
[1]Oracle® AutoVue
Integration Guide

Release 21.0.1

E84705-01

February 2017

Oracle AutoVue Integration Guide, Release 21.0.1

E84705-01

Copyright © 1999, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

iii

Contents

Preface .. vii

Audience.. vii
Related Documents .. vii
Conventions .. vii

1 Introduction

2 AutoVue Integration Technologies

2.1 Oracle AutoVue... 2-1
2.1.1 Client/Server Deployment... 2-1
2.1.1.1 Deployment Architecture of Oracle AutoVue Client/Server Deployment 2-2
2.1.1.1.1 AutoVue Server ... 2-2
2.1.1.1.2 VueServlet .. 2-2
2.1.1.1.3 JNLP Generator.. 2-3
2.1.1.1.4 AutoVue Client Components .. 2-3
2.1.2 Desktop Deployment .. 2-4
2.2 AutoVue Integration Software Development Kit .. 2-4
2.2.1 AutoVue ISDK Architecture .. 2-4
2.2.2 AutoVue ISDK Framework .. 2-5
2.2.3 AutoVue ISDK Sequence Flow .. 2-6
2.2.4 VueLink... 2-7
2.2.4.1 VueLink Architecture... 2-7
2.2.4.1.1 GUI Customization ... 2-8
2.3 AutoVue Web Services... 2-8
2.3.1 AutoVue Web Services Architecture .. 2-8
2.4 AutoVue Java-based Application Programming Interface... 2-9
2.4.1 AutoVue API Design Options... 2-10
2.4.1.1 Implementing Functions from AutoVue in a WEB client.................................... 2-11
2.4.1.2 Building an AutoVue API Application .. 2-11
2.4.1.3 Customizing AutoVue .. 2-11
2.5 AutoVue JavaScript Application Programming Interface ... 2-11
2.6 Augmented Business Visualization .. 2-12
2.6.1 Architecture ... 2-12
2.6.2 Hotspots ... 2-13

iv

3 Integration Scenarios

3.1 AutoVue API Use Case .. 3-1
3.1.1 Printing Documents from a DMS.. 3-1
3.1.1.1 Requirements .. 3-1
3.1.1.2 Integrator steps ... 3-1
3.1.1.3 End-user steps... 3-2
3.2 AutoVue ISDK Use Cases .. 3-2
3.2.1 Reviewing and Annotating Documents ... 3-2
3.2.1.1 Requirements .. 3-2
3.2.1.2 Integrator steps ... 3-2
3.2.1.3 End-user steps... 3-3
3.2.2 Reviewing and Approving Documents.. 3-3
3.2.2.1 Requirements .. 3-3
3.2.2.2 Integrator steps ... 3-3
3.2.2.3 End-user steps... 3-4
3.3 AutoVue Web Services Use Cases.. 3-4
3.3.1 Managing Work Orders.. 3-4
3.3.1.1 Requirements .. 3-4
3.3.1.2 Integrator steps ... 3-4
3.3.1.3 End-user steps... 3-5
3.3.2 Identifying Recalled Components... 3-5
3.3.2.1 Requirements .. 3-5
3.3.2.2 Integrator steps ... 3-5
3.3.2.3 End-user steps... 3-5
3.4 ABV Use Cases .. 3-6
3.4.1 Material Availability Using Hotspots... 3-6
3.4.1.1 Requirements .. 3-6
3.4.1.2 End-user steps... 3-7
3.4.2 Property Management Using Hotspots.. 3-7
3.4.2.1 Requirements .. 3-7
3.4.2.2 Integrator steps ... 3-8
3.4.2.3 End-user steps... 3-8
3.4.3 Tracking Delivery and Stock Quantities of Product Parts Using 3D Hotspots 3-9
3.4.3.1 Requirements .. 3-9
3.4.3.2 Integrator steps ... 3-9
3.4.3.3 End-user steps... 3-9
3.4.4 Plant Maintenance Using Text Hotspots.. 3-9
3.4.4.1 Requirements ... 3-10
3.4.4.2 Integrator steps .. 3-10
3.4.4.3 End-user steps.. 3-10

4 FAQ

A Feedback

A.1 General AutoVue Information ... A-1
A.2 Oracle Customer Support ... A-1

v

A.3 My Oracle Support AutoVue Community... A-1
A.4 Sales Inquiries... A-1

vi

vii

Preface

This document provides an introduction to the different deployment methods and
integration technologies for Oracle AutoVue.

Audience
This document is intended for Oracle partners and third-party developers (system
integrators) who would want to implement integrations with Oracle AutoVue.

Related Documents
For more information, see the following documents in the documentation set on OTN:

■ AutoVue API Guide

■ AutoVue ISDK Design and Installation Guide

■ AutoVue ISDK Technical Guide

■ AutoVue Web Services Installation and Developer’s Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction 1-1

1Introduction

Oracle AutoVue is a versatile enterprise visualization application that can be
integrated with a Document Management System (DMS)1 or deployed as a standalone
application. You can modify the functionality of Oracle AutoVue’s client in order to
create your own customized application or you can trigger actions from a DMS via
hotspots. As can be seen from the following list, there are a number of integration
options available for Oracle AutoVue.

■ AutoVue Integration Software Development Toolkit
The Autovue Integration Software Development toolkit (ISDK) allows you to
build a custom integration between Oracle AutoVue and a DMS. The AutoVue
ISDK is a Java-based implementation of the Document Management Application
Programming Interface (DMAPI) specifications published by Oracle.

Oracle also provides an AutoVue ISDK-based integration, VueLink, that can be
used out-of-the-box for specific environments. As of the current release, Oracle
provides a VueLink integration for Oracle WebCenter Content, and for
Documentum. For more information on these VueLinks, refer to the "AutoVue
Documentation" page on the Oracle Technology Network (OTN).

■ AutoVue Web Services
The AutoVue Web Services (WS) package allows you to integrate AutoVue's
capabilities into your application regardless of platforms or programming
languages.

■ AutoVue Java-based Application Programming Interface
The AutoVue Java-based Application Programming Interface is a Java-based
toolset that provides tools to modify the functionality of Oracle's AutoVue client. It
also allows you to create your own customized Java applications based on
AutoVue API components.

■ AutoVue JavaScript Application Programming Interface

The AutoVue JavaScript Application Programming Interface is a JavaScript-based
toolset that provides tools to launch and interact with AutoVue from a WEB
context. It also allows you to create your own customized WEB-based client acting
on an AutoVue client.

