
Siebel

Testing Siebel Business
Applications Guide

March 2025

Siebel
Testing Siebel Business Applications Guide

March 2025

Part Number: F84089-04

Copyright © 1994, 2025, Oracle and/or its affiliates.

Authors: Siebel Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Siebel
Testing Siebel Business Applications Guide

Contents

Preface .. i

1 What's New in This Release 1
What’s New in This Release ... 1

2 Overview of Testing Siebel Applications 7
Overview of Testing Siebel Applications ... 7

About Testing Siebel Business Applications .. 7

Introduction to Application Software Testing .. 9

Application Software Testing Methodology ... 10

Modular and Iterative Methodology .. 11

Testing and Deployment Readiness ... 12

Overview of the Siebel Testing Process ... 13

3 Plan Testing Strategy 17
Plan Testing Strategy ... 17

Overview of Test Planning .. 17

Test Objectives .. 18

Test Plans .. 19

Test Environments ... 24

4 Design and Develop Tests 27
Design and Develop Tests .. 27

Overview of Test Development ... 27

Design Evaluation .. 28

Test Case Authoring .. 29

Test Case Automation ... 34

5 Execute Siebel Functional Tests 37
Execute Siebel Functional Tests .. 37

Siebel
Testing Siebel Business Applications Guide

Overview of Executing Siebel Functional Tests ... 37

Reviews ... 38

Track Defects Subprocess .. 39

6 Execute System Integration and Acceptance Tests 41
Execute System Integration and Acceptance Tests .. 41

Overview of Executing Integration and Acceptance Tests .. 41

Execute Integration Tests .. 41

Execute Acceptance Tests .. 42

7 Execute Performance Tests 45
Execute Performance Tests ... 45

Overview of Executing Performance Tests .. 45

Executing Tests ... 46

Performing an SQL Trace ... 46

Measuring System Metrics .. 46

Monitoring Failed Transactions .. 47

8 Improve and Continue the Testing Process 49
Improve and Continue the Testing Process ... 49

Improve and Continue Testing ... 49

9 Implementing Siebel Open UI Keyword Automation Testing 51
Implementing Siebel Open UI Keyword Automation Testing ... 51

Overview of Siebel Open UI Keyword Automation Testing ... 51

Process of Implementing Siebel Open UI Keyword Automation Testing ... 52

Enabling Oracle Business Intelligence Publisher for Test Automation ... 59

Siebel Test Automation Folder ... 60

Extending Keyword Automation Capabilities .. 62

10 Usage Pattern Tracking and Conversion to Keyword Scripts 65
Usage Pattern Tracking and Conversion to Keyword Scripts ... 65

About Usage Pattern Tracking .. 65

Setting Up the Automation Adapter ... 66

Configuring the UPT and KWD Log Directory for Multiple Servers .. 68

Siebel
Testing Siebel Business Applications Guide

Using the Automation Toolbar ... 69

Recording the Functional Flow ... 70

Renaming the Scripts .. 70

Setting Up DISA .. 71

Validating the Scripts .. 74

Playing the Scripts ... 74

Condition Expression for Test Steps .. 75

Enabling Automation for Developer Web Client ... 76

Exporting the Test Scripts .. 77

Importing the Test Scripts .. 77

11 Siebel Test Automation Execution 79
Siebel Test Automation Execution ... 79

Setting Up the Jenkins Server .. 79

Setting Up and Configuring the Siebel Test Execution Plugin .. 80

Setting up the Jenkins Secondary Nodes .. 80

Configuring the Siebel Test Execution Job ... 81

Executing the Automation Batch Run ... 83

Test Execution without Jenkins .. 87

Automated Rerun of Test Scripts ... 88

Creating Test Results .. 89

Viewing Test Results ... 90

Configuring Multiple Batch Runs .. 91

12 Setting Up Keyword Automation Testing on iOS 93
Setting Up Keyword Automation Testing on iOS ... 93

About Running Keyword Automation Testing ... 93

Installing XCode on the XCode iOS Simulator ... 93

Installing Oracle JDeveloper and Setting Up the Mobile Application Framework ... 94

Creating a New Application from the Mobile Application Archive .. 95

13 Data Driven Testing 97
Data Driven Testing ... 97

Overview of Data Driven Testing ... 97

Creating a Data Set ... 97

Importing a Data Set .. 98

Siebel
Testing Siebel Business Applications Guide

Exporting a Data Set ... 98

Associating Test Scripts with a Data Set .. 98

Associating a Data Set with a Test Script .. 99

Referencing Data Set Fields in Test Scripts ... 99

Iterations Types Available with Data Sets and Test Scripts .. 100

Dynamic Data Selection from Data Set .. 100

Associating a Data Set with a Test Set .. 101

Copying a Test Set .. 101

Viewing Test Sets associated to a Data Set ... 102

14 Setting Up Android Mobile Devices for Automation Testing 103
Setting Up Android Mobile Devices for Automation Testing ... 103

About Setting Up Android Mobile Devices for Keyword Automation Testing .. 103

Installing Android Software Development Kit on Microsoft Windows 7/10 Machine .. 104

Installing Appium on Microsoft Windows .. 105

Setting the ANDROID HOME Variable ... 105

Setting the Path Variables .. 105

Verifying Android Installation and Configuration ... 106

Testing Automation on a Android Device .. 106

Automation Testing on an Emulator ... 107

15 REST API Reference 109
REST API Reference ... 109

Create a Test Execution Record .. 109

Rerun a Test Execution Record .. 112

Create Test Passes for a Test Execution Record ... 112

Querying for a Test Execution Record .. 112

REST API for Data Sets .. 113

REST API for Test Script .. 114

REST API for Test Set ... 114

REST API for Master Suite ... 115

16 Keywords Reference 117
Keywords Reference .. 117

Keywords Description ... 117

Keywords Supporting Tools and Server Configuration .. 195

Siebel
Testing Siebel Business Applications Guide

Unsupported Keywords for Siebel Open UI Keyword Automation .. 199

17 Database Test Scripts 203
Database Test Scripts .. 203

Sample Database Test Scripts ... 203

Actions Performed by Sample Database Test Scripts ... 207

18 Reports 211
Reports ... 211

About Report Generation .. 211

Functionality for Report Generation ... 212

Generating a Combined Report ... 212

19 Mac Credentials 215
Mac Credentials ... 215

Siebel
Testing Siebel Business Applications Guide

Siebel
Testing Siebel Business Applications Guide

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center at https://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an email to:
oracle_fusion_applications_help_ww_grp@oracle.com.

i

https://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Siebel
Testing Siebel Business Applications Guide

Preface

ii

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

1 What's New in This Release

What’s New in This Release

This chapter tracks the changes in the documentation. It includes the following topics:

• What's New in Testing Siebel Business Applications, Siebel CRM 25.3 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 24.8 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 24.7 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 23.7 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 22.11 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 22.4 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 21.9 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 21.8 Update

• What's New in Testing Siebel Business Applications, Siebel CRM 21.6 Update

What's New in Testing Siebel Business Applications, Siebel CRM 25.3
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Test Execution without Jenkins New topic. This topic describes how to use the command for test execution without Jenkins.

What's New in Testing Siebel Business Applications, Siebel CRM 24.8
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Executing the Automation Batch Run Modified topic. New subsection, Copying a Test Execution record added.

What's New in Testing Siebel Business Applications, Siebel CRM 24.7
Update
The following information lists the changes in this version of the documentation to support this release of the software.

1

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

Topic Description

Condition Expression for Test Steps

New topic. Describes how to use Condition field in Test Steps Applet in Test Script View, to determine at
run time if the Test Step should be run or if it should be skipped.

What's New in Testing Siebel Business Applications, Siebel CRM 23.7
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Dynamic Data Selection from Data Set

New topic. Describes how to use Condition field in Data Sets to determine at run time if a particular row
of Data set is selected for automated Test Script iteration or if the row is to be skipped.

Associating a Data Set with a Test Set

New topic. Describes how to associate a Data Set to a Test Set, in order to use it with the Test Scripts
associated to Test Set .

Copying a Test Set

New topic. Describes how to copy a Test Set replicating Test Script associations, Data Set association
and iteration type .

Viewing Test Sets associated to a Data Set

Viewing Master Suites associated to a Test
Set

New topics. Describes how to view Master Suites associated to a given Test Set, and to view Test Sets
associated to a given Data Set.

Configuring the Test Run

Modified topic. Notify and Run Reference fields are added to table. Notify describes how to enable
Notifications for Status change of a Test Execution record.

Run Reference describes how to redirect a Test Execution record to a given Jenkins node or a pool of
nodes.

Configuring the Siebel Test Execution Job

Modified topic. Parameters Field and Description added to the table.

Setting Up the Jenkins Server

Modified Topics. Jenkins related steps corrected to remove obsolete steps and Multi job plug-in.
Updated for --runReference parameter usage.

Setting Up and Configuring the Siebel Test
Execution Plugin

Modified Topics. Jenkins related steps corrected to remove obsolete steps and Multi job plug-in.
Updated for --runReference parameter usage.

Configuring the Siebel Test Execution Job

Modified Topics. Jenkins related steps corrected to remove obsolete steps and Multi job plug-in.
Updated for --runReference parameter usage.

2

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

What's New in Testing Siebel Business Applications, Siebel CRM 22.11
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Configuring Multiple Batch Runs

New topic. Describes how to set up parallel execution for Siebel test automation so that you will be able
to execute multiple batch runs on the same client at the same time.

InvokeREST

New topic. Describes how to use the InvokeREST keyword to test and issue REST API calls from within a
test script (for example, to execute the API, verify and/or use the response) in desktop applications.

ToolsConfig

Modified topic. The information in this topic has been updated.

What's New in Testing Siebel Business Applications, Siebel CRM 22.4
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

About Report Generation

New topic. Reports are now generated in JSON format (in addition to existing HTML format) making it
easy for report results to be consumed by other tools such as CI/CD pipelines, test management tools,
 and so on. New reports built using the JSON format provide a consolidated snapshot of results and a
detailed failure analysis. You can also manually generate a combined results report.

Generating a Combined Report

New topic. Describes how to manually generate a combined results report from multiple Report.html
files.

What's New in Testing Siebel Business Applications, Siebel CRM 21.9
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Siebel Test Automation Folder

Modified topic. The Extensions folder is a placeholder for CustomExtension JAR files.

Extending Keyword Automation
Capabilities

New topic. You can use the CustomExtension keyword to enable support for custom requirements,
 such as SSO.

Plugin Configurations

Modified topic. You can use the DetailedReport check box (on the Popup that appears when you click
Play) to specify whether or not to capture detailed test results and screenshots during unit mode/
single test script playback.

3

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

Topic Description

Configuring the Siebel Test Execution Job

Modified topic. When configuring Siebel Test Execution jobs, you can use the Parameters field to
specify whether or not to generate reports and capture screenshots during the test script automation
batch run.

Keywords Reference

Modified topic. The note about importing test scripts to the database before using any keywords is
new.

CustomExtension

New topic. CustomExtension is a new keyword, which runs a custom extension JAR file.

Reports

Modified topic. You can control whether or not to generate reports and capture screenshots and test
results during test script execution.

What's New in Testing Siebel Business Applications, Siebel CRM 21.8
Update
The following information lists the changes in this version of the documentation to support this release of the software.

Topic Description

Implementing Siebel Open UI Keyword
Automation Testing

Impact of Usage Pattern Tracking
Enhancements in Siebel CRM 18.9 Update

Modified topic. Enabling UPT is not compatible with test automation.

Browser Configuration Settings

Modified topic. The geckodriver is required to run the test scripts in Firefox. Microsoft Edge is
supported for running test scripts.

Creating Test Results

Modified topic. Test Plans must be associated with Test Sets before scheduling a Test Execution.

Setting Up the Jenkins Server

Modified topic. Describes how to install and set up the Jenkins server.

Setting Up the Automation Adapter

Modified topic. Added a new subtopic about deleting UPT action sets, runtime events and system
preferences.

What's New in Testing Siebel Business Applications, Siebel CRM 21.6
Update
The following information lists the changes in this version of the documentation to support this release of the software.

4

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

Topic Description

Setting Up the Automation Adapter

Enabling Automation for Developer Web
Client

Modified topics. As of Siebel CRM 21.2 Update, the applicationcontainer directory has been
replaced by two directories, as follows:

• applicationcontainer_external (for Siebel Application Interface)

• applicationcontainer_internal (for all other Siebel Enterprise components)

For more information, see Siebel Installation Guide .

5

Siebel
Testing Siebel Business Applications Guide

Chapter 1
What's New in This Release

6

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

2 Overview of Testing Siebel Applications

Overview of Testing Siebel Applications
This chapter provides an overview of the reasons for implementing testing in software development projects, and
introduces a methodology for testing Oracle’s Siebel Business Applications with descriptions of the processes and types
of testing that are used in this methodology. This chapter includes the following topics:

• About Testing Siebel Business Applications

• Introduction to Application Software Testing

• Application Software Testing Methodology

• Modular and Iterative Methodology

• Testing and Deployment Readiness

• Overview of the Siebel Testing Process

About Testing Siebel Business Applications
This guide introduces and describes the processes and concepts of testing Siebel Business Applications. It is intended
to be a guide for best practices for Oracle customers currently deploying or planning to deploy Siebel Business
Applications for Siebel CRM 17.x or later.

Although job titles and duties at your company may differ from those described in the following table, the audience for
this guide consists primarily of employees in these categories:

Job Title Description

Application Testers

Testers responsible for developing and executing tests. Functional testers focus on testing application
functionality, while performance testers focus on system performance.

Business Analysts

Analysts responsible for defining business requirements and delivering relevant business functionality.
Business analysts serve as the advocate for the business user community during application
deployment.

Business Users

Actual users of the application. Business users are the customers of the application development team.

Database Administrators

Administrators who administer the database system, including data loading, system monitoring,
 backup and recovery, space allocation and sizing, and user account management.

Functional Test Engineers

Testers with the responsibility of developing and executing manual and automated testing. Functional
test engineers create test cases and automate test scripts, maintain regression test library and report
issues and defects.

7

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Job Title Description

Performance Test Engineers

Testers with the responsibility of developing and executing automated performance testing.
Performance test engineers create automated test scripts, maintain regression test scripts and report
issues and defects.

Project Managers

Manager or management team responsible for planning, executing, and delivering application
functionality. Project managers are responsible for project scope, schedule, and resource allocation.

Siebel Application Developers

Developers who plan, implement, and configure Siebel business applications, possibly adding new
functionality.

Siebel System Administrators

Administrators responsible for the whole system, including installing, maintaining, and upgrading
Siebel business applications.

Test Architect

Working with the Test Manager, an architect designs and builds the test strategy and test plan.

Test Manager

Manages the day-to-day activities, testing resources, and test execution. Manages the reporting of test
results and the defect management process. The Test Manager is the single point of contact (POC) for
all testing activities.

Note: On simple projects, the Test Architect and Test Manager are normally combined into a single role.

How This Guide Is Organized
This book describes the processes for planning and executing testing activities for Siebel business applications. These
processes are based on best practices and proven test methodologies. You use this book as a guide to identify what
tests to run, when to run tests, and who to involve in the quality assurance process.

The first two chapters of this book provide an introduction to testing and the test processes. You are encouraged to read
Overview of Testing Siebel Applications, which describes the relationships between the seven high-level processes. The
chapters that follow describe a specific process in detail. In each of these chapters, a process diagram is presented to
help you to understand the important high-level steps. You are encouraged to modify the processes to suit your specific
situation.

Depending on your role, experience, and current project phases you will use the information in this book differently.
Here are some suggestions about where you might want to focus your reading:

• Test manager. At the beginning of the project, review Chapters 2 through 8 to understand testing processes.

• Functional testing. If you are a functional tester focus on Chapters 3 through 7 and 9. These chapters discuss
the process of defining, developing, and executing functional test cases.

• Performance testing. If you are a performance tester focus on Chapters 3, 4, 7, and 10. These chapters
describe the planning, development, and execution of performance tests.

At certain points in this book, you will see information presented as a best practice. These tips are intended to highlight
practices proven to improve the testing process.

8

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Additional Resources
• American Society of Quality: http://www.asq.org/pub/sqp.

• Bitpipe http: http://www.bitpipe.com/tlist/Software-Testing.html

• Economic Impact of Inadequate Infrastructure for Software Testing: http://www.nist.gov/director/prog-ofc/
report02-3.pdf

• International Federation for Information Processing: http://www.ifip.or.at/ (click on the "Search IFIP" link)

• StickyMinds: http://www.stickyminds.com/testing.asp

Introduction to Application Software Testing
Testing is a key component of any application deployment project. The testing process determines the readiness of the
application. Therefore, it must be designed to adequately inform deployment decisions. Without well-planned testing,
project teams may be forced to make under-informed decisions and expose the business to undue risk. Conversely,
well-planned and executed testing can deliver significant benefit to a project including:

• Reduced deployment cost. Identifying defects early in the project is a critical factor in reducing the total cost
of ownership. Research shows that the cost of resolving a defect increases dramatically in later deployment
phases. A defect discovered in the requirements definition phase as a requirement gap can be a hundred times
less expensive to address than if it is discovered after the application has been deployed. Once in production, a
serious defect can result in lost business and undermine the success of the project.

• Higher user acceptance. User perception of quality is extremely important to the success of a deployment.
Functional testing, usability testing, system testing, and performance testing can provide insights into
deficiencies from the users’ perspective early enough so that these deficiencies can be corrected before
releasing the application to the larger user community.

• Improved deployment quality. Hardware and software components of the system must also meet a high level
of quality. The ability of the system to perform reliably is critical in delivering consistent service to the users or
customers. A system outage caused by inadequate system resources can result in lost business. Performance,
reliability, and stress testing can provide an early assessment of the system to handle the production load and
allow IT organizations to plan accordingly.

Inserting testing early and often is a key component to lowering the total cost of ownership. Software projects that
attempt to save time and money by lowering their initial investment in testing find that the cost of not testing is much
greater. Insufficient investment in testing may result in higher deployment costs, lower user adoption, and failure to
achieve business returns.

Best Practice
Test early and often. The cost of resolving a defect when detected early is much less then resolving the same defect in
later project stages. Testing early and often is the key to identifying defects as early as possible and reducing the total
cost of ownership.

9

http://www.asq.org/pub/sqp
http://www.bitpipe.com/tlist/Software-Testing.html
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.ifip.or.at/
http://www.stickyminds.com/testing.asp

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Application Software Testing Methodology
The processes described in this book are based on common test definitions for application software. These definitions
and methodologies have been proven in customer engagement, and demonstrate that testing must occur throughout
the project lifecycle.

Common Test Definitions
There are several common terms used to describe specific aspects of software testing. These testing classifications are
used to break down the problem of testing into manageable pieces. Here are some of the common terms that are used
throughout this book:

• Business process testing. Validates the functionality of two or more components that are strung together to
create a valid business process.

• Data conversion testing. The testing of converted data used within the Siebel application. This is normally
performed before system integration testing.

• Functional testing. Testing that focuses on the functionality of an application that validates the output based
on selected input that consists of Unit, Module and Business Process testing.

• Interoperability testing. Applications that support multiple platforms or devices need to be tested to verify
that every combination of device and platform works properly.

• Negative testing. Validates that the software fails appropriately by inputting a value known to be incorrect to
verify that the action fails as expected. This allows you to understand and identify failures. By displaying the
appropriate warning messages, you verify that the unit is operating correctly.

• Performance testing. This test is usually performed using an automation tool to simulate user load while
measuring the system resources used. Client and server response times are both measured.

• Positive testing. Verifies that the software functions correctly by inputting a value known to be correct to verify
that the expected data or view is returned appropriately.

• Regression testing. Code additions or changes may unintentionally introduce unexpected errors or
regressions that did not exist previously. Regression tests are executed when a new build or release is available
to make sure existing and new features function correctly.

• Reliability testing. Reliability tests are performed over an extended period of time to determine the durability
of an application as well as to capture any defects that become visible over time.

• Scalability testing. Validates that the application meets the key performance indicators with a predefined
number of concurrent users.

• Stress testing. This test identifies the maximum load a given hardware configuration can handle. Test
scenarios usually simulate expected peak loads.

• System integration testing. This is a complete system test in a controlled environment to validate the end-
to-end functionality of the application and all other interface systems (for example, databases and third-party
systems). Sometimes adding a new module, application, or interface may negatively affect the functionality of
another module.

• Test case. A test case contains the detailed steps and criteria (such as roles and data) for completing a test.

• Test script. A test script is an automated test case.

• Unit testing. Developers test their code against predefined design specifications. A unit test is an isolated test
that is often the first feature test that developers perform in their own environment before checking changes

10

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

into the configuration repository. Unit testing prevents introducing unstable components (or units) into the test
environment.

• Usability testing. User interaction with the graphical user interface (GUI) is tested to observe the effectiveness
of the GUI when test users attempt to complete common tasks.

• User acceptance test (UAT). Users test the complete, end-to-end business processes, verifying functional
requirements (business requirements).

Modular and Iterative Methodology
An IT project best practice that applies to both testing and development is to use a modular and incremental approach
to develop and test applications to detect potential defects earlier rather than later. This approach provides component-
based test design, test script construction (automation), execution and analysis. It brings the defect management stage
to the forefront, promoting communication between the test team and the development team. Beginning the testing
process early in the development cycle helps reduce the cost to fix defects.

This process begins with the test team working closely with the development team to develop a schedule for the
delivery of functionality (a drop schedule). The test team uses this schedule to plan resources and tests. In the earlier
stages, testing is commonly confined to unit and module testing. After one or more drops, there is enough functionality
to begin to string the modules together to test a business process.

After the development team completes the defined functionality, they compile and transfer the Siebel application into
the test environment. The immediate functional testing by the test team allows for early feedback to the development
team regarding possible defects. The development team can then schedule and repair the defects, drop a new build of
the Siebel application, and provide the opportunity for another functional test session after the test team updates the
test scripts as necessary.

Best Practice
Iterative development introduces functionality to a release in incremental builds. This approach reduces risk by
prompting early communication and allowing testing to occur more frequently and with fewer changes to all parts of
the application.

Continuous Application Lifecycle
One deployment best practice is the continuous application lifecycle. In this approach, application features and
enhancements are delivered in small packages on a continuous delivery schedule. New features are considered and
scheduled according to a fixed release schedule (for example, once every quarter). This model of phased delivery
provides an opportunity to evaluate the effectiveness of prebuilt application functionality, minimizes risk, and allows
you to adapt the application to changing business requirements.

Continuous application lifecycle incorporates changing business requirements into the application on a regular timeline,
so the business customers do not have a situation where they become locked into functionality that does not quite
meet their needs. Because there is always another delivery date on the horizon, features do not have to be rushed into
production. This approach also allows an organization to separate multiple, possibly conflicting change activities. For
example, the upgrade (repository merge) of an application can be separated from the addition of new configuration.

11

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Best Practice
The continuous application lifecycle approach to deployment allows organizations to reduce the complexity and risk on
any single release and provides regular opportunities to enhance application functionality.

Testing and Deployment Readiness
The testing processes provide crucial inputs for determining deployment readiness. Determining whether or not an
application is ready to deploy is an important decision that requires clear input from testing.

Part of the challenge in making a good decision is the lack of well-planned testing and the availability of testing data to
gauge release readiness. To address this, it is important to plan and track testing activity for the purpose of informing
the deployment decision. In general, you can measure testing coverage and defect trends, which provide a good
indicator of quality. The following are some suggested analyses to compile:

• For each test plan, the number and percentage of test cases passed, in progress, failed, and blocked. This data
illustrates the test objectives that have been met, versus those that are in progress or at risk.

• Trend analysis of open defects targeted at the current release for each priority level.

• Trend analysis of defects discovered, defects fixed, and test cases executed. Application convergence (point A
in the following image) is demonstrated by a slowing of defect discovery and fix rates, while maintaining even
levels of test case activity.

Testing is a key input to the deployment readiness decision. However it is not the only input to be considered. You must
consider testing metrics with business conditions and organizational readiness.

12

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Overview of the Siebel Testing Process
Testing processes occur throughout the implementation lifecycle and are closely linked to other configuration,
deployment, and operations processes. The following image presents a high-level map of the different testing
processes.

Each of the seven testing processes described in this book are highlighted in this image, and described briefly in the
following subtopics:

• Plan Testing Strategy

• Design and Develop Tests

• Execute Siebel Functional Tests

• Execute System Integration Tests

• Execute Acceptance Tests

• Execute Performance Tests

• Improve and Continue Testing

Plan Testing Strategy
The test planning process makes sure that the testing performed is able to inform the deployment decision process,
minimize risk, and provide a structure for tracking progress. Without proper planning many customers may perform
either too much or too little testing. The process is designed to identify key project objectives and develop plans based
on those objectives.

It is important to develop a testing strategy early, and to use effective communications to coordinate among all
stakeholders of the project.

For more information, see Plan Testing Strategy.

13

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Design and Develop Tests
In the test design process, the high-level test cases identified during the planning process are developed in detail (step-
by-step). Developers and testers finalize the test cases based on approved technical designs. The written test cases can
also serve as blueprints for developing automated test scripts. Test cases should be developed with strong participation
from the business analyst to understand the details of usage, and less-common use cases.

Design evaluation is the first form of testing, and often the most effective. Unfortunately, this process is often
neglected. In this process, business analysts and developers verify that the design meets the business unit
requirements. Development work should not start in earnest until there is agreement that the designed solution meets
requirements. The business analyst who defines the requirements should approve the design.

Preventing design defects or omissions at this stage is more cost effective than addressing them later in the project. If a
design is flawed from the beginning, the cost to redesign after implementation can be high.

For more information, see Design and Develop Tests.

Execute Siebel Functional Tests
Functional testing is focused on validating the Siebel business application components of the system. Functional tests
are performed progressively on components (units), modules, and business processes in order to verify that the Siebel
application functions correctly. Test execution and defect resolution are the focus of this process. The development
team is fully engaged in implementing features, and the defect-tracking process is used to manage quality.

For more information, see Execute Siebel Functional Tests.

Execute System Integration Tests
System integration testing verifies that the Siebel application validated earlier, integrates with other applications and
infrastructure in your system. Integration with various back-end, middleware, and third-party systems are verified.
Integration testing occurs on the system as a whole to make sure that the Siebel application functions properly when
connected to related systems, and when running along side system-infrastructure components.

For more information, see Execute System Integration and Acceptance Tests.

Execute Acceptance Tests
Acceptance testing is performed on the complete system and is focused on validating support for business processes,
as well as verifying acceptability to the user community from both the lines of business and the IT organization. This is
typically a very busy time in the project, when people, process, and technology are all preparing for the rollout.

For more information, see Execute System Integration and Acceptance Tests.

14

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

Execute Performance Tests
Performance testing validates that the system can meet specified key performance indicators (KPIs) and service levels
for performance, scalability, and reliability. In this process, tests are run on the complete system simulating expected
loads and verifying system performance.

For more information, see Execute Performance Tests.

Improve and Continue Testing
Testing is not complete when the application is rolled out. After the initial deployment, regular configuration changes
are delivered in new releases. In addition, Oracle delivers regular maintenance and major software releases that may
need to be applied. Both configuration changes and new software releases require regression testing to verify that the
quality of the system is sustained.

The testing process should be evaluated after deployment to identify opportunities for improvement. The testing
strategy and its objectives should be reviewed to identify any inadequacies in planning. Test plans and test cases should
be reviewed to determine their effectiveness. Test cases should be updated to include testing scenarios that were
discovered during testing and were not previously identified, to reflect all change requests, and to support software
releases.

For more information, see Improve and Continue the Testing Process .

15

Siebel
Testing Siebel Business Applications Guide

Chapter 2
Overview of Testing Siebel Applications

16

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

3 Plan Testing Strategy

Plan Testing Strategy
This chapter describes the process of planning your tests. It includes the following topics:

• Overview of Test Planning

• Test Objectives

• Test Plans

• Test Environments

Overview of Test Planning
The objective of the test planning process is to create the strategy and tactics that provide the proper level of test
coverage for your project. The following image illustrates one example of the test planning process.

As shown in this image:

1. The inputs to the test planning process are the business requirements and the project scope.
2. The outputs or deliverables for the test planning process include the following:

◦ Test objectives. The high-level objectives for a quality release. The test objectives are used to measure
project progress and deployment readiness. Each test objective has a corresponding business or design
requirement.

◦ Test plans. The test plan is an end-to-end test strategy and approach for testing the Siebel application. A
typical test plan contains the following sections:

17

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

- Strategy, milestones, and responsibilities. Set the expectation for how to perform testing, how to
measure success, and who is responsible for each task

- Test objectives. Define and validate the test goals, objectives, and scope
- Approach. Outlines how to and when to perform testing
- Entrance and exit criteria. Define inputs required to perform a test and the success criteria for

passing a test
- Results reporting. Outlines the type and schedule of reporting

◦ Test cases. A test plan contains a set of test cases. Test cases are detailed, step-by-step instructions
about how to perform a test. The instructions should be specific and repeatable by anyone who typically
performs the tasks being tested. In the planning process, you identify the number and type of test cases
to be performed.

◦ Definition of test environments. The number, type, and configuration of test environments must be
defined. Clear entry and exit criteria for each environment should be defined.

Test Objectives
The first step in the test planning process is to document the high-level test objectives. The test objectives provide a
prioritized list of verification or validation objectives for the project. You use this list of objectives to measure testing
progress, and verify that testing activity is consistent with project objectives.

Test objectives can typically be grouped into the following categories:

• Functional correctness. Validation that the application correctly supports the required business processes
and transactions. List all of the business processes that the application is required to support. Also list any
standards for which there is required compliance.

• Authorization. Verification that actions and data are available only to those users with correct authorization.
List any key authorization requirements that must be satisfied, including access to functionality and data.

• Service level. Verification that the system will support the required service levels of the business. This includes
system availability, load, and responsiveness. List any key performance indicators (KPIs) for service level, and
the level of operational effort required to meet KPIs.

• Usability. Validation that the application meets required levels of usability. List the required training level and
user KPIs required.

The testing team, development team, and the business unit agree upon the list of test objectives and their priority. The
following image shows an example of a Test Objectives document.

18

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

A test case covers one or more test objectives, and has the specific steps that testers follow to verify or validate the
stated objectives. The details of the test plan are described in Test Plans.

Test Plans
The purpose of the test plan is to define a comprehensive approach to testing. This includes a detailed plan for verifying
the stated objectives, identifying any issues, and communicating schedules towards the stated objectives. The test plan
has the following components:

• Project scope. Outlines the goals and what is included in the testing project.

• Test cases. Detail level test scenarios. Each test plan is made up of a list of test cases, their relevant test phases
(schedule), and relationship to requirements (traceability matrix).

• Business process script inventory and risk assessment. A list of components (business process scripts) that
require testing. Also describes related components and identifies high-risk components or scenarios that may
require additional test coverage.

• Test schedule. A schedule that describes when test cases will be executed.

• Test environment. Outlines the recommendations for the various test environments (for example, Functional,
System Integration, and Performance). This includes both software and hardware.

• Test data. Identifies the data required to support testing.

Business process testing is an important best practice. Business process testing drives the test case definition from
the definition of the business process. In business process testing, coverage is measured based on the percentage of
validated process steps.

Best Practice
Functional testing based on a required business process definition provides a structured way to design test cases, and a
meaningful way to measure test coverage based on business process steps.

Business process testing is described in more detail in the topics that follow.

Test Cases
A test case represents an application behavior that needs to be verified. For each component, application, and business
process you can identify one or more test cases that need verification. The following image shows an example of a test
case list. Test plans typically contain multiple test cases.

19

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

The example shown in this image uses the following numbering schema for the Test Case ID:

• TC1.x – New records and seed data required to support other test cases

• TC2.x – Positive test cases

• TC3.x – Negative test cases

• TC4.x – Data Conversion testing

• TC5.x – System integration testing

Notice how the test schedule is included in the example: TC1.0 – New Contact is performed during Functional Cycle 1
(Functional C1) of the functional testing. Whereas TC3.0 – Contracts occurs during Functional Cycle 2 (Functional C2)
and during system integration testing.

During the Design Phase of a test plan, there are a number of test types that you must define as follows:

• Functional test cases. Functional test cases are designed to validate that the application performs a specified
business function. The majority of these test cases take the form of user or business scenarios that resemble
common transactions. Testers and business users should work together to compile a list of scenarios. Following
the business process testing practice, functional test cases should be derived directly from the business
process, where each step of the business process is clearly represented in the test case.

For example, if the test plan objective is to validate support for the Manage Quotes Business Process, then
there should be test cases specified based on the process definition. Typically, this means that each process or
subprocess has one or more defined test cases and each step in the process is specified within the test case
definition. The following image illustrates the concept of a process-driven test case. Considerations must also

20

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

be given for negative test cases that test behaviors when unexpected actions are taken (for example, creation
of a quote with a create date before the current date).

• Structural test cases. Structural test cases are designed to verify that the application structure is correct. They
differ from functional cases in that structural test cases are based on the structure of the application, not on a
scenario. Typically, each component has an associated structural test case that verifies that the component has
the correct layout and definition (for example, verify that a view contains all the specified applets and controls).

• Performance test cases. Performance test cases are designed to verify the performance of the system or a
transaction. There are three categories of performance test cases commonly used:

◦ Response time or throughput. Verifies the time for a set of specified actions. For example, tests the
time for a view to paint or a process to run. Response time tests are often called performance tests.

◦ Scalability. Verifies the capacity of a specified system or component. For example, test the number of
users that the system can support. Scalability tests are often called load or stress tests.

◦ Reliability. Verifies the duration for which a system or component can be run without the need for
restarting. For example, test the number of days that a particular process can run without failing.

21

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

Test Phase
Each test case should have a primary testing phase identified. You can run a given test case several times in multiple
testing phases, but typically the first phase in which you run it is considered the primary phase. The following describes
how standard testing phases typically apply to Siebel business application deployments:

• Unit test. The objective of the unit test is to verify that a unit (also called a component) functions as designed.
The definition of a unit is discussed in Component Inventory. In this phase of testing, in-depth verification of a
single component is functionally and structurally tested.
For example, during the unit test the developer of a newly configured view verifies that the view structure
meets specification and validates that common user scenarios, within the view, are supported.

• Module test. The objective of the module test is to validate that related components fit together to meet
specified application design criteria. In this phase of testing, functional scenarios are primarily used. For
example, testers will test common navigation paths through a set of related views. The objective of this phase
of testing is to verify that related Siebel components function correctly as a module.

• Process test. The objective of the process test is to validate that business process are supported by the Siebel
application. During the process test, the previously-tested modules are strung together to validate an end-to-
end business process. Functional test cases, based on the defined business processes are used in this phase.

• Data conversion test. The objective of the data conversion test is to validate that the data is properly
configured and meets all requirements. This should be performed before the integration test phase.

• Integration test. In the integration test phase, the integration of the Siebel business application with other
back-end, middleware, or third-party components are tested. This phase includes functional test cases and
system test cases specific to integration logic. For example, in this phase the integration of Siebel Orders with
an ERP Order Processing system is tested.

• Acceptance test. The objective of the acceptance test is to validate that the system is able to meet user
requirements. This phase consists primarily of formal and ad-hoc functional tests.

• Performance test. The objective of the performance test is to validate that the system will support specified
performance KPIs, maintenance, and reliability requirements. This phase consists of performance test cases.

Component Inventory
The Component Inventory is a comprehensive list of the applications, modules, and components in the current project.
The component inventory is typically carried out at the project level and is not a testing-specific activity. There are two
ways projects identify components. The first is to base component definition on the work that needs to be done (for
example, specific configuration activities). The second method is to base the components on the functionality to be
supported. In many cases, these two approaches produce similar results. A combination of the two methods is most
effective in making sure that the test plan is complete and straightforward to execute.

The worksheet shown in the following image is one example of a component inventory. The worksheet contains the
following columns and corresponding information:

• CID. For example: C1, C2, C3, and so on.

• Component. For example: Product Catalog, Configuration Rules, Quote View, and so on.

• Type. For example: Content, Rules, View, and so on.

• Parent Module. For example: Catalog, Catalog, Quotes, and so on.

22

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

• Parent Application. For example: Sales, and so on.

• Description. For example: All administered product data, Configuration rules, Quote view, and so on.

• Risk Score. For example: 2, 3, 1, and so on.

Risk Assessment
A risk assessment is used to identify those components that carry higher risk and may require enhanced levels of
testing. The following characteristics increase component risk:

• High business impact. The component supports high business-impact business logic (for example, complex
financial calculation).

• Integration. This component integrates the Siebel application to an external or third-party system.

• Scripting. This component includes the coding of browser script, eScript, or VB script.

• Ambiguous or incomplete design. This component design is either ambiguous (for example, multiple
implementation options described) or the design is not fully specified.

• Availability of data. Performance testing requires production-like data (a data set that has the same shape and
size as that of the production environment). This task requires planning, and the appropriate resources to stage
the testing environment.

• Downstream dependencies. This component is required by several downstream components.

Taking these characteristics into consideration, the Risk Score column of the component inventory (shown in the image
in Component Inventory) shows a risk score for each component. In this example, one risk point is given to a component
for each of the criteria met. The scoring system should be defined to correctly represent the relative risk between
components. Performing a risk assessment is important for completing a test plan, because the risk assessment
provides guidance on the sequence and amount of testing required.

Best Practice
Performing a risk assessment during the planning process allows you to design your test plan in a way that minimizes
overall project risk.

Test Plan Schedule
For each test plan, a schedule of test case execution should be specified. The schedule is built using four different
inputs:

• Overall project schedule. The execution of all test plans must be consistent with the overall project schedule.

• Component development schedule. The completion of component configuration is a key input to the testing
schedule.

• Environment availability. The availability of the required test environment needs to be considered in
constructing schedules.

23

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

• Test case risk. The risk associated with components under test is another important consideration in the
overall schedule. Components with higher risk should be tested as early as possible.

Test Environments
The specified test objectives influence the test environment requirements. For example, service level test objectives
(such as system availability, load, and responsiveness) often require an isolated environment to verify. In addition,
controlled test environments can help:

• Provide integrity of the application under test. During a project, at any given time there are multiple versions
of a module or system configuration. Maintaining controlled environments can make sure that tests are being
executed on the appropriate versions. Significant time can be wasted executing tests on incorrect versions of a
module or debugging environment configuration without these controls.

• Control and manage risk as a project nears rollout. There is always a risk associated with introducing
configuration changes during the lifecycle of the project. For example, changing the configuration just before
the rollout carries a significant amount of risk. Using controlled environments allows a team to isolate late-
stage and risky changes.

It is typical to have established Development, Functional Testing, System Testing, User Acceptance Testing,
Performance Testing, and Production environments to support testing. More complex projects often include more
environments, or parallel environments to support parallel development. Many customers use standard code control
systems to facilitate the management of code across environments.

The environment management approach includes the following components:

• Named environments and migration process. A set of named test environments, a specific purpose (for
example, integration test environment), and a clear set of environment entry and exit criteria. Typically, the
movement of components from one environment to the next requires that each component pass a predefined
set of test cases, and is done with the appropriate level of controls (for example, code control and approvals).

• Environment audit. A checklist of system components and configuration for each environment. Audits are
performed prior to any significant test activity. The Environment Verification Tool can be used to facilitate the
audit of test environments. For help with the Environment Verification Tool, see 477105.1 (Doc ID) on My Oracle
Support. This document was previously published as Siebel Technical Note 467.

• Environment schedule. A schedule that outlines the dates when test cases will be executed in a given
environment.

Performance Test Environment
In general, the more closely the performance test environment reflects the production environment, the more applicable
the test results will be. It is important that the performance test environment includes all of the relevant components to
test all aspects of the system, including integration and third-party components. Often it is not feasible to build a full
duplicate of the production configuration for testing purposes. In that case, the following scaled-down strategy should
be employed for each tier:

• Web Servers and Siebel Servers. To scale down the Web and application server tiers, the individual servers
should be maintained in the production configuration and the number of servers scaled down proportionately.
The overall performance of a server depends on a number of factors besides the number of CPUs, CPU speed,

24

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

and memory size. So, it is generally not accurate to try to map the capacity of one server to another even within
a single vendor’s product line.

The primary tier of interest from an application scalability perspective is the application server tier. Scalability
issues are very rarely found on the Web server tier. If further scale-down is required it is reasonable to maintain
a single Web server and continue to scale the application server tier down to a single server. The application
server should still be of the same configuration as those used in the production environment, so that the tuning
activity can be accurately reflected in the system test and production environments

• Database server. If you want to scale down a database server, there is generally little alternative but to use a
system as close as possible to the production architecture, but with CPU, memory, and I/O resources scaled
down as appropriate.

