generate-jvm-report(1)

Name

Synopsis

Description

Options

generate-jvm-report— shows the threads, classes, memory, and loggers for a given target
instance.

generate-jvm-report
[--help]
[--type =summary|memory|class|thread|log] [target]

The generate-jvm-report subcommand creates a report that shows the threads (dump of
stack trace), classes, memory, or loggers for a given target instance, including the domain
administration server (DAS). This subcommand works only with the Enterprise Server
instance processes. This subcommand provides an alternative to sending Ctrl+Break or kill
-3 signals to Enterprise Server processes to obtain a stack trace for processes that are hanging.

The information in the report is obtained from managed beans (MBeans) and MXBeans that
are provided in the Java™ Platform, Standard Edition (Java SE) or JDK™ software with which
Enterprise Server is being used.

If Enterprise Server is running in the Java Runtime Environment (JRE™) software from JDK
release 6 or Java SE 6, additional information is provided, for example:

= System load on the available processors
= Object monitors that are currently held or requested by a thread
= Lock objects that a thread is holding, for example, ReentrantLock objects and

ReentrantReadWriteLock objects

If the JRE software cannot provide this information, the report contains the text
NOT_AVAILABLE.

This subcommand is supported in remote mode only. The subcommand does not work if the
target server instance is not running.

--help
Displays the help text for the subcommand.

--type
The type of report that is to be generated.

summary
Displays summary information about the threads, classes, and memory (default).

memory
Provides information about heap and non-heap memory consumption, memory pools,
and garbage collection statistics for a given target instance.

class
Provides information about the class loader for a given target instance.

thread
Provides information about threads running and the thread dump (stack trace) for a
given target instance.

generate-jvm-report - LastRevised 4 Sep 2009

generate-jvm-report(1)

log

Provides information about the loggers that are registered in the Virtual Machine for
the Java platform (Java Virtual Machine or JVM™ machine).!

Operands target

Do not specify this option. This option is retained for compatibility with other releases. If
you specify this option, a syntax error does not occur. Instead, the subcommand runs
successfully and the option is silently ignored.

Examples ExampLE1 Obtaining Summary Information About Threads, Classes,and Memory

This example generates a report of the type summary for serverl.

asadmin> generate-jvm-report --type summary serverl

Operating System Information:

Name of the Operating System: Linux
Binary Architecture name of the Operating System: 1386, Version:

2.6.9-22.ELsmp

Number of processors available on the Operating System: 2

user.language = en
user.name = root

user.timezone = America/Los_Angeles
Command generate-jvm-report executed successfully

EXAMPLE2 Obtaining Information About Memory Usage

This example generates a report of the type memory.

asadmin> generate-jvm-report --type=memory

Memory Pool Name: Eden Space
Memory that Java Virtual Machine

Operating System: 2,097,152 Bytes

Memory that Java Virtual Machine

Operating System: 9,895,936 Bytes

Maximum Memory that Java Virtual

initially requested to the
is guaranteed to receive from the

Machine may get from the

Operating System: 168,427,520 Bytes

Note that this is not guaranteed.

Memory that Java Virtual Machine

Memory Pool Name: Survivor Space
Memory that Java Virtual Machine
Operating System: 65,536 Bytes
Memory that Java Virtual Machine
Operating System: 262,144 Bytes
Maximum Memory that Java Virtual

uses at this time: 7,159,784 Bytes

initially requested to the
is guaranteed to receive from the

Machine may get from the

1

Reference Pages

The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform.

generate-jvm-report(1)

EXAMPLE2 Obtaining Information About Memory Usage (Continued)

Operating System: 5,242,880 Bytes.
Note that this is not guaranteed.
Memory that Java Virtual Machine uses at this time: 35,208 Bytes

Name of the Garbage Collector: MarkSweepCompact

Number of collections occured using this garbage collector: 0 Bytes
Garbage Collection Time: @ Seconds @ Milliseconds

Name of the Garbage Collector: Copy

Number of collections occured using this garbage collector: 47 Bytes
Garbage Collection Time: 1 Seconds 395 Milliseconds

Heap Memory Usage:

Memory that Java Virtual Machine initially requested to the
Operating System: @ Bytes

Memory that Java Virtual Machine is guaranteed to receive from the
Operating System: 30,728,192 Bytes

Maximum Memory that Java Virtual Machine may get from the

Operating System: 531,628,032 Bytes.

Note that this is not guaranteed.