■ Augmented Business Visualization
Oracle’s Augmented Business Visualization (ABV) solution creates bi-directional
links between parts of a document and an enterprise application. This is done by
integrating AutoVue with an enterprise application to query the DMS through

1 This document uses the term Document Management System (DMS) to refer to Enterprise
Resource Planning (ERP) system, Product Lifecycle Management (PLM), and repositories.

http://www.oracle.com/technetwork/documentation/autovue-091442.html

1-2 Oracle AutoVue Integration Guide

actionable hotspots or by highlighting assets. These hotspots can be used to trigger
actions or business processes in the DMS from the documents.

The following chapters provide an overview of AutoVue integration technologies and
AutoVue deployment methods, as well as sample integration scenarios.

2

AutoVue Integration Technologies 2-1

2AutoVue Integration Technologies

This chapter discusses the deployment options for Oracle AutoVue as well as the
available integration technologies.

2.1 Oracle AutoVue
Oracle AutoVue can be deployed in two modes:

■ Client/Server Deployment: Oracle AutoVue is installed on a server, to which
client machines connect to access and view documents. You can then run Oracle
AutoVue as a standalone application or integrate it with a DMS.

■ Desktop Deployment: Oracle AutoVue is installed on a user’s local machine.

Note: The following sections provide an introduction to these
deployment modes. For installation, system requirements, and
configuration information, refer to their respective Installation and
Configuration Guides.

2.1.1 Client/Server Deployment
The Oracle AutoVue Client/Server (CS) deployment provides a complete, open and
standards-based set of integration tools that allows you to tie AutoVue to any
enterprise application. This deployment provides you with a consistent view of data
and business objects, and expands workflow automation to document-based processes
and can be deployed either as a standalone application or integrated with a DMS.

Oracle AutoVue

2-2 Oracle AutoVue Integration Guide

Figure 2–1 Client/Server Deployment Flow Diagram

2.1.1.1 Deployment Architecture of Oracle AutoVue Client/Server Deployment
Oracle AutoVue CS has several components: the AutoVue server, an application server
hosting the VueServlet, JNLP Generator and DMS, a Web server or an application
server hosting AutoVue client components, and the AutoVue client. These components
are explained in the following sections.

2.1.1.1.1 AutoVue Server The AutoVue server is the core of the AutoVue solution and is
comprised of one session server process and multiple document server processes. The
session server receives all requests sent to the AutoVue server and then delegates the
tasks to a document server.

You can ensure high availability by setting the AutoVue servers in a server farm. In
this configuration, the session servers communicate with each other to distribute the
load across all the document servers in the server farm.

Take note of the following considerations when determining on a machine to host the
AutoVue server:

■ The AutoVue server is very CPU, I-O, Memory and Graphics intensive. Ensure
that the machine hosting AutoVue server is dedicated to AutoVue and is not being
used for other applications.

■ If the AutoVue server is running in a virtualized environment, ensure that the
proper resources are allocated to the virtual machine hosting it. Note that
virtualized environments may have slight degradation in performance compared
to running on native hardware.

Note: For more information on the AutoVue server and how to
configure it, refer to the “Appendix A: AutoVue Server Configuration”
section in the Oracle AutoVue Client/Server Deployment Installation and
Configuration Guide.

2.1.1.1.2 VueServlet The VueServlet is the main entry point for communication
between AutoVue clients and the AutoVue server. When used by external AutoVue
clients to communicate with the AutoVue server, the VueServlet must be configured
for access through a firewall. Generally, the VueServlet can be deployed on any
application server.

Note: For a list of application servers that are certified by Oracle,
refer to section "System Requirements" in the Oracle AutoVue
Client/Server Deployment Installation and Configuration Guide.

Oracle AutoVue

AutoVue Integration Technologies 2-3

When deploying the VueServlet, your deployment steps should generally depend on
whether you have integrated AutoVue with a DMS, or whether you are using it in a
non-integrated environment. When AutoVue is integrated with a DMS, it is
recommended to deploy the VueServlet on the application server (in a different
context) that hosts the DMS.

Note: For information on deploying VueServlet in an integrated
environment, refer to the “Installing the VueServlet in an Integrated
Environment” section of the Oracle AutoVue Client/Server Deployment
Installation and Configuration Guide.

Depending on your peak usage, you may need to have multiple VueServlets that can
serve requests to AutoVue. Since the VueServlet is hosted within an application server,
you must rely on the application server’s load balancing capabilities or rely on an
external load balancer. Note that you must ensure the load balancer is configured for
session/cookies stickiness (not the IP address).

2.1.1.1.3 JNLP Generator AutoVue Client can be launched from a WEB environment.
You can interact from a WEB environment. It is a Java application that can be started
through Java Web Start framework. This requires a JNLP file to be downloaded by the
browser in order to trigger the utility javaws through file protocol association. The
servlet VueJNLPServlet provided with AutoVue is designed to generate the required
JNLP file.

Note: For more information about VueJNLPServlet, JNLP file
specifications and its generation, refer to the "Deploying JNLP
Components" section of the Oracle AutoVue Installation and
Configuration Guide.

VueJNLPServlet can be deployed onto any J2EE application server supported for
VueServlet. It is an independent self-contained component that does not interact with
any other component of AutoVue server. It is provided as a reference implementation
for validation and testing purposes.

2.1.1.1.4 AutoVue Client Components AutoVue client components need to be hosted
within an application server or a Web server and configured to communicate with the
VueServlet, which in turn communicates with the AutoVue server. The process for
deploying the client components varies depending on whether you have AutoVue
integrated with a DMS or if you are using a non-integrated environment.

Note: For information on deploying AutoVue client components,
refer to the "Installing AutoVue Client Components" section of the
Oracle AutoVue Client/Server Deployment Installation and Configuration
Guide.

AutoVue Integration Software Development Kit

2-4 Oracle AutoVue Integration Guide

AutoVue Client
The AutoVue client is a JAVA-based application that can be launched from a Web page
(HTML, ASP, and so on), through Java Web Start framework, and is fully
customizable. You can modify the graphical user interface (GUI), set up a collaboration
session, modify the menu options and toolbars, and so on.

Note: For more information about the customizing the client
application and GUI, refer to the "Customizing the AutoVue Client"
section of the Oracle AutoVue Client/Server Installation and Configuration
Guide

2.1.2 Desktop Deployment
Oracle AutoVue Desktop Deployment is a solution for users that want to run AutoVue
locally on their individual desktops.

AutoVue provides you the option of customizing your graphical user interface (GUI).
By default, the GUI specification is not set and AutoVue uses an internal GUI file for
the menus and toolbars.

Note: For information on modifying the GUI file, refer to the
"Customizing the GUI" section of the Oracle AutoVue, Desktop
Deployment Installation and Configuration Guide.

