
Oracle® Big Data Appliance
Software User's Guide

Release 4 (4.11)
E89799-05
July 2018

Oracle Big Data Appliance Software User's Guide, Release 4 (4.11)

E89799-05

Copyright © 2011, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Frederick Kush

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

Backus-Naur Form Syntax x

Changes in Oracle Big Data Appliance Release 4.11 x

Part I Administration

1 Introducing Oracle Big Data Appliance

1.1 What Is Big Data? 1-1

1.1.1 High Variety 1-1

1.1.2 High Complexity 1-2

1.1.3 High Volume 1-2

1.1.4 High Velocity 1-2

1.2 The Oracle Big Data Solution 1-2

1.3 Software for Big Data Appliance 1-3

1.3.1 Software Component Overview 1-4

1.4 Acquiring Data for Analysis 1-5

1.4.1 Hadoop Distributed File System 1-5

1.4.2 Apache Hive 1-5

1.4.3 Oracle NoSQL Database 1-6

1.5 Organizing Big Data 1-7

1.5.1 MapReduce 1-7

1.5.2 Oracle Big Data SQL 1-7

1.5.3 Oracle Big Data Connectors 1-8

1.5.3.1 Oracle SQL Connector for Hadoop Distributed File System 1-8

1.5.3.2 Oracle Loader for Hadoop 1-9

1.5.3.3 Oracle Data Integrator Enterprise Edition 1-9

1.5.3.4 Oracle XQuery for Hadoop 1-9

iii

1.5.3.5 Oracle R Advanced Analytics for Hadoop 1-9

1.5.3.6 Oracle Shell for Hadoop Loaders 1-10

1.5.4 Oracle R Support for Big Data 1-10

1.6 Analyzing and Visualizing Big Data 1-11

2 Administering Oracle Big Data Appliance

2.1 Monitoring Multiple Clusters Using Oracle Enterprise Manager 2-1

2.1.1 Using the Enterprise Manager Web Interface 2-2

2.1.2 Using the Enterprise Manager Command-Line Interface 2-3

2.2 Managing Operations Using Cloudera Manager 2-3

2.2.1 Monitoring the Status of Oracle Big Data Appliance 2-4

2.2.2 Performing Administrative Tasks 2-5

2.2.3 Managing CDH Services With Cloudera Manager 2-5

2.3 Using Hadoop Monitoring Utilities 2-6

2.3.1 Monitoring MapReduce Jobs 2-6

2.3.2 Monitoring the Health of HDFS 2-7

2.4 Using Cloudera Hue to Interact With Hadoop 2-8

2.5 About the Oracle Big Data Appliance Software 2-9

2.5.1 Software Components 2-9

2.5.2 Unconfigured Software 2-12

2.5.3 Allocating Resources Among Services 2-12

2.6 About the CDH Software Services 2-13

2.6.1 Where Do the Services Run on a Three-Node, Development Cluster? 2-13

2.6.2 Where Do the Services Run on a Single-Rack CDH Cluster? 2-14

2.6.3 Where Do the Services Run on a Multirack CDH Cluster? 2-15

2.6.4 About MapReduce 2-19

2.6.5 Automatic Failover of the NameNode 2-19

2.6.6 Automatic Failover of the ResourceManager 2-20

2.6.7 Map and Reduce Resource Allocation 2-21

2.7 Effects of Hardware on Software Availability 2-21

2.7.1 Logical Disk Layout 2-21

2.7.2 Critical and Noncritical CDH Nodes 2-22

2.7.2.1 High Availability or Single Points of Failure? 2-22

2.7.2.2 Where Do the Critical Services Run? 2-23

2.7.3 First NameNode Node 2-23

2.7.4 Second NameNode Node 2-24

2.7.5 First ResourceManager Node 2-24

2.7.6 Second ResourceManager Node 2-24

2.7.7 Noncritical CDH Nodes 2-25

2.8 Managing a Hardware Failure 2-25

iv

2.8.1 About Oracle NoSQL Database Clusters 2-25

2.8.2 Prerequisites for Managing a Failing Node 2-25

2.8.3 Managing a Failing CDH Critical Node 2-26

2.8.4 Managing a Failing Noncritical Node 2-27

2.9 Stopping and Starting Oracle Big Data Appliance 2-27

2.9.1 Prerequisites 2-27

2.9.2 Stopping Oracle Big Data Appliance 2-28

2.9.2.1 Stopping All Managed Services 2-28

2.9.2.2 Stopping Cloudera Manager Server 2-29

2.9.2.3 Stopping Oracle Data Integrator Agent 2-29

2.9.2.4 Dismounting NFS Directories 2-30

2.9.2.5 Stopping the Servers 2-30

2.9.2.6 Stopping the InfiniBand and Cisco Switches 2-30

2.9.3 Starting Oracle Big Data Appliance 2-31

2.9.3.1 Powering Up Oracle Big Data Appliance 2-31

2.9.3.2 Starting the HDFS Software Services 2-31

2.9.3.3 Starting Oracle Data Integrator Agent 2-32

2.10 Managing Oracle Big Data SQL 2-32

2.10.1 Adding and Removing the Oracle Big Data SQL Service 2-32

2.10.2 Choosing Between Ethernet and InfiniBand Connections For Oracle
Big Data SQL 2-33

2.10.3 Allocating Resources to Oracle Big Data SQL 2-34

2.11 Security on Oracle Big Data Appliance 2-36

2.11.1 About Predefined Users and Groups 2-36

2.11.2 About User Authentication 2-37

2.11.3 About Fine-Grained Authorization 2-37

2.11.4 About HDFS Transparent Encryption 2-38

2.11.5 About HTTPS/Network Encryption 2-39

2.11.5.1 Configuring Web Browsers to use Kerberos Authentication 2-39

2.11.6 Port Numbers Used on Oracle Big Data Appliance 2-41

2.11.7 About Puppet Security 2-42

2.12 Auditing Oracle Big Data Appliance 2-42

2.13 Collecting Diagnostic Information for Oracle Customer Support 2-42

3 Supporting User Access to Oracle Big Data Appliance

3.1 About Accessing a Kerberos-Secured Cluster 3-1

3.2 Providing Remote Client Access to CDH 3-2

3.2.1 Prerequisites 3-2

3.2.2 Installing a CDH Client on Any Supported Operating System 3-3

3.2.3 Configuring a CDH Client for an Unsecured Cluster 3-4

3.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster 3-4

v

3.2.5 Verifying Access to a Cluster from the CDH Client 3-6

3.3 Providing Remote Client Access to Hive 3-7

3.4 Managing User Accounts 3-8

3.4.1 Creating Hadoop Cluster Users 3-8

3.4.1.1 Creating Users on an Unsecured Cluster 3-9

3.4.1.2 Creating Users on a Secured Cluster 3-10

3.4.2 Providing User Login Privileges (Optional) 3-10

3.5 Recovering Deleted Files 3-11

3.5.1 Restoring Files from the Trash 3-11

3.5.2 Changing the Trash Interval 3-11

3.5.3 Disabling the Trash Facility 3-12

3.5.3.1 Completely Disabling the Trash Facility 3-12

3.5.3.2 Disabling the Trash Facility for Local HDFS Clients 3-13

3.5.3.3 Disabling the Trash Facility for a Remote HDFS Client 3-13

4 Configuring Oracle Exadata Database Machine for Use with Oracle
Big Data Appliance

4.1 About Optimizing Communications 4-1

4.1.1 About Applications that Pull Data Into Oracle Exadata Database
Machine 4-1

4.1.2 About Applications that Push Data Into Oracle Exadata Database
Machine 4-2

4.2 Prerequisites for Optimizing Communications 4-2

4.3 Specifying the InfiniBand Connections to Oracle Big Data Appliance 4-3

4.4 Specifying the InfiniBand Connections to Oracle Exadata Database Machine 4-4

4.5 Enabling SDP on Exadata Database Nodes 4-4

4.6 Creating an SDP Listener on the InfiniBand Network 4-6

Part II Oracle Big Data Appliance Software

5 Optimizing MapReduce Jobs Using Perfect Balance

5.1 What is Perfect Balance? 5-1

5.1.1 About Balancing Jobs Across Map and Reduce Tasks 5-2

5.1.2 Perfect Balance Components 5-2

5.2 Application Requirements 5-2

5.3 Getting Started with Perfect Balance 5-3

5.4 Analyzing a Job's Reducer Load 5-3

5.4.1 About Job Analyzer 5-4

5.4.1.1 Methods of Running Job Analyzer 5-4

vi

5.4.2 Running Job Analyzer as a Standalone Utility 5-4

5.4.2.1 Job Analyzer Utility Example 5-5

5.4.2.2 Job Analyzer Utility Syntax 5-5

5.4.3 Running Job Analyzer Using Perfect Balance 5-5

5.4.3.1 Running Job Analyzer Using the Perfect Balance API 5-6

5.4.3.2 Collecting Additional Metrics 5-7

5.4.4 Reading the Job Analyzer Report 5-8

5.5 About Configuring Perfect Balance 5-9

5.6 Running a Balanced MapReduce Job Using Perfect Balance 5-11

5.6.1 Modifying Your Java Code to Use Perfect Balance 5-11

5.6.2 Running Your Modified Java Code with Perfect Balance 5-12

5.7 About Perfect Balance Reports 5-13

5.8 About Chopping 5-14

5.8.1 Selecting a Chopping Method 5-14

5.8.2 How Chopping Impacts Applications 5-14

5.9 Troubleshooting Jobs Running with Perfect Balance 5-15

5.10 About the Perfect Balance Examples 5-15

5.10.1 About the Examples in This Chapter 5-15

5.10.2 Extracting the Example Data Set 5-16

5.11 Perfect Balance Configuration Property Reference 5-16

Part III Oracle Table Access for Hadoop and Spark

6 Oracle DataSource for Apache Hadoop (OD4H)

6.1 Operational Data, Big Data and Requirements 6-1

6.2 Overview of Oracle DataSource for Apache Hadoop (OD4H) 6-1

6.2.1 Opportunity with Hadoop 2.x 6-2

6.2.2 Oracle Tables as Hadoop Data Source 6-2

6.2.3 External Tables 6-3

6.2.3.1 TBLPROPERTIES 6-4

6.2.3.2 SERDE PROPERTIES 6-6

6.2.4 List of jars in the OD4H package 6-6

6.3 How does OD4H work? 6-6

6.3.1 Create a new Oracle Database Table or Reuse an Existing Table 6-7

6.3.2 Hive DDL 6-7

6.3.3 Creating External Tables in Hive 6-8

6.4 Features of OD4H 6-9

6.4.1 Performance And Scalability Features 6-9

6.4.1.1 Splitters 6-10

6.4.1.2 Choosing a Splitter 6-12

vii

6.4.1.3 Predicate Pushdown 6-12

6.4.1.4 Projection Pushdown 6-13

6.4.1.5 Partition Pruning 6-14

6.4.2 Smart Connection Management 6-14

6.4.3 Security Features 6-15

6.4.3.1 Improved Authentication 6-15

6.5 Using HiveQL with OD4H 6-18

6.6 Using Spark SQL with OD4H 6-18

6.7 Writing Back to Oracle Database 6-19

Glossary

Index

viii

Preface

This guide describes how to manage and use the installed Oracle Big Data Appliance
software.

Note:

Oracle Big Data SQL is no longer documented within this guide. See the
Oracle Big Data Appliance User's Guide for instructions on how to install and
use Oracle Big Data SQL.

Audience
This guide is intended for users of Oracle Big Data Appliance including:

• Application developers

• Data analysts

• Data scientists

• Database administrators

• System administrators

The Oracle Big Data Appliance Software User's Guide introduces Oracle Big Data
Appliance installed software, features, concepts, and terminology. However, you must
acquire the necessary information about administering Hadoop clusters and writing
MapReduce programs from other sources.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents:

ix

http://docs.oracle.com/cd/E69290_01/doc.44/e71333/toc.htm
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Oracle Big Data Appliance Perfect Balance Java API Reference

• Oracle Enterprise Manager System Monitoring Plug-in Installation Guide for
Oracle Big Data Appliance

• Oracle Big Data Appliance Owner's Guide

• Oracle Big Data Connectors User's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

prompt The pound (#) prompt indicates a command that is run as the Linux
root user.

Backus-Naur Form Syntax
The syntax in this reference is presented in a simple variation of Backus-Naur Form
(BNF) that uses the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

boldface Words appearing in boldface are keywords. They must be typed
as shown. (Keywords are case-sensitive in some, but not all,
operating systems.) Words that are not in boldface are
placeholders for which you must substitute a name or value.

Changes in Oracle Big Data Appliance Release 4.11
Oracle Big Data Appliance is primarily a maintenance release that includes the
following software version updates:

Updated Software

• Cloudera Enterprise 5.13.1

• Oracle NoSQL Database Enterprise Edition 4.5.12

Preface

x

• ODI Agent 12.2.1.3.0

• Oracle Linux 6 and UEK updates. UEK4 updated to UEK4QU5

Note:

Oracle Big Data Appliance 4.11 supports Oracle Linux 6 only, for both
installations and upgrades. Oracle Linux 5 is not supported in this release
and will not be supported in future releases.

Other Software

Revision levels for software other than the Cloudera and Oracle packages listed above
remain the same as in Oracle Big Data Appliance 4.10:

• Oracle Big Data Connectors 4.10

In previous releases, Oracle Big Data Connectors and Oracle Big Data Appliance
have been at the same release level. Note that in Oracle Big Data Appliance 4.11,
Oracle Big Data Connectors has not been upgraded and remains at Release 4.10.

• Big Data SQL 3.2

• Oracle Big Data Spatial & Graph 2.4

• MySQL Enterprise Edition 5.7.19

• Perfect Balance 2.10.0

• Java JDK 8u141

• Oracle R Advanced Analytics for Hadoop (ORAAH) 2.7.0

• Oracle's R Distribution (ORD) 3.2.0

• Oracle NoSQL Community Edition 4.4.6

Change Notices

• Perfect Balance deprecated

The Perfect Balance feature is deprecated in this release of Oracle Big Data
Appliance and may be de-supported in a future release.

• Patch 27077322 is NOT required for Big Data SQL 3.2

The previous Oracle Big Data Appliance release (4.10) requires Patch 27077322
in order to install Oracle Big Data SQL 3.2. This patch is not needed for the
installation of Oracle Big Data SQL 3.2 on Oracle Big Data Appliance 4.11

Preface

xi

Part I
Administration

This part describes Oracle Big Data Appliance and provides instructions for routine
administrative tasks. It contains the following chapters:

• Introducing Oracle Big Data Appliance

• Administering Oracle Big Data Appliance

• Supporting User Access to Oracle Big Data Appliance

• Configuring Oracle Exadata Database Machine for Use with Oracle Big Data
Appliance

1
Introducing Oracle Big Data Appliance

This chapter presents an overview of Oracle Big Data Appliance and describes the
software installed on the system. This chapter contains the following sections:

• What Is Big Data?

• The Oracle Big Data Solution

• Software for Big Data Appliance

• Acquiring Data for Analysis

• Organizing Big Data

• Analyzing and Visualizing Big Data

1.1 What Is Big Data?
Using transactional data as the source of business intelligence has been
commonplace for many years. As digital technology and the World Wide Web spread
into every aspect of modern life, other sources of data can make important
contributions to business decision making. Many businesses are looking to these new
data sources. They are finding opportunities in analyzing vast amounts of data that
until recently was discarded.

Big data is characterized by:

• A variety of data sources

• A complexity of data types

• A high volume of data flow

• A high velocity of data transactions

These characteristics pinpoint the challenges in deriving value from big data, and the
differences between big data and traditional data sources that primarily provide highly
structured, transactional data.

1.1.1 High Variety
Big data is derived from a variety of sources, such as:

• Equipment sensors: Medical, manufacturing, transportation, and other machine
sensor transmissions

• Machines: Call detail records, web logs, smart meter readings, Global Positioning
System (GPS) transmissions, and trading systems records

• Social media: Data streams from social media sites such as Facebook and
blogging sites such as Twitter

Analysts can mine this data repeatedly as they devise new ways of extracting
meaningful insights. What seems irrelevant today might prove to be highly pertinent to
your business tomorrow.

1-1

Challenge: Delivering flexible systems to handle this high variety

1.1.2 High Complexity
As the variety of data types increases, the complexity of the system increases. The
complexity of data types also increases in big data because of its low structure.

Challenge: Finding solutions that apply across a broad range of data types.

1.1.3 High Volume
Social media can generate terabytes of daily data. Equipment sensors and other
machines can generate that much data in less than an hour.

Even traditional data sources for data warehouses, such as customer profiles from
customer relationship management (CRM) systems, transactional enterprise resource
planning (ERP) data, store transactions, and general ledger data, have increased
tenfold in volume over the past decade.

Challenge: Providing scalability and ease in growing the system

1.1.4 High Velocity
Huge numbers of sensors, web logs, and other machine sources generate data
continuously and at a much higher speed than traditional sources, such as individuals
entering orders into a transactional database.

Challenge: Handling the data at high speed without stressing the structured systems

1.2 The Oracle Big Data Solution
Oracle Big Data Appliance is an engineered system comprising both hardware and
software components. The hardware is optimized to run the enhanced big data
software components.

Oracle Big Data Appliance delivers:

• A complete and optimized solution for big data

• Single-vendor support for both hardware and software

• An easy-to-deploy solution

• Tight integration with Oracle Database and Oracle Exadata Database Machine

Oracle provides a big data platform that captures, organizes, and supports deep
analytics on extremely large, complex data streams flowing into your enterprise from
many data sources. You can choose the best storage and processing location for your
data depending on its structure, workload characteristics, and end-user requirements.

Oracle Database enables all data to be accessed and analyzed by a large user
community using identical methods. By adding Oracle Big Data Appliance in front of
Oracle Database, you can bring new sources of information to an existing data
warehouse. Oracle Big Data Appliance is the platform for acquiring and organizing big
data so that the relevant portions with true business value can be analyzed in Oracle
Database.

Chapter 1
The Oracle Big Data Solution

1-2

For maximum speed and efficiency, Oracle Big Data Appliance can be connected to
Oracle Exadata Database Machine running Oracle Database. Oracle Exadata
Database Machine provides outstanding performance in hosting data warehouses and
transaction processing databases. Moreover, Oracle Exadata Database Machine can
be connected to Oracle Exalytics In-Memory Machine for the best performance of
business intelligence and planning applications. The InfiniBand connections between
these engineered systems provide high parallelism, which enables high-speed data
transfer for batch or query workloads.

The following figure shows the relationships among these engineered systems.

Figure 1-1 Oracle Engineered Systems for Big Data

Social media
Blogs
Smart phones
Meters
Sensors
Web logs
Trading systems
GPS signals

InfiniBand

InfiniBand

Oracle Big Data
Appliance

Oracle
Exadata

Oracle
Exalytics

Analyze & Visualize

Organize

Acquire

Stream

1.3 Software for Big Data Appliance
The Oracle Linux operating system and Cloudera's Distribution including Apache
Hadoop (CDH) underlie all other software components installed on Oracle Big Data
Appliance. CDH is an integrated stack of components that have been tested and
packaged to work together.

CDH has a batch processing infrastructure that can store files and distribute work
across a set of computers. Data is processed on the same computer where it is stored.
In a single Oracle Big Data Appliance rack, CDH distributes the files and workload
across 18 servers, which compose a cluster. Each server is a node in the cluster.

The software framework consists of these primary components:

Chapter 1
Software for Big Data Appliance

1-3

• File system: The Hadoop Distributed File System (HDFS) is a highly scalable
file system that stores large files across multiple servers. It achieves reliability by
replicating data across multiple servers without RAID technology. It runs on top of
the Linux file system on Oracle Big Data Appliance.

• MapReduce engine: The MapReduce engine provides a platform for the
massively parallel execution of algorithms written in Java. Oracle Big Data
Appliance 3.0 runs YARN by default.

• Administrative framework: Cloudera Manager is a comprehensive administrative
tool for CDH. In addition, you can use Oracle Enterprise Manager to monitor both
the hardware and software on Oracle Big Data Appliance.

• Apache projects: CDH includes Apache projects for MapReduce and HDFS,
such as Hive, Pig, Oozie, ZooKeeper, HBase, Sqoop, and Spark.

• Cloudera applications: Oracle Big Data Appliance installs all products included in
Cloudera Enterprise Data Hub Edition, including Impala, Search, and Navigator.

1.3.1 Software Component Overview
The major software components perform three basic tasks:

• Acquire

• Organize

• Analyze and visualize

The best tool for each task depends on the density of the information and the degree
of structure. The following figure shows the relationships among the tools and
identifies the tasks that they perform.

Figure 1-2 Oracle Big Data Appliance Software Overview

Acquire Organize Analyze

Oracle Big Data Appliance

Data Variety

Big Data

Schema

Information
Density

HDFS

Oracle
NoSQL
Database

CDH

Oracle Database
(Data Warehouse)

In-Database Analytics

Oracle Advanced Analytics
Oracle R Enterprise
Data Mining

Oracle Business
Intelligence

Oracle Data Integrator

Oracle Big Data
Connectors

Oracle Big Data
SQL

Oracle Database
(Transactional)

Chapter 1
Software for Big Data Appliance

1-4

1.4 Acquiring Data for Analysis
Databases used for online transaction processing (OLTP) are the traditional data
sources for data warehouses. The Oracle solution enables you to analyze traditional
data stores with big data in the same Oracle data warehouse. Relational data
continues to be an important source of business intelligence, although it runs on
separate hardware from Oracle Big Data Appliance.

Oracle Big Data Appliance provides these facilities for capturing and storing big data:

• Hadoop Distributed File System

• Apache Hive

• Oracle NoSQL Database

1.4.1 Hadoop Distributed File System
Cloudera's Distribution including Apache Hadoop (CDH) on Oracle Big Data Appliance
uses the Hadoop Distributed File System (HDFS). HDFS stores extremely large files
containing record-oriented data. On Oracle Big Data Appliance, HDFS splits large data
files into chunks of 256 megabytes (MB), and replicates each chunk across three
different nodes in the cluster. The size of the chunks and the number of replications
are configurable.

Chunking enables HDFS to store files that are larger than the physical storage of one
server. It also allows the data to be processed in parallel across multiple computers
with multiple processors, all working on data that is stored locally. Replication ensures
the high availability of the data: if a server fails, the other servers automatically take
over its work load.

HDFS is typically used to store all types of big data.

See Also:

• For conceptual information about Hadoop technologies, refer to this
third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

• For documentation about Cloudera's Distribution including Apache
Hadoop, see the Cloudera library at

http://oracle.cloudera.com/

1.4.2 Apache Hive
Hive is an open-source data warehouse that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language called
HiveQL. An interpreter generates MapReduce code from the HiveQL queries. By
storing data in Hive, you can avoid writing MapReduce programs in Java.

Chapter 1
Acquiring Data for Analysis

1-5

http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera

Hive is a component of CDH and is always installed on Oracle Big Data Appliance.
Oracle Big Data Connectors can access Hive tables.

1.4.3 Oracle NoSQL Database
Oracle NoSQL Database is a distributed key-value database built on the proven
storage technology of Berkeley DB Java Edition. Whereas HDFS stores unstructured
data in very large files, Oracle NoSQL Database indexes the data and supports
transactions. But unlike Oracle Database, which stores highly structured data, Oracle
NoSQL Database has relaxed consistency rules, no schema structure, and only
modest support for joins, particularly across storage nodes.

NoSQL databases, or "Not Only SQL" databases, have developed over the past
decade specifically for storing big data. However, they vary widely in implementation.
Oracle NoSQL Database has these characteristics:

• Uses a system-defined, consistent hash index for data distribution

• Supports high availability through replication

• Provides single-record, single-operation transactions with relaxed consistency
guarantees

• Provides a Java API

Oracle NoSQL Database is designed to provide highly reliable, scalable, predictable,
and available data storage. The key-value pairs are stored in shards or partitions (that
is, subsets of data) based on a primary key. Data on each shard is replicated across
multiple storage nodes to ensure high availability. Oracle NoSQL Database supports
fast querying of the data, typically by key lookup.

An intelligent driver links the NoSQL database with client applications and provides
access to the requested key-value on the storage node with the lowest latency.

Oracle NoSQL Database includes hashing and balancing algorithms to ensure proper
data distribution and optimal load balancing, replication management components to
handle storage node failure and recovery, and an easy-to-use administrative interface
to monitor the state of the database.

Oracle NoSQL Database is typically used to store customer profiles and similar data
for identifying and analyzing big data. For example, you might log in to a website and
see advertisements based on your stored customer profile (a record in Oracle NoSQL
Database) and your recent activity on the site (web logs currently streaming into
HDFS).

Oracle NoSQL Database is an optional component of Oracle Big Data Appliance and
runs on a separate cluster from CDH.

See Also:

• Oracle NoSQL Database documentation

• Oracle Big Data Appliance Licensing Information

Chapter 1
Acquiring Data for Analysis

1-6

http://docs.oracle.com/cd/NOSQL/html/index.html

1.5 Organizing Big Data
Oracle Big Data Appliance provides several ways of organizing, transforming, and
reducing big data for analysis:

• MapReduce

• Oracle Big Data SQL

• Oracle Big Data Connectors

• Oracle R Support for Big Data

1.5.1 MapReduce
The MapReduce engine provides a platform for the massively parallel execution of
algorithms written in Java. MapReduce uses a parallel programming model for
processing data on a distributed system. It can process vast amounts of data quickly
and can scale linearly. It is particularly effective as a mechanism for batch processing
of unstructured and semistructured data. MapReduce abstracts lower-level operations
into computations over a set of keys and values.

Although big data is often described as unstructured, incoming data always has some
structure. However, it does not have a fixed, predefined structure when written to
HDFS. Instead, MapReduce creates the desired structure as it reads the data for a
particular job. The same data can have many different structures imposed by different
MapReduce jobs.

A simplified description of a MapReduce job is the successive alternation of two
phases: the Map phase and the Reduce phase. Each Map phase applies a transform
function over each record in the input data to produce a set of records expressed as
key-value pairs. The output from the Map phase is input to the Reduce phase. In the
Reduce phase, the Map output records are sorted into key-value sets, so that all
records in a set have the same key value. A reducer function is applied to all the
records in a set, and a set of output records is produced as key-value pairs. The Map
phase is logically run in parallel over each record, whereas the Reduce phase is run in
parallel over all key values.

Note:

Oracle Big Data Appliance uses the Yet Another Resource Negotiator
(YARN) implementation of MapReduce.

1.5.2 Oracle Big Data SQL
Oracle Big Data SQL supports queries against vast amounts of big data stored in
multiple data sources, including Apache Hive, HDFS, Oracle NoSQL Database, and
Apache HBase. You can view and analyze data from various data stores together, as
if it were all stored in an Oracle database.

Using Oracle Big Data SQL, you can query data stored in a Hadoop cluster using the
complete SQL syntax. You can execute the most complex SQL SELECT statements

Chapter 1
Organizing Big Data

1-7

against data in Hadoop, either manually or using your existing applications, to tease
out the most significant insights.

Oracle Big Data SQL is licensed separately from Oracle Big Data Appliance.

Oracle Big Data SQL includes the Copy to Hadoop and Oracle Shell for Hadoop
Loaders features. The Oracle Shell for Hadoop Loaders helper shell uses the Copy to
Hadoop feature of Big Data SQL to identify and copy Oracle Database data to the
Hadoop Distributed File System. An Apache Hive table is created over the data that is
copied, allowing Hive to process the data locally.

See Also:

Oracle Big Data SQL User’s Guide

1.5.3 Oracle Big Data Connectors
Oracle Big Data Connectors facilitate data access between data stored in CDH and
Oracle Database. The connectors are licensed separately from Oracle Big Data
Appliance and include:

• Oracle SQL Connector for Hadoop Distributed File System

• Oracle Loader for Hadoop

• Oracle XQuery for Hadoop

• Oracle R Advanced Analytics for Hadoop

• Oracle Data Integrator Enterprise Edition

• Oracle Shell for Hadoop Loaders

See Also:

Oracle Big Data Connectors User's Guide

1.5.3.1 Oracle SQL Connector for Hadoop Distributed File System
Oracle SQL Connector for Hadoop Distributed File System (Oracle SQL Connector for
HDFS) provides read access to HDFS from an Oracle database using external
tables.

An external table is an Oracle Database object that identifies the location of data
outside of the database. Oracle Database accesses the data by using the metadata
provided when the external table was created. By querying the external tables, users
can access data stored in HDFS as if that data were stored in tables in the database.
External tables are often used to stage data to be transformed during a database load.

You can use Oracle SQL Connector for HDFS to:

• Access data stored in HDFS files

• Access Hive tables.

Chapter 1
Organizing Big Data

1-8

• Access Data Pump files generated by Oracle Loader for Hadoop

• Load data extracted and transformed by Oracle Data Integrator

1.5.3.2 Oracle Loader for Hadoop
Oracle Loader for Hadoop is an efficient and high-performance loader for fast
movement of data from a Hadoop cluster into a table in an Oracle database. It can
read and load data from a wide variety of formats. Oracle Loader for Hadoop partitions
the data and transforms it into a database-ready format in Hadoop. It optionally sorts
records by a sorting key (such as a primary key) before loading the data or creating
output files. The load runs as a MapReduce job on the Hadoop cluster.

1.5.3.3 Oracle Data Integrator Enterprise Edition
Oracle Data Integrator (ODI) Enterprise Edition extracts, transforms, and loads data
into Oracle Database from a wide range of sources.

In ODI, a knowledge module (KM) is a code template dedicated to a specific task in
the data integration process. You use Oracle Data Integrator Studio to load, select,
and configure the KMs for your particular application. More than 150 KMs are available
to help you acquire data from a wide range of third-party databases and other data
repositories. You only need to load a few KMs for any particular job.

Oracle Data Integrator Enterprise Edition contains the KMs specifically for use with big
data.

The ODI agent mounted on Oracle Big Data Appliance is the Standalone Agent (rather
than the Colocated Agent or Java EE Agent).

You can establish master-child relationships between ODI agents on Oracle Big Data
Appliance. You can also configure an external HA master Java EE Agent to distribute
jobs to multiple Standalone Agents on Oracle Big Data Appliance, which is useful if
your enterprise uses ODI to extract data from other sources in addition to the
appliance.

1.5.3.4 Oracle XQuery for Hadoop
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language by
translating them into a series of MapReduce jobs, which are executed in parallel on
the Hadoop cluster. The input data can be located in HDFS or Oracle NoSQL
Database. Oracle XQuery for Hadoop can write the transformation results to HDFS,
Oracle NoSQL Database, or Oracle Database.