• Network. The network configuration is one area in which it is particularly difficult to replicate the same
topology and performance characteristics that exist in the production environment. It is important that the
system test includes any active network devices such as proxy servers and firewalls. The nature of these
devices can impact not only the performance of the system, but also the functionality, because in some cases
these devices manipulate the content that passes through them. The performance of the network can often be
simulated using bandwidth and latency simulation tools, which are generally available from third-party vendors.

25

Siebel
Testing Siebel Business Applications Guide

Chapter 3
Plan Testing Strategy

26

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

4 Design and Develop Tests

Design and Develop Tests
This chapter describes the process of developing the tests that you should perform during the development of your
project. It includes the following topics:

• Overview of Test Development

• Design Evaluation

• Test Case Authoring

• Test Case Automation

Overview of Test Development
It is important that you develop test cases in close cooperation between the tester, the business analyst, and the
business user. To generate valid and complete test cases, they must be written with full understanding of the
requirements, specifications, and usage scenarios.

The process in the following image illustrates some of the activities that should take place in the test development
process, including the following:

1. Review requirements.
2. Evaluate design.
3. Create usage scenarios.
4. Author test cases.
5. Signoff test case.
6. (Optional) Automate test case.

As shown in this image, the deliverables for the test development process include:

• Requirement gaps. As a part of the design review process, the business analyst should identify business
requirements that have incomplete or missing designs. This can be a simple list of gaps tracked in a

27

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

spreadsheet. Gaps must be prioritized and critical issues scoped and reflected in the updated design. Lower
priority gaps enter the change management process.

• Approved technical design. This is an important document that the development team produces (not a
testing-specific activity) that outlines the approach to solving a business problem. It should provide detailed
process-flow diagrams, UI mock-ups, pseudo-code, and integration dependencies. The technical design should
be reviewed by both business analysts and the testing team, and approved by business analysts.

• Detailed test cases. Step-by-step instructions for how testers execute a test.

• Test automation scripts. If test automation is a part of the testing strategy, the test cases need to be recorded
as actions in the automation tool. The testing team develops the functional test automation scripts, while the IT
team typically develops the performance test scripts.

Design Evaluation
The earliest form of testing is design evaluation. Testing during this stage of the implementation is often neglected.
Development work should not start until requirements are well understood, and the design can fully address the
requirements. All stakeholders should be involved in reviewing the design. Both the business analyst and business user,
who defined the requirements, should approve the design.

An example design evaluation process is illustrated in the following image and includes the following steps:

1. Review Design for accuracy and completeness.
2. Perform usability review.
3. Prioritize requirement/usability gaps.
4. If there are critical gaps, then scope the design gap and either revise the design (if time) or set up a change

management process (to handle later).
5. If there are non-critical gaps, then log defects for same.

For more information, see Reviewing Design and Usability.

Reviewing Design and Usability
Two tools for identifying issues or defects are the Design Review and Usability Review. These early stage reviews serve
two purposes. First, they provide a way for development to describe the components to the requirement solution.
Second, they allow the team to identify missing or incomplete requirements early in the project. Many critical issues are
often introduced by incomplete or incorrect design. These reviews can be as formal or informal as deemed appropriate.

28

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

Many customers have used design documents, whiteboard sessions, and paper-based user interface mock-ups for
these reviews.

Once the design is available, the business analyst should review it to make sure that the business objectives can be
achieved with the system design. This review identifies functional gaps or inaccuracies. Usability reviews determine
design effectiveness with the UI mock-ups, and help identify design inadequacies.

Task-based usability tests are the most effective. In this type of usability testing, the tester gives a user a task to
complete (for example, create an activity), and using the user interface prototype or mock-up, the user describes
the steps that he or she would perform to complete the task. Let the user continue without any prompting, and then
measure the task completion rate. This UI testing approach allows you to quantify the usability of specific UI designs.

The development team is responsible for completing the designs for all business requirements. Having a rigorous
design and review process can help avoid costly oversights.

Test Case Authoring
Based on the test case objective, requirements, design, and usage scenarios, the process of authoring test cases can
begin. Typically this activity is performed with close cooperation between the testing team and business analysts.

The following image illustrates the process for authoring test cases and includes the following stages:

1. Author functional test cases. Functional Test Cases test a common business operation or scenario to make
sure that it does what it is supposed to do.

2. Author system test cases. System Test Cases are typically used in the system integration test phase to make
sure that a component or module is built to specification, making sure that the structure of the application is
correct.

Functional tests focus on validating support for a scenario whereas system tests make sure that the structure of
the application is correct.

3. Author performance test cases. Performance Test Cases typically simulate system activity using automated
testing tools.

29

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

Functional Test Cases
Functional test cases test a common business operation or scenario. The following table describes the different types of
test phases in Functional Test Cases.

A functional test case may verify common control navigation paths through a view. Functional test cases typically have
two components: test paths and test data.

Test Phase Example

Unit test

Test common control-level navigation through a view. Test any field validation or default logic.

Invoke methods on an applet.

Module test

Test common module-level user scenarios (for example, create an account and add an activity).

Verify correct interaction between two related Siebel components (for example, Workflow Process and
Business Service).

Process test

Test proper support for a business process.

User interface

Verify that a view has all specified applets, and each applet has specified controls with correct type and
layout.

Data entity

Verify that a data object or control has the specified data fields with correct data types.

30

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

Test Case
A test case describes the actions and objects that you want to test. A case is presented as a list of steps with the
expected behavior at the completion of a step. The following image shows an example of a test case.

In the Detailed Step column, there are no data values in the step. Instead you see a parameter name in brackets as a
place holder. This parameterization approach is a common technique used with automation tools, and is helpful for
creating reusable test cases.

Test Data
Frequently, you can use a single path to test many scenarios by simply changing the data that is used. For example, you
can test the processing of both high-value and low-value opportunities by changing the opportunity data entered, or
you can test the same path on two different language versions of the application. For this reason, it can be helpful to
define the test path separately from the test data.

System Test Cases
System test cases are typically used in the system integration test phase to make sure that a component or module is
built to specification. Functional tests focus on validating support for a scenario whereas system tests make sure that
the structure of the application is correct. The following table shows some examples of typical system tests.

Object Type Example

Interface

Verify that an interface data structure has the correct data elements and correct data types.

Business Rule Verify that a business rule (for example, assignment rule) handles all inputs and outputs correctly.

31

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

Object Type Example

Performance Test Cases
You accomplish performance testing by simulating system activity using automated testing tools. Oracle has several
software partners who provide load testing tools that have been validated to integrate with Siebel business applications.
Automated load-testing tools are important because they allow you to accurately control the load level, and correlate
observed behavior with system tuning. This topic describes the process of authoring test cases using an automation
framework.

When you are authoring a performance test case, first document the key performance indicators (KPIs) that you
want to measure. The KPIs can drive the structure of the performance test and also provide direction for tuning
activities. Typical KPIs include resource utilization (CPU, memory) of any server component, uptime, response time, and
transaction throughput.

The performance test case describes the types of users and number of users of each type that will be simulated in a
performance test. The following image shows a typical test profile for a performance test and includes the following
information: Test Case #, Test Case Name, Test Case Description, Application, KPIs, User Type, Number Users, and Total
Number of Users and Business Transactions.

Test cases should be created to mirror various states of your system usage, including:

• Response time or throughput. Simulate the expected typical usage level of the system to measure system
performance at a typical load. This allows evaluation against response time and throughput KPIs.

• Scalability. Simulate loads at peak times (for example, end of quarter or early morning) to verify system
scalability. Scalability (stress test) scenarios allow evaluation of system sizing and scalability KPIs.

• Reliability. Determine the duration for which the application can be run without the need to restart or recycle
components. Run the system at the expected load level for a long period of time and monitor system failures.

User Scenarios
The user scenario defines the type of user, as well as the actions that the user performs. The first step in authoring
performance test cases is to identify the user types that are involved. A user type is a category of typical business user.
You arrive at a list of user types by categorizing all users based on the transactions they perform. For example, you may
have call center users who respond to service requests and call center users who make outbound sales calls. For each

32

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

user type, define a typical scenario. It is important that scenarios accurately reflect the typical set of actions taken by a
typical user because scenarios that are too simple or too complex skew the test results. There is a trade-off that must
be balanced between the effort to create and maintain a complex scenario and accurately simulating a typical user.
Complex scenarios require more time-consuming scripting while scenarios that are too simple may result in excessive
database contention – because all simulated users will simultaneously try to access the small number of tables that
support a few operations.

Most user types fall into one of two usage patterns:

• Multiple-iteration users tend to log in once, and then cycle through a business process multiple times (for
example, call center representatives). The Siebel application has a number of optimizations that take advantage
of persistent application state during a user session, and it is important to accurately simulate this behavior to
obtain representative scalability results. The scenario should show the user logging in, iterating over a set of
transactions, and then logging out.

• Single-iteration scenarios emulate the behavior of occasional users such as e-commerce buyers, partners at a
partner portal, or employees accessing ERM functions such as employee locator. These users typically execute
an operation once and then leave the Siebel environment, and so do not take advantage of the persistent state
optimizations for multiple-iteration users. The scenario should show the user logging in, performing a single
transaction, and then logging out.

The following image shows the user wait times for the following scenario:

• User Type: Incoming Call Creates Opportunity and Quote.

• Iteration: Multiple Iteration.

For example, the Go_New_Call operation has a wait time of 5 seconds, the New_Contact operation has a wait time of
60 seconds, and the New_Oppty operation has a wait time 45 seconds. It is important that wait times be distributed
throughout the scenario, and reflect the time that an actual user takes to perform the operation.

Data Sets
The data in the database and used in the performance scenarios can impact test results – because this data impacts the
performance of the database. It is important to define the data shape to be similar to what is expected in the production
system. Many customers find it easiest to use a snapshot of true production data sets to do this.

33

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

Test Case Automation
Oracle partners with the leading test automation tool vendors, who provide validated integrations with Siebel business
applications. Automation tools can be a very effective way to execute tests. In the case of performance testing,
automation tools are critical to provide controlled, accurate test execution. When you have defined test cases, you can
automate them using third-party tools.

Functional Automation
Using automation tools for functional or system testing can cost less than performing manual test execution. You
should consider which tests to automate because there is a cost in creating and maintaining functional test scripts.
Acceptance regression tests benefit the most from functional test automation technology.

For functional testing, automation provides the greatest benefit when testing relatively stable functionality. Typically,
automating a test case takes approximately five to seven times as long as manually executing it once. Therefore, if a test
case is not expected to be run more than seven times, the cost of automating it may not be justified.

Performance Automation
Automation is necessary to conduct a successful performance test. Performance testing tools virtualize real users,
allowing you to simulate thousands of users. In addition, these virtual users are less expensive, more precise, and more
tolerant than actual users. The process of performance testing and tuning is iterative, so it is expected that a test case
will be run multiple times to first identify performance issues, and then verify that any tuning changes have corrected
observed performance issues.

Performance testing tools virtualize real users by simulating the HTTP requests made by the client for the given
scenario. The Siebel Smart Web Client Architecture separates the client-to-server communication into two channels,
one for layout and one for data. The protocol for the data channel communication is highly specialized; therefore Oracle
has worked closely with leading test tool vendors to provide their support for Siebel business applications. Because
the communication protocol is highly specialized and subject to change, it is strongly recommended that you use a
validated tool.

At a high level, the process of developing automated test scripts for performance testing has four steps - refer to the
instructions provided by your selected tool vendor for more detailed information:

• Record scripts for each of the defined user types. Use the automation tool’s recording capability to record
the scenario documented in the test case for each user. Keep in mind the multiiteration versus single iteration
distinction between user types. Many tools automatically record user wait times. Modify these values, if
necessary, to make sure that the recorded values accurately reflect what was defined in the user type scenario.

• Insert parameterization. Typically, the recorded script must be modified for parameterization.
Parameterization allows you to pass in data values for each running instance of the script. Because each virtual
user runs in parallel, this is important for segmenting data and avoiding uniqueness constraint violations.

• Insert dynamic variables. Dynamic variables are generated based on data returned in a prior response.
Dynamic variables allow your script to intelligently build requests that accurately reflect the server state. For
example, if you execute a query, your next request should be based on a record returned in the query result set.
Examples of dynamic variables in Siebel business applications include session ids, row ids, and timestamps. All
validated load test tool vendors provide details on how dynamic variables can be used in their product.

34

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

• Script verification. After you have recorded and enhanced your scripts, run each script with a single user to
verify that it functions as expected.

Oracle offers testing services that can help you design, build, and execute performance tests if you need assistance.

Best Practice
Using test automation tools can reduce the effort required to execute tests, and allows a project team to achieve greater
test coverage. Test Automation is critical for Performance testing, because it provides an accurate way to simulate large
numbers of users.

35

Siebel
Testing Siebel Business Applications Guide

Chapter 4
Design and Develop Tests

36

Siebel
Testing Siebel Business Applications Guide

Chapter 5
Execute Siebel Functional Tests

5 Execute Siebel Functional Tests

Execute Siebel Functional Tests
This chapter describes the process of executing Siebel functional tests. It includes the following topics:

• Overview of Executing Siebel Functional Tests

• Track Defects Subprocess

Overview of Executing Siebel Functional Tests
The process of executing Siebel functional tests is designed to provide for delivery of a functionally validated Siebel
application into the system environment. For many customers the Siebel application is one component of the overall
system which may include other back-end applications as well as integration infrastructure and network infrastructure.
Therefore, the objective of executing Siebel functional tests is to verify that the Siebel application functions properly
before inserting it into the larger system environment.

Application developers test their individual components for functional correctness and completeness before checking
component code into the repository. The unit test cases should have been designed to test the low-level details of the
component (for example, control behavior, layout, data handling).

Typical unit tests include structural tests of components, negative tests, boundary tests, and component-level
scenarios. The unit test phase allows developers to fast track fixes for obvious defects before checking in. A developer
must demonstrate successful completion of all unit test cases before checking in their component. In some cases, unit
testing identifies a defect that is not critical for the given component; these defects are logged into the defect tracking
system for prioritization.

Once unit testing has been completed on a component, that component is moved into a controlled test environment,
where the component can be tested along side others at the module and process level.

The following image illustrates the process of executing Siebel functional tests.

37

Siebel
Testing Siebel Business Applications Guide

Chapter 5
Execute Siebel Functional Tests

As shown in this image, there are three phases in the process of executing Siebel functional tests:

1. Unit test. The unit test validates the functionality of a single component (for example, an applet or a business
service). Typical steps involved in unit testing include the following:

a. Execute unit test cases on a given (completed) component.
b. Perform configuration or scripting review.
c. Regarding defects:

- Fix critical defects that must be fixed, and return to step a.
- Log and track other defects, if there are any, and continue to step d.

d. Check in unit tested component.
2. Module test. The module test validates the functionality of a set of related components that make up a module

(for example, Contacts or Activities). Typical steps involved in module testing include the following:

a. Migrate the (unit tested) component to a Test environment.
b. Execute module test cases on the component.
c. Log and track defects if there are any.

3. Process test. The process test validates that multiple modules can work together to enable a business process
(for example, Opportunity Management or Quote to Order). Typical steps involved in module testing include the
following:

a. Execute business process test cases on the component.
b. Log and track defects if there are any.

Reviews
There are two types of reviews done in conjunction with functional testing: configuration review and scripting code
review.

• Configuration review. This is a review of the Siebel application configuration using Siebel Tools. Configuration
best practices should be followed. Some common recommendations include using optimized, built-in
functionalities rather than developing custom scripts and using primary joins to improve MVG performance.

• Scripting code review. Custom scripting is the source of many potential defects. These defects are the result
of poor design or inefficient code that can lead to severe performance problems. A code review can identify
design flaws and recommend code optimization to improve performance.

Checking in a component allows the testing team to exercise that component along side related components in an
integration test environment. Once in this environment, the testing team executes the integration test cases based on
the available list of components. Integration tests are typically modeled as actual usage scenarios, which allow testers to
validate that a user can perform common tasks. In contrast to unit test cases, these tests are not concerned with specific
details of any one component, but rather the way that logic is handled when working across multiple components.

38

Siebel
Testing Siebel Business Applications Guide

Chapter 5
Execute Siebel Functional Tests

Track Defects Subprocess
The Track Defects subprocess is designed to collect the data required to measure and monitor the quality of the
application, and also to control project risk and scope. The process, illustrated in the following image, is designed so
that those with the best understanding of the customer priorities are in control of defect prioritization.

As shown in this image:

• The business analyst monitors a list of newly discovered issues using a defect tracking system like the Siebel
Quality module. These users monitor, prioritize, and target defects with regular frequency. This is typically done
daily in the early stages of a project, and perhaps several times a day in later stages.

• The level of scrutiny is escalated for defects discovered after the project freeze date. A very careful
measurement of the impact to the business of a defect versus the risk associated with introducing a late
change must be made at the project level. Commonly, projects that do not have appropriate levels of change
management in place have difficulty reaching a level of system stability adequate for deployment. Each change
introduced carries with it some amount of regression risk. Late in a project, it is the responsibility of the entire
project team, including the business unit, to carefully manage the amount of change introduced.

• Once a defect has been approved to be fixed, it is assigned to development and a fix is designed, implemented,
unit tested, and checked in. The testing team must then verify the fix by bringing the affected components
back to the same testing phase where the defect was discovered. This requires regression testing (re-execution
of test cases from earlier phases). The defect is finally closed and verified when the component or module
successfully passes the test cases in which it was discovered. The process of validating a fix can often require
the re-execution of past test cases, so this is one activity where automated testing tools can provide significant
savings. One best practice is to define regression suites of test cases that allow the team to re-execute a
relevant, comprehensive set of test cases when a fix is checked in.

39

Siebel
Testing Siebel Business Applications Guide

Chapter 5
Execute Siebel Functional Tests

• Tracking defects also collects the data required to measure and monitor system quality. Important data inputs
to the deployment readiness decision include the number of open defects and defect discovery rate. Also, it
is important for the business customer to understand and approve the known open defects prior to system
deployment.

Best Practice
The use of a defect tracking system allows a project team to understand the current quality of the application, prioritize
defect fixes based on business impact, schedule resources, and carefully control risk associated with configuration
changes late in the project.

40

Siebel
Testing Siebel Business Applications Guide

Chapter 6
Execute System Integration and Acceptance Tests

6 Execute System Integration and Acceptance
Tests

Execute System Integration and Acceptance Tests
This chapter describes the process of executing integration and acceptance tests. It includes the following topics:

• Overview of Executing Integration and Acceptance Tests

• Execute Integration Tests

• Execute Acceptance Tests

Overview of Executing Integration and Acceptance Tests

The processes of executing integration and acceptance tests are designed to verify that the Siebel application can
properly communicate with other applications or components in the system, support end-to-end business processes,
and will be accepted by the user community. This is a very busy and exciting phase of any project, because it marks a
point where the system is nearing deployment.

The three major pieces involved in executing integration and acceptance tests processes are as follows:

• Testing integrations with the Siebel application. In most customer deployments, the Siebel application
integrates with several other applications or components. Integration testing focuses on these touch points
with third-party applications, network infrastructure, and integration middleware.

• Functional testing of business processes. Required business processes must be tested end-to-end to
verify that transactions are handled appropriately across component, application, and integration logic. It
is important to push a representative set of transaction data through the system and follow all branches of
required business processes.

• Testing system acceptance with users. User acceptance testing allows system users to use the system to
perform simulated work. This phase of testing makes sure that users will be able to use the system effectively
once it is live.

Execute Integration Tests
Completion of the Siebel Functional Testing process verifies that the Siebel application functions correctly as a unit.
In Integration Testing you verify that this unit functions correctly when inserted into the complete, larger system. In
this process, your test cases should be defined to test the integration points between the Siebel application and other
applications or components. Typical components include back office applications, integration middleware, network
infrastructure components, and security infrastructure. Tests in this process should focus on exercising integration
logic, and validating end-to-end business processes that span multiple systems.

41

Siebel
Testing Siebel Business Applications Guide

Chapter 6
Execute System Integration and Acceptance Tests

The following image illustrates the process involved in executing integration tests and includes the following typical
steps:

1. Migrate to system environment.
2. Configure integrations (CTI, Middleware).
3. Execute integration test cases.
4. Log and track defects (if there are any).

Execute Acceptance Tests
Once the system as a whole has been validated, you must make sure that the functionality provided is acceptable
to the business users. Hopefully, the business user has been engaged all along, approving at each phase of the
project to make sure that there are no surprises. In the User Acceptance testing process, open the system up to a
larger community of trained users and ask them to simulate running their business on the system. User Acceptance
testing should be designed to simulate live business as closely as possible. Complete this process by having the user
community representative (business user) approve the acceptance test results.

The following image illustrates the process involved in executing acceptance tests and includes the following typical
steps:

1. Set up the audit environment.
2. Execute acceptance cases.
3. Log and track defects (if there are any).
4. Signoff user acceptance tests.

42

Siebel
Testing Siebel Business Applications Guide

Chapter 6
Execute System Integration and Acceptance Tests

43

Siebel
Testing Siebel Business Applications Guide

Chapter 6
Execute System Integration and Acceptance Tests

44

Siebel
Testing Siebel Business Applications Guide

Chapter 7
Execute Performance Tests

7 Execute Performance Tests

Execute Performance Tests
This chapter describes the process of executing performance tests. It includes the following topics:

• Overview of Executing Performance Tests

• Executing Tests

• Performing an SQL Trace

• Measuring System Metrics

• Monitoring Failed Transactions

Overview of Executing Performance Tests
As described earlier, there are three types of performance test cases that are typically executed: response time, stress,
and reliability testing. It is important to differentiate between the three because they are intended to measure different
KPIs (key performance indicators). Specialized members of the testing and system administration organizations, who
have ownership of the system architecture and infrastructure, typically manage performance tests.

The process of executing performance tests involves validating recorded user-type scripts in the system test
environment. The following image illustrates the typical steps involved in executing performance tests:

1. Set up the audit environment.
2. Validate scripts.
3. Regarding defects:

◦ Resolve script issues if there are defects, and return to step 2.

◦ Otherwise perform SQL trace, log and track defects as necessary, and continue to step 4.
4. Set up the test profile, then:

a. Execute the test.
b. Measure system metrics.
c. Monitor failed transactions.

5. Log and track defects as necessary.
6. Signoff performance test acceptance.

45

Siebel
Testing Siebel Business Applications Guide

Chapter 7
Execute Performance Tests

Executing Tests
Execute each script for a single user to validate the health of the environment. A low user-load baseline should be
obtained before attempting the target user load. This baseline allows you to measure system scalability by comparing
results between the baseline and target loads.

Users must be started at a controlled rate to prevent excessive resource utilization due to large numbers of
simultaneous logins. This rate depends on the total configured capacity of the system. For every 1000 users of
configured system capacity, you add one user every three seconds. For example, if the system is configured for 5000
users, you add five users every three seconds.

Excessive login rate causes the application server tier to consume 100% CPU, and logins begin to fail. Wait times
should be randomized during load testing to prevent inaccuracies due to simulated users executing transactions
simultaneously. Randomization ranges should be set based on determining the relative wait times of expert and new
users when compared to the average wait times in the script.

Performing an SQL Trace
Because poorly formed SQL or suboptimal database-tuning causes many performance issues, the first step to improve
performance is to perform an SQL trace. An SQL trace creates a log file that records the statements generated in the
Siebel object manager and executed on the database. The time required to execute and fetch on an SQL statement has
a significant impact on both the response time seen by end users of a system, and on the system’s resource utilization
on the database tier. It is important to discover slow SQL statements and root cause, and fix issues before attempting
scalability or load tests, as excessive resource utilization on the database server will invalidate the results of the test or
cause it to fail.

To obtain an SQL trace
1. Set a breakpoint in the script at the end of each action and execute the script for two iterations.
2. Enable EvtLogLvl (ObjMgrSqlLog=5) to obtain SQL traces for the component on the application server that has

this user session or task running.
3. Continue executing the script for the third iteration and wait for the breakpoint at the end of action.
4. Turn off SQL tracing on the application server (reset it to its original value, or 1).
5. Complete the script execution.

The log file resulting from this procedure has current SQL traces for this business scenario. Typically, any SQL statement
longer than 0.1 seconds is considered suspect and must be investigated, either by optimizing the execution of the query
(typically by creating an index on the database) or by altering the application to change the query.

Measuring System Metrics
Results collection should occur during a measurement period while the system is at a steady state, simulating ongoing
operation in the course of a business day. Steady state is achieved once all users are logged in and caches (including

46

Siebel
Testing Siebel Business Applications Guide

Chapter 7
Execute Performance Tests

simulated client-side caches) are primed. The measurement interval should commence after the last user has logged in
and completed the first iteration of the business scenario.

The measurement interval should last at least one hour, during which system statistics should be collected across all
server tiers. We recommend that you measure the following statistics:

• CPU

• Memory

• System calls

• Context switches

• Paging rates

• I/O waits (on the database server)

• Transaction response times as reported by the load testing tool

Note: Response times will be shorter than true end-user response times due to additional processing on the client,
which is not included in the measured time.

The analysis of the statistics starts by identifying transactions with unacceptable response times, and then correlating
them to observed numbers for CPU, memory, I/O, and so on. This analysis provides insight into the performance
bottleneck.

Monitoring Failed Transactions
Less than 1% of transactions should fail during the measurement interval. A failure rate greater than 1% indicates a
problem with the scripts or the environment.

Typically, transactions fail for one of the following three reasons:

• Timeout. A transaction may fail after waiting for a response for a specified timeout interval. A resource issue at
a server tier, or a long-running query or script in the application can cause a timeout.

If a long-running query or script is applicable to all users of a business scenario, it should be caught in the SQL
tracing step. If SQL tracing has been performed, and the problem is only seen during loaded testing, it is often
caused by data specific to a particular user or item in the test database. For example, a calendar view might be
slow for a particular user because prior load testing might have created thousands of activities for that user on
a specific day. This would only show as a slow query and a failed transaction during load testing when that user
picks that day as part of their usage scenario

Long-running transactions under load can also be caused by consumption of all available resources on some
server tier. In this case, transaction response times typically stay reasonable until utilization of the critical
resource closely approaches 100%. As utilization approaches 100%, response times begin to increase sharply
and transactions start to fail. Most often, this consumption of resources is due to the CPU or memory on
the Web server, application server, or database server, I/O bandwidth on the database server, or network
bandwidth. Resource utilization across the server tiers should be closely monitored during testing, primarily for
data gathering purposes, but also for diagnosing the resource consumption problem.

Very often, a long-running query or script can cause consumption of all available resources at the database
server or application server tier, which then causes response times to increase and transactions to time out.

47

Siebel
Testing Siebel Business Applications Guide

Chapter 7
Execute Performance Tests

While a timeout problem may initially appear to be resource starvation, it is possible that the root cause of the
starvation is a long-running query or script.

• Data issues. In the same way that an issue specific to a particular data item may cause a timeout due to a long-
running query or script, a data issue may also cause a transaction to fail. For example, a script that randomly
picks a quote associated with an opportunity will fail for opportunities that do not have any associated quotes.
You must fix data if error rates are significant, but a small number of failures do not generally affect results
significantly.

• Script issues. Defects in scripts can cause transaction failures. Common pitfalls in script recording include the
following:

◦ Inability to parse Web server responses due to special characters (quotes, control characters, and so on)
embedded in data fields for specific records.

◦ Required fields not being parameterized or handled dynamically

◦ Strings in data fields that are interpreted by script error-checking code as indicating a failed transaction.
For example, it is common for a technical support database to contain problem descriptions that include
the string. The server is down or experiencing problems

48

Siebel
Testing Siebel Business Applications Guide

Chapter 8
Improve and Continue the Testing Process

8 Improve and Continue the Testing Process

Improve and Continue the Testing Process
This chapter describes the steps you can take to make iterative improvements to the testing process. It includes the
following topic.

• Improve and Continue Testing

Improve and Continue Testing
After the initial deployment, regular configuration changes are delivered in new releases. In addition, Oracle delivers
regular maintenance and major software releases. Configuration changes and new software releases must be tested to
verify that the quality of the system is sustained. This is a continuous effort using a phased deployment approach, as
discussed in Modular and Iterative Methodology.

This ongoing lifecycle of the application is an opportunity for continuous improvement in testing. As illustrated in the
following image, the steps you can take to make iterative improvements to the testing process include the following:

1. Identify Regression Test Suite. First, a strategy for testing functionality across the life of the application is
built by identifying a regression test suite. This test suite provides an abbreviated set of test cases that can
be run with each delivery to identify any regression defects that may be introduced. The use of automation is
particularly helpful for executing regression tests. By streamlining the regression test process, organizations are
able to incorporate change into their applications at a much lower cost.

2. Review Defects. The testing strategy and its objectives should be reviewed to identify any inadequacies in
planning. A full review of the logged defects (both open and closed) can help calibrate the risk assessment
performed earlier. This review provides an opportunity to measure the observed risk of specific components
(for example, which component introduced the largest number of defects).

The testing strategy and its objectives should be reviewed to identify any inadequacies in planning. A full
review of the logged defects (both open and closed) can help calibrate the risk assessment performed earlier.
This review provides an opportunity to measure the observed risk of specific components (for example, which
component introduced the largest number of defects).

3. Conduct Post-Mortem. A project-level final review meeting (also called a post-mortem) provides an
opportunity to have a discussion about what went well, and what could have gone better with respect to testing.

4. Revise Risk Scoring on Component Inventory.
5. Revise Test Plans and Cases. Test plans and test cases should be reviewed to determine their effectiveness.

Update test cases to include testing scenarios exposed during testing that were not previously identified.

49

Siebel
Testing Siebel Business Applications Guide

Chapter 8
Improve and Continue the Testing Process

50

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

9 Implementing Siebel Open UI Keyword
Automation Testing

Implementing Siebel Open UI Keyword Automation
Testing
This chapter provides an overview of implementing Siebel Open UI keyword automaton testing in software
development projects. It includes the following topics:

• Overview of Siebel Open UI Keyword Automation Testing

• Process of Implementing Siebel Open UI Keyword Automation Testing

• Enabling Oracle Business Intelligence Publisher for Test Automation

• Siebel Test Automation Folder

• Extending Keyword Automation Capabilities

Note: Enabling UPT is not compatible with test automation. To ensure that test scripts are correctly recorded (Unit
Mode is typically used by test script authors to record test scripts), make sure there are no events with Action Set
Name set to UPT ('Action Set Name' = UPT) and that the following system preferences are not used: UPTEEE1,
UPTEEE2, and UPTEndToEndEventList.

Overview of Siebel Open UI Keyword Automation Testing

Siebel Open UI keyword automation testing is based on the Keyword Driven Framework. The Keyword Driven
Framework is an automation testing framework which uses action words for testing.

The four main parts to each keyword automation step are:

1. Action to perform (Keyword)
2. Object to act upon
3. Input data
4. Choice of closing action.

A test case or script is made up of a set of sequenced test steps as shown, for example, in the following table.

Action or Keyword Target Object Inputs Choice of closing action

Click a button

Repository name of an applet and
button.

Any required closing action, such as
clicking OK or Cancel, (after the button
is clicked).

Click new

51

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Action or Keyword Target Object Inputs Choice of closing action

Input value

Repository name of applet and button.

Enter a value in the Name field.

Process of Implementing Siebel Open UI Keyword
Automation Testing
Perform the following tasks to implement Siebel Open UI keyword automation testing for the following test scenario: I
want to automate a test script using keywords that will, for example, create a new product and add it to Quote.

1. Creating a Test Script
2. Adding Test Steps to Test Scripts
3. Capturing Automation Attributes for Test Steps
4. Grouping Test Scripts into a Test Set
5. Grouping Test Sets into a Master Suite
6. Configuring the Test Run

Creating a Test Script
The following procedure describes how to create a new test script. Make sure that the Siebel application is up and
running before starting this task.

This task is a step in Process of Implementing Siebel Open UI Keyword Automation Testing.

To create a test script
1. Navigate to Sitemap, Release screen, then the Test Scripts view.
2. Click the plus (+) icon to create a new test script.
3. In the form that appears, complete the fields with the values shown in the following table.

Only fields marked with an asterisk (*) in the UI are mandatory.

Field Name Value Description

Name*

xyz

Name of the test script.

Test Script Description

Test

Description of the test script.

Status*

Active

Status of the test script

Reference ID

xyz_abc

The reference id of the test script.

Team name ABC The name of the team.

52

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Name Value Description

Release

IP2017

The name of the specific release.

Test Environment

All, Demo etc

Specifies the test environment.

Pre Condition

Text

Notes on preconditions for the test.

Steps to execute

Text

Notes steps to be covered in the test.

Input Data

Text

Notes in input data.

Expected Output

Text

Notes on expected results.

Post Processing

Text

Notes on post processing.

4. From the Test Scripts menu, choose Save Record.

A new test script is created.

Adding Test Steps to Test Scripts
The following procedure describes how to add test steps to test scripts. Make sure that the Siebel application is up and
running before starting this task.

This task is a step in Process of Implementing Siebel Open UI Keyword Automation Testing.

To add test steps to test scripts
1. Navigate to Sitemap, Release screen, then the Test Scripts view.
2. Drill down on the name of the test script to which you want to add test steps.
3. Click the plus (+) icon to create a new test step.
4. In the form that appears, complete the fields with the values shown in the following table.

Note the following:

◦ The first test step (or test sequence number 1) must be the Launch keyword.

◦ After you select a Keyword, the fields are rendered dynamically as required for the keyword.

Field Name Value Description

Test Step Sequence 1 Sequence number for the test step.

53

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Name Value Description

Description

Login

Description of the Keyword

Keyword

Launch

Enter this keyword to log into the application.

Paste Attributes

Not Applicable

Not Applicable.

Component Alias

Can be any name

ID associated with the test script.

User Name

CCHECNG

Name of the user.

Clear Browser

Y

Enter this value to clear the browser cache.

Screenshot Required

Not Applicable

Select this option to capture the corresponding step
performed in the test step.

5. Save the record.

Note: The Keyword Reference lists all the keywords and provides you with information on how to use keywords with
examples.

Note: IPH1;IPH2;IPH3 are read-only place holder notations for the Input field.

Note: All the references to user names, user ids or passwords in this Testing guide are meant for Testing and test
automation purposes only. It is responsibility of the users to ensure that production or real user ids and passwords are
not stored in Test Automation records or artifacts, such as files, database, etc.

Test Setps View
The Test Steps View is an applet similar to the Test Steps applet under Test Scripts.

This view exposes the Test steps at the first level. The records are in read-only mode and you cannot create any records
here. You can only query and view the records.

The Test Steps View exposes the inputs and RNs given in the keyword as separate columns. Import/Export is supported
for this applet.

In case the input for a keyword is changed, users can export records for that particular keyword, modify the input
value and import it. Using the Test Sets view, you can also see how frequently each keyword is used – for example, by
querying on the keyword, you get the number of records for that keyword.

To edit a Test Step, navigate to Sitemap, Release screen, then the Test Steps view.

54

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Capturing Automation Attributes for Test Steps
The following procedure shows you how to use the attributes pop-up window to capture automation attributes for test
steps.

This task is a step in the Process of Implementing Siebel Open UI Keyword Automation Testing.

Before capturing automation attributes for test steps, the following prerequisites apply:

• Make sure that the following behavior settings are configured (click Tools, select User Preferences and then
Behavior).

◦ Set Navigation Control to Tab.

◦ Set Theme to Aurora.

• Make sure that the Siebel application is running in AutoOn mode.

• Make sure that the URL command is set to the AutoOn mode, for example, as follows: http://
machinenumber:domainname:portname/siebel/app/callcenter/enu?SWECmd=AutoOn.
Being in AutoOn mode helps you to capture the automation attributes when navigating through the
application.

To capture automation attributes for test steps
1. Start the Siebel application in a new browser.
2. To capture the automation attribute for a specific object or control, do the following:

a. Position the mouse over the object or control for which the automation attributes are needed (for
example, the plus (+) icon).

b. Press the CTRL key on your keyboard and right-click your mouse button simultaneously.
The Siebel Automation Information dialog box appears.

c. Copy the string value from the COPY STRING field and paste it into the Paste Attributes field of the Test
Step.

d. Tab out of the Paste Attributes field in the Test Step.
The data will be automatically populated in the target object fields. For example: the AppletRN and
ItemRN fields.

Grouping Test Scripts into a Test Set
The following procedure shows how to group test scripts into a test set.

This task is a step in the Process of Implementing Siebel Open UI Keyword Automation Testing.

To group test scripts into a test set
1. Navigate to Sitemap, Release screen, then the Test Set view.
2. Click the plus (+) icon to create a new Test Set.
3. In the form that appears, complete the fields with the values shown in the following table.

55

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Description Sample Value

Name

Name of the test set.

Xyz

Description

Description of the test set.

Test

Test Plan Name

Name of the test plan.

Test_xyz

Release

Name of the release.

1718

Team

Name of the team.

Transformers

Status

Status of the test set.

Active

External ID

The external ID associated with the test set.

Testplan_1

4. Drill down on a value in the Name field and then click Add Test Scripts (or the plus (+) icon) to associate test
scripts with the selected Test Set.

5. Update the Sequence field for each associated test script.

Note: As of Siebel CRM 20.9 Update, the Add Iteration, Remove Iteration and Scenario Iteration buttons pertain to
data driven testing. For more information on the different iteration types, see Data Driven Testing.

Grouping Test Sets into a Master Suite
The following procedure shows how to group test sets into a Master Suite.

This task is a step in the Process of Implementing Siebel Open UI Keyword Automation Testing.

To group test scripts into a Master Suite
1. Navigate to Sitemap, Release screen, then the Master Suites view.
2. Click the plus (+) icon to create a new test set.
3. In the form that appears, complete the fields with the values shown in the following table.

Field Description Sample Value

Name

Name of the test set

xyz

Description Description of the test set Test

56

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Description Sample Value

Status

Status of the test set

Active

Test Plan ID

ID associated with the test set

Test1_001

Team

Specifies the corresponding name of the team.

Titans, Transformers, and so on.

Release

Specifies the appropriate release version.

17.0

4. Drill down on a value in the Name field, then click Add Test Sets (or the plus (+) icon) to associate test sets with
the selected Master Suite.

5. If the master suite contains the following keywords, you must add the required files in the respective folders.

◦ Folder Name: Resources

◦ Keywords:
- Inboundwebservicecall
- Invokeperl
- Serverconfig
- fileupload

After including the files, you can zip the folder (that is, Resources.zip) and attach Resources.zip in the MasterSuite
Attachments Applet.

Viewing Master Suites associated to a Test Set
To view master suites associated to a Test Set, follow the steps:

1. Navigate to Test Sets List View and drill down on a record.
2. In the next level, select or click Master Suites.
3. This applet displays all the Master Suites to which the Test Set is associated to.

Configuring the Test Run
Configuring a test run involves creating a test execution record and running the test scripts.

This task is a step in the Process of Implementing Siebel Open UI Keyword Automation Testing.

Creating the Test Execution Record
1. Navigate to Site Map, Release screen, then the Test Execution view.
2. Click the plus (+) icon to create a new configuration record.
3. Complete the fields with the values shown in the following table.

57

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Description Sample Value

Master Suite id

Master Suite

Select a Master Suite record from the drop-down list.

The Row id and the name of the
selected Master Suite appear in the
respective fields.

Application Version

The version number of the application.

To create the application version records, navigate to
Site Map, Quality screen, then the Release Product
Administration view.

Note: You can create records in this view, and the
same would be available as Application Version
values in the Test Execution view.

1.2.0

Notify

Check this box to enable Notifications on Test
Execution Status changes. For example, when Test
Execution Status changes to Completed, following
record will show on Notifications Summary.

Test Run #: <Run id of Test Execution>

(<name of Master Suite>) Test

Execution Status: <Status value> mm/dd/

yyyy

Example: Test Run #: 88-ZFU21
(MySuite01) Test Execution Status:

Completed 07/17/2023

Checked or Unchecked

Run Reference

Enter value of Label from Jenkins Node or group of
Nodes. Ensure the value is an exact match with Node
Labels, including case. Ensure there are no spaces in
the Label text.

Test Execution record will be redirected to run on a
matching Node only.

This field is optional - default is blank.

Refer to section Configuring the Siebel Test Execution
Job.

Note: When Run Reference Field is used, ensure
to provide Parameter --runReference=<Same
label value as in Run Reference field>

on Test Execution job (or build step) configuration.

Client_Pool_A, myclientxyz

58

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Field Description Sample Value

4. In the Server Credentials applet, select the Application Type (such as Desktop_Chrome), the URL details, and
the OS (Operating System) and Language.