2.2 AutoVue Integration Software Development Kit
The AutoVue Integration Software Development Toolkit (ISDK) enables you to add
powerful viewing and markup capabilities to the DMS by interfacing AutoVue with a
particular DMS. AutoVue ISDK provides a framework on top of which you can build
your own integration between AutoVue and a DMS. This interface, or integration
process, is composed of several activities: requirements specification, analysis, design,
implementation, testing and maintenance.

The following sections provide an overview of the ISDK architecture, framework, and
sequence flow.

Note: For a more detailed description of the ISDK, refer to the
AutoVue ISDK Design Guide

2.2.1 AutoVue ISDK Architecture
The following block diagram shows a typical integration between AutoVue and a DMS
using the AutoVue ISDK framework.

AutoVue Integration Software Development Kit

AutoVue Integration Technologies 2-5

Figure 2–2 ISDK integration between AutoVue and a DMS

The following is a description of the integration shown in Figure 2–2, "ISDK
integration between AutoVue and a DMS". The numbered steps in the figure
correspond to the following steps.

1. Log into the DMS through a Web browser.

2. With DMS customization in place, you are presented with a link labeled View next
to each file stored inside DMS. This link allows you to view files in the AutoVue
viewer.

3. Click View. The AutoVue client is launched inside the Web browser window.

4. The AutoVue client communicates with the AutoVue Server through servlet
tunneling for HTTP/HTTPS connection (VueServlet).

5. The AutoVue server then communicates with the DMS servlet using a standard
HTTP/HTTPS connection.

6. With the DMS extension installed on the server machine, the DMS Servlet is able
to talk to the DMS Server to handle any request made by the AutoVue server, such
as file fetching.

If you try to view a file having external reference files (XREFs) or font resource files,
the DMS Servlet retrieves those files and makes them available to the AutoVue server.

Once the file and all its related XREFs and/or resources are fetched out of the DMS,
they are processed by the AutoVue server, which renders the file and streams it to the
AutoVue client for display.

2.2.2 AutoVue ISDK Framework
The AutoVue ISDK framework handles all the plumbing for parsing XML requests
received from the AutoVue Server, as well as constructing XML responses sent back to
the AutoVue server. This framework provides the foundation you need to build your
own integration so that you do not have to implement your integration from scratch.

The following block diagram shows the internal structure of a typical integration with
a DMS.

AutoVue Integration Software Development Kit

2-6 Oracle AutoVue Integration Guide

Figure 2–3 Integration internal structure

The AutoVue ISDK bundles some third-party Java libraries needed by the framework.
These libraries are also available for you to call from your own code.

Your integration is responsible for interacting with your DMS. Depending on what
type of SDK your DMS provides, such interaction can be as easy as calling your DMS
Java libraries.

2.2.3 AutoVue ISDK Sequence Flow
When a user selects a document to view, the AutoVue server makes several requests to
the DMS servlet. The DMS servlet provides a response for each request. The scenario
of the exchanges established between the AutoVue server and the DMS servlet are
summarized as follows:

1. The AutoVue server asks for the private key. This request is handled by VueLink
core.

2. The AutoVue server asks for the user name (CSI_UserName).

3. The AutoVue server asks for the document ID (DocID) of the selected document.
This is done through the Open action, which obtains the DocID from the DMS.

4. The AutoVue server asks for some properties of the document, such as document
name, document size and date of the last modification. The reason is that the
AutoVue server maintains a cache of the document and needs to know if it already
has the exact same version of the document in its cache. In this case, AutoVue uses
the cached copy rather than redownloading the document.

5. AutoVue fetches the document through the Download action.

6. AutoVue downloads XREFs.

AutoVue Integration Software Development Kit

AutoVue Integration Technologies 2-7

7. AutoVue queries for any markups associated to the document.

2.2.4 VueLink
The VueLink is an Oracle-developed ISDK for specific integration environments.
VueLink provides an interface that allows communication between a DMS and
AutoVue in order to retrieve documents and to store data that is generated by
AutoVue for those documents (for example, annotations). The VueLink is a Java Web
application that is hosted on a Java Web application server.

Note: For a list of currently available VueLinks, refer to the "AutoVue
Documentation" page on the Oracle Technology Network (OTN)
http://www.oracle.com/technetwork/documentation/autovue-0914
42.html.

This section provides an overview of the VueLink architecture and how to customize
the graphical user interface (GUI).

Note: For a more detailed description of VueLink components, refer
to the AutoVue ISDK Design Guide.

2.2.4.1 VueLink Architecture
The following figure shows how the communication between AutoVue and the
DMS/repository is done through a VueLink.

Figure 2–4 AutoVue and DMS Integration

The integration flow is as follows:

1. AutoVue sends a request to the VueLink.

2. VueLink forwards the request to the repository.

3. The repository sends a response back to the VueLink.

AutoVue Web Services

2-8 Oracle AutoVue Integration Guide

4. VueLink forwards the response to the AutoVue server.

Once AutoVue gets access to a document and other related data from the DMS, it then
streams the view of the document to the AutoVue client via the VueServlet.

The VueLink is the integration component that acts as the gateway between AutoVue
and the repository. The name VueLink is reserved for these types of Oracle-developed
gateway components. You can choose your own trademarks or preferred name for this
piece of integration. However, regardless of its name, VueLink-type components
enable AutoVue to access documents that are stored inside the DMS. The VueLink also
enables AutoVue to retrieve any data related to these documents from the DMS. In
addition, any data generated by AutoVue (for example, markups and renditions) can
be stored into the DMS using this component.

2.2.4.1.1 GUI Customization The AutoVue client can be embedded into the repository
GUI or it can be launched in a separate window. In either case, an action must be
defined in the repository GUI that invokes the AutoVue client. This action can be
assigned to a user interface (UI) button, an icon, or a menu item inside the repository
UI.

Note: For more information on VueLinks and GUI customization,
refer to the AutoVue ISDK Design Guide.

2.3 AutoVue Web Services
The AutoVue Web Services (WS) package enables AutoVue to communicate with a
third-party application that wants to invoke AutoVue in a Service Oriented
Environment (SOE). It exposes certain AutoVue functionalities as Web methods, and
translates AutoVue Web Services requests to and from AutoVue (for example, AutoVue
messages to AutoVue Web Services responses).

Note: This section provides an overview of the AutoVue WS
architecture. For information on how to implement AutoVue WS into
your integration, refer to the AutoVue Web Services Developer’s Guide.

2.3.1 AutoVue Web Services Architecture
The following diagram displays the communication process for AutoVue WS.

AutoVue Java-based Application Programming Interface

AutoVue Integration Technologies 2-9

Figure 2–5 AutoVue Web Services communication process

1. The Web Services client communicates with the Web Services/Application Server
via Web Service Definition Language (WSDL)/Simple Object Access Protocol
(SOAP).