1.5.3.5 Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop is a collection of R packages that provides:

• Interfaces to work with Hive tables, Apache Hadoop compute infrastructure, local
R environment and database tables

• Predictive analytic techniques written in R or Java as Hadoop MapReduce jobs
that can be applied to data in HDFS files

Using simple R functions, you can copy data between R memory, the local file system,
HDFS, and Hive. You can write mappers and reducers in R, schedule these R

Chapter 1
Organizing Big Data

1-9

programs to execute as Hadoop MapReduce jobs, and return the results to any of
those locations.

1.5.3.6 Oracle Shell for Hadoop Loaders

Oracle Shell for Hadoop Loaders is a helper shell that provides a simple to use
command line interface to Oracle Loader for Hadoop, Oracle SQL Connector for
HDFS, and the Copy to Hadoop feature of Big Data SQL.

1.5.4 Oracle R Support for Big Data
R is an open-source language and environment for statistical analysis and graphing It
provides linear and nonlinear modeling, standard statistical methods, time-series
analysis, classification, clustering, and graphical data displays. Thousands of open-
source packages are available in the Comprehensive R Archive Network (CRAN) for a
spectrum of applications, such as bioinformatics, spatial statistics, and financial and
marketing analysis. The popularity of R has increased as its functionality matured to
rival that of costly proprietary statistical packages.

Analysts typically use R on a PC, which limits the amount of data and the processing
power available for analysis. Oracle eliminates this restriction by extending the R
platform to directly leverage Oracle Big Data Appliance. Oracle R Distribution is
installed on all nodes of Oracle Big Data Appliance.

Oracle R Advanced Analytics for Hadoop provides R users with high-performance,
native access to HDFS and the MapReduce programming framework, which enables
R programs to run as MapReduce jobs on vast amounts of data. Oracle R Advanced
Analytics for Hadoop is included in the Oracle Big Data Connectors. See "Oracle R
Advanced Analytics for Hadoop".

Oracle R Enterprise is a component of the Oracle Advanced Analytics option to
Oracle Database. It provides:

• Transparent access to database data for data preparation and statistical analysis
from R

• Execution of R scripts at the database server, accessible from both R and SQL

• A wide range of predictive and data mining in-database algorithms

Oracle R Enterprise enables you to store the results of your analysis of big data in an
Oracle database, or accessed for display in dashboards and applications.

Both Oracle R Advanced Analytics for Hadoop and Oracle R Enterprise make Oracle
Database and the Hadoop computational infrastructure available to statistical users
without requiring them to learn the native programming languages of either one.

Chapter 1
Organizing Big Data

1-10

See Also:

• For information about R, go to

http://www.r-project.org/

• For information about Oracle R Enterprise, go to

http://docs.oracle.com/cd/E67822_01/index.htm

1.6 Analyzing and Visualizing Big Data
After big data is transformed and loaded in Oracle Database, you can use the full
spectrum of Oracle business intelligence solutions and decision support products to
further analyze and visualize all your data.

Chapter 1
Analyzing and Visualizing Big Data

1-11

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=r_project
http://docs.oracle.com/cd/E67822_01/index.htm

2
Administering Oracle Big Data Appliance

This chapter provides information about the software and services installed on Oracle
Big Data Appliance. It contains these sections:

• Monitoring Multiple Clusters Using Oracle Enterprise Manager

• Managing Operations Using Cloudera Manager

• Using Hadoop Monitoring Utilities

• Using Cloudera Hue to Interact With Hadoop

• About the Oracle Big Data Appliance Software

• About the CDH Software Services

• Effects of Hardware on Software Availability

• Managing a Hardware Failure

• Stopping and Starting Oracle Big Data Appliance

• Managing Oracle Big Data SQL

• Security on Oracle Big Data Appliance

• Auditing Oracle Big Data Appliance

• Collecting Diagnostic Information for Oracle Customer Support

2.1 Monitoring Multiple Clusters Using Oracle Enterprise
Manager

An Oracle Enterprise Manager plug-in enables you to use the same system monitoring
tool for Oracle Big Data Appliance as you use for Oracle Exadata Database Machine
or any other Oracle Database installation. With the plug-in, you can view the status of
the installed software components in tabular or graphic presentations, and start and
stop these software services. You can also monitor the health of the network and the
rack components.

Oracle Enterprise Manager enables you to monitor all Oracle Big Data Appliance racks
on the same InfiniBand fabric. It provides summary views of both the rack hardware
and the software layout of the logical clusters.

Note:

Before you start, contact Oracle Support for up-to-date information about
Enterprise Manager plug-in functionality.

2-1

2.1.1 Using the Enterprise Manager Web Interface
After opening Oracle Enterprise Manager web interface, logging in, and selecting a
target cluster, you can drill down into these primary areas:

• InfiniBand network: Network topology and status for InfiniBand switches and
ports. See Figure 2-1.

• Hadoop cluster: Software services for HDFS, MapReduce, and ZooKeeper.

• Oracle Big Data Appliance rack: Hardware status including server hosts, Oracle
Integrated Lights Out Manager (Oracle ILOM) servers, power distribution units
(PDUs), and the Ethernet switch.

The following figure shows a small section of the cluster home page.

Figure 2-1 YARN Page in Oracle Enterprise Manager

To monitor Oracle Big Data Appliance using Oracle Enterprise Manager:

1. Download and install the plug-in. See Oracle Enterprise Manager System
Monitoring Plug-in Installation Guide for Oracle Big Data Appliance.

2. Log in to Oracle Enterprise Manager as a privileged user.

3. From the Targets menu, choose Big Data Appliance to view the Big Data page.
You can see the overall status of the targets already discovered by Oracle
Enterprise Manager.

4. Select a target cluster to view its detail pages.

5. Expand the target navigation tree to display the components. Information is
available at all levels.

6. Select a component in the tree to display its home page.

7. To change the display, choose an item from the drop-down menu at the top left of
the main display area.

Chapter 2
Monitoring Multiple Clusters Using Oracle Enterprise Manager

2-2

2.1.2 Using the Enterprise Manager Command-Line Interface
The Enterprise Manager command-line interface (emcli) is installed on Oracle Big Data
Appliance along with all the other software. It provides the same functionality as the
web interface. You must provide credentials to connect to Oracle Management Server.

To get help, enter emcli help.

See Also:

Oracle Enterprise Manager Command Line Interface Guide

2.2 Managing Operations Using Cloudera Manager
Cloudera Manager is installed on Oracle Big Data Appliance to help you with
Cloudera's Distribution including Apache Hadoop (CDH) operations. Cloudera
Manager provides a single administrative interface to all Oracle Big Data Appliance
servers configured as part of the Hadoop cluster.

Cloudera Manager simplifies the performance of these administrative tasks:

• Monitor jobs and services

• Start and stop services

• Manage security and Kerberos credentials

• Monitor user activity

• Monitor the health of the system

• Monitor performance metrics

• Track hardware use (disk, CPU, and RAM)

Cloudera Manager runs on the ResourceManager node (node03) and is available on
port 7180.

To use Cloudera Manager:

1. Open a browser and enter a URL like the following:

In this example, bda1 is the name of the appliance, node03 is the name of the
server, example.com is the domain, and 7180 is the default port number for Cloudera
Manager.

2. Log in with a user name and password for Cloudera Manager. Only a user with
administrative privileges can change the settings. Other Cloudera Manager users
can view the status of Oracle Big Data Appliance.

Chapter 2
Managing Operations Using Cloudera Manager

2-3

https://docs.oracle.com/cd/E73210_01/EMCLI/GUID-4E306E13-0A06-46F2-BD3A-8F6AE0B9C6E2.htm#EMCLI101

See Also:

https://www.cloudera.com/documentation/enterprise/latest/topics/
cm_dg_about.html provides information on Cloudera monitoring and
diagnostics.

2.2.1 Monitoring the Status of Oracle Big Data Appliance
In Cloudera Manager, you can choose any of the following pages from the menu bar
across the top of the display:

• Home: Provides a graphic overview of activities and links to all services controlled
by Cloudera Manager. See the following figure.

• Clusters: Accesses the services on multiple clusters.

• Hosts: Monitors the health, disk usage, load, physical memory, swap space, and
other statistics for all servers in the cluster.

• Diagnostics: Accesses events and logs. Cloudera Manager collects historical
information about the systems and services. You can search for a particular
phrase for a selected server, service, and time period. You can also select the
minimum severity level of the logged messages included in the search: TRACE,
DEBUG, INFO, WARN, ERROR, or FATAL.

• Audits: Displays the audit history log for a selected time range. You can filter the
results by user name, service, or other criteria, and download the log as a CSV
file.

• Charts: Enables you to view metrics from the Cloudera Manager time-series data
store in a variety of chart types, such as line and bar.

• Backup: Accesses snapshot policies and scheduled replications.

• Administration: Provides a variety of administrative options, including Settings,
Alerts, Users, and Kerberos.

Rhe following figure shows the Cloudera Manager home page.

Chapter 2
Managing Operations Using Cloudera Manager

2-4

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_about.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_about.html

Figure 2-2 Cloudera Manager Home Page

2.2.2 Performing Administrative Tasks
As a Cloudera Manager administrator, you can change various properties for
monitoring the health and use of Oracle Big Data Appliance, add users, and set up
Kerberos security.

To access Cloudera Manager Administration:

1. Log in to Cloudera Manager with administrative privileges.

2. Click Administration, and select a task from the menu.

2.2.3 Managing CDH Services With Cloudera Manager
Cloudera Manager provides the interface for managing these services:

• HDFS

• Hive

• Hue

• Oozie

• YARN

• ZooKeeper

Chapter 2
Managing Operations Using Cloudera Manager

2-5

You can use Cloudera Manager to change the configuration of these services, stop,
and restart them. Additional services are also available, which require configuration
before you can use them. See "Unconfigured Software."

Note:

Manual edits to Linux service scripts or Hadoop configuration files do not
affect these services. You must manage and configure them using Cloudera
Manager.

2.3 Using Hadoop Monitoring Utilities
You also have the option of using the native Hadoop utilities. These utilities are read-
only and do not require authentication.

Cloudera Manager provides an easy way to obtain the correct URLs for these utilities.
On the YARN service page, expand the Web UI submenu.

2.3.1 Monitoring MapReduce Jobs
You can monitor MapReduce jobs using the resource manager interface.

To monitor MapReduce jobs:

• Open a browser and enter a URL like the following:

http://bda1node03.example.com:8088

In this example, bda1 is the name of the rack, node03 is the name of the server
where the YARN resource manager runs, and 8088 is the default port number for
the user interface.

The following figure shows the resource manager interface.

Figure 2-3 YARN Resource Manager Interface

Chapter 2
Using Hadoop Monitoring Utilities

2-6

2.3.2 Monitoring the Health of HDFS
You can monitor the health of the Hadoop file system by using the DFS health utility
on the first two nodes of a cluster.

To monitor HDFS:

• Open a browser and enter a URL like the following:

http://bda1node01.example.com:50070

In this example, bda1 is the name of the rack, node01 is the name of the server
where the dfshealth utility runs, and 50070 is the default port number for the user
interface.

Figure 2-3 shows the DFS health utility interface.

Figure 2-4 DFS Health Utility

Chapter 2
Using Hadoop Monitoring Utilities

2-7

2.4 Using Cloudera Hue to Interact With Hadoop
Hue runs in a browser and provides an easy-to-use interface to several applications to
support interaction with Hadoop and HDFS. You can use Hue to perform any of the
following tasks:

• Query Hive data stores

• Create, load, and delete Hive tables

• Work with HDFS files and directories

• Create, submit, and monitor MapReduce jobs

• Monitor MapReduce jobs

• Create, edit, and submit workflows using the Oozie dashboard

• Manage users and groups

Hue is automatically installed and configured on Oracle Big Data Appliance. It runs on
port 8888 of the ResourceManager node. See the tables in About the CDH Software
Services for Hue’s location within different cluster configurations.

To use Hue:

1. Log in to Cloudera Manager and click the hue service on the Home page.

2. On the hue page under Quick Links, click Hue Web UI.

3. Bookmark the Hue URL, so that you can open Hue directly in your browser. The
following URL is an example:

http://bda1node03.example.com:8888

4. Log in with your Hue credentials.

If Hue accounts have not been created yet, log into the default Hue administrator
account by using the following credentials:

• Username: admin

• Password: cm-admin-password

where cm-admin-password is the password specified when the cluster for the
Cloudera Manager admin user was activated. You can then create other user and
administrator accounts.

The following figure shows the Hive Query Editor.

Chapter 2
Using Cloudera Hue to Interact With Hadoop

2-8

Figure 2-5 Hive Query Editor

See Also:

Hue User Guide at

http://archive-primary.cloudera.com/cdh5/cdh/5/hue/user-guide/

2.5 About the Oracle Big Data Appliance Software
The following sections identify the software installed on Oracle Big Data Appliance.
Some components operate with Oracle Database 11.2.0.2 and later releases.

This section contains the following topics:

• Software Components

• Unconfigured Software

• Allocating Resources Among Services

2.5.1 Software Components
These software components are installed on all servers in the cluster. Oracle Linux,
required drivers, firmware, and hardware verification utilities are factory installed. All
other software is installed on site. The optional software components may not be
configured in your installation.

Chapter 2
About the Oracle Big Data Appliance Software

2-9

http://archive-primary.cloudera.com/cdh5/cdh/5/hue/user-guide/

Note:

You do not need to install additional software on Oracle Big Data Appliance.
Doing so may result in a loss of warranty and support. .

Base image software:

• Oracle Linux 6 with Oracle Unbreakable Enterprise Kernel version 4 (UEK4QU5)
for both installations and updates. Oracle Linux 5 is not supported in Oracle Big
Data Appliance 4.11, nor in future releases.

• Java JDK 8u141

• Oracle R Distribution 3.2.0

• MySQL Enterprise Edition 5.7.19

• Puppet, firmware, Oracle Big Data Appliance utilities

• Oracle InfiniBand software (latest supported firmware is version 2.2.7-1)

Mammoth installation:

• Cloudera's Distribution including Apache Hadoop Release 5.13.1, including:

– Apache Hive

– Apache HBase

– Apache Sentry

– Apache Spark 2 and Spark 1.6. (Spark 1.6 is deployed as shipped with CDH,
but Mammoth also deploys Spark 2 automatically.)

– Cloudera Impala

– Cloudera Search

– Kudu 1.4.0

– Kafka 2.2.0

• Key Trustee Server 5.13.1

Note that the Cloudera parcels for Kudu, Kafka, and Key Trustee Server are
included for your convenience, but are not deployed or configured by default.

• Cloudera Manager Release 5.13.1

• Oracle Database Instant Client 12.1

• Oracle Big Data SQL 3.2. (optional)

• Oracle NoSQL Database Community Edition 4.4.6 or Oracle NoSQL Database
Enterprise Edition 4.5.12 (both optional)

• Oracle Big Data Connectors 4.10 (optional):

– Oracle SQL Connector for Hadoop Distributed File System (HDFS)

– Oracle Loader for Hadoop

– Oracle Data Integrator Agent

– Oracle XQuery for Hadoop

Chapter 2
About the Oracle Big Data Appliance Software

2-10

– Oracle R Advanced Analytics for Hadoop

Oracle Big Data Connectors is at release level 4.10 and has not been upgraded in
Oracle Big Data Appliance 4.11.

• Oracle Perfect Balance 2.10.0

• Oracle Big Data Discovery 1.5 and 1.4 (1.4.0.37.1388 or greater).

Note:

Oracle Big Data Discovery lists version 1.4. 0 on the download page of
the Oracle Software Delivery Cloud, but this is actually 1.4.0.37.1388 or
greater. .
If Oracle Big Data Discovery 1.4.0.37.1388 or greater was already
enabled prior to an upgrade to the current Oracle Big Data Appliance
release, then after the upgrade you must update several client libraries
required by Oracle Big Data Discovery. For instructions, see Document
2215083.1 in My Oracle Support (https://support.oracle.com). This
manual update is not necessary if you install Oracle Big Data Discovery
after installing the current Oracle Big Data Appliance release.

Earlier releases of Oracle Big Data Discovery are not supported on this
release of Oracle Big Data Appliance.

See Also:

Oracle Big Data Appliance Owner's Guide for information about the
Mammoth utility

The following figure shows the relationships among the major components.

Figure 2-6 Major Software Components of Oracle Big Data Appliance

Oracle Big Data Appliance

Oracle
NoSQL
Database

Oracle Big Data Connectors:
Oracle SQL Connector for HDFS
Oracle Loader for Hadoop
Oracle Data Integrator
Oracle XQuery for Hadoop
Oracle R Advanced Analytics for Hadoop

Cloudera’s Distribution Including Apache Hadoop

Oracle Linux and
Oracle Java Hotspot Virtual Machine

Chapter 2
About the Oracle Big Data Appliance Software

2-11

https://support.oracle.com/

Firmware

See following documents in My Oracle Support My Oracle Support for current firmware
information.

• Doc ID 1542871.1 - Firmware Usage and Upgrade Information for BDA Software
Managed Components on Oracle Big Data Appliance

• Doc ID 1528190.1 - Firmware Upgrade Policy and Factory Ship Versions for
Oracle Big Data Appliance Sun Fire X4270 M2, X3-2, X4-2 and X5-2

2.5.2 Unconfigured Software
Your Oracle Big Data Appliance license includes all components in Cloudera
Enterprise Data Hub Edition. All CDH components are installed automatically by the
Mammoth utility. Do not download them from the Cloudera website.

However, you must use Cloudera Manager to add some services before you can use
them, such as the following:

• Apache Flume

• Apache HBase

• Apache Spark

• Apache Sqoop

• Cloudera Impala

• Cloudera Search

To add a service:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, expand the cluster menu in the left panel and choose Add a
Service to open the Add Service wizard. The first page lists the services you can
add.

3. Follow the steps of the wizard.

See Also:

• For a list of key CDH components:

http://www.cloudera.com/content/www/en-us/products/apache-hadoop/key-

cdh-components.html

2.5.3 Allocating Resources Among Services
You can allocate resources to each service—HDFS, YARN, Oracle Big Data SQL,
Hive, and so forth—as a percentage of the total resource pool. Cloudera Manager
automatically calculates the recommended resource management settings based on
these percentages. The static service pools isolate services on the cluster, so that a
high load on one service as a limited impact on the other services.

Chapter 2
About the Oracle Big Data Appliance Software

2-12

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=my_oracle_support
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/key-cdh-components.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/key-cdh-components.html

To allocate resources among services:

1. Log in as admin to Cloudera Manager.

2. Open the Clusters menu at the top of the page, then select Static Service Pools
under Resource Management.

3. Select Configuration.

4. Follow the steps of the wizard, or click Change Settings Directly to edit the
current settings.

2.6 About the CDH Software Services
All services are installed on all nodes in a CDH cluster, but individual services run only
on designated nodes. There are slight variations in the location of the services
depending on the configuration of the cluster.

This section describes the services in a default YARN configuration.

This section contains the following topics:

• Where Do the Services Run on a Single-Rack CDH Cluster?

• Where Do the Services Run on a Multirack CDH Cluster?

• About MapReduce

• Automatic Failover of the NameNode

• Automatic Failover of the ResourceManager

2.6.1 Where Do the Services Run on a Three-Node, Development
Cluster?

Oracle Big Data Appliance now enables the use of three-node clusters for
development purposes.

Caution:

Three-node clusters are generally not suitable for production environments
because all of the nodes are master nodes. This puts constraints on high
availability. The minimum recommended cluster size for a production
environment is five nodes

Table 2-1 Service Locations for a Three-Node Development Cluster

Node1 Node2 Node3

NameNode NameNode/Failover -

Failover Controller Failover Controller -

DataNode DataNode DataNode

NodeManager NodeManager NodeManager

JournalNode JournalNode JournalNode

Chapter 2
About the CDH Software Services

2-13

Table 2-1 (Cont.) Service Locations for a Three-Node Development Cluster

Node1 Node2 Node3

Sentry HttpFS Cloudera Manager and CM
roles

- MySQL Backup MySQL Primary

ResourceManager Hive ResourceManager

- Hive Metastore JobHistory

- ODI Spark History

- Oozie -

- Hue -

- WebHCat -

ZooKeeper ZooKeeper ZooKeeper

Active Navigator Key Trustee
Server (if HDFS Transparent
Encryption is enabled)

Passive Navigator Key
Trustee Server (if HDFS
Transparent Encryption is
enabled)

-

Kerberos Master KDC (Only if
MIT Kerberos is enabled and
on-BDA KDCs are being
used.)

Kerberos Slave KDC (Only if
MIT Kerberos is enabled and
on-BDA KDCs are being
used.)

-

2.6.2 Where Do the Services Run on a Single-Rack CDH Cluster?
The following table identifies the services in CDH clusters configured within a single
rack, including starter racks and clusters with five or more nodes. Node01 is the first
server in the cluster (server 1, 7, or 10), and nodenn is the last server in the cluster
(server 6, 9, 12, or 18). Multirack clusters have different services layouts, as do three-
node clusters for development purposes. Both are described separately in this
chapter.

Table 2-2 Service Locations for One or More CDH Clusters in a Single Rack

Node01 Node02 Node03 Node04 Node05 to nn

Balancer - Cloudera Manager
Server

- -

Cloudera Manager Agent Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller Failover Controller - Hive, Hue, Oozie -

JournalNode JournalNode JournalNode - -

- MySQL Backup MySQL Primary - -

NameNode NameNode Navigator Audit Server
and Navigator
Metadata Server

- -

NodeManager (in clusters
of eight nodes or less)

NodeManager (in
clusters of eight
nodes or less)

NodeManager NodeManager NodeManager

Chapter 2
About the CDH Software Services

2-14

Table 2-2 (Cont.) Service Locations for One or More CDH Clusters in a Single Rack

Node01 Node02 Node03 Node04 Node05 to nn

- - SparkHistoryServer Oracle Data
Integrator Agent

-

- - ResourceManager ResourceManager -

ZooKeeper ZooKeeper ZooKeeper - -

Big Data SQL (if enabled) Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Kerberos KDC (if MIT
Kerberos is enabled and
on-BDA KDCs are being
used)

Kerberos KDC (if MIT
Kerberos is enabled
and on-BDA KDCs
are being used)

JobHistory - -

Sentry Server (if enabled) - - - -

Active Navigator Key
Trustee Server (if HDFS
Transparent Encryption is
enabled)

Passive Navigator
Key Trustee Server (if
HDFS Transparent
Encryption is enabled)

- - -

- HttpFS - - -

Note:

If Oozie high availability is enabled, then Oozie servers are hosted on
Node04 and another node (preferably a ResourceNode) selected by the
customer.

2.6.3 Where Do the Services Run on a Multirack CDH Cluster?
When multiple racks are configured as a single CDH cluster, some critical services are
installed on the second rack. There can be variations in the distribution of services
between the first and second racks in different multirack clusters. The two scenarios
that account for these differences are:

• The cluster spanned multiple racks in its original configuration.

The resulting service locations across the first and second rack are described in
Table 2-3 and Table 2-4. In this case, the JournalNode, Mysql Primary,
ResourceManager, and Zookeeper are installed on node 2 of the first rack.

• The cluster was single-rack in the original configuration and was extended later.

The resulting service locations across the first and second rack are described in
Table 2-5 and Table 2-6. In this case, the JournalNode, Mysql Primary,
ResourceManager, and Zookeeper are installed on node 3 of the first rack.

Chapter 2
About the CDH Software Services

2-15

Note:

There is one variant that is determined specifically by cluster size – for
clusters of eight nodes less, nodes that run NameNode also run
NodeManager. This is not true for clusters larger than eight nodes.

Table 2-3 First Rack Service Locations (When the Cluster Started as Multirack Cluster)

Node01 Node02 Node03 Node04 Node05 to nn1

Cloudera
Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager Agent

– Cloudera Manager
Server

– – –

DataNode DataNode DataNode DataNode DataNode

Failover
Controller

- - - -

JournalNode JournalNode Navigator Audit
Server and
Navigator Metadata
Server

- -

NameNode MySQL Primary SparkHistoryServer - -

NodeManager
(in clusters of
eight nodes or
less)

NodeManager NodeManager NodeManager NodeManager

– ResourceManager - - -

ZooKeeper ZooKeeper - - -

Kerberos KDC
(Only if MIT
Kerberos is
enabled and
on-BDA KDCs
are being
used.)

Kerberos KDC
(Only if MIT
Kerberos is enabled
and on-BDA KDCs
are being used.)

Sentry Server
(Only if Sentry
is enabled.)

Big Data SQL
(if enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if enabled)

Active
Navigator Key
Trustee Server
(if HDFS
Transparent
Encryption is
enabled)

1 nn includes the servers in additional racks.

Chapter 2
About the CDH Software Services

2-16

Table 2-4 shows the service locations in the second rack of a cluster that was
originally configured to span multiple racks.

Table 2-4 Second Rack Service Locations (When the Cluster Started as Multirack Cluster)

Node01 Node02 Node03 Node04 Node05 to nn

Balancer - - - -

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera
Manager Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller - - - -

JournalNode Hive, Hue, Oozie - - -

MySQL Backup - - - -

NameNode - - - -

NodeManager (in
clusters of eight nodes
or less)

NodeManager NodeManager NodeManager NodeManager

HttpFS Oracle Data Integrator
Agent

- - -

- ResourceManager - - -

ZooKeeper - - - -

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Passive Navigator Key
Trustee Server (if
HDFS Transparent
Encryption is enabled)

Table 2-5 shows the service locations in the first rack of a cluster that was originally
configured as a single-rack cluster and subsequently extended.

Table 2-5 First Rack Service Locations (When a Single-Rack Cluster is Extended)

Node01 Node02 Node03 Node04 Node05 to nn1

Cloudera
Manager Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager Agent Cloudera Manager
Agent

- - Cloudera Manager
Server

- -

DataNode DataNode DataNode DataNode DataNode

Failover
Controller

- Navigator Audit
Server and Navigator
Metadata Server

- -

JournalNode - JournalNode - -

NameNode - MySQL Primary - -

NodeManager
(in clusters of
eight nodes or
less)

NodeManager NodeManager NodeManager NodeManager

Chapter 2
About the CDH Software Services

2-17

Table 2-5 (Cont.) First Rack Service Locations (When a Single-Rack Cluster is Extended)

Node01 Node02 Node03 Node04 Node05 to nn1

- - ResourceManager - -

ZooKeeper - ZooKeeper - -

Kerberos KDC
(Only if MIT
Kerberos is
enabled and on-
BDA KDCs are
being used.)

Kerberos KDC
(Only if MIT
Kerberos is enabled
and on-BDA KDCs
are being used.)

SparkHistoryServer - -

Sentry Server
(Only if Sentry is
enabled.)

- - - -

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if enabled) Big Data SQL (if
enabled)

Active Navigator
Key Trustee
Server (if HDFS
Transparent
Encryption is
enabled)

- - - -

1 nn includes the servers in additional racks.

Table 2-6 shows the service locations in the second rack of a cluster originally
configured as a single-rack cluster and subsequently extended.

Table 2-6 Second Rack Service Locations (When a Single-Rack Cluster is Extended)

Node01 Node02 Node03 Node04 Node05 to nn

Balancer

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera
Manager Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller - - - -

JournalNode Hive, Hue, Oozie, Solr - - -

MySQL Backup - - - -

NameNode - - - -

NodeManager (in
clusters of eight nodes
or less)

NodeManager NodeManager NodeManager NodeManager

HttpFS Oracle Data Integrator
Agent

- - -

- ResourceManager - - -

ZooKeeper - - - -

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Big Data SQL (if
enabled)

Chapter 2
About the CDH Software Services

2-18

Table 2-6 (Cont.) Second Rack Service Locations (When a Single-Rack Cluster is Extended)

Node01 Node02 Node03 Node04 Node05 to nn

Passive Navigator Key
Trustee Server (if
HDFS Transparent
Encryption is enabled)

Note:

When expanding a cluster from one to two racks, Mammoth moves all critical
services from nodes 2 and 4 of the first rack to nodes 1 and 2 of the second
rack. Nodes 2 and 4 of the first rack become noncritical nodes.

2.6.4 About MapReduce
Yet Another Resource Negotiator (YARN) is the version of MapReduce that runs on
Oracle Big Data Appliance, beginning with version 3.0. MapReduce applications
developed using MapReduce 1 (MRv1) may require recompilation to run under YARN.

The ResourceManager performs all resource management tasks. An MRAppMaster
performs the job management tasks. Each job has its own MRAppMaster. The
NodeManager has containers that can run a map task, a reduce task, or an
MRAppMaster. The NodeManager can dynamically allocate containers using the
available memory. This architecture results in improved scalability and better use of
the cluster than MRv1.

YARN also manages resources for Spark and Impala.

See Also:

"Running Existing Applications on Hadoop 2 YARN" at

http://hortonworks.com/blog/running-existing-applications-on-hadoop-2-

yarn/

2.6.5 Automatic Failover of the NameNode
The NameNode is the most critical process because it keeps track of the location of all
data. Without a healthy NameNode, the entire cluster fails. Apache Hadoop v0.20.2
and earlier are vulnerable to failure because they have a single name node.

Cloudera's Distribution including Apache Hadoop Version 4 (CDH5) reduces this
vulnerability by maintaining redundant NameNodes. The data is replicated during
normal operation as follows:

• CDH maintains redundant NameNodes on the first two nodes of a cluster. One of
the NameNodes is in active mode, and the other NameNode is in hot standby

Chapter 2
About the CDH Software Services

2-19

http://hortonworks.com/blog/running-existing-applications-on-hadoop-2-yarn/
http://hortonworks.com/blog/running-existing-applications-on-hadoop-2-yarn/

mode. If the active NameNode fails, then the role of active NameNode
automatically fails over to the standby NameNode.

• The NameNode data is written to a mirrored partition so that the loss of a single
disk can be tolerated. This mirroring is done at the factory as part of the operating
system installation.

• The active NameNode records all changes to the file system metadata in at least
two JournalNode processes, which the standby NameNode reads. There are three
JournalNodes, which run on the first three nodes of each cluster.

• The changes recorded in the journals are periodically consolidated into a single
fsimage file in a process called checkpointing.

On Oracle Big Data Appliance, the default log level of the NameNode is DEBUG, to
support the Oracle Audit Vault and Database Firewall plugin. If this option is not
configured, then you can reset the log level to INFO.