5. Click Schedule Run, and the status will be updated to Requested.

Assuming that the Jenkins Server setup is ready, the status will be updated to Scheduled.

The attachment files are created in the Attachments applet. For example: batchconfig.xml, mastersuite.csv, and
Resources.zip.

Enabling Oracle Business Intelligence Publisher for Test
Automation
To enable Oracle Business Intelligence Publisher (BIP) for Test Automation, you must enter the BIP specific parameters.
As a prerequisite, ensure that BIP is integrated with Siebel prior to test execution.

The format for entering the parameters in Batch mode and Unit mode are given in the following subsections.

Batch Mode
Enter the information in the following table in the Test Execution screen.

Field Description Sample Value

BIP Outbound WS URL

BIP outbound Web service.

http://slcxxxxxx:9502/xmlpserver/services/publicreportservice_
v11

BIP Server Machine

Name of the BIP server.

slcxxxxxx

BIP Server Port

Port number for BIP server.

9502

BIP XMLP Server Machine

Name of the XMLP server.

None.

BIP XMLP Server Port

XMLP port number.

None.

BIP Server User

BIP server user name.

None.

BIP Server Password

BIP server password in plaintext.

None.

59

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Unit Mode
Update the following parameters in the unitconfig.xml file:

1. <BIP-OUTBOUNDWEBSERVICE>http://slcxxxxxx:9502/xmlpserver/services/publicreportservice_v11</BIP-

OUTBOUNDWEBSERVICE>

2. <BIP-SERVERNAME>slcxxxxx:9500</BIP-SERVERNAME>

3. <BIP-SERVERXMLP>slcxxxxx:9502</BIP-SERVERXMLP>

4. <BIP-USERNAME>SADMIN</BIP-USERNAME>

5. <BIP-PASSWORD>ldap</BIP-PASSWORD>

Note: The BIPserver.jar file is packaged in DISA and available in the following (folder) location: C:\DISA
\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Framework\lib.

After installing DISA, the bip.pl will be available in the following location:

<DISA Install location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Framework\perl

To perform BIP Automated script execution, you need to move the bip.pl to the following (folder) location:

<DISA Install location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Resources\invokeperl

Using BIP Automation, you can verify all Interactive, Scheduled, and Parameter based report generation.

Siebel Test Automation Folder
The Siebel Test Automation folder structure contains the required folders for executing the csv script. The Framework
folder contains all the required JARS and library files. The following folder structure is available when you install DISA.

Folder File Type Comment Execution

Framework\

Exe

Do not modify

Contains necessary Exe files which are used in the
SiebelTestAutomation Framework

Framework\

Lib

None

Contains necessary Library files (JAR files) which are used
in the SiebelTestAutomation Framework

Framework\

Perl

None

Contains necessary Perl scripts which are used in
SiebelTestAutomation Framework

Framework\

SiebelTestAutomation.jar

None

Compiled executable JAR which drives KWD execution

Extensions

.jar

CustomExtension
KeywordActionHandler
implementations

Placeholder for CustomExtension JAR files.

Reports

N/A Post- execution file

The folder gets created post execution, generates
execution results for review.

60

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Folder File Type Comment Execution

Note: For batch runs, this folder is created under the
SiebelTestAutomation\TestExecutions\ <RunId>\ folder.

Resources\

N/A

Contents of
Resources.zip are
unzipped into this folder.

Note: For batch runs, this folder is created under the
SiebelTestAutomation\TestExecutions\ <RunId>\ folder.

Resources\

fileupload

Script authoring file

Folder containing user developed files needed for
fileupload.

Resources\

inboundwebservicecall

Script authoring file

Folder containing user developed files needed for
inboundwebservicecall.

Resources\

invokeperl

Script authoring file

Folder containing user developed files needed for
invokeperl.

Resources\

toolsconfig

Script authoring file

Folder containing user developed files needed for
toolsconfig.

Resources\

serverconfig

None

Folder containing user developed files needed for
serverconfig keywords.

Scripts\

Samplescript.csv

None

Place holder for csv scripts.

Note: For batch runs, this folder is created under the
SiebelTestAutomation\TestExecutions\ <RunId>\ folder.

TestExecutions\

N/A

Batch runs.

Folder where individual batch run folders are created –
each folder is named according to the "Run Id" (row id) of
the test execution record.

SiebelTestAutomation
\TestExecutions
\ <RunId>
\batchconfig.xml

XML (.xml) file.

Pre-setup file

XML File which contains the configuration details of the
execution (URL, username password, script location).
The batchconfig.xml file will be copied by the Jenkins
scheduler if it is an STE run. The unitconfig.xml file will be
used for the UPT run.

SiebelTestAutomation
\TestExecutions\
<RunId>\User_opted_
operation.txt

Text (.txt) file.

Text file

Text file which contains information like Pause, Resume
and abort. The user has the option to Pause/Resume/
Abort the current execution by updating the value in the
User_opted_operation.txt file.

SiebelTestAutomation
\TestExecutions
\ <RunId>\Log_
randomnumber.log

Log (.log) file.

Log file

Text file which contains log messages by Framework for
debug purposes.

61

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

Extending Keyword Automation Capabilities
Keyword Automation, by default, supports only a typical login screen using the Launch keyword. Because Siebel
deployments often use Single Sign-On (SSO) and/or Multi-Factor Authentication and since SSO login screens are
company-specific, you can now use the CustomExtension keyword to handle SSO login. Similarly, you can extend the
keyword capabilities to address other, specific processing needs of your organization through CustomExtension.

You can use the CustomExtension keyword, which runs a custom extension JAR file, to enable support for custom
requirements, such as the following:

• Single Sign-On

• Non-OpenUI controls

• Embedded iFrames

• Integration dependency processing

By using the CustomExtension keyword along with custom scripting, you can implement automation as part of the
Siebel test script execution (ExecuteOperation). This helps to extend automation capabilities and increases overall test
coverage.

The following subtopic shows how to build a CustomExtension plugin. For more information about using the
CustomExtension keyword, see CustomExtension.

Building a CustomExtension Plugin
The typical instructions to build a CustomExtension plugin (for Login) are as follows:

1. Locate the following files, and then add both JAR file paths to the class path while compiling the
CustomExtension project:

◦ Go to the <DISA_HOME>/DesktopIntSiebelAgent/plugins/SiebelTestAutomation/Framework folder and locate
the SiebelTestAutomation.jar file.

◦ Go to the <DISA_HOME>/DesktopIntSiebelAgent/plugins/SiebelTestAutomation/Framework\lib folder and
locate the selenium_xxx.jar file (where xxx indicates the version number).

2. Create a new Java Package with the new class implementing the interface KeywordActionHandler and other
related files if any. To avoid any potential conflict, it is recommended that the custom extension class have a
unique package name.

3. Implement method ExecuteOperation in the new class with a return type boolean (true/false value) and the
following parameters: InputVariables and OutputVariables.
For example, the following sample login Java class implements the KeywordActionHandler interface as
specified - the Java class is designed to handle a Web page with the following fields:

◦ Input field called username

◦ Input field called password

◦ Anchor element with the value Login

The ExecuteOperation function identifies the username field and uses the sendKeys API from Selenium to fill in
the username for the login page, and similarly for the password field. Further, it identifies the anchor element
with Login value and performs a click operation on it. Note that the keyword framework injects the relevant
WebDriver object as it executes the plugin based on the keyword execution from the test script.

62

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

package com.siebel.automation.keywordFrameworkcust;

import com.siebel.automation.keywordFramework.KeywordActionHandler;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.By;
import java.util.ArrayList;

public class login implements KeywordActionHandler {

 public boolean ExecuteOperation(WebDriver driver,ArrayList<String> inputvariables,ArrayList<String>
 outvariables)
 {
 driver.findElement(By.xpath("//input[@name='username']")).sendKeys("username");
 driver.findElement(By.xpath("//input[@name='password']")).sendKeys("password");
 driver.findElement(By.xpath("//a[@value='Login']")).click();
 return true;
 }
}

4. Set META-INF for the newly created plugin. If META-INF does not exist:

◦ Create a folder named META-INF in the plugin source folder (the root folder of package folders).

◦ Create a new text file named meta.txt.

Class-Path: ../../Framework/SiebelTestAutomation.jar ../../Framework/lib/selenium-serverstandalone-

XXXX.jar where XXXX is the appropriate selenium server standalone version from your DISA installation.
5. Compile the class and pack the META-INF folder in to a JAR file.
6. Deploy the JAR file to the following folder:

<DISA_HOME>/DesktopIntSiebelAgent/plugins/SiebelTestAutomation/Extensions

7. Add a new CustomExtension test step with the appropriate classname extension to the test script and validate
the functionality.

63

Siebel
Testing Siebel Business Applications Guide

Chapter 9
Implementing Siebel Open UI Keyword Automation Testing

64

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

10 Usage Pattern Tracking and Conversion to
Keyword Scripts

Usage Pattern Tracking and Conversion to Keyword
Scripts
This chapter includes information about usage pattern tracking (UPT) in Siebel Business Applications. It includes the
following topics:

• About Usage Pattern Tracking

• Setting Up the Automation Adapter

• Configuring the UPT and KWD Log Directory for Multiple Servers

• Using the Automation Toolbar

• Recording the Functional Flow

• Renaming the Scripts

• Setting Up DISA

• Plugin Configurations

• Browser Configuration Settings

• Validating the Scripts

• Playing the Scripts

• Enabling Automation for Developer Web Client

• Exporting the Test Scripts

• Importing the Test Scripts

• Post Import Options

About Usage Pattern Tracking
Usage pattern tracking allows administrators to review details about when, and how often, users’ access features in a
Siebel application. To capture this information, administrators configure a component job to run at a scheduled date
and time, or at time intervals that they specify.

For more details, refer to About Usage Pattern Tracking in Siebel Applications Administration Guide .

65

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Setting Up the Automation Adapter
Before you get started with the task of recording a functional flow, you must complete the procedures in this topic to set
up the system preferences and profile configuration parameters for Usage Pattern Tracking. You must also delete UPT
action sets, runtime events and system preferences.

To set the system preferences for Usage Pattern Tracking
1. Navigate to the Administration - Application screen, then the System Preferences view.
2. Set the system preferences as shown in the following table:

Name Value

Enable UPT

True

Enable UPT Context

True

UPTMax Record Cache

100

3. To implement the system preferences, you must restart the Siebel Gateway and Siebel Services.

To set the profile configuration parameters for Usage Pattern Tracking
1. Navigate to the Administration - Server Configuration screen, then the Enterprises view.
2. In the Enterprises Server applet, select the enterprise server you want to configure.
3. Click the Profile Configuration tab. Query for the profile AutomationSubSys.

Name Alias Datatype Value

Class Path

CLASSPATH

String

N/A

Container URL

CONTAINERURL

String

The value for the jbs. For example: CONTAINERURL=http://
localhost:<ContainerPort>/siebel/jbs

The <ContainerPort> value should be taken from
the following: <Siebel_Install_Location>
\ses\applicationcontainer_external

\conf\server.xml<Connector port="4730"

protocol="HTTP/1.1"

For Example: http://localhost:4730/siebel/jbs.

66

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

4. To implement the profile configuration changes, you must restart the Siebel Gateway and Siebel Services.

To configure the AutomationSubSys profile via the server manager
command

• Enter the following server manager command to configure the profile for AutomationSubSys:

change param CONTAINERURL=http://localhost:<ContainerPort>/siebel/jbs for named subsystem
 AutomationSubSys

The following table lists the runtime events configured out of the box.

Sequence Object
Type

Event Action Set
Name

Conditional Expression

2

Application

ViewActivated

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

ViewDeactivated

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

WebLogin

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

WebLogout

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Applet

PreInvokeMethod

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

Recording

KWD

GetProfileAttr("Enable Recording") = "True"

2

Application

InvokeServiceMethod

KWD

GetProfileAttr("Enable Recording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

UPTClientScript

KWD

GetProfileAttr("EnableRecording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

2

Application

InvokeMethod

KWD

GetProfileAttr("EnableRecording") = "True" AND

GetProfileAttr("RecordingOn") = "True"

67

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Note: Any other UPT Events should be disabled or inactivated before using the UPT feature. Refer to the UPT
documentation for Event Details.

Note: If 18.9 UPT enhancements are applied via Repository Upgrade, refer to Siebel Applications Administration
Guide for UPT enhancements.

To delete UPT action sets, runtime events and system preferences
1. To delete events set to UPT:

◦ Navigate to the Administration - Runtime Events screen, then the Events view.

◦ Delete all the Events with Action Set Name set to UPT: 'Action Set Name' = UPT.

◦ Click Applet Menu and then click Reload Runtime Events.

2. To delete action sets set to UPT:

◦ Navigate to the Administration - Runtime Events screen, then the Action Sets view.

◦ Delete all the Events with Action Set Name set to UPT: 'Action Set Name' = UPT.

◦ Click Applet Menu and then click Reload Runtime Events.

3. To delete UPT system preferences:

◦ Navigate to the Administration Application screen, then the System Preferences view.

◦ Delete the following system preferences: UPTEEE1, UPTEEE2, and UPTEndToEndEventList.

4. For changes to take effect, log out of the application and then back in again.

Restart Enterprise Server for system preference changes to take effect.

Configuring the UPT and KWD Log Directory for Multiple
Servers
This topic provides you with the information on configuring the UPT and KWD log directory for multiple servers.

The following procedure shows you how to configure Automation Application Directories in a multiple server or hybrid
environment (for example, Microsoft Windows and UNIX).

To configure the UPT and KWD log directory
1. Create a shared Common Internet File System (CIFS) between the Windows and Unix servers.

On Windows for example, a folder called automation needs to be created (for example, c:\automation) and the
Siebel Servers are installed in <Siebel Install Location>\ses\siebsrvr.

On UNIX for example, a folder called automation mounted as /somepath/automation (which points to the
Windows folder) and Siebel Servers are installed under <Siebel Install Location>\ses\siebsrvr.

2. Create two subfolders for UPT and KWD.

68

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

◦ mkdir c:\automation\upt

◦ mkdir c:\automation\kwd

3. Use the mklink in Windows to link the siebsrvr\upt and siebsrvr\kwd to the shared folder. c:\automation\upt
and c:\automation\kwd respectively as follows:

◦ mklink /D <Siebel Install Location>\ses\siebsrvr\upt c:\automation\upt

◦ mklink /D <Siebel Install Location>\ses\siebsrvr\kwd c:\automation\kwd

4. In UNIX, link the siebsrvr/upt and siebsrvr/kwd to the shared folder /somepath/automation/upt and /somepath/
automation/kwd by using the following commands:

◦ ln -s /somepath/automation/upt <Siebel Install Location>/ses/siebsrvr/automation/upt

◦ ln -s /somepath/automation/kwd <Siebel Install Location>/ses/siebsrvr/automation/kwd

Using the Automation Toolbar
The test automation framework provides the ability to record a functional flow in Siebel using Automation Toolbar. The
toolbar features buttons for each of the following actions:

1. Start Recording,
2. Pause/Resume Recording,
3. Stop Recording,
4. Generating the KWD Script.

Impact of Usage Pattern Tracking Enhancements in Siebel CRM
18.9 Update
If the usage pattern tracking enhancements in Siebel CRM 18.9 Update are applied via Repository Upgrade, then note
the following:

• Based on Unit Mode and Bulk Mode settings, the user may or may not see the Recorder button on the
Application Tool bar.

• If the 'Input Capture' Action is set to False to mask sensitive information, KWD scripts will be generated without
any input values, causing them to fail on play back. Input values can be added in Test Script View.

• Enabling UPT is not compatible with test automation. To ensure that test scripts are correctly recorded (Unit
Mode is typically used by test script authors to record test scripts), make sure there are no events with Action
Set Name set to UPT ('Action Set Name' = UPT) and that the following system preferences are not used:
UPTEEE1, UPTEEE2, and UPTEndToEndEventList.

For more information about usage pattern tracking, see Siebel Applications Administration Guide .

69

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Recording the Functional Flow
The test automation framework allows you to record a functional flow in Siebel using the Automation Toolbar. Make
sure that the Siebel Application is in AutoOn mode before recording a functional flow, as shown in the following URL:
https://<URL>:<port>/siebel/app/callcenter/enu?SWECmd=AutoOn.

To record a functional flow
1. Click the Camcorder icon on the Automation toolbar to open the recording panel.
2. Click Start to start a recording session.
3. Click Pause at any time to pause the script recording, then click Resume to resume recording again.
4. Click Stop to end the recording session.

The Generate button becomes active only when you stop the recording session (that is, after you click Stop).
5. Click Generate to generate the KWD script.
6. Click Scripts on the Automation toolbar to open the Scripts Pane, where you can see the scripts that have been

generated.

Note: The buttons on the Automation toolbar are enabled or disabled based on the actions that you perform during a
recording session. For example, when you click Start, the Pause and Stop buttons are enabled. When you click Pause,
the Resume and Stop buttons are enabled. When you click Stop, the Start and Generate buttons are enabled.

Renaming the Scripts
After generating the scripts, you can rename the scripts in the script pane.

Note: You can provide any name to the generated scripts.

To rename the script
1. Open the Script Pane
2. Update the File name field of the script to rename it.
3. Save the record.

You can also choose to delete the scripts if that are not required.

To delete the script
1. Open the Script Pane
2. Select script o be deleted.
3. Click Delete.

70

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Setting Up DISA
You must download and install the latest version of DISA before proceeding with the task of playing the test scripts. For
more information on installing and configuring DISA, refer to Desktop Integration Siebel Agent Guide .

Plugin Configurations
After installing the Plugin for Siebel Automation with DISA, you must update the unitconfig.xml file. The unitconfig.xml
file is available in the following location:

<DISA Installation Location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\ unitconfig.xml

Update the XML tags under Mandatory_Params as shown in the following table.

XML Tag Description

URL

A fully qualified URL of the application will be run while playing the script [AutoOn mode
is not required here]. The URLs will be similar, for example, to the following: http://
xyzcjzg.us.oracle.com:14440/siebel/app/fins/enu

When you click Play, this URL will be prepopulated in the Popup that appears. The Popup also contains
a DetailedReport check box, which you can select (check) or deselect (uncheck) as follows:

• Select the DetailedReport check box to capture detailed test results and screenshots during unit
mode/single test script playback.

• Deselect the DetailedReport check box to turn off detailed test results and screenshot capture
during unit mode/single test script playback.

For information on how to configure report generation and screenshot capture during the test script
automation batch run, see Configuring the Siebel Test Execution Job.

USERNAME

User name to login to the application URL provided in the URL xml tag.

APPLICATIONTYPE_BROWSER

The platforms and supported browsers for playback are:

• Desktop_FireFox: Playback will be on Windows platform with Firefox browser.

• Desktop_Chrome: Playback will be on Windows platform with Chrome browser.

• Desktop_IE: Playback will be on Windows platform with IE browser.

• Mobile_Safari: Playback will be on MAC IOS simulator platform with mobile safari browser. You
must enter the optional Parameters in the unitconfig.xml.

• Mobile_Chrome: Playback will be on the Android device with chrome browser. You must enter the
optional Parameters in the unitconfig.xml.

• Mobile_SM_IOS: Playback will be on MAC IOS simulator platform with siebel mobile client. You
must enter the optional Parameters in the unitconfig.xml.

• Mobile_NativeBrowser: Playback will be on Android emulator with default native browser. You
must enter the optional Parameters in the unitconfig.xml scripts.

71

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

To play the functional flow in Mobile or Simulators
• Download the java-client-4.1.1.jar (https://search.maven.org/#search|gav|1|g%3A%22io.appium%22%20AND

%20a%3A%22java-client%22 download version 4.1.1) and copy it to the <DISA Installation Location>
\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Framework\lib folder.

• Download the plink.exe and pscp.exe and copy it to the <DISA Installation Location>\DesktopIntSiebelAgent
\plugins\SiebelTestAutomation\Framework\exe folder.

• Add the appropriate values for the OPTIONAL_PARAMS parameter in the unitconfig.xml file.

◦ MOBILE-IP: IP address of Android device, simulator, emulator

◦ MOBILE-OS: Android or iOS based upon browser.

◦ MOBILE-PORT: 4444 (The port number specified here is for example purpose).

◦ MAC-USERNAME: Mac Machine User Name

◦ MAC-PASSWORD: Mac Machine Password

Browser Configuration Settings
The following browsers are supported for running test scripts: Firefox, Chrome, Microsoft Edge, and Internet Explorer. It
is recommended that you use the latest version of one of these browsers for which a compatible Web driver is available.

To run the test scripts in different types of browsers, you must update the browser settings.

Note: Ensure to disable the monitor or screen Touch mode feature for the targeted browser before proceeding with
the automation.

Firefox
To run the test scripts using Firefox, download the geckodriver.exe file from https://github.com/mozilla/geckodriver/
releases and copy it to the following location: <DISA Installation Location>\DesktopIntSiebelAgent\plugins
\SiebelTestAutomation\Drivers.

Before playing test scripts in the Firefox browser, you must add the Security Exception window to the Location field and
add the following address: https://localhost:18443.

Note: The port 18443 must be changed to the port number which you configured for disa.exe in the config.properties
file.

Chrome
To run the test scripts using Chrome, download the chromedriver.exe file from https://sites.google.com/a/
chromium.org/chromedriver/downloads and copy it to the following location: <DISA Installation Location>
\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Drivers.

Note: It is recommended that you download the driver file after checking the browser version.

72

http://originaldll.com/file/plink.exe/30162.html
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://sites.google.com/a/chromium.org/chromedriver/downloads
https://sites.google.com/a/chromium.org/chromedriver/downloads

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Microsoft Edge
To run the test scripts using Microsoft Edge, download the appropriate Microsoft Edge Driver version for Windows from
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/ and copy it to the following location: <DISA
Installation Location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Drivers.

Internet Explorer
To run the test scripts using Internet Explorer (IE), download the IEdriverserver.exe file and copy it to the following
location: <DISA Installation Location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Drivers.

You must disable the Drag and Drop option, update the Compatibility View settings and Security Settings.

Note: Drag and Drop is a method of moving something (for example, files or images) from one place on the UI to
another using a mouse or similar device.

To disable the Drag and Drop option
1. Navigate to the Internet Options in IE 11.
2. Navigate to the Security tab.
3. Click Custom Level.
4. Navigate to the Miscellaneous Section and disable the following options:

◦ Allow dragging of content between domains into separate windows.

◦ Allow dragging of content between domains into the same window.

To update the Compatibility View Settings
1. Navigate to Compatibility View Settings option in IE 11.
2. Deselect the Display intranet sites in compatibility View check box.
3. Deselect the Use Microsoft compatibility lists check box.
4. Click Close.

To update the Security Settings
1. Navigate to the Internet Options in IE 11.
2. From the Tools Menu, click Internet Options.
3. Click Security Tab.

◦ Choose Internet Zone and select Enable Protected Mode.

◦ Choose Local Internet Zone and select Enable Protected Mode.

◦ Choose Trusted Sites Zone and select Enable Protected Mode.

◦ Choose the Restricted Sites Zone and select Enable Protected Mode.

4. Click OK after selecting Enable Protected Mode option for each of the zones.

Note: Copy the latest IE Driver "IEDriverServer" from http://www.seleniumhq.org/download/ and place it in the
<DISA Installation Location>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Drivers folder.

73

https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Validating the Scripts
Script validation is done before you can start playing the scripts from the Scripts Pane. Script validation ensures that all
the steps in the script file are syntactically correct and the required attributes of the keyword are recorded properly.

If there are any attributes missing in the script step, the validation fails and an error message is displayed along with
validation log file name.

The Validation log file contains the list of errors. Each line in the validation log file has the following details.

• Line Number. This is line number in a script file.

• Missing attributes. Comma separated list of attributes which are missing in Action, Target object Input or End
Action.

The Validation log file will be created in the following location: <SIEBEL_INSTALLATION_PATH>\ses\siebsrvr\log.

Playing the Scripts
The scripts that are generated after a recording (see Recording the Functional Flow) are available in the Scripts Pane. You
must download and install DISA (Desktop Integration for Siebel Applications) on the client machine to play the scripts.

To play a script from the Scripts Pane:
1. Click the Camcorder icon on the toolbar, then click Scripts to open the Scripts Pane.

This Scripts Pane shows the list of scripts that have been generated.
2. Select the script you want to play and then click Play.

Note: You can play only one script at a time. The Play button will be disabled if you select multiple scripts
simultaneously or if there is some issue with the DISA setup.

3. The Play Status will be updated to Success or Fail based upon the play result.

Note: If a script is renamed while playing it, the play status will not be reflected.

The play process is initiated in a separate browser window and the results are displayed when finished. The same script
can be played more than once instead of using the replay process.

To play an imported or modified script from the Release Screen
1. Navigate to the Sitemap, Release screen, then the Test Scripts view.
2. Drill down to script.

The play button will be available in the Form Applet.
3. Select the script you want to play and then click Play.

The play process is initiated in a separate browser window and the results are displayed when finished.

74

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Condition Expression for Test Steps
In order to selectively use a Test Step of a Test Script at run time, use Condition field in your Test Script > Test Steps
Applet. This Condition field takes simple expression and evaluated using ECMAScript compliant expression engine, at
run time for each Test Step. If the expression evaluates to true, the Test Step is run, else it is skipped.

Use Condition expression to run or skip a Test Step at run time. Default value is blank, and it evaluates to True.

1. Add Conditions to your Test Script > Test Steps, that determines if a particular Test Step is to be run or not.
2. At run time the actual values of variables are replaced in the expression, and is evaluated for true or false.

Note: Syntax of expression is important and no prior validation of expression is performed.

Note: By default, if Condition field is blank, then the Test Step is not skipped.

Rules for specifying Condition
1. Max length of field is 500. Ensure that the variable name does not have spaces.

For example, variable @Test Variable is invalid, but @TestVariable or @testvariable or @test_variable are valid.
2. Single space is the delimiter between the operands and operators used in condition expression. For example,

@test > 10, @name = 'abc' OR @name = 'xyz'.
Note: Text values to be enclosed within single quotes, as in the examples. Double quotes are not supported.

3. Following values in Condition will evaluate to TRUE: true or TRUE or no value (blank), whereas false or FALSE
or 0(zero) evaluate to FALSE.

4. Following operators are supported, >,<,=,<>,>=,<=, AND, OR.
5. Ensure the variables used in Condition are initialized with appropriate values, else the script fails with an error.

Examples for Condition:
◦ @env = 'DEV'

◦ @env = 'UAT'

◦ @conf > 0 AND @conf < 50

To initialize variables before a Test Script starts to run, use Parameters applet on Test Execution (or add Parameters
section in unitconfig.xml for single Test Script Play from Test Scripts View). Add Name and Value pairs.

For example: To initialize a variable @balance with value 100, add a Parameter with name as balance and value of 100.
Framework creates variables for each of the Name in Parameters applet, and initializes with corresponding Value.
Such parameters or variables can be directly used in Test Step Condition and/or in Data Set Condition expression for
comparison or input value.

<PARAMETERS>
 <PARAMETER>
 <NAME>env</NAME>
 <VALUE>DEV</VALUE>
 </PARAMETER>
 <PARAMETER>
 <NAME>ROI</NAME>

75

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

 <VALUE>20</VALUE>
 </PARAMETER>
</PARAMETERS>

Enabling Automation for Developer Web Client
Automation is available only for Developer Web Clients. Automation is not supported in Mobile Web clients. While
installing, you must select the developer web client option only if automation is needed.

After installing the Developer Web Client, Tomcat will automatically be deployed in the following directory:
<webclient_install_location>\applicationcontainer_external. The CONTAINERURL for AutomationSubSys section gets
updated with the HTTP port provided during the Developer Web Client installation.

1. Enable the system preference by navigating to Administration - Application screen, then the System Preference.

Name Value

Enable UPT

TRUE

Enable UPT Context

TRUE

UPT Max Record Cache

100

2. Make the following changes to the Developer Web Client's cfg files:

◦ Update the [AutomationSubSys] section by setting the following:

Set ContainerURL as follows: CONTAINERURL = http://localhost:<Connector Port>/siebel/jbs

Set the #Port number according to the port specified in the following: C:\Siebel\Client
\applicationcontainer_external\conf\server.xml <Connector port="9001" protocol="HTTP/1.1".

◦ Update the [InfraUIFramework] section by setting EnableAutomation to TRUE:

EnableAutomation=TRUE

Playing the script through Developer Web Client is supported. Use the Siebel Thin Client URL to play back the
script.

◦ Multiple users using the same User ID is not supported, since it brings in ambiguity during conversion.

◦ A case where recording is started and is not stopped, the session is logged out. Stop Recording is injected
and considered for conversion.

◦ Sticky sessions are not supported.

◦ A functional flow is considered for conversion only with the confines of Start and Stop Recording.

◦ Single users spanned across sessions are supported.

76

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Approach for generating the Script involving switching of users on Portal
and consumer applications

• Start the UPT-KWD recording of new user registration as an anonymous user. Proceed with the recording till
a registration followed by login as a newly registered user and if there are any further scenarios for a newly
registered user.

Note: At this point, since there is a user switch (due to new user login), an anonymous user UPT csv file will
be generated in an <anonymous_username> folder under the <SiebelServerBuild>\ses\siebesrvr\UPT folder.
Copy this anonymous UPT csv based on timestamp.

• Stop the UPT-KWD recording as a new user and log out of the application.

Note: Since the new user has logged out of the application, the new user UPT csv file will be generated in a
<NewUsername> folder under the <SiebelServerBuild>\ses\siebesrvr\UPT folder.

• Now paste the anonymous UPT csv copied in Step 1 into the SiebelServerBuild>\ses\siebesrvr\UPT
\<NewUsername> folder. The <NewUsername> folder will now have the following: 'anonymous user UPT csv' and
'new user UPT csv file'.

• Log in to the Siebel application as a new user and generate the KWD Script. This script will have both steps
involving anonymous user followed by the new user registration or login and further steps as applicable.

Exporting the Test Scripts
You can export the generated scripts into an xml file.

To export the test scripts
1. Navigate to the Sitemap, Release screen, then the Test scripts view.
2. Query for the test script to be exported.
3. Click the Export button.

Importing the Test Scripts
You can follow the procedures in this topic to do the following:

• Activate the workflow for importing test scripts.

• Import the generated test scripts from the Script Pane to the database.

• Import the generated test scripts from the Release screen to the database.

Activating the Workflow for Importing Test Scripts
To activate the workflow for importing test scripts, make sure the Workflow Process named Testscript Import Workflow
is active. See Siebel Business Process Framework: Workflow Guide to activate it.

77

Siebel
Testing Siebel Business Applications Guide

Chapter 10
Usage Pattern Tracking and Conversion to Keyword Scripts

Importing the test scripts from Script Pane to Database
To import the test scripts from the Script Pane to the database:

1. Click the Camcorder icon on the toolbar, then the script button.
2. Select the scripts to be imported from the Script pane.

You can choose to select a single script or multiple scripts to import them into the database.
3. Click Import.

A pop up message is displayed with the number of scripts that were imported successfully and the scripts that
were not imported successfully.

Note: The import process will fail when you try to import a script with the same name if it is already available
in the database. The log details of a failed import process will be available in the Siebel Logs folder.

Importing test scripts from Release Screen to Database
To import the test scripts from the Release screen to the database:

1. Navigate to the Sitemap, Release screen, then the Test Scripts view
2. Query for the test script to be exported.
3. Click Export.

The test script is downloaded, in xml format, to the download folder.

Use this xml file to import a test script into the database.
4. Navigate to the Sitemap, Release screen, then the Test Scripts view.
5. In the Test Scripts list applet, click Import.
6. In the File Upload popup window that appears, select the xml file to be imported.
7. Click Load.

The script will be imported into the database. If you have a script with the same name in the database, it will be replaced
with the existing script. In this way the scripts can be exported and imported to different environments.

Post Import Options
You can perform the following tasks after importing scripts from the Script Pane:

• Navigate to the Sitemap, Release screen, then the Test Scripts view where you can add verification points to the
existing scripts and use the play option to playback the edited script.

• Navigate to the Sitemap, Release screen, then the Test Scripts view where you can export the script as an xml
file and import it to a different environment.

• Associate test scripts to Test sets.

78

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

11 Siebel Test Automation Execution

Siebel Test Automation Execution
This chapter includes information about the Siebel test automation execution process. It includes the following topics:

• Setting Up the Jenkins Server

• Setting Up and Configuring the Siebel Test Execution Plugin

• Setting Up Jenkins Secondary Nodes

• Configuring the Siebel Test Execution Job

• Executing the Automation Batch Run

• Automated Rerun of Test Scripts

• Creating Test Results

• Viewing Test Results

• Configuring Multiple Batch Runs

Setting Up the Jenkins Server
The Siebel Test Execution process is performed on the Jenkins server using the custom plugin designed for this
process. The following procedure describes how to install and set up the Jenkins server.

To install and set up the Jenkins server
1. Navigate to Jenkins webpage.
2. In the LTS release section, download a Windows package, for Jenkins version that is compatible with DISA's

Java version.
3. The Jenkins zip file will be downloaded.
4. Refer to Installing Jenkins, https://www.jenkins.io/doc/book/installing/.
5. Extract the Jenkins.msi file from the zip file.
6. Double click the .msi file to launch the Jenkins installer and follow the instructions to complete the installation.
7. Click Finish.

Jenkins will be launched in your default browser.
8. After completing the installation, copy the Administrator password from the following path.

c:\Users\intbuild\.jenkins\secrets\initialAdminPassword

9. Click Skip Plugin Installations.
10. Click Save and Finish.

The Jenkins setup is ready.
11. Click Start to use Jenkins.

79

https://www.jenkins.io/doc/book/installing/

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

The following welcome message appears: “Welcome to Jenkins!” Your Jenkins server is up and running.

Once the Jenkins setup is done, the Jenkins application will be launched by default on port 8080. However, if some
other application is already running on this port, then you must change the port number in the jenkins.xml file.

For example, if the installed location of Jenkins is C:\Program Files (x86)\Jenkins\, then change the port number to
8090 (it could be any port number) in the xml file and restart the Jenkins server.

You can start or stop the Jenkins server using the Windows service running, for example, by the name 'Jenkins'.

Setting Up and Configuring the Siebel Test Execution
Plugin
The Jenkins custom plugin allows the user to interact with Siebel Master Server. The following procedure shows how to
setup and configure the Siebel Test Execution plugin. The prerequisites for this procedure are:

• Before installing the Siebel Test Execution (STE) plugin, you must set up the proxy server configuration.

The STE.hpi plugin is available in the following location: SIEBEL_SERVER_ROOT/plugins.

To set up the proxy server configuration
1. Navigate to Manage Jenkins, then Manage Plugins and select the Advanced tab.
2. Add the following HTTP proxy server configuration settings:

◦ Server: www.<your company proxy server>.com.

◦ Port Number: <NN>.

Note: Check with your IT administrator for the proxy settings.

To install the custom plugin
1. From the Upload Plugin pane, navigate to the plugin location, select the STE plugin and then click Upload.

The status of the STE plugin installation is displayed in the screen.
2. Click Installed to check if the STE plugin has been installed successfully.

Setting up the Jenkins Secondary Nodes
Before setting up the Jenkins secondary nodes, you must configure the Master or primary server.

To configure the Master or primary server
1. Navigate to Jenkins, click Manage Jenkins, and select Configure Global Security.
2. Set TCP Port for Agents to Random.

80

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

To append the secondary node machines
1. Navigate to Manage Jenkins, Manage Nodes, and select New Node from the Jenkins home page.
2. Enter the Node name [machine_name.domainname.com] and check the Permanent Agent option.
3. Click OK and then set the fields shown in the following table.

Field Name Value

Name

machine_name.domainname.com

Description

N/A

Remote Root Directory

C:\jenkins-slave

Labels

Machine or pool name

Usage

It is recommended to utilize this node to the maximum extent.

Launch Method

Choose suitable option from dropdown and configure accordingly, or leave it default as Launch
agent by connecting it to the master.

Availability

Keep this secondary node online.

4. Click Save.
5. Go to Manage Jenkins, and select Manage Nodes (in the Jenkins home page).
6. To disable, drill down on master node and click a button to make the node temporarily offline.

Note: Since running the Test Automation on master node works in invisible mode, we need to disable master
and create another node explicitly.

7. Once master node is made offline, create a node for the same machine as detailed in the section below for
secondary node machines.

8. Navigate to Manage Jenkins > Manage Nodes and Clouds. Click on the secondary node created. If not already
running and online, follow the options to launch the agent on the node. Typically, copying the agent.jar to the
machine and running the command which looks like following:
"java -jar agent.jar -jnlpUrl http://abc.xyz.com:8080/computer
/<node name>/slave-agent.jnlp -secret a4e3897e8e7720f07495e05332525a62e4d896e32147083cfe2e2dd461ece350
-workDir "c:\jenkins-slave""

Configuring the Siebel Test Execution Job
You can configure the Siebel Test Execution job from the Configuration Screen.

81

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

To create a job to be executed on single machine, you must select the Freestyle project and create one job.

You can configure the Siebel Test Execution job from the Configuration Screen.

Select the following check box: "Restrict where this project can be run and provide the label expression similar to the
one that was defined while configuring the secondary node machine, e.g. machine or pool name".

To configure the STE Job
1. Navigate to Build, then Add build Setup.

Note: The Siebel Test Execution option will be automatically displayed if the custom plugin provided by
Siebel is already installed.

2. Select the Siebel Test Executor from the drop-down list.

The Build Test Execution screen opens with the fields shown in the following table.

Field Name Value

DISA Location

c:\DISA

Siebel Server URL

http://xyzmlb.domainname.com/1660/Siebel/

User Id

SADMIN

Password

Parameters

""

Note that you can configure the Parameters field as follows:

◦ Set Parameters to --reportLevel to disable report generation and screenshot capture
during the test script automation batch run.

◦ Leave the parameters field blank (which is the default setting) to enable report generation
and screenshot capture during the test script automation batch run.

Other parameters that can be used:

◦ --parallel=<n> Refer section Configuring Multiple Batch Runs.

◦ --runReference=<Node or node group Labels value in same case> (will be
matched with Run Reference field on Test Execution record).

◦ Example:

--runReference=Client_Pool_A
Refer section, Creating the Test Execution Record for Run Reference field, under Configuring the
Test Run .

For information on how to configure detailed test results and screenshot capture during unit
mode/single test script playpack, see Plugin Configurations.

82

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

Field Name Value

When you install the STE custom plugin, the command field value is populated by default (java -jar %DISA_DIR
%\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Framework\KWDPresetup.jar)

3. Click the help text shown against each field. Enter the details for all the fields.

Note: Enter https://xyx.udomainname.com:16660/siebel as the field value for the Siebel Server URL.

To run the STE Job
To run a STE job configured for a certain machine or pool of machines, drill down on the job name from Jenkins
dashboard.

1. Click on Build Now to run the job.

If the relevant node or nodes are online, job will be run on the available node.
2. From Build History panel, drill down on the latest running job and click Console Output, to view the job output

log.

Executing the Automation Batch Run
This topic describes the steps involved in executing the automation batch run. You can proceed with this task after
adding the test scripts to the test sets and creating a Master Suite with the test scripts.

To execute the batch run
1. Navigate to Sitemap, Release screen, then the Test Execution view.
2. Click New (or the plus (+) icon) on the Form applet.

The Test Run # field value is auto populated and the default value for the Status field is Hold.
3. Select the Master Suite using the Master Suite Id field and select the Application Version.
4. Save the record.
5. Check if the values for the Server Credentials and User List are populated.
6. Select Windows as the Client Operating system (if this is a normal desktop run).
7. Enter the Client IP address if you have chosen the operating system as iOS.

a. If the Operating System (OS) is iOS, enter the value for the Client IP Address, MAC Machine Username,
MAC Machine Password and Mobile Port fields.

b. Before running the scripts on a Mobile platform, ensure that the plink.exe and psexec.exe files are
available in the following location: "..\DISA\DesktopIntSiebelAgent\plugins\SiebelTestAutomation
\Framework\exe".

c. After running the scripts, the results will be displayed in the Firefox browser. The recommended version
of Firefox browser is the latest version for which a compatible Web driver is available.

8. Update the Application Type, OS and URL in the Server Credentials applet.
9. Update the password in the User List applet.

83

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

10. Review the record.
11. Click Schedule Run.

After you click the Scheduled Run button, the record status will change to Requested and the following files will
be available in the Attachments applet:

◦ batchconfig.xml

◦ MasterSuite.csv

◦ Resources.zip (if the Resources.zip is available in the Master Suite Attachments applet).

Once the scheduled run is completed, the Siebel Test Execution records are updated with the appropriate status
and the resulting xml files are added as attachments.