2. All requests are then sent to the AutoVue Server.

3. If there is a the DMS extension installed on the server machine, the DMS Servlet is
able to talk to the DMS Server to handle any request made by the AutoVue server,
such as file fetching from the DMS.

2.4 AutoVue Java-based Application Programming Interface
The AutoVue Java-based Application Programming Interface (API) is an umbrella
term for the APIs that the AutoVue client is built upon, with the VueBean API being
the core component of the architecture. The following figure exposes these API
packages and classes.

AutoVue Java-based Application Programming Interface

2-10 Oracle AutoVue Integration Guide

Figure 2–6 AutoVue API Packages and Classes

VueAction: This component can add graphical user interface (GUI) elements to
different contexts (such as menu bar, tool bar, status bar, and so on). For example,
when a menu option is selected in the GUI, a VueAction is triggered.

VueBean: This component manages the representation of a file including the resources
upon which the file depends.

MarkupBean: This component handles markup functionality.

Server Control: This component handles the communication with the AutoVue server
and the session book keeping.

The AutoVue client that ships with AutoVue Client/Server Deployment is an example
of web-based AutoVue client. As seen in Figure 2–6, "AutoVue API Packages and
Classes", there are a number of packages and classes included in the AutoVue API.

Note: This section provides an overview of the AutoVue API. For
more technical information, refer to the Oracle AutoVue API Guide.

2.4.1 AutoVue API Design Options
With the AutoVue API, you can implement functions from AutoVue in a WEB client,
build a customized application, or customize your AutoVue client. These design
options are introduced in the following sections.

Note: For detailed information on how to implement these design
options, refer to the Oracle AutoVue API Guide.

AutoVue JavaScript Application Programming Interface

AutoVue Integration Technologies 2-11

2.4.1.1 Implementing Functions from AutoVue in a WEB client
You can modify the functionality of the client that is shipped with Oracle AutoVue.
This option is used to build additional menu and toolbars outside of the AutoVue
client's interface. You can design a standalone application or a WEB client in a Web
page.

When creating your own customized Java clients based on AutoVue API components,
it is sometimes easier to implement pre-existing methods from AutoVue. Using
AutoVue JavaScript API, many AutoVue methods can be called in your HTML page.

Note: For more information on how to implement functions from
AutoVue in WEB client, refer to the Oracle AutoVue API Guide.

2.4.1.2 Building an AutoVue API Application
You can build your own customized application. This option allows you to build an
application that makes calls to the VueBean package. You can leverage AutoVue’s
viewing and markup technology while maintaining complete control of the behavior
of the application.

Note: For detailed information on how to create an application that
opens and displays a file using the AutoVue API, refer to the
"Building an AutoVue API Application" section of the Oracle AutoVue
API Guide.

2.4.1.3 Customizing AutoVue
You can implement pre-existing methods from Oracle's AutoVue client to build your
own customized client. This option is used to customize the existing AutoVue client's
menus and toolbars.

Note: For detailed information, refer to the "AutoVue API Packages"
section of the Oracle AutoVue API Guide.

2.5 AutoVue JavaScript Application Programming Interface
AutoVue Client is a Java application that can be started through Java Web Start
framework. This framework requires a JNLP file to start the application. An
integration solution requires that the server generate a JNLP file to be used by Java
Web Start framework to launch AutoVue client. The servlet VueJNLPServlet provided
with AutoVue is designed to generate the required JNLP file.

Note: For more information about VueJNLPServlet, JNLP file
specifications and its generation, refer to the "Deploying JNLP
Components" section of the Oracle AutoVue Installation and
Configuration Guide.

AutoVue client supports a scripting API and starts a socket listening to XML HTTP
requests invoking this API. These requests are wrapped into a JavaScript Object
named AutoVue. This object is designed to simplify the integration of AutoVue into a
WEB context and provides a JavaScript API that browser can use to launch and
interact with AutoVue Client.

Augmented Business Visualization

2-12 Oracle AutoVue Integration Guide

The Figure 2–7 shows how the communication between the browser and AutoVue is
done through a JavaScript layer:

Figure 2–7 Architecture diagram

JavaScript API is wrapped into the AutoVue JavaScript Object above.

Note: For more information about AutoVue JavaScript API, refer to
the "Java Script API" section of the Oracle AutoVue API Guide.

2.6 Augmented Business Visualization
Augmented Business Visualization (ABV) is a visualization framework which
provides rich and actionable visual decision making environments by connecting
portions of documents to business data found in enterprise applications. ABV's
hotspot capabilities allow you to create links between objects in AutoVue's data model
and objects in an external system. With this hotspot feature, an ABV solution can be
built that integrates AutoVue tightly into other applications. By clicking on an area of a
document in AutoVue, a visual action is triggered and/or information displays in
other applications. With visual dashboards, you can expose data from enterprise
systems visually by changing the hotspot color.

Note: This section provides an overview of the ABV architecture and
hotspots. For more detailed information, refer to the Oracle AutoVue
API Guide.

2.6.1 Architecture
Through the use of AutoVue hotspot capabilities, the ABV integration framework ties
together all the individual components that make up the solution (data repository,
AutoVue, and enterprise applications). The ABV integration coordinates with the DMS
and can be written in either Java or JavaScript.

Depending on how the ABV framework is configured, the hotspots can be set up as a
visual action solution or as a visual dashboard solution.

Augmented Business Visualization

AutoVue Integration Technologies 2-13

Figure 2–8 Visual action architecture

For visual actions, information is retrieved from the data repository when a user clicks
on a text hotspot, regional hotspot, or 3D hotspot. A request identifier is passed to the
ABV integration by the AutoVue client application. The ABV integration then
translates the request ID into a key for the enterprise system and an action is triggered.
The results of the action is communicated back to the user from the enterprise system.

For visual dashboards, the ABV integration retrieves information for the dashboard
from the enterprise system. This information is then passed to the hotspot identifiers
and colors via JSON or XML.

2.6.2 Hotspots
ABV’s hotspot capabilities allow system integrators to create links between objects in
AutoVue's data model and objects in an external system. With this hotspot feature, an
ABV solution can be built that integrates AutoVue tightly into other applications. By
clicking on an area of a document in AutoVue, a visual action is triggered and/or
information displays in other applications. With visual dashboards, you can expose
data from enterprise systems visually by changing the hotspot color.

AutoVue provides the following capabilities around hotspots:

■ Defining hotspots.

■ Defining Visual Dashboard.

■ Tooltip to display on the hotspots defined in AutoVue.

■ Customizing for hotspot selection notification.

■ Customizing of hotspot color.

■ Defining visual actions.

AutoVue provides the ability to define the following types of hotspots:

■ Text-based hotspots in 2D and EDA (based on patterns of text in the
document/PDF).