Note:

Oracle Big Data Appliance 2.0 and later releases do not support the use of
an external NFS filer for backups and do not use NameNode federation.

The following figure shows the relationships among the processes that support
automatic failover of the NameNode.

Figure 2-7 Automatic Failover of the NameNode on Oracle Big Data Appliance

Failover
Controller
Server 1

DataNode

DataNode

DataNode

JournalNode
edits

NameNode
(active mode)

Server 1

NameNode
(hot standby mode)

Server 2

Failover
Controller
Server 2

Checkpointing

JournalNode
edits

JournalNode
edits

ZooKeeper

2.6.6 Automatic Failover of the ResourceManager
The ResourceManager allocates resources for application tasks and application
masters across the cluster. Like the NameNode, the ResourceManager is a critical
point of failure for the cluster. If all ResourceManagers fail, then all jobs stop running.
Oracle Big Data Appliance supports ResourceManager High Availability in Cloudera 5
to reduce this vulnerability.

Chapter 2
About the CDH Software Services

2-20

CDH maintains redundant ResourceManager services on node03 and node04. One of
the services is in active mode, and the other service is in hot standby mode. If the
active service fails, then the role of active ResourceManager automatically fails over to
the standby service. No failover controllers are required.

The following figure shows the relationships among the processes that support
automatic failover of the ResourceManager.

Figure 2-8 Automatic Failover of the ResourceManager on Oracle Big Data
Appliance

NodeManager

NodeManager

NodeManager

ResourceManager
Server 3

ResourceManager
Server 4

ZooKeeper

2.6.7 Map and Reduce Resource Allocation
Oracle Big Data Appliance dynamically allocates memory to YARN. The allocation
depends upon the total memory on the node and whether the node is one of the four
critical nodes.

If you add memory, update the NodeManager container memory by increasing it by
80% of the memory added. Leave the remaining 20% for overhead.

2.7 Effects of Hardware on Software Availability
The effects of a server failure vary depending on the server's function within the CDH
cluster. Oracle Big Data Appliance servers are more robust than commodity hardware,
so you should experience fewer hardware failures. This section highlights the most
important services that run on the various servers of the primary rack. For a full list,
see "Where Do the Services Run on a Single-Rack CDH Cluster?."

Note:

In a multirack cluster, some critical services run on the first server of the
second rack. See "Where Do the Services Run on a Multirack CDH
Cluster?."

2.7.1 Logical Disk Layout
Each server has 12 disks. Disk partitioning is described in the table below.

The operating system is installed on disks 1 and 2. These two disks are mirrored. They
include the Linux operating system, all installed software, NameNode data, and
MySQL Database data. The NameNode and MySQL Database data are replicated on

Chapter 2
Effects of Hardware on Software Availability

2-21

the two servers for a total of four copies. As shown in the table, in cases where Disk 1
and 2 are 4 TB drives these include a 3440 GB HDFS data partition. If Disk 1 and 2
are 8 TB, each includes a 7314 GB HDFS data partition.

Drive 3 through 12 each contain a single HDFS or Oracle NoSQL Database data
partition

Table 2-7 Oracle Big Data Appliance Server Disk Partioning

Disks 1 and 2 (OS) Disks 3 – 12 (Data)

8 TB Drives:

Number Start End Size File
system Name Flags
 1 1049kB 500MB 499MB
ext4 primary boot
 2 500MB 501GB
500GB primary raid
 3 501GB 550GB 50.0GB linux-
swap(v1) primary
 4 550GB 7864GB 7314GB
ext4 primary

8 TB Drives:

Number Start End Size File
system Name Flags
 1 1049kB 7864GB 7864GB
ext4 primary

4 TB Drives:

Number Start End Size File
system Name Flags
 1 1049kB 500MB 499MB
ext4 primary boot
 2 500MB 501GB
500GB primary raid
 3 501GB 560GB 59.5GB linux-
swap(v1) primary
 4 560GB 4000GB 3440GB
ext4 primary

4 TB Drives:

Number Start End Size File
system Name Flags
 1 1049kB 4000GB 4000GB
ext4 primary

2.7.2 Critical and Noncritical CDH Nodes
Critical nodes are required for the cluster to operate normally and provide all services
to users. In contrast, the cluster continues to operate with no loss of service when a
noncritical node fails.

On single-rack clusters, the critical services are installed initially on the first four nodes
of the cluster. The remaining nodes (node05 up to node18) only run noncritical
services. If a hardware failure occurs on one of the critical nodes, then the services
can be moved to another, noncritical server. For example, if node02 fails, then you
might move its critical services node05. Table 2-2 identifies the initial location of
services for clusters that are configured on a single rack.

In a multirack cluster, some critical services run on the first server of the second rack.
See "Where Do the Services Run on a Single-Rack CDH Cluster?."

2.7.2.1 High Availability or Single Points of Failure?
Some services have high availability and automatic failover. Other services have a
single point of failure. The following list summarizes the critical services:

Chapter 2
Effects of Hardware on Software Availability

2-22

• NameNodes: High availability with automatic failover

• ResourceManagers: High availability with automatic failover

• MySQL Database: Primary and backup databases are configured with replication
of the primary database to the backup database. There is no automatic failover. If
the primary database fails, the functionality of the cluster is diminished, but no data
is lost.

• Cloudera Manager: The Cloudera Manager server runs on one node. If it fails,
then Cloudera Manager functionality is unavailable.

• Hue server, Hue load balancer, Sentry, Hive metastore: High availabiilty

• Oozie server, Oracle Data Integrator agent: These services have no
redundancy. If the node fails, then the services are unavailable.

2.7.2.2 Where Do the Critical Services Run?
The following table identifies where the critical services run in a CDH cluster. These
four nodes are described in more detail in the topics that follow.

Table 2-8 Critical Service Locations on a Single Rack

Node Name Critical Functions

First NameNode Balancer, Failover Controller, JournalNode, NameNode, Puppet
Master, ZooKeeper

Second NameNode Failover Controller, JournalNode, MySQL Backup Database,
NameNode, ZooKeeper

First ResourceManager
Node

Cloudera Manager Server, JobHistory, JournalNode, MySQL
Primary Database, ResourceManager, ZooKeeper.

Second ResourceManager
Node

Hive, Hue, Oozie, Solr, Oracle Data Integrator Agent,
ResourceManager

In a single-rack cluster, the four critical nodes are created initially on the first four
nodes. See "Where Do the Services Run on a Single-Rack CDH Cluster?"

In a multirack cluster, the Second NameNode and the Second ResourceManager
nodes are moved to the first two nodes of the second rack. See "Where Do the
Services Run on a Multirack CDH Cluster?".

2.7.3 First NameNode Node
If the first NameNode fails or goes offline (such as a restart), then the second
NameNode automatically takes over to maintain the normal activities of the cluster.

Alternatively, if the second NameNode is already active, it continues without a backup.
With only one NameNode, the cluster is vulnerable to failure. The cluster has lost the
redundancy needed for automatic failover.

The puppet master also runs on this node. The Mammoth utility uses Puppet, and so
you cannot install or reinstall the software if, for example, you must replace a disk
drive elsewhere in the rack.

Chapter 2
Effects of Hardware on Software Availability

2-23

2.7.4 Second NameNode Node
If the second NameNode fails, then the function of the NameNode either fails over to
the first NameNode (node01) or continues there without a backup. However, the
cluster has lost the redundancy needed for automatic failover if the first NameNode
also fails.

The MySQL backup database also runs on this node. MySQL Database continues to
run, although there is no backup of the master database.

2.7.5 First ResourceManager Node
If the first ResourceManager node fails or goes offline (such as in a restart of the
server where the node is running), then the second ResourceManager automatically
takes over the distribution of MapReduce tasks to specific nodes across the cluster.

If the second ResourceManager is already active when the first ResourceManager
becomes inaccessible, then it continues as ResourceManager, but without a backup.
With only one ResourceManager, the cluster is vulnerable because it has lost the
redundancy needed for automatic failover.

If the first ResourceManager node fails or goes offline (such as a restart), then the
second ResourceManager automatically takes over to distribute MapReduce tasks to
specific nodes across the cluster.

Alternatively, if the second ResourceManager is already active, it continues without a
backup. With only one ResourceManager, the cluster is vulnerable to failure. The
cluster has lost the redundancy needed for automatic failover.

These services are also disrupted:

• Cloudera Manager: This tool provides central management for the entire CDH
cluster. Without this tool, you can still monitor activities using the utilities described
in "Using Hadoop Monitoring Utilities".

• MySQL Database: Cloudera Manager, Oracle Data Integrator, Hive, and Oozie
use MySQL Database. The data is replicated automatically, but you cannot access
it when the master database server is down.

2.7.6 Second ResourceManager Node
If the second ResourceManager node fails, then the function of the ResourceManager
either fails over to the first ResourceManager or continues there without a backup.
However, the cluster has lost the redundancy needed for automatic failover if the first
ResourceManager also fails.

These services are also disrupted:

• Oracle Data Integrator Agent This service supports Oracle Data Integrator,
which is one of the Oracle Big Data Connectors. You cannot use Oracle Data
Integrator when the ResourceManager node is down.

• Hive: Hive provides a SQL-like interface to data that is stored in HDFS. Oracle Big
Data SQL and most of the Oracle Big Data Connectors can access Hive tables,
which are not available if this node fails.

Chapter 2
Effects of Hardware on Software Availability

2-24

• Hue: This administrative tool is not available when the ResourceManager node is
down.

• Oozie: This workflow and coordination service runs on the ResourceManager
node, and is unavailable when the node is down.

2.7.7 Noncritical CDH Nodes
The noncritical nodes are optional in that Oracle Big Data Appliance continues to
operate with no loss of service if a failure occurs. The NameNode automatically
replicates the lost data to always maintain three copies. MapReduce jobs execute on
copies of the data stored elsewhere in the cluster. The only loss is in computational
power, because there are fewer servers on which to distribute the work.

2.8 Managing a Hardware Failure
If a server starts failing, you must take steps to maintain the services of the cluster with
as little interruption as possible. You can manage a failing server easily using the
bdacli utility, as described in the following procedures. One of the management steps
is called decommissioning. Decommissioning stops all roles for all services, thereby
preventing data loss. Cloudera Manager requires that you decommission a CDH node
before retiring it.

When a noncritical node fails, there is no loss of service. However, when a critical
node fails in a CDH cluster, services with a single point of failure are unavailable, as
described in "Effects of Hardware on Software Availability". You must decide between
these alternatives:

• Wait for repairs to be made, and endure the loss of service until they are complete.

• Move the critical services to another node. This choice may require that some
clients are reconfigured with the address of the new node. For example, if the
second ResourceManager node (typically node03) fails, then users must redirect
their browsers to the new node to access Cloudera Manager.

You must weigh the loss of services against the inconvenience of reconfiguring the
clients.

2.8.1 About Oracle NoSQL Database Clusters
Oracle NoSQL Database clusters do not have critical nodes and because the storage
nodes are replicated by a factor of three, the risk of critical failure is minimal.
Administrative services are distributed among the nodes in number equal to the
replication factor. You can use the Administration CLI and Admin console to administer
the cluster from any node that hosts the administrative processes.

If the node hosting Mammoth fails (the first node of the cluster), then follow the
procedure for reinstalling it in "Prerequisites for Managing a Failing Node"

To repair or replace any failing Oracle NoSQL node, follow the procedure in
"Managing a Failing Noncritical Node".

2.8.2 Prerequisites for Managing a Failing Node
Ensure that you do the following before managing a failing or failed server, whether it
is configured as a CDH node or an Oracle NoSQL Database node:

Chapter 2
Managing a Hardware Failure

2-25

• Try restarting the services or rebooting the server.

• Determine whether the failing node is critical or noncritical.

• If the failing node is where Mammoth is installed:

1. For a CDH node, select a noncritical node in the same cluster as the failing
node.

For a NoSQL node, repair or replace the failed server first, and use it for these
steps.

2. Upload the Mammoth bundle to that node and unzip it.

3. Extract all files from BDAMammoth-version.run, using a command like the
following:

./BDAMammoth-ol6-4.0.0.run

Afterward, you must run all Mammoth operations from this node.

See Oracle Big Data Appliance Owner's Guide for information about the
Mammoth utility.

4. Follow the appropriate procedure in this section for managing a failing node.

Mammoth is installed on the first node of the cluster, unless its services were
migrated previously.

2.8.3 Managing a Failing CDH Critical Node
Only CDH clusters have critical nodes.

To manage a failing critical node:

1. Log in as root to the node where Mammoth is installed.

2. Migrate the services to a noncritical node. Replace node_name with the name of
the failing node, such as bda1node02.

bdacli admin_cluster migrate node_name

When the command finishes, node_name is decommissioned and its services are
running on a previously noncritical node.

3. Announce the change to the user community, so that they can redirect their clients
to the new critical node as required.

4. Repair or replace the failed server.

5. From the Mammoth node as root, reprovision the repaired or replaced server as a
noncritical node. Use the same name as the migrated node for node_name, such
as bda1node02:

bdacli admin_cluster reprovision node_name

6. If the failed node supported services like HBase or Impala, which Mammoth
installs but does not configure, then use Cloudera Manager to reconfigure them on
the new node.

Chapter 2
Managing a Hardware Failure

2-26

2.8.4 Managing a Failing Noncritical Node
Use the following procedure to replace a failing node in either a CDH or a NoSQL
cluster.

To manage a failing noncritical node:

1. Log in as root to the node where Mammoth is installed (typically node01).

2. Decommission the failing node. Replace node_name with the name of the failing
node.

bdacli admin_cluster decommission node_name

3. Repair or replace the failed server.

4. As root on the Mammoth node, recommission the repaired or replaced server. Use
the same name as the decommissioned node for node_name:

bdacli admin_cluster recommission node_name

5. In the case of a CDH cluster, log into Cloudera Manager, and locate the
recommissioned node. Check that HDFS DataNode, YARN NodeManager, and
any other roles that should be running are showing a green status light. If they are
not, then manually restart them.

See Also:

Oracle Big Data Appliance Owner's Guide for the complete bdacli syntax

2.9 Stopping and Starting Oracle Big Data Appliance
This section describes how to shut down Oracle Big Data Appliance gracefully and
restart it.

• Prerequisites

• Stopping Oracle Big Data Appliance

• Starting Oracle Big Data Appliance

2.9.1 Prerequisites
You must have root access. Passwordless SSH must be set up on the cluster, so that
you can use the dcli utility.

To ensure that passwordless-ssh is set up:

1. Log in to the first node of the cluster as root.

2. Use a dcli command to verify it is working. This command should return the IP
address and host name of every node in the cluster:

dcli -C hostname
192.0.2.1: bda1node01.example.com
192.0.2.2: bda1node02.example.com

Chapter 2
Stopping and Starting Oracle Big Data Appliance

2-27

 .
 .
 .

3. If you do not get these results, then set up dcli on the cluster:

setup-root-ssh -C

See Also:

Oracle Big Data Appliance Owner's Guide for details about these
commands.

2.9.2 Stopping Oracle Big Data Appliance
Follow these procedures to shut down all Oracle Big Data Appliance software and
hardware components.

Note:

The following services stop automatically when the system shuts down. You
do not need to take any action:

• Oracle Enterprise Manager agent

• Auto Service Request agents

2.9.2.1 Stopping All Managed Services
Use Cloudera Manager to stop the services it manages, including flume, hbase, hdfs,
hive, hue, mapreduce, oozie, and zookeeper.

1. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager".

2. In the Status pane of the opening page, expand the menu for the cluster and click
Stop, and then click Stop again when prompted to confirm. See Figure 2-9.

To navigate to this page, click the Home tab, and then the Status subtab.

3. On the Command Details page, click Close when all processes are stopped.

4. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Stop.

5. Log out of Cloudera Manager.

Chapter 2
Stopping and Starting Oracle Big Data Appliance

2-28

Figure 2-9 Stopping HDFS Services

2.9.2.2 Stopping Cloudera Manager Server
Follow this procedure to stop Cloudera Manager Server.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note:

The remaining tasks presume that you are logged in to a server as root.
You can enter the commands from any server by using the dcli
command. This example runs the pwd command on node03 from any
node in the cluster:

dcli -c node03 pwd

2. Stop the Cloudera Manager server:

service cloudera-scm-server stop
Stopping cloudera-scm-server: [OK]

3. Verify that the server is stopped:

service cloudera-scm-server status
cloudera-scm-server is stopped

After stopping Cloudera Manager, you cannot access it using the web console.

2.9.2.3 Stopping Oracle Data Integrator Agent
If Oracle Data Integrator is used on the cluster:

1. Check the status of the Oracle Data Integrator agent:

dcli -C service odi-agent status

2. Stop the Oracle Data Integrator agent, if it is running:

dcli -C service odi-agent stop

Chapter 2
Stopping and Starting Oracle Big Data Appliance

2-29

3. Ensure that the Oracle Data Integrator agent stopped running:

dcli -C service odi-agent status

2.9.2.4 Dismounting NFS Directories
All nodes share an NFS directory on node03, and additional directories may also exist.
If a server with the NFS directory (/opt/exportdir) is unavailable, then the other
servers hang when attempting to shut down. Thus, you must dismount the NFS
directories first.

1. Locate any mounted NFS directories:

dcli -C mount | grep shareddir
192.0.2.1: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.2: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.3: /opt/exportdir on /opt/shareddir type none (rw,bind)
 .
 .
 .

The sample output shows a shared directory on node03 (192.0.2.3).

2. Dismount the shared directory:

dcli -C umount /opt/shareddir

3. Dismount any custom NFS directories.

2.9.2.5 Stopping the Servers
The Linux shutdown -h command powers down individual servers. You can use the
dcli -g command to stop multiple servers.

1. Create a file that lists the names or IP addresses of the other servers in the
cluster, that is, not including the one you are logged in to.

2. Stop the other servers:

dcli -g filename shutdown -h now

For filename, enter the name of the file that you created in step 1.

3. Stop the server you are logged in to:

shutdown -h now

2.9.2.6 Stopping the InfiniBand and Cisco Switches
To stop the network switches, turn off a PDU or a breaker in the data center. The
switches only turn off when power is removed.

The network switches do not have power buttons. They shut down only when power is
removed

To stop the switches, turn off all breakers in the two PDUs.

Chapter 2
Stopping and Starting Oracle Big Data Appliance

2-30

2.9.3 Starting Oracle Big Data Appliance
Follow these procedures to power up the hardware and start all services on Oracle Big
Data Appliance.

2.9.3.1 Powering Up Oracle Big Data Appliance
1. Switch on all 12 breakers on both PDUs.

2. Allow 4 to 5 minutes for Oracle ILOM and the Linux operating system to start on
the servers.

If the servers do not start automatically, then you can start them locally by pressing the
power button on the front of the servers, or remotely by using Oracle ILOM. Oracle
ILOM has several interfaces, including a command-line interface (CLI) and a web
console. Use whichever interface you prefer.

For example, you can log in to the web interface as root and start the server from the
Remote Power Control page. The URL for Oracle ILOM is the same as for the host,
except that it typically has a -c or -ilom extension. This URL connects to Oracle ILOM
for bda1node4:

http://bda1node04-ilom.example.com

2.9.3.2 Starting the HDFS Software Services
Use Cloudera Manager to start all the HDFS services that it controls.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note:

The remaining tasks presume that you are logged in to a server as root.
You can enter the commands from any server by using the dcli
command. This example runs the pwd command on node03 from any
node in the cluster:

dcli -c node03 pwd

2. Verify that the Cloudera Manager started automatically on node03:

service cloudera-scm-server status
cloudera-scm-server (pid 11399) is running...

3. If it is not running, then start it:

service cloudera-scm-server start

4. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager".

5. In the Status pane of the opening page, expand the menu for the cluster and click
Start, and then click Start again when prompted to confirm. See Figure 2-9.

To navigate to this page, click the Home tab, and then the Status subtab.

Chapter 2
Stopping and Starting Oracle Big Data Appliance

2-31

6. On the Command Details page, click Close when all processes are started.

7. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Start.

8. Log out of Cloudera Manager (optional).

2.9.3.3 Starting Oracle Data Integrator Agent
If Oracle Data Integrator is used on this cluster:

1. Check the status of the agent:

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/startcmd.sh
OdiPingAgent [-AGENT_NAME=agent_name]

2. Start the agent:

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/agent.sh [-
NAME=agent_name] [-PORT=port_number]

2.10 Managing Oracle Big Data SQL
Oracle Big Data SQL is registered with Cloudera Manager as an add-on service. You
can use Cloudera Manager to start, stop, and restart the Oracle Big Data SQL service
or individual role instances, the same way as a CDH service.

Cloudera Manager also monitors the health of the Oracle Big Data SQL service,
reports service outages, and sends alerts if the service is not healthy.

2.10.1 Adding and Removing the Oracle Big Data SQL Service
Oracle Big Data SQL is an optional package that can be installed on Oracle Big Data
Appliance. You can use Cloudera Manager to determine if Oracle Big Data SQL is
installed, but cannot use it to add or remove the service from a CDH cluster on Oracle
Big Data Appliance.

A version of this software is included in the Mammoth bundle for each Oracle Big Data
Appliance release. The bundled version can be installed with the other client software
during the initial software installation or an upgrade. A more recent version of Oracle
Big Data SQL than the one included with Oracle Big Data Appliance may be available.
The Preface of the Oracle Big Data Appliance Owner’s Guide identifies the changes in
each release, including which version of Oracle Big Data SQL is bundled with the
release. See the Oracle Big Data SQL Master Compatibility Matrix (Doc ID 2119369.1)
in My Oracle Support for up-to-date information on other versions of Oracle Big Data
SQL that are compatible with your current release of Oracle Big Data Appliance.

To install the version of Oracle Big Data SQL that is included with Oracle Big Data
Appliance, log in to the server where Mammoth is installed (usually the first node of
the cluster). use the following commands in the bdacli utility:

• To enable Oracle Big Data SQL

bdacli enable big_data_sql

• To disable Oracle Big Data SQL:

bdacli disable big_data_sql

Chapter 2
Managing Oracle Big Data SQL

2-32

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=my_oracle_support

To add or remove other versions of Oracle Big Data SQL, see the installation guide for
that release.

A separate license is required for Oracle Big Data SQL. The license is not included
with the Oracle Big Data Appliance license agreement.

2.10.2 Choosing Between Ethernet and InfiniBand Connections For
Oracle Big Data SQL

For Oracle Big Data SQL, you can use the either the client Ethernet network or the
InfiniBand network to connect Oracle Big Data Appliance and Oracle Database.

Note:

Ethernet networking for Oracle Big Data SQL between Oracle SPARC
SuperCluster and Oracle Big Data Appliance is not supported at this time.

There are three points at which you can specify either Ethernet and InfiniBand
networking for Oracle Big Data SQL:

• When using the Oracle Big Data Appliance Configuration Utility to prepare for the
Mammoth installation.

• After running Mammoth but prior to the deployment of the Oracle Database side of
the Oracle Big Data SQL installation.

• After Oracle Big Data SQL is fully deployed.

It is best to decide on the appropriate network at the earliest stage – when using the
Configuration Utility.

Choosing InfiniBand or Ethernet in the Oracle Big Data Appliance Configuration
Utility

The Oracle Big Data Appliance Configuration Utility provides an option to let you
choose between the default InfiniBand connection and a connection via Ethernet. The
Cluster page in the configuration utility includes this question:

Is Big Data SQL using InfiniBand?

If you bypass the question, then by default the InfiniBand network is used. InfiniBand is
also used if you Respond Yes. Respond No in order to choose an Ethernet connection.

Switching to Ethernet Before Deploying Oracle Big Data SQL to Oracle Database
Servers

After running the Mammoth installation, but before creating and deploying the Oracle
Big Data SQL database-side installation bundle, you can use the following steps to
reset to an Ethernet or InfiniBand connection.

1. If you had chosen to include Oracle Big Data SQL in the Mammoth installation,
then as root, disable Oracle Big Data SQL when Mammoth is done.

bdacli disable big_data_sql

Chapter 2
Managing Oracle Big Data SQL

2-33

2. On the node where Configuration Manager is running, make a backup of the
file /opt/oracle/bda/install/state/config.json and then as root, open the original
file for editing.

3. Find the parameter BDS_IB_CONNECTION. The possible values of this parameter are:

• FALSE – the IP adddress and mask of the Ethernet-based Client network is
used.

• TRUE – the IP address and mask of the InfiniBand network is used.

• By default, if the value is not specified, then the InfiniBand network is used.

To choose an Ethernet connection for Oracle Big Data SQL, set BDS_IB_CONNECTION
to FALSE and save the file.

4. Re-enable Oracle Big Data SQL.

bdacli enable big_data_sql

5. Generate and deploy the database-side installation bundle as described in Oracle
Big Data SQL Installation Guide. The installer included the bundle will configure
the InfiniBand connection on the database side (if that is the network that was
selected in the previous steps). As mentioned in the installation guide, you must
deploy the bundle to each database node.

Switching Between InfiniBand and Ethernet After Oracle Big Data SQL has been
Deployed to the Oracle Database Servers

Switching networks after Oracle Big Data SQL has been fully deployed requires a
reconfiguration of the installation on all nodes on the Oracle Database side. You must
rebuild and re-deploy the database-side installation bundle.

1. As described in the first 4 steps above, disable Oracle Big Data SQL and on the
node that runs Configuration Manager, edit config.json. Set BDS_IB_CONNECTION to
use the desired network and then re-enable Oracle Big Data SQL.

2. In this case, before generating and deploying the database bundle, CD to the
BDSSetup directory installed by Oracle Big Data SQL and run the following
commands, which will build a reconfigured database-side installation bundle.

[root@myclustermgmtserver: BDSSetup] # ./setup-bds reconfigure bds-config.json
[root@myclustermgmtserver: BDSSetup] # ./cd db
[root@myclustermgmtserver: db] # ./bds-database-create-bundle.sh --reconfigure

3. Deploy and install this new bundle on all database nodes.

See Also:

The Oracle Big Data SQL Installation Guide provides complete information
on installing and configuring Oracle Big Data SQL.

2.10.3 Allocating Resources to Oracle Big Data SQL
You can modify the property values in a Linux kernel Control Group (Cgroup) to
reserve resources for Oracle Big Data SQL.

Chapter 2
Managing Oracle Big Data SQL

2-34

To modify the resource management configuration settings:

1. Log in as admin to Cloudera Manager.

2. On the Home page, click bigdatasql from the list of services.

3. On the bigdatasql page, click Configuration.

4. Under Category, expand BDS Server Default Group and click Resource
Management.

5. Modify the values of the following properties as required:

• Cgroup CPU Shares

• Cgroup I/O Weight

• Cgroup Memory Soft Limit

• Cgroup Memory Hard Limit

See the Description column on the page for guidelines.

6. Click Save Changes.

7. From the Actions menu, click Restart.

The following figure shows the bigdatasql service configuration page.

Figure 2-10 Modifying the Cgroup Settings for Oracle Big Data SQL

Chapter 2
Managing Oracle Big Data SQL

2-35

See Also:

"Allocating Resources Among Services".

2.11 Security on Oracle Big Data Appliance
You can take precautions to prevent unauthorized use of the software and data on
Oracle Big Data Appliance.

This section contains these topics:

• About Predefined Users and Groups

• About User Authentication

• About Fine-Grained Authorization

• Port Numbers Used on Oracle Big Data Appliance

• About Puppet Security

2.11.1 About Predefined Users and Groups
Every open-source package installed on Oracle Big Data Appliance creates one or
more users and groups. Most of these users do not have login privileges, shells, or
home directories. They are used by daemons and are not intended as an interface for
individual users. For example, Hadoop operates as the hdfs user, MapReduce
operates as mapred, and Hive operates as hive.

You can use the oracle identity to run Hadoop and Hive jobs immediately after the
Oracle Big Data Appliance software is installed. This user account has login privileges,
a shell, and a home directory.

Oracle NoSQL Database and Oracle Data Integrator run as the oracle user. Its
primary group is oinstall.

Note:

Do not delete, re-create, or modify the users that are created during
installation, because they are required for the software to operate.

The following table identifies the operating system users and groups that are created
automatically during installation of Oracle Big Data Appliance software for use by CDH
components and other software packages.

Table 2-9 Operating System Users and Groups

User Name Group Used By Login Rights

flume flume Apache Flume parent and nodes No

hbase hbase Apache HBase processes No

Chapter 2
Security on Oracle Big Data Appliance

2-36

Table 2-9 (Cont.) Operating System Users and Groups

User Name Group Used By Login Rights

hdfs hadoop NameNode, DataNode No

hive hive Hive metastore and server processes No

hue hue Hue processes No

mapred hadoop ResourceManager, NodeManager, Hive
Thrift daemon

Yes

mysql mysql MySQL server Yes

oozie oozie Oozie server No

oracle dba, oinstall Oracle NoSQL Database, Oracle Loader for
Hadoop, Oracle Data Integrator, and the
Oracle DBA

Yes

puppet puppet Puppet parent (puppet nodes run as root) No

sqoop sqoop Apache Sqoop metastore No

svctag Auto Service Request No

zookeeper zookeeper ZooKeeper processes No

2.11.2 About User Authentication
Oracle Big Data Appliance supports Kerberos security as a software installation
option. See Supporting User Access to Oracle Big Data Appliance for details about
setting up clients and users to access a Kerberos-protected cluster.

2.11.3 About Fine-Grained Authorization
The typical authorization model on Hadoop is at the HDFS file level, such that users
either have access to all of the data in the file or none. In contrast, Apache Sentry
integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Oracle Big Data Appliance automatically configures Sentry during software installation,
beginning with Mammoth utility version 2.5.

See Also:

• Cloudera Manager Help

• Managing Clusters with Cloudera Manager at

https://www.cloudera.com/content/cloudera-content/cloudera-docs/

CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-

with-Cloudera-Manager.html

Chapter 2
Security on Oracle Big Data Appliance

2-37

https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html

2.11.4 About HDFS Transparent Encryption
HDFS Transparent Encryption protects Hadoop data that is at rest on disk. After HDFS
Transparent Encryption is enabled for a cluster on Oracle Big Data Appliance, data
writes and reads to encrypted zones (HDFS directories) on the disk are automatically
encrypted and decrypted. This process is “transparent” because it is invisible to the
application working with the data.

HDFS Transparent Encryption does not affect user access to Hadoop data, although it
can have a minor impact on performance.

HDFS Transparent Encryption is an option that you can select during the initial
installation of the software by the Mammoth utility. You can also enable or disable
HDFS Transparent Encryption at any time by using the bdacli utility. Note that HDFS
Transparent Encryption can be installed only on a Kerberos-secured cluster.