Note: You can use the Master Suite and test scripts available in the sample database for a batch run. For more
information about the scripts available in the sample database and the actions performed by the scripts in the sample
database, see Sample Database Test Scripts.

You can now proceed with the task of updating the other fields.

• Client Operating System: Windows (if it is a desktop run).

• Client Operating System: iOS (if it a mobile iOS run).

• Client Operating System: Android (if it is a mobile Android run).

• If the Master Suite contains Invokeperl and Serverconfig as keywords, then the Perl Path is mandatory (for
example: c:\\perl\\bil\\perl.exe).

• If the Master Suite contains the Toolsconfig keyword, then update the following fields:

Field Description Sample Value

Siebel Tools Machine

Machine Name

slcxxxxxx.domain.com

Siebel Tools Path

Tools install folder path

C:\Siebel\Tools

Siebel Tools Machine Username

Login id for machine

Domain/User1 or just user name

Siebel Tools Machine Password

Password for machine

<xyzabc>

Siebel Tools DSN

DSN name

SiebelDSN

Siebel Tools User

Tools user id

sadmin

Siebel Tools Password

Tools password

<xyz>

• If the Master Suite contains the Inboundwebservicecall keyword, then update the following fields:

84

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

Field Description Sample Value

EAI Machine Name

Machine Name

slcxxxxxx.domain.com

EAI Port Number

HTTPS Port Number

16661

EAI Server User

EAI user name

user123

EAI Server Password

Password for EAI user

<abcxyz>

• If the Master Suite contains the ServerConfig keyword, then you must update the following fields in the Server
Credentials applet.

Field Description Sample Value

Server Home Path

Siebel Server install folder path.

C:\Siebel\

Siebel Server Machine

Siebel Server machine name.

slcxxxxxx.domain.com

Siebel Server User

Server machine user name.

user123

Siebel Server Password

Password for Server machine user.

<abcxyz>

Siebel Gateway Machine

Siebel Gateway machine name.

slcxxxxxx.domain.com

TLS Port

TLS port number.

443

AI Server Port

HTTPS port number

16661

Note: If you receive the error message, HTTP Status 405: Method not allowed, this could be due to a required
Business Service not having the required access permission in Siebel. To resolve this issue, navigate to the
Administration Application screen, then the Business Service Access view, create a record selecting Automation Rest
Service, provide the access permissions, and then restart the Siebel Server.

Parameters Applet:

• Click New to add a record. Provide a Parameter Name and corresponding Value. Ensure to use exact name and
case in your Test Scripts.

85

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

• Once Schedule Run button is clicked, parameters are added to batchconfig.xml, and New, Delete buttons are
disabled.

• At the start of the batch run, before starting Test Script execution, Keyword framework, automatically creates
variables for each of the parameter with same Name and initializes each with respective Value. These variables
can be directly used in Test Scripts and/or Data Set Condition expressions.

• Example: For a parameter with Name = ENV, Value = UAT in Parameters applet, a variable @ENV is created with
value UAT

• Example: For a parameter with Name = SSOUser, Value=UserXYZ, a variable @SSOUser is created with value UserXYZ.

• Adding Parameters is also supported in REST API.

Add and Delete buttons in Server Credentials Applet:

• If there are no records in Server Credentials (which means that Launch keyword has not been used), Keyword
Framework will create a Chrome webdriver instance and the handle is made available for CustomExtension
keyword. If a browser other than chrome is required, ensure to have a record in Server Credentials Applet
reflecting the choice of browser. In either of the case, ensure appropriate browsers and corresponding drivers
are available on the client machine.

• You may add a record for EAI Server details for alias name used in InvokeREST keyword.

• Ensure not to delete the records that are automatically added by application upon saving the Test Execution
record.

Copying a Test Execution record

• In the Test Execution View, select a Test Execution record. Click on Applet Menu → Copy Record (CTRL+B) menu
item.

This action copies the selected record, along with various values from the original record.

86

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

• Following are the field values copied and new values set:

Test Execution Form Applet:

The fields Test Run #, Status, schedule, Test Harness Machine, and Runs Completed, are set to their default
values.

Rest of the field values are copied as-is over to new record.

Server Credentials List Applet:

All values are copied for latest Application Alias entries found on Test Scripts.

Users List Applet:

This applet is repopulated with unique user ids from Test Scripts.

Parameters List Applet:

Values from this applet are not copied, as these are not stored in database tables. The entries need to be
created manually.

Attachments List Applet:

No attachments are copied.

Test Execution without Jenkins
You may run a Master Suite without using Jenkins, directly via command line option. This option is useful in case you
want to control execution in a CI/CD pipeline, or run a batch on a specific client, such as a VM or a laptop.

On a DISA machine, open Command prompt to execute in Administrator mode. Run following command, after ensuring
folder paths are correct.

java -jar <DISA_HOME>\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\
Framework\KWDPresetup.jar /d <DISA_HOME> /j <User id> /g <password> /r
<Siebel Web Server URI> /c <EAI Component> /n <DISA machine name> /p “--parallel=<nn> --reportLevel=<0 or 1
 or 2 or 3> --runReference=<Run Reference
used in Test Execution>”

• /d <DISA_HOME>- Location of DISA installation directory. Ex: C:/DISA

• /j <User id>- Siebel User ID for REST/SOAP operation.

• /g <password>- Password to authenticate the UserId on the Siebel Server for REST/SOAP operation

• /r <Siebel Web Server URI>- Refers to the EAI enabled Siebel Server URI for REST/SOAP operation. Please
provide the URI path till /<Application Context Name>

Example: https://servername.com:port number/<Application Context Name>>

• /n <DISA machine name> - HostName of the machine where DISA is installed

• /c <EAI Component>- (Optional) Ability to provide Custom EAI component.

Example: default-> /app/eai/enu/, Custom -> /app/my_eai/deu here my_eai is user defined EAI Component

87

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

• /p-

◦ --parallel=<nn> - Optional - Ability to run multiple master suites in parallel on a given Client (DISA) on
same or different browsers.

Example: “parallel=1” One test execution record will be executed on the DISA machine.

“parallel=3” Three different test execution records will be executed on the same DISA machine.

By default (if -–parallel=nn is not specified), one test execution record will be queried.

◦ --reportLevel=<0 or 1 or 2 or 3> - Optional - Based on the reportLevel, screenshot will be displayed.

- “reportLevel=0” Detailed report is completely turned off that is individual report won’t be available
- “reportLevel=1” Detailed report available with Screenshots turned off that is, Not capturing any

screenshots for failed or passed steps
- “reportLevel=2” Detailed report available with selected Screenshots i.e. screenshots will be taken

only if the screenshot column in the test step is set to Y
- “reportLevel=3” Detailed report available and reports with only Application Screenshots. If

unspecified, default output is detailed reports with screenshots

◦ --runReference=<label_name>- Optional – picks a Test Execution record in Scheduled Status, where Run
Reference field value matches with the label name.

Example: runReferecne=UAT Running the above command will start the batch run on the machine. Once
run is completed, result reports are zipped and uploaded to the Test Execution record and mark its status
as 'Completed'.

Examples
Example 1:

java -jar C:\DISA\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\
Framework\KWDPresetup.jar /d C:\DISA /j SADMIN /g ldap /r https://siebelserver.xy.abcd.com:16690/siebel/ /
c /app/eai/enu /n
machinename.xy.abcd.com /p parameters are optional - /p and parameters can be omitted altogether. Default:
 parallel=1 runReference= and reportLevel=

Example 2:

java -jar C:\DISA\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\
Framework\KWDPresetup.jar /d C:\DISA /j SADMIN /g ldap /r https://siebelserver.xy.abcd.com:16690/siebel/ /
c /app/eai/enu /n
machinename.xy.abcd.com /p
"--parallel=1 runReference=abcdxyz"

Note: The double quotes around /p parameters which are separated by spaces.

Automated Rerun of Test Scripts
After a batch run has finished and it is found that some of the test scripts failed due to test environment issues, then it
may be useful to rerun only the failed scripts, the predecessor scripts they depend on (Skip-on-prior-abort in Test Sets),
and the non-executed scripts.

88

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

After such a rerun, all the test results from prior runs are consolidated with the rerun results. You use the Rerun button
in the Test Execution view to perform reruns.

To rerun test scripts
1. From the Site Map, navigate to the Release screen, then the Test Execution view.
2. Select a Test Execution record, with a Status of Completed, that you want rerun.

Note that when a batch run is completed, the Test Execution record is updated as follows:

◦ A Reports zip and XML file are automatically created and uploaded to the Attachments applet of the Test
Execution record.

◦ The Status of the Test Execution record automatically changes to Completed.

◦ The Rerun button in the UI is enabled.

3. Click Rerun in the Test Execution view.

◦ The Status of the selected Test Execution record changes to Requested.

◦ When a Siebel Test Execution job is invoked on the Jenkins server, the Test Execution record with Status
of Requested is picked up and run on an available DISA client.

4. After the rerun completes:

◦ The rerun results are consolidated with that of prior runs, and the overall consolidated test results are
uploaded to the Test Execution record.

◦ The Status of the Test Execution record changes to Completed.

◦ The Runs Completed field in the Test Execution record increments by 1. For example, the value in the
Runs Completed field would be 2 after the first rerun completes.

◦ An XML file (with a <Runs Completed> suffix) containing a summary of the results is attached to the
Attachments applet of the Test Execution record. For example:

<Test Run ID>_<Mastersuite Name>_MasterSuite_2<Runs completed>.xml

You must select this attachment record to Create Test Passes - for more information, see Creating Test
Results.

Creating Test Results
After the batch run finishes for a Master suite, the results will be updated as an Attachment for each Test Run Id in the
Release Screen, Test Execution view.

The Attachment name will begin with the Test Run number (#) mentioned in the parent list applet. Once this file is
available, you can select the attachment record and click Create Test Passes to create the test results in Siebel.

The prerequisites for Create Test Passes to be successful are as follows:

• The LOV value Completed must be available for the Status field in the Test Pass view.

• Test Sets must be associated with Test Plans.

Test Plans must be associated with Test Sets before scheduling a Test Execution (creating a test pass).

89

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

To create a Test Plan and associate it with a Test Set, at least one Project record (which contains the Release
field) must exist.

If these conditions are not present, then Create Test Passes will not be successful (and will fail). Also, note the following:

• If reruns are done, an XML file will be available in the Attachments applet for each rerun with a suffix indicating
the number of runs. For example: 88-1WCI9B_MS1_MasterSuite_2.xml.

• The naming convention for XML files is:

<Test Run ID>_<Mastersuite Name>_MasterSuite_<nth Runs>.xml

• Select the appropriate XML file before clicking Create Test Passes.

The following procedure shows how to Create Test Passes. You must associate a Test Plan with a Test Set before
scheduling a Test Execution (creating a test pass).

To Create Test Passes
1. From the Site Map, navigate to the Release screen, then the Test Execution view.
2. Select a Test Execution record, with a Status of Completed.
3. Go to the Attachments applet and select the appropriate XML file for which you want to create test passes.
4. Click the Create Test Passes button to create the test results in Siebel.

After the test results are successfully created, the following message appears:

Test Pass Created Successfully. You can query in the Test Pass view starting with <Test Run #>.

Test Pass records are created with the prefix Test Run #.
5. In the Test Pass view, query for the Test Run # in the Test Pass # field, then drill down on each Test Pass record

to view the test results for the respective test run.

Viewing Test Results
After the Test pass is created successfully, you can view the test results. The following procedure shows how to view the
test results.

To view the test results
1. Navigate to the Release screen, then the Test Pass view.
2. Query for a Test Run # in the Test Pass # field to get the results for that particular test run.

The results that appear show the number of test cases that passed, failed, were aborted, or not executed.

Note: For data driven test script results, the Iteration number indicates the corresponding Sequence number
of the Data Set row. The default value is 1 for all other test script results.

90

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

Configuring Multiple Batch Runs
Siebel test automation supports parallel execution where you can execute one batch run at the same time as multiple
other batch runs on the same (DISA) client. Each batch run runs as a parallel but isolated browser session on the same
client, without impacting other sessions running in parallel. The parallel execution of multiple automation batch runs
maximizes the utilization of compute resources and minimizes the overall cycle time.

To run multiple batch runs in parallel on a given client on the same or different browsers, complete the steps in the
following procedure.

To configure multiple batches to run in parallel
1. Execute and schedule your batch runs as required – for more information, see Executing the Automation Batch

Run. Make sure that the latest STE.hpi is installed on Jenkins and verify that it has a "Parameters" field.
2. Configure the -–parallel=nn parameter on the Jenkins Siebel Test Execution, where –- is a double hyphen

and nn is the maximum number of batches to run on the client. This parameter is provided by the Siebel Test
Execution plugin on Jenkins, in the "Parameters" field.

◦ For example, –-parallel=nn will initiate a query for test execution records, limiting the number to 3.

◦ If 4 or more test execution records are available, only 3 batch runs will be initiated in parallel.

◦ By default (if -–parallel=nn is not specified), one test execution record will be queried.

3. After the –-parallel=nn parameter is configured, the following describes how multiple parallel batch runs work
on a virtual machine:

a. When the keyword framework is initiated on a virtual machine, it starts the number of threads as
specified by the –-parallel=nn parameter.

- For 8 GB RAM, 2 to 3 parallel suites are recommended.
- For 16 GB RAM, 3 to 5 parallel suites are recommended.

b. Each thread is assigned a test execution record, identified by Run Id (the Row Id of the test execution
record), and a browser session starts that is independent of any other browser session.

c. Each test execution record or Master Suite runs from start to finish according to the sequence of
specified test scripts, and results are collated into a report that is stored in a folder named by the "Run Id"
of the test execution record under SiebelTestAutomation\TestExecutions.

d. The following subfolders are created under the Run Id folder, along with any relevant files:

- Reports
- Resources
- Scripts

e. After a master suite run completes, the reports are zipped up and uploaded to the Siebel Test Execution
record as an attachment.

f. New runs cannot be initiated until all the threads in a parallel batch run are complete.

91

Siebel
Testing Siebel Business Applications Guide

Chapter 11
Siebel Test Automation Execution

92

Siebel
Testing Siebel Business Applications Guide

Chapter 12
Setting Up Keyword Automation Testing on iOS

12 Setting Up Keyword Automation Testing on
iOS

Setting Up Keyword Automation Testing on iOS
This chapter shows you how to set up iOS mobile devices for keyword automation testing. It includes the following
topics:

• About Running Keyword Automation Testing

• Installing Xcode on the Xcode iOS Simulator

• Installing Oracle JDeveloper and Setting Up the Mobile Application Framework

• Creating a New Application from Mobile Application Archive

About Running Keyword Automation Testing
To run keyword automation testing on iOS Xcode simulator, the following software is required and must be installed:

Xcode. For more information, see Installing Xcode on the Xcode iOS Simulator .

The Mobile Application Framework (MAF) requires the following software to be installed and setup accordingly for
keyword automation testing:

• Xcode. For more information, see Installing Xcode on the Xcode iOS Simulator .

• Oracle JDeveloper and MAF. For more information, see Installing Oracle JDeveloper and Setting Up the Mobile
Application Framework.

Installing XCode on the XCode iOS Simulator
This task shows you how to install Xcode version 6.3.1 on Xcode’s iOS simulator. Before installing Xcode, note that the
following prerequisites apply:

Software requirements for Mobile Safari/Mobile_iOS
• Xcode - 6.3.1

• APPIUM - 1.4.13

• OS X 10.10 or later (macOS)

• Intel, 64-bit processor

93

Siebel
Testing Siebel Business Applications Guide

Chapter 12
Setting Up Keyword Automation Testing on iOS

To install Xcode on Xcode iOS simulator
1. Start Safari on your iOS device, go to http://developer.apple.com/xcode/downloads, and then sign in with your

Apple ID.
2. Locate Xcode version 6.3.1, and then double-click the dmg file to install Xcode.
3. Select Xcode and move it to the Applications folder on your iOS mobile device.
4. Open Xcode from the Finder/Applications folder.
5. On the Xcode and iOS SDK License Agreement screen that appears, click Agree.

Xcode and all additional required components and tools are downloaded.

Note: You must import the cacert.cer (certificate) only if the cache is cleared based on the parameter provided in the
Launch Keyword. The certificate must be available in a specific location on MAC. For example, /Users/<MAC_USERNAME>/
carcert.cer. The python script will be available in the following location: /Users/<MAC_USERNAME>/ during runtime. After
the python script is executed, the certificate will be imported to the iOS simulator.

Installing Oracle JDeveloper and Setting Up the Mobile
Application Framework
This task shows you how to install Oracle JDeveloper and set up the Mobile Application Framework (MAF). The software
requirements for MAF are:

• XCode - 7.2.1

• APPIUM - 1.5.3

• Certificates needs to be installed on the simulator before triggering the run.

• To automate using Siebel CRM 17.x on the latest MAF, the following certificates must be installed on the
simulator:

– File location: c:\Cacert.cer

– MAF certificate.

To install Oracle JDeveloper and set up MAF
The following procedure shows you how to install Appium version 1.5.3 on an iOS Device

1. Download Oracle JDeveloper version 12c (12.1.3.0.0) from the following location: http://www.oracle.com/
technetwork/developer-tools/jdev/downloads/index.html

Note: Oracle JDeveloper requires Java Run Time Environment 1.7 or later.

2. Navigate to the folder where you downloaded the install file and execute the following command: java –jar
<jdeveloper file>

3. Open Oracle JDeveloper, click Help, and then select Check for Updates.
4. On the screen that appears, select the All option for Mobile Application Framework 2.3, and then select Finish.
5. Restart Oracle JDeveloper.
6. Click File, click New, and then select Application

94

http://developer.apple.com/xcode/downloads
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

Siebel
Testing Siebel Business Applications Guide

Chapter 12
Setting Up Keyword Automation Testing on iOS

On the screen that appears, verify that the following items are included in the list:

◦ MAF Application from Archive File

◦ Mobile Application Framework Application

The presence of these items indicates that MAF has been set up successfully.

Creating a New Application from the Mobile Application
Archive
The following procedures show how to create a new application from the Mobile Application Archive

To create a new application from Mobile Application Archive
1. From the JDeveloper Menu, select File, select New, and then select Application.
2. Select the MAF Application from Archive File.
3. Enter the following values in the MAF Application from Archive File.

Field Name Value

MAA File

Browse to mobile-determinations_archive.maa

Application File

Name of the new application.

Directory

New application location.

4. Click Finish.

Complete the following procedure to generate Siebel.app from Siebel.maa for Siebel Mobile on iOS.

To generate Siebel.app for Siebel Mobile on iOS
1. From the JDeveloper Menu, select Build, then Clean all.
2. From the JDeveloper Menu, select Build, then Make all.

Note: Follow steps 1 and 2 only if you are generating the Siebel.app for Siebel Mobile on iOS for the first time.

3. From the Application Menu, select Deploy, select iOS1, and then select Deploy application to iOSsimulator.
4. Click Finish.

The application is now successfully deployed in the simulator.
5. From the Application Menu, select Deploy, select iOS1, and then select Deploy to iTunes for synchronization to

device.
6. Click Finish.

95

Siebel
Testing Siebel Business Applications Guide

Chapter 12
Setting Up Keyword Automation Testing on iOS

After generating the Siebel.app for Siebel Mobile on iOS, the Siebel.app must be placed in the following path on the
MAC desktop: /Users/<MAC_USERNAME>/Desktop/Siebel.app.

96

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

13 Data Driven Testing

Data Driven Testing
This chapter describes data driven testing. It includes the following topics:

• Overview of Data Driven Testing

• Creating a Data Set

• Importing a Data Set

• Exporting a Data Set

• Associating Test Scripts with a Data Set

• Associating a Data Set with a Test Script

• Referencing Data Set Fields in Test Scripts

• Iterations Types Available with Data Sets and Test Scripts

• Dynamic Data Selection from Data Set

• Associating a Data Set with a Test Set

• Copying a Test Set

• Viewing Test Sets associated to a Data Set

Overview of Data Driven Testing
Data driven testing is a test design and execution strategy. In the context of Siebel Test Automation, it is the ability to
separate the data from test scripts and to manage it using data sets. It also extends ability to iterate the same test script
through variations in data.

A data set in Siebel represents a two dimensional table with fields as columns and values for these fields as rows. You
can import the data set into Siebel from flat files (tab separated text files)

Creating a Data Set
You can create any number of data sets and use them across test scripts. A data set can be created from the User
Interface (UI), and it is recommended to import the data set from a flat file (tab separated text file).

To create a data set, do the following:

1. Navigate to Release, then the Data Set View
2. Click the plus (+) icon from the Data Set Definition view to create a new record.

You can also add a new record using the Add Fields button.
3. Enter the value for the Name Field.

97

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

4. Click the plus (+) icon in the Values Applet and enter the values.
5. Save the record.

Note: Copying a data set performs a deep copy of all fields and values as well.

Importing a Data Set
You can create or update a data set by importing flat files (tab separated text file). When imported, a new data set is
created, the name of which is its file name. If the name already exists, you are prompted to overwrite with a new file
name or not.

Prepare the data in spreadsheet and save it in a tab separated format. Ensure that the first column name is Sequence,
and that it has the sequence numbers in the order you want.

To import a data set, do the following:

1. Navigate to Release, then the Data Set View A Data Set is created with same name as the file name and data is
imported as Fields and Values into it.

If the name already exists, you are prompted to overwrite with a new file name or not.
2. Click the Import button and select the file to import.

A data set is created, the name of which is its file name. If the name already exists, you are prompted to
overwrite with a new file name or not.

Exporting a Data Set
You can export a data set to a flat file.

To export a data set, do the following:

1. Navigate to Release, and then to the Data Set view.
2. Select the data set you want to export, and click Export.
3. Click Save.

Note: If required, you can update the values in the file and export the data set again.

Associating Test Scripts with a Data Set
You can associate a test script with only one data set.

To associate a test script with a data set, do the following:

1. Navigate to Release, and then to the Test Scripts view.
2. Select the required test script record, and then select the required data set.
3. Save the record.

98

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

Associating a Data Set with a Test Script
A data set can be associated with any number of test scripts.

To associate a data set with a test script, do the following:

1. Navigate to Release, then the Test Scripts view.
2. Select the required test script record, and then select the required data set.
3. Save the record.

Referencing Data Set Fields in Test Scripts
Apart from associating test scripts and data sets, data set fields also need to be referenced in test scripts. When you
create a data set, you can name a data set using the Add Fields button as follows:

Applet name|Field name

When you do this, instead of using the input value, you can reference the data set as follows in the test script:

#

You need to ensure that the target object matches the Applet name|Field name naming format. It's recommended to
use a meaningful short name when naming a Data Set column in the input, such as: #<name of column>. For example,
where Age is the name of the data field in a data set, you name it #Age.

To reference a data set field in a test script
1. Navigate to the Release screen, then the Test Scripts view.
2. Select a record, and drill down on the record name.
3. Click a Test Step record.
4. Use the following examples to edit the Test Step record:

◦ In Launch Test Step, if the associated data set has a User Name field with the value Employee, update this
field to #Employee.

◦ In Input Value Test Step, if the associated data set has a Value/Variable field with the value Revenue,
update this field to #Revenue.
You can apply the same changes to the ItemRN and AppletRN fields.

Recommendations to consider when you reference a data set in a test script include the following:

• The application performs no validation on referenced or unreferenced fields.

• You can append the dollar sign ($) to your referenced field name to include a time stamp at run time. For
example, the field #Name$ appends a time stamp to values from the Name column in data sets.
However, if a data set value already has a dollar sign appended to it, no timestamp is provided; and if the data
set is balnk, then a field such as #Name$ results in just the time stamp value.

• #@<variable name> is supported to dynamically reference Data Set columns, which resolves to column name
matching the value of the variable. For example, #@Var @Var can contain Data Set field name.

99

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

• Data set field names cannot begin with '@'.

• From the data set, you can reference the User Id in Launch Action. For example, #UserId where User Id is a field
name in the data set.

Iterations Types Available with Data Sets and Test Scripts

Test scripts can be either iterated over data set rows individually, or as a sequence of test scripts or test scenarios for
each row of the Data Set. Use the following procedure to view the avalable iteration types.

To view the available iteration types
1. Navigate to the Release screen, then the Test Sets View.
2. Drill down on a Test Set record.

The three iteration options are as follows:

◦ No iteration. If any iteration was selected previously, select the required records and click Remove
Iteration. Only the first row from the data set is used for test scripts associated with the data set, and if
the fields are referenced in the test scripts.

◦ Individual Iteration. Select the required records and click Add Iteration. The field name Scenario Type
reflects the individual iteration for the selected test scripts. The selected test script is run for all rows of
the data set, followed by the next test script in the test set.

◦ Scenario Iteration. Click Scenario Iteration, and then click OK when the confirmation prompt appears.
The field name Scenario Type reflects the scenario iteration for all test scripts in the test set. A full test
script sequence is executed for the first rows of the respective associated data sets, before picking up the
next row of data sets. This applies to all test scripts in the test set.

Dynamic Data Selection from Data Set
In order to selectively use a Data Set row at run time, use Condition field in your Data Set for the respective Data Set
row. If the expression evaluates to true, the data in the row is used for the iteration, or else the iteration is skipped.

Use Condition expression to use or skip a Data Set row at run time. Default is to use all rows.

1. Add a field Condition to your Data Set (either in UI or tab separated text file to import).
2. Define the conditions that determine if a particular row is relevant or not.
3. At run time the actual values of variables are replaced in the expression, and is evaluated for true or false.

Note: Syntax of expression is important and no prior validation of expression is performed.

Note: By default: If Condition field is not present, then the data set row is not skipped. Also, if Condition field is
present, and the value is blank, then the data set row is not skipped.

100

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

Rules for specifying Condition:

1. Ensure that the variable name does not have spaces. For example, variable @Test Variable is invalid, but
@TestVariable or @testvariable or @test_variable are valid.

2. Single space is the delimiter between the operands and operators used in condition expression. For example:
@test > 10, @name = 'abc' OR @name = 'xyz'.

3. Following values in Condition will evaluate to TRUE: true or TRUE or no value (blank), whereas false or FALSE
or 0(zero) evaluate to FALSE.

4. Following operators are supported: >,<,=,<>,>=,<=, AND, OR.
5. Ensure the variables used in Condition are initialized with appropriate values, else the script fails with an error.

Examples for Condition:

• @env = 'DEV'

• @env = 'UAT'

• @conf > 0 AND @conf < 50

Note: To initialize variables before a Test Script starts to run, use Parameters applet on Test Execution. Add Name
and Value pairs. For example: To initialize a variable @balance with value 100, add a Parameter with name as balance
and value of 100. Framework creates variables for each of the Name in Parameters applet, and initializes with
corresponding Value. Such parameters or variables can be directly used in Test Script and/or in Data Set Condition
expression for comparison or input value.

Associating a Data Set with a Test Set
A Data Set can be associated with a Test Set also, which is a group of Test Scripts.

To associate a Data Set with a Test Set, do the following:

1. Navigate to the Test Sets View.
2. Select a Test Set record, and then select a required Data Set to associate to.
3. Save the record. A prompt appears with following message:

Selected Data Set will override the individual Test Script associations if any.

Click OK to override Test Script associations of Data Set. Ensure that the overriding Data Set has referenced
fields and appropriate values for Test Scripts.

The Data Set association can be changed any time, by either replacing with another, or by clearing the field. Once Data
Set association at Test Set is removed, the Data Sets associated to Test Scripts will take effect, if any.

Copying a Test Set
There are two types of copy feasible for a Test Set. One is to copy the header information only to new Test Set.

Second is to copy the Test Script associations and iteration type as well.

101

Siebel
Testing Siebel Business Applications Guide

Chapter 13
Data Driven Testing

To copy a test set
1. Select Copy from the Test Set List Applet menu.
2. A pop up is displayed with Click OK to copy all Test Script associations, Click Cancel to copy Test Set record only.
3. Click OK or Cancel.

Viewing Test Sets associated to a Data Set
To view test sets associated to a data set, follow the steps:

1. Navigate to Data Set List View and click on the record.
2. In the next level, select or click on Test Sets.
3. This applet displays the Test Sets to which the Data Set is associated directly.

102

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

14 Setting Up Android Mobile Devices for
Automation Testing

Setting Up Android Mobile Devices for Automation
Testing
This chapter shows you how to set up Android mobile devices for keyword automation testing. It includes the following
topics:

• About Setting Up Android Mobile Devices for Keyword Automation Testing

• Installing Android Software Development Kit on Microsoft Windows 7/10 Machine

• Installing Appium on Microsoft Windows

• Setting the ANDROID HOME Variable

• Setting the Path Variables

• Verifying Android Installation and Configuration

• Testing Automation on an Android Device

• Automation Testing on an Emulator

• Deploying the Siebelmobile.apk

About Setting Up Android Mobile Devices for Keyword
Automation Testing
To run keyword automation testing on android mobile devices, the system requirements on Microsoft Windows are:

• Microsoft® Windows® 10, 8, 7, 10 or Vista (32 or 64-bit)

• 2 GB of RAM minimum, 4 GB of RAM recommended

• At least 1 GB of RAM for Android SDK, emulator system images, and caches

• 1280 x 800 minimum screen resolution

• Java Development Kit (JDK) 8

• (Optional) For accelerated emulator: Intel® processor with support for Intel® VT-x, Intel® EM64T (Intel® 64),
and Execute Disable (XD) Bit functionality.

The following software is required to run keyword automation testing on a Microsoft Windows platform:

• Android Software Development Kit. For more information, see Installing Android Software Development Kit on
Microsoft Windows 7 Machine

• Appium. For more information, see Installing Appium on Microsoft Windows.

The following is required to run keyword automation testing on the Mobile Application Framework (MAF):

103

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

SiebelMobile.apk

The tasks involved in setting up Android mobile devices for keyword automation testing are:

• Installing Android Software Development Kit on Microsoft Windows 7/10 Machine

• Installing Appium on Microsoft Windows

• Setting the ANDROID HOME Variable

• Setting the Path Variables

• Verifying Android Installation and Configuration

Installing Android Software Development Kit on
Microsoft Windows 7/10 Machine
You can use the Android SDK (Software Development Kit) to create applications using the Android platform. The
installer checks your machine to see if required tools like the Java SE Development Kit (JDK) are available and installs it
if required. The installer saves the Android SDK Tools in a specified location outside the Android Studio directories.

Before installing the Software Development Kit (SDK) on a Windows 7 /10 machine, Java JDK 8 must be installed as a
prerequisite.

To install the Android SDK
1. Double click installer_r24.3.4-windows.exe to install the SDK.

Note: Write down the name and location of the SDK saved on your system. You may have to refer to the SDK
directory later if using SDK tools from the command line.

After the installation is complete, the Android SDK Manager starts.
2. Click Tools and then select Options in the Android SDK Manager.

The Android SDK Manager – Settings screen appears.
3. On the Android SDK Manager – Settings screen, enter the HTTP Proxy Server and HTTP Proxy Port details as

required to bypass any firewall.
4. Click Packages and then select the following packages to install in the Android SDK Manager:

a. Install Android 5.0.1 (API 21)
b. Install Android 6.0 (API 23)
c. Install Extras.

5. Click Install Packages.
To accept the license agreement for each package, double-click each package name, and then click Install. A loading
progress message appears on Android SDK Manager window. Do not exit the Android SDK Manager until loading has
finished, otherwise the loading process will be cancelled.

104

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

Installing Appium on Microsoft Windows
Before installing Appium on Microsoft Windows, make sure that the .NET Framework 4.5 redistributable libraries are
available.

To install Appium on Windows
1. Download the Appium for Windows zip archive file and extract the files into a folder (for example, Appium) on

your C: Drive.
2. Double click appium-installer.exe.
3. Install the Appium tool on your C: Drive.
4. Set ANDROID_HOME as your Android SDK path and add the tools and platform-tools folders to your PATH

variable.

Setting the ANDROID HOME Variable
You must set the ANDROID_HOME and the path environment variables after installing the different packages.

To set the ANDROID HOME variable
1. Open the Environment Variable.

a. Right-click My Computer, select Properties, and then select Advanced system settings.
b. Go to the Advanced tab, and click Environment Variables.
c. Click New under User Variables for <USERNAME>, and on the New User Variable dialog box that appears:

i. Enter the following Variable name:ANDROID_HOME
ii. Enter the following Variable value: C:\SDK (SDK folder path)

Note: The SDK folder path might vary depending on the SDK folder location

d. Click OK to close the New User Variable dialog box.
2. Click OK to close the Environment Variables window.

Setting the Path Variables
The following procedure shows you how to set the path variables for Android SDK. You must set the path variables to
run the scripts on the Android device and emulator.

To set the path variables for Android SDK
1. Navigate to and open the SDK folder (for example, C:\SDK).

105

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

The tools and platform-tools folders are located in the SDK folder.
2. Make a note of the path to both these folders, as follows:

C:\SDK\tools

C:\SDK\platform-tools\

3. Open Environment Variables.

a. Right-click My Computer, select properties, and then select Advanced system settings.
b. Go to the Advanced tab, and click Environment Variables.

4. Under System Variables, select the Path variable, and then click Edit.
5. On the Edit System Variables dialog box that appears, edit the value for the system variable as required.

◦ For example, append the full path to the \tools folder to the end of the line as follows: C:\SDK\tools.

◦ For example, append the full path to the \platform-tools folder to the end of the line as follows: C:\SDK
\platform-tools.

6. Click OK to close all dialog boxes.

Verifying Android Installation and Configuration
The following procedure shows you how to verify if the Android is installed and configured correctly.

To verify Android installation and configuration
• At the Command Prompt, enter the following command and then press return:

Android

The SDK manager starts.

Testing Automation on a Android Device
To check the automation testing on a real device, you must connect the device (For example, Samsung Galaxy Tab) to
the Windows 7 /10 machine with a USB cable.

Before running automation testing on a real device, make sure that WiFi and VPN connections are up and running.

To run automation testing on a real device
1. Start your Android device.
2. Tap Settings, and then General About Device.
3. Tap the Build number seven times to enable Developer option.
4. Return to the Settings menu and select Developer option.
5. Tap the Developer options to turn on USB Debugging from the menu on the next screen.

106

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

Automation Testing on an Emulator
An emulator, such as an Android Virtual Device (AVD), is software or hardware that enables a computer system (for
example, a Windows operating system) to behave like another computer system (for example, an Android platform). It
provides a virtual environment of another system.

To run automation testing on an emulator on Microsoft Windows
1. Start the AVD Manager as follows:

a. Navigate to and open the SDK folder. For example: C:\SDK
b. Double-click AVD Manager.exe to start the AVD Manager.

The AVD Manager is used to create virtual Android devices.
2. Using AVD Manager, create an android virtual device (emulator) as follows:

a. Go to the Device Definitions tab, click Create Device, click the Android Virtual Device, and then click
Create.

The Create new Android Virtual Device window appears
b. Enter values for the fields shown in the following table.

Note: The values shown in the following table are example values for creating a virtual device using
Galaxy Tab S 10.5. Values typically vary depending on the device you want to emulate. When creating a
virtual device, use the following specifications:

- Screen Size : 10.5 inches
- Resolution : 2560 x 1600

Field Description Sample Value

AVD Name

Name of the Android virtual device.

AVD_for_Samsung_GalaxyTab_S

Device

Name of the Android device.

Samsung_Galaxy_Tab_S

Target

Name of the target Android device.

Android 5.0.1 - API [Level2]

CPU/AB1

The application binary interface.

ARM (armeabi-v7a)

c. Select the device and then click Start.
d. Click Launch.

The Emulator Starts.

107

Siebel
Testing Siebel Business Applications Guide

Chapter 14
Setting Up Android Mobile Devices for Automation Testing

3. Update the XML file by setting the following parameters:

◦ APPLICATION_TYPE= Mobile_Chrome - Automation on Chrome Browser

◦ APPLICATION_TYPE= Mobile_Native Browser - Automation on AVD Native Browser.

You must start the emulator manually before triggering a run since emulators take more time to start.

◦ APPLICATION_TYPE=Mobile_SM_Android - Automation on Siebel MAF Application

Deploying the Siebelmobile.apk
The following procedure explains how to deploy the Siebelmobile.apk.

To deploy the Siebelmobile.apk
1. From the JDeveloper Menu, select Application, Application Properties, then Android2.
2. Double click Android2 (MAF for Android) option.

The MAF for Android Deployment Profile Properties dialog box is displayed. Ensure that the Build Mode is set to
Debug and Application Name is SiebelMobile.

3. Click OK.
4. Navigate to Application, select Deploy Android2.

The Deploy Android2 dialog box is displayed.
5. Select Deploy application to package from the available list of deployment options.
6. Check the Deploy message displayed in the lower pane of the Deploy Android2 dialog box.

The message "Deploy the mobile application to an Android deployment package" is displayed in the lower
pane.

7. Click Finish.

The mobile application is deployed successfully in the Android deployment package.

108

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

15 REST API Reference

REST API Reference
This chapter describes the REST APIs available for testing related objects and actions. It includes the following topics:

• Create a Test Execution Record

• Rerun a Test Execution Record

• Create Test Passes for a Test Execution Record

• Querying for a Test Execution Record

• REST API for Data Sets

• REST API for Test Script

• REST API for Test Set

• REST API for Master Suite

Create a Test Execution Record
You create a Test Execution record and request automated test runs by sending an HTTP POST to the URI.

The sequence involves a POST for TestExecution first, followed by a POST for ScheduleRun. The first POST request
creates a Test Execution record with the appropriate server credentials and the second POST request prepares the
attachments necessary for execution, including the user credentials, and sets Status to Requested.

The following shows a request to create a Test Execution record and return the Run Id.

URL: https://ServerName:Port/siebel/v1.0/service/Automation Rest Service/TestExecution
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request Body:
{
"body":
{
"Application Version":"1-BUILD",
"Master Suite Name":"CORE_UIF",
"Description":"Acceptance test Scenarios",
"Run Reference":"Client_Pool_A",
"Client OS":"Windows",
"ServerCredentials":
[
{
"Application Alias":"Siebel Universal Agent",
"Application Type":"Desktop_Chrome",
"URL":"https://ServerName:Port/siebel/app/callcenter/enu",
"Server OS Type":"Windows"
},
{
"Application Alias":"Siebel Financial Services",
"Application Type":"Desktop_Chrome",

109

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

"URL":"https://ServerName:Port/siebel/app/fins/enu",
"Server OS Type":"Windows"
}
]
}
}
Response to a successful request:
{
"Id": "88-1WCI9B",
"Server Credentials": "Siebel Universal Agent;Siebel Financial Services",
"Users List": "SADMIN;DBROWN"
}

Note: If application aliases are not available on firing the request, the response will provide the missing aliases.

The following shows a request to create a Schedule Run for a given Run Id, created using a Test Execution request.

URL: https://ServerName:Port/siebel/<Version>/service/Automation Rest Service/ScheduleRun
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"body":
{
"Test Run Id":"88-1WCI9B",
"Override Validation": "Y",
"Users List":"SADMIN:pwd;DBROWN:pwd"
}
}
Response to a successful request:
{
"Status": "Run Request is successfully created 88-1WCI9B"
}
}

The following shows a sample request containing all parameters for a Test Execution.

Request Body:
{
"body":
{
"Application Version":"23086",
"Master Suite Name":"COREUIF",
"Description":"Test Run For monthly build",
"Run Reference":"Client_Pool_A",
"Client OS":"Windows",
"Schedule Run At":"09/26/2020 05:32:07",
"Perl Path":"c:\\perl\\bin\\perl.exe",
"Siebel Tools Machine":"ServerName",
"Siebel Tools Path":"c:\\23082",
"Siebel Tools User Name":"user1",
"Siebel Tools DSN":"serverdsn",
"Siebel Tools DSN User":"userid",
"EAI Machine Name":"eaiserverName",
"EAI Port Number":"16690",
"EAI User Name":"sadmin",
"BIP Outbound WS":"http://serverName:port/xmlpserver/services/publicreportservice_v11",
"BIP Server Name":"serverName",
"BIP Server Port":"9500",
"BIP XMLP Server":"serverName",
"BIP XMLP Server Port":"9502",
"BIP User Name":"userName",

110

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

"Client Machine":"<MAC IP address>",
"MAC-Username":"userId",
"Mobile Port":"9090",
"ServerCredentials":
[
{
"Application Alias":"Siebel Universal Agent",
"Application Type":"Desktop_Chrome",
"Server OS Type":"Windows",
"URL":"https://ServerName:Port/siebel/app/callcenter/enu",
"Server Home Path":"c:\\23082",
"Siebel Server Machine":"serverName",
"Siebel Server User" :"user1",
"Gateway Machine":"serverName",
"Siebel Gateway Port":"9390",
"AI Server Port":"16690"
},
{
"Application Alias":"Siebel Financial Services",
"Application Type":"Desktop_Chrome",
"Server OS Type":"Windows",
"URL":"https://ServerName:Port/siebel/app/fins/enu",
"Server Home Path":"c:\\23082",
"Siebel Server Machine":"serverName",
"Siebel Server User" :"user1",
"Gateway Machine":"serverName",
"Siebel Gateway Port":"9390",
"AI Server Port":"16690"
}
]
}
}

The following shows a sample request to containing all parameters for a Schedule Run.