■ Regional (box and polygon) hotspots in 2D, EDA, PDF and graphic documents are
defined by world-coordinates on the page.

■ Hotspots based on 3D attribute names and/or values.

■ Hotspots in Web CGM files which can be defined by the Name, ID, or URI
parameters.

Note: For more information on creating visual dashboards and
visual actions, refer to the "Hotspots" section of the Oracle AutoVue
API Guide.

Note: Use of hotspots with optical character reader (OCR) is not
recommended.

Augmented Business Visualization

2-14 Oracle AutoVue Integration Guide

3

Integration Scenarios 3-1

3Integration Scenarios

This section discusses possible integration scenarios for AutoVue. For technical
information and code snippets on how to implement these integrations refer to their
respective technical documents mentioned in the Preface.

3.1 AutoVue API Use Case
The following example shows how an AutoVue API solution can be used to print
documents from a DMS.

Note: For sample code on how to implement the AutoVue API, refer
to the "Sample Cases" section of the Oracle AutoVue API Guide.

3.1.1 Printing Documents from a DMS
A customer in the oil and gas industry needs to print designs in large plants where
printers are dispersed, and different departments have different printing needs.
Documents are stored in a DMS and a custom application provides access to files and
handles integration with AutoVue.

3.1.1.1 Requirements
The customer is in need of a batch print solution. However, a single server-side
printing solution is not possible since the different business units have different
business needs and are located in different physical locations. Instead, given that the
printers are dispersed around the plants, the customer needs to have a batch print
capability on the client side where users can choose the appropriate printer in their
local environment.

3.1.1.2 Integrator steps
1. Create a custom ISDK integration to fetch documents from the DMS. Note that

each document has a unique ID which represents it in the repository and the
custom integration has the list of these Doc ID's to be passed to the AutoVue
integration.

2. Build a custom VueBean batch printing solution which calls a non-GUI session to
carry out the AutoVue VueBean batch print method.

3. Display a dialog with all print options so the end user can choose the appropriate
options to print the documents.

AutoVue ISDK Use Cases

3-2 Oracle AutoVue Integration Guide

3.1.1.3 End-user steps
1. An engineer prints multiple DWG, DGN and TIFF files which are all related to a

certain design in their enterprise application. To do so, the engineer navigates to
the custom application interface, selects the files, and then clicks Bulk Print.

2. For the next design, the custom application's bulk print feature is used to print the
contents of the entire folder stored in the DMS.

3. The engineer goes to the nearest printer to pickup the printed designs. Meta data
from the DMS (such as file name, last modified date and status) are included as
part of the header of the printout.

3.2 AutoVue ISDK Use Cases
The following examples show how an AutoVue ISDK solution can be used for
reviewing, annotating and approving designs.

Note: For sample code on how to implement the AutoVue ISDK to
implement the following use cases, refer to the AutoVue ISDK Technical
Guide.

3.2.1 Reviewing and Annotating Documents
A wireless technology company uses PTC WindChill and Agile PLM to create and
store their phone and wireless-related designs. They also use AutoVue to collaborate
on these designs, which are mainly Pro/ENGINEER files.

3.2.1.1 Requirements
The company requires a solution to streamline their reviewing process.

3.2.1.2 Integrator steps
1. Create an integration with PTC WindChill using AutoVue ISDK.

2. Create a VueAction called Create Report and modify the GUI file to add the new
Create Report VueAction to the menu. This VueAction launches a report of all the
annotations. The report is a simple Web application with one page. In this report,
you can use the AutoVue API to get a list of markup files.

3. From the Java application, use the extract feature of the VueBean API to retrieve
information about each markup entity and the bounding box of where the markup
entity is located on the page.

4. Feed the markup entity location information to the export feature of the VueBean
API to create a thumbnail of the page.

5. List all of these thumbnails in a frame on the left hand side and embed AutoVue in
the right frame of this page to show the full design.

Note: Using the ABV framework you can add JavaScript code to
enable the user to click on a thumbnail in order to highlight the
relevant portion of the document.

AutoVue ISDK Use Cases

Integration Scenarios 3-3

3.2.1.3 End-user steps
1. The engineer, who has just completed a design for a new technology for a smart

phone, sends an email to all his peers that includes a link to the AutoVue server
where the file can be opened. Each reviewer clicks on a link in their email and goes
directly to AutoVue where they can view the file and add their annotations.

2. Once the reviews are complete, the engineer’s manager opens the design from the
AutoVue server and clicks on Create Report to view the annotations.

3. The manager uses the report to go through all the annotations and clicks on each
thumbnail to view a larger image of the design on the right hand frame within
AutoVue.

3.2.2 Reviewing and Approving Documents
A federal government receives approximately 1000 permit requests per day. Typically
users go to a federal portal and submit their applications. Through this process the
applicants also upload the related documents. Although a number of different formats
are accepted, the majority of time the documents are in PDF format. Documents can be
single page or multi-page and a document can be up to a 1 GB file size. A coordinator
identifies the departments to review the documents (typically there are 8 to 10
reviewers for each application). The files are reviewed using AutoVue.

Once the submissions are reviewed, they are routed to an engineer who makes the
final call about approving them. When the review process is finished and the design is
approved, the coordinator adds approval stamps on each page and converts all
associated documents with the stamps to a PDF/A for archival purposes.

3.2.2.1 Requirements
The submissions coordinator is looking to streamline their reviewing and approval
process by integrating a case management application system with AutoVue.

3.2.2.2 Integrator steps
1. Create an integration to the repository using the AutoVue ISDK, and integrate

AutoVue with a case management application system to create a complete visual
application. You can also included a button in the online portal to launch AutoVue
and pass the document ID to it so that AutoVue can open the file.

2. Create a VueAction called Approve which prompts the user to pick a stamp. The
GUI is also modified to add Approve to the menu and toolbar.

3. Use the Oracle Enterprise Visual Applications (OEVA) framework to tie all the
annotations to a workflow ID. Doing so helps end users view annotations in a
specific sequence.

4. Use the stamping feature of the VueBean API to add a stamp on each page of the
document and to save it to the file.

5. Use the conversion feature of the VueBean API to convert the document to PDF
with the file name in the footer of the document, and a Final watermark on the
output file.

Note: AutoVue does not support conversion of 3D pages or
documents.

AutoVue Web Services Use Cases

3-4 Oracle AutoVue Integration Guide

3.2.2.3 End-user steps
1. A permit application for a new construction is submitted to the local government

through the ePermitting portal.

2. A coordinator from the government receives notification that a new application
has been submitted.

3. The coordinator identifies ten people to review the submitted documents.

4. Reviewers use AutoVue to review the documents and add annotations using the
AutoVue UI. All annotations are tied to the given case. The approver reviews all
the annotations, creates one consolidated markup file for all the annotations, and
then uses the Approve menu item to approve the documents.

