tables and creates tables during deployment for application using
unmapped CMP beans. If not specified, the tables are dropped if the
drop-tables-at-undeploy entry in the cmp-resource element of the sun-ejb-jar.xml
file is set to true. The new tables are created if the create-tables-at-deploy entry in the
cmp-resource element of the sun-ejb-jar.xml is set to true. When the component is
redeployed, the tables created by the previous deployment are dropped before creating the
new tables.

--generatermistubs

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

deploydir(1)

Reference Pages 2

--availabilityenabled

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

--libraries

Specify the library JAR files by their relative or absolute paths. Specify relative paths relative
to instance-root/lib/applibs. The JAR files are separated by a colon on UNIX and Linux
systems and by a semicolon on Windows systems. The libraries are made available to the
application in the order specified. Place the dependent JAR files in the domain-dir/lib
directory.

--target

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

--type

The packaging archive type of the component that is being deployed. Possible values are as
follows:

osgi

The component is packaged as an OSGi Alliance bundle.

The --type option is optional. If the component is packaged as a regular archive, omit this
option.

--properties

--property

Optional keyword-value pairs that specify additional properties for the deployment. The
available properties are determined by the implementation of the component that is being
deployed. The --properties option and the --property option are equivalent. You can
use either option regardless of the number of properties that you specify. You can specify
the following properties for a deployment:

default-EE6–app-name

The default Java EE 6 name of the Java EE application (EAR file). The default Java EE 6
name is not always the same as the name attribute. According to the Java EE 6
specification, the default Java EE 6 name is the archive name minus the suffix.

java-web-start-enabled

Specifies whether Java Web Start access is permitted for an application client module.
Default is true.

class-name

The fully qualified name of a lifecycle module class file. A lifecycle module class must
implement the com.sun.appserv.server.LifecycleListener interface.

deploydir(1)

deploydir • Last Revised 31 Aug 20093

classpath

The classpath for a lifecycle module. Specifies where the module is located. Default is the
value of application-root attribute of the domain element.

load-order

Determines the order in which lifecycle modules are loaded at startup. Modules with
smaller integer values are loaded sooner. Values can range from 101 to the operating
system's MAXINT. Values from 1 to 100 are reserved.

is-failure-fatal

Determines whether the server is shut down if a lifecycle module fails. Default is false.

jruby-home

Specifies the directory where the JRuby container is installed. Overrides the jruby-home
attribute of the JRuby container. Default is as-install/jruby.

jruby-runtime

Specifies the initial number of JRuby runtimes to start. Must be at greater than zero, at
least jruby.runtime.min, and jruby.runtime.max or less. Overrides the
jruby-runtime attribute of jruby-runtime-pool. Default is 1.

jruby-runtime-min

Specifies the minimum number of JRuby runtimes in the pool. Must be greater than
zero, jruby.runtime or less, and jruby.runtime.max or less. Overrides the
jruby-runtime-min attribute of jruby-runtime-pool. Default is 1.

jruby-runtime-max

Specifies the maximum number of JRuby runtimes in the pool. Must be greater than
zero, at least jruby.runtime.min, and at least jruby.runtime. Overrides the
jruby-runtime-max attribute of jruby-runtime-pool. Default is 1.

jruby-rackEnv

Specifies the environment in which a JRuby application such as Rails or Merb runs.
Allowed values are development, production, or test. Default is development.

jruby-applicationtype

Specifies the name of a supported framework or the path to a script that initializes the
user's framework. Allowed values corresponding to supported frameworks are Rails,
Merb, or Sinatra. Setting this property bypasses the normal, and potentially lengthy,
auto-detection process and forces deployment on the specified framework. If the
deployed application is not written for the specified framework, errors result. Default is
computed through auto-detection.

jruby-MTSafe

If true, specifies that a framework being started using jruby.applicationType is
thread-safe and therefore does not need a pool created for it. This property affects
applications started using an auto-detected user-provided startup script. If
jruby.applicationType is set and jruby.MTsafe is not set or is set to false, the
application starts with a pool of application instances, and each instance of the

deploydir(1)

Reference Pages 4

application is accessed by one thread at a time. This property only affects frameworks
being launched where the thread safety cannot be automatically determined. Setting
jruby.MTsafe to true does not cause an auto-detected Rails 2.1.x application to be
launched in thread-safe mode, nor can it be used to force a thread-safe framework to
start in pooled mode. Default is computed through auto-detection.

compatibility

Specifies the Enterprise Server release with which to be backward compatible in terms of
JAR visibility requirements for application clients. The only allowed value is v2, which
refers to GlassFish version 2 or Enterprise Server version 9.1 or 9.1.1. The Java EE 6
platform specification imposes stricter requirements than Java EE 5 did on which JAR
files can be visible to various modules within an EAR file. In particular, application
clients must not have access to EJB JAR files or other JAR files in the EAR file unless
references use the standard Java SE mechanisms (extensions, for example) or the Java
EE library-directory mechanism. Setting this property to v2 removes these Java EE 6
restrictions.

dirpath
Path to the directory containing the exploded format of the deployable archive.

EXAMPLE 1 Deploying an Application From a Directory

In this example, the exploded application to be deployed is in the /home/temp/sampleApp
directory. Because the --force option is set to true, if an application of that name already
exists, the application is redeployed.

asadmin> deploydir --force=true --precompilejsp=true /home/temp/sampleApp

Command deploydir executed successfully

0 subcommand executed successfully

1 error in executing the subcommand

deploy(1), , redeploy(1), undeploy(1)

asadmin(1M)

Operands

Examples

Exit Status

See Also

deploydir(1)

deploydir • Last Revised 31 Aug 20095