Request Body:
{
 "body":
 {

 "Test Run Id":"88-1WCI9B",
 "Override Validation": "Y",
 "MAC Machine Pwd": "pwd1",
 "Siebel Tools Machine Pwd":"toolspwd",
 "Siebel Tools DSN Pwd": "toolsdsnpwd",
 "BIP Server Pwd": "bipserverpwd",
 "EAI Server Pwd": "EAIpwd",
 "Server Credentials": "Siebel Universal Agent:pwd;Siebel Financial Services:pwd2",
 "Users List":"SADMIN:pwd;DBROWN:pwd",
 "Parameters":
 [
 {
 "Name":"SSOUser",
 "Value":"usernamevalue"
 },
 {
 "Name":"SSOPwd",
 "Value":"pwd"
 }

]
 }
}

111

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

Rerun a Test Execution Record
The following shows a request to submit a Rerun for an already completed Test Execution record. Preconditions are that
Status is set to Completed and that the Reports zip and other attachments are available from prior run(s).

URL: https://ServerName:Port/siebel/<Version>/service/Automation Rest Service/Rerun
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"body":
{
"Id":"88-1WCI9B"
}
}
Response to a successful request:
{
"Status": "Run Request is successfully created 88-1WCI9B"
}

Create Test Passes for a Test Execution Record
The following shows a request to Create Test Passes once a run is completed. The latest XML file (indicated by the
highest suffix number in the file name) in the Attachments applet will automatically be selected as input to create test
pass entries. Preconditions are that Test Sets are associated with Test Plans and that Test Pass has the Completed LOV.

URL: https://ServerName:Port/siebel/<Version>/service/Automation Rest Service/CreateTestPasses
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"body":
{
"Id":"88-1WCI9B"
}
}
Response to a successful request:
{
"Status": "Test Pass Entries Created Successfully. Query in Test Pass View Starting with 88-1WCI9B"
}

Querying for a Test Execution Record
The following shows a request to query the details of a Test Execution record, and can also be used to query the Status
of a Test Execution record.

URL: https://ServerName:Port/siebel/<Version>/data/Keyword Automation/Automation Exec Config/88-1WCI9B

112

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

HTTP Method: GET
Content type: application/json
Authorization: Basic

Response to a successful request:
{
"Id": "88-1WCI9B",
"Status": "Completed",
"Master Suite Name": "CORE_UIF1"
}

REST API for Data Sets
The following shows a request to create a data set record.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Data Set/Automation Data Set
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"Name": "Test_DataSet",
"Status": "Active",
"Description": "DataSet"
}
Response to a successful request:
{
"Id": "88-1WCIA5",
"Name": "Test_DataSet",
"Status": "Active",
"Description": "DataSet"
}

The following shows a request to insert a new field into a data set.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Data Set/Automation Data Set/88-1WCIA5/
Automation Data Set Field
HTTP Method: PUT
Content type: application/json
Authorization: Basic

Request body:
{
"Id": "123",
"Name": "Name",
"Applet Name": "Account List Applet",
"Description": "List Applet Field"
}
Response to a successful request:
{
 "Id": "88-1WCIAF"
}

The following shows a request to insert a new value for a field in a data set.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Data Set/Automation Data Set/88-1WCIA5/
Automation Data Set Field/88-1WCIAF/Automation Data Set Values
HTTP Method: PUT
Content type: application/json
Authorization: Basic

113

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

Request body:
{
"Id":"123",
"Sequence":"1",
"Data Set Field Value": "Value1"
}
Response to a successful request:
{
"Id": "88-1WCIAP"
}

Note: Before deleting any data set using a REST request, make sure to disassociate any test scripts first.

REST API for Test Script
The following shows a request to create a a test script record.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Test Script/Automation Test Script
HTTP Method: POST
Content type: application/json
Authorization: Basic
Request body:
{
"Name": "Test_Script1",
"Status": "Active",
"Description": "Script1",
"Test Env": "Test",
"DataSet Name": "Test_DataSet1"
}
Response to a successful request:
{
"Id": "88-1WCIB5"
}

The following shows a request to query a test step record.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Test Script/Automation Test Script/88-1WCIB5/
Automation Test Step Child
HTTP Method: GET
Content type: application/json
Authorization: Basic

Response to a successful request:
{
"Id": "88-1WCIB8"
}

Note: Only the Get method is supported for test steps.

REST API for Test Set
The following shows a request to create a test set record.

114

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

URL: https://ServerName:Port/siebel/<Version>/data/Automation Test Set/Automation Test Set
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"Name": "Test_Set",
"Status": "Active",
"Description": "New Set",
"Test Plan Name": "UIFControls_Scenarios"
}
Response to a successful request:
{
"Id": "88-1WCIBT"
}

The following shows a request to insert a test script record into a test set.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Test Set/Automation Test Set/88-1WCIBT/
Automation Test Script Child
HTTP Method: PUT
Content type: application/json
Authorization: Basic

Request body:
{
"Id": "123",
"Sequence": "1",
"Name": "Test_Script1"
}
Response to a successful request:
{
"Id": "88-1WCIBT"
}

REST API for Master Suite
The following shows a request to create a Master Suite record, returning Row id.

URL: https://ServerName:Port/siebel/<Version>/data/Automation Master Suite/Automation Master Suite
HTTP Method: POST
Content type: application/json
Authorization: Basic

Request body:
{
"Name": "Test_Mastersuite",
"Status": "Active",
"Description": "New Msuite",
"Test Env": "Test",
"Release": "IP2017",
"Team Name": "Falcons"
}
Response to a successful request:
{
"Id": "88-1WCICN"
}

The following shows a request to insert a test set record into a Master Suite.

115

Siebel
Testing Siebel Business Applications Guide

Chapter 15
REST API Reference

https://ServerName:Port/siebel/<Version>/data/Automation Master Suite/Automation Master Suite/88-1WCICN/
Automation Test Set Child
HTTP Method: PUT
Content type: application/json
Authorization: Basic

Request body:
{
"Id":"123",
"Sequence": "1",
"Name": "Test_Set",
"Skip": "N"
}
Response to a successful request:
{
"Id": "88-1WCICX"
}

116

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

16 Keywords Reference

Keywords Reference
This chapter defines the keywords that are available for Siebel Open UI keyword automation testing and describes how
to use each keyword. It includes the following topics:

• Keywords Description

• Keywords Supporting Tools and Server Configuration

• Unsupported Keywords for Siebel Open UI Keyword Automation

Note: Before using any keywords, you must import test scripts to the database (there is an Import button on the
recording panel) – you can also manually add test scripts by navigating to Site Map, Release Screen, then the Test
Scripts view. Once a test script is imported, you can add test steps to the script. Recording captures interaction steps
only and any other actions (such as Compare, GetValue, Verify, and so on) must be manually added to the test script.

Keywords Description
This topic describes each keyword that is supported for Siebel Open UI keyword automation testing. The following table
defines each keyword, outlines whether it applies to Desktop or Mobile (or both), and includes a link to more detailed
information.

Keyword Name Description Applies to Desktop? Applies to Mobile?

Attachment Manager

Performs actions on the Attachment Download
Manager page in Siebel Mobile Application
Framework (MAF).

No

Yes

ClickButton

Clicks on a button control.

Yes

Yes

ClickLink

Drills down on a link in a list applet, drills down on
recently viewed links on the homepage, and shows
more or less objects.

Yes

Yes

ClickOnChart

Drills down on a requested series or category,
 provided by the user, on a Chart applet.

Yes

No

ClickSyncButton

Clicks the Sync button to navigate from offline
to online and online to offline based on the user
provided options. It also verifies the state of the
application after the specified navigation.

No

Yes

ClickTopNotification Clicks the first unread message in the notification list. Yes No

117

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keyword Name Description Applies to Desktop? Applies to Mobile?

ColumnsDisplayed

Adds or removes columns in the list applet column
(which is an option available in the applet menu).

Yes

Yes

CompareValue

Compares a variable value with the expected value.

Yes

Yes

CreateRecord

Creates a new record in a list or form applet.

Yes

Yes

CustomExtension

Runs a custom extension JAR file.

Yes

Yes

DoubleClick

Double clicks on an element in a user specified
applet.

Yes

No

DragAndDrop

Selects a record and moves it to a particular field.

Yes

Yes

Draw

Captures a signature.

Yes

Yes

FileDownload

Downloads (and exports) a file.

Yes

No

FileUpload

Attaches or uploads (or imports) a file.

Yes

Yes

GetAboutRecord

Reads the values (Row Id, Created by, Date, and so
on) from About Record (selected from the Siebel
applet menu) and stores them in a user variable.

Yes

Yes

GetChartType

Obtains the type of chart in an applet and stores the
value in a user variable.

Yes

No

GetConfigParam

Reads the value from the unitconfig.xml/
batchconfig.xml file and stores the value in a user
variable.

Yes

Yes

GetRecordCount

Obtains the total number of records and stores the
value in a user variable.

Yes

Yes

GetState

Obtains the state of a specified object and stores the
value in a user variable.

Yes

Yes

GetValue

Obtains the value of a specified object and stores the
value in a user variable.

Yes

Yes

GetValueFromMenuPopup

Reads a value from an application level pop-up
menu.

Yes

No

GoToSettings

Views and changes the default settings of a user
profile.

Yes

Yes

118

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keyword Name Description Applies to Desktop? Applies to Mobile?

GoToThreadbarView

Navigates to a view that is available in the Threadbar
link.

Yes

Yes

GoToView

Navigates to a specified view using the Tab view, Tree
view, or Site Map links.

Yes

Yes

HierarchicalList

Expands or collapses a record in a hierarchical list
applet, and shows the child items.

Yes

No

InboundWebServiceCall

Reads the XML request from a .xml file, posts the
request to the server, and saves the XML response
from the server.

Yes

No

InputValue

Enters a value into a specified field.

Yes

Yes

InvokeAppletMenuItem

Invokes a menu item from an applet-level menu in a
list or form.

Yes

Yes

InvokeMenuBarItem

Invokes a menu item from the application menu bar.

Yes

Yes

InvokeObject

Invokes an object in a specified field in a list or form
applet.

Yes

Yes

InvokeREST

Invokes a REST API call from within a test script to
execute the API, verify and/or use the response.

No

No

Launch

Starts the browser and logs in to an application with
the provided username.

Yes

Yes

LockColumn

Locks or unlocks a selected column.

Yes

Yes

LogOut

Logs out from an application.

Yes

Yes

MafSettings

Performs the required action in the MAF Settings
page in MAF applications.

No

Yes

MultiSelectRecordsInListApplet

Selects one or more rows in a list applet.

Yes

Yes

QueryRecord

Queries an existing record from a list or form applet.

Yes

Yes

RemoveFromMvg

Removes a record from the list in a multi-value group
(MVG).

Yes

Yes

SelectCheckBox

Selects or clears a check box depending on the
provided value (True or False).

Yes

Yes

119

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keyword Name Description Applies to Desktop? Applies to Mobile?

SelectFromMvg

Select the specified record after querying the
available records in an MVG.

Yes

Yes

SelectFromPickApplet

Queries and selects the first record from a drop-
down list applet.

Yes

Yes

SelectPDQValue

Selects a value from the Predefined Dropdown Query
(PDQ).

Yes

Yes

SelectPickListValue

Selects a value from a drop-down list in a list or form
applet.

Yes

Yes

SelectRadioButton

Selects a radio button.

Yes

No

SelectRecordInListApplet

Selects a record from a list applet.

Yes

Yes

SelectToggleValue

Selects a value from a toggle control in a list applet.

Yes

No

SelectVisibilityFilterValue

Selects a value from the Visibility Filter drop-down
list.

Yes

No

SendKeys

Trigger a keyboard event.

Yes

Yes

SetDateTime

Calls the DateTime or Date pop-up calendars to
specify the date and time.

Yes

Yes

SortColumn

Sorts a selected column.

Yes

Yes

SwitchTab

Switches between the browser tabs. Yes

Yes

TreeExplorer

Expands or collapses an explorer tree, and selects
items from or shows items under an explorer tree.

Yes

No

VerifyColumnLockStatus

Verifies the lock status of a column.

Yes

Yes

VerifyColumnSortOrder

Verifies the order of records in a selected column.

Yes

Yes

VerifyError

Verifies the error message for a string value.

Yes

Yes

VerifyFileLoad

Performs image validation.

Yes

Yes

VerifyFocus

Verifies the focus present on an applet, view, field, or
row depending on the value provided (True or False).

Yes

Yes

120

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keyword Name Description Applies to Desktop? Applies to Mobile?

VerifyInPicklist

Counts the number of items in a drop-down list, auto
selects using substring, and verifies the values in the
drop-down list.

Yes

Yes

VerifyObject

Verifies the presence of an object or the UI name for
an object.

Yes

Yes

VerifyRecordCount

Verifies the row count in a list applet.

Yes

Yes

VerifyState

Verifies the state of a specified field.

Yes

Yes

VerifyTopNotification

Verifies whether the first read or unread message in
the notification list appears or not.

Yes

Yes

VerifyValue

Verifies a field value by comparing it with a user
variable.

Yes

Yes

Wait

Allows the application to stay idle for the user
specified time.

Yes

Yes

Using Variables in Test Scripts
In Siebel Test Automation, you can use variables to store transient or dynamic values. For instance, at run time, you may
read a value from application into a variable using GetValue keyword, and later query a record using the variable. Same
variable can be referenced across Test Scripts used in a Master Suite.

Any name prefixed with @ symbol is treated as a variable. For example: @VarName. It should be one word without any
spaces. Variable names are case-sensitive.

AttachmentManager
You use the AttachmentManager keyword to perform actions in the Attachment Download Manager page in MAF
applications.

Note: The AttachmentManager keyword works only on MAF iOS and MAF Android devices.

Signature
The AttachmentManager keyword supports the following signature:

AttachmentManager(AppletRN, Name of the Entity|Name of the File Name, ...;DOWNLOAD/
DOWNLOADALL/REMOVE/CLOSE/TOP)

AttachmentManger signature supports the following actions:

121

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

DOWNLOAD
DOWNLOADALL
TOP
UPLOAD
UPLOADALL
UPLOADTOP
REMOVE
REMOVEALL
=filename with extension
=Error - File Not Found
=100%
=Error - Network Error
=Sync Data First

Desktop Examples
The AttachmentManager keyword does not apply to desktop applications.

Mobile Examples
The following table describes how to use the AttachmentManager keyword to perform actions in the Attachment
Download Manager page in MAF applications (on mobile devices).

Target Object Inputs Closing Action Comments

Download Attachment
Applet

Download Attachment
Applet

AdminSalesTool|pills1.jpg;DOWNLOAD;IPH3

To download user
specified files.

Download Attachment
Applet

Download Attachment
Applet

AdminSalesTool|Zonall_Launch.zip,AdminSalesTool|
ZonallPatientProfile.zip;DOWNLOAD;IPH3

To download user
specified files.

Download Attachment
Applet

Download Attachment
Applet

AdminSalesTool|pills1.jpg;REMOVE;IPH3

To remove the selected
files.

Download Attachment
Applet

Download Attachment
Applet

AdminSalesTool|Zonall_Launch.zip;TOP;IPH3

To move the file to the
first (TOP) position.

Download Attachment
Applet

Download Attachment
Applet

NULL;DOWNLOADALL;IPH3

Selects all the files and
performs the action when
the Download button is
clicked.

Download Attachment
Applet

Download Attachment
Applet

NULL;REMOVEALL;IPH3

Selects all the files and
performs the action when
the Remove button is
clicked.

Download Attachment
Applet

Download Attachment
Applet

AccountAttachment|pills1.jpg;=Error - File Not
Found;IPH3

To verify Status of
the user specified in
Download Attachment
- the equals sign ('=')
signifies verification.

Download Attachment
Applet

Download Attachment
Applet

NULL;=pills1.jpg;IPH3 To verify if the user
specified file (pills1.jpg) is

122

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

 available in the Download
Attachment - the equals
sign ('=') signifies
verification.

Download Attachment
Applet

Upload Attachment
Applet

AccountAttachment|Test.jpeg;UPLOAD;IPH3

To upload user specified
files.

Download Attachment
Applet

Upload Attachment
Applet

AccountAttachment|Test.jpeg;=Sync Data First;IPH3

To verify Status of
the user specified in
Upload Attachment - the
equals sign ('=') signifies
verification.

Download Attachment
Applet

Upload Attachment
Applet

AccountAttachment|Test.jpeg;UPLOADTOP;IPH3

To move the file to the
first (TOP) position.

Download Attachment
Applet

Upload Attachment
Applet

NULL;UPLOADALL;IPH3

Selects all the files and
performs the action when
the Upload button is
clicked.

Download Attachment
Applet

Upload Attachment
Applet

NULL;=Test.jpeg;IPH3

To verify if the user
specified file (Test.jpeg)
is available in the Upload
Attachment - the equals
sign ('=') signifies
verification.

Download Attachment
Applet

Upload Attachment
Applet

AccountAttachment|Test.jpeg,AccountAttachment|
pills.jpeg;UPLOAD;IPH3

To upload user specified
files.

Download Attachment
Applet

Attachment Applet

NULL;Close;IPH3

To close the Attachment
Manager.

ClickButton
You use the ClickButton keyword to click on a button control present in any list or form applet or in any multi-value
group or drop-down applet, and to click Close (the X icon) to close a pop-up window.

Signature
The ClickButton keyword supports the following signature:

ClickButton(AppletRN|ButtonRN,OK/CANCEL/NULL)

123

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note the following about the ClickButton keyword signature:

• If the action is to be performed on Tile applets, then the SelectRecordInListApplet keyword should be used
before the Click button.

• You must provide OK and Cancel options in case a Delete confirmation dialog box is expected.

• You must provide NULL for other buttons, even if a pop-up window or dialog box is expected. Other keywords
will carry out any subsequent action on the pop-up window or dialog box.

Desktop Examples
The following table describes how to use the ClickButton keyword to click on button controls in desktop applications.

Target Object Inputs Closing Action Comments

Synergy Toolbar

N/A

NULL

Clicks the Delete Record button in a list applet and handles the
button in the confirmation pop up.

NULL|SiebTabViews

N/A

NULL

In SUI theme, invokes the L2 level links that appear when a
button is clicked.

SIS Account List Applet|NewQuery

N/A

NULL

Clicks the Delete Record button in a list applet and handles the
button in the confirmation pop up.

SIS Account List Applet|DeleteRecord

N/A

OK

Clicks the Delete Record button in a list applet.

SIS Account Entry Applet|GotoNextSet

N/A

NULL

Clicks the Go to Next Set button in a form applet.

Product Pick Applet(Eligibility)|
PickRecord

N/A

NULL

Clicks the drop-down list in a pop-up window.

NULL|PickRecord

N/A

NULL

Clicks a button in a pop-up window.

Close

N/A

OK

Clicks Close or X button in a pop-up window and then clicks OK.

Close

N/A

Cancel

Clicks Close or X button in a pop-up window and then clicks
Cancel.

Mobile Examples
The following table describes how to use the ClickButton keyword to click on button controls in desktop mobile
applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Contact List Applet -
Mobile|DeleteRecord

N/A

OK

Clicks the Delete Record button in a list applet.

124

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SHCE Sales Contact List Applet -
Mobile|Create

N/A

NULL

Clicks the Create button in a list applet.

Close

N/A

OK

Clicks Close or X button in a pop-up window and then clicks OK.

NULL|NewQuery

N/A

NULL

Clicks a button in a pop-up window.

ClickLink
You use the ClickLink keyword to drill down on links in a list applet, to drill down on recently viewed links on the
homepage, and to show more or show less objects.

Signature
The ClickLink keyword supports the following signatures:

ClickLink(AppletRN|FieldRN/ClassName/RowId|[RowNum],Value/Variable/NULL/ShowMore/
Show Less/Expand/Collapse)

Note: The row number is optional in this signature. If row number is not provided, then the first row will be used by
default.

ClickLink(AppletRN|@Var ,Value/Variable)

Note: @var support in FieldRN is available only for Mobile application.

ClickLink(AppetRN|TimeslotRN ,NULL)

Note: This signature clicks on the given Timeslot in the Calendar applet.

ClickLink(AppetRN|@FirstName+@LastName+TimeslotRN,NULL)

Note: This signature provides a support for clicking on dynamic Timeslot in the Calendar applet.

Desktop Examples
The following table describes how to use the ClickLink keyword to drill down on links in desktop applications.

Target Object Inputs Closing Action Comments

ClickLinkAccount Contact
List Applet|Last Name

<Ramakrishna>

N.A

Drills down on the Last Name value. For example,
 drills down on the last name value Ramakrishna.

125

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

ClickLinkAppletRN|
ClassName

NULL

N.A

Clicks on the link based on the Class Name.

NULL|SiteMap

NULL

N.A

Clicks on the toolbar item (Site Map).

Account Contact List
Applet|Last Name|2

Pinas

N.A

Drills down on the Last Name of the second record
with the value provided in the inputs.

SIS Account List Applet|
ToggleListRowCount

NULL

N.A

Clicks the Show More link in the list applet.

SIS Account List Applet|
ToggleListRowCount

Show More

N.A

Clicks the Show More link in the List applet.

SIS Account List Applet|
ToggleListRowCount

Show Less

N.A

Clicks the Show Less link in the List applet.

LS Pharma Inbox Applet|
ButtonMaximizeApplet

Expand

N.A

Expands the list in the Home page.

LS Pharma Inbox Applet|
ButtonMinimizeApplet

Collapse

N.A

Collapses the list in the Home page.

Contact Home Public and
Private View Link List
Applet|Name

My Contacts

N.A

Clicks the link of the recently viewed contacts screen
(My Contacts).

NULL|Save Query As
Applet.SaveAs

NULL

N.A

Clicks the button link in the pop-up window.

Account Home Public
and Private View Link List
Applet|2

All Accounts

N.A

Click the frequently viewed links.

Mobile Examples
The following table describes how to use the ClickLink keyword to drill down on links in mobile applications (on mobile
devices).

Target Object Inputs Closing Action Comments

SHCE Sales Contact List
Applet - Mobile|Last Name|
1

<last name>

N/A

Drills down on the name value in the
first row.

SHCE Sales Contact List
Applet - Mobile|Last Name

<last name>

N/A

Drills down on the name value.

126

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

LS Home Page Calendar
Applet-Mobile|@Var

NULL

N/A

Drills down on a call in the calendar
applet.

You can obtain the row Id of the record
using GetAboutRecord keyword by
navigating to the view.

LS Home Page Calendar
Applet-Mobile|
slot-0-090000MikeAdlerDr.

NULL

N/A

Clicks the specified timeslot in the
Calendar applet.

LS Home Page
Calendar Applet-
Mobile|@AccountCall
+slotCol-0-10:00

NULL

N/A

Supports clicking on the dynamic
Timeslot in the Calendar applet
(Account call).

LS Home Page Calendar
Applet-Mobile|@FirstName
+@LastName+@title
+slotCol-0-10:00

NULL

N/A

Supports clicking on the dynamic
Timeslot in the Calendar Applet
(Contact call).

LS Home Page Calendar
Applet-Mobile|
@Accountname+@Date

NULL

N/A

Supports clicking on the dynamic
activity in the Calendar applet.

ClickOnChart
You use the ClickOnChart keyword to drill down on a required series or category, provided by the user, on a Chart.

Signature
The ClickOnChart keyword supports the following signature:

ClickonChart(AppletRN, Series;Category)

Desktop Examples
The following table describes how to use the ClickOnChart keyword in desktop applications.

Target Object Inputs Closing Action Comments

Oppty Chart Applet - Campaign
Analysis

1; 0

N/A Drills down on the chart based on the series and
category specified by the user.

127

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Mobile Examples
The ClickOnChart keyword does not apply to mobile applications.

ClickSyncButton
Depending on user provided options, you use the ClickSyncButton keyword to click on the Sync button to switch from
offline to online mode or from online to offline mode. The keyword also verifies the state of the application after the
specified navigation.

Signature
The ClickSyncButton keyword supports the following signature:

ClickSyncButton(RnofSyncButton,RnofOfflineOptions;RnofStateoftheApplication)

Desktop Examples
The ClickSyncButton keyword does not apply to desktop applications.

Mobile Examples
The following table describes how to use the ClickSyncButton keyword to switch between online and offline modes in
mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

GoOffline

NULL;Offline

N/A

Clicks the Sync button and moves to offline mode.

GoOffline

uploadGoOnline;Online

N/A

Clicks the Sync button and selects the option
uploadGoOnline in offline mode.

GoOffline

syncStayOffline;Online

N/A

Clicks the Sync button and selects the option
syncStayOffline in offline mode.

GoOffline

uploadStayOffline;Online

N/A

Clicks the Sync button and selects the option
uploadStayOffline in offline mode.

ClickTopNotification
You use the ClickTopNotification keyword to click and drill down on the first unread message in the notifications list. You
also use the keyword to click the Mark All as Read option in the notifications list, and then close the notifications list.

Signature
The ClickTopNotification keyword supports the following signature:

128

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

ClickTopNotification(MessagebroadcastRN,Expectedmessage,Close/KeepOpen)

Note: The user must click on Mark All as Read option before using the click operation on any message.

ClickTopNotication checks for notification messages for up to ten iterations (with an interval of one minute for each of
the iterations).

Desktop Examples
The following table describes how to use the ClickTopNotification keyword to drill down on the first unread message in
the notifications list.

Target Object Inputs Closing Action Comments

MsgBrdCstIcon

Account_10142015_041155918

Close

Clicks the first unread message in the notifications
list, and closes the control.

MsgBrdCstIcon

Mark All As Read

Close

Clicks the Mark all as Read option in the notifications
list, and closes the control.

MsgBrdCstIcon

Mark All As Read

KeepOpen

Clicks the Mark all as Read option in the notifications
list, and keeps the control open.

MsgBrdCstIcon

NULL

Close

Closes the notification control.

MsgBrdCstIcon

Account_10142015_041155918

KeepOpen

Clicks the first unread message in the notifications
list and keeps the control open.

Mobile Examples
The ClickTopNotification keyword does not apply to mobile applications.

ColumnsDisplayed
You use the ColumnsDisplayed keyword to specify the columns to appear in a list applet, and in what order. You use the
keyword to move columns from the Available to the Selected list (or from the Selected to the Available list), and to move
columns up and down so that the column order changes as required. The following actions are supported: Save, Reset,
and Cancel.

Signature
The ColumnsDisplayed keyword supports the following signature:

ColumnsDisplayed(AppletRN|ColumnsDisplayedRN,Select:columnName1|columnName2|..;
DeSelect:columnName1|columnName2|..;
Order:columnName|Up/Down/Top/Bottom,RN (Save/Cancel/Reset Defaults))

129

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

where:

• The value in columnName must be used for desktop applications.

• The display text in columnName must be used for mobile applications.

Desktop Examples
The following table describes how to use the ColumnsDisplayed keyword to move columns in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|
Columns Displayed (SWE)

Select:Account
Team;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Adds the Account Team column
to the list applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;DeSelect:Account
Team;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Hides the Account Team column
to the list applet.

SIS Account List Applet|
Columns Displayed (SWE)

Select:ALL;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Adds all columns to the list
applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;DeSelect:ALL;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Hides all columns to the list
applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;Order:Account
Team|UP

Columns Displayed Popup Applet
(SWE).ButtonSave

Orders the columns by moving
one position (up) in the list applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;Order:Account
Team|DOWN

Columns Displayed Popup Applet
(SWE).ButtonSave

Orders the columns by moving
one position (down) in the list
applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;Order:Account
Team|TOP

Columns Displayed Popup Applet
(SWE).ButtonSave

Moves the column to the first
position in the list applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;Order:Account
Team|BOTTOM

Columns Displayed Popup Applet
(SWE).ButtonSave

Moves the column to the last
position in the list applet.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonCancel

Opens the ColumnDisplayed
applet, and clicks Cancel.

SIS Account List Applet|
Columns Displayed (SWE)

NULL;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonReset

Opens the ColumnDisplayed
applet and clicks Reset.

SIS Account List Applet|
Columns Displayed (SWE)

Select:Account
Team;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonReset

Move the column to the last
position in the list applet and
clicks Reset.

130

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Mobile Examples
The following table describes how to use the ColumnsDisplayed keyword to move columns in mobile applications (on
mobile devices).

Target Object Inputs Closing Action Comments

SIS Account List Applet|Columns
Displayed (SWE)

Select:Account Team;NULL;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Adds the Account Team column
to the list applet.

SIS Account List Applet|Columns
Displayed (SWE)

NULL;DeSelect:Account
Team;NULL

Columns Displayed Popup Applet
(SWE).ButtonSave

Hides the Account Team column
to the list applet.

SIS Account List Applet|Columns
Displayed (SWE)

NULL;NULL;Order:Account Team|
UP

Columns Displayed Popup Applet
(SWE).ButtonSave

Orders the columns by moving
one position (up) in the list applet.

SIS Account List Applet|Columns
Displayed (SWE)

NULL;NULL;Order:Account Team|
DOWN

Columns Displayed Popup Applet
(SWE).ButtonSave

Orders the columns by moving
one position (down) in the list
applet.

SIS Account List Applet|Columns
Displayed (SWE)

NULL;NULL;Order:Account Team|
TOP

Columns Displayed Popup Applet
(SWE).ButtonSave

Moves the columns to the first
position in the list applet.

SIS Account List Applet|Columns
Displayed (SWE)

NULL;NULL;Order:Account Team|
BOTTOM

Columns Displayed Popup Applet
(SWE).ButtonSave

Moves the columns to the last
position in the list applet.

CompareValue
You use the CompareValue keyword to compare a variable value with the expected value. The expected value can be a
variable or value.

Signature
The CompareValue keyword supports the following signature:

CompareValue(@Variable|Operator|value (or) @Variable)

Operator can be one of the following characters or values:

• = (equals)

• > (greater than)

• < (less than)

• <= (less than or equal to)

• >= (greater than or equal to)

• contains

• startswith

131

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

• endswith

Desktop Examples
The following table describes how to use the CompareValue keyword to compare a variable value with the expected
value for desktop applications.

Target Object Inputs Closing
Action

Comments

N/A

@var1|>=|3.56

N/A

Verifies a variable value by comparing it with the
expected value 3.56.

N/A

@Var1|=|@Var2

N/A

Verifies a variable value by comparing it with the
expected value.

N/A

@Var|startswith|nc

N/A

Verifies a variable value by comparing it with the
expected value that starts with nc.

N/A

@Var|endswith|nc

N/A

Verifies a variable value by comparing it with the
expected value that ends with nc.

N/A

@Var|=|{[123]}

N/A

Verifies a variable value by comparing it with the
expected value.

N/A

@Var|=|"text123;

N/A

Verifies a variable value by comparing it with the
expected value text123.

Mobile Examples
The following table describes how to use the CompareValue keyword to compare a variable value with the expected
value for mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

N/A

@var1|>=|3.56

N/A

Verifies a variable value by comparing it with the
expected value 3.56.

N/A

@Var1|=|@Var2

N/A

Verifies a variable value by comparing it with the
expected value.

N/A

@Var|startswith|nc

N/A

Verifies a variable value by comparing it with the
expected value that starts with nc.

N/A

@Var|endswith|nc

N/A

Verify a variable value by comparing it with the
expected value that ends with nc.

132

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

N/A

@Var|=|{[123]}

N/A

Verifies a variable value by comparing it with the
expected value.

N/A

@Var|=|"text123;

N/A

"Verifies a variable value by comparing it with the
expected value text123.

CreateRecord
You use the CreateRecord keyword to create a new record by entering values into one or more fields in a list or form
applet. The keyword fails in list applets if the sequence Id is automatically generated when a user tries to create a new
record.

Signature
The CreateRecord keyword supports the following signature:

CreateRecord(AppletRN|Button(RN)|[RowNum],FieldRN(1..N)|Value(1...N) OR
Variable,RN of Save record in AppletMenu)

Note the following about the CreateRecord keyword signature:

• The row number is optional.

• The keyword supports:

◦ Unique values by adding the '$' symbol at the end of the text.

◦ Date format like Today,Today+1,Today-1.

◦ Variables like @var1, @var2 and numbers.

Desktop Examples
The following table describes how to use the CreateRecord keyword to create a new record in list and form applets in
desktop applications.

Target Object Inputs Closing Action Comments

Contact List Applet|NewRecord

Last Name|last,First Name|first

WriteRecord(SWE)

Creates a record in the list
applet.

SIS Account List Applet|
NewRecord

Name|D$,Account Status|Red
Customer

WriteRecord(SWE)

Creates a record in the list
applet.

Contact Form Applet|NewRecord

LastName|@var1,FirstName|first

WriteRecord(SWE)

Creates a record in the form
applet.

133

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Contact List Applet|NewRecord|3

Last Name|@Variable

WriteRecord(SWE)

Creates a record in the third
row in the list applet.

Mobile Examples
The following table describes how to use the CreateRecord keyword to create a new record in list and form applets in
mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Opportunity Form Applet -
Mobile|New

Name|John$,Currency|USD,CloseDate|
11|12|12

WriteRecord

Creates a record in the form
applet.

CG Account List Applet - Mobile|New

Name|abc

WriteRecord

Creates a record in the list
applet.

CG Account List Applet - Mobile|New|4

Name|abc

WriteRecord

Creates a record in the fourth
row in the list applet.

CustomExtension
You use the CustomExtension keyword to run a custom extension JAR file by entering the requisite ClassName and
inputs to it, and providing the output variables for the return values from the program. To abort the test script, use the
Abort-on-Fail end action. The default end action is Continue-on-Fail.

Signature
The CustomExtension keyword supports the following signature:

CustomExtension(ClassName,Input Values/Output Variables,Abort-on-Fail/Continue-on-Fail)

Note the following about the CustomExtension signature inputs and closing actions.

• Target Object. Provide a fully qualified Custom Class Name.

• Inputs. The following inputs are required:

◦ NULL or a comma separated list of input values; and

◦ NULL or a comma separated list of output variable names.

• Closing Action. The closing action for the Custom Class Name (or the target object) can be:

◦ Abort-on-Fail (that is, abort test script execution).

◦ Continue-on-Fail (that is, continue with the next step).

Continue-on-Fail is the default.

134

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note: Make sure to backup your extensions folder during a DISA upgrade, install, or uninstall process. For more
information on how to build and deploy a custom extension JAR file, see Extending Keyword Automation Capabilities.

Desktop and Mobile Examples
The following table describes how to use the CustomExtension keyword in desktop and mobile applications.

Target Object Inputs Closing Action Comments

com.siebel.customobject

value1;@outvalue1;IPH3

Abort-on-Fail

ClassName with no input/output
variables

com.siebel.login

value1;@outvar1;IPH3

Abort-on-Fail

ClassName with one value

com.siebel.objclick

value1,value2;@outvar1,
@outvar2;IPH3

Continue-on-Fail

ClassName with one or more values

com.siebel.linkclick

@var1,@var2;NULL;IPH3

Continue-on-Fail

ClassName with variables

Handling SSO using CustomExtension:

• Similar to PortalApplication, SSO reserved word is supported in Launch Keyword. If SSO is used launch
Keyword will only launch the application but will not perform login.
SSO User Id and Passwords can be provided in Parameters applet of Test Execution. Automatic variables with
same names as Parameters and initialized with respective Values are created by framework.

• Implement program to perform SSO login, and invoke via CustomExtension keyword. Pass the SSO credentials
to program using variables automatically created from Parameters applet.

Test Step
Sequence

Description Action Target Object Inputs End
Action

1

Launch without login

Launch

N/A

Siebel Universal Agent;SSO;Y

Test Step form applet:

Component Alias: Siebel Universal Agent

User Name: SSO

Clear Browser: Y

N/
A

2

Login steps

CustomExtension

Fully qualified Java class
name

Example:
com.mycompany.automation..mySSOLogin

@SSOUser,@SSOPwd;@out1;IPH3

Test Step form applet:

Class : Siebel Universal Agent

Continue-
on-
Fail

135

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Test Step
Sequence

Description Action Target Object Inputs End
Action

DoubleClick
You use the DoubleClick keyword to double click on an element in an applet.

Signature
The DoubleClick keyword supports the following signature:

DoubleClick(AppletRN|ItemRN)

Desktop Examples
The following table describes how to use the DoubleClick keyword in desktop applications.

Target Object Inputs Closing Action Comments

TNT Function Bookings Gantt Applet|@var1+-event
+@FunType+@FuncDate+@FunStart+@FunInvStatus

N/A

N/A

Double clicks on the element.

Mobile Examples
The DoubleClick keyword does not apply to mobile applications.

DragAndDrop
You use the DragAndDrop keyword to select a record in an applet and move it to a particular field.

Note the following about the DragAndDrop keyword signature:

• The records must be visible in the screen.

• In the mobile application, the keyword works only in landscape mode and both source and destination applets
must be active.

Signature
The DragAndDrop keyword supports the following signatures:

DragAndDrop (SourceAppletRN|NULL|Rowno, DestinationAppletRN|FieldRN)
DragAndDrop (SourceAppletRN|FieldRN, DestinationAppletRN|FieldRN)

136

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Desktop Examples
The following table describes how to use the DragAndDrop keyword to select a record from an applet and move it to a
specific field in desktop applications.

Target Object Inputs Closing
Action

Comments

FINCORP Deal Account Pick
Applet|NULL|3

Opportunity List Applet|Account

N/A

Selects a record from an applet and moves it
to a specific field.

Opportunity List Applet|Account

Opportunity List Applet|Primary
Revenue Win Probability

N/A

Swaps the columns in the applet.

NT Function Bookings Gantt
Applet|@var1-event+@FunType
+@FuncDate+@FunStart +
@FunInvStatus

TNT Function Bookings Gantt
Applet|@var2+UR

N/A

Selects a record from an applet and moves it
to a specific field in a Gantt Chart.

WebControlPalette|WebControl-
field

PreviewArea;placeholder-112

N/A

Selects a record from a field in the
Webcontrol palette and moves it to
placeholder-112 in the preview area of the
Web Tools Editor.

WT Repository Applet Edit Web
Layout Palette|NULL|2

PreviewArea;placeholder-112;IPH3

N/A

None.

Mobile Examples
The following table describes how to use the DragAndDrop keyword to select a record from an applet and move it to a
specific field in mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

FINCORP Deal Account Pick
Applet|NULL|3

Opportunity List Applet|Account

N/A

Selects a record from an applet and moves it
to a specific field.

LS Home Page Contact List
Applet - Mobile |NULL|3

LS Home Page Calendar Applet-
Mobile |slotCol-0-08:00

N/A

Selects a record from the call applet and
moves it to the calendar applet (according to
the specified rn).

Draw
You use the Draw keyword to capture the signature.

137

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Signature
The Draw keyword supports the following signature:

Draw(FieldRN)

Desktop and Mobile Examples
The following table describes how to use the Draw keyword to capture a signature in desktop and mobile applications.

Target Object Inputs Closing Action Comments

FieldRN

N/A

N/A

Captures a signature.

FileDownload
You use the FileDownload keyword to download (and export) a file.

Signature
The ServerConfig keyword supports the following signature:

FileDownload(FileName,ButtonRN/NULL,Save/Cancel)

The file downloads to the following location: C:\\temp\\Download_File.

Note: The Exefiles folder must be copied from the TestHarness before execution.

Desktop Examples
The following table describes how to use the FileDownload keyword to download a file in desktop applications.

Target Object Inputs Closing Action Comments

abc.txt

NULL

Save

Downloads the file.

export.csv

SWE Export Applet.btnNext

Cancel

Cancels the download pop-up window.

Mobile Examples
The FileDownload keyword does not apply to mobile applications.

138

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

FileUpload
You use the FileUpload keyword to attach and upload (import) a file.

Signature
The FileUpload keyword supports the following signature:

FileUpload(AppletRN|FieldRN(or)ButtonRN, FileName , ButtonRN/NULL)

Note the following about the FileUpload keyword signature:

• To upload a file, the file must be placed in the FileUpload folder at the TestHarness location.

• The Exefiles folder must be copied from the TestHarness before execution.