5. Once the user selects Approve, a dialog appears prompting the user to select a
stamp and then click OK.

3.3 AutoVue Web Services Use Cases
The following examples show how AutoVue WS can be used to manage work orders
and to identify faulty/recalled products.

Note: For sample code on how to use AutoVue WS to implement the
following use cases, refer to "Appendix A: Sample Client Code in
Java" in the Oracle AutoVue Web Services Installation and Developer’s
Guide.

3.3.1 Managing Work Orders
Firms in the asset intensive industries store work order information in a DMS. When
there is a repair that needs to take place for a facility, a field worker needs to be sent
onsite to fix the issue. The field worker needs to have a print-out of a work order and
all of its related documents when performing maintenance onsite.

A maintenance planner reviews all work orders that need to be completed in a day
and prepares work order packets for each assigned field worker. Additionally, the
maintenance planner reviews all work orders in the system and selects a list of work
orders that need to be completed for a given day, and then prints them with their
selected supporting documents.

3.3.1.1 Requirements
To design a system where work orders can be viewed, updated and printed anywhere.

3.3.1.2 Integrator steps
1. Customize an Application Lifecycle Management (ALM) system to display a page

for the user to choose the attachments and print options. All the printers have
been pre-registered on the server. Upon launching of this page, make a call to
AutoVue WS to get a list of all printers and display this list to the user. Once the
user picks a printer, another call to AutoVue WS is made to get a list of all
available print options and display then to the user. These options include print
orientation, page range, number of copies and paper size.

2. Make a call to the ALM system to receive a list of all attachments linked to the
work order and display the list to the user. The user selects one or more
attachments from the list.

AutoVue Web Services Use Cases

Integration Scenarios 3-5

3. Include meta data (such as file name) in the header and work order ID in the
footer of the documents to identify the files. The Confidential watermark is added
to all documents that are tagged as such in the ALM system.

4. When the Print action is selected, a call is made to the packet printing feature of
the VueBean API in order to print all selected documents as a packet. The cover
page, summary page, and page number features of the packet printing APIs are
included to make the packet contents easily identifiable to the user.

3.3.1.3 End-user steps
1. When performing a search on all Work Orders in the ALM system, a maintenance

planner reviews all work orders in the ALM system and chooses a list of work
orders that need to be completed for that day.

2. The maintenance planner then selects all these work orders and clicks Print.

3. The maintenance planner then goes to the printer to pick up the work orders and
their supporting documents and collates them so that each field worker can have a
set of work order packets for that day.

4. The maintenance planner gives the work order packets to the field workers who
perform the necessary operations.

3.3.2 Identifying Recalled Components
A company relies heavily on information contained in their repository of millions of
documents which have critical information about the design of their product.
Employees from different departments require access to these documents in order to
search for information on parts and designs.

The engineering department needs to have access to this information to locate parts
and determine whether a part can be re-used. Customer support and marketing
departments need to have access to product details in order to better market and
support their customers. If there are recalls of certain parts of a product, it is necessary
to search the product catalog to identify products containing recalled parts.

The company uses a search application along with AutoVue Text Extraction API's to
retrieve text from all the different files types in their multiple repositories. The search
application provides indexing and searching capability, but cannot read technical
documents and relies on AutoVue to extract text from technical documents.

3.3.2.1 Requirements
Use AutoVue's text search capabilities to build an indexing and searching capability
across all the technical documents in the organization.

3.3.2.2 Integrator steps
1. Use text extraction capability from AutoVue WS to retrieve text from documents

and store the text in a DMS for search purposes. Text needs to be extracted from all
CAD documents.

3.3.2.3 End-user steps
1. The administrator in charge of recalls needs to ensure that any product which has

been recalled for safety reasons is accounted for. Additionally, any other products
that may use the recalled part should also be recalled. Having access to all the
information in a document is critical as it may have an impact on the public’s
safety.

ABV Use Cases

3-6 Oracle AutoVue Integration Guide

2. The administrator logs into the search application to look for a specific part
number to see how many designs use that part number.

3. The search application has already searched all the files in the company’s DMS
and indexed all text in those documents using AutoVue text extraction APIs.

4. The search application browses through its data store to find the searched
keywords. The user is given a list of files that match the searched keywords.

5. The products that contain the problematic parts are identified and the appropriate
action is taken to ensure those parts are also recalled.

3.4 ABV Use Cases
The following example discusses how an ABV solution can be used for highlighting
parts based on availability as well as regional, 3D, and text hotspots.

Note: For sample code on how to implement ABV and hotspots,
refer to the "Hotspot Samples" section of the Oracle AutoVue API Guide.

3.4.1 Material Availability Using Hotspots
A construction company builds large off-shore plants. They work with sub-contractors
who plan and perform the actual construction tasks. However, the construction
company is responsible for assigning high-level tasks on a weekly basis and to ensure
that all the materials and information (documentation, and so on) are available for the
tasks. The overall project is divided into multiple areas, and each area has a
construction manager.

The onsite construction manager performs a constructability analysis on a
week-by-week basis to ensure that all the materials and documentation are available
for the work planned for that period. If the manager notices that some of the
materials/documentation for the work planned during the new few weeks are not
available, then they must identify other tasks that the subcontractor can perform until
the missing materials/documentation are provided.

A main area of interest of the construction manager is the construction of pipelines in
the plant. Each pipeline makes a connection between two pieces of equipment and is
broken down into a series of smaller pipeline segments—the split can be done on
various criteria such as length or when the pipeline passes through different areas of
the plant. The 3D model of the pipeline is then broken down into the pipeline
segments. For construction purposes, each pipeline segment is further broken down
into spools, which are components that are individually assembled and welded into
place.

The construction company uses a material management system to provide current
availability information of components in a spool and to provide summary
information indicating which of the pipeline segments and pipelines have all the
materials available. For pipelines that are not completely available, the management
system can provide a list of pipeline segments or spools that are missing materials.

3.4.1.1 Requirements
The construction manager would like to see each pipeline highlighted based on
availability down the spool—where each spool will be colored in green (fully
available), yellow (partly available), or red (not available). To view textual information
for each spool, the construction manager can then click on a highlighted pipeline
segment to retrieve a list of which spools are available/unavailable.

ABV Use Cases

Integration Scenarios 3-7

3.4.1.2 End-user steps
1. The construction manager (CM) brings up a view of the area of interest of the

plant in AutoVue.

2. The CM requests a view of overall availability, and observes that pipelines 1, 4 and
5 show up fully in green, pipelines 2 and 3 show up partially in yellow, and
pipelines 6 and 7 show up mostly in red. This indicates that 1, 4 and 5 are fully
available, pipelines 2 and 3 are partially available, and pipelines 6 and 7 are not
available Note that a request could have also been made for material availability,
or documentation availability with similar results.