Oracle recommends that you set up the Navigator Key Trustee (the service that
manages keys and certificates) on a separate server, external to the Oracle Big Data
Appliance.

See the following MOS documents at My Oracle Support for instructions on installing
and enabling HDFS Transparent Encryption.

Title MOS Doc ID

How to Setup Highly Available Active and
Passive Key Trustee Servers on BDA V4.4
Using 5.5 Parcels

2112644.1
Installing using parcels as described in this
MOS document is recommended over
package-based installation. See Cloudera’s
comments on Parcels.

How to Enable/Disable HDFS Transparent
Encryption on Oracle Big Data Appliance V4.4
with bdacli

2111343.1

How to Create Encryption Zones on HDFS on
Oracle Big Data Appliance V4.4

2111829.1

Note:

If either HDFS Transparent Encryption or Kerberos is disabled, data stored in
the HDFS Transparent Encryption zones in the cluster will remain encrypted
and therefore inaccessible. To restore access to the data, re-enable HDFS
Transparent Encryption using the same key provider.

See Also:

Cloudera documentation about HDFS at-rest encryption at http://
www.cloudera.com for more information about managing files in encrypted
zones.

Chapter 2
Security on Oracle Big Data Appliance

2-38

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=my_oracle_support
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_parcels.html?scroll=concept_fwl_d1x_k4_unique_1
http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera
http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera

2.11.5 About HTTPS/Network Encryption
HTTPS Network/Encryption on the Big Data Appliance has two components :

• Web Interface Encryption

Configures HTTPS for the following web interfaces: Cloudera Manager, Oozie,
and HUE. This encryption is now enabled automatically in new Mammoth
installations. For current installations it can be enabled via the bdacli utility. This
feature does not require that Kerberos is enabled.

• Encryption for Data in Transit and Services

There are two subcomponents to this feature. Both are options that can be
enabled in the Configuration Utility at installation time or enabled/disabled using
the bdacli utility at any time. Both require that Kerberos is enabled.

– Encrypt Hadoop Services

This includes SSL encryption for HDFS, MapReduce, and YARN web
interfaces, as well as encrypted shuffle for MapReduce and YARN. It also
enable authentication for access to the web consoles for the MapReduce, and
YARN roles.

– Encrypt HDFS Data Transport

This option will enable encryption of data transferred between DataNodes and
clients, and among DataNodes.

HTTPS/Network Encryption is enabled and disabled on a per cluster basis. The
Configuration Utility described in the Oracle Big Data Appliance Owner’s Guide,
includes settings for enabling encryption for Hadoop Services and HDFS Data
Transport when a cluster is created. The bdacli utility reference pages (also in the
Oracle Big Data Appliance Owner’s Guide) provide HTTPS/Network Encryption
command line options.

See Also:

Supporting User Access to Oracle Big Data Appliance for an overview of how
Kerberos is used to secure CDH clusters.

About HDFS Transparent Encryption for information about Oracle Big Data
Appliance security for Hadoop data at-rest.

Cloudera documentation at http://www.cloudera.com for more information
about HTTPS communication in Cloudera Manager and network-level
encryption in CDH.

2.11.5.1 Configuring Web Browsers to use Kerberos Authentication

If web interface encryption is enabled, each web browser accessing an HDFS,
MapReduce, or YARN-encrypted web interface must be configured to authenticate
with Kerberos. Note that this is not necessary for the Cloudera Manager, Oozie, and
Hue web interfaces, which do not require Kerberos.

Chapter 2
Security on Oracle Big Data Appliance

2-39

http://www.oracle.com/pls/lookup?ctx=E71937-01&id=cloudera

The following are the steps to configure Mozilla Firefox, Microsoft Internet Explorer,
and Google Chrome for Kerberos authentication.

To configure Mozilla Firefox:

1. Enter about:config in the Location Bar.

2. In the Search box on the about:config page, enter: network.negotiate-
auth.trusted-uris

3. Under Preference Name, double-click the network.negotiate-auth.trusted-uris .

4. In the Enter string value dialog, enter the hostname or the domain name of the
web server that is protected by Kerberos. Separate multiple domains and
hostnames with a comma.

To configure Microsoft Internet Explorer:

1. Configure the Local Intranet Domain:

a. Open Microsoft Internet Explorer and click the Settings "gear" icon in the top-
right corner. Select Internet options.

b. Select the Security tab.

c. Select the Local intranet zone and click Sites.

d. Make sure that the first two options, Include all local (intranet)
sites not listed in other zones and Include all sites that
bypass the proxy server are checked.

e. Click Advanced on the Local intranet dialog box and, one at a time, add
the names of the Kerberos-protected domains to the list of websites.

f. Click Close.

g. Click OK to save your configuration changes, then click OK again to exit the
Internet Options panel.

2. Configure Intranet Authentication for Microsoft Internet Explorer:

a. Click the Settings "gear" icon in the top-right corner. Select Internet
Options.

b. Select the Security tab.

c. Select the Local Intranet zone and click the Custom level... button to open the
Security Settings - Local Intranet Zone dialog box.

d. Scroll down to the User Authentication options and select Automatic
logon only in Intranet zone .

e. Click OK to save your changes.

To configure Google Chrome:

1 Mozilla Firefox is a registered trademark of the Mozilla Foundation.
1 Mozilla Firefox is a registered trademark of the Mozilla Foundation.
2 Microsoft Internet Explorer is a registered trademark of Microsoft Corporation.
2 Microsoft Internet Explorer is a registered trademark of Microsoft Corporation.
3 Google Chrome is a registered trademark of Google Inc
3 Google Chrome is a registered trademark of Google Inc

Chapter 2
Security on Oracle Big Data Appliance

2-40

If you are using Microsoft Windows, use the Control Panel to navigate to the Internet
Options dialogue box. Configuration changes required are the same as those
described above for Microsoft Internet Explorer.

On or on Linux, add the --auth-server-whitelist parameter to the google-chrome
command. For example, to run Chrome from a Linux prompt, run the google-chrome
command as follows

 google-chrome --auth-server-whitelist = "hostname/domain"

Note:

On Microsoft Windows, the Windows user must be an user in the Kerberos
realm and must possess a valid ticket. If these requirements are not met, an
HTTP 403 is returned to the browser upon attempt to access a Kerberos-
secured web interface.

2.11.6 Port Numbers Used on Oracle Big Data Appliance
The following table identifies the port numbers that might be used in addition to those
used by CDH.

To view the ports used on a particular server:

1. In Cloudera Manager, click the Hosts tab at the top of the page to display the
Hosts page.

2. In the Name column, click a server link to see its detail page.

3. Scroll down to the Ports section.

See Also:

For the full list of CDH port numbers, go to the Cloudera website at

https://www.cloudera.com/documentation/enterprise/latest/topics/
cdh_ig_ports_cdh5.html

Table 2-10 Oracle Big Data Appliance Port Numbers

Service Port

Automated Service Monitor (ASM) 30920

MySQL Database 3306

Oracle Data Integrator Agent 20910

Oracle NoSQL Database administration 5001

Oracle NoSQL Database processes 5010 to 5020

4 Mac OS is a registered trademark of Apple, Inc.
4 Mac OS is a registered trademark of Apple, Inc.

Chapter 2
Security on Oracle Big Data Appliance

2-41

https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_ports_cdh5.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_ports_cdh5.html

Table 2-10 (Cont.) Oracle Big Data Appliance Port Numbers

Service Port

Oracle NoSQL Database registration 5000

Port map 111

Puppet master service 8140

Puppet node service 8139

rpc.statd 668

ssh 22

xinetd (service tag) 6481

2.11.7 About Puppet Security
The puppet node service (puppetd) runs continuously as root on all servers. It listens
on port 8139 for "kick" requests, which trigger it to request updates from the puppet
master. It does not receive updates on this port.

The puppet master service (puppetmasterd) runs continuously as the puppet user on
the first server of the primary Oracle Big Data Appliance rack. It listens on port 8140
for requests to push updates to puppet nodes.

The puppet nodes generate and send certificates to the puppet master to register
initially during installation of the software. For updates to the software, the puppet
master signals ("kicks") the puppet nodes, which then request all configuration
changes from the puppet master node that they are registered with.

The puppet master sends updates only to puppet nodes that have known, valid
certificates. Puppet nodes only accept updates from the puppet master host name
they initially registered with. Because Oracle Big Data Appliance uses an internal
network for communication within the rack, the puppet master host name resolves
using /etc/hosts to an internal, private IP address.

2.12 Auditing Oracle Big Data Appliance

Notice:

Audit Vault and Database Firewall is no longer supported for use with Oracle
Big Data Appliance. It is recommended that customers use Cloudera
Navigator for monitoring.

2.13 Collecting Diagnostic Information for Oracle Customer
Support

If you need help from Oracle Support to troubleshoot CDH issues, then you should first
collect diagnostic information using the bdadiag utility with the cm option.

Chapter 2
Auditing Oracle Big Data Appliance

2-42

To collect diagnostic information:

1. Log in to an Oracle Big Data Appliance server as root.

2. Run bdadiag with at least the cm option. You can include additional options on the
command line as appropriate. See the Oracle Big Data Appliance Owner's Guide
for a complete description of the bdadiag syntax.

bdadiag cm

The command output identifies the name and the location of the diagnostic file.

3. Go to My Oracle Support at http://support.oracle.com.

4. Open a Service Request (SR) if you have not already done so.

5. Upload the bz2 file into the SR. If the file is too large, then upload it to
sftp.oracle.com, as described in the next procedure.

To upload the diagnostics to ftp.oracle.com:

1. Open an SFTP client and connect to sftp.oracle.com. Specify port 2021 and
remote directory /support/incoming/target, where target is the folder name given
to you by Oracle Support.

2. Log in with your Oracle Single Sign-on account and password.

3. Upload the diagnostic file to the new directory.

4. Update the SR with the full path and the file name.

See Also:

My Oracle Support Note 549180.1 at

http://support.oracle.com

Chapter 2
Collecting Diagnostic Information for Oracle Customer Support

2-43

http://www.oracle.com/pls/lookup?ctx=E83411_01&id=my_oracle_support
http://www.oracle.com/pls/lookup?ctx=E83411_01&id=my_oracle_support

3
Supporting User Access to Oracle Big Data
Appliance

This chapter describes how you can support users who run MapReduce jobs on
Oracle Big Data Appliance or use Oracle Big Data Connectors. It contains these
sections:

• About Accessing a Kerberos-Secured Cluster

• Providing Remote Client Access to CDH

• Providing Remote Client Access to Hive

• Managing User Accounts

• Recovering Deleted Files

3.1 About Accessing a Kerberos-Secured Cluster
Apache Hadoop is not an inherently secure system. It is protected only by network
security. After a connection is established, a client has full access to the system.

To counterbalance this open environment, Oracle Big Data Appliance supports
Kerberos security as a software installation option. Kerberos is a network
authentication protocol that helps prevent malicious impersonation. Oracle Big Data
Appliance support two forms of Kerberos Hadoop security: MIT Kerberos and
Microsoft Active Directory Kerberos.

CDH provides these securities when configured to use Kerberos:

• The CDH master nodes, NameNodes, and JournalNodes resolve the group name
so that users cannot manipulate their group memberships.

• Map tasks run under the identity of the user who submitted the job.

• Authorization mechanisms in HDFS and MapReduce help control user access to
data.

Oracle Big Data Appliance provides the ability to configure Kerberos security directly
using a Microsoft Active Directory (AD) server for Kerberos support (as supported by
Cloudera Manager).

You have the option of enabling either form of Kerberos as part of the Mammoth
configuration. You can also enable or disable Kerberos later through the bdacli utility.

If the Oracle Big Data Appliance cluster is secured with Kerberos, then you must take
additional steps to authenticate a CDH client and individual users, as described in this
chapter. Users must know their Kerberos user name, password, and realm.

The following table describes some frequently used Kerberos commands. For more
information, see the MIT Kerberos documentation.

3-1

Table 3-1 Kerberos User Commands

Command Description

kinit userid@realm Obtains a Kerberos ticket.

klist Lists a Kerberos ticket if you have one already.

kdestroy Invalidates a ticket before it expires.

kpasswd userid@realm Changes your password.

See Also:

• MIT Kerberos Documentation at http://web.mit.edu/kerberos/krb5-
latest/doc/

• CDH 5 Security Guide at https://www.cloudera.com/documentation/cdh/
5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.html.

• If you choose to enable Active Directory Kerberos, either with Mammoth
or with the bdacli utility, first read MOS (My Oracle Support) documents
2029378.1 and 2013585.1. These documents explain required
preliminary steps and provide important information on known issues.

3.2 Providing Remote Client Access to CDH
Oracle Big Data Appliance supports full local access to all commands and utilities in
Cloudera's Distribution including Apache Hadoop (CDH).

You can use a browser on any computer that has access to the client network of
Oracle Big Data Appliance to access Cloudera Manager, Hadoop Map/Reduce
Administration, the Hadoop Task Tracker interface, and other browser-based Hadoop
tools.

To issue Hadoop commands remotely, however, you must connect from a system
configured as a CDH client with access to the Oracle Big Data Appliance client
network. This section explains how to set up a computer so that you can access HDFS
and submit MapReduce jobs on Oracle Big Data Appliance.

See Also:

My Oracle Support ID 1506203.1

3.2.1 Prerequisites
Ensure that you have met the following prerequisites:

• You must have these access privileges:

– Sudo access to the client system

Chapter 3
Providing Remote Client Access to CDH

3-2

http://web.mit.edu/kerberos/krb5-latest/doc/
http://web.mit.edu/kerberos/krb5-latest/doc/
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.htmlL
https://www.cloudera.com/documentation/cdh/5-0-x/CDH5-Security-Guide/CDH5-Security-Guide.htmlL

– Login access to Cloudera Manager

If you do not have these privileges, then contact your system administrator for
help.

• The client system must run an operating system that Cloudera supports for CDH5.
See the Cloudera CDH5 Installation Guide at

http://www.cloudera.com/content/www/en-us/documentation/cdh/5-0-x/CDH5-

Installation-Guide/CDH5-Installation-Guide.html

• The client system must run Oracle JDK 1.7.0_25 or later.

To verify the version, use this command:

$ java -version
java version "1.7.0_65"
Java(TM) SE Runtime Environment (build 1.7.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

• In the client configuration, ensure that the HDFS property
dfs.client.use.datanode.hostname is set to “true”.

<property>
 <name>dfs.client.use.datanode.hostname</name>
 <value>true</value>
 <description>Whether clients should use datanode hostnames when
 connecting to datanodes.
 </description>
</property>

This is property is already set to “true” if you download the configuration from
Cloudera Manager on Oracle Big Data Appliance. It may not be set to “true” if you
acquire the configuration from other sources, including Cloudera.

3.2.2 Installing a CDH Client on Any Supported Operating System
To install a CDH client on any operating system identified as supported by Cloudera,
follow these instructions.

To install the CDH client software:

1. Log in to the client system.

2. If an earlier version of Hadoop is already installed, then remove it.

See the Cloudera documentation for removing an earlier CDH version at

https://www.cloudera.com/documentation/enterprise/latest/topics/
cdh_ig_cdh_comp_uninstall.html

3. Copy the CDH software from any node in a CDH cluster on Oracle Big Data
Appliance. For example, the following file contains the CDH 5.8.0 software:

/opt/oss/src/CDH/5.8.0-ol5/hadoop-2.6.0-cdh5.8.0.tar.gz

4. Decompress the file into a permanent location, which will be the Hadoop home
directory. The following command unzips the files into hadoop-2.6.0-cdh5.8.0 in the
current directory:

tar -xvzf hadoop-2.6.0-cdh5.8.0.tar.gz

5. Configure the CDH client, as described in the next procedure.

Chapter 3
Providing Remote Client Access to CDH

3-3

http://www.cloudera.com/content/www/en-us/documentation/cdh/5-0-x/CDH5-Installation-Guide/CDH5-Installation-Guide.html
http://www.cloudera.com/content/www/en-us/documentation/cdh/5-0-x/CDH5-Installation-Guide/CDH5-Installation-Guide.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_cdh_comp_uninstall.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_cdh_comp_uninstall.html

3.2.3 Configuring a CDH Client for an Unsecured Cluster
After installing CDH, you must configure it for use with Oracle Big Data Appliance.

The commands in this procedure that reference HADOOP_HOME are used to support older
Hadoop clients that require this environment variable. The cluster uses YARN (MRv2)
and does not use HADOOP_HOME. If no older clients access the cluster, then you can omit
these commands.

To configure the Hadoop client:

1. Log in to the client system and download the MapReduce client configuration from
Cloudera Manager. In this example, Cloudera Manager listens on port 7180 (the
default) of bda01node03.example.com, and the configuration is stored in a file named
yarn-conf.zip.

$ wget -O yarn-conf.zip http://bda01node03.example.com:7180/cmf/services/3/
client-config

2. Unzip mapreduce-config.zip into a permanent location on the client system.

$ unzip yarn-config.zip
Archive: yarn-config.zip
 inflating: yarn-conf/hadoop-env.sh
 inflating: yarn-conf/hdfs-site.xml
 inflating: yarn-conf/core-site.xml
 inflating: yarn-conf/mapred-site.xml
 inflating: yarn-conf/log4j.properties
 inflating: yarn-conf/yarn-site.xml

All files are stored in a subdirectory named yarn-config.

3. Set the symbolic links:

ln -s $HADOOP_HOME/../../../bin-mapreduce1 $HADOOP_HOME/bin
ln -s $HADOOP_HOME/../../../etc/hadoop-mapreduce1 $HADOOP_HOME/conf
rm -f $HADOOP_HOME/lib/slf4j-log4j*jar

4. Open hadoop-env.sh in a text editor and set the environment variables to the actual
paths on your system:

export HADOOP_HOME=hadoop-home-dir/share/hadoop/mapreduce1
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=yarn-conf-dir
export JAVA_HOME=/usr/java/version
alias hadoop=$HADOOP_HOME/bin/hadoop
alias hdfs=$HADOOP_HOME/../../../bin/hdfs

5. Make a backup copy of the Hadoop configuration files:

cp /full_path/yarn-conf /full_path/yarn-conf-bak

6. Overwrite the existing configuration files with the downloaded configuration files in
Step 2.

cd /full_path/yarn-conf
cp * /usr/lib/hadoop/conf

3.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster
Follow these steps to enable the CDH client to work with a secure CDH cluster.

Chapter 3
Providing Remote Client Access to CDH

3-4

To configure a CDH client for Kerberos:

1. Log in to the system where you created the CDH client.

2. Install the Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files:

a. Download the files for your Java version:

Java 6: http://www.oracle.com/technetwork/java/javase/downloads/jce-6-
download-429243.html

Java 7: http://www.oracle.com/technetwork/java/javase/downloads/jce-7-
download-432124.html

Java 8: http://www.oracle.com/technetwork/java/javase/downloads/jce8-
download-2133166.html

b. Decompress the downloaded file. This example unzips JCE-8:

$ unzip UnlimitedJCEPolicyJDK8.zip
Archive: UnlimitedJCEPolicyJDK8.zip
 creating: UnlimitedJCEPolicy/
 inflating: UnlimitedJCEPolicy/US_export_policy.jar
 inflating: UnlimitedJCEPolicy/local_policy.jar
 inflating: UnlimitedJCEPolicy/README.txt

Note:

The JCE-6 files unzip into a directory named jce instead of
UnlimitedJCEPolicy.

c. Copy the unzipped files into the Java security directory. For example:

$ cp UnlimitedJCEPolicy/* /usr/java/latest/jre/lib/security/

3. Follow the steps for configuring an unsecured client.

See "Configuring a CDH Client for an Unsecured Cluster."

4. Ensure that you have a user ID on the CDH cluster that had been added to the
Kerberos realm.

See "Creating Hadoop Cluster Users."

5. On the CDH client system, create a file named krb5.conf in the $HADOOP_CONF_DIR
directory. Enter configuration settings like the following, using values appropriate
for your installation for the server names, domain, and realm:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 clockskew = 3600
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
[realms]
 EXAMPLE.COM = {
 kdc = bda01node01.example:88
 admin_server = bda01node07:749

Chapter 3
Providing Remote Client Access to CDH

3-5

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

 default_domain = example.com
 }
[domain_realm]
 .com = EXAMPLE.COM

6. Activate the new configuration file:

export KRB5_CONFIG=$HADOOP_CONF_DIR/krb5.conf
export HADOOP_OPTS="-Djava.security.krb5.conf=$HADOOP_CONF_DIR/krb5.conf"
export KRB5CCNAME=$HADOOP_CONF_DIR/krb5cc_$USER

7. Verify that you have access to the Oracle Big Data Appliance cluster.

See "Verifying Access to a Cluster from the CDH Client."

3.2.5 Verifying Access to a Cluster from the CDH Client
Follow this procedure to ensure that you have access to the Oracle Big Data
Appliance cluster.

To verify cluster access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Verify that you can access HDFS on Oracle Big Data Appliance from the client, by
entering a simple Hadoop file system command like the following:

$ hadoop fs -ls /user
Found 6 items
drwxr-xr-x - jdoe hadoop 0 2014-04-03 00:08 /user/jdoe
drwxrwxrwx - mapred hadoop 0 2014-04-02 23:25 /user/history
drwxr-xr-x - hive supergroup 0 2014-04-02 23:27 /user/hive
drwxrwxr-x - impala impala 0 2014-04-03 10:45 /user/impala
drwxr-xr-x - oozie hadoop 0 2014-04-02 23:27 /user/oozie
drwxr-xr-x - oracle hadoop 0 2014-04-03 11:49 /user/oracle

Check the output for HDFS users defined on Oracle Big Data Appliance, and not
on the client system. You should see the same results as you would after entering
the command directly on Oracle Big Data Appliance.

3. Submit a MapReduce job. You must be logged in to the client system under the
same user name as your HDFS user name on Oracle Big Data Appliance.

The following example calculates the value of pi:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-
examples-*jar pi 10 1000000
Number of Maps = 10
Samples per Map = 1000000
Wrote input for Map #0
Wrote input for Map #1
 .
 .
 .
Job Finished in 12.403 seconds
Estimated value of Pi is 3.14158440000000000000

4. Use Cloudera Manager to verify that the job ran on Oracle Big Data Appliance
instead of the local system. Select mapreduce Jobs from the Activities menu for a
list of jobs.

Chapter 3
Providing Remote Client Access to CDH

3-6

The following figure shows the job created by the previous example.

Figure 3-1 Monitoring a YARN Job in Cloudera Manager

3.3 Providing Remote Client Access to Hive
Follow this procedure to provide remote client access to Hive.

To set up a Hive client:

1. Set up a CDH client. See "Providing Remote Client Access to CDH."

2. Log in to the client system and download the Hive client configuration from
Cloudera Manager. In this example, Cloudera Manager listens on port 7180 (the
default) of bda01node03.example.com, and the configuration is stored in a file named
hive-conf.zip.

$ wget -O hive-conf.zip http://bda01node03.example.com:7180/cmf/services/5/
client-config
Length: 1283 (1.3K) [application/zip]
Saving to: 'hive-conf.zip'
100%[======================================>] 1,283 --.-K/s in 0.001s
2016-05-15 08:19:06 (2.17 MB/s) - `hive-conf.zip' saved [1283/1283]

3. Unzip the file into a permanent installation directory, which will be the Hive
configuration directory:

$ unzip hive-conf.zip
Archive: hive-conf.zip
 inflating: hive-conf/hive-env.sh
 inflating: hive-conf/hive-site.xml

4. Download the Hive software from the Cloudera website:

$ wget http://archive.cloudera.com/cdh5/cdh/5/hive-<version>-
cdh5.<version>.tar.gz
Length: 49637596 (47M) [application/x-gzip]
Saving to: 'hive-<version>-cdh5.<version>.tar.gz'

Chapter 3
Providing Remote Client Access to Hive

3-7

100%[======================================>] 49,637,596 839K/s in 47s
2016-05-15 08:22:18 (1.02 MB/s) - `hive-<version>-cdh5.<version>.tar.gz' saved
[49637596/49637596]

5. Decompress the file into a permanent installation directory, which will be the Hive
home directory. The following command unzips the files into the current directory
in a subdirectory named hive-0.12.0-cdh5.0.0:

$ tar -xvzf hive-<version>-cdh5.<version>.tar.gz
hive-<version>-cdh5.<version>/
hive-<version>-cdh5.<version>/examples/
 .
 .
 .

6. Set the following variables, replacing hive-home-dir and hive-conf-dir with the
directories you created in steps 3 and 5.

export HIVE_HOME=hive-home-dir
export HIVE_CONF_DIR=hive-conf-dir
alias hive=$HIVE_HOME/bin/hive

The following steps test whether you successfully set up a Hive client.

To verify Hive access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Open the Hive console:

$ hive
Logging initialized using configuration in jar:file:/usr/lib/hive/lib/hive-
common-<version>-cdh5.<version>.jar!/hive-log4j.properties
Hive history file=/tmp/oracle/hive_job_log_e10527ee-9637-4c08-9559-
a2e5cea6cef1_831268640.txt
hive>

3. List all tables:

hive> show tables;
OK
src

3.4 Managing User Accounts
This section describes how to create users who can access HDFS, MapReduce, and
Hive. It contains the following topics:

• Creating Hadoop Cluster Users

• Providing User Login Privileges (Optional)

3.4.1 Creating Hadoop Cluster Users
When creating user accounts, define them as follows:

• To run MapReduce jobs, users must either be in the hadoop group or be granted
the equivalent permissions.

Chapter 3
Managing User Accounts

3-8

• To create and modify tables in Hive, users must either be in the hive group or be
granted the equivalent permissions.

• To create Hue users, open Hue in a browser and click the User Admin icon. See
"Using Cloudera Hue to Interact With Hadoop."

3.4.1.1 Creating Users on an Unsecured Cluster
To create a user on an unsecured Hadoop cluster:

1. Open an ssh connection as the root user to a noncritical node (node04 to
node18).

2. Create the user's home directory:

sudo -u hdfs hadoop fs -mkdir /user/user_name

You use sudo because the HDFS super user is hdfs (not root).

3. Change the ownership of the directory:

sudo -u hdfs hadoop fs -chown user_name:hadoop /user/user_name

4. Verify that the directory is set up correctly:

hadoop fs -ls /user

5. Create the operating system user across all nodes in the cluster:

dcli useradd -G hadoop,hive[,group_name...] -m user_name

In this syntax, replace group_name with an existing group and user_name with the
new name.

6. Verify that the operating system user belongs to the correct groups:

dcli id user_name

7. Verify that the user's home directory was created on all nodes:

dcli ls /home | grep user_name

Example 3-1 Creating a Hadoop User

sudo -u hdfs hadoop fs -mkdir /user/jdoe
sudo -u hdfs hadoop fs -chown jdoe:hadoop /user/jdoe
hadoop fs -ls /user
Found 5 items
drwx------ - hdfs supergroup 0 2013-01-16 13:50 /user/hdfs
drwxr-xr-x - hive supergroup 0 2013-01-16 12:58 /user/hive
drwxr-xr-x - jdoe jdoe 0 2013-01-18 14:04 /user/jdoe
drwxr-xr-x - oozie hadoop 0 2013-01-16 13:01 /user/oozie
drwxr-xr-x - oracle hadoop 0 2013-01-16 13:01 /user/oracle
dcli useradd -G hadoop,hive -m jdoe
dcli id jdoe
bda1node01: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),127(hive),123(hadoop)
bda1node02: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
bda1node03: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
 .
 .
 .
dcli ls /home | grep jdoe
bda1node01: jdoe
bda1node02: jdoe
bda1node03: jdoe

Chapter 3
Managing User Accounts

3-9

Example 3-1 creates a user named jdoe with a primary group of hadoop and an addition
group of hive.

3.4.1.2 Creating Users on a Secured Cluster
To create a user on a Kerberos-secured cluster:

1. Connect to Kerberos as the HDFS principal and execute the following commands,
replacing jdoe with the actual user name:

hdfs dfs -mkdir /user/jdoe
hdfs dfs -chown jdoe /user/jdoe
dcli -C useradd -G hadoop,hive -m jdoe
hash=$(echo "hadoop" | openssl passwd -1 -stdin)
dcli -C "usermod --pass='$hash' jdoe"

2. Log in to the key distribution center (KDC) and add a principal for the user. In the
following example, replace jdoe, bda01node01, and example.com with the correct
user name, server name, domain, and realm.

ssh -l root bda01node01.example.com kadmin.local
add_principal user_name@EXAMPLE.COM

3.4.2 Providing User Login Privileges (Optional)
Users do not need login privileges on Oracle Big Data Appliance to run MapReduce
jobs from a remote client. However, for those who want to log in to Oracle Big Data
Appliance, you must set a password. You can set or reset a password the same way.

To set a user password across all Oracle Big Data Appliance servers:

1. Create a Hadoop cluster user as described in "Creating Hadoop Cluster Users.".

2. Confirm that the user does not have a password:

dcli passwd -S user_name
bda1node01.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node02.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node03.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)

If the output shows either "Empty password" or "Password locked," then you must
set a password.

3. Set the password:

 hash=$(echo 'password' | openssl passwd -1 -stdin); dcli "usermod --
pass='$hash' user_name"

4. Confirm that the password is set across all servers:

dcli passwd -S user_name
bda1node01.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node02.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node03.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)

Chapter 3
Managing User Accounts

3-10

See Also:

• Oracle Big Data Appliance Owner's Guide for information about dcli.

• The Linux man page for the full syntax of the useradd command.

3.5 Recovering Deleted Files
CDH provides an optional trash facility, so that a deleted file or directory is moved to a
trash directory for a set period, instead of being deleted immediately from the system.
By default, the trash facility is enabled for HDFS and all HDFS clients.

3.5.1 Restoring Files from the Trash
When the trash facility is enabled, you can easily restore files that were previously
deleted.

To restore a file from the trash directory:

1. Check that the deleted file is in the trash. The following example checks for files
deleted by the oracle user:

$ hadoop fs -ls .Trash/Current/user/oracle
Found 1 items
-rw-r--r-- 3 oracle hadoop 242510990 2012-08-31 11:20 /user/oracle/.Trash/
Current/user/oracle/ontime_s.dat

2. Move or copy the file to its previous location. The following example moves
ontime_s.dat from the trash to the HDFS /user/oracle directory.