Desktop Examples
The following table describes how to use the FileUpload keyword to upload a file to the FileUpload folder in desktop
applications.

Target Object Inputs Closing Action Comments

SWE Import Applet|file

InputFileSales.txt

NULL

Uploads the Sales.txt file to the FileUpload
folder.

UCM List Import Jobs Form Applet - Job
Details|FileName

output.csv

NULL

Uploads the output.csv file to the FileUpload
folder.

Mobile Examples
FileUpload Attachment List Applet - Mobile|New File IMG_002.PNG;IPH2;IPH3 NULL

GetAboutRecord
You use the GetAboutRecord keyword to obtain parameter values from the About Record pop-up window, invoked from
the Applet Menu, and store the values in a user variable.

Signature
The GetAboutRecord keyword supports the following signature:

GetAboutRecord(AppletRN|RN of AboutRecord,RN of Label(1..N)|Variable(1..N))

Desktop Examples
The following table describes how to use the GetAboutRecord keyword to obtain and store information from the About
Record pop-up window in desktop applications.

139

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

SIS Account List Applet|About
Record (SWE)

Row:|@var1

N/A

Stores the row field value from the AboutRecord
pop-up window in a variable.

SIS Account Entry Applet|About
Record (SWE)

Row:|@var1,Conflict:|@var2,
Created_On:|@var3,Created By:|
@var4

N/A

Stores the Row, Conflict, Created_On, and
CreatedBy field values from the About Record
pop-up window in a variable.

Mobile Examples
The following table describes how to use the GetAboutRecord keyword to obtain and store information from the About
Record pop-up window in mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

SHCE Sales Account List Applet -
Mobile|About Record (SWE)

RowId|@var1,UpdatedOn:|@var2,
CreatedOn:|@var3

N/A

Stores the Row, UpdatedOn, Created_on field
values from the About Record pop-up window
in a variable.

GetChartType
You use the GetChartType keyword to obtain the type of chart in an applet and store the value in a user variable.

Signature
The GetChartType keyword supports the following signature:

GetChartType (AppletRN, @type)

Desktop Examples
The following table describes how to use the GetChartType keyword in desktop applications to obtain and store
information from the Chart type.

Target Object Inputs Closing Action Comments

Oppty Chart Applet - Campaign Pipeline
Analysis

@Var;IPH2;IPH3

N/A

Stores the Chart type value in a variable.

Mobile Examples
The GetChartType keyword does not apply to mobile applications.

140

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

GetConfigParam
You use the GetConfigParam keyword to read the values in the config.xml file. The keyword retrieves one value at a
time, given the correct parameter name (tagname).

Signature
The GetConfigParam keyword supports the following signature:

Tag name till value/Null;?Required Tagname;Variable

Note the following about the GetConfigParam keyword signature:

• All three inputs are mandatory to enter.

• If the attribute value to be obtained from the config.xml file is available under any parent tag, then provide the
application name in the Inputs column.

• If the attribute value to be obtained from the config.xml file is not available under any parent tag (directly), then
provide NULL in the Inputs column.

GetRecordCount
You use the GetRecordCount keyword to obtain the total number of records and store the value in a user variable.

Signature
The GetRecordCount keyword supports the following signature:

GetRecordCount(Applet RN|RN of Recordcount Menu item/NULL,Variable)

Note: Use NULL for the applets without menu.

Desktop Examples
The following table describes how to use the GetRecordCount keyword to obtain the total number of records and store
the value in a user variable in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|Record Count (SWE)

@Var1

N/A

Stores the total record count in a user variable.

SIS Account List Applet|NULL

@Var1

N/A

Uses NULL for the applets without menu.

141

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Mobile Examples
The following table describes how to use the GetRecordCount keyword to obtain the total number of records and store
the value in a user variable in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
Record Count (SWE)

@recordcount

N/A

Stores the total record count in a user defined
variable.

SHCE Sales Account List Applet - Mobile|

@Var1

N/A

Uses NULL for the applets without a menu.

GetState
You use the GetState keyword to obtain the state of a specified object and store the state in a variable. The state of an
object can be Read-only, Enabled, Disabled, Editable, and so on.

Signature
The ServerConfig keyword supports the following signatures:

GetState(AppletRN|FieldRN|[RowNum],@Variable)
GetState(AppletRN|MenuButtonRN|MenuItemRN,@Variable)
GetState(ApplicationLevelMenuRN|ApplicationLevelMenuItemRN,@Variable)

Desktop Examples
The following table describes how to use the GetState keyword to obtain the state of a specified object and store the
state in a variable in desktop applications.

Target Object Inputs Closing Action Comments

SIS Product List Admin Applet|Release

@variable1

N/A

Stores the Release state in a variable.

SIS Product List Admin Applet|XA Class Name|3

@variable2

N/A

Stores XA Class Name state for the third record
in a variable.

SIS Product List Admin Applet|
SiebAppletMenu|Delete Record (SWE)

@variable3

N/A

Stores the Delete record (SWE) state in a
variable.

Menu-File|File - Send Fax

@variable4

N/A

Stores the File - Send Fax state in a variable.

Mobile Examples
The following table describes how to use the GetState keyword to obtain the state of a specified object and store the
state in a variable in mobile applications (on mobile devices).

142

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
QuerySrchSpec

@var

N/A

Gets the state of a variable and stores the state
in @var.

SHCE Sales Account List Applet - Mobile|
SiebAppletMenu|Record Count (SWE)

@var

N/A

Gets the state of a menu item and stores the
state in @var.

GetValue
You use the GetValue keyword to obtain the value from a specified object and store the value in a variable.

Signature
The GetValue keyword supports the following signature:

GetValue(AppletRN|FieldRN/ClassName/ThreadbarID|[RowNum/Tileindex],@Variable)

Note: If the action is to be performed on tile applets, then the Tile index or row number must start from one.

Desktop Examples
The following table describes how to use the GetValue keyword to obtain the value from the specified object and store
the value in a variable in desktop applications.

Target Object Inputs Closing
Action

Comments

AppletRN|ClassName|[RowNumber]

@Var

N/A

Gets a value based on Class Name.

SIS Account List Applet|Account Status|2

@Var

N/A

Gets a value from the Account Status field in the
second row and stores the value in a variable.

Opportunity Form Applet - Child|SalesRep2

@Var

N/A

Gets a value from the SalesRep2 field in the form
applet and stores the value in a variable.

Opportunity Form Applet - Child|Description2

@Var

N/A

Gets the value from the Description2 field in the form
applet and stores the value in a variable.

NULL|Save Query As Applet._SweQueryName

@Var

N/A

Gets a value from the pop-up input field.

SIS Account List Applet|Name

@Var[3]

N/A

Gets a value of first three records in the Accounts list
applet.

143

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Mobile Examples
The following table describes how to use the GetValue keyword to obtain the value from a specified object and store the
value in a variable in mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

SHCE Sales Account List Applet - Mobile|Name|
4

@accountname

N/A

Gets a value from the Name field in the fourth row
and stores the value in the account name variable.

SHCE Sales Account List Applet - Mobile|Name

@accountname

N/A

Gets a value from the Name field in the first row and
stores the value in the account name variable.

GetValueFromMenuPopup
You use the GetValueFromMenuPopup keyword to read values from application level pop-up menus.

Signature
The GetValueFromMenuPopup keyword supports the following signature:

GetValueFromMenuPopup(MenuRN|MenuItemRN,RN_Label(1..N)|Variable(1..N))

Desktop Examples
The following table describes how to use the GetValueFromMenuPopup keyword to read values from application level
pop-up menus in desktop applications.

Target Object Inputs Closing
Action

Comments

Help|Help - Technical Support

Application Version|@var1

N/A

Gets the value in the Application Version field
when Help - Technical Support is selected from the
application-level menu.

Help|Help - About Record

Created By|@var1

N/A

Gets the value in the CreatedBy field when Help, then
Technical Support is selected from the application-
level menu.

Mobile Examples
The GetValueFromMenuPopup keyword does not apply to mobile applications.

144

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

GoToSettings
You use the GoToSettings keyword to view and change the default settings of a user profile.

Signature
The GoToSettings keyword supports the following signature:

Gotosettings()

Desktop and Mobile Examples
The following table describes how to use the GoToSettings keyword to view and change the default settings of a user
profile in desktop and mobile applications.

Target Object Inputs Closing Action Comments

N/A

N/A

N/A

Navigates to the Settings (user profile) screen.

GoToThreadbarView
You use the GoToThreadbarView keyword to move to a view in the threadbar.

Signature
The GoToThreadbarView keyword supports the following signature:

GoToThreadbarView(Id of Threadbar Link)

Desktop Examples
The following table describes how to use the GoToThreadbarView keyword to move to a view in the threadbar in
desktop applications.

Target Object Inputs Closing Action Comments

Views_tb_0

N/A

N/A

Clicks on the specified threadbar link.

Views_tb_1

N/A

N/A

Clicks on the specified threadbar link.

Mobile Examples
The GoToThreadbarView keyword does not apply to mobile applications.

145

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

GoToView
You use the GoToView keyword to move to a specified view from the Tab view, Tree view or Site Map view.

Signature (Desktop)
The GoToView keyword supports the following signature on desktop devices:

GoToView(ScreenRN|ViewRN|Level)

Note the following:

• To go to Sitemap: ScreenRN|View RN|NULL

• To go to ScreenTab: ScreenRN|View RN|L1

• To go to TabView: NULL|ViewRN|L2/L3/L4

Note the following about the GoToView keyword signature:

• View levels can be L1, L2, L3, and L4.
◦ L1 means First Level View Bar , Hamburger Menu in Aurora Theme or Top level Tabs as in Tabbed views.

◦ L2 refers to the Second Level view bar.

◦ L3 refers to the Thrid Level view bar .

◦ L4 refers to the Fourth Level view bar .

• When navigating to any view without going via Sitemap , ScreenRN should be NULL and should mention the
Level of the destination View (L1/L2/L3/L4)

• Before going to the next level, the user must be in the immediate previous level. For example, if the user has to
go to level 3, the user must be in level 2.

Signature (Mobile)
The GoToView keyword supports the following signature on mobile machines:

GotoView(ViewRN)

Desktop Examples
The following table describes how to use the GoToView keyword to move to a specified view in desktop applications.

Target Object Inputs Closing Action Comments

NULL|Accounts Screen|L1

N/A

N/A

Navigates to the accounts screen, first level
view bar.

NULL|Account List View|L2

N/A

N/A

Navigates to the accounts screen, second
level view bar.

NULL|TNT SHM Opportunity Agenda View|L3

N/A

N/A

Navigates to the accounts screen, third level
view bar.

146

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

NULL|Quote Item XA View|L4

N/A

N/A

Navigates to the accounts screen, fourth
level view bar.

Sitemap.Asset Management Screen|Sitemap.Asset
Mgmt - Assets View|NULL

N/A

N/A

Clicks on the Site Map links.

Mobile Examples
The following table describes how to use the GoToView keyword to move to a specified view in mobile applications (on
mobile devices).

Target Object Inputs Closing Action Comments

Pharma Contact List View - Mobile

N/A

N/A

Navigates to the Contact List view.

HierarchicalList
You use the HierarchicalList keyword to expand and collapse the Hierarchical List applet, including both parent and child
records based on the row number provided. You also use the keyword to obtain the total number of child records in the
Hierarchical List applet.

Signature
The HierarchicalList keyword supports the following signature:

HierarchicalList(AppletRN|Rownum,Expand/Collapse/GetChildItemsCount|Variable)

Note the following about the HierarchicalList keyword signature:

• Expand is for expanding the record.

• Collapse is for collapsing the record.

• GetChildItemsCount|@var is for expanding and taking a child count of the record irrespective of whether the
record has a child or not.

Desktop Examples
The following table describes how to use the HierarchicalList keyword to expand, collapse and get the child count in
desktop applications.

Target Object Inputs Closing Action Comments

Order Entry - Line Item List Applet (Sales)|
1

Expand

N/A

Expands the first record.

147

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Order Entry - Line Item List Applet (Sales)|
8

Collapse

N/A

Collapses the eighth record.

Order Entry - Line Item List Applet (Sales)|
2

GetChildItemsCount|
Variable

N/A

Expands the second record and reads the child
count in the record.

Mobile Examples
The HierarchicalList keyword does not apply to mobile applications.

InboundWebServiceCall
You use the InboundWebServiceCall keyword to read an XML request from a .xml file, post the request to the server,
and save the XML response from the server. The keyword also verifies the expected TagName and value in the XML
response.

Signature
The InboundWebServiceCall keyword supports the following signature:

Inboundwebservicecall(XMLFIle;Tagname|@VAR1/Value,Tagname2|@var2/Value/ NULL;Tagname|Value/
@var/@STOREvar1,Tagname|value/@var/@STOREvar2)

Note the following about the InboundWebServiceCall keyword signature:

• You must provide the full Tagname in the signature.

• The variable name must begin with @STORE to store the response value of a tagname into the variable.

For EAI Webservice calls over HTTPS, Application CA certificate must be imported into Java default truststore (cacerts).
Sample command to complete the step:

<JAVA_HOME>\bin\keytool -import -file
<PATH_TO_CERTIFICATE_FILE> -alias "<Alias>" -keystore
"<JAVA_HOME>\lib\security\cacerts"

Replace JAVA_HOME with JRE install location (for example: C:\DISA\jre) and PATH_TO_CERTIFICATE_FILE should be
replaced with CA certificate file location. You may provide a name for the certificate by replacing <Alias>.

XML Structure
To pass the dynamic variable into the XMLFIle, use the following XML structure:

<tagname>$var</tagname>
<tagname>="$var"</tagname>

For unit run, update EAI section in unitconfig.xml as follows:

<EAI>
 <EAI-SERVERNAME>Component Alias</EAI-SERVERNAME>
 <EAI-USERNAME>Username</EAI-USERNAME>
 <EAI-PASSWORD>Password</EAI-PASSWORD>
</EAI>

148

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Desktop Examples
The following table describes how to use the InboundWebServiceCall keyword to read, post, and save an XML request
and then verify the response in desktop applications.

Target
Object

Inputs Closing
Action

Comments

N/A

Prod1.xml;swip:WorkspaceName|
@var,swip:WorkspaceReuseFlag|
@var2;ActiveFlag|@STOREVAR

In the Test Step Applet:

RequestXMLFile = Prod1.xml

TagName to
Send=swip:WorkspaceName

Variable=@var

TagName to
Send=swip:WorkspaceReuseFlag

Variable=@var2

TagName to Verify=ActiveFlag

Value/Variable/
@Storevar=@STOREVAR

N/A

Stores the tagname value in
the response (ActiveFlag) in the
@STOREVAR variable.

N/A

Prod1.xml;swip:WorkspaceName|
@var,swip:WorkspaceReuseFlag|
@var2;ActiveFlag|Y

In the Test Step Applet:

RequestXMLFile = Prod1.xml

TagName to
Send=swip:WorkspaceName

Variable=@var

TagName to
Send=swip:WorkspaceReuseFlag

Variable=@var2

TagName to Verify=ActiveFlag

Value/Variable/@Storevar=Y

N/A

Passes the values to a SOAP request
dynamically.

N/A

Currency.xml;NULL;ConversionRateResult|
0.0161

In the Test Step Applet:

RequestXMLFile = Currency.xml

TagName to Send=NULL

N/A

Sends the XML request and verifies the
response.

149

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target
Object

Inputs Closing
Action

Comments

Variable=

TagName to
Verify=ConversionRateResult

Value/Variable/@Storevar=0.0161

N/A

Currency.xml;swip:WorkspaceName|
@var,swip:WorkspaceReuseFlag|
@var2;ActiveFlag|@var2

In the Test Step Applet:

RequestXMLFile = Currency.xml

TagName to
Send=swip:WorkspaceName

Variable=@var

TagName to
Send=swip:WorkspaceReuseFlag

Variable=@var2

TagName to Verify=ActiveFlag

Value/Variable/@Storevar=@var2

N/A

Passes the values to a SOAP request
dynamically.

N/A

new.xml;NULL;OrderItem|ProductId|
88-46TS9:ActionCode|@STOREsdf

In the Test Step Applet:

RequestXMLFile = new.xml

TagName to Send=NULL

Variable=

TagName to Verify=OrderItem|
ProductId|88-46TS9:ActionCode

Value/Variable/
@Storevar=@STOREsdf

N/A

Stores ActionCode from Order item
tags in the @STOREsdf variable with
the unique productID 88-46TS9.

N/A

InactiveWS.xml;con:FirstName|
#FirstName,con:LastName|
#LastName;faultstring|
@STOREmessageIn the Test
Step Applet:RequestXMLFile
= InactiveWS.xmlTagName to
Send=con:FirstNameVariable/
Value=#FirstName(FirstName is the
data set column Name)

TagName to
Send=con:LastNameVariable/

N/A

Illustrates referencing Data Set Values

150

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target
Object

Inputs Closing
Action

Comments

Value=#LastName (LastName is the
data set column Name)

TagName to Verify=faultstringValue/
Variable/@Storevar=@STOREmessage

Mobile Examples
The InboundWebServiceCall keyword does not apply to mobile applications.

InputValue
You use the InputValue keyword to enter a value into a field. The keyword supports unique values by adding the dollar
($) symbol to the end of the text. For example, if the input is john$, then a random unique value appends like "john548".

The InputValue keyword supports the following special characters and operators:

• * (asterisk). For example: like AAX*.

• = (equals). For example: date=Today+1.

• + (plus). For example: Today+1.

• - (minus). For example: Today-1.

• LIKE, like. For example: date format like, LIKE AAX*.

• OR. For example: @var1 OR @var2.

• Numerals zero to nine (0 - 9).

Signature
The InputValue keyword supports the following signature:

InputValue(AppletRN|FieldRN|[Active_Record/Tileindex/RowNum],Value OR Variable)

Note the following about the HierarchicalList keyword signature:

• RowNumber is optional. If RowNum is not specified, then RowNum defaults to the first row.

• Active_Record obtains the row number of the active record during execution.

• If the action is to be performed on tile applets, then the tile index or row number must start from one.

• !+! is the delimiter used for concatenating dynamic variable in the middle of input data. For more information,
see the examples in the following table.

Desktop Examples
The following table describes how to use the InputValue keyword to enter values into fields in desktop applications.

151

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SIS Account list Applet|Name

john$

N/A

Creates a unique value when $ is appended to
the end of the value.

SIS Account list Applet|Name

Test!+!@storedVar!+!Kwd

N/A

Appends the dynamic variable value(storedVar)
in between static text by using the delimiter !+!.

SIS Account list Applet|Name|Active_
Record

john$

N/A

Enters the value in to the field for the
highlighted row in the list applet.

Opportunity Form Applet - Child|
CloseDate

today+10

N/A

Enters the today+10 value into the CloseDate
Field.

SIS Account List Applet|Main Phone
Number

LIKE 650

N/A

Enters the phone number LIKE 650*.

NULL|Save Query As Applet._
SweQueryName

Test1234

N/A

Enters the value in to the pop-up input field.

SIS Account list Applet|Name

NULL

N/A

Enters the empty value into the input field
(Name).

Mobile Examples
The following table describes how to use the InputValue keyword to enter values into fields in mobile applications (on
mobile devices).

Target Object Inputs Closing Action Comments

SHCE Account Entry Applet - Mobile|Name

john$

N/A

Creates a unique value when $ is appended to the
end of the value.

SHCE Sales Account List Applet - Mobile|
Location|2

Paris

N/A

Enters the value into the second row of the list applet.
For example, Paris.

InvokeAppletMenuItem
You use the InvokeAppletMenuItem keyword to call a menu item from an applet-level menu in a list or form.

Signature
The InvokeAppletMenuItem keyword supports the following signature:

InvokeAppletMenuItem(AppletRN|RN of Menu Item,(RN of Closing Action/NULL))

152

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note the following about the InvokeAppletMenuItem keyword signature:

• The Confirmation dialog box does not close after you delete a record.

• The VerifyError keyword must be used after the deletion of any record.

Desktop Examples
The following table describes how to use the InvokeAppletMenuItem keyword to call a menu item from an applet-level
menu in a list or form in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|New Record
(SWE)

N/A

NULL

Invokes the New Record applet menu item with no
action in the pop-up window that appears.

SIS Account List Applet|Delete Record
(SWE)

N/A

NULL

Invokes the Delete Record applet menu item with
no action in the pop-up window that appears.

SIS Account List Applet|Record Count
(SWE)

N/A

CloseApplet

Invokes the Record Count applet menu item where
users must click on OK in the pop-up window that
appears.

SIS Account List Applet|About Record
(SWE)

N/A

CloseButton

Invokes the About Record applet menu item where
users must click on OK in the pop-up window that
appears.

Mobile Examples
The following table describes how to use the InvokeAppletMenuItem keyword to call a menu item from an applet-level
menu in a list or form in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
Record Count (SWE)

N/A

CloseApplet

Invokes the Record Count applet menu item where
users must click OK in the pop-up window that
appears.

SHCE Sales Account List Applet - Mobile|Get
Bookmark URL (SWE)

N/A

CloseApplet

Invokes the Get Bookmark URL applet menu item
where users must click OK in the pop-up window that
appears.

InvokeMenuBarItem
You use the InvokeMenuBarItem keyword to call a menu item from the application-level menu.

153

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Signature
The InvokeMenuBarItem keyword supports the following signature:

InvokeMenuBarItem(MenuRN|MenuItemRN)

Desktop Examples
The following table describes how to use the InvokeMenuBarItem keyword to call a menu item from the application-
level menu in desktop applications.

Target Object Inputs Closing Action Comments

Menu-Help|Help - Technical Support

IPH1;IPH2 ;IPH3

OK/CANCEL/NULL

Selects Technical Support from the
(application-level) Help menu.

Mobile Examples
The InvokeMenuBarItem keyword does not apply to mobile applications.

InvokeObject
You use the InvokeObject keyword to call UI objects such as PickApplet, MVG, Calculator, Currency Image, and so on.

Signature
The InvokeObject keyword supports the following signature:

InvokeObject(AppletRN|FieldRN|[RowNum]/[Active_Record])

Note: The Active_Record obtains the row number of the active record during the execution.

Desktop Examples
The following table describes how to use the InvokeObject keyword to call UI objects in desktop applications.

Target Object Inputs Closing Action Comments

SIS Product List Admin Applet|Product Line

N/A

N/A

Invokes the list applet field object.

SIS Product List Admin Applet|Product Line|3

N/A

N/A

Invokes the list applet field object in the third
row.

SIS Product List Admin Applet|Product Line|
Active_Record

N/A

N/A

Invokes the list applet field object from the
current active row.

Opportunity Form Applet - Child|Account2 N/A N/A Invokes the form applet field object.

154

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Opportunity Form Applet - Child|Revenue2

N/A

N/A

Invokes a Form applet field object.

NULL|Revenue2

N/A

N/A

Invokes the object in a pop-up window.

Mobile Examples
The following table describes how to use the InvokeObject keyword to call UI objects in mobile applications (on mobile
devices).

Target Object Inputs Closing Action Comments

SHCE Sales Opportunity List Applet ReadOnly -
Mobile|Primary Revenue Amount|1

N/A

N/A

Invokes the Currency pop-up window.

SHCE Sales Opportunity List Applet ReadOnly -
Mobile|Account

N/A

N/A

Invokes the drop-down list applet.

NULL|Currency Code

N/A

N/A

Invokes the Currency code dialog box.

InvokeREST
You use the InvokeREST keyword to test and issue REST API calls from within a test script. Using the InvokeREST
keyword (for example, to execute the API, verify and/or use the response) reduces the complexity and effort required in
automating REST APIs and integrations for automated testing. Note the following:

• For REST API calls over HTTPS, Application CA certificate must be imported into Java's default truststore
(cacerts). Sample command to complete the step:
<JAVA_HOME>\bin\keytool -import -file <PATH_TO_CERTIFICATE_FILE> -alias "<Alias>" -keystore "<JAVA_HOME>
\lib\security\cacerts"

Replace JAVA_HOME with JRE install location and PATH_TO_CERTIFICATE_FILE should be replaced with CA certificate
file location(for example: C:\DISA\jre). You may provide a name for the certificate by replacing <Alias>.
For information related to certificate import/truststore, refer to section, Communications Encryption in Siebel
Security Guide.

• InovkeREST Test Step can be added before a Launch Test Step. The REST URI alias in InvokeREST appears in
Test Execution Server Credentials applet as Application Alias.

• Provide REST Server details in the Test Execution record against the REST URI Alias in the "Server Credentials"
applet url: https://servername.com:port number/..., and specify the password in the Users applet against the
correct user id.
Ensure the Application Type is set to REST_URI from drop-down. If the value REST_URI is missing, add or activate
in Administration - Data → List of Values View.

155

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

• For a unit run (Play button on Test Script applet), update unitconfig.xml in DISA folders with following attributes
and appropriate values within OPTIONAL_PARAM node.

Example:

<APPLICATIONS>
 <APPLICATION>
 <APPLICATION-ALIAS>REST URI Alias</APPLICATION-ALIAS>
 <APPLICATIONTYPE-BROWSER>REST_URI</APPLICATIONTYPE-BROWSER>
 <URL>https://hostname:portname/siebel/v1.0</URL>
 <SERVER-OS-TYPE>Windows</SERVER-OS-TYPE>
 </APPLICATION>
</APPLICATIONS>
<USERS>
 <USER>
 <USERID>User_Name</USERID>
 <PASSWORD>Password</PASSWORD>
 </USER>
</USERS>

For multiple user IDs usage in InvokeREST keyword, USER node within USERS can be repeated.

Signature
The InvokeREST keyword supports the following signature:

InvokeREST(HTTP Method Name:URL_Alias, UserId|REST_Resource, Input JSON file name | values to be replaced in
 request body (comma separated); NULL, REST Response code to verify / One variable name or comma separated
 list of variables.)

The following table describes how to use the InvokeREST keyword to test and issue REST API calls from within a test
script.

Target Object Inputs Closing Action Comments

GET / POST / PUT / DELETE;
<REST URI Alias, userid> | REST
Resource

Input JSON file name | values
to be replaced in request body
(comma separated); NULL

REST Response code to verify /
One variable name or comma
separated list of variables.

Note: Variable names must
match the field names in the
REST response. If the field
name contains space, variables
name must be enclosed
within quotes, for example:
@"variable with space"

Issues the REST API call and
uses the Response to verify the
response code and/or read values
into variables.

Pre-defined and Auto-generated Variables for using or validating EAI/REST Response:

Assuming JSON response structure for REST API, Keyword framework provides few pre-defined variables and generates
new variables based on the response. It is important to note that the predefined and auto-generated variables (if
repeating) are reinitialized or overwritten with subsequent InvokeREST call. Hence, ensure to use the values prior to
subsequent InvokeREST call.

1. @StatusCode: Typically used in closing action to validate REST Response Code. For example, StatusCode:200 in
closing action will ensure that framework validates the response code to be 200.

156

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

2. @Errormsg: If provided during closing action, keyword framework can capture the error message for the cases
when REST API returns so.

3. @resp: The complete response from InvokeREST is captured with this predefined variable.
4. Fetching property values from JSON into Variables: Variables if provided in Closing Action, are matched

with the property names of JSON response and their values are updated accordingly. For example, if @Name is
provided in Closing Action, keyword framework will look-up the top-level JSON response for Name property
and copy the property value to the variable @Name.

Example 1
InvokeREST keyword Example 1 is shown in the following table.

InvokeREST Keyword Example

Target Object

GET;NEW_REST,SADMIN|data/Account/Account/88-347S25/Account Attachment?
inlineattachment=True

Method to Invoke: GET;NEW_REST,SADMIN

REST Resource: |data/Account/Account/88-347S25/Account Attachment?
inlineattachment=True

Inputs

NULL;NULL;IPH3

Request Body: NULL

Work space name/Any Search Spec: NULL

Choice of Closing Action

@StatusCode:200,@AccntFileSize,@"Accnt Attachment Id"

End Action: @StatusCode:200,@AccntFileSize,@"Accnt Attachment Id"

In this example, using the InvokeREST keyword, you may make an API request "data/Account/Account/88-347S25/Account
Attachment?inlineattachement=True" and capture the property AccntFileSize and Acct Attachment Id from the response
in variable as @AccntFileSize and @"Accnt Attachment Id".

The API request method is GET and the REST URL alias is provided using NEW_REST (any name of your choice, but
without spaces). In the Test Execution record, Server Credentials applet will be populated with NEW_REST and you may
update the REST URL appropriately. Please note that the complete REST URL will be formed by concatenating REST URL
and REST Resource provided with InvokeREST keyword.

Example 1 Output Response:

{
 "AccntFileSize":"89",
 "AccntFileName":"Test5555",
 "Comment":"",
 "Account Id":"88-347S25",
 "Id":"88-347S2Z",
 "AccntFileDate":"09/21/2022
01:54:10",
 "AccntFileDockStatFlg":"E",
 "AccntFileSrcType":"FILE",
 "AccntFileAutoUpdFlg":"Y",
 "AccntFileDockReqFlg":"N",
 "AccntFileExt":"txt",

157

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

 "AccntFileDeferFlg":"R",
 "AccntFileSrcPath":"",
 "Accnt Attachment
Id":"QXR0YWNobWVudCBmb3IgZGVtbw==",
 "Link":[
 {
 "rel":"self",
 "href":"https://asdfjkl:16690/siebe
l/v1.0/data/Account/Account/88-347S25/Ac
count Attachment/88-347S2Z",

 "name":"Account Attachment"
 },
 {
 "rel":"canonical",
 "href":"https://asdfjkl:16690/siebe
l/v1.0/data/Account/Account/88-347S25/Ac
count Attachment/88-347S2Z",

 "name":"Account Attachment"
 },
 {

 "rel":"parent",
 "href":"https://asdfjkl:16690/siebe
l/v1.0/data/Account/Account/88-347S25",

 "name":"Account"
 }
]
}

Example 2
InvokeREST keyword Example 2 is shown in the following table.

InvokeREST Keyword Example

Target Object

PUT;NEW_REST,SADMIN|data/Account/Account/88-347S25/Account Attachment/

Method to Invoke: PUT;NEW_REST,SADMIN

REST Resource: data/Account/Account/88-347S25/Account Attachment/

Inputs

Attachment.json;NULL;IPH3

Request Body: Attachment.json

Work space name/Any Search Spec: NULL

Choice of Closing Action

@StatusCode:200,@"items:Account Attachment:Id"

End Action: @StatusCode:200,@"items:Account Attachment:Id"

Note: @"items:Account Attachment:Id" indicates the hierarchy in JSON response i.e., Id is child of
Account Attachment which in turn is child property of items.

158

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Content of Attachment.json:

{
 "AccntFileName":"Test$,
 "AccntFileExt":"txt",
 "Accnt Attachment Id":"QXR0YWNobWVudCBmb3IgZGVtbw"
}

Ensure to place input JSON file (i.e. Attachment,json in this case) in the resources/invokerest folder (ensure same folder
structure in your Resources.zip attachment to Master Suite).

Example 2 Output Response:

{
 "items":{
 "Id":"88-347S25",
 "Account Attachment":{
 "Id":"88-347S2Z",
 "Accnt Attachment Id":"https://asdfjkl:16690/siebel/v1.0/data/Account/Account/88-347S25/Account
 Attachment/88-347S2Z?fields=Accnt Attachment Id",
 "Link":{
 "rel":"self",
 "href":"https://asdfjkl:16690/siebel/v1.0/data/Account/Account/88-347S25/Account Attachment/88-347S2Z",
 "name":"Account Attachment"
 }
 },
 "Link":{
 "rel":"self",
 "href":"https://asdfjkl:16690/siebel/v1.0/data/Account/Account/88-347S25",
 "name":"Account"
 }
 }
}

Example 3
InvokeREST keyword Example 3 is shown in the following table.

InvokeREST Keyword Example

Target Object

POST;NEW_REST,SADMIN|data/Account/Account

Method to Invoke: POST;NEW_REST,SADMIN

REST Resource: data/Account/Account

Inputs

data_POST.json|InvokeREST_Data_$, @var1; NULL;IPH3

Request Body: data_POST.json|InvokeREST_Data_$,@var1

Work space name/Any Search Spec: NULL

Choice of Closing Action

@items:Id,@items:Link:name

End Action: @items:Id,@items:Link:name

Content of data_POST.json:

{

159

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

 "Name": "InvokeREST_Data_$",
 "Primary Organization": "Millennium Institutional Finance Services IF ENU",
 "Location": "HQ-Distribution",
 "Description": "@var1",
 "Primary Organization Id": "1-1DG"
}

It is important to note that variable support is present with JSON file as well and keyword framework will make attempt
to replace content as required. For example, $ with InvokeREST_Data_ will be replaced with timestamp. Similarly, @var1 will
be replaced appropriately, provided the value is defined.

Note: If the variable name contains space, they should be within quotes appropriately as per JSON format. For
example, if the variable name is @"Modified Description", it should be present in JSON file as "Description" : "@
\"Modified Description\""

Example 3 Output Response:
{
 "items":{
 "Name":"InvokeREST_Data_10212022_032608182",
 "Id":"88-347S25",
 "Location":"HQ-Distribution",
 "Primary Organization Id":"1-1DG",
 "Primary Organization":"Millennium Institutional Finance Services IF ENU",
 "Description":"AccountData",
 "Link":{
 "rel":"self",
 "href":"https://asdfjkl:16690/siebel/v1.0/data/Account/Account/88-347S25",
 "name":"Account"
 }
 }
}

Example 4
InvokeREST keyword Example 4 is shown in the following table.

InvokeREST Keyword Example

Target Object

DELETE;NEW_REST,SADMIN|data/Account/Account/88-347S25/

Method to Invoke: DELETE;NEW_REST,SADMIN

REST Resource: data/Account/Account/88-347S25/

Inputs

NULL;NULL;IPH3

Request Body: NULL

Work space name/Any Search Spec: NULL

Choice of Closing Action

@StatusCode:200

End Action: @StatusCode:200

Example 4 Output Response:

160

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

{}

Example 5
Using the API /data/Quote/Quote, insert a record in Quotes using the method POST and fetch following Name, Primary
Organization, Quote Number and Revision in variables from the response.

InvokeREST Keyword Example

Target Object

POST;REST,SADMIN|data/Quote/Quote

Method to Invoke: POST;REST,SADMIN

REST Resource: data/Quote/Quote

Inputs

Name|QuoteName$,Primary Organization|ABC,Quote Number|1234,Revision|1;NULL;
IPH3

Request Body: Name|QuoteName$,Primary Organization|ABC,Quote Number|1234,
Revision|1

Work space name/Any Search Spec: NULL

Choice of Closing Action

@Name,@"Primary Organization",@"Quote Number",@Revision

End Action: @Name,@"Primary Organization",@"Quote Number",@Revision

Launch
You use the Launch keyword to start and log in to applications by providing the username.

Signature
The Launch keyword supports the following signature:

Launch(component_alias;username;Y/N

Note the following about the Launch keyword signature:

• Component_alias must come from the predefined component names for a product.

• Component_alias and username are mandatory parameters.

• [clearBrowser] is an optional parameter, which can be specified if there is a specific requirement to clear cookies
at application startup.

• By default, cookies are not cleared at application startup.

Desktop Examples
The following table describes how to use the Launch keyword to start and log in to an application by providing the
username in desktop applications.

161

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

N/A

CORE_UIF;SADMIN;Y

N/A

Starts the browser, clears the browser cookies and
logs in with the username SADMIN.

N/A

CORE_UIF;SADMIN;N

N/A

Starts the browser and logs in with the username
SADMIN.

N/A

CORE_UIF;PortalApplication (or
SSO);Y

N/A

Launches the application URL mapped to
Component Alias, but does not interact with the
login page. In subsequent Test Step, provide the
user credentials through CustomExtension keyword
for SSO, or InputValue keyword for Siebel Portal
Applications.

N/A

PHARMAM;LaunchApp;Y

N/A

Starts the application.

Mobile Examples
The following table describes how to use the Launch keyword to start and log in to an application by providing the
username in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

N/A

PHARMAM;SPORTER

N/A

Starts the application.

LockColumn
You use the LockColumn keyword to lock or unlock a selected column.

Signature
The LockColumn keyword supports the following signature:

LockColumn(AppletRN | FieldRN,Lock/Unlock)

Note: Lock/Unlock input is case insensitive

Desktop Examples
The following table describes how to use the LockColumn keyword to lock or unlock a selected column in desktop
applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|Name LOCK N/A Locks the selected column.

162

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SIS Account List Applet|Name

UNLOCK

N/A

Unlocks the selected column.

Mobile Examples
The following table describes how to use the LockColumn keyword to lock or unlock a selected column in mobile
applications (on mobile devices).

Target Object Inputs Closing Action Comments

Contact List Applet - Mobile|First Name

LOCK

N/A

Locks the selected column.

Contact List Applet - Mobile|First Name

UNLOCK

N/A

Unlocks the selected column.

LogOut
You use the LogOut keyword to log out from applications.

Signature
The LogOut keyword supports the following signature:

LogOut

Desktop and Mobile Examples
The following table describes how to use the LogOut keyword to log out from applications in desktop and mobile
applications.

Target Object Inputs Closing Action Comments

N/A

N/A

N/A

Logs out from the application.

MafSettings
You use the MafSettings keyword to perform the required action in the MAF Settings page in MAF applications (on iOS
and Android devices).

Signature
The signature to start the Siebel app is as follows:

163

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Launch(component_alias;LaunchApp;[clearBrowser])

The signature for the MafSettings keyword is as follows:

MafSettings(Action:Id; Value/NULL; OK/CANCEL/NULL)

Note the following about the MafSettings keyword signature:

• Action can be one of the following: Input, Click, Verify, verifyerrorMsg, Flip, or Springboard.

• Value can be a User input value or NULL.

• ClosingAction can be OK, CANCEL, or NULL.

Desktop Examples
The MafSettings keyword does not apply to desktop applications.

Mobile Examples
The following table describes how to use the MafSettings keyword to perform the required action in the MAF Settings
page in MAF applications on iOS and Android devices.

Target Object Inputs Closing Action Comments

Click:setting-fragment2:host__inputElement

NULL

NULL

Clicks host.

Input:setting-fragment2:host__inputElement

Servername

NULL

Inputs the host value.

verifyerrorMsg:

Alert Invalid Host
Server Address

OK

Verifies the alert message.

verify:setting-fragment2:host::lbl

Host;True

NULL

Verifies the host.

flip:sbs-dock__switch

Y

NULL

Flips Enable Show in the dock.

Springboard:Refresh Button

NULL

NULL

Clicks the Springboard toolbar.

MultiSelectRecordsInListApplet
You use the MultiSelectRecordsInListApplet keyword to select multiple records in a list applet.

Signature
The MultiSelectRecordsInListApplet keyword supports the following signature:

MultiSelectRecordsinListApplet(AppletRN,RowNum(1..N)

164

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Desktop Examples
The following table describes how to use the MultiSelectRecordsInListApplet keyword to select multiple records in list
applets in desktop applications.

Target Object Inputs Closing Action Comments

AppletRN

1,3,5

N/A

Selects first, third, and fifth record from the list
applet.

Mobile Examples
The following table describes how to use the MultiSelectRecordsInListApplet keyword to select multiple records in list
applets in mobile applications on (mobile devices).

Target Object Inputs Closing Action Comments

CG Account List Applet - Mobile

1,3,5

N/A

Selects the first, third, and fifth record from the
list applet.

QueryRecord
You use the QueryRecord keyword to query a record in a list or form applet.

Signature
The QueryRecord keyword supports the following signature:

QueryRecord(Applet RN|ButtonRN,FieldRN(1..N)|Value(1...N) OR Variable)

Note: To query for an existing record, use one or more fields or run an empty query.

Desktop Examples
The following table describes how to use the QueryRecord keyword to query a record in list or form applets in desktop
applications.

Target Object Inputs Closing Action Comments

Contact List Applet|NewQuery

Last Name|oracle$,First Name|
company$,Work Phone #|6506123456

N/A

Queries the record with the specified
search criteria.

Contact List Applet|NewQuery

LastName| David,FirstName|Albert

N/A

Queries the record with the specified
search criteria.

165

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Contact List Applet|NewQuery

First Name|AAAX*

N/A

Queries the record with the specified
search criteria.

Contact List Applet|NewQuery

Work Phone #|650678-0987

N/A

Queries the record with the specified
search criteria.

Opportunity Form Applet - Child|
NewQuery

Opportunity Currency2|USD

N/A

Queries the record with the specified
search criteria.

Contact List Applet|NewQuery

First Name|AAAX*

N/A

Queries the record with the specified
search criteria.

Contact List Applet|NewQuery

First Name|NULL

N/A

Searches for an empty query (that is for
records where First Name is NULL).