Memory that Java Virtual Machine uses at this time: 25,434,432 Bytes

Non-heap Memory Usage:
Memory that Java Virtual Machine initially requested to the
Operating System: 29,523,968 Bytes
Memory that Java Virtual Machine is guaranteed to receive from the
Operating System: 32,833,536 Bytes
Maximum Memory that Java Virtual Machine may get from the
Operating System: 121,634,816 Bytes
Note that this is not guaranteed.
Memory that Java Virtual Machine uses at this time: 22,920,624 Bytes

Approximate number of objects for which finalization is pending: 0
Command generate-jvm-report executed successfully.

EXAMPLE3 Obtaining Information About Running Threads

This example generates a report of the type thread.

asadmin> generate-jvm-report --type=thread

Full Java Thread Dump Java HotSpot(TM) Client VM 1.5.0 14-b@3 Sun Microsystems Inc.
Number of threads: 39

Number of daemon threads: 33

Peak live thread count since the Java virtual machine started or peak was reset: 44
Is support for thread contention monitoring available on this JVM? [true]

Is thread contention monitoring enabled? [false]. If false, some thread
synchronization statistics are not be available.

3 generate-jvm-report « LastRevised 4 Sep 2009

generate-jvm-report(1)

EXAMPLE3 Obtaining Information About Running Threads (Continued)

Is support for CPU time measurement for any thread available on this JVM? [true]
Is thread CPU time measurement enabled? [true]. If false, thread execution times
are not available for any thread.

Thread "RMI ConnectionExpiration-[129.146.11.147:61218]" thread-id: 84 thread-state:
TIMED WAITING

at: java.lang.Thread.sleep(Native Method)

at: sun.rmi.transport.tcp.TCPChannel$Reaper.run(TCPChannel.java:446)

at: java.lang.Thread.run(Thread.java:595)
Thread Synchronization Statistics:
Number of times this thread was blocked (to enter/reenter a Monitor): 0
Number of times this thread waited for a notification (i.e. it was in WAITING or
TIMED WAITING state): 0
Total CPU time for this thread: 0 seconds 131,855 nanoseconds.
User-level CPU time for this thread: @ seconds 131,855 nanoseconds.
Object Monitors currently held or requested by this thread: NOT AVAILABLE
Ownable Synchronizers (e.g. ReentrantLock and ReentrantReadWritelLock) held by
this thread: NOT AVAILABLE

Thread "Reference Handler" thread-id: 2 thread-state: WAITING Waiting on lock:
java.lang.ref.Reference$Lock@f63055

at: java.lang.Object.wait(Native Method)

at: java.lang.Object.wait(Object.java:474)

at: java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116)
Thread Synchronization Statistics:
Number of times this thread was blocked (to enter/reenter a Monitor): 318
Number of times this thread waited for a notification (i.e. it was in WAITING or
TIMED WAITING state): 43
Total CPU time for this thread: @ seconds 26,004,119 nanoseconds.
User-level CPU time for this thread: 0 seconds 26,004,119 nanoseconds.
Object Monitors currently held or requested by this thread: NOT AVAILABLE
Ownable Synchronizers (e.g. ReentrantLock and ReentrantReadWritelLock) held by this
thread: NOT_AVAILABLE
No deadlock found

Command generate-jvm-report executed successfully.

Reference Pages 4

generate-jvm-report(1)

EXAMPLE4 Obtaining Information About a Class Loader

This example generates a report of the type class.

asadmin> generate-jvm-report --type=class

Class loading and unloading in the Java Virtual Machine:

Number of classes currently loaded in the Java Virtual Machine: 2,798

Number of classes loaded in the Java Virtual Machine since the startup: 2,798
Number of classes unloaded from the Java Virtual Machine: 0

Just-in-time (JIT) compilation information in the Java Virtual Machine:

Java Virtual Machine compilation monitoring allowed: true

Name of the Just-in-time (JIT) compiler: HotSpot Client Compiler

Total time spent in compilation: @ Hours @ Minutes 2 Seconds

Command generate-jvm-report executed successfully.

EXAMPLE5 Obtaining Information About Loggers

This example generates a report for the type log.

asadmin> generate-jvm-report --type=log

Effective logging properties file:
[/home/someuser/glassfishv3-prelude/glassfish/domains/domainl/config/
logging.properties].

If null, it indicates JRE standard file.

Number of loggers currently registered in the JVM: [35]. Details follow:
If the level is blank, it is inherited from parent logger

Parent logger is the nearest existing parent logger

Logger Name | Logging Level | Parent Logger Name

5 generate-jvm-report « LastRevised 4 Sep 2009

generate-jvm-report(1)

Exit Status

See Also

EXAMPLE5 Obtaining Information About Loggers (Continued)

global| |root

Command generate-jvm-report executed successfully.

0 subcommand executed successfully
1 error in executing the subcommand
create-jvm-options(1),delete-jvm-options(1l), list-jvm-options(1)

asadmin(1M)

Reference Pages