3. The CM consults the Primavera schedule and determines that in the next two
weeks the subcontractor should be working on pipelines 1, 2, 3 and 4. Since
pipelines 2 and 3 are not fully available, the construction manager needs to
identify an alternative plan.

4. In AutoVue, the CM investigates further. Since pipeline 2 has relatively few yellow
ISOs, it is handled first. By clicking on the yellow pipeline segments in pipeline 2,
a side panel is updated to show the list of available spools in the pipeline segment.
With this information, the CM is able to determine that each of the yellow pipeline
segments in pipeline 2 have enough material available to start construction and
should not delay the work.

5. The CM looks at pipeline 3. It has more yellow pipeline segments, and by clicking
on each pipeline segment it is determined that it is not safe to start construction on
pipeline 3 as it would likely involve a delay to the project.

6. Since pipeline 5 is displayed fully in green, the CM looks at the schedule and sees
that pipeline 5 is not scheduled to be started for another 3 weeks, even though all
of the materials are available today. As a result, the schedule is adjusted to reflect
that pipeline 5 will be started this week, and pipeline 3 will be started in 3 weeks
since the materials for pipeline 3 are excepted to arrive by then.

7. The CM creates the work packages for the subcontractor to start work on pipelines
1, 2, 4 and 5.

3.4.2 Property Management Using Hotspots
A property management firm manages shopping malls and charges store owners a flat
rent plus a percentage of revenue. As a result, it is in the management firms best
interest to keep only customers that are running successful businesses.

The facility management software they use categorizes tenants into four categories:

■ RT/RL (right tenant/right location)

■ RT/WL (right tenant/wrong location)

■ WT/RU (wrong tenant/right usage)

■ WT/WL (wrong tenant/wrong location)

It also identifies shops where some action is expected in the next twelve months. In
their sample, they indicate these rooms by highlighting them.

All of these operations happen on PDF floor plans of the mall.

3.4.2.1 Requirements
The management firm would like to be able to show a floor plan of the mall with each
store highlighted in different colors based on the categorization, and with an easy way
to identify stores where an action will take place in the next twelve months.

ABV Use Cases

3-8 Oracle AutoVue Integration Guide

Additionally, they would like an easy way to see various information about the store
(current tenant, lease info - start/end, size in square meters, etc.), and to trigger
various actions in their facilities management system. For example, to start the process
to cancel a lease, or to transfer a tenant to another location.

3.4.2.2 Integrator steps
1. Create an integration between the facilities management system and AutoVue's

hotspots.

2. Build a custom tool which stores the hotspot information and the Doc ID's in an
XML document.

3. Build a hotspot integration using Ajax that reads in this XML document and
creates the hotspot definitions for this file when it is opened.

4. Implement hotspots to make calls to the DMS upon triggering actions in a
drawing.

3.4.2.3 End-user steps
1. For each floor of each building managed by the property firm, an administrator

creates a mapping between the store locations and the store names. To do this, the
administrator does the following:

■ Opens the floor plan PDF in a user-defined AutoVue hotspotting
administration tool and clicks on the polygon representing the store. The
shape is highlighted and the administrator is prompted to enter the name of
the hotspot.

■ The administrator enters the store name and clicks OK.

■ When all the hotspots are verified, the administrator clicks the Save and an
XML file is generated containing the file name, the doc ID, and a list of
hotspots.

Note: Each hotspot entry contains the name and polygon points of
the hotspot shape. The XML file is saved with the floorplan in the
DMS system.

2. A facility manager selects a floor of a building. The floor plan is retrieved, and the
facilities management system retrieves the hotspot information for the floor plan
and passes it to AutoVue.

3. The facility manager sees the floor plan with the color-coded rooms based on the
categorization and where an action will happen in the next twelve months.

4. The facility manager moves the mouse cursor over each store to see a tooltip
indicating the tenant name, lease start/end dates, and area of the store.

5. The facility manager initiates various actions in the facility management system by
clicking or right-clicking on each store. For example, the actions may initiate a
cancellation of a lease or the relocation of a tenant.

6. The facility manager shares the current status of the floor with colleagues by
converting the document to PDF, and then emails it to colleagues.

Note: AutoVue does not support conversion of 3D pages or
documents.

ABV Use Cases

Integration Scenarios 3-9

3.4.3 Tracking Delivery and Stock Quantities of Product Parts Using 3D Hotspots
A company that constructs energy-oriented facilities wants to connect their 3D models
to data (such as order status and delivery date) located in a DMS. Currently, they have
a mapping table that maps the items in the CAD model to the data in the DMS.
However, the mapping table has been known to fail when the model is updated
(Unique IDs in the CAD file change, for instance). As a result, a more reliable solution
is needed.

3.4.3.1 Requirements
The company requires a visual representation of stock quantities for specific parts.
Some information such as order status, delivery date and so on should be displayed as
tooltips or in a side-panel. Other information can be displayed as a visual dashboard
by coloring the parts appropriately.

3.4.3.2 Integrator steps
1. Use the AutoVue ISDK to create an integration between the DMS and AutoVue

hotspots.

2. Configure a mapping between key attributes in the model and data in DMS. This
mapping is stored as an XML file in a location that is accessible.

3. Leverage ABV to read the XML file using Ajax and create the appropriate
hotspots.

4. Use ABV to handle the action and to make calls to the enterprise system to retrieve
part data, initiate payment, and so on.

Note: It is often required to display visual information on a large
number of parts. There may be cases when the company wants to
apply hotspots to higher-level assemblies, and then over-ride the
hotspots on sub-assemblies or individual parts. In this situation, the
hotspot applied at the lowest level of the structure should be used.

3.4.3.3 End-user steps
1. The user selects the plant to view. The integrator sets up the mapping between the

parts in that model and the DMS.

2. The user is presented with a dashboard which shows untargeted stock as green,
targeted stock as orange, and unordered items as red.

3. The user can see various part information (such as cost, order status, and delivery
date) by hovering the mouse cursor over hotspotted parts.

4. Even though the parts are highlighted based on the stocking status, when the
hotspot is clicked, the integration knows which part has been clicked and accesses
its other attributes.

5. When a part is received on-site, the user can click on the part and initiate payment
for the part, or initiate a return if the part is damaged.

3.4.4 Plant Maintenance Using Text Hotspots
A company in the asset-intensive industry uses AutoVue and SAP Plant Maintenance
(PM) to plan maintenance activities.

ABV Use Cases

3-10 Oracle AutoVue Integration Guide

The maintenance planner is an individual who typically manages maintenance
activities, handles inventories, orders parts and is responsible for maximizing plant
uptime.