Contact List Applet|NewQuery

M/M|Mr.

N/A

Queries the record with the specified
search criteria.

Mobile Examples
The following table describes how to use the QueryRecord keyword to query a record in list or form applets in mobile
applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Opportunity Form Applet -
Mobile|NewQuery

Name|John$,Currency|USD,CloseDate|
11|12|12

N/A

Queries the record with the specified
search criteria.

CG Account List Applet - Mobile|
NewQuery

Name|abc

N/A

Queries the record with the specified
search criteria.

RemoveFromMvg
You use the RemoveFromMvg keyword to remove a specified record or all records from an MVG list. The "Query:" will be
appended to the results after executing the keyword.

Signature
The RemoveFromMvg keyword supports the following signature:

RemoveFromMvg(AppletRN|FieldRN|[RowNum]/
[Active_Record],Query:FieldRN(1…N)(1..N)|Value(1…N:);Remove/RemoveAll;OK/
CANCEL,RN(OK)

166

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note the following about the RemoveFromMvg keyword signature:

• Active_Record is the row number of the active record during execution.

• The OK and Cancel options are optional in the input column.

Desktop Examples
The following table describes how to use the RemoveFromMvg keyword to remove a specific or all records from an MVG
list in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|Sales Rep

Active Last Name|Silver,Active First
Name|Victor;Remove

RN of OK

Removes an account team from an
account in a list applet.

SIS Account List Applet|Sales Rep|
Active_Record

Active Last Name|Silver,Active First
Name|Victor;Remove

RN of OK

Removes an account team from an
account in a list applet. Performs the
action on the field of the active row.

SIS Account Entry Applet|SalesRep

Active Last Name|Dupont,Active First
Name|Dupont;Remove

RN of OK

Removes an account team from an
account in a form applet.

SIS Account List Applet|Sales Rep

NULL;RemoveAll

RN of OK

Removes all accounts in a list applet.

SIS Account List Applet|Sales Rep

NULL;RemoveAll;OK

RN of OK

Removes all accounts in a list applet.
Users must click OK on confirmation.

Mobile Examples
The following table describes how to use the RemoveFromMvg keyword to remove a specified or all records from an
MVG list in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
Primary Account Address Name

Name|abc;RemoveAll

Idcancel

Removes all accounts in a list
applet.

SHCE Sales Account List Applet - Mobile|
Primary Account Address Name

Name|abc;Remove

Idcancel

Removes an account in a list
applet.

SelectCheckBox
You use the SelectCheckBox keyword to select or clear a check box.

167

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Signature
The SelectCheckBox keyword supports the following signature:

SelectCheckbox(AppletRN|FieldRN|[RowNum],TRUE(or)FALSE(or)@variable)

Desktop Examples
The following table describes how to use the SelectCheckBox keyword to select or clear a check box in desktop
applications.

Target Object Inputs Closing Action Comments

Opportunity List Zpplet|Committed

TRUE

N/A

Selects the check box.

SIS Account List Applet|Fund Eligible Flag|3

FALSE

N/A

Clears the check box in the third row of the list applet.

Opportunity List Applet|Committed

@Variable

N/A

Selects or clears the check box depending on the
variable value (True or False).

MultiAdd Product On Order|Select All|Select
All

True/False

N/A

Selects the check box in the column header.

Mobile Examples
The following table describes how to use the SelectCheckBox keyword to select or clear a check box in mobile
applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Address List Applet - Mobile|SSA
Primary Field

TRUE

N/A

Selects the check box for the specified object based
on the provided user value.

SHCE Address List Applet - Mobile|SSA
Primary Field|3

FALSE

N/A

Clears the check box for the specified object based
on the provided user value.

SelectFromMvg
You use the SelectFromMvg keyword to select a specified record after querying the available records in an MVG.

Signature
The SelectFromMvg keyword supports the following signature:

SelectFromMvg(AppletRN|FieldRN|[RowNum]/
[Active_Record],FieldRN(1…N)|Value(1…Nb),RN of OK)

168

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note: Active_Record obtains the row number of the active record during execution.

Desktop Examples
The following table describes how to use the SelectFromMvg keyword to select a specified record after querying the
available records in an MVG in desktop applications. The Query will be appended to the results after executing the
keyword.

Target Object Inputs Closing Action Comments

SIS Account List Applet|Sales Rep

Query:Last Name|Yang

Idok

Selects a Sales Rep after querying the available
records in an MVG.

SIS Account List Applet|Sales Rep|
Active_Record

Query:Last Name|Yang

Idok

Selects a Sales Rep after querying the available
records in an MVG of the active record.

Mobile Examples
The following table describes how to use the SelectFromMvg keyword to select a specified record after querying the
available records in an MVG in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
Primary Account Address Name

Query:Name|abc

Idcancel

Selects a name after querying the available
records in an MVG.

SelectFromPickApplet
You use the SelectFromPickApplet keyword to query and select the first record from a drop-down list applet.

Signature
The SelectFromPickApplet keyword supports the following signature:

SelectFromPickApplet(AppletRN|FieldRN|[RowNum]/
[Active_Record],Query:FieldRN(1…N)|Value(1…Nt),RN(OK/CANCEL))

Note the following about the SelectFromPickApplet keyword signature:

• RowNum is an optional value. If RowNum is not specified, then RowNum defaults to the first row.

• Active_Record obtains the row number of the active record during execution.

Desktop Examples
The following table describes how to use the SelectFromPickApplet keyword to query and select the first record from a
drop-down list applet in desktop applications.

169

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Opportunity Form Applet
- Child|Account2

Query:City|Berkeley

Idcancel

Queries and cancels the first value in a
drop-down list applet form.

Account Profile Applet|
Price List

Query:Name |ACR764 Price List,Start
Date|7/16/2007 05:00:00

PMPopupQueryPick

Queries and selects the first value in a
drop-down list applet.

Contact List Applet|
Account|1

Query:Name|Hibbing

PopupQueryPick

Queries and selects the first value in a
drop-down list applet form.

Contact List Applet|
Account|Active_Record

Query:Name|Hibbing

PopupQueryPick

Queries and selects the first value in a
drop-down list applet (in active record).

NULL|Currency Code

Query:Currency Code|USD

PopupQueryPick

Queries and selects the first value in a
drop-down list applet form.

Mobile Examples
The following table describes how to use the SelectFromPickApplet keyword to query and select the first record from a
drop-down list applet in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
Parent Account Name

Query:Name|abc

PopupQueryPick

Queries and selects the first value in a drop-
down list applet form.

SHCE Sales Contact List Applet - Mobile|
NewRecord

Query:Last Name|abc

AddRecord

Queries and selects the first value in a drop-
down list applet form (having clicked the plus
(+) icon in the list applet).

SelectPDQValue
You use the SelectPDQValue keyword to select a value from the Predefined Query (PDQ) list in the application.

Signature
The SelectPDQValue keyword supports the following signature:

SelectPDQValue(ItemRN OR Variable)

Desktop Examples
The following table describes how to use the SelectPDQValue keyword to select a value from the PDQ list in desktop
applications.

170

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Account

N/A

N/A

Selects a PDQ value named <abc>.

@Variable

N/A

N/A

Selects a PDQ value stored in a variable.

Mobile Examples
The following table describes how to use the SelectPDQValue keyword to select a value from the PDQ list in mobile
applications (on mobile devices).

Target Object Inputs Closing Action Comments

Account

N/A

N/A

Selects a PDQ value named <abc>.

@Variable

N/A

N/A

Selects a PDQ value stored in a variable.

SelectPickListValue
You use the SelectPicklistValue keyword to select a value from the drop-down list in a form or list applet.

Signature
The SelectPicklistValue keyword supports the following signature:

SelectPicklistValue(AppletRN|FieldRN|[RowNum]/[Active_Record],Value(or)Variable)

Note: Active_Record obtains the row number of the active record during execution.

Desktop Examples
The following table describes how to use the SelectPicklistValue keyword to select a value from the drop-down list in a
form or list applet in desktop applications.

Target Object Inputs Closing
Action

Comments

SIS Account List Applet|Account
Status|2

Active

N/A

Sets a value in a drop-down list of a particular field in the
second row of the list applet.

SIS Account List Applet|Account
Status|Active_Record

Active

N/A

Sets a value in a drop-down list of a particular field in the
active row of the list applet.

SIS Account List Applet|Account Status

@Variable

N/A

Sets a value (by using a variable) in a drop-down list of a
particular field in a list applet.

171

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

Opportunity Home Search Virtual Form
Applet|SalesStage

@Variable

N/A

Sets a value (by using a variable) in a drop-down list of a
particular field in a form applet.

Mobile Examples
The following table describes how to use the SelectPicklistValue keyword to select a value from a drop-down list in a
form or list applet in mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

SHCE Account Entry Applet - Mobile|
Type

Customer

N/A

Selects a value from a drop-down list or LOV (List of
Values) in a form or list applet.

SHCE Sales Account List Applet -
Mobile|Type

@var

N/A

Sets a value in a drop-down list of a particular field in the
second row of a list applet.

SHCE Sales Account List Applet -
Mobile|Type|1

@var

N/A

Sets a value (by using a variable) in a drop-down list of a
particular field in a form applet.

SelectRadioButton
You use the SelectRadioButton keyword to select a radio button.

Signature
The SelectRadioButton keyword supports the following signatures:

SelectRadioButton(AppletRN|FieldRN ,Value OR Variable)
SelectRadioButton(NULL|FieldRN ,Value)
SelectRadioButton(AppletRN|FieldRN ,Variable)

Note: Value must not be the UI name. Use the DOM attribute as the name Value.

Desktop Examples
The following table describes how to use the SelectRadioButton keyword to select a radio button in desktop
applications.

172

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

Sort Order Popup Applet (SWE)|
rdbDesc1

Ascending

N/A

Selects a specified radio button.

NULL|SWE Export
Applet.rdbRowsToExport

All Rows In Current Query

N/A

Selects a specified radio button.

Sort Order Popup Applet (SWE)|
rdbDesc1

@Variable

N/A

Selects a variable value radio button.

Mobile Examples
The SelectRadioButton keyword does not apply to mobile applications.

SelectRecordInListApplet
You use the SelectRecordInListApplet to select a particular record in a list applet.

Signature
The SelectRecordInListApplet keyword supports the following signature:

SelectRecordinListApplet(AppletRN|FieldRN|[RowNum/Tileindex],Value/Variable/NULL)

Note: If the action is to be performed on tile applets, then the tile index and row number must start from one.

Desktop Examples
The following table describes how to use the SelectRecordInListApplet keyword to select a particular record in a list
applet in desktop applications.

Target Object Inputs Closing
Action

Comments

SIS Account List Applet|Name

Metropolitan Investments

N/A

Selects the specified field value record in the list applet.

AppletSIS Account List Applet|Name|5

NULL

N/A

Selects a record (the fifth record) based on the specified
row index (5).

AppletSIS Account List Applet|Name|5

NULL

N/A

Selects the fifth record in the list applet.

AppletQuote List Applet|Quote
Number

@Variable

N/A

Selects the specified field value from a variable record in
the list applet.

173

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

AppletSIS Account List Applet|Name|4

Abc

N/A

Selects the specified row (or fourth record) in the list
applet.

Mobile Examples
The following table describes how to use the SelectRecordInListApplet keyword to select a particular record in a list
applet in mobile applications (on mobile devices).

Target Object Inputs Closing
Action

Comments

AppletRN|FieldRN|[RowNumber]

Value

N/A

Selects a record in the list applet, according to the
specified input value.

AppletSHCE Sales Account List Applet -
Mobile|Name|1

FinanceOne Corporation

N/A

Selects the specified value in the specified row
number.

SHCE Sales Account List Applet -
Mobile|Name

FinanceOne Corporation

N/A

Matches the value in the visible records.

AppletSHCE Sales Account List Applet -
Mobile|Name|1

@accountName

N/A

Matches the field value in a variable record.

SelectToggleValue
You use the SelectToggleValue keyword to select a value from a toggle control in a list applet.

Signature
The SelectToggleValue keyword supports the following signature:

SelectToggleValue(AppletRN|ToggleRN,Value)

Desktop Examples
The following table describes how to use the SelectToggleValue keyword to select a value from a toggle control in a list
applet in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|SiebToggle

Accounts

N/A

Selects the specified value from the toggle control in a list
applet.

174

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Pharma Calendar Activity List Applet|
SiebToggle

1

N/A

Selects the specified value from the toggle control in a list
applet.

Note: Input "1" represents the "value" attribute in DOM

Mobile Examples
The SelectToggleValue keyword does not apply to mobile applications.

SelectVisibilityFilterValue
You use the SelectVisibilityFilterValue keyword to select a value from the Visibility Filter drop-down list in an applet.

Signature
The SelectVisibilityFilterValue keyword supports the following signature:

SelectVisibilityFilterValue(AppletRN|ItemRN)

Desktop Examples
The following table describes how to use the SelectVisibilityFilterValue keyword to select a value from the Visibility Filter
drop-down list in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|All Account List
View

N/A

N/A

Selects the All Account list view from the Visibility Filter
drop-down list.

Contact List Applet|Manager's Contact
List View

N/A

N/A

Selects the Manager's Contact list view from the Visibility
Filter drop-down list.

Mobile Examples
The SelectVisibilityFilterValue keyword does not apply to mobile applications.

SendKeys
You use the SendKeys keyword to trigger keyboard events.

Signature
The SendKeys keyword supports the following signature:

175

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

SendKeys(Keystroke)

Note the following about the SendKeys keyword signature:

• You must use SendKeys only if the test case requires an action to be performed using the keyboard.

• You must open SendKeys in Inetpub.

• You must enable screenshot for test steps when using SendKeys for debugging.

• Before performing a SendKeys action, the focus must be on the object.

• Avoid using the keyboard (including SendKeys) during unit testing of the test cases.

• During batch execution, the computer window in which execution occurs must be closed, to avoid sending false
key input.

• Special characters keys are supported, including combinations of the following:

◦ Lowercase a to z.

◦ Uppercase A to Z.

◦ Numerals 1 to 9.

• The following keyboard keys are supported:

ADD; ALT; ARROW_UP; ARROW_DOWN; ARROW_LEFT; ARROW_RIGHT; BACK_SPACE; CANCEL; CLEAR;
COMMAND; CONTROL; DELETE; DECIMAL; DIVIDE; DOWN; END; ENTER; EQUALS; ESCAPE; F1; F2; F3; F4; F5;
F6; F7; F8; F9; F10; F11; F12; HELP; HOME; INSERT; MULTIPLY; NUMPAD0; NUMPAD1; NUMPAD2; NUMPAD3;
NUMPAD4; NUMPAD5; NUMPAD6; NUMPAD7; NUMPAD8; NUMPAD9; PAGE_UP; PAGE_DOWN; SHIFT LEFT;
SHIFT RIGHT; SPACE; SUBTRACT; TAB; UP; OPENING_BRACE; CLOSING_BRACE.

Desktop Examples
The following table describes how to use the SendKeys keyword to trigger keyboard events in desktop applications.

Target Object Inputs Closing Action Comments

CTRL+ALT+N

N/A

N/A

Selects all records.

CTRL+S

N/A

N/A

Saves.

CTRL+TAB

N/A

N/A

Tabs out.

SetDateTime
You use the SetDateTime keyword to call the DateTime or Date pop-up calendar specify the date and time.

Signature
The SetDateTime keyword supports the following signature:

SetDateTime(AppletRN|FieldRN|[RowNum]/[Active_Record],today(+/-))

176

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note the following about the SendDateTime keyword signature:

• Active_Record obtains the row number of the active record during execution.

• If the time is not specified, then the default time is 00:00:00. Value can be a DATETIME, a DATE, or a Variable.

Desktop Examples
The following table describes how to use the SetDateTime keyword to call the DateTime or Date pop-up calendar to
provide the date and time in desktop applications.

Target Object Inputs Closing
Action

Comments

Opportunity Form Applet - Child|
CloseDate2

DD:MM:YYYY;01:01:2015

N/A

Chooses a date in the Calendar pop-up
window.

Activity List Applet With Navigation|
Planned

Today

N/A

Sets the current date and time.

Activity List Applet With Navigation|
Planned|Active_Record

Today

N/A

Sets the current date and time in the
field of the active record.

Activity List Applet With Navigation|
Planned

DD:MM:YYYY:HH:MM:SS;05:08:2014 :
10:17:20

N/A

Sets the specified date and time.

Activity List Applet With Navigation|
Planned

DD:MM:YYYY:HH:MM:SS;05:08:2014 :
10:17:20

N/A

Sets the specified date and time.

Opportunity Form Applet - Child|
CloseDate2

Today+365

N/A

Sets the specified date plus (+)365
days.

Opportunity Form Applet - Child|
CloseDate2

Today-365

N/A

Sets the specified date minus (-)365
days.

Opportunity Form Applet - Child|
CloseDate2

28|01|CURRENTYEAR

N/A

Sets a specified date in the current
year.

Opportunity Form Applet - Child|
CloseDate2

28|01|CURRENTYEAR-1

N/A

Sets the specified date in the previous
year.

Opportunity Form Applet - Child|
CloseDate2

28|01|CURRENTYEAR+2

N/A

Sets the specified date in the current
year plus (+)2.

Mobile Examples
The following table describes how to use the SetDateTime keyword to call the DateTime or Date pop-up calendar to
provide the date and time in mobile applications (on mobile devices).

177

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing
Action

Comments

SHCE Sales Contact Opportunity List
Applet - Mobile|Primary Revenue Close
Date

Today

N/A

Sets the current date and time.

SHCE Sales Opportunity Quote List
Applet ReadOnly - Mobile|Start Date

Today+9

N/A

Sets the current date and time.

SHCE Quote Entry Applet - Mobile|
StartDate

DD:MM:YYYY;11:05:2014

N/A

Sets the specified date in the target
object.

SHCE Sales Order Entry List Applet -
Mobile|Order Date

DD:MM:YYYY:HH:MM:SS;
11:5:2014:12:12:30

N/A

Sets the specified date and time in the
target object.

SHCE Sales Order Entry List Applet -
Mobile|Order Date

DD:MM:YYYY:HH:MM:SS;
1:8:2014:12:30:20

N/A

Sets the specified date in the target
object.

SortColumn
You use the SortColumn keyword to sort a selected column.

Signature
The SortColumn keyword supports the following signature:

SortColumn(AppletRN | FieldRN,ASC/DESC)

Note: The SortColumn input is case insensitive.

Desktop Examples
The following table describes how to use the SortColumn keyword to sort a selected column in desktop applications.

Target Object Inputs Closing Action Comments

Opportunity List Applet|Primary
Revenue Amount

ASC

N/A

Sorts the columns in ascending order.

SIS Account List Applet|Type

DESC

N/A

Sorts the columns in descending order.

Mobile Examples
The following table describes how to use the SortColumn keyword to sort a selected column in mobile applications (on
mobile devices).

178

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SHCE Account Team List Applet - Mobile|
Active Last Name

ASC

N/A

Sorts the columns in ascending order.

SHCE Sales Contact List Applet - Mobile|
First Name

DESC

N/A

Sorts the columns in descending order.

SwitchTab
You use the SwitchTab keyword to switch between browser tabs.

Signature
The SwitchTab keyword supports the following signature:

SwitchTab(id/WindowName,URL/NULL)

Desktop Examples
The following table describes how to use the SwitchTab keyword in desktop applications to switch between browser
tabs.

Target Object Inputs Closing Action Comments

N/A

Account;@URL;IPH3

N/A

Switches to the new tab with the specified URL.

N/A

1;NULL;IPH3

N/A

Focuses and navigates to the first tab.

N/A

Account;NULL;IPH3

N/A

Focuses and navigates to the Account tab.

Mobile Examples
The following table describes how to use the Wait keyword in mobile applications.

Target Object Inputs Closing Action Comments

N/A

Account;@URL;IPH3

N/A

Switches to the new tab with the specified URL.

N/A

1;NULL;IPH3

N/A

Focuses and navigates to the first tab.

N/A

Account;NULL;IPH3

N/A

Focuses and navigates to the Account tab.

179

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

TreeExplorer
You use the TreeExplorer keyword to perform operations in the explorer tree applet; operations such as to expand and
collapse the tree, select items in the tree, and show the child items.

Signature
The TreeExplorer keyword supports the following signature:

TreeExplorer(TreeAppletRN|Tree_id,Expand/Collapse/SelectTreeItem/
GetTreeChildItemsCount|@var/IsNodeExists[;@Var;True/False;GetTreeChildItemsCount|@var])

Desktop Examples
The following table describes how to use the TreeExplorer keyword to expand, collapse, select items from, and show the
child items under an explorer tree in desktop applications.

Target Object Inputs Closing
Action

Comments

Account Tree Applet|1.9

Expand

N/A

Expands the tree structure.

Account Tree Applet|1.9

Collapse

N/A

Collapses the tree structure.

Account Tree Applet|1.9

IsNodeExists

N/A

Verifies the existence of a node.

Account Tree Applet|1.9

IsNodeExists;@Var;True/
False

N/A

Verifies the existence of a node in the case of a
negative scenario.

Account Tree Applet|1.9

SelectTreeItem

N/A

Selects the specified tree item.

Account Tree Applet|1.2

GetTreeChildItemsCount|
@var

N/A

Obtains the number of child items and saves the
value in a variable.

Mobile Examples
The TreeExplorer keyword does not apply to mobile applications.

VerifyColumnLockStatus
You use the VerifyColumnLockStatus keyword to verify the lock status of a column.

Signature
The VerifyColumnLockStatus keyword supports the following signature:

180

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

VerifyColumnLockStatus(AppletRN | FieldRN,Lock/Unlock

Note: The VerifyColumnLockStatus input is case insensitive.

Desktop Examples
The following table describes how to use the VerifyColumnLockStatus keyword to verify the lock status of a column in
desktop applications.

Target Object Inputs Closing Action Comments

LockStatusSIS Account List Applet|Name

LOCK

N/A

Verifies the lock status of the specified column.

LockStatusSIS Account List Applet|Name

UNLOCK

N/A

Verifies the unlock status of the specified
column.

Mobile Examples
The following table describes how to use the VerifyColumnLockStatus keyword to verify the lock status of a column in
mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

LockStatusContact List Applet - Mobile|First
Name

LOCK

N/A

Verifies the lock status of the specified column.

LockStatusContact List Applet - Mobile|First
Name

UNLOCK

N/A

Verifies the unlock status of the specified
column.

VerifyColumnSortOrder
You use the VerifyColumnSortOrder keyword to verify the order of records in a selected column.

Signature
The VerifyColumnSortOrder keyword supports the following signature:

VerifyColumnSortOrder(AppletRN | FieldRN,ASC/DESC)

Desktop Examples
The following table describes how to use the VerifyColumnSortOrder keyword to verify the order of records in a selected
column in desktop applications.

181

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Opportunity List Applet|Primary Revenue
Amount

ASC

N/A

Verifies that records are sorted in ascending
order.

SIS Account List Applet|Type

DESC

N/A

Verifies that records are sorted in descending
order.

Mobile Examples
The following table describes how to use the VerifyColumnSortOrder keyword to verify the order of records in a selected
column in mobile applications.

Target Object Inputs Closing Action Comments

SHCE Account Team List Applet - Mobile|Active
Last Name

ASC

N/A

Verifies that records are sorted in ascending
order.

SHCE Sales Contact List Applet - Mobile|First
Name

DESC

N/A

Verifies that records are sorted in descending
order.

VerifyError
You use the VerifyError keyword to verify the error messages that appear in applications i.e., Siebel error pop ups’.

Signature
The VerifyError keyword supports the following signature:

VerifyError(ExpectedMessageSubstring1|ExpectedMessageSubstring2|…..ExpectedMessage
SubstringN,OK/CANCEL)

Note: Clicking on OK in the pop-up window is an implicit action.

Desktop Examples
The following table describes how to use the VerifyError keyword to verify the error messages that appear in
applications in desktop applications.

Target Object Inputs Closing Action Comments

N/A

'Duration' is a required field|Please enter a
value for the field.|SBL-DAT-00498

OK

Verifies whether the error message, which appears in
the application, contains the specified string value or
not. (The Pipe separator is used a separator to verify
multiple strings.)

182

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

N/A

'Duration' is a required field. Please enter
a value for the field.(SBL-DAT-00498)

OK

To verify if the complete error message is displayed
correctly.

Mobile Examples

Target Object Inputs Closing Action Comments

N/A

'Duration' is a required field|Please enter a
value for the field.|SBL-DAT-00498.

OK

Verifies whether the error message, which appears in
the application, contains the specified string value or
not.

VerifyFileLoad
You use the VerifyFileLoad keyword to perform image validation, such as checking that the image has downloaded
completely (100% download) and the image filename.

Signature
The VerifyFileLoad keyword supports the following signature:

VerifyFileLoad(AppletRN|ImageFileName|TilePosition,Y/N [Full Download])

Note: The TilePosition index must start at one.

Desktop Examples
The following table describes how to use the VerifyFileLoad keyword to perform image validation in desktop
applications.

Target Object Inputs Closing Action Comments

eDetailer Messaging Plan Items Preview List Applet -
Mobile|ThumbnailFN3_01132017.jpg|1

Y

N/A

Verifies that the image has downloaded
completely.

eDetailer Messaging Plan Items Preview List Applet -
Mobile|ThumbnailFN3_01132017.jpg

Y

N/A

Verifies that the image has downloaded
completely.

Mobile Examples
Verifyfileload eDetailer Messaging Plan Items Preview List Applet - Mobile|ThumbnailFN3_01132017.jpg|1 Y

183

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

VerifyFocus
You use the VerifyFocus keyword to verify the focus location in an application. Focus can be on one of the following in
an application: list, form, view, field, or rows in an applet.

Signature
The VerifyFocus keyword supports the following signature:

VerifyFocus(AppletRN(or)ViewRN|FieldRN,TRUE/FALSE)

Note the following about the VerifyFocus keyword signature:

• The True and False input covers the following scenarios:

• Use False to check that focus is not on a particular applet, field, or row.

• Use True to check that focus is on a particular applet, field, row, application-level menu, or application-level
menu item.

Desktop Examples
The following table describes how to use the VerifyFocus keyword to verify the focus location in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|NULL

TRUE

N/A

Verifies that focus is on the specified list
applet.

SIS Account List Applet|NULL

FALSE

N/A

Verifies that focus is not on the specified list
applet.

SIS Account List Applet|Row Status|2

TRUE

N/A

Verifies that focus is on the specified field in
the list applet.

SIS Account Entry Applet|Name

TRUE

N/A

Verifies that focus is on the specified field in
the form applet.

SIS Account Entry Applet|Name

FALSE

N/A

Verifies that focus is not on the specified
field in the form applet.

SIS Account List Applet|2

TRUE

N/A

Verifies that focus is on the specified row
number in the list applet.

SIS Account List Applet|2

FALSE

N/A

Verifies that focus is not on the specified row
number in the list applet.

SIS Account List Applet|2,3

TRUE

N/A

Verifies that focus is on the specified row
numbers in the list applet.

184

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

Search Admin|NULL

TRUE

N/A

Verifies that focus is on the specified view.

Menu-File|Null

TRUE

N/A

Verifies that focus is on the application-level
menu.

Menu-File|Null

FALSE

N/A

Verifies that focus on the application-level
menu.

Menu-File|File - Custom Print

TRUE

N/A

Verifies that focus is on the application-level
menu item.

Menu-File|File - Custom Print

FALSE

N/A

Verifies that focus is on the application-level
menu item.

Mobile Examples
The following table describes how to use the VerifyFocus keyword to verify the focus location in mobile applications (on
mobile devices).

Target Object Inputs Closing Action Comments

SHCE Account Entry Applet - Mobile|Name

TRUE

N/A

Verifies that focus is on the specified field in
the form applet.

SHCE Sales Account List Applet - Mobile|
NULL

TRUE

N/A

Verifies that focus is on the specified list
applet.

SHCE Sales Account List Applet - Mobile|
Name|1

TRUE

N/A

Verifies that focus is on the specified field in
the list applet.

SHCE Sales Account List Applet - Mobile|1

TRUE

Verifies that focus is on the specified row
number in the list applet.

VerifyInPicklist
You use the VerifyInPicklist keyword to count the number of items in a drop-down list, auto select using the substring,
and verify whether the values exist or not in the drop-down list without selecting the values.

Signature
The VerifyInPicklist keyword supports the following signature:

VerifyInPicklist(AppletRN|FieldRN|[RowNum],Count:operator,value(or) Variable;True/False
[AutoSelect]: [Exists]: value or variable; True/false)

185

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Desktop Examples
The following table describes how to use the VerifyInPicklist keyword to verify the values in a drop-down list in desktop
applications.

Target Object Inputs Closing
Action

Comments

SIS Account List Applet|Type|1

Count;=;118|True

N/A

Verifies that all values (118) are present in
the Type drop-down list.

SIS Account List Applet|Type|1

AutoSelect;contains;ac|TRUE

N/A

Verifies that there are values that contain
the keyword ac.

SIS Account List Applet|Type|1

Exists;=;Customer123|True

N/A

Verifies whether a value exists or not.

Opportunity Form Applet - Child|
SalesStage2

AutoSelect;starts;App|TRUE

N/A

Verifies that there are values that start
with App.

SIS Account List Applet|Type|1

Exists;=;@var|True

N/A

Verifies whether a variable value exists or
not.

Mobile Examples
Verifies the color of the picklist value.

Cfg Cx Runtime Instance Frame (JS HI)|RF1060
_Accessory_DOMAINSELECT
color:RED;=;RF1060_Packof10Zip Disks|TRUE
Packof10Zip Disks|TRUE

Verifies that the items in the Accessories pick list are showing up in the specified color (which is RED in this example).

VerifyObject
You use the VerifyObject keyword to verify the presence of an object or UI name in applications.

Signature
The VerifyObject keyword supports the following signature:

VerifyObject(AppletRN|FieldRN/MenuItemRN,UN name/data-caption of MenuItem/Inner
Text or Title for field items/NULL; TRUE/FALSE)

Note the following in the VerifyObject keyword signature:

• Use NULL as the input to verify the existence of an object

• Use the object label (for example, the name of a button) as the input to verify the object name.

• Use the menu item label as the input to verify the menu item name.

186

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

• Use the field label as the input to verify the field name or title.

• True or False input is mandatory.

• If the True parameter is set and if the expected object does not match the actual object in the UI, then the test
step fails.

• If the True parameter is set and if the expected object matches the actual object in the UI, then the test step
passes.

• If the False parameter is set and if the expected object does not match the actual object in the UI, then the test
step passes.

• If the False parameter is set and if the expected object matches the actual object in the UI, then test the step
fails.

Note: True/False is case insensitive.

Desktop Examples
The following table describes how to use the VerifyObject keyword to verify the presence of an object or UI name in
desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|NULL

NULL;TRUE

N/A

Verifies the existence of an applet.

NULL|SUI_OPEN_TOOLBAR

NULL;TRUE

N/A

Verifies that the toolbar is open.

NULL|SUI_CLOSED_TOOLBAR

NULL;TRUE

N/A

Verifies that the toolbar is open.

SIS Account List Applet|SiebVisList

All Accounts Across
Organizations;TRUE

N/A

Verifies that the item exists in the Visibility
list in the list applet.

SIS Account List Applet|DeleteRecord

NULL;TRUE

N/A

Verifies that the Delete button exists in
the list applet.

SIS Account List Applet|DeleteRecord

Delete;TRUE

N/A

Verifies that the Delete button UI name
exists in the list applet.

SIS Account Entry Applet|DeleteRecord

NULL;TRUE

N/A

Verifies that the Delete button exists in
the form applet.

SIS Account List Applet|NewQuery

NULL;TRUE

N/A

Checks that the NewQuery button exists
in the list applet.

SIS Account List Applet|Type

Account Type;TRUE

N/A

Checks that the Column Account Type
exists in the list applet.

SIS Account List Applet|QueryComboBox

NULL;TRUE

N/A

Verifies that the QueryComboBox drop-
down list exists in the list applet.

187

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SIS Account List Applet|About Record
(SWE)

About Record [Ctrl+Alt
+K];TRUE

N/A

Verifies that the menu item About Record
(SWE) exists in the list applet.

SIS Account List Applet|Account Type
Code|1

Customer;TRUE

N/A

Checks the title of the Account Type
Code field with the row number in the list
applet.

Menu-File|File - Create Bookmark

Create Bookmark…;TRUE

N/A

Verifies that the application menu item
Create Bookmark exists in the file menu.

NULL|SWE Export
Applet.rdbRowsToExport

All Rows In Current
Query;TRUE

N/A

Verifies that the Radio button exists in the
pop-up.

NULL|Account List View|L2

Accounts List;TRUE

N/A

Verifies that the application links exist.

SIS Account List Applet|DeleteRecord

Delete;FALSE

N/A

Verifies the absence of the Delete button
UI name in the list applet (negative
scenario).

Mobile Examples
The following table describes how to use the VerifyObject keyword to verify the presence of an object or UI name in
mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

AppletRN|FieldRN

FieldUN;TRUE/FALSE

N/A

Verifies the UI name of the field.

SHCE Sales Account List Applet - Mobile|
NewQuery

Query;TRUE

N/A

Verifies that the Query button exists in the
list applet.

SHCE Sales Account List Applet - Mobile|
QuerySrchSpec

Accounts;TRUE

N/A

Verifies that items exist in the
QuerySearch text box in the list applet.

SHCE Sales Account List Applet - Mobile|
DeleteRecord

Delete;TRUE

N/A

Verifies that the Delete button UI name
exists in the list applet.

SHCE Sales Account List Applet - Mobile|
QueryComboBox

NULL;TRUE

N/A

Verifies that the QueryComboBox drop-
down list exists in the list applet.

SHCE Sales Account List Applet - Mobile|
Type|1

Customer;TRUE

N/A

Checks the title of the Account Type
Code field with the row number in the list
applet.

NULL|Account List View

Accounts List;TRUE

N/A

Verifies that the application links exist.

188

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

VerifyRecordCount
You use the VerifyRecordCount keyword to verify the number of records (the record count) in a list applet.

Signature
The VerifyRecordCount keyword supports the following signature:

VerifyRecordCount(AppletRN|Rn of record count from the list/Form applet menu/
NULL,Operator,Value(or)@Variable)

Note the following about the VerifyRecordCount keyword signature:

• The following operators are supported: greater than (>), greater than or equal to (>=), less than (<), less than or
equal to (<=), equals (<>).

• If using NULL, then the record count is verified in a pop-up window or applet that does not have an applet
menu.

Desktop Examples
The following table describes how to use the VerifyRecordCount keyword to verify the number of records in a list applet
in desktop applications.

Target Object Inputs Closing Action Comments

SIS Account List Applet|Record Count
(SWE)

>=,6

N/A

Verifies if the count is greater than or equal to 6.

SIS Account List Applet|Record Count
(SWE)

<=,6

N/A

Verifies if record count is less than or equal to 6.

SIS Account List Applet|Record Count
(SWE)

<>,6

N/A

Verifies if the record count with less than or greater
than 6.

SIS Account List Applet|Record Count
(SWE)

< ,6

N/A

Verifies the record count is less than 6.

SIS Account List Applet|Record Count
(SWE)

> ,6

N/A

Verifies if the record count is greater than 6.

SIS Account List Applet|Record Count
(SWE)

> =,@var

N/A

Verifies if the record count is greater than or equal to
any variable.

SIS Account List Applet|NULL

> =,2

N/A

Verifies if the record count is greater than or equal to
2.

189

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Mobile Examples
The following table describes how to use the VerifyRecordCount keyword to verify the number of records in a list applet
in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet -
Mobile|Record Count (SWE)

>,6

N/A

Verifies if the record count is greater
than or equal to 6.

SHCE Sales Account List Applet -
Mobile|Record Count (SWE)

<,@var

N/A

Verifies if the record count is less than
any variable.

SHCE Sales Account List Applet -
Mobile|NULL

<,2

N/A

Verifies if the record count is less than
2.

VerifyState
You use the VerifyState keyword to verify the state of an object.

Signature
The VerifyState keyword supports the following signatures:

VerifyState(AppletRN|FieldRN|[RowNum], TRUE/FALSE)
VerifyState(AppletRN|MenuButtonRN|MenuItemRN, TRUE)
VerifyState(ApplicationLevelMenuRN|ApplicationLevelMenuItemRN, TRUE)

Note the following about the VerifyState keyword signature:

• If an object is enabled, editable, or drillable, then verification is True.

• If an object is editable and drillable, then verification is True.

• If an object is read-only and drillable, then verification is False

• If an object is read-only or disabled, then verification is False.

• You can verify the state of most objects, including the following: button, text, check box, drop-down list, menu
item, application-level menu items.

Desktop Examples
The following table describes how to use the VerifyState keyword to verify the state of an object in desktop applications.

Target Object Inputs Closing Action Comments

SIS Product Form Applet - ISS Admin|
NewRecord

TRUE

N/A

Verifies whether the button state is enabled
or disabled.

190

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SIS Product List Admin Applet|Billable Flag|3

FALSE

N/A

Verifies whether the check box field is
enabled or disabled.

SIS Product Form Applet - ISS Admin|
SiebAppletMenu|New Record (SWE)

TRUE

N/A

Verifies the state of menu item in the form
applet.

Menu-Query|Query - QueryAssist

FALSE

N/A

Verifies the state of application level menu
items.

NULL|Tree

TRUE

N/A

Verifies the state of the application.

NULL|Tab

TRUE

N/A

Verifies the state of the application.

NULL|Side Menu

TRUE

N/A

Verifies the state of the application.

Mobile Examples
The following table describes how to use the VerifyState keyword to verify the state of an object in mobile applications
(on mobile devices).

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet - Mobile|
QuerySrchSpec

TRUE

N/A

Verifies the state of the variable and stores
the value in @var.

SHCE Sales Account List Applet - Mobile|
SiebAppletMenu|Record Count (SWE)

TRUE

N/A

Verifies the state of the menu item.

VerifyTopNotification
You use the VerifyTopNotification keyword to verify whether or not a notification message appears in the application.
The keyword also verifies the color of the notification.

Signature
The VerifyTopNotification keyword supports the following signature:

VerifyTopNotification((MessagebroadcastRN,Expectedmessage|[ExpectedHeader];
Color|Expectedd Color/NULL|Match/NoMatch,Close/KeepOpen))

Note: You must click the Marl All as Read option before using the click operation on any notification message.
ClickTopNotification checks for the message in the notifications list for up to ten iterations (with an interval of one
minute between iterations).

191

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Desktop Examples
The following table describes how to use the VerifyTopNotification keyword to verify whether or not a notification
message appears in desktop applications.

Target Object Inputs Closing Action Comments

MsgBrdCstIcon

Account_10142015_041
155918;NULL;Match

Close

Verifies whether or not the first unread message appears in
the notifications list, and closes the control.

MsgBrdCstIcon

Account_10142015_041
155918;NULL;NoMatch

Close

Verifies whether or not the first unread message appears in
the notifications list, and closes the control.

MsgBrdCstIcon

Account_10142015_041
155918;Color|Red;Match

Close

Verifies whether the color of the first unread message in the
notifications list matches the input value (Color|Red in this
case), and closes the control.

MsgBrdCstIcon

Account_10142015_041
155918;Color|Red;Match

KeepOpen

Verifies whether the color of the first unread message in the
notifications list matches the input value (Color|Red in this
case), and keeps the control open.

MsgBrdCstIcon

SVP Action|populate
Actions;NULL;Match

Close

Verifies whether the first unread message in the notifications
list matches the input value, and closes the control.

Mobile Examples
The following table describes how to use the VerifyTopNotification keyword to verify whether or not a notification
message appears in mobile applications (on mobile devices).

Target Object Inputs Closing Action Comments

MsgBrdCstIcon

Data synchronization notification|Data is ready
for download;NULL;Match

Close

Verifies whether or not the first unread
message appears in the notifications list, before
going offline and closing the control.

VerifyValue
You use the VerifyValue keyword to verify a field value by comparing the field value with a user variable (input value).

Signature
The VerifyValue keyword supports the following signature:

VerifyValue(AppletRN|FieldRN|[RowNum]/[Active_Record],Operator,Value(or)@Variable)

192

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Note the following about the VerifyValue keyword signature:

• If performing the action on tile applets, then the tile index and row number must start with one.

• The row number is optional. If RowNum is not specified, then RowNum defaults to the first row.

• The following operators are supported: greater than (>), greater than or equal to (>=), less than (<), less than or
equal to (<=), not equals (<>), contains, startswith, endswith, LIKE, and so on.

Desktop Examples
The following table describes how to use the VerifyValue keyword to verify a field value by comparing the field value
with a user variable (input value) in desktop applications.