$ hadoop fs -mv .Trash/Current/user/oracle/ontime_s.dat /user/oracle/ontime_s.dat

3.5.2 Changing the Trash Interval
The trash interval is the minimum number of minutes that a file remains in the trash
directory before being deleted permanently from the system. The default value is 1 day
(24 hours).

To change the trash interval:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 3-2.

5. Click the current value, and enter a new value in the pop-up form.

6. Click Save Changes.

7. Expand the Actions menu at the top of the page and choose Restart.

8. Open a connection as root to a node in the cluster.

Chapter 3
Recovering Deleted Files

3-11

9. Deploy the new configuration:

dcli -C bdagetclientconfig

The following figure shows the Filesystem Trash Interval property in Cloudera
Manager.

Figure 3-2 HDFS Property Settings in Cloudera Manager

3.5.3 Disabling the Trash Facility
The trash facility on Oracle Big Data Appliance is enabled by default. You can change
this configuration for a cluster. When the trash facility is disabled, deleted files and
directories are not moved to the trash. They are not recoverable.

3.5.3.1 Completely Disabling the Trash Facility
The following procedure disables the trash facility for HDFS. When the trash facility is
completely disabled, the client configuration is irrelevant.

To completely disable the trash facility:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 3-2.

5. Click the current value, and enter a value of 0 (zero) in the pop-up form.

6. Click Save Changes.

Chapter 3
Recovering Deleted Files

3-12

7. Expand the Actions menu at the top of the page and choose Restart.

3.5.3.2 Disabling the Trash Facility for Local HDFS Clients
All HDFS clients that are installed on Oracle Big Data Appliance are configured to use
the trash facility. An HDFS client is any software that connects to HDFS to perform
operations such as listing HDFS files, copying files to and from HDFS, and creating
directories.

You can use Cloudera Manager to change the local client configuration setting,
although the trash facility is still enabled.

Note:

If you do not want any clients to use the trash, then you can completely
disable the trash facility. See "Completely Disabling the Trash Facility."

To disable the trash facility for local HDFS clients:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager".

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under Gateway
Default Group. See Figure 3-2.

5. Search for or scroll down to the Use Trash property under Client Settings. See
Figure 3-2.

6. Deselect the Use Trash check box.

7. Click Save Changes. This setting is used to configure all new HDFS clients
downloaded to Oracle Big Data Appliance.

8. Open a connection as root to a node in the cluster.

9. Deploy the new configuration:

dcli -C bdagetclientconfig

3.5.3.3 Disabling the Trash Facility for a Remote HDFS Client
Remote HDFS clients are typically configured by downloading and installing a CDH
client, as described in "Providing Remote Client Access to CDH." Oracle SQL
Connector for HDFS and Oracle R Advanced Analytics for Hadoop are examples of
remote clients.

To disable the trash facility for a remote HDFS client:

1. Open a connection to the system where the CDH client is installed.

2. Open /etc/hadoop/conf/hdfs-site.xml in a text editor.

3. Set the trash interval to zero:

<property>
 <name>fs.trash.interval</name>

Chapter 3
Recovering Deleted Files

3-13

 <value>0</value>
</property>

4. Save the file.

Chapter 3
Recovering Deleted Files

3-14

4
Configuring Oracle Exadata Database
Machine for Use with Oracle Big Data
Appliance

This chapter provides information about optimizing communications between Oracle
Exadata Database Machine and Oracle Big Data Appliance. It describes how you can
configure Oracle Exadata Database Machine to use InfiniBand alone, or SDP over
InfiniBand, to communicate with Oracle Big Data Appliance.

This chapter contains the following sections:

• About Optimizing Communications

• Prerequisites for Optimizing Communications

• Specifying the InfiniBand Connections to Oracle Big Data Appliance

• Specifying the InfiniBand Connections to Oracle Exadata Database Machine

• Enabling SDP on Exadata Database Nodes

• Creating an SDP Listener on the InfiniBand Network

4.1 About Optimizing Communications
Oracle Exadata Database Machine and Oracle Big Data Appliance use Ethernet by
default, although typically they are also connected by an InfiniBand network. Ethernet
communications are much slower than InfiniBand. After you configure Oracle Exadata
Database Machine to communicate using InfiniBand, it can obtain data from Oracle
Big Data Appliance many times faster than before.

Moreover, client applications that run on Oracle Big Data Appliance and push the data
to Oracle Database can use Sockets Direct Protocol (SDP) for an additional
performance boost. SDP is a standard communication protocol for clustered server
environments, providing an interface between the network interface card and the
application. By using SDP, applications place most of the messaging burden upon the
network interface card, which frees the CPU for other tasks. As a result, SDP
decreases network latency and CPU utilization, and thereby improves performance.

4.1.1 About Applications that Pull Data Into Oracle Exadata Database
Machine

Oracle SQL Connector for Hadoop Distributed File System (HDFS) is an example of
an application that pulls data into Oracle Exadata Database Machine. The connector
enables an Oracle external table to access data stored in either HDFS files or a Hive
table.

The external table provide access to the HDFS data. You can use the external table
for querying HDFS data or for loading it into an Oracle database table.

4-1

Oracle SQL Connector for HDFS functions as a Hadoop client running on the
database servers in Oracle Exadata Database Machine.

If you use Oracle SQL Connector for HDFS or another tool that pulls the data into
Oracle Exadata Database Machine, then for the best performance, you should
configure the system to use InfiniBand. See "Specifying the InfiniBand Connections to
Oracle Big Data Appliance."

See Also :

Oracle Big Data Connectors User's Guide for information about Oracle SQL
Connector for HDFS

4.1.2 About Applications that Push Data Into Oracle Exadata
Database Machine

Oracle Loader for Hadoop is an example of an application that pushes data into Oracle
Exadata Database Machine. The connector is an efficient and high-performance
loader for fast movement of data from a Hadoop cluster into a table in an Oracle
database. You can use it to load data from Oracle Big Data Appliance to Oracle
Exadata Database Machine.

Oracle Loader for Hadoop functions as a database client running on the Oracle Big
Data Appliance. It must make database connections from Oracle Big Data Appliance
to Oracle Exadata Database Machine over the InfiniBand network. Use of Sockets
Direct Protocol (SDP) for these database connections further improves performance.

If you use Oracle Loader for Hadoop or another tool that pushes the data into Oracle
Exadata Database Machine, then for the best performance, you should configure the
system to use SDP over InfiniBand as described in this chapter.

See Also :

Oracle Big Data Connectors User's Guide for information about Oracle
Loader for Hadoop

4.2 Prerequisites for Optimizing Communications
Oracle Big Data Appliance and Oracle Exadata Database Machine racks must be
cabled together using InfiniBand cables. The IP addresses must be unique across all
racks and use the same subnet for the InfiniBand network.

Chapter 4
Prerequisites for Optimizing Communications

4-2

See Also:

• Oracle Big Data Appliance Owner's Guide about multirack cabling

• Oracle Big Data Appliance Owner's Guide about IP addresses and
subnets

4.3 Specifying the InfiniBand Connections to Oracle Big
Data Appliance

You can configure Oracle Exadata Database Machine to use the InfiniBand IP
addresses of the Oracle Big Data Appliance servers. Otherwise, the default network is
Ethernet. Use of the InfiniBand network improves the performance of all data transfers
between Oracle Big Data Appliance and Oracle Exadata Database Machine.

To identify the Oracle Big Data Appliance InfiniBand IP addresses:

1. If you have not done so already, install a CDH client on Oracle Exadata Database
Machine. See "Providing Remote Client Access to CDH."

2. Obtain a list of private host names and InfiniBand IP addresses for all Oracle Big
Data Appliance servers.

An Oracle Big Data Appliance rack can have 6, 12, or 18 servers.

3. Log in to Oracle Exadata Database Machine with root privileges.

4. Edit /etc/hosts on Oracle Exadata Database Machine and add the Oracle Big
Data Appliance host names and InfiniBand IP addresses. The following example
shows the sequential IP numbering:

192.168.8.1 bda1node01.example.com bda1node01
192.168.8.2 bda1node02.example.com bda1node02
192.168.8.3 bda1node03.example.com bda1node03
192.168.8.4 bda1node04.example.com bda1node04
192.168.8.5 bda1node05.example.com bda1node05
192.168.8.6 bda1node06.example.com bda1node06

5. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

6. Ping all Oracle Big Data Appliance servers. Ensure that ping completes and shows
the InfiniBand IP addresses.

ping bda1node01.example.com
PING bda1node01.example.com (192.168.8.1) 56(84) bytes of data.
64 bytes from bda1node01.example.com (192.168.8.1): icmp_seq=1 ttl=50 time=20.2
ms
 .
 .
 .

Chapter 4
Specifying the InfiniBand Connections to Oracle Big Data Appliance

4-3

7. Run CDH locally on Oracle Exadata Database Machine and test HDFS
functionality by uploading a large file to an Oracle Big Data Appliance server.
Check that your network monitoring tools (such as sar) show I/O activity on the
InfiniBand devices.

To upload a file, use syntax like the following, which copies localfile.dat to the
HDFS testdir directory on node05 of Oracle Big Data Appliance:

hadoop fs -put localfile.dat hdfs://bda1node05.example.com/testdir/

4.4 Specifying the InfiniBand Connections to Oracle Exadata
Database Machine

You can configure Oracle Big Data Appliance to use the InfiniBand IP addresses of the
Oracle Exadata Database Machine servers. This configuration supports applications
on Oracle Big Data Appliance that must connect to Oracle Exadata Database
Machine.

To identify the Oracle Exadata Database Machine InfiniBand IP addresses:

1. Obtain a list of private host names and InfiniBand IP addresses for all Oracle
Exadata Database Machine servers.

2. Log in to Oracle Big Data Appliance with root privileges.

3. Edit /etc/hosts on Oracle Big Data Appliance and add the Oracle Exadata
Database Machine host names and InfiniBand IP addresses.

4. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

5. Restart the dnsmasq service:

service dnsmasq restart

6. Ping all Oracle Exadata Database Machine servers. Ensure that ping completes
and shows the InfiniBand IP addresses.

7. Test the connection by downloading a large file to an Oracle Exadata Database
Machine server. Check that your network monitoring tools (such as sar) show I/O
activity on the InfiniBand devices.

To download a file, use syntax like the following, which copies a file named
mydata.json to the dm01ce108 storage server:

$ scp mydata.json oracle@dm01cel08-priv.example.com:mybigdata.json
oracle@dm01cel08-priv.example.com's password: password

4.5 Enabling SDP on Exadata Database Nodes
SDP improves the performance of client applications that run on Oracle Big Data
Appliance and push large data loads to Oracle Database on Oracle Exadata Database
Machine.

Chapter 4
Specifying the InfiniBand Connections to Oracle Exadata Database Machine

4-4

The following procedure describes how to enable SDP on the database nodes in an
Oracle Exadata Database Machine running Oracle Linux. You must also configure
your application on a job-by-job basis to use SDP.

To enable SDP on Oracle Exadata Database Machine:

1. Open /etc/infiniband/openib.conf file in a text editor, and add the following line:

set: SDP_LOAD=yes

2. Save these changes and close the file.

3. To enable both SDP and TCP, open /etc/ofed/libsdp.conf in a text editor, and
add the use both rule:

use both server * :
use both client * :

4. Save these changes and close the file.

5. Open /etc/modprobe.conf file in a text editor, and add this setting:

options ib_sdp sdp_zcopy_thresh=0 recv_poll=0

6. Save these changes and close the file.

7. Replicate these changes across all database nodes in the Oracle Exadata
Database Machine rack.

8. Restart all database nodes for the changes to take effect.

9. If you have multiple Oracle Exadata Database Machine racks, then repeat these
steps on all of them.

To specify SDP protocol for a load job:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"

2. In either the Hadoop command or the configuration file for the job, set the
mapred.child.java.opts configuration property to enable the child task JVMs for
SDP.

For example, use these options in the command line for a MapReduce job:

-D mapred.child.java.opts="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"

3. Configure standard Ethernet communications for the job.

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.url property from a job configuration file. The
value has this syntax:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=hostName)(PORT=portNumber)))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify the SDP listener on your Oracle Exadata Database Machine.

4. Configure the Oracle listener on Exadata to support the SDP protocol and bind it
to a specific port address (such as 1522).

Chapter 4
Enabling SDP on Exadata Database Nodes

4-5

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.oci_url property from a job configuration file.
The value has this syntax:

(DESCRIPTION=(ADDRESS=(PROTOCOL=SDP)
 (HOST=hostName) (PORT=portNumber))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

4.6 Creating an SDP Listener on the InfiniBand Network
To add a listener for the Oracle Big Data Appliance connections coming in on the
InfiniBand network, first add a network resource for the InfiniBand network with virtual
IP addresses.

Note:

These instructions apply to Exadata V2, X2-2 , and X3-2 nodes running
Oracle Linux 5. Document 1580584.1 in My Oracle Support provides
instructions for these same systems as well as for X4-2, X5-2, and X6-2
nodes running Oracle Linux 6 .

This example below lists two nodes for an Oracle Exadata Database Machine quarter
rack. If you have an Oracle Exadata Database Machine half or full rack, you must
repeat node-specific lines for each node in the cluster.

1. Edit /etc/hosts on each node in the Exadata rack to add the virtual IP addresses
for the InfiniBand network. Make sure that these IP addresses are not in use. For
example:

Added for Listener over IB
192.168.10.21 dm01db01-ibvip.example.com dm01db01-ibvip
192.168.10.22 dm01db02-ibvip.example.com dm01db02-ibvip

2. As the root user, create a network resource on one database node for the
InfiniBand network. For example:

/u01/app/grid/product/12.1.0.1/bin/srvctl add network -k 2 -S
192.168.10.0/255.255.255.0/bondib0

3. Verify that the network was added correctly with a command like the following
examples:

/u01/app/grid/product/12.1.0.1/bin/crsctl stat res -t | grep net
ora.net1.network
ora.net2.network -- Output indicating new Network resource

or

/u01/app/grid/product/12.1.0.1/bin/srvctl config network -k 2
Network exists: 2/192.168.10.0/255.255.255.0/bondib0, type static -- Output
indicating Network resource on the 192.168.10.0 subnet

4. Add the virtual IP addresses on the network created in Step 2, for each node in the
cluster. For example:

srvctl add vip -n dm01db01 -A dm01db01-ibvip/255.255.255.0/bondib0 -k 2
#
srvctl add vip -n dm01db02 -A dm01db02-ibvip/255.255.255.0/bondib0 -k 2

Chapter 4
Creating an SDP Listener on the InfiniBand Network

4-6

https://support.oracle.com/

5. As the oracle user who owns Grid Infrastructure Home, add a listener for the
virtual IP addresses created in Step 4.

srvctl add listener -l LISTENER_IB -k 2 -p TCP:1522,/SDP:1522

6. For each database that will accept connections from the middle tier, modify the
listener_networks init parameter to allow load balancing and failover across
multiple networks (Ethernet and InfiniBand). You can either enter the full TNSNAMES
syntax in the initialization parameter or create entries in tnsnames.ora in
the $ORACLE_HOME/network/admin directory. The TNSNAMES.ORA entries must exist in
GRID_HOME. The following example first updates tnsnames.ora.

Complete this step on each node in the cluster with the correct IP addresses for
that node. LISTENER_IBREMOTE should list all other nodes that are in the cluster.
DBM_IB should list all nodes in the cluster.

Note:

The database instance reads the TNSNAMES only on startup. Thus, if you
modify an entry that is referred to by any init.ora parameter
(LISTENER_NETWORKS), then you must either restart the instance or issue an
ALTER SYSTEM SET LISTENER_NETWORKS command for the modifications to
take affect by the instance.

DBM =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))
DBM_IB =
(DESCRIPTION =
(LOAD_BALANCE=on)
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip)(PORT = 1522))
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip)(PORT = 1522))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))
LISTENER_IBREMOTE =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip.mycompany.com)(PORT = 1522))
))
LISTENER_IBLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip.mycompany.com)(PORT = 1522))
(ADDRESS = (PROTOCOL = SDP)(HOST = dm01db01-ibvip.mycompany.com)(PORT = 1523))
))
LISTENER_IPLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm0101-vip.mycompany.com)(PORT = 1521))
))
LISTENER_IPREMOTE =

Chapter 4
Creating an SDP Listener on the InfiniBand Network

4-7

(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan.mycompany.com)(PORT = 1521))
))

7. Connect to the database instance as sysdba.

8. Modify the listener_networks init parameter by using the SQL ALTER SYSTEM
command:

SQL> alter system set listener_networks=
 '((NAME=network2) (LOCAL_LISTENER=LISTENER_IBLOCAL)
 (REMOTE_LISTENER=LISTENER_IBREMOTE))',
 '((NAME=network1)(LOCAL_LISTENER=LISTENER_IPLOCAL)
 (REMOTE_LISTENER=LISTENER_IPREMOTE))' scope=both;

9. On the Linux command line, use the srvctl command to restart LISTENER_IB to
implement the modification in Step 7:

srvctl stop listener -l LISTENER_IB
srvctl start listener -l LISTENER_IB

Chapter 4
Creating an SDP Listener on the InfiniBand Network

4-8

Part II
Oracle Big Data Appliance Software

This part describes the software that is available only on Oracle Big Data Appliance. It
contains the following chapters:

• Optimizing MapReduce Jobs Using Perfect Balance

5
Optimizing MapReduce Jobs Using
Perfect Balance

This chapter describes how you can shorten the run time of some MapReduce jobs by
using Perfect Balance. It contains the following sections:

Note:

Perfect Balance is deprecated in this release of Oracle Big Data Appliance
and may be de-supported in a future release.

• What is Perfect Balance?

• Application Requirements

• Getting Started with Perfect Balance

• Analyzing a Job's Reducer Load

• About Configuring Perfect Balance

• Running a Balanced MapReduce Job Using Perfect Balance

• About Perfect Balance Reports

• About Chopping

• Troubleshooting Jobs Running with Perfect Balance

• About the Perfect Balance Examples

• Perfect Balance Configuration Property Reference

Change Notices:

As of Big Data Connectors 4.8, the option to run Perfect Balance via
automatic invocation is no longer supported. Use the Perfect Balance API as
described in this document.

5.1 What is Perfect Balance?
The Perfect Balance feature of Oracle Big Data Appliance distributes the reducer load
in a MapReduce application so that each reduce task does approximately the same
amount of work. While the default Hadoop method of distributing the reduce load is
appropriate for many jobs, it does not distribute the load evenly for jobs with significant
data skew.

Data skew is an imbalance in the load assigned to different reduce tasks. The load is
a function of:

5-1

• The number of keys assigned to a reducer.

• The number of records and the number of bytes in the values per key.

The total run time for a job is extended, to varying degrees, by the time that the
reducer with the greatest load takes to finish. In jobs with a skewed load, some
reducers complete the job quickly, while others take much longer. Perfect Balance can
significantly shorten the total run time by distributing the load evenly, enabling all
reducers to finish at about the same time.

Your MapReduce job can be written using either the mapred or mapreduce APIs; Perfect
Balance supports both of them.

5.1.1 About Balancing Jobs Across Map and Reduce Tasks
A typical Hadoop job has map and reduce tasks. Hadoop distributes the mapper
workload uniformly across Hadoop Distributed File System (HDFS) and across map
tasks, while preserving the data locality. In this way, it reduces skew in the mappers.

Hadoop also hashes the map-output keys uniformly across all reducers. This strategy
works well when there are many more keys than reducers, and each key represents a
very small portion of the workload. However, it is not effective when the mapper output
is concentrated into a small number of keys. Hashing these keys results in skew and
does not work in applications like sorting, which require range partitioning.

Perfect Balance distributes the load evenly across reducers by first sampling the data,
optionally chopping large keys into two or more smaller keys, and using a load-aware
partitioning strategy to assign keys to reduce tasks.

5.1.2 Perfect Balance Components
Perfect Balance has these components:

• Job Analyzer: Gathers and reports statistics about the MapReduce job so that
you can determine whether to use Perfect Balance.

• Counting Reducer: Provides additional statistics to the Job Analyzer to help
gauge the effectiveness of Perfect Balance.

• Load Balancer: Runs before the MapReduce job to generate a static partition
plan, and reconfigures the job to use the plan. The balancer includes a user-
configurable, progressive sampler that stops sampling the data as soon as it can
generate a good partitioning plan.

5.2 Application Requirements
To use Perfect Balance successfully, your application must meet the following
requirements:

• The job is distributive, so that splitting a group of records associated with a reduce
key does not produce incorrect results for the application.

To balance a load, Perfect Balance subpartitions the values of large reduce keys
and sends each subpartition to a different reducer. This distribution contrasts with
the standard Hadoop practice of sending all values for a single reduce key to the
same reducer. Your application must be able to handle output from the reducers
that is not fully aggregated, so that it does not produce incorrect results.

Chapter 5
Application Requirements

5-2

This partitioning of values is called chopping. Applications that support chopping
have distributive reduce functions. See "About Chopping".

If your application is not distributive, then you can still run Perfect Balance after
disabling the key-splitting feature. The job still benefits from using Perfect Balance,
but the load is not as evenly balanced as it is when key splitting is in effect. See
the oracle.hadoop.balancer.keyLoad.minChopBytes configuration property to disable key
splitting.

• This release does not support combiners. Perfect Balance detects the presence of
combiners and does not balance when they are present.

5.3 Getting Started with Perfect Balance
Take the following steps to use Perfect Balance:

1. Ensure that your application meets the requirements listed in "Application
Requirements."

2. Log in to the server where you will submit the job.

3. Run the examples provided with Perfect Balance to become familiar with the
product. All examples shown in this chapter are based on the shipped examples
and use the same data set. See "About the Perfect Balance Examples."

4. Set the following variables using the Bash export command:

• BALANCER_HOME: Set to the Perfect Balance installation directory, such as /opt/
oracle/orabalancer-<version>-h2 on Oracle Big Data Appliance (optional). The
examples in this chapter use this variable, and you can also define it for your
convenience. Perfect Balance does not require BALANCER_HOME.

• HADOOP_CLASSPATH: PREPEND ${BALANCER_HOME}/jlib/orabalancer-
<version>.jar and ${BALANCER_HOME}/jlib/commons-math-2.2.jar to the existing
value. Also prepend the JAR files for your application.

5. Run Job Analyzer without the balancer and use the generated report to decide
whether the job is a good candidate for using Perfect Balance.

See "Analyzing a Job's Reducer Load."

6. Decide which configuration properties to set. Create a configuration file or enter
the settings individually in the hadoop command.

See "About Configuring Perfect Balance."

7. Run the job using Perfect Balance.

See "Running a Balanced MapReduce Job Using Perfect Balance."

8. Use the Job Analyzer report to evaluate the effectiveness of using Perfect
Balance. See "Reading the Job Analyzer Report."

9. Modify the job configuration properties as desired before rerunning the job with
Perfect Balance. See "About Configuring Perfect Balance."

5.4 Analyzing a Job's Reducer Load
Job Analyzer is a component of Perfect Balance that identifies imbalances in a load,
and how effective Perfect Balance is in correcting the imbalance when actually running
the job. This section contains the following topics:

Chapter 5
Getting Started with Perfect Balance

5-3

• About Job Analyzer

• Running Job Analyzer as a Standalone Utility

• Running Job Analyzer Using Perfect Balance

• Reading the Job Analyzer Report

5.4.1 About Job Analyzer
You can use Job Analyzer to decide whether a job is a candidate for load balancing
with Perfect Balance. Job Analyzer uses the output logs of a MapReduce job to
generate a simple report with statistics like the elapsed time and the load for each
reduce task. By default, it uses the standard Hadoop counters displayed by the
JobTracker user interface, but organizes the data to emphasize the relative
performance and load of the reduce tasks, so that you can more easily interpret the
results.

If the report shows that the data is skewed (that is, the reducers processed very
different loads and the run times varied widely), then the application is a good
candidate for Perfect Balance.

5.4.1.1 Methods of Running Job Analyzer
You can choose between two methods of running Job Analyzer:

• As a standalone utility: Job Analyzer runs against existing job output logs. This is
a good choice when you want to analyze a job that previously ran.

• While using Perfect Balance: Job Analyzer runs against the output logs for the
current job running with Perfect Balance. This is a good choice when you want to
analyze the current job.

5.4.2 Running Job Analyzer as a Standalone Utility
As a standalone utility, Job Analyzer provides a quick way to analyze the reduce load
of a previously run job.

To run Job Analyzer as a standalone utility:

1. Log in to the server where you will run Job Analyzer.

2. Locate the output logs from the job to analyze:

Set oracle.hadoop.balancer.application_id to the job ID of the job you want to analyze.

You can obtain the job ID from the YARN Resource Manager web interface. Click
the application ID of a job, and then click Tracking URL. The job ID typically
begins with "job_".

Alternately, if you already ran Perfect Balance or Job Analyzer on this job, you can
read the job ID from the application_id file generated by Perfect Balance in its
report directory (outdir/_balancer by default).

3. Run the Job Analyzer utility as described in "Job Analyzer Utility Syntax."

4. View the Job Analyzer report in a browser.

Chapter 5
Analyzing a Job's Reducer Load

5-4

5.4.2.1 Job Analyzer Utility Example
The following example runs a script that sets the required variables, uses the
MapReduce job logs for a job with an application ID of job_1396563311211_0947, and
creates the report in the default location. It then copies the HTML version of the report
from HDFS to the /home/jdoe local directory and opens the report in a browser.

To run this example on a YARN cluster, replace the application ID with the application
ID of the job. The application ID of the job looks like this example:
job_1396563311211_0947.

Example 5-1 Running the Job Analyzer Utility

$ cat runja.sh

BALANCER_HOME=/opt/oracle/orabalancer-<version>-h2
export HADOOP_CLASSPATH=${BALANCER_HOME}/jlib/orabalancer-<version>.jar:$
{BALANCER_HOME}/jlib/commons-math-2.2.jar:$HADOOP_CLASSPATH

Command on YARN cluster
hadoop jar orabalancer-<version>.jar oracle.hadoop.balancer.tools.JobAnalyzer \
-D oracle.hadoop.balancer.application_id=job_1396563311211_0947

$ sh ./runja.sh
$
$ hadoop fs -get jdoe_nobal_outdir/_balancer/jobanalyzer-report.html /home/jdoe
$ cd /home/jdoe
$ firefox jobanalyzer-report.html

5.4.2.2 Job Analyzer Utility Syntax
The following is the syntax to run the Job Analyzer utility:

hadoop jar ${BALANCER_HOME}/jlib/orabalancer-<version>.jar
oracle.hadoop.balancer.tools.JobAnalyzer \
-D oracle.hadoop.balancer.application_id=job_number \
[ja_report_path]

job_number
The application ID previously assigned to the job.

ja_report_path
An HDFS directory where Job Analyzer creates its report (optional). The default
directory is job_output_dir/_balancer.

5.4.3 Running Job Analyzer Using Perfect Balance
This section explains how you can modify your job to generate Job Analyzer reports
using the Perfect Balance API.

• Running Job Analyzer Using the Perfect Balance API

• Collecting Additional Metrics

Chapter 5
Analyzing a Job's Reducer Load

5-5

See Also:

For details about the Perfect Balance API, see the following:

• Perfect Balance Configuration Property Reference

• Oracle Big Data Appliance Perfect Balance API Reference

5.4.3.1 Running Job Analyzer Using the Perfect Balance API
This section first explains how to prepare your code using the API and then how to run
Job Analyzer.

Before You Start:

Before running Job Analyzer, invoke Balancer in your application code. Make
the following updates to your code and recompile.

• Import the Balancer class.

• After the job finishes, you can also call Balancer.save().

If Balancer ran, this optional method saves the partition file report into
the _balancer subdirectory of the job output directory. It also writes a
JobAnalyzer report.

For example:

...
import oracle.hadoop.balancer.Balancer;
...
<Configure your job>
...
job.waitForCompletion(true);
Balancer.save(job);
...

After compiling the modified application, follow these steps to generate Job Analyzer:

1. Log in to the server where you will submit the job that uses Perfect Balance.

2. Set up Perfect Balance by taking the steps in "Getting Started with Perfect
Balance."

3. Run the job.

The example below runs a script that does the following:

• Sets the required variables

• Uses Perfect Balance to run a job with Job Analyzer (and without load balancing).

• Creates the report in the default location.

• Copies the HTML version of the report from HDFS to the /home/jdoe local
directory.

• Opens the report in a browser

Chapter 5
Analyzing a Job's Reducer Load

5-6

http://docs.oracle.com/bigdata/bda47/BIGPB/toc.htm

The output includes warnings, which you can ignore.

Example 5-2 Running Job Analyzer with Perfect Balance

$ cat ja_nobalance.sh

set up perfect balance
BALANCER_HOME=/opt/oracle/orabalancer-<version>-h2
export HADOOP_CLASSPATH=${BALANCER_HOME}/jlib/orabalancer-<version>.jar:$
{BALANCER_HOME}/jlib/commons-math-2.2.jar:${HADOOP_CLASSPATH}

run the job
hadoop jar application_jarfile.jar ApplicationClass \
 -D application_config_property \
 -D mapreduce.input.fileinputformat.inputdir=jdoe_application/input \
 -D mapreduce.output.fileoutputformat.outputdir=jdoe_nobal_outdir \
 -D mapreduce.job.name=nobal \
 -D mapreduce.job.reduces=10 \
 -conf application_config_file.xml

$ sh ja_nobalance.sh
14/04/14 14:52:42 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 14:52:42 INFO mapreduce.JobSubmitter: number of splits:5
14/04/14 14:52:42 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_1397066986369_3478
14/04/14 14:52:43 INFO impl.YarnClientImpl: Submitted application
application_1397066986369_3478
 .
 .
 .
File Input Format Counters
Bytes Read=112652976
File Output Format Counters
Bytes Written=384974202

$ hadoop fs -get jdoe_nobal_outdir/_balancer/jobanalyzer-report.html /home/jdoe
$ cd /home/jdoe
$ firefox jobanalyzer-report.html

5.4.3.2 Collecting Additional Metrics
The Job Analyzer report includes the load metrics for each key, if you set the
oracle.hadoop.balancer.Balancer.configureCountingReducer() method before job
submission.

This additional information provides a more detailed picture of the load for each
reducer, with metrics that are not available in the standard Hadoop counters.

The Job Analyzer report also compares its predicted load with the actual load. The
difference between these values measures how effective Perfect Balance was in
balancing the job.

Job Analyzer might recommend key load coefficients for the Perfect Balance key load
model, based on its analysis of the job load. To use these recommended coefficients
when running a job with Perfect Balance, set the
oracle.hadoop.balancer.linearKeyLoad.feedbackDir property to the directory containing the Job
Analyzer report of a previously analyzed run of the job.