Target Object Inputs Closing Action Comments

Contact List Applet|StartDate

=,Today

N/A

Verifies the field value by comparing it with the input
value.

Opportunity List Applet|
Committed

=,Y

N/A

Verifies the check box field value by comparing it
with the input value.

Contact List Applet|M/M|2

=,Mr.

N/A

Verifies the field value by comparing it with the input
value.

SIS Account List Applet|Name

=,@Var1

N/A

Verifies the field value by comparing it with the input
value.

SIS Account List Applet|Name|2

=,@Var1

N/A

Verifies the field value by comparing it with the input
value.

Contact List Applet|Last Name

startswith,Ab

N/A

Verifies the field value by comparing it with the input
value, starts with Ab.

SIS Account List Applet|Name

<>,A*

N/A

Verifies the field value by comparing it with the input
value, not equal to A.

Opportunity List Applet|Name

=,LIKE Q*

N/A

Verifies the field value by comparing it with the input
value.

Opportunity List Applet|Name

<>,"Q*

N/A

"Verifies the field value by comparing it with the input
value.

Mobile Examples
The following table describes how to use the VerifyValue keyword to verify a field value by comparing the field value
with a user variable (input value) in mobile applications (on mobile devices).

193

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Target Object Inputs Closing Action Comments

SHCE Sales Account List Applet -
Mobile|Name|4

=,AG Edwards & Sons, Inc

N/A

Verifies the field value by comparing it with the input
value.

SHCE Sales Account List Applet -
Mobile|Name

=,@accountname

N/A

Verifies the field value by comparing it with the input
value.

SHCE Sales Account List Applet -
Mobile|Name

startswith,Ab

N/A

Verifies the field value by comparing it with the input
value, starts with Ab.

SHCE Sales Account List Applet -
Mobile|Name

=,A

N/A

Verifies the field value by comparing it with the input
value, not equal to A.

Wait
You use the Wait keyword to allow the application to remain idle for the user specified time.

Signature
The Wait keyword supports the following signature:

wait(seconds)

Desktop Examples
The following table describes how to use the Wait keyword in desktop applications.

Target Object Inputs Closing Action Comments

N/A

10

N/A

Application remains idle for 10 seconds.

Mobile Examples
The following table describes how to use the Wait keyword in mobile applications.

Target Object Inputs Closing Action Comments

N/A

10

N/A

Application remains idle for 10 seconds.

194

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keywords Supporting Tools and Server Configuration
The following keywords support Siebel Tools and Siebel Server configuration for mobile application:

• InvokePerl

• ToolsConfig

• ServerConfig

The following prerequisites are requried to use these keywords:

• Strawberry Perl must be installed and setup.

• Strawberry Perl must be installed on client machines.

InvokePerl
You use the InvokePerl keyword to execute a Perl file.

• Signature supported:

InvokePerl (Select Machine|scriptname.pl:@VAR/String[String1,String2....N]/NULL|Output Variable)

◦ Select Machine : SiebelServer machine or TestHarness machine. Siebel Server reads the server credentials
from the xml file and executes the Perl file on server machine.

◦ TestHarness Machine : Executes the perl file locally.

◦ Scriptname.pl : Perl script to be executed.

◦ @VAR/String[String1,String2....N : Variable support or strings to be passed to the perl file.

◦ @Output Variable : Variable support to get the value from the perl file.

Note: You should declare a PerlExecStatus variable in the Perl file. Separate all string inputs by commas to
InvokePerl resolves to ARGV[1] in your perl program. Comma separated inputs in your program are parsed, if
multiple strings are expected.

• Include PerlExecStatus at the end of the Perl File (as shown in the following example).

print"PerlExecStatus = $PerlExecStatus";

• To save a value into a variable, use the following syntax in the perl file:

print"\@invokePerl1=$ARGV[1].";
print"\@invokePerl2=$ARGV[0].";
print"perlexecstatus = $PerlExecStatus";

• Prerequisites:

Folder Structure: All user defined perl files and cmd.txt for execution should be placed in the Resources/
invokePerl folder in TestHarness.

The exe files folder should be placed in the framework\exe in TestHarness.

• Update the following tags in config.xml:

195

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

SIEBEL-SERVER-NAME=macihne-name ----SERVER_MACHINE will be passed as $ARGV [0] to the perl file
SIEBEL-SERVER-MACHINE-LOGIN-ID=userid ----SERVER_LOGIN will be passed as $ARGV [1] to the perl file
SIEBEL-SERVER-MACHINE-PASSWORD=pwd ----SERVER_LOGIN will be passed as $ARGV [2] to the perl file
SIEBEL-SERVER-OS-TYPE=WINDOWS ----SERVER_OS_TYPE will be passed as $ARGV [3] to the perl file
SERVER-DB-TYPE=MSSQL ----SERVER_DB_TYPE will be passed as $ARGV [4] to the perl file
SERVER_DB_NAME=dbname ----SERVER_DB_NAME will be passed as $ARGV [5] to the perl file
DBSERVER-AND-PORT=dbserver,port ----DBSERVER_AND_PORT will be passed as $ARGV [6] to the perl file
DB-TABLE-OWNER=XYZ ----DB_TABLE_OWNER will be passed as $ARGV [7] to the perl file
DB-SERVER-LOGIN=SADMIN|MSSQL ----DBSERVER_Login will be passed as $ARGV [8]&& $ARGV [9] to the perl file
TEST-MACHINE-NAME=machinename ----CLIENT_MACHINE will be passed as $ARGV [10] to the perl file
----------- ----TestHarness Path $ARGV[11]
SIEBEL-GATEWAY-PORT=servername:port ----ENTSERVER_AND_PORT will be passed as $ARGV[12]
SERVER-INSTALLATION-PATH ----C:\\23044\\ses\\siebsrvr\\BIN ----SERVER INSTALLATION PATH will be passed
 as $ARGV[13]
------------- ----Exefiles folder location will be passed as $ARGV[14]
Variable passed from script ----Will be passed as $ARGV[15]
[PERL-PATH]
Ex: PERL-PATH= \\\\servername\\install\\PERL_UTILS\\Perl1\\bin\\perl.exe

Examples in the following table show how to use the InvokePerl keyword.

Keyword Target Object Inputs Closing Action

InvokePerl

N/A

SiebelServer Machine;test.pl:NULL;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:value1,value2;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:value1;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:value1,@invokePerl;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:@invokePerl;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:@invokePerl,
@invokePerl;NULL

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:@invokePerl,
@invokePerl;@invokePerl1

N/A

InvokePerl

N/A

SiebelServer Machine;test.pl:@invokePerl,
@invokePerl;@invokePerl1,@invokePerl2

N/A

InvokePerl

N/A

TestHarness Machine;test.pl:NULL;NULL

N/A

InvokePerl

N/A

TestHarness Machine;test.pl:value1,value2;NULL

N/A

InvokePerl

N/A

TestHarness Machine;test.pl:value1,@invokePerl;NULL

N/A

InvokePerl

N/A

TestHarness Machine;test.pl:@invokePerl,
@invokePerl;@invokePerl1

N/A

196

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Keyword Target Object Inputs Closing Action

InvokePerl

N/A

TestHarness Machine;test.pl:@invokePerl,
@invokePerl;@invokePerl1,@invokePerl2

N/A

ToolsConfig
You use the ToolsConfig keyword to apply Siebel customizations by importing pre-exported sif files using Web Tools. To
avoid using the ToolsConfig keyword altogether, use the "Archive - Import from archive" menu option in Web Tools to
add the steps to import the pre-exported sif files.

• Signature supported:

ToolsConfig(Sif1,Sif2|Merge/Overwrite|branch$,workspace$)

Ensure Siebel Tools/Web Tools is installed and working with the correct DSN and tools.cfg file.

• Sif files must be copied to the Resources\toolsconfig folder.

• Resources\ folder must be zipped and attached to the Master Suite attachment applet. In case Resources.zip is
already attached, ensure to include new files/folder and re-attach.

• STE run will copy the Resources.zip to the client machine and unzip the file during execution.

• ToolsConfig is a composite keyword which covers the following functionalities:

◦ Create an Integration branch using Web Tools.

◦ Create a Workspace under the newly created branch using Web Tools.

◦ Import the SIF files through CLI.

◦ Create a Checkpoint, Submit, and Deliver using Web Tools.

• After completing an operation using the toolsconfig keyword, you can execute change_branch.txt with server
restart using the serverconfig keyword to change the application branch. The command in change_branch.txt is
shown in the following example.

Example - for call center application:

change param WorkspaceBranchName=int_branch for comp SCCObjMgr_enu

Update the following tags in unitconfig.xml:

PERL-PATH
SIEBEL-TOOLS-MACHINE
WINDOWS-LOGIN-USERID
WINDOWS-LOGIN-PASSWORD
SIEBEL-TOOLS-PATH
SIEBEL-TOOLS-DSN
SIEBEL-TOOLS-USERNAME
SIEBEL-TOOLS-PASSWORD
[PERL-PATH]

197

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

Ex: PERL-PATH= \\slcnas607\\karta\\ATF_QTP\\Perl\\bin\\perl.exe

For batch run, update these parameters in the "Test Execution" view.

• Toolsconfig Revert option: Once you complete the Testing in the Integration branch, to change the application
from Integration branch to MAIN branch, you can execute a command in the server manager using the
serverconfig keyword.

Example - for Siebel Call Center application :

"change param WorkspaceBranchName=MAIN for comp SCCObjMgr_enu"#

change_branch.txt file:

change_branch.txt file will have the command to change the application from MAIN branch to Integration
 branch.

Note: Here the txt file name should be change_branch. This is mandatory.

Examples in the following table show how to use the ToolsConfig keyword.

Keyword Target Object Inputs Closing Action Comments

ToolsConfig

N/A

RTC.sif|Merge|branch$,
workspace$

N/A

Importing and compiling
single sif file.

ToolsConfig

N/A

RTC.sif ,RTC1.sif,RTC2.sif|
Overwrite|branch$,workspace
$

N/A

Importing and compiling
multiple sif file.

ServerConfig
You use the ServerConfig keyword to configure and start0 the Siebel server.

• Signature supported:

ServerConfig(Y)

ServerConfig(commandsFile.txt)

Note: If the Launch keyword is used after ServerConfig, then use clear browser in the launch.

SERVER : Machine where Siebel server is running. Machine details are available in the SERVER-LOGIN-
CREDENTIAL tag, which is in config.xml.

commandsFile.txt : Text file containing the list of commands to be executed in server manager.

198

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

• Prerequisite:

Folder Structure: All perl files related to the serverconfig keyword should be available in the framework\perl
folder in Test Harness

• ServerConfig is a composite keyword which includes the following:

◦ Launch server manager

◦ Command to be executed

◦ Stop ses/swsm

◦ Stop sieb server

◦ Start ses/swsm

◦ Start sieb server

• Update the following tags in config.xml

[PERL-PATH]
Ex: PERL-PATH= \\slcnas607\\karta\\ATF_QTP\\Perl\\bin\\perl.exe
SERVER-OS-TYPE
SERVER-LOGIN-CREDENTIAL
AI-SERVER-PORT
SERVER-HOME-PATH
GATEWAYSERVER-TSLPORT

Examples in the following table show how to use the ServerConfig keyword.

Keyword Target Object Inputs Closing Action Comments

ServerConfig

N/A

Y;NULL;IPH3

N/A

Bounce the SERVER.

ServerConfig

N/A

N;cmd.txt;IPH3

N/A

Connect to server manager ,execute
the commands in cmd.txt file.

ServerConfig

N/A

Y;cmd.txt;IPH3

N/A

Connect to server manager ,execute
the commands in cmd.txt file and
bounce the SERVER.

Unsupported Keywords for Siebel Open UI Keyword
Automation
The following keywords are not supported for Siebel Open UI keyword automation testing.

• Calendar(Change slot of Call/Activity)

• Dispatch Board

• Intelligent Advisor

• Find Result Pane

199

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

• Search Result Pane

• Charts

• Promotion Designer

• Gantt (Diary)

• Task Pane items

• Gantt Chart - Promotion List

Note the following:

• A script recorded in any language (for example, DEU) can be played back in the same language (DEU in this
case).

• A script recorded in ENU cannot be played back in any other NON ENU language (like DEU, JPN, and so on).

You can make a note of the different scenarios and the corresponding values to be entered in the resource.xml file. The
different scenarios and values listed in the following table are applicable only for NON ENU languages.

S.No. Scenario where Resource file needs to be updated Value needs to be updated in Resource File

1

Column Display (Hide, Show, MovingUP, MovingDown

Selected Field Value should be entered Resource File

2

Verify the Error/Warning message

Error/Warning message in NONENU Language

3

Toggle Value

Selected Togglevalues should be entered in NONENU languages

4

Verify Short Date

Short Date in correspending NONENU language format

5

Verify Long Date

Long Date in correspending NONENU language format

6

Verify Date Time

Date Time in correspending NONENU language format

7

Verify Value - Numeric

Numeric value should be entered in correspending NONENU
language format

8

Verify Value - String

Translated string value

9

Verify Value - DateTime/Date

Date Time in corresponding NONENU language format should
be entered

10

Any string value present in Combo box

Data LIC value should be entered

11

Visibility DropDown value

Translated value of visibilty drop-down should be entered

12

Verifies Button Existence/Absence

Translated name of the button should be entered

13

Verifies Column name Existence/Absence

Translated name of the column should be entered

200

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

S.No. Scenario where Resource file needs to be updated Value needs to be updated in Resource File

14

Verifies Menu Item Existence/Absence

Translated name of the MenuItem should be entered

15

Verifies Existence/Absence of Label of any field

Translated name of the Label should be entered

16

Verifies the Presence/Absence of RadioButton on the
Popup

Translated value of radio button label should be entered

17

Compare strings values

Translated string value should be entered

18

Compare numeric values

Numeric value should be entered in correspending NONENU
language format

19

Compare date/DateTime values

Date/DateTime value should be entered in correspending
NONENU language format

20

Picklist applet -if any combo box value need to be
selected

Data LIC value should be entered

21

MVG applet -if any combo box value need to be selected

Data LIC value should be entered

22

Application level Menu Item verification

Translated name of the MenuItem should be entered

23

Selection of Radio button in export and import

Labels translated value should be entered

24

Selection of Radio button in Advance Sort

LIC values of drop-down should be entered

25

In simple query - query with any combo box value

Data LIC value should be entered for query combo box

26

Verify the Application level Menu Enable/Disable

Translated value of Application level menu should be entered

27

Verify the Applet level Menu Enable/Disable

Translated value of Applet level menu should be entered

28

Verify Label in any form applet

Translated value of Label should be entered in File

29

Verify applet level record count (1 - 30 of 30+)

Translated Record count value should entered in file

30

Applet level search option

Data LIC value for combo box value should be entered

201

Siebel
Testing Siebel Business Applications Guide

Chapter 16
Keywords Reference

202

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

17 Database Test Scripts

Database Test Scripts

This chapter describes various sample database test scripts and the actions performed by some sample database test
scripts. It includes the following topics:

• Sample Database Test Scripts

• Actions Performed by Sample Database Test Scripts

Sample Database Test Scripts
The following table describes the list of scripts available in the sample database.

Master Suite Test Set Sequence Test Scripts Description

COM_SampleDBDemo _
Desktop

COM_Sample DB_
ABOFlows

1

COM_SampleDB_
 NewOrderFlow

Ron Weasley is a residential customer
looking for a good deal on a new family
wireless plan. Ron calls the wireless carrier
for a quotation. The contact center agent
looks up Ron Weasley's account, browses
the product catalog, selects the best family
wireless package and offers three new
phones for Ron's family at varying price
points.

COM_SampleDBDemo _
Desktop

COM_Sample DB_
ABOFlows

2

COM_SampleDB_
 UpdateOrder

David Smith is an existing residential
customer who has a family wireless plan.
David calls the wireless carrier to add
additional lines to his family package.
Contact Center agent looks up David Smith's
account and adds 5 new lines to David's
account. The CRM system notifies the agent
that David's current package is limited to
4 lines. The agent adds 3 new lines as one
line is already associated to David, selects
the options for text messages, data plan and
reviews the order details with David.

COM_SampleDBDemo _
Desktop

COM_Sample DB_
ABOFlows

3

COM_SampleDB_
 DebundlePromotion

David is an existing residential customer who
has a family wireless plan. David calls the
wireless carrier to remove his spouse from
the family package and make it an individual
plan.

COM_SampleDBDemo _
Desktop

COM_Sample DB_
ABOFlows

4

COM_SampleDB_
 Upgrade PromotionFlow

Suzie Harera is a residential customer who
has a basic quad play bundle - Internet, TV,
Home Phone and Wireless Phone. Suzie calls

203

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Master Suite Test Set Sequence Test Scripts Description

the contact center to upgrade to a premium
quad play bundle.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 BulkOrder

1

COM_SampleDB_
 BulkOrder_New
OrderFlow

Axiom Financial Group is a business
customer that purchases 50 wireless service
plans with pre-assigned numbers from the
Communication Service Provider's Account
Manager. The Account Manager connects
to the CSP's commerce application, creates
an account list, and places a bulk order to
onboard 50 new users. Alternatively, Axiom
Financial Group requests an optional feature
"WLAN Subscription" to be added for 20 of
its loyal users. Competitive pressure requires
the communication service provider to
upgrade all Promo 60 plan customers to
Promo 120 plan.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 BulkOrder

2

COM_SampleDB_
 BulkOrder_Modify Flow

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 BulkOrder

3

COM_SampleDB_
 BulkOrder_Upgrade
OrderFlow

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 ProductOffer

1

COM_SampleDB_
 ProductOffer_Data Setup

Communication Service Provider creates a
targeted mass market offer across varying
channels (Web, Retail store, SMS). Customer
accepts the offer(s) using a single click: offer
to add free worldwide calls to their current
wireless package at a 50% discount during
the holiday season, upgrade their SMS
package to higher package or auto-renew
their contract.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 ProductOffer

2

COM_SampleDB_
 ProductOffer_
 ModifyAdd

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 ProductOffer

3

COM_SampleDB_
 ProductOffer_
 ModifyReplace

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_
 ProductOffer

4

COM_SampleDB_
 ProductOffer_
 ModifyUpgrade

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_ PG_
Flows

1

COM_SampleDB_ PG_
Data_Setup_1

Product administrator verifies the
community offer (promotion group) defined
in the system using Siebel administrator
(SADMIN) login.

PG Scenario 3 disconnects a Silver
Participant membership and Nation 550
Minutes bundle promotion for PGA2 child

204

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Master Suite Test Set Sequence Test Scripts Description

account and it also disconnects the entire
promotion group from PGA1 account.

COM_SampleDBDemo _
Desktop

COM_SampleDB_ PG_
Flows

2

COM_SampleDB_ PG_
Data_Setup_2

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_ PG_
Flows

3

COM_SampleDB_ PG_
Scenario_1

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_ PG_
Flows

4

COM_SampleDB_ PG_
Scenario_2

Same description as in previous row.

COM_SampleDBDemo _
Desktop

COM_SampleDB_ PG_
Flows

5

COM_SampleDB_ PG_
Scenario_3

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Desktop

1

COM_SampleDB_ Telco_
DataSetup Flow

CitiExpress is a business customer. Tim is a
B2B sales rep for a leading Communication
Service Provider (CSP). CitiExpress is Tim's
customer with a wireless contract for 1000
employees. CitiExpress wants to change the
barring options for 4 of their employees'
phones and change the SIM number for
an employee who had recently lost his
phone. Tim connects to CSP's commerce
application, searches for his customer, and
place an order to change the barring options
and change the SIM card number.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

1

COM_SampleDB_ Telco_
ChangeSIM _Messages

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

2

COM_SampleDB_ Telco_
SelectAll _Remove

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

3

COM_SampleDB_
 Telco_ChangeSIM_
 SubmitOrder

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

4

COM_SampleDB_ Telco_
AddRemove_ Flow1

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

5

COM_SampleDB_ Telco_
AddRemove_ Flow2

Same description as in previous row.

COM_SampleDB Demo_Telco

COM_SampleDB_ Telco_
Mobile

6

COM_SampleDB_ Telco_
DataCleanUp

Same description as in previous row.

COM_SampleDBDemo _Mobile

COM_SampleDB _
PartnerCommerce

1

COM_SampleDB_
 PartnerCommerce_
 NewOrder

Samuel Crenshaw is a partner user and
places an order on the wireless carrier's
partner portal. Samuel uses his iPad to login
to the partner portal, browses the partner

205

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Master Suite Test Set Sequence Test Scripts Description

catalog, compares product attributes and
prices, adds the best product to his cart,
selects and configures options and places an
order on behalf of his customer.

COM_SampleDBDemo _Mobile

COM_SampleDB _
PartnerCommerce

2

COM_SampleDB_
 PartnerCommerce_
 Compare

Same description as in previous row.

COM_SampleDBDemo _Mobile

COM_SampleDB_ eSales

1

COM_SampleDB_ eSales_
ERIGBY Login

Kate Allison is shopping for a high speed
Internet, TV and long distance phone service
for her home. Kate uses her iPad to navigate
to the communication service provider's
web store, browses the product catalog and
adds the standard triple play package to her
shopping cart. Kate completes the new user
registration form, reviews the shipping and
pricing details and submits an order.

Eleanor Rigby is a business user and logs in
to the communication service provider's web
store to track the orders placed on behalf of
her company. Additionally, Eleanor registers
and administers other users of her company.

COM_SampleDBDemo _Mobile

COM_SampleDB_ eSales

2

COM_SampleDB_ eSales_
Flow1

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

1

Workflow Activation

Eric Hess is an existing customer, who calls
up to the customer care to raise a service
request, that could be a problem related to
products or services purchased from the
company. Tim Malone the call center agent
receives the call and creates an SR for the
issue raised by the customer. Tim enters
the required details to the SR including
description, asset details, contact details, etc.

Demo Flow for Service Request

Service Request Test Set

2

Create SR

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

3

Associate Product

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

4

Update SR

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

5

Check Entitlements

Tim checks customer's entitlements for
the service. Once done, he looks for the
possible solution for the issue raised by the
customer and adds the solution to the SR. He
decides that a field engineer needs to visit
the customer site, so he creates an activity
and assign it to an appropriate field engineer
to fix the problem.

Demo Flow for Service Request Service Request Test Set 6 Associate Asset Same description as in previous row.

206

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Master Suite Test Set Sequence Test Scripts Description

Demo Flow for Service Request

Service Request Test Set

7

Associate Entitlements

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

8

Associate Solution

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

9

Add Activity Plan

Same description as in previous row.

Demo Flow for Service Request

Service Request Test Set

10

Delete Data

Delete all the newly created data from the
environment.

Actions Performed by Sample Database Test Scripts
The following table describes the actions performed by test scripts in the sample database.

Sl # Script Name Action to be
Performed

Test Step
#

Current Data Proposed Change

1

Script - COM_SampleDB_
Telco_ChangeSIM_ SubmitOrder

N/A

34

Row Number is NULL

Row Number: Active_Record

2

Script - COM_SampleDB_
Telco_DataSetupFlow

Update

1

Component Alias: Siebel
Power Communications

Component Alias: Siebel Power
Communications_Setup

2

Script - COM_SampleDB_
Telco_DataSetupFlow

Insert @ Test
Step #26

27

N/A

Click New, enter the following values, and
then save the record:

Keyword: HierarchicalList

Applet RN: Order Entry - Line Item List
Applet (Sales)

Row #: 2

Action: Expand

Variable: NULL

Note: Select Renumber from the Menu.

2

Script - COM_SampleDB_
Telco_DataSetupFlow

Insert @ Test
Step #108

109

N/A

Click New, enter the following values, and
then save the record:

Keyword: HierarchicalList

207

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Sl # Script Name Action to be
Performed

Test Step
#

Current Data Proposed Change

Applet RN: Order Entry - Line Item List
Applet (Sales)

Row #: 2

Action: Expand

Variable: NULL

Note: Select Renumber from the Menu.

2

Script - COM_SampleDB_
Telco_DataSetupFlow

Insert @ Test
Step #133

134

N/A

Click New, enter the following values, and
then save the record:

Keyword: HierarchicalList

Applet RN: Order Entry - Line Item List
Applet (Sales)

Row #: 2

Action: Expand

Variable: NULL

Note: Select Renumber from the Menu.

3

Script - COM_SampleDB_
Telco_ChangeSIM_ Messages

Update

1

User Name: ANTHYAGA

User Name: SADMIN

3

Script - COM_SampleDB_
Telco_ChangeSIM_ Messages

Update

22

ExpectedMessage
Substring: Unable to
complete SIM Swap. There is
a stolen or admin bar for the
selected service. Remove
the stolen or admin bar to
continue with your request.
(SBL-ORD-51426)

ExpectedMessageSubstring: "Unable to
complete SIM Swap. There is a stolen or
admin bar for the selected service. Remove
the stolen or admin bar to continue with your
request."(SBL-ORD-51426)

4

Script - COM_SampleDB_
Telco_SelectAll_Remove

Update

12

Item RN: Select All | Select
All

Item RN: SelectAll | Select All

4

Script - COM_SampleDB_
Telco_SelectAll_Remove

Update

13

End Action: OK

End Action: NULL

4

Script - COM_SampleDB_
Telco_SelectAll_Remove

Update

14

Item RN: Select All | Select
All

Item RN: SelectAll

4

Script - COM_SampleDB_
Telco_SelectAll_Remove

Update

22

Item RN : Select All | Select
All

Item RN: SelectAll

208

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Sl # Script Name Action to be
Performed

Test Step
#

Current Data Proposed Change

4

Script - COM_SampleDB_
Telco_SelectAll_Remove

Update

24

Item RN: Select All | Select
All

Item RN: SelectAll

5

Script - COM_SampleDB_
Telco_ChangeSIM _SubmitOrder

Update

34

Row Number is NULL

Row Number: Active_Record

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Update

4

Value: TelcoExpress_
 05252017_22343988

Value: @TelcoAccName

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Update

6

Value: TelcoExpress_
 05252017_22343988

Value: @TelcoAccName

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Update

9

ItemRN: Select All

ItemRN: SelectAll

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Update

11

ItemRN: Select All

ItemRN: SelectAll

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Update

13

ItemRN: Action

ItemRN: Product Name

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Insert @ Test
Step #8

9

N/A

Click New, enter the following values, and
then save the record:

Keyword: ClickButton

Applet RN: TOUI AssignBar Buttons

ItemRN: Cancel Request

End Action: NULL

Note: Select Renumber from the Menu.

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Insert @ Test
Step #9

10

N/A

Click New, enter the following values, and
then save the record:

Keyword: ClickLink

Applet RN: TOUI CustDash Action
Launchpad

ItemRN: Expand Applet

Value/Variable: NULL

Note: Select Renumber from the Menu.

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Insert @ Test
Step #10

11

N/A

Click New, enter the following values, and
then save the record:

209

Siebel
Testing Siebel Business Applications Guide

Chapter 17
Database Test Scripts

Sl # Script Name Action to be
Performed

Test Step
#

Current Data Proposed Change

Keyword: ClickButton

Applet RN: TOUI CustDash Action
Launchpad

Item RN: AddRemoveBar

EndAction: NULL

Note: Select Renumber from the Menu.

6

Script - COM_SampleDB_
Telco_AddRemove_ Flow2

Insert @ Test
Step # 21

22

N/A

Click New, enter the following values, and
then save the record:

Keyword: SortColumn

Applet RN: TOUI AssignBar Order Items

Item RN: Service Id

Sorting Order: Asc

Note: Select Renumber from the Menu.

7

Script - COM_SampleDB
_Partner Commerce_Compare

Update

6

ItemRN: Select All

ItemRN: SelectAll

8

Script - COM_SampleDB
_eSales_Flow1

Update

1

User Name: GUESTCST

User Name: PortalApplication

8

Script - COM_SampleDB
_eSales_Flow1

Update

15

Row Number: 3

Value/Variable: NULL

Row Number: remove value in this field.

Value/Variable: IPTV Service

8

Script - COM_SampleDB
_eSales_Flow1

Update

38

ItemRN: Select All | Select All

ItemRN: SelectAll

210

Siebel
Testing Siebel Business Applications Guide

Chapter 18
Reports

18 Reports

Reports
A report provides the Pass and Fail results with detailed step level comments and screenshots. This chapter describes
the functionality provided to support report generation. It includes the following topics:

• About Report Generation

• Functionality for Report Generation

• Generating a Combined Report

About Report Generation
You can control whether or not to generate reports and capture screenshots and test results during test script execution
– for more information, see Functionality for Report Generation.

Reports are generated in both HTML and JSON format for each test script that is run individually (Unit Mode) or as part
of a Master Suite (Batch Mode). The following table shows the report files that are generated in HTML and JSON format.

Format Report Files Location

JSON

• <Test Script>timestamp.json

• <Test Set>timestamp.json

• <Master Suite>timestamp.json

\Reports\<MasterSuite>timestamp\logs
\json

JSON

• Report.html (uses Report.js and webresources
folder)

• Report.js (aggregation of json files)

\Reports\<MasterSuite>timestamp\logs

HTML

• <Test Script>timestamp.html

• <Test Set>timestamp.html.

• <Master Suite>timestamp.html

\Reports\<MasterSuite>timestamp>\logs

A single report (Report.html) is automatically generated which provides a consolidated snapshot across test script, test
set, and Master Suite data along with a detailed failure analysis of results. You can also manually generate a combined
results report using multiple Report.html files - for more information, see Generating a Combined Report.

Report.html provides the following key information:

• A consolidated view of a batch run with data from JSON report files.

• A Test Summary showing Pass, Fails, Pass%, and Not Executed results at Master Suite level.

• A Test Set result summary and consolidated failure analysis across all test scripts.

211

Siebel
Testing Siebel Business Applications Guide

Chapter 18
Reports

• A Failure Analysis summary which:

◦ Lists unique error log messages across all results, ranking them by number of test scripts failed in
descending order.

◦ Contains links to the test script where the error occurred.

◦ For data-driven tests, shows the iteration where the error occurred in brackets.

Report.html depends on the following:

• The webresources folder under ...\DesktopintSiebelAgent\plugins\SiebelTestAutomation, which contains the
following: css, fonts and img folders.

• Report.js, which wraps the data from individual JSON files. Report.js must be in the same folder as Report.html.

Functionality for Report Generation
The following functionality is provided to retrieve the keyword automation results during report generation:

• Ability to specify whether or not to capture a screenshot (for Pass and Fail test results) as follows:

◦ Select the Screenshot checkbox in the Test Script - Test Step Form applet screen if you want to capture a
screenshot.

◦ Deselect the Screenshot checkbox in the Test Script - Test Step Form applet screen if you do not want to
capture a screenshot.

Note that if a screenshot is required for Pass or Fail test cases, then the screen or view to be captured must be
in Active mode.
Note also that the executable client machine must open in InetPub.

• Ability to control whether or not to generate reports and capture screenshots and test results during test script
execution as follows:

◦ To enable or disable detailed test results and screenshot capture during unit mode/single test script
playback, configure the DetailedReport check box as shown in Plugin Configurations.

◦ To enable or disable report generation and screenshot capture during the test script automation batch
run, configure the Parameters field as shown in Configuring the Siebel Test Execution Job.

Generating a Combined Report
You can manually generate a combined results report using multiple Report.html files. The purpose of generating a
combined report is to aggregate totals and consolidate the failure analysis across multiple Master Suite (batch) runs. To
generate a combined report as shown in the following procedure, Perl is required on the DISA machine.

To generate a combined report
1. Copy the Master Suite report folders (under \Reports) to the following location on one of your DISA machines:

...\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Reports

212

Siebel
Testing Siebel Business Applications Guide

Chapter 18
Reports

2. Go to the following folder and locate the CombinedReportScript.pl file:

...\DesktopIntSiebelAgent\plugins\SiebelTestAutomation\Framework\perl

3. From this folder, start a Command Prompt and run the following command (perl file), providing the DISA home
path and Reports folder path as parameters:

perl CombinedReportScript.pl <DISA home path> <Reports folder path>

For example:

perl CombinedReportScript.pl “C:/DISA” “C:/DISA/DesktopIntSiebelAgent/plugins/SiebelTestAutomation/
Reports”

After this completes, a CombinedReports folder (\Reports\CombinedReports\) is created if not already created
with a timestamped subfolder. In the subfolder, the combinedreports.js and Report.html files are created and
Report.html opens in the default browser.

4. Repeat this procedure as required – for example, whenever any new folders are added, removed or modified –
in order to generate a new combined report:

◦ Add more folders to the \Reports folder.

◦ Run the perl file (perl CombinedReportScript.pl).

◦ A new subfolder will be created under \Reports\CombinedReports\ with a unique timestamp.

213

Siebel
Testing Siebel Business Applications Guide

Chapter 18
Reports

214

Siebel
Testing Siebel Business Applications Guide

Chapter 19
Mac Credentials

19 Mac Credentials

Mac Credentials
The MAC login credentials for mobile applications are as follows:

 <MAC-CREDENTIALS>
 <MAC-USERNAME>id1</MAC-USERNAME>
 <MAC-PASSWORD>pwd1</MAC-PASSWORD>
 </MAC-CREDENTIALS>

Use this format to update the MAC credentials in the config.xml file.

215

Siebel
Testing Siebel Business Applications Guide

Chapter 19
Mac Credentials

216

	Homepage
	Testing Business Applications Guide
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Contacting Oracle

	What's New in This Release
	What’s New in This Release

	Overview of Testing Siebel Applications
	Overview of Testing Siebel Applications
	About Testing Siebel Business Applications
	How This Guide Is Organized
	Additional Resources

	Introduction to Application Software Testing
	Application Software Testing Methodology
	Common Test Definitions

	Modular and Iterative Methodology
	Continuous Application Lifecycle

	Testing and Deployment Readiness
	Overview of the Siebel Testing Process
	Plan Testing Strategy
	Design and Develop Tests
	Execute Siebel Functional Tests
	Execute System Integration Tests
	Execute Acceptance Tests
	Execute Performance Tests
	Improve and Continue Testing

	Plan Testing Strategy
	Plan Testing Strategy
	Overview of Test Planning
	Test Objectives
	Test Plans
	Test Cases
	Test Phase
	Component Inventory
	Risk Assessment
	Test Plan Schedule

	Test Environments
	Performance Test Environment

	Design and Develop Tests
	Design and Develop Tests
	Overview of Test Development
	Design Evaluation
	Reviewing Design and Usability

	Test Case Authoring
	Functional Test Cases
	System Test Cases
	Performance Test Cases
	User Scenarios
	Data Sets

	Test Case Automation
	Functional Automation
	Performance Automation

	Execute Siebel Functional Tests
	Execute Siebel Functional Tests
	Overview of Executing Siebel Functional Tests
	Reviews
	Track Defects Subprocess

	Execute System Integration and Acceptance Tests
	Execute System Integration and Acceptance Tests
	Overview of Executing Integration and Acceptance Tests
	Execute Integration Tests
	Execute Acceptance Tests

	Execute Performance Tests
	Execute Performance Tests
	Overview of Executing Performance Tests
	Executing Tests
	Performing an SQL Trace
	Measuring System Metrics
	Monitoring Failed Transactions

	Improve and Continue the Testing Process
	Improve and Continue the Testing Process
	Improve and Continue Testing

	Implementing Siebel Open UI Keyword Automation Testing
	Implementing Siebel Open UI Keyword Automation Testing
	Overview of Siebel Open UI Keyword Automation Testing
	Process of Implementing Siebel Open UI Keyword Automation Testing
	Creating a Test Script
	Adding Test Steps to Test Scripts
	Capturing Automation Attributes for Test Steps
	Grouping Test Scripts into a Test Set
	Grouping Test Sets into a Master Suite
	Viewing Master Suites associated to a Test Set
	Configuring the Test Run

	Enabling Oracle Business Intelligence Publisher for Test Automation
	Siebel Test Automation Folder
	Extending Keyword Automation Capabilities

	Usage Pattern Tracking and Conversion to Keyword Scripts
	Usage Pattern Tracking and Conversion to Keyword Scripts
	About Usage Pattern Tracking
	Setting Up the Automation Adapter
	Configuring the UPT and KWD Log Directory for Multiple Servers
	Using the Automation Toolbar
	Impact of Usage Pattern Tracking Enhancements in Siebel CRM 18.9 Update

	Recording the Functional Flow
	Renaming the Scripts
	Setting Up DISA
	Plugin Configurations
	Browser Configuration Settings

	Validating the Scripts
	Playing the Scripts
	Condition Expression for Test Steps
	Enabling Automation for Developer Web Client
	Exporting the Test Scripts
	Importing the Test Scripts
	Post Import Options

	Siebel Test Automation Execution
	Siebel Test Automation Execution
	Setting Up the Jenkins Server
	Setting Up and Configuring the Siebel Test Execution Plugin
	Setting up the Jenkins Secondary Nodes
	Configuring the Siebel Test Execution Job
	Executing the Automation Batch Run
	Test Execution without Jenkins
	Automated Rerun of Test Scripts
	Creating Test Results
	Viewing Test Results
	Configuring Multiple Batch Runs

	Setting Up Keyword Automation Testing on iOS
	Setting Up Keyword Automation Testing on iOS
	About Running Keyword Automation Testing
	Installing XCode on the XCode iOS Simulator
	Installing Oracle JDeveloper and Setting Up the Mobile Application Framework
	Creating a New Application from the Mobile Application Archive

	Data Driven Testing
	Data Driven Testing
	Overview of Data Driven Testing
	Creating a Data Set
	Importing a Data Set
	Exporting a Data Set
	Associating Test Scripts with a Data Set
	Associating a Data Set with a Test Script
	Referencing Data Set Fields in Test Scripts
	Iterations Types Available with Data Sets and Test Scripts
	Dynamic Data Selection from Data Set
	Associating a Data Set with a Test Set
	Copying a Test Set
	Viewing Test Sets associated to a Data Set

	Setting Up Android Mobile Devices for Automation Testing
	Setting Up Android Mobile Devices for Automation Testing
	About Setting Up Android Mobile Devices for Keyword Automation Testing
	Installing Android Software Development Kit on Microsoft Windows 7/10 Machine
	Installing Appium on Microsoft Windows
	Setting the ANDROID HOME Variable
	Setting the Path Variables
	Verifying Android Installation and Configuration
	Testing Automation on a Android Device
	Automation Testing on an Emulator
	Deploying the Siebelmobile.apk

	REST API Reference
	REST API Reference
	Create a Test Execution Record
	Rerun a Test Execution Record
	Create Test Passes for a Test Execution Record
	Querying for a Test Execution Record
	REST API for Data Sets
	REST API for Test Script
	REST API for Test Set
	REST API for Master Suite

	Keywords Reference
	Keywords Reference
	Keywords Description
	Using Variables in Test Scripts
	AttachmentManager
	ClickButton
	ClickLink
	ClickOnChart
	ClickSyncButton
	ClickTopNotification
	ColumnsDisplayed
	CompareValue
	CreateRecord
	CustomExtension
	DoubleClick
	DragAndDrop
	Draw
	FileDownload
	FileUpload
	GetAboutRecord
	GetChartType
	GetConfigParam
	GetRecordCount
	GetState
	GetValue
	GetValueFromMenuPopup
	GoToSettings
	GoToThreadbarView
	GoToView
	HierarchicalList
	InboundWebServiceCall
	InputValue
	InvokeAppletMenuItem
	InvokeMenuBarItem
	InvokeObject
	InvokeREST
	Launch
	LockColumn
	LogOut
	MafSettings
	MultiSelectRecordsInListApplet
	QueryRecord
	RemoveFromMvg
	SelectCheckBox
	SelectFromMvg
	SelectFromPickApplet
	SelectPDQValue
	SelectPickListValue
	SelectRadioButton
	SelectRecordInListApplet
	SelectToggleValue
	SelectVisibilityFilterValue
	SendKeys
	SetDateTime
	SortColumn
	SwitchTab
	TreeExplorer
	VerifyColumnLockStatus
	VerifyColumnSortOrder
	VerifyError
	VerifyFileLoad
	VerifyFocus
	VerifyInPicklist
	VerifyObject
	VerifyRecordCount
	VerifyState
	VerifyTopNotification
	VerifyValue
	Wait

	Keywords Supporting Tools and Server Configuration
	InvokePerl
	ToolsConfig
	ServerConfig

	Unsupported Keywords for Siebel Open UI Keyword Automation

	Database Test Scripts
	Database Test Scripts
	Sample Database Test Scripts
	Actions Performed by Sample Database Test Scripts

	Reports
	Reports
	About Report Generation
	Functionality for Report Generation
	Generating a Combined Report

	Mac Credentials
	Mac Credentials