Chapter 5
Analyzing a Job's Reducer Load

5-7

If the report contains recommended coefficients, then Perfect Balance automatically
uses them. If Job Analyzer encounters an error while collecting the additional metrics,
then the report does not contain the additional metrics.

Use the feedbackDir property when you do not know the values of the load model
coefficients for a job, but you have the Job Analyzer output from a previous run of the
job. Then you can set the value of feedbackDir to the directory where that output is
stored. The values recommended from those files typically perform better than the
Perfect Balance default values, because the recommended values are based on an
analysis of your job's load.

Alternately, if you already know good values of the load model coefficients for your job,
you can set the load model properties:

• oracle.hadoop.balancer.linearKeyLoad.byteWeight

• oracle.hadoop.balancer.linearKeyLoad.keyWeight

• oracle.hadoop.balancer.linearKeyLoad.rowWeight

Running the job with these coefficients results in a more balanced job.

5.4.4 Reading the Job Analyzer Report
Job Analyzer writes its report in two formats: HTML for you, and XML for Perfect
Balance. You can open the report in a browser, either directly in HDFS or after copying
it to the local file system

To open a Job Analyzer report in HDFS in a browser:

1. Open the HDFS web interface on port 50070 of a NameNode node (node01 or
node02), using a URL like the following:

http://bda1node01.example.com:50070

2. From the Utilities menu, choose Browse the File System.

3. Navigate to the job_output_dir/_balancer directory.

To open a Job Analyzer report in the local file system in a browser:

1. Copy the report from HDFS to the local file system:

$ hadoop fs -get job_output_dir/_balancer/jobanalyzer-report.html /home/jdoe

2. Switch to the local directory:

$ cd /home/jdoe

3. Open the file in a browser:

$ firefox jobanalyzer-report.html

When inspecting the Job Analyzer report, look for indicators of skew such as:

• The execution time of some reducers is longer than others.

• Some reducers process more records or bytes than others.

• Some map output keys have more records than others.

• Some map output records have more bytes than others.

Chapter 5
Analyzing a Job's Reducer Load

5-8

The following figure shows the beginning of the analyzer report for the inverted index
(invindx) example. It displays the key load coefficient recommendations, because this
job ran with the appropriate configuration settings. See "Collecting Additional Metrics."

The task IDs are links to tables that show the analysis of specific tasks, enabling you
to drill down for more details from the first, summary table.

This example uses an extremely small data set, but notice the differences between
tasks 7 and 8: The input records range from 3% to 29%, and their corresponding
elapsed times range from 5 to 15 seconds. This variation indicates skew.

Figure 5-1 Job Analyzer Report for Unbalanced Inverted Index Job

5.5 About Configuring Perfect Balance
Perfect Balance uses the standard Hadoop methods of specifying configuration
properties in the command line. You can use the -conf option to identify a

Chapter 5
About Configuring Perfect Balance

5-9

configuration file, or the -D option to specify individual properties. All Perfect Balance
configuration properties have default values, and so setting them is optional.

"Perfect Balance Configuration Property Reference" lists the configuration properties in
alphabetical order with a full description. The following are functional groups of
properties.

Job Analyzer Properties

• oracle.hadoop.balancer.application_id

• oracle.hadoop.balancer.tools.writeKeyBytes

Key Chopping Properties

• oracle.hadoop.balancer.choppingStrategy

• oracle.hadoop.balancer.keyLoad.minChopBytes

• oracle.hadoop.balancer.enableSorting (deprecated)

Load Balancing Properties

• oracle.hadoop.balancer.confidence

• oracle.hadoop.balancer.maxLoadFactor

• oracle.hadoop.balancer.maxSamplesPct

• oracle.hadoop.balancer.minSplits

Load Model Properties

• oracle.hadoop.balancer.linearKeyLoad.feedbackDir

• oracle.hadoop.balancer.linearKeyLoad.byteWeight

• oracle.hadoop.balancer.linearKeyLoad.keyWeight

• oracle.hadoop.balancer.linearKeyLoad.rowWeight

MapReduce-Related Properties

• oracle.hadoop.balancer.useMapreduceApi

• oracle.hadoop.balancer.inputFormat.mapred.map.tasks

• oracle.hadoop.balancer.inputFormat.mapred.max.split.size

Partition Report Properties

• oracle.hadoop.balancer.report.overwrite

• oracle.hadoop.balancer.reportPath

• oracle.hadoop.balancer.tmpDir

Sampler Properties

• oracle.hadoop.balancer.minSplits

• oracle.hadoop.balancer.numThreads

• oracle.hadoop.balancer.runMode

• oracle.hadoop.balancer.useClusterStats

Chapter 5
About Configuring Perfect Balance

5-10

5.6 Running a Balanced MapReduce Job Using Perfect
Balance

The oracle.hadoop.balancer.Balancer class contains methods for creating a partitioning
plan, saving the plan to a file, and running the MapReduce job using the plan. You
only need to add the code to the application's job driver Java class, not redesign the
application. When you run a shell script to run the application, you can include Perfect
Balance configuration settings.

5.6.1 Modifying Your Java Code to Use Perfect Balance
The Perfect Balance installation directory contains a complete example, including input
data, of a Java MapReduce program that uses the Perfect Balance API.

For a description of the inverted index example and execution instructions, see
orabalancer-<version>-h2/examples/invindx/README.txt.

To explore the modified Java code, see orabalancer-<version>-h2/examples/jsrc/
oracle/hadoop/balancer/examples/invindx/InvertedIndexMapred.java or
InvertedIndexMapreduce.java.

The modifications to run Perfect Balance include the following:

• The createBalancer method validates the configuration properties and returns a
Balancer instance.

• The waitForCompletion method samples the data and creates a partitioning plan.

• The addBalancingPlan method adds the partitioning plan to the job configuration
settings.

• The configureCountingReducer method collects additional load statistics.

• The save method saves the partition report and generates the Job Analyzer report.

Example 5-3 shows fragments from the inverted index Java code.

See Also:

Oracle Big Data Appliance Perfect Balance Java API Reference

Example 5-3 Running Perfect Balance in a MapReduce Job

 .
 .
 .
import oracle.hadoop.balancer.Balancer;
 .
 .
 .
///// BEGIN: CODE TO INVOKE BALANCER (PART-1, before job submission) //////
 Configuration conf = job.getConfiguration();

 Balancer balancer = null;

Chapter 5
Running a Balanced MapReduce Job Using Perfect Balance

5-11

 boolean useBalancer =
 conf.getBoolean("oracle.hadoop.balancer.driver.balance", true);
 if(useBalancer)
 {
 balancer = Balancer.createBalancer(conf);
 balancer.waitForCompletion();
 balancer.addBalancingPlan(conf);
 }

 if(conf.getBoolean("oracle.hadoop.balancer.tools.useCountingReducer", true))
 {
 Balancer.configureCountingReducer(conf);
 }
 ////////////// END: CODE TO INVOKE BALANCER (PART-1) //////////////////////

 boolean isSuccess = job.waitForCompletion(true);

 ///
 // BEGIN: CODE TO INVOKE BALANCER (PART-2, after job completion, optional)
 // If balancer ran, this saves the partition file report into the _balancer
 // sub-directory of the job output directory. It also writes a JobAnalyzer
 // report.
 Balancer.save(job);
 ////////////// END: CODE TO INVOKE BALANCER (PART-2) //////////////////////
 .
 .
 .
}

5.6.2 Running Your Modified Java Code with Perfect Balance
When you run your modified Java code, you can set the Perfect Balance properties by
using the standard hadoop command syntax:

bin/hadoop jar application_jarfile.jar ApplicationClass \
-conf application_config.xml \
-conf perfect_balance_config.xml \
-D application_config_property \
-D perfect_balance_config_property \
-libjars application_jar_path.jar...

Example 5-4 runs a script named pb_balanceapi.sh, which runs the
InvertedIndexMapreduce class example packaged in the Perfect Balance JAR file. The
key load metric properties are set to the values recommended in the Job Analyzer
report shown in Figure 5-1.

To run the InvertedIndexMapreduce class example, see "About the Perfect Balance
Examples."

Example 5-4 Running the InvertedIndexMapreduce Class

$ cat pb_balanceapi.sh
BALANCER_HOME=/opt/oracle/orabalancer-<version>-h2
APP_JAR_FILE=/opt/oracle/orabalancer-<version>-h2/jlib/orabalancer-<version>.jar
export HADOOP_CLASSPATH=${BALANCER_HOME}/jlib/orabalancer-<version>.jar:$
{BALANCER_HOME}/jlib/commons-math-2.2.jar:$HADOOP_CLASSPATH

hadoop jar ${APP_JAR_FILE}
oracle.hadoop.balancer.examples.invindx.InvertedIndexMapreduce \

Chapter 5
Running a Balanced MapReduce Job Using Perfect Balance

5-12

 -D mapreduce.input.fileinputformat.inputdir=invindx/input \
 -D mapreduce.output.fileoutputformat.outputdir=jdoe_outdir_api \
 -D mapreduce.job.name=jdoe_invindx_api \
 -D mapreduce.job.reduces=10 \
 -D oracle.hadoop.balancer.linearKeyLoad.keyWeight=93.981394 \
 -D oracle.hadoop.balancer.linearKeyLoad.rowWeight=0.001126 \
 -D oracle.hadoop.balancer.linearKeyLoad.byteWeight=0.0

$ sh ./balanceapi.sh
14/04/14 15:03:51 INFO balancer.Balancer: Creating balancer
14/04/14 15:03:51 INFO balancer.Balancer: Starting Balancer
14/04/14 15:03:51 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 15:03:54 INFO balancer.Balancer: Balancer completed
14/04/14 15:03:55 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 15:03:55 INFO mapreduce.JobSubmitter: number of splits:5
14/04/14 15:03:55 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_1397066986369_3510
14/04/14 15:03:55 INFO impl.YarnClientImpl: Submitted application
application_1397066986369_3510
 .
 .
 .
File Input Format Counters
Bytes Read=112652976
File Output Format Counters
Bytes Written=384974202

5.7 About Perfect Balance Reports
Perfect Balance generates these reports when it runs a job:

• Job Analyzer report: Contains various indicators about the distribution of the load
in a job. The report is saved in HTML for you, and XML for Perfect Balance to use.
The report is always named jobanalyzer-report.html and -.xml. See "Reading the
Job Analyzer Report."

• Partition report: Identifies the keys that are assigned to the various reducers.
This report is saved in JSON for Perfect Balance to use; it does not contain
information of use to you. The report is named ${job_output_dir}/_balancer/
orabalancer_report.json. It is only generated for balanced jobs.

• Reduce key metric reports: Perfect Balance generates a report for each file
partition, when the appropriate configuration properties are set. The reports are
saved in XML for Perfect Balance to use; they do not contain information of use to
you. They are named ${job_output_dir}/_balancer/ReduceKeyMetricList-
attempt_jobid_taskid_task_attemptid.xml. They are generated only when the
counting reducer is used (that is, when Balancer.configureCountingReducer is
invoked before job submission.

See "Collecting Additional Metrics."

The reports are stored by default in the job output directory ($
{mapreduce.output.fileoutputformat.outputdir} in YARN. Following is the structure of
that directory:

job_output_directory
 /_SUCCESS
 /_balancer
 ReduceKeyMetricList-attempt_201305031125_0016_r_000000_0.xml
 ReduceKeyMetricList-attempt_201305031125_0016_r_000001_0.xml

Chapter 5
About Perfect Balance Reports

5-13

 .
 .
 .
 jobanalyzer-report.html
 jobanalyzer-report.xml
 orabalancer_report.json
 /part-r-00000
 /part-r-00001
 .
 .
 .

5.8 About Chopping
To balance a load, Perfect Balance might subpartition the values of a single reduce
key and send each subpartition to a different reducer. This partitioning of values is
called chopping.

5.8.1 Selecting a Chopping Method
You can configure how Perfect Balance chops the values by setting the
oracle.hadoop.balancer.choppingStrategy configuration property:

• Chopping by hash partitioning: Set choppingStrategy=hash when sorting is not
required. This is the default chopping strategy.

• Chopping by round robin: Set choppingStrategy=roundRobin as an alternative
strategy when total-order chopping is not required. If the load for a hash chopped
key is unbalanced among reducers, try to use this chopping strategy.

• Chopping by total-order partitioning: Set choppingStrategy=range to sort the
values in each subpartition and order them across all subpartitions. In any parallel
sort job, each task sort the rows within the task. The job must ensure that the
values in reduce task 2 are greater than values in reduce task 1, the values in
reduce task 3 are greater than the values in reduce task 2, and so on. The job
generates multiple files containing data in sorted order, instead of one large file
with sorted data.

For example, if a key is chopped into three subpartitions, and the subpartitions are
sent to reducers 5, 8 and 9, then the values for that key in reducer 9 are greater
than all values for that key in reducer 8, and the values for that key in reducer 8
are greater than all values for that key in reducer 5. When choppingStrategy=range,
Perfect Balance ensures this ordering across reduce tasks.

If an application requires that the data is aggregated across files, then you can disable
chopping by setting oracle.hadoop.balancer.keyLoad.minChopBytes=-1. Perfect Balance still
offers performance gains by combining smaller reduce keys, called bin packing.

5.8.2 How Chopping Impacts Applications
If a MapReduce job aggregates the data by reduce key, then each reduce task
aggregates the values for each key within that task. However, when chopping is
enabled in Perfect Balance, the rows associated with a reduce key might be in
different reduce tasks, leading to partial aggregation. Thus, values for a reduce key
are aggregated within a reduce task, but not across reduce tasks. (The values for a
reduce key across reduce tasks can be sorted, as discussed in "Selecting a Chopping
Method".)

Chapter 5
About Chopping

5-14

When complete aggregation is required, you can disable chopping. Alternatively, you
can examine the application that consumes the output of your MapReduce job. The
application might work well with partial aggregation.

For example, a search engine might read in parallel the output from a MapReduce job
that creates an inverted index. The output of a reduce task is a list of words, and for
each word, a list of documents in which the word occurs. The word is the key, and the
list of documents is the value. With partial aggregation, some words have multiple
document lists instead of one aggregated list. Multiple lists are convenient for the
search engine to consume in parallel. A parallel search engine might even require
document lists to be split instead of aggregated into one list. See "About the Perfect
Balance Examples" for a Hadoop job that creates an inverted index from a document
collection.

As another example, Oracle Loader for Hadoop loads data from multiple files to the
correct partition of a target table. The load step is faster when there are multiple files
for a reduce key, because they enable a higher degree of parallelism than loading
from one file for a reduce key.

5.9 Troubleshooting Jobs Running with Perfect Balance
If you get Java "out of heap space" or "GC overhead limit exceeded" errors on the
client node while running the Perfect Balance sampler, then increase the client JVM
heap size for the job.

Use the Java JVM -Xmx option.You can specify client JVM options before running the
Hadoop job, by setting the HADOOP_CLIENT_OPTS variable:

$ export HADOOP_CLIENT_OPTS="-Xmx1024M $HADOOP_CLIENT_OPTS"

Setting HADOOP_CLIENT_OPTS changes the JVM options only on the client node. It does
not change JVM options in the map and reduce tasks. See the invindx script for an
example of setting this variable.

Setting HADOOP_CLIENT_OPTS is sufficient to increase the heap size for the sampler,
regardless of whether oracle.hadoop.balancer.runMode is set to local or distributed. When
runMode=local, the sampler runs on the client node, and HADOOP_CLIENT_OPTS sets the
heap size on the client node. When runMode=distributed, Perfect Balance
automatically sets the heap size for the sampler Hadoop job based on the -Xmx setting
you provide in HADOOP_CLIENT_OPTS. Perfect Balance never changes the heap size for
the map and reduce tasks of your job, only for its sampler job.

5.10 About the Perfect Balance Examples
The Perfect Balance installation files include a full set of examples that you can run
immediately. The InvertedIndex example is a MapReduce application that creates an
inverted index on an input set of text files. The inverted index maps words to the
location of the words in the text files. The input data is included.

5.10.1 About the Examples in This Chapter
The InvertedIndex example provides the basis for all examples in this chapter. They
use the same data set and run the same MapReduce application. The modifications to
the InvertedIndex example simply highlight the steps you must perform in running your
own applications with Perfect Balance.

Chapter 5
Troubleshooting Jobs Running with Perfect Balance

5-15

If you want to run the examples in this chapter, or use them as the basis for running
your own jobs, then make the following changes:

• If you are modifying the examples to run your own application, then add your
application JAR files to HADOOP_CLASSPATH and -libjars.

• Ensure that the value of mapreduce.input.fileinputformat.inputdir identifies the
location of your data.

The invindx/input directory contains the sample data for the InvertedIndex
example. To use this data, you must first set it up. See "Extracting the Example
Data Set."

• Replace jdoe with your Hadoop user name.

• Review the configuration setting and the shell script to ensure that they are
appropriate for the job.

• You can run the browser from your laptop or connect to Oracle Big Data Appliance
using a client that supports graphical interfaces, such as VNC.

5.10.2 Extracting the Example Data Set
To run the InvertedIndex examples or any of the examples in this chapter, you must
first set up the data files.

To extract the InvertedIndex data files:

1. Log in to a server where Perfect Balance is installed.

2. Change to the examples/invindx subdirectory:

cd /opt/oracle/orabalancer-<version>-h2/examples/invindx

3. Unzip the data and copy it to the HDFS invindx/input directory:

./invindx -setup

For complete instructions for running the InvertedIndex example, see /opt/oracle/
orabalancer-<version>-h2/examples/invindx/README.txt.

5.11 Perfect Balance Configuration Property Reference
This section describes the Perfect Balance configuration properties and a few generic
Hadoop MapReduce properties that Perfect Balance reads from the job configuration:

• MapReduce Configuration Properties

• Job Analyzer Configuration Properties

• Perfect Balance Configuration Properties

See "About Configuring Perfect Balance" for a list of the properties organized into
functional categories.

Chapter 5
Perfect Balance Configuration Property Reference

5-16

Note:

CDH5 deprecates many MapReduce properties and replaces them with new
properties. Perfect Balance continues to work with the old property names,
but Oracle recommends that you use the new names. For the new
MapReduce property names, see the Cloudera website at:

http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-

common/DeprecatedProperties.html

MapReduce Configuration Properties

Property Type, Default Value, Description

mapreduce.input.fileinputformat.inputdir Type: String

Default Value: Not defined

Description: A comma-separated list of input
directories.

mapreduce.inputformat.class Type: String

Default Value:
org.apache.hadoop.mapreduce.lib.input.Te
xtInputFormat

Description: The full name of the
InputFormat class.

mapreduce.map.class Type: String

Default Value:
org.apache.hadoop.mapreduce.Mapper

Description: The full name of the mapper
class.

mapreduce.output.fileoutputformat.outputd
ir

Type: String

Default Value: Not defined

Description: The job output directory.

mapreduce.partitioner.class Type: String

Default Value:
org.apache.hadoop.mapreduce.lib.partitio
n.HashPartitioner

Description: The full name of the partitioner
class.

mapreduce.reduce.class Type: String

Default Value:
org.apache.hadoop.mapreduce.Reducer

Description: The full name of the reducer
class.

Chapter 5
Perfect Balance Configuration Property Reference

5-17

http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/DeprecatedProperties.html

Job Analyzer Configuration Properties

Property Type, Default Value, Description

oracle.hadoop.balancer.application_id Type: String

Default Value: Not defined

Description: The job identifier of the job you
want to analyze with Job Analyzer. This
property is a parameter to the Job Analyzer
utility in standalone mode on YARN clusters; it
does not apply to MRv1 clusters. See
"Running Job Analyzer as a Standalone
Utility".

oracle.hadoop.balancer.tools.writeKeyByte
s

Type: Boolean

Default Value: false

Description: Controls whether the counting
reducer collects the byte representations of
the reduce keys for the Job Analyzer. Set this
property to true to represent the unique key
values in Base64 encoding in the report. A
string representation of the key, created using
key.toString, is also provided in the report.
This string value may not be unique for each
key.

Perfect Balance Configuration Properties

Property Type, Default Value, Description

oracle.hadoop.balancer.choppingStra
tegy
Note that the choppingStrategy property
takes precedence over the deprecated
property
oracle.hadoop.balancer.enableSorti
ng. If the choppingStrategy property is
not set,
oracle.hadoop.balancer.enableSorti
ng=true is equivalent to setting the
choppingStrategy property to range.
Likewise, setting
oracle.hadoop.balancer.enableSorti
ng=false is equivalent to setting the
choppingStrategy property to hash.

Type: String

Default Value: hash

Description: This property controls the behavior of
sampler when it needs to chop a key. The following
values are valid:

• range: Records of chopped keys are assigned to
different reducers according to the total-order
partitioning function specified by the map output
key sorting comparator, so balancer will
preserve a total order over the values of a
chopped key.

• hash: Records of chopped keys are assigned to
different reducers according to the hashCode on
the map output values. In most cases, this
approach gives a balanced work load among
reducers.

• roundRobin: Records of chopped keys are
assigned to different reducers in round-robin
order. This is an alternative strategy when it is
not required to preserve a total order over the
value of a chopped key. If the load for a hash
chopped key is unbalanced among reducers, try
to use this chopping strategy.

See also the deprecated property:
oracle.hadoop.balancer.enableSorting

Chapter 5
Perfect Balance Configuration Property Reference

5-18

Property Type, Default Value, Description

oracle.hadoop.balancer.confidence Type: Float

Default Value: 0.95

Description: The statistical confidence indicator for
the load factor specified by the
oracle.hadoop.balancer.maxLoadFactor property.

This property accepts values greater than or equal to
0.5 and less than 1.0 (0.5 <= value < 1.0). A value
less than 0.5 resets the property to its default value.
Oracle recommends a value greater than or equal to
0.9. Typical values are 0.95 and 0.99.

oracle.hadoop.balancer.enableSortin
g

Type: Boolean

Default Value: false

Description: This property is deprecated. To use the
map output key sorting comparator as a total-order
partitioning function, set
oracle.hadoop.balancer.choppingStrategy to
range.

When this property is false, map output keys will be
chopped using a hash function. When this property is
true, map output keys will be chopped using the map
output key sorting comparator as a total-order
partitioning function. When this property is true,
balancer will preserve a total order over the values of
a chopped key.

See also: oracle.hadoop.balancer.choppingStrategy

oracle.hadoop.balancer.inputFormat.
mapred.map.tasks

Type: Integer

Default Value: 100

Description: Sets the Hadoop mapred.map.tasks
property for the duration of sampling, just before
calling the input format getSplits method. It does
not change mapred.map.tasks for the actual job. The
optimal number of map tasks is a trade-off between
obtaining a good sample (larger number) and having
finite memory resources (smaller number).

Set this property to a value greater than or equal to
one (1). A value less than 1 disables the property.

Some input formats, such as DBInputFormat, use
this property as a hint to determine the number of
splits returned by getSplits. Higher values indicate
that more chunks of data are sampled at random,
which improves the sample.

You can increase the value for larger data sets, that
is, more than a million rows of about 100 bytes per
row. However, extremely large values can cause the
input format's getSplits method to run out of
memory by returning too many splits.

Chapter 5
Perfect Balance Configuration Property Reference

5-19

Property Type, Default Value, Description

oracle.hadoop.balancer.inputFormat.
mapred.max.split.size

Type: Long

Default Value: 1048576 (1 MB)

Description: Sets the Hadoop
mapred.max.split.size property for the duration of
sampling, just before calling the input format's
getSplits method. It does not change
mapred.max.split.size for the actual job.

Set this property to a value greater than or equal to
one (1). A value less than 1 disables the property.
The optimal split size is a trade-off between
obtaining a good sample (smaller splits) and efficient
I/O performance (larger splits).

Some input formats, such as FileInputFormat, use
the maximum split size as a hint to determine the
number of splits returned by getSplits. Smaller split
sizes indicate that more chunks of data are sampled
at random, which improves the sample. Set the value
small enough for good sampling performance, but no
smaller. Extremely small values can cause inefficient
I/O performance, while not improving the sample.

You can increase the value for larger data sets (tens
of terabytes) or if the input format's getSplits
method throws an out of memory error. Large splits
are better for I/O performance, but not for sampling.

oracle.hadoop.balancer.keyLoad.min
ChopBytes

Type: Long

Default Value: 0

Description: Controls whether Perfect Balance
chops large map output keys into medium keys:

• -1: Perfect Balance does not chop large map
output keys.

• 0: Perfect Balance chops large map output keys
and determines the optimal size of each medium
key.

• Positive integer: Perfect Balance chops large
map output keys into medium keys with a size
greater than or equal to the specified integer.

oracle.hadoop.balancer.linearKeyLoa
d.byteWeight

Type: Float

Default Value: 0.05

Description: Weights the number of bytes per key in
the linear key load model specified by the
oracle.hadoop.balancer.KeyLoadLinear class.

Chapter 5
Perfect Balance Configuration Property Reference

5-20

Property Type, Default Value, Description

oracle.hadoop.balancer.linearKeyLoa
d.feedbackDir

Type: String

Default Value: Not defined

Description: The path to a directory that contains
the Job Analyzer report for a job that it previously
analyzed. The sampler reads this report for feedback
to use to optimize the current balancing plan. You
can set this property to the Job Analyzer report
directory of a job that is the same or similar to the
current job, so that the feedback is directly
applicable.

If the feedback directory contains a Job Analyzer
report with recommended values for the Perfect
Balance linear key load model coefficients, then
Perfect Balance automatically reads and uses them.
The recommended values take precedence over
user-specified values in these configuration
parameters:

• oracle.hadoop.balancer.linearKeyLoad.byteWeight
• oracle.hadoop.balancer.linearKeyLoad.keyWeight
• oracle.hadoop.balancer.linearKeyLoad.rowWeight
Job Analyzer attempts to recommend good values
for these coefficients. However, Perfect Balance
reads the load model coefficients from this list of
configuration properties under the following
circumstances:

• The feedbackDir property is not set.
• The feedbackDir property is set, but the Job

Analyzer report in the specified directory does
not contain a good recommendation for the load
model coefficients.

oracle.hadoop.balancer.linearKeyLoa
d.keyWeight

Type: Float

Default Value: 50.0

Description: Weights the number of medium keys
per large key in the linear key load model specified
by the oracle.hadoop.balancer.KeyLoadLinear
class.

oracle.hadoop.balancer.linearKeyLoa
d.rowWeight

Type: Float

Default Value: 0.05

Description: Weights the number of rows per key in
the linear key load model specified by the
oracle.hadoop.balancer.KeyLoadLinear class.

Chapter 5
Perfect Balance Configuration Property Reference

5-21

Property Type, Default Value, Description

oracle.hadoop.balancer.maxLoadFact
or

Type: Float

Default Value: 0.05

Description: The target reducer load factor that you
want the balancer's partition plan to achieve.

The load factor is the relative deviation from an
estimated value. For example, if
maxLoadFactor=0.05 and confidence=0.95, then
with a confidence greater than 95%, the job's
reducer loads should be, at most, 5% greater than
the value in the partition plan.

The values of these two properties determine the
sampler's stopping condition. The balancer samples
until it can generate a plan that guarantees the
specified load factor at the specified confidence
level. This guarantee may not hold if the sampler
stops early because of other stopping conditions,
such as the number of samples exceeds
oracle.hadoop.balancer.maxSamplesPct. The partition
report logs the stopping condition.

See oracle.hadoop.balancer.confidence.

oracle.hadoop.balancer.maxSamples
Pct

Type: Float

Default Value: 0.01 (1%)

Description: Limits the number of samples that
Perfect Balance can collect to a fraction of the total
input records. A value less than zero disables the
property (no limit).

You may need to increase the value for Hadoop
applications with very unbalanced reducer partitions
or densely clustered map-output keys. The sampler
needs to sample more data to achieve a good
partitioning plan in these cases.

See oracle.hadoop.balancer.useClusterStats.

oracle.hadoop.balancer.minSplits Type: Integer

Default Value: 5

Description: Sets the minimum number of splits that
the sampler reads. If the total number of splits is less
than this value, then the sampler reads all splits. Set
this property to a value greater than or equal to one
(1). A nonpositive number sets the property to 1.

oracle.hadoop.balancer.numThreads Type: Integer

Default Value: 5

Description: Number of sampler threads. Set this
value based on the processor and memory
resources available on the node where the job is
initiated. A higher number of sampler threads implies
higher concurrency in sampling. Set this property to
one (1) to disable multithreading in the sampler.

Chapter 5
Perfect Balance Configuration Property Reference

5-22

Property Type, Default Value, Description

oracle.hadoop.balancer.report.overwr
ite

Type: Boolean

Default Value: false

Description: Controls whether Perfect Balance
overwrites files in the location specified by the
oracle.hadoop.balancer.reportPath property. By default,
Perfect Balance does not overwrite files; it throws an
exception. Set this property to true to allow partition
reports to be overwritten.

oracle.hadoop.balancer.reportPath Type: String

Default Value: directory/orabalancer_report-
random_unique_string.json, where directory for
HDFS is the home directory of the user who submits
the job. For the local file system, it is the directory
where the job is submitted.

Description: The path where Perfect Balance writes
the partition report before the Hadoop job output
directory is available, that is, before the MapReduce
job finishes running. At the end of the job, Perfect
Balance moves the file to job_output_dir/
_balancer/orabalancer_report.json. In the API,
the save method does this task.

oracle.hadoop.balancer.runMode Type: String

Default Value: local

Description: Specifies how to run the Perfect
Balance sampler. The following values are valid:

• local: The sampler runs on the client node
where the job is submitted.

• distributed: The sampler runs as a Hadoop
job. If the job uses the distributed cache, then
Perfect Balance automatically sets this property
to distributed.

If this property is set to an invalid string, Perfect
Balance resets it to local.

oracle.hadoop.balancer.tmpDir Type: String

Default Value: /tmp/orabalancer-user_name

Description: The path to a staging directory in the
file system of the job output directory (HDFS or
local). Perfect Balance creates the directory if it does
not exist, and copies the partition report to it for
loading into the Hadoop distributed cache.

Chapter 5
Perfect Balance Configuration Property Reference

5-23

Property Type, Default Value, Description

oracle.hadoop.balancer.useClusterSt
ats

Type: Boolean

Default Value: true

Description: Enables the sampler to use cluster
sampling statistics. These statistics improve the
accuracy of sampled estimates, such as the number
of records in a map-output key, when the map-output
keys are distributed in clusters across input splits,
instead of being distributed independently across all
input splits.

Set this property to false only if you are absolutely
certain that the map-output keys are not clustered.
This setting improves the sampler's estimates only
when there is, in fact, no clustering. Oracle
recommends leaving this property set to true,
because the distribution of map-output keys is
usually unknown.

oracle.hadoop.balancer.useMapreduc
eApi

Type: Boolean

Default Value: true

Description: Identifies the MapReduce API used in
the Hadoop job:

• true: The job uses the mapreduce API.
• false: The job uses the mapred API.

Chapter 5
Perfect Balance Configuration Property Reference

5-24

Part III
Oracle Table Access for Hadoop and
Spark

This part describes Oracle Table Access for Hadoop and Spark storage handler for
Oracle Database. It contains the following chapters:

• Oracle DataSource for Apache Hadoop (OD4H)

6
Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (OD4H) allows direct, fast, parallel, secure and
consistent access to master data in Oracle Database using Spark SQL via Hive
metastore. This chapter discusses Oracle DataSource for Apache Hadoop (OD4H) in
the following sections:

• Operational Data, Big Data and Requirements

• Overview of Oracle DataSource for Apache Hadoop (OD4H)

• How Does OD4H Work?

• Features of OD4H

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

• Writing Back To Oracle Database

6.1 Operational Data, Big Data and Requirements
The common data architecture in most companies nowadays generally comprises of
the following components:

• Oracle Database(s) for operational, transactional, and master data, that is shared
business object such as customers, products, employees and so on

• Big Data

Hadoop applications such as Master Data Management (MDM), Events processing,
and others, need access to data in both Hadoop storages (such as HDFS and NoSQL
Database as a landing point for weblogs, and so on) and Oracle Database (as the
reliable and auditable source of truth). There are two approaches to process such data
that reside in both Hadoop storage and Oracle Database:

• ETL Copy using tools such as Oracle's Copy to BDA

• Direct Access using Oracle Big Data SQL and Oracle DataSource for Apache
Hadoop (OD4H).

In this chapter, we will discuss Oracle DataSource for Apache Hadoop (OD4H).

6.2 Overview of Oracle DataSource for Apache Hadoop
(OD4H)

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

This section discusses the following concepts:

6-1

• Opportunity with Hadoop 2.x

• Oracle Tables as Hadoop Data Source

• External Tables

6.2.1 Opportunity with Hadoop 2.x
Hadoop 2.x architecture decouples compute engines from cluster resources
management and storages. It enables:

• A variety of SQL query engines. For instance, Hive SQL, Spark SQL, Big Data
SQL, and so on.

• A variety of programmatic compute engines. For instance, MapReduce, Pig,
Storm, Solr, Cascading, and so on.

• Elastic allocation of compute resources (CPU, memory) through YARN.

• A variety of data stores such as HDFS, NoSQL, as well as remote storages
through HCatalog, InputFormat, OutputFormat and StorageHandler interfaces.

Oracle DataSource for Apache Hadoop (OD4H) is the storage handler for Oracle
Database that uses HCatalog and InputFormat.

Following is an illustration of Hadoop 2.0 Architecture:

Figure 6-1 Hadoop 2.0 Architecture

Batch
(MapReduce)

Interactive
(Tez)

In-Memory
(Spark)

Graph
(Giraph)

Streaming
(Storm)

Compute Engines
Query Engines
Programming Modules
Applications

Yarn (Cluster Resource Management)

Data
HCatalog,

InputFormat,
StorageHandler

Compute and Memory

Redundant and / or Reliable Storage

HDFS NoSQL Other

6.2.2 Oracle Tables as Hadoop Data Source
OD4H enables current and ad-hoc querying. This makes querying data faster and
more secure. You can query data directly and retrieve only the data that you need,
when you need it.

OD4H also provides Oracle’s end-to-end security. This includes Identity Management,
Column Masking, and Label and Row Security.

OD4H also furnishes direct access for Hadoop and Spark APIs such as Pig,
MapReduce and others.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-2

6.2.3 External Tables
External Tables turn Oracle tables into Hadoop and/or Spark datasources. The DDL
for declaring External Tables is as follows:

CREATE[TEMPORARY] EXTERNAL TABLE [IF NOT EXISTS] [db_name.]table_name
[(col_name data_type [COMMENTcol_comment],...)]
[COMMENT table_comment]
STORED BY 'oracle.hcat.osh.OracleStorageHandler' [WITHSERDEPROPERTIES(...)]
[TBLPROPERTIES (property_name=property_value,...)]

data_type
|SMALLINT
|INT
|BIGINT
|BOOLEAN
|FLOAT
|DOUBLE
|STRING
|BINARY
|TIMESTAMP
|DECIMAL
|DECIMAL(precision,scale)
|VARCHAR
|CHAR

See Also:

Refer the following link for Hive External Table syntax https://
cwiki.apache.org/confluence/display/Hive/LanguageManual
+DDL#LanguageManualDDL-CreateTable

Note:

Oracle supports only primitive types.

The following table shows the mappings between Oracle and Hive types.

Oracle Data Type Hive Data Type

NUMBER INT when the scale is 0 and the precision is less than 10.

BIGNIT when the scale is 0 and precision is less than 19.

DECIMAL when the scale is greater than 0 or the precision is
greater than 19.

CLOB

NCLOB

STRING

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-3

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTable

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

BLOB BINARY

CHAR

NCHAR

CHAR

VARCHAR2

NVARCHAR2

VARCHAR

ROWID

UROWID

BINARY

DATE TIMESTAMP

TIMESTAMP TIMESTAMP

TIMESTAMPTZ

TIMESTAMPLTZ

Unsupported

RAW BINARY

The properties of external tables can be described as follows:

6.2.3.1 TBLPROPERTIES

Property Use

oracle.hcat.osh.columns.mapping Comma separated list to specify mapping between
Hive columns and Oracle table columns. All external
tables using OracleStorageHandler must define this.

mapreduce.jdbc.url Connection URL to connect to the database

mapreduce.jdbc.username Connection user name to connect to the database

mapreduce.jdbc.password Connection password to connect to the database

mapreduce.jdbc.input.table.name Oracle table name

mapreduce.jdbc.input conditions To be used for querying the database. Must be used
for query pushdown.

mapreduce.jdbc.input.query To be used for querying the database. Query should
be used only when a subset of the columns is
selected.

mapreduce.jdbc.input.orderby ORDER BY clause to be specified for pushing ordering to
the database.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-4

Property Use

oracle.hcat.osh.splitterKind To be used to specify how OracleStorageHandler must
create splits, so that they are a good match for the
physical structure of the target table in Oracle
Database. The splitter kind applicable could be
SINGLE_SPLITTER, PARTITION_SPLITTER,
ROW_SPLITTER, BLOCK_SPLITTER.

oracle.hcat.osh.rowsPerSplit Used only when ROW_SPLITTER splitterKind is applied
on the table. Represents Number of rows per split for
LIMIT_RANGE splitter. Default is 1000

oracle.hcat.osh.authentication Authentication method used to connect to Oracle
Database. Can be SIMPLE (default), ORACLE_WALLET,
KERBEROS

sun.security.krb5.principal Kerberos principal. Used only when KERBEROS
authentication is applied.

oracle.hcat.osh.kerb.callback Callback for Kerberos authentication. Used only when
Kerberos authentication is applied.

oracle.hcat.osh.maxSplits Maximum number of splits for any splitter kind

oracle.hcat.osh.useChunkSplitter Use chunk based ROW_SPLITTER and
BLOCK_SPLITTER that use
DBMS_PARALLEL_EXECUTE package to divide table
into chunks that will map to hadoop splits.The default
value is set to ‘true’.

oracle.hcat.osh.chunkSQL Used by CUSTOM_SPLITTERto create splits. The SQL
string should be a SELECT statement that returns
range of each chunk must have two columns:
start_id and end_id The columns must be of ROWID
type.

oracle.hcat.osh.useOracleParallelism When configured, parallel queries will be executed
while fetching rows from Oracle. Default value: ‘false’

oracle.hcat.osh.fetchSize JDBC fetchsize for generated select queries used to
fetch rows. Default value: 10 (set by Oracle JDBC
Driver)

Note:

In addition to the above, any JDBC connection properties (oracle.jdbc.* and
oracle.net.*) can be specified as TBLPROPERTIES. They will be used while
establishing connection to Oracle Database using JDBC driver.

Note:

Oracle DataSource for Apache Hadoop (OD4H) works with Oracle View and
Oracle Tables.

Chapter 6
Overview of Oracle DataSource for Apache Hadoop (OD4H)

6-5

6.2.3.2 SERDE PROPERTIES

Property Use

oracle.hcat.osh.columns.mapping All external tables using
OracleStorageHandler must define this. Its a
comma separated list to specify mapping
between hive columns (specified in create
table) and oracle table columns.
WITHSERDEPROPERTIES also enables the
external table definition to refer only to select
columns in the actual Oracle table. In other
words, not all columns from the Oracle table
need to be part of the Hive external table. The
ordering of oracle columns in the mapping is
the same as ordering of hive columns
specified in create table.

6.2.4 List of jars in the OD4H package
Oracle DataSource for Apache Hadoop (OD4H) contains the following list of jars.

OD4H consists of the following list of jars.

Table 6-1 List of jars in OD4H

Name of JAR Use

osh.jar Contains OracleStorageHandler
Implementation

ojdbc7.jar An OD4H specific JDBC driver (which is
optimized with internal calls), used by Spark or
Hadoop tasks to connect to the database.

ucp.jar For creating connection pools in
OracleStorageHandler

oraclepki103.jar, osdt_core.jar, osdt_cert.jar,
osdt_jce.jar

For Oracle Wallet authentication

orai18n.jar Oracle Globalization Support

xdb.jar Oracle XDB jar

6.3 How does OD4H work?
Oracle DataSource for Apache Hadoop (OD4H) does not require creating a new table.
You can start working with OD4H using the following steps:

1. Create a new Oracle table, or, reuse an existing table.

2. Create the Hive DDL for creating the external table referencing the Oracle Table.

3. Issue HiveSQL, SparkSQL, or other Spark/Hadoop queries and API calls.

The following sections show how to create a new Oracle Database Table, and a Hive
DDL:

• Create a New Oracle Database Table

Chapter 6
How does OD4H work?

6-6

• Hive DDL

• Creating External Table in Hive

6.3.1 Create a new Oracle Database Table or Reuse an Existing Table
Here is an illustration of a partitioned Oracle table that we will use to demo how
partition pruning works:

1. CREATE TABLE EmployeeData (Emp_ID NUMBER,
 First_Name VARCHAR2(20),
 Last_Name VARCHAR2(20),
 Job_Title VARCHAR2(40),
 Salary NUMBER)
PARTITION BY RANGE (Salary)
 (PARTITION salary_1 VALUES LESS THAN (60000)
 TABLESPACE tsa
 , PARTITION salary_2 VALUES LESS THAN (70000)
 TABLESPACE tsb
 , PARTITION salary_3 VALUES LESS THAN (80000)
 TABLESPACE tsc
 , PARTITION salary_4 VALUES LESS THAN (90000)
 TABLESPACE tsd
 , PARTITION salary_5 VALUES LESS THAN (100000)
 TABLESPACE tse
);

Note:

You can use this syntax for table creation, in the following examples
listed in this Book.

2. Issue queries from Hive, Spark, or any other Hadoop models (including joins with
local Hive Tables.)

6.3.2 Hive DDL
In this example, we will associate two Hive external tables to the same Oracle table,
using two different split patterns:

• SIMPLE_SPLITTER

• PARTITION_SPLITTER

Note:

It is possible that the external table has fewer columns than the base Oracle
table.
Since columns can have different names, use TBLPROPERTY for mapping with
the base table.

In the following examples, we are using the following variables:

Chapter 6
How does OD4H work?

6-7

connection_string = jdbc:oracle:thin:@localhost:1521/<servicename>

oracle_user=od4h

oracle_pwd=od4h

The following command creates a Hive external table with the default split pattern, that
is SIMPLE_SPLITTER.

CREATE EXTERNAL TABLE EmployeeDataSimple (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData'
);

The following example creates a Hive external table using PARTITION_SPLITTER.

DROP TABLE EmployeeDataPartitioned;
CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:jdbc:oracle:thin:@localhost:1521/<servicename>}',
 'mapreduce.jdbc.username' = '${hiveconf:od4h}',
 'mapreduce.jdbc.password' = '${hiveconf:od4h}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.splitterKind' = 'PARTITIONED_TABLE'
);

6.3.3 Creating External Tables in Hive
You can create an external table in Hive in the following way:

DROP TABLE employees;

CREATE EXTERNAL TABLE employees (
 EMPLOYEE_ID INT,
 FIRST_NAME STRING,
 LAST_NAME STRING,
 SALARY DOUBLE,

Chapter 6
How does OD4H work?

6-8

 HIRE_DATE TIMESTAMP,
 JOB_ID STRING
)

 STORED BY 'oracle.hcat.osh.OracleStorageHandler'

WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'employee_id,first_name,last_name,salary,hire_date,job_id')

 TBLPROPERTIES (
 'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',
 'mapreduce.jdbc.username' = 'hr',
 'mapreduce.jdbc.password' = 'hr',
 'mapreduce.jdbc.input.table.name' = 'EMPLOYEES'
);

Note:

Ensure that ucp.jar, ojdbc8.jar and osh.jar are present in the Hive
CLASSPATH, for using OD4H. This is pre-configured on BDA. .
To learn more about CLASSPATH and other Hive configuration properties, refer
the following sources:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

6.4 Features of OD4H
The following topics discuss features of OD4H.

• Performance and Scalability Features

• Security Features

• Using Hive SQL with OD4H

• Using Spark SQL with OD4H

6.4.1 Performance And Scalability Features
Following sections discuss the performance and scalability features of OD4H:

• Splitters

• Predicate Pushdown

• Projection Pushdown

• Partition Pruning

• Smart Connection Management

HCatalog stores table metadata from Hive DDL. HiveSQl, Spark SQL and others, then
use this metadata while submitting queries.

Chapter 6
Features of OD4H

6-9

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Cli
https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

The Oracle table is divided into granules determined by the splitterKind property.
These granules are then read into a split by OracleStorageHandler, by submitting
generated queries.

OracleStorageHandler will not have to test all possible query types if the query plan
determines which splits need to be scanned.

Figure 6-2 OD4H in a Nutshell

split

split

Hive

Hadoop
HCatalog

Hive DDL

Map Task

Map Task

Map Task

split

split

granule

Oracle Storage
Handler

Map Reduce JobOracle Table

granule

granule

granule

Rewritten
Query

by JDBC

Job Tracker

6.4.1.1 Splitters
While executing a query on a Hive external table through OTD4H, the underlying
Oracle table is dynamically divided into granules, which correspond to splits on the
Hadoop side. Each split is processed by a single map task. With the help of the
ORACLE_SPLITTER_KIND property, you can specify how the splits are created. This
ensures that the splits are a good match for the physical structure of the target table in
Oracle Database.

The different kinds of splitters available are:

SINGLE_SPLITTER

Creates one split for the table. Use SINGLE_SPLITTERwhere a single task is sufficient to
process the query against the entire table.

ROW_SPLITTER

Limits the number of rows per Split. The default number of rows is 1000. You can
specify number of rows by setting the oracle.hcat.osh.rowsPerSplit property. The
default value of oracle.hcat.osh.maxSplits is 1 when ROW_SPLITTER is used. You can
increase this value to enable parallel reads.

Chapter 6
Features of OD4H

6-10

Based on the values provided in the rowsPerSplit property, OD4H will divide tables
into splits. If the number of splits obtained is higher than the maxSplits, then maxSplits
property will be used. The rows per split will be divided accordingly.

Note:

oracle.hcat.osh.rowsPerSplitis used only by ROW_SPLITTER and not any other
splitter kind.

BLOCK_SPLITTER

Creates splits based on underlying storage of data blocks. With Block Splitter, you can
specify the maximum number of splits to be generated. The default value of
oracle.hcat.osh.maxSplits is 1, when BLOCK_SPLITTER is used. You can increase this
value to enable parallel reads. BLOCK_SPLITTER requires SELECT privilege on the
SYS.DBA.EXTENTS table, granted to the schema containing the Oracle target table. In the
event that this permission does not exist, OD4H will use SINGLE_SPLITTER.

Note:

The actual number of splits under BLOCK_SPLITTER may be lesser than the
value specified in the oracle.hcat.osh.maxSplits property.
Do not use BLOCK_SPLITTER on partitioned tables or Index Organized
tables.

Note:

For ROW_SPLITTER and BLOCK_SPLITTER types, use
oracle.hcat.osh.useChunkSplitter to specify splitting mechanism. The default
property value is true. This enables creating chunks corresponding to splits
using the DBMS_PARALLEL_EXECUTE package. When the property value is false,
custom SQL is generated for splitting.

PARTITION_SPLITTER

Creates one split per partition. PARTITION_SPLITTER is used by default when the table is
partitioned. You can override this setting by specifying ROW_SPLITTER in table properties.
With PARTITION_SPLITTER, the default value of oracle.hcat.osh.maxSplits table property
is 64.

Following is an illustration of ROW_SPLITTER:

DROP TABLE employees;

CREATE EXTERNAL TABLE employees (
 EMPLOYEE_ID INT,
 FIRST_NAME STRING,
 LAST_NAME STRING,
 SALARY DOUBLE,
 HIRE_DATE TIMESTAMP,
 JOB_ID STRING

Chapter 6
Features of OD4H

6-11

)
 STORED BY 'oracle.hcat.osh.OracleStorageHandler'

WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'employee_id,first_name,last_name,salary,hire_date,job_id')

TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@localhost:1521:orcl',
'mapreduce.jdbc.username' = 'hr',
'mapreduce.jdbc.password' = 'hr',
'mapreduce.jdbc.input.table.name' = 'EMPLOYEES',
'oracle.hcat.osh.splitterKind' = 'ROW_SPLITTER',
'oracle.hcat.osh.rowsPerSplit' = '1500'
);

CUSTOM_SPLITTER

Use CUSTOM_SPLITTER If you want to provide a custom split generation mechanism. You
can do this using CUSTOM_SPLITTER through oracle.hcat.osh.splitterKind property and
a SELECT statement that emits ROWIDs corresponding to start and end of each split in
oracle.hcat.osh.chunkSQL.

6.4.1.2 Choosing a Splitter
SINGLE_SPLITTER is used by default if no splitter is specified in the table properties for
Hive external table, and the target Oracle table is not partitioned.

For an unpartitioned table, the default value of oracle.hcat.osh.maxSplits will be 1. For
partitioned table, the default value of the same will be 64, and the default splitter will
be PARTITION_SPLITTER. The default for maxSplits is set to limit the number of
connections to the Oracle server. To increase this limit, you must increase the value of
oracle.hcat.osh.maxSplits explicitly in hive table properties.

Use the following guidelines while choosing a splitter kind for a hive external table:

Splitter Kind Use

SINGLE_SPLITTER When no parallelism is required.

PARTITION_SPLITTER Used by default when target table is
partitioned

BLOCK_SPLITTER When Oracle user has SELECT privilege on
SYS.DBA_EXTENTS, and target table is not
partitioned.

ROW_SPLITTER When Oracle user does not have SELECT
privilege on SYS.DBA_EXTENTS.

CUSTOM_SPLITTER For fine grain control over generated splits.

6.4.1.3 Predicate Pushdown
Predicate Pushdown is an optimization technique, in which you push predicates (WHERE
condition) down to be evaluated by Oracle Database at the time of querying. This
minimizes the amount of data fetched from Oracle Database to Hive, while performing
a query.

Chapter 6
Features of OD4H

6-12

Set the configuration property hive.optimize.ppd to either true or false for enabling
Predicate Pushdown. The default value on hive-1.1.0 is set to true. Hence, Predicate
Pushdown is always performed, unless you want to disable it.

Note:

OD4H does not push down all possible predicates. It considers only the part
of the execution plan pertaining to Oracle table declared as external table.
OD4H also rewrites sub-queries for the Oracle SQL engine and each split
task. At present conditions involving operators >,=,< in a single condition
over a column (e.g. key > 10) or a combination of multiple conditions
separated by AND (e.g. key > 10 AND key < 20 AND key !=17) are pushed
down.

Another option to reduce the amount of data fetched from the Oracle Database is to
specify a condition at the time of table creation, using TBLPROPERTY
mapreduce.jdbc.input.conditions. For instance:

mapreduce.jdbc.input.conditions = 'key > 10 OR key = 0'.

This will restrict the rows fetched from Oracle Database whenever any query is
performed based on the condition specified. The external table that gets created, is
analogous to a view on Oracle Database. This approach is only useful when you want
to push down complex predicates that cannot be analyzed and automatically pushed
down by OD4H.

Table Level Predicate Pushdown

For Table Level Predicate Pushdown to be enabled, you must specify a condition at
the time of table creation, using TBLPROPERTY mapreduce.jdbc.input.conditions.

Following is an illustration:

mapreduce.jdbc.input.conditions = 'key > 10 OR key = 0'.

This will restrict the rows fetched from Oracle Database when any query is performed
based on the condition specified. The table created will be analogous to a view on
Oracle database.

However, Table Level Predicate Pushdown is ignored when a predicate (aWHERE
clause) is specified in the query.

6.4.1.4 Projection Pushdown
Projection Pushdown is an optimization technique that fetches only the required
columns from Oracle Database when a query is performed. If you want to fetch all
columns during a query (not recommended), you can disable it by setting the
hive.io.file.read.all.columns connection property to true. On Hive–1.1.0, this
property is false by default.

Chapter 6
Features of OD4H

6-13

6.4.1.5 Partition Pruning
If you refer to Employee Data Partition table, the partitions irrelevant to the query are
removed from the partition list. This is done by executing an explain plan on the query
to obtain the list of partitions and sub-partitions that are relevant to the query.

Table level partition pruning uses table level predicate pushdown, on the other hand
partition pruning at the query level uses query level predicate pushdown.

Partition pruning is active when a SELECT query is run, in which the WHERE clause uses
the partitioning key. Following is an example of partition pruning:

To query the partition, where salary is in the above range and prune other partitions,
perform the following:

Hive External Table:

CREATE EXTERNAL TABLE EmployeeDataPartitioned (
 Emp_ID int,
 First_Name string,
 Last_Name string,
 Job_Title string,
 Salary int
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' =
'Emp_ID,First_Name,Last_Name,Job_Title,Salary')
TBLPROPERTIES (
 'mapreduce.jdbc.url' = '${hiveconf:connection_string}',
 'mapreduce.jdbc.username' = '${hiveconf:oracle_user}',
 'mapreduce.jdbc.password' = '${hiveconf:oracle_pwd}',
 'mapreduce.jdbc.input.table.name' = 'EmployeeData',
 'oracle.hcat.osh.oosKind' = 'PARTITIONED_TABLE'
);

The following SELECT statement shows how to query the partition, where salary is
between 72000 to 78000, and prunes other partitions:

select * from EmployeeDataPartitioned where salary > 72000 and salary < 78000;

6.4.2 Smart Connection Management
Connection Caching

Each map task runs in its own JVM. Each JVM in turn caches a single connection to
the Oracle database that you can reuse within the same query. The Mapper checks
the cache before establishing a new connection and caching is not done once the
query has completed executing.

Oracle RAC Awareness

JDBC and UCP are aware of various Oracle RAC instances. This can be used to split
queries submitted to JDBC. The StorageHandler will depend on listener for load
balancing.

Chapter 6
Features of OD4H

6-14

Handling Logon Storms

Hadoop allows you to limit the number of mappers attempting to connect to the
Database. Hadoop allows you to limit the number of mappers attempting to connect to
the Database using oracle.hcat.osh.maxSplits. This parameter controls the degree of
concurrency. However, subsequent tasks of the same query are guaranteed to query
their table granule as per the System Commit Number (SCN) of the query. This
ensures consistency of the result sets.

Database Resident Connection Pooling (DRCP)

It is recommended to configure DRCP for OD4H, and limit the maximum number of
concurrent connections to the Oracle Database from OD4H.

Configuring Database Resident Connection Pooling
To configure DRCP, use the following steps:

1. Login as SYSDBA.

2. Start the default pool, SYS_DEFAULT_CONNECTION_POOL using
DBMS_CONNECTION_POOL.START_POOL with the default settings.

You can use DBMS_CONNECTION_POOL.MINSIZE and DBMS_CONNECTION_POOL.MAXSIZE with
the default settings.

Note:

Oracle Database Administrator’s Guide for more information on Configuring
DRCP.

6.4.3 Security Features
Following are the security features of OD4H:

6.4.3.1 Improved Authentication
OD4H uses Oracle JDBC driver for connecting to Oracle Database. It provides all
authentication methods supported by Oracle JDBC. OD4H supports authentication
through use of basic authentication (username and password), Oracle Wallet, and
Kerberos. You can specify the authentication to be used for a table created in Hive,
through the oracle.hcat.osh.authentication table property. This is useful only for
strong authentication.

• Kerberos

• Oracle Wallet

• Basic Authentication

Note:

Oracle recommends using strong authentication such as Kerberos.

Chapter 6
Features of OD4H

6-15

The various authentication processes are described with examples as follows:

1. Kerberos

Uses Kerberos credentials of the Hadoop engine process. This principal should
have access to the table.

See Also:

Oracle Database JDBC Developer's Guide for information on configuring
database for Kerberos and details of client parameters

You can enable Kerberos configuration on Hive, by adding to hive-env.sh the
following:

export HADOOP_OPTS="$HADOOP_OPTS -Djava.security.krb5.conf=<path to kerberos
configuration>

To enable child JVMs to use Kerberos configuration, edit the mapred-site.xml to
include the following property on all nodes of the cluster:

<property><name>mapred.child.java.opts</name> <value>-
Djava.security.krb5.conf=<path to kerberos configuration>></value></property>

Enable these configurations on BDA using Cloudera manager..

Following is an illustration of Kerberos authentication:

CREATE EXTERNAL TABLE kerb_example (
id DECIMAL,
name STRING,
salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' = 'id,name,salary')
TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=adc*******.xxxxxx.com)(PORT=5521))(CONNECT_DATA=
(SERVICE_NAME=project_name.xxx.rdbms.xxxx.com)))',
'mapreduce.jdbc.input.table.name' = 'kerb_example',
'mapreduce.jdbc.username' = 'CLIENT@xxxxxx.COM',
'oracle.hcat.osh.authentication' = 'KERBEROS',
'oracle.net.kerberos5_cc_name' = '/tmp/krb5cc_xxxxx',
'java.security.krb5.conf' = '/home/user/kerberos/krb5.conf',
'oracle.hcat.osh.kerb.callback' = 'KrbCallbackHandler',
'sun.security.krb5.principal' = 'CLIENT@xxxxx.COM'
);

The path specified in oracle.security.krb5.conf should be accessible to all nodes
of the cluster. These paths should also match with the path of the corresponding
properties in Oracle Database sqlnet.ora.The keytab path provided in sqlnet.ora
should also be accessible from all nodes of the cluster.

If sun.security.krb5.principal is not specified, OD4H will attempt to authenticate
using default principal in Credential Cache specified by the
oracle.net.kerberos5_cc_name property.

Chapter 6
Features of OD4H

6-16

https://docs.oracle.com/database/121/JJDBC/clntsec.htm#JJDBC28339

Note:

The callback will be called only if the principal cannot be authenticated
using a ticket obtained from the credential cache specified in
oracle.net.kerberos5_cc_nameproperty.

A simple callback handler class is described as follows (The callback class must
be available to the hive classpath):

class KrbCallbackHandler
 implements CallbackHandler{

@Override
public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException{
for (int i = 0; i < callbacks.length; i++){
 if (callbacks[i] instanceof PasswordCallback){
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.out.println("set password to 'welcome'");
 pc.setPassword((new String("welcome")).toCharArray());
} else if (callbacks[i] instanceof NameCallback) {
 ((NameCallback)callbacks[i]).setName("client@xxxxx.COM");
}else{
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }
 }
}

2. Oracle Wallet

The wallet should be available in the OS environment of each engine process.
Following is an illustration of how to add Wallet authentication:

CREATE EXTERNAL TABLE wallet_example (
 id DECIMAL,
 name STRING,
 salary DECIMAL
)
STORED BY 'oracle.hcat.osh.OracleStorageHandler'
WITH SERDEPROPERTIES (
 'oracle.hcat.osh.columns.mapping' = 'id,name,salary')
TBLPROPERTIES (
'mapreduce.jdbc.url' = 'jdbc:oracle:thin:/@inst1',
'mapreduce.jdbc.input.table.name' = 'wallet_example',
'oracle.hcat.osh.authentication' = 'ORACLE_WALLET',
'oracle.net.tns_admin' = '/scratch/user/view_storage/user_project6/work',
'oracle.net.wallet_location' = '/scratch/user/view_storage/user_project6/work'
);

Note:

The paths specified in oracle.net.tns_admin and
oracle.net.wallet_location should be accessible from all nodes of the
cluster.

Chapter 6
Features of OD4H

6-17

See Also:

Managing the Secure External Password Store for Password Credentials
section in the Oracle Database Security Guide.

3. Basic Authentication (for demo purposes only)

This is stored in HCatalog TBLPROPERTIES or supplied on HiveQL SELECT statement.

When Basic Authentication is used, the username and password for Oracle
Schema is specified in Hive external Table properties.

Note:

Oracle does not recommend this in the production environment, since
the password is stored in clear in HCatalog.

6.5 Using HiveQL with OD4H
HiveQL is a SQL like language provided by Hive. It can be used to query hive external
tables created using OD4H.

You can run the Resource Manager web interface in your browser (http://
bigdatalite.localdomain:8088/cluster), to track the status of a running query on BDA.

You can also see the logs of a query in Cloudera Manager, which also indicates the
actual query sent to Oracle Database corresponding to your query on HiveQL. Hive
and OD4H use slf4j framework for logging. You can control logging level for OD4H
related classes using logging configuration techniques of Hive.

6.6 Using Spark SQL with OD4H
Spark SQL enables relational queries expressed in SQL and HiveSQL to be executed
using Spark. Spark SQL allows you to mix SQL queries with programmatic data
manipulations supported by RDDs (Resilient Distributed Datasets) in Java, Python and
Scala, with a single application.

Spark SQL enables you to submit relational queries using SQL or HiveQL. You can
also use it to query external tables created using OD4H.

Perform the following steps to configure Spark-SQL on BigDataLite-4.2 VM, before
running queries:

1. Add ojdbc7.jar and osh.jar to CLASSPATH in /usr/lib/spark/bin/compute-
classpath.sh

CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/osh.jar"
CLASSPATH="$CLASSPATH:/opt/oracle/od4h/lib/ojdbc7.jar"

2. Edit SPARK_HOME in /usr/lib/spark/conf/spark-env.sh

export SPARK_HOME=/usr/lib/spark:/etc/hive/conf

Chapter 6
Using HiveQL with OD4H

6-18

3. You will need to specify additional environment variables in /usr/lib/spark/conf/
spark-env.sh.

The Hive related variables that need to be added are marked in bold. The file
already contains Hadoop related environment variables.

export DEFAULT_HADOOP=/usr/lib/hadoop
export DEFAULT_HIVE=/usr/lib/hive
export DEFAULT_HADOOP_CONF=/etc/hadoop/conf
export DEFAULT_HIVE_CONF=/etc/hive/conf
export HADOOP_HOME=${HADOOP_HOME:-$DEFAULT_HADOOP}
export HADOOP_HDFS_HOME=${HADOOP_HDFS_HOME:-${HADOOP_HOME}/../hadoop-hdfs}
export HADOOP_MAPRED_HOME=${HADOOP_MAPRED_HOME:-${HADOOP_HOME}/../hadoop-
mapreduce}
export HADOOP_YARN_HOME=${HADOOP_YARN_HOME:-${HADOOP_HOME}/../hadoop-yarn}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-$DEFAULT_HADOOP_CONF}
export HIVE_CONF_DIR=${HIVE_CONF_DIR:-$DEFAULT_HIVE_CONF}

CLASSPATH="$CLASSPATH:$HIVE_CONF_DIR"
CLASSPATH="$CLASSPATH:$HADOOP_CONF_DIR"

if ["x" != "x$YARN_CONF_DIR"]; then
 CLASSPATH="$CLASSPATH:$YARN_CONF_DIR"
fi

Let's make sure that all needed hadoop libs are added properly
CLASSPATH="$CLASSPATH:$HADOOP_HOME/client/*"
CLASSPATH="$CLASSPATH:$HIVE_HOME/lib/*"
CLASSPATH="$CLASSPATH:$($HADOOP_HOME/bin/hadoop classpath)"

Once configured, you can run some sample queries on spark SQL using scripts
included in demo:/shell/*QuerySpark.sh. By default, Spark prints queries on the
console. To modify this behavior you can edit the spark logging configuration
file /usr/lib/spark/conf/log4j.properties.

The log printed by OracleRecordReader shows the actual query sent to Oracle
Database, as follows:

15/03/18 10:36:08 INFO OracleRecordReader: Reading records from Oracle Table
using Query: SELECT FIRST_NAME, LAST_NAME, EMP_ID FROM EmployeeData

6.7 Writing Back to Oracle Database
In the typical use case for OD4H, you store the result sets of Hive or Spark SQL
queries back to Oracle Database. OD4H implements OutputFormat to enable you to
write back to an Oracle Database table from Hadoop.

After the data is inserted into an Oracle Database table, you can then use your favorite
business intelligence tools for further data mining

The following query is from the OD4H demo code samples. It demonstrates writing
back to an external table called EmployeeBonusReport.

Example 6-1 Writing Hive or Spark Result Sets Back to Oracle Database

INSERT INTO EmployeeBonusReport
 SELECT EmployeeDataSimple.First_Name, EmployeeDataSimple.Last_Name,
 EmployeeBonus.bonus
 FROM EmployeeDataSimple JOIN EmployeeBonus ON

Chapter 6
Writing Back to Oracle Database

6-19

 (EmployeeDataSimple.Emp_ID=EmployeeBonus.Emp_ID)
 WHERE salary > 70000 and bonus > 7000"

Chapter 6
Writing Back to Oracle Database

6-20

Glossary

Apache Flume
A distributed service for collecting and aggregating data from almost any source into a
data store such as HDFS or HBase.

See also Apache HBase; HDFS.

Apache HBase
An open-source, column-oriented database that provides random, read/write access to
large amounts of sparse data stored in a CDH cluster. It provides fast lookup of values
by key and can perform thousands of insert, update, and delete operations per
second.

Apache Hive
An open-source data warehouse in CDH that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language called
HiveQL. An interpreter generates MapReduce code from the HiveQL queries.

By using Hive, you can avoid writing MapReduce programs in Java.

See also Hive Thrift; MapReduce.

Apache Sentry
Integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Apache Solr
Provides an enterprise search platform that includes full-text search, faceted search,
geospatial search, and hit highlighting.

Apache Spark
A fast engine for processing large-scale data. It supports Java, Scala, and Python
applications. Because it provides primitives for in-memory cluster computing, it is
particularly suited to machine-learning algorithms. It promises performance up to 100
times faster than MapReduce.

Apache Sqoop
A command-line tool that imports and exports data between HDFS or Hive and
structured databases. The name Sqoop comes from "SQL to Hadoop." Oracle R

Glossary-1

Advanced Analytics for Hadoop uses the Sqoop executable to move data between
HDFS and Oracle Database.

Apache YARN
An updated version of MapReduce, also called MapReduce 2. The acronym stands for
Yet Another Resource Negotiator.

ASR
Oracle Auto Service Request, a software tool that monitors the health of the hardware
and automatically generates a service request if it detects a problem.

See also OASM.

Balancer
A service that ensures that all nodes in the cluster store about the same amount of
data, within a set range. Data is balanced over the nodes in the cluster, not over the
disks in a node.

CDH
Cloudera's Distribution including Apache Hadoop, the version of Apache Hadoop and
related components installed on Oracle Big Data Appliance.

Cloudera Hue
Hadoop User Experience, a web user interface in CDH that includes several
applications, including a file browser for HDFS, a job browser, an account
management tool, a MapReduce job designer, and Hive wizards. Cloudera Manager
runs on Hue.

See also HDFS; Apache Hive.

Cloudera Impala
A massively parallel processing query engine that delivers better performance for SQL
queries against data in HDFS and HBase, without moving or transforming the data.

Cloudera Manager
Cloudera Manager enables you to monitor, diagnose, and manage CDH services in a
cluster.

The Cloudera Manager agents on Oracle Big Data Appliance also provide information
to Oracle Enterprise Manager, which you can use to monitor both software and
hardware.

Cloudera Navigator
Verifies access privileges and audits access to data stored in Hadoop, including Hive
metadata and HDFS data accessed through HDFS, Hive, or HBase.

Glossary

Glossary-2

Cloudera Search
Provides search and navigation tools for data stored in Hadoop. Based on Apache
Solr.

Cloudera's Distribution including Apache Hadoop (CDH)
See CDH.

cluster
A group of servers on a network that are configured to work together. A server is either
a master node or a worker node.

All servers in an Oracle Big Data Appliance rack form a cluster. Servers 1, 2, and 3 are
master nodes. Servers 4 to 18 are worker nodes.

See Hadoop.

DataNode
A server in a CDH cluster that stores data in HDFS. A DataNode performs file system
operations assigned by the NameNode.

See also HDFS; NameNode.

Flume
See Apache Flume.

Hadoop
A batch processing infrastructure that stores files and distributes work across a group
of servers. Oracle Big Data Appliance uses Cloudera's Distribution including Apache
Hadoop (CDH).

Hadoop Distributed File System (HDFS)
See HDFS.

Hadoop User Experience (Hue)
See Cloudera Hue.

HBase
See Apache HBase.

HDFS
Hadoop Distributed File System, an open-source file system designed to store
extremely large data files (megabytes to petabytes) with streaming data access
patterns. HDFS splits these files into data blocks and distributes the blocks across a
CDH cluster.

When a data set is larger than the storage capacity of a single computer, then it must
be partitioned across several computers. A distributed file system can manage the
storage of a data set across a network of computers.

Glossary

Glossary-3

See also cluster.

Hive
See Apache Hive.

Hive Thrift
A remote procedure call (RPC) interface for remote access to CDH for Hive queries.

See also CDH; Apache Hive.

HiveQL
A SQL-like query language used by Hive.

See also Apache Hive.

HotSpot
A Java Virtual Machine (JVM) that is maintained and distributed by Oracle. It
automatically optimizes code that executes frequently, leading to high performance.
HotSpot is the standard JVM for the other components of the Oracle Big Data
Appliance stack.

Hue
See Cloudera Hue.

Impala
See Cloudera Impala.

Java HotSpot Virtual Machine
See HotSpot.

JobTracker
A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. MRv1 only.

See also Hadoop; MapReduce.

Kerberos
A network authentication protocol that helps prevent malicious impersonation. It was
developed at the Massachusetts Institute of Technology (MIT).

Mahout
Apache Mahout is a machine learning library that includes core algorithms for
clustering, classification, and batch-based collaborative filtering.

MapReduce
A parallel programming model for processing data on a distributed system. Two
versions of MapReduce are available, MapReduce 1 and YARN (MapReduce 2). The
default version on Oracle Big Data Appliance 3.0 and later is YARN.

Glossary

Glossary-4

A MapReduce program contains these functions:

• Mappers: Process the records of the data set.

• Reducers: Merge the output from several mappers.

• Combiners: Optimizes the result sets from the mappers before sending them to
the reducers (optional and not supported by all applications).

See also Apache YARN.

MySQL Database
A SQL-based relational database management system. Cloudera Manager, Oracle
Data Integrator, Hive, and Oozie use MySQL Database as a metadata repository on
Oracle Big Data Appliance.

NameNode
A service that maintains a directory of all files in HDFS and tracks where data is stored
in the CDH cluster.

See also HDFS.

Navigator
See Cloudera Navigator.

node
A server in a CDH cluster.

See also cluster.

NodeManager
A service that runs on each node and executes the tasks assigned to it by the
ResourceManager. YARN only.

See also ResourceManager; YARN.

NoSQL Database
See Oracle NoSQL Database.

OASM
Oracle Automated Service Manager, a service for monitoring the health of Oracle Sun
hardware systems. Formerly named Sun Automatic Service Manager (SASM).

Oozie
An open-source workflow and coordination service for managing data processing jobs
in CDH.

Oracle Database Instant Client
A small-footprint client that enables Oracle applications to run without a standard
Oracle Database client.

Glossary

Glossary-5

Oracle Linux
Oracle Linux is Oracle’s commercial version of the Linux operating system. Oracle
Linux is free to download, use, and redistribute without a support contract.

Oracle NoSQL Database
A distributed key-value database that supports fast querying of the data, typically by
key lookup.

Oracle R Distribution
An Oracle-supported distribution of the R open-source language and environment for
statistical analysis and graphing.

Oracle R Enterprise
A component of the Oracle Advanced Analytics Option. It enables R users to run R
commands and scripts for statistical and graphical analyses on data stored in an
Oracle database.

Pig
An open-source platform for analyzing large data sets that consists of the following:

• Pig Latin scripting language

• Pig interpreter that converts Pig Latin scripts into MapReduce jobs

Pig runs as a client application.

See also MapReduce.

Puppet
A configuration management tool for deploying and configuring software components
across a cluster. The Oracle Big Data Appliance initial software installation uses
Puppet.

The Puppet tool consists of these components: puppet agents, typically just called
puppets; the puppet master server; a console; and a cloud provisioner.

See also puppet agent; puppet master.

puppet agent
A service that primarily pulls configurations from the puppet master and applies them.
Puppet agents run on every server in Oracle Big Data Appliance.

See also Puppet; puppet master

puppet master
A service that primarily serves configurations to the puppet agents.

See also Puppet; puppet agent.

Glossary

Glossary-6

ResourceManager
A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. YARN only.

See also Hadoop; YARN.

Search
See Cloudera Search.

Sentry
See Apache Sentry.

Solr
See Apache Solr.

Spark
See Apache Spark.

Sqoop
See Apache Sqoop.

table
In Hive, all files in a directory stored in HDFS.

See also HDFS.

TaskTracker
A service that runs on each node and executes the tasks assigned to it by the
JobTracker service. MRv1 only.

See also JobTracker.

Whirr
Apache Whirr is a set of libraries for running cloud services.

YARN
See Apache YARN.

ZooKeeper
A MapReduce 1 centralized coordination service for CDH distributed processes that
maintains configuration information and naming, and provides distributed
synchronization and group services.

Glossary

Glossary-7

Index

A
Apache Sentry, 2-37
application adapters, 1-9
applications

data pull, 4-1
data push, 4-2

authentication, 3-1
authorization, 2-37
autoAnalyze configuration property, 5-16
autoBalance configuration property, 5-16
Automated Service Manager, 2-41

B
bdadiag utility, 2-42
Berkeley DB, 1-6
best practices, 5-2
big data description, 1-1
business intelligence, 1-3, 1-5, 1-11
byteWeight configuration property, 5-16

C
CDH

about, 1-3
diagnostics, 2-42
file system, 1-5
remote client access, 3-2
security, 3-1
version, 2-10

chopped keys, 5-16
chunking files, 1-5
client access

HDFS cluster, 3-4
HDFS secured cluster, 3-4
Hive, 3-7

client configuration, 3-2
Cloudera Manager

about, 2-3
accessing administrative tools, 2-5
connecting to, 2-3
effect of hardware failure on, 2-24
software dependencies, 2-24
starting, 2-3

Cloudera Manager (continued)
UI overview, 2-4
version, 2-10

Cloudera’s Distribution including Apache
Hadoop, 1-5

clusters, definition, 1-3
confidence configuration property, 5-16
Counting Reducer, 5-2

D
data replication, 1-5
data skew, 5-1
DataNode, 2-22
diagnostics, collecting, 2-42
disks, 2-21
dnsmasq service, 4-4
duplicating data, 1-5

E
emcli utility, 2-3
enableSorting configuration property, 5-16
encryption, 2-38, 2-39
engineered systems, 1-3
Exadata Database Machine, 1-3
Exadata InfiniBand connections, 4-3
Exalytics In-Memory Machine, 1-3
external tables, 1-8

F
failover

JobTracker, 2-20
NameNode, 2-19

feedbackDir configuration property, 5-16
files, recovering HDFS, 3-11
first NameNode, 2-23
Flume, 2-12
ftp.oracle.com, 2-42

G
groups, 2-36, 3-8

Index-1

H
Hadoop Distributed File System, 1-4
hadoop group, 3-8
Hadoop version, 1-3
HADOOP_CLASSPATH environment variable,

5-16
HBase, 2-12
HDFS

about, 1-4, 1-5
HDFS Transparent Encryption, 2-38
help from Oracle Support, 2-42
Hive, 2-37

about, 1-5
client access, 3-7
node location, 2-24
software dependencies, 2-24
tables, 3-9
user identity, 2-36

hive group, 3-8
HiveQL, 1-5
HotSpot, 2-10
HTTPS/Network Encryption, 2-39
Hue, 2-24

users, 3-9

I
Impala, 2-12
InfiniBand connections to Exadata, 4-3
InfiniBand network configuration, 4-1
inputFormat.mapred.* configuration properties,

5-16
installing CDH client, 3-2

J
Java HotSpot Virtual Machine, 2-10
Job Analyzer, 5-2, 5-4
job duration, 5-2
jobconfPath property, 5-16
jobHistoryPath configuration property, 5-16
JobTracker

failover, 2-20
security, 3-1

JobTracker node, 2-24

K
Kerberos authentication, 3-1
Kerberos commands, 3-1
Kerberos user setup, 3-10
key chopping, 5-2
key-value database, 1-6

keyLoad.minChopBytes configuration property,
5-16

keys, assigning to reducers, 5-2
keyWeight configuration property, 5-16
knowledge modules, 1-9

L
linearKeyLoad.* configuration properties, 5-16
Linux

disk location, 2-21
installation, 2-9

load, 5-2
Load Balancer, 5-2
loading data, 1-8, 1-9
login privileges, 3-10

M
map.tasks property, 5-16
mapper workload, 5-2
mapred configuration properties, 5-16
mapred.map.tasks configuration property, 5-19
MapReduce, 1-4, 1-7, 3-1, 3-8
mapreduce configuration properties, 5-16
max.split.size configuration property, 5-16
maxLoadFactor configuration property, 5-16
maxSamplesPct configuration property, 5-16
minChopBytes configuration property, 5-16
minSplits configuration property, 5-16
multirack clusters

service locations, 2-15
MySQL Database

about, 2-24
port number, 2-41
user identity, 2-37
version, 2-10

N
NameNode, 3-1

first, 2-23
NameNode failover, 2-19
NoSQL databases, 1-6
numThreads configuration property, 5-16

O
OASM, port number, 2-41
ODI, 1-9
oinstall group, 3-8
Oozie, 2-24

software dependencies, 2-24
operating system users, 2-36

Index

Index-2

Oracle Automated Service Manager, 2-41
Oracle Big Data SQL

general description, 1-7
Oracle Data Integrator, 2-10

about, 1-9
node location, 2-24
software dependencies, 2-24

Oracle Data Integrator agent, 2-41
Oracle Database Instant Client, 2-10
Oracle Exadata Database Machine, 1-3, 4-1
Oracle Exalytics In-Memory Machine, 1-3
Oracle Linux

about, 1-3
relationship to HDFS, 1-4
version, 2-10

Oracle Loader for Hadoop, 1-9, 2-10
Oracle NoSQL Database

about, 1-6, 1-9
port numbers, 2-41
version, 2-10

Oracle R Advanced Analytics for Hadoop, 1-9,
2-11

Oracle R Enterprise, 1-10
Oracle SQL Connector for HDFS, 1-8
Oracle Support, creating a service request, 2-42
oracle user, 3-8
Oracle XQuery for Hadoop, 1-9, 2-10
oracle.hadoop.balancer.* configuration

properties, 5-16
oracle.hadoop.balancer.Balancer class, 5-11
oracle.hadoop.balancer.Balancer.configureCount

ingReducer property, 5-7
oracle.hadoop.balancer.KeyLoadLinear class,

5-21
out of heap space errors, 5-15

P
partitioning, 2-21, 5-2
Perfect Balance

application requirements, 5-2
basic steps, 5-3
description, 5-1

planning applications, 1-3
port map, 2-42
port numbers, 2-41, 2-42
pulling data into Exadata, 4-1
puppet

port numbers, 2-42
security, 2-42

puppet master
node location, 2-23

pushing data into Exadata, 4-2

R
R Connector, 1-9
R distribution, 2-10
R language support, 1-10
range partitioning, 5-2
recovering HDFS files, 3-11
reducer load, 5-2
remote client access, 3-2, 3-7
replicating data, 1-5
report.overwrite configuration property, 5-16
reportPath configuration property, 5-16
resource management, 2-12, 2-34
rowWeight configuration property, 5-16
rpc.statd service, 2-42

S
SDP listener configuration, 4-6
SDP over InfiniBand, 4-1
SDP, enabling on Exadata, 4-5
Search, 2-12
security, 2-36
Sentry, 2-37
service requests, creating for CDH, 2-42
service tags, 2-42
services

node locations, 2-13, 2-14
skew, 5-1
Sockets Direct Protocol, 4-1
software components, 2-9
software framework, 1-3
software services

node locations, 2-13, 2-14
port numbers, 2-41

Spark, 2-12
Sqoop, 2-12
ssh service, 2-42

T
tables, 1-8, 1-9, 3-9
tmpDir configuration property, 5-16
tools.* configuration properties, 5-16
trash facility, 3-11
trash facility, disabling, 3-12
trash interval, 3-11
troubleshooting CDH, 2-42

U
uploading diagnostics, 2-42
useClusterStats configuration property, 5-16
useMapreduceApi configuration property, 5-16
user accounts, 3-8

Index

3

user groups, 3-8
users

Cloudera Manager, 2-5
operating system, 2-36

W
writeKeyBytes configuration property, 5-16

X
xinetd service, 2-42

XQuery connector, 1-9

Y
YARN support, 1-7

Z
zones, 2-38

Index

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Backus-Naur Form Syntax
	Changes in Oracle Big Data Appliance Release 4.11

	Part I Administration
	1 Introducing Oracle Big Data Appliance
	1.1 What Is Big Data?
	1.1.1 High Variety
	1.1.2 High Complexity
	1.1.3 High Volume
	1.1.4 High Velocity

	1.2 The Oracle Big Data Solution
	1.3 Software for Big Data Appliance
	1.3.1 Software Component Overview

	1.4 Acquiring Data for Analysis
	1.4.1 Hadoop Distributed File System
	1.4.2 Apache Hive
	1.4.3 Oracle NoSQL Database

	1.5 Organizing Big Data
	1.5.1 MapReduce
	1.5.2 Oracle Big Data SQL
	1.5.3 Oracle Big Data Connectors
	1.5.3.1 Oracle SQL Connector for Hadoop Distributed File System
	1.5.3.2 Oracle Loader for Hadoop
	1.5.3.3 Oracle Data Integrator Enterprise Edition
	1.5.3.4 Oracle XQuery for Hadoop
	1.5.3.5 Oracle R Advanced Analytics for Hadoop
	1.5.3.6 Oracle Shell for Hadoop Loaders

	1.5.4 Oracle R Support for Big Data

	1.6 Analyzing and Visualizing Big Data

	2 Administering Oracle Big Data Appliance
	2.1 Monitoring Multiple Clusters Using Oracle Enterprise Manager
	2.1.1 Using the Enterprise Manager Web Interface
	2.1.2 Using the Enterprise Manager Command-Line Interface

	2.2 Managing Operations Using Cloudera Manager
	2.2.1 Monitoring the Status of Oracle Big Data Appliance
	2.2.2 Performing Administrative Tasks
	2.2.3 Managing CDH Services With Cloudera Manager

	2.3 Using Hadoop Monitoring Utilities
	2.3.1 Monitoring MapReduce Jobs
	2.3.2 Monitoring the Health of HDFS

	2.4 Using Cloudera Hue to Interact With Hadoop
	2.5 About the Oracle Big Data Appliance Software
	2.5.1 Software Components
	2.5.2 Unconfigured Software
	2.5.3 Allocating Resources Among Services

	2.6 About the CDH Software Services
	2.6.1 Where Do the Services Run on a Three-Node, Development Cluster?
	2.6.2 Where Do the Services Run on a Single-Rack CDH Cluster?
	2.6.3 Where Do the Services Run on a Multirack CDH Cluster?
	2.6.4 About MapReduce
	2.6.5 Automatic Failover of the NameNode
	2.6.6 Automatic Failover of the ResourceManager
	2.6.7 Map and Reduce Resource Allocation

	2.7 Effects of Hardware on Software Availability
	2.7.1 Logical Disk Layout
	2.7.2 Critical and Noncritical CDH Nodes
	2.7.2.1 High Availability or Single Points of Failure?
	2.7.2.2 Where Do the Critical Services Run?

	2.7.3 First NameNode Node
	2.7.4 Second NameNode Node
	2.7.5 First ResourceManager Node
	2.7.6 Second ResourceManager Node
	2.7.7 Noncritical CDH Nodes

	2.8 Managing a Hardware Failure
	2.8.1 About Oracle NoSQL Database Clusters
	2.8.2 Prerequisites for Managing a Failing Node
	2.8.3 Managing a Failing CDH Critical Node
	2.8.4 Managing a Failing Noncritical Node

	2.9 Stopping and Starting Oracle Big Data Appliance
	2.9.1 Prerequisites
	2.9.2 Stopping Oracle Big Data Appliance
	2.9.2.1 Stopping All Managed Services
	2.9.2.2 Stopping Cloudera Manager Server
	2.9.2.3 Stopping Oracle Data Integrator Agent
	2.9.2.4 Dismounting NFS Directories
	2.9.2.5 Stopping the Servers
	2.9.2.6 Stopping the InfiniBand and Cisco Switches

	2.9.3 Starting Oracle Big Data Appliance
	2.9.3.1 Powering Up Oracle Big Data Appliance
	2.9.3.2 Starting the HDFS Software Services
	2.9.3.3 Starting Oracle Data Integrator Agent

	2.10 Managing Oracle Big Data SQL
	2.10.1 Adding and Removing the Oracle Big Data SQL Service
	2.10.2 Choosing Between Ethernet and InfiniBand Connections For Oracle Big Data SQL
	2.10.3 Allocating Resources to Oracle Big Data SQL

	2.11 Security on Oracle Big Data Appliance
	2.11.1 About Predefined Users and Groups
	2.11.2 About User Authentication
	2.11.3 About Fine-Grained Authorization
	2.11.4 About HDFS Transparent Encryption
	2.11.5 About HTTPS/Network Encryption
	2.11.5.1 Configuring Web Browsers to use Kerberos Authentication

	2.11.6 Port Numbers Used on Oracle Big Data Appliance
	2.11.7 About Puppet Security

	2.12 Auditing Oracle Big Data Appliance
	2.13 Collecting Diagnostic Information for Oracle Customer Support

	3 Supporting User Access to Oracle Big Data Appliance
	3.1 About Accessing a Kerberos-Secured Cluster
	3.2 Providing Remote Client Access to CDH
	3.2.1 Prerequisites
	3.2.2 Installing a CDH Client on Any Supported Operating System
	3.2.3 Configuring a CDH Client for an Unsecured Cluster
	3.2.4 Configuring a CDH Client for a Kerberos-Secured Cluster
	3.2.5 Verifying Access to a Cluster from the CDH Client

	3.3 Providing Remote Client Access to Hive
	3.4 Managing User Accounts
	3.4.1 Creating Hadoop Cluster Users
	3.4.1.1 Creating Users on an Unsecured Cluster
	3.4.1.2 Creating Users on a Secured Cluster

	3.4.2 Providing User Login Privileges (Optional)

	3.5 Recovering Deleted Files
	3.5.1 Restoring Files from the Trash
	3.5.2 Changing the Trash Interval
	3.5.3 Disabling the Trash Facility
	3.5.3.1 Completely Disabling the Trash Facility
	3.5.3.2 Disabling the Trash Facility for Local HDFS Clients
	3.5.3.3 Disabling the Trash Facility for a Remote HDFS Client

	4 Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance
	4.1 About Optimizing Communications
	4.1.1 About Applications that Pull Data Into Oracle Exadata Database Machine
	4.1.2 About Applications that Push Data Into Oracle Exadata Database Machine

	4.2 Prerequisites for Optimizing Communications
	4.3 Specifying the InfiniBand Connections to Oracle Big Data Appliance
	4.4 Specifying the InfiniBand Connections to Oracle Exadata Database Machine
	4.5 Enabling SDP on Exadata Database Nodes
	4.6 Creating an SDP Listener on the InfiniBand Network

	Part II Oracle Big Data Appliance Software
	5 Optimizing MapReduce Jobs Using Perfect Balance
	5.1 What is Perfect Balance?
	5.1.1 About Balancing Jobs Across Map and Reduce Tasks
	5.1.2 Perfect Balance Components

	5.2 Application Requirements
	5.3 Getting Started with Perfect Balance
	5.4 Analyzing a Job's Reducer Load
	5.4.1 About Job Analyzer
	5.4.1.1 Methods of Running Job Analyzer

	5.4.2 Running Job Analyzer as a Standalone Utility
	5.4.2.1 Job Analyzer Utility Example
	5.4.2.2 Job Analyzer Utility Syntax

	5.4.3 Running Job Analyzer Using Perfect Balance
	5.4.3.1 Running Job Analyzer Using the Perfect Balance API
	5.4.3.2 Collecting Additional Metrics

	5.4.4 Reading the Job Analyzer Report

	5.5 About Configuring Perfect Balance
	5.6 Running a Balanced MapReduce Job Using Perfect Balance
	5.6.1 Modifying Your Java Code to Use Perfect Balance
	5.6.2 Running Your Modified Java Code with Perfect Balance

	5.7 About Perfect Balance Reports
	5.8 About Chopping
	5.8.1 Selecting a Chopping Method
	5.8.2 How Chopping Impacts Applications

	5.9 Troubleshooting Jobs Running with Perfect Balance
	5.10 About the Perfect Balance Examples
	5.10.1 About the Examples in This Chapter
	5.10.2 Extracting the Example Data Set

	5.11 Perfect Balance Configuration Property Reference

	Part III Oracle Table Access for Hadoop and Spark
	6 Oracle DataSource for Apache Hadoop (OD4H)
	6.1 Operational Data, Big Data and Requirements
	6.2 Overview of Oracle DataSource for Apache Hadoop (OD4H)
	6.2.1 Opportunity with Hadoop 2.x
	6.2.2 Oracle Tables as Hadoop Data Source
	6.2.3 External Tables
	6.2.3.1 TBLPROPERTIES
	6.2.3.2 SERDE PROPERTIES

	6.2.4 List of jars in the OD4H package

	6.3 How does OD4H work?
	6.3.1 Create a new Oracle Database Table or Reuse an Existing Table
	6.3.2 Hive DDL
	6.3.3 Creating External Tables in Hive

	6.4 Features of OD4H
	6.4.1 Performance And Scalability Features
	6.4.1.1 Splitters
	6.4.1.2 Choosing a Splitter
	6.4.1.3 Predicate Pushdown
	6.4.1.4 Projection Pushdown
	6.4.1.5 Partition Pruning

	6.4.2 Smart Connection Management
	6.4.3 Security Features
	6.4.3.1 Improved Authentication

	6.5 Using HiveQL with OD4H
	6.6 Using Spark SQL with OD4H
	6.7 Writing Back to Oracle Database

	Glossary
	Apache Flume
	Apache HBase
	Apache Hive
	Apache Sentry
	Apache Solr
	Apache Spark
	Apache Sqoop
	Apache YARN
	ASR
	Balancer
	CDH
	Cloudera Hue
	Cloudera Impala
	Cloudera Manager
	Cloudera Navigator
	Cloudera Search
	Cloudera's Distribution including Apache Hadoop (CDH)
	cluster
	DataNode
	Flume
	Hadoop
	Hadoop Distributed File System (HDFS)
	Hadoop User Experience (Hue)
	HBase
	HDFS
	Hive
	Hive Thrift
	HiveQL
	HotSpot
	Hue
	Impala
	Java HotSpot Virtual Machine
	JobTracker
	Kerberos
	Mahout
	MapReduce
	MySQL Database
	NameNode
	Navigator
	node
	NodeManager
	NoSQL Database
	OASM
	Oozie
	Oracle Database Instant Client
	Oracle Linux
	Oracle NoSQL Database
	Oracle R Distribution
	Oracle R Enterprise
	Pig
	Puppet
	puppet agent
	puppet master
	ResourceManager
	Search
	Sentry
	Solr
	Spark
	Sqoop
	table
	TaskTracker
	Whirr
	YARN
	ZooKeeper

	Index