The maintenance planner knows that there are some assets with faults in the east wing
of the plant. For each asset, work orders are to be created for the work that needs to be
done and a decision made on whether the asset should be repaired or replaced.

3.4.4.1 Requirements
Integrate the SAP PM with AutoVue using ABV in order to streamline work order
creation, updating and processing.

3.4.4.2 Integrator steps
1. Use AutoVue ISDK to create an integration between SAP PM and AutoVue.

2. Implement ABV and use regular expressions to parse the names of specific model
parts and turn them into hotspots. Then make a call to the SAP PM to retrieve the
failure history for that part.

3. Implement ABV and implement code to handle left-clicking on the hotspots. By
making a call to the SAP PM application to retrieve information when a hotspot is
clicked, you can display the failure history in the left frame of the window.

4. Use ABV to create the right-click menu and define the actions on it. The Add to
New Work Order action is tied to a method which keeps track of all the parts.

5. The ABV implementation stores the part information and displays it on the left
frame.

6. Use the same right-click menu and added a new action Check Inventory, which is
tied to a method which makes a call to the SAP PM to check for inventory given
the part number. Using the ABV framework, color code the parts based on the
outcome of this method.

7. Add another action to Create Work Order. This action is tied to a method which
makes a call to the SAP PM API's to create a new work order and populates the
basic information, including the part numbers.

3.4.4.3 End-user steps
1. The maintenance planner logs into the SAP PM application and opens a drawing

of the east wing of the plant in AutoVue.

2. The maintenance planner clicks a button, and AutoVue (specifically, ABV) colors
valves 1, 2, and 3 red, showing that there are faults associated with these assets.

3. The maintenance planner clicks on one of the valve 3 that is colored red, and is
presented with some detailed information about the failures (such as the dates the
valve failed and the failure codes). Based on this information, the planner decides
that the valve should be repaired instead of being replaced. The repair involves
replacing some parts in the valve.

4. Next, the planner opens up the detailed drawing of the valve, which shows all the
parts that make up the valve. From the drawing, the planner can see that three
parts need replacement: 7, 8, and 9. The planner right clicks on part 7. From the
menu displayed, selects Add to New Work Order. The part is highlighted and in
the left hand side of the window, 7 is listed in a list of all the parts to be added to
the new work order.

ABV Use Cases

Integration Scenarios 3-11

5. The planner repeats this process for parts 8 and 9. The list on the left hand side
shows 7, 8, and 9.

6. The planner right-clicks one of the parts and selects Check Inventory. The three
parts 7, 8, and 9 all turn green, showing they have the parts in inventory. If a part
turns red, it indicates it is not in inventory, and the planner can order it through
the company's procurement system.

7. The planner right-clicks and selects Create Work Order. The work order creation
dialog pops up in SAP PM system, pre-populated with some basic information
about the pump, and with 7, 8, and 9 already added to the list of Required
Materials.

8. Through the SAP PM interface, the planner adds a drawing of the valve to the list
of work order attachments.

9. The planner opens up the attached plant drawing in AutoVue, and creates a
markup to indicate which parts of the valve should be replaced. Valves 7, 8, and 9
are highlighted and zoomed to on the drawing and text informing the technician
the type of problems this valve has had over the last year.

ABV Use Cases

3-12 Oracle AutoVue Integration Guide

4

FAQ 4-1

4FAQ

The following sections provide answers to frequently asked questions regarding
AutoVue.

■ When to use AutoVue API vs. Web Services?

– Our Web Services API provides a subset of AutoVue’s capabilities. It is
intended for applications that do not require too many customizations or are
implemented in different languages. For example, when performing a
background conversion of document to PDF, it is recommended to use the
Web Services API.

If the application is implemented using Java, then the AutoVue API can be
used with a much richer set of capabilities. For example, when printing
documents that are stored in a DMS, it is recommended to use the AutoVue
APIs.

■ When to use VueBean vs. JVueApp?

– The JVueApp class should be used when using or customizing the AutoVue
GUI. It can be done through another Java application. For example, the
JVueApp class can be used to create a new custom action. The action can be
invoked from the menu, toolbar, or right-click menu as specified in the GUI
file.
The VueBean should be used to leverage AutoVue’s functionality without
making use of its existing GUI layer. For example, a custom application may
be written to use the VueBean and leverage only its rendering or conversion
capabilities.

■ How to integrate with a DMS if using Desktop Deployment?

– This is currently not supported.

■ Difference between batch print and packet print?

– Batch printing is when multiple unrelated documents are sent to the printer
together at one time from one command. For example, a script is created to
print all documents in a file system folder.

A packet print is a collection of related documents with the following
characteristics:

* Each page of each document has been marked with a packet identifier.

* A cover page is included that lists the packet identifier and all the
documents included in that packet.

* A summary page outlines what documents are printed (along with page
numbers) and their status (Success/Failure).

4-2 Oracle AutoVue Integration Guide

For example, a work order that contains CAD drawings, specifications sheets,
instructions, and so on is considered a packet print since all the documents are
related.

■ How to convert a non-3D document to grayscale

– AutoVue does not support document conversion to grayscale. However, black
and white conversion can be performed through the force-to-black
(monochrome) flag.

The following AutoVue API example shows how to enable force-to-black
when converting a file to PDF.

public void convertFile() {
VectorConvertOptions opts = new VectorConvertOptions();

opts.setStepsPerInch(1);
PAN_CtlFileInfo fi = m_vueBean.getFileInfo();
PAN_CtlRange ps = m_vueBean.getPageSizeEx();

if (fi.getType() == fi.PAN_DocumentFile) {
ps = fi.getPageSize();

}

opts.setInputRange(ps);
opts.setArea(ConvertOptions2D.AREA_EXTENTS);
opts.setScaleFactor(100);
opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
opts.setUnits(Constants.UNITS_INCH);
opts.setPages(ConvertOptions2D.PAGES_RANGE);
opts.setFromPage(1);
opts.setToPage(1);
opts.enableMode(PAN.CTLMODE_MONOCHROME); // Apply force-to-black
opts.setFormat("PCVC_PDF");
opts.setSubFormatID(0);
opts.setFileName("C:\\temp\\out.pdf");

Property[] p = m_vueBean.uploadMarkups();
opts.setProperties(p);
m_vueBean.convert(opts);

}
■ How to customize markup tooltips to display only the description?

– This is currently not supported.

■ How to make the server generate a streaming file programmatically?

– If the server is configured to generate streaming files, the simplest way is to
use the AutoVue API to open (VueBean.setFile()), and then close the
document (VueBean.closeFile()) for which you want to create a streaming
file. This schedules the creation of a streaming file.

The streaming file can be created on demand by calling
VueBeanController.saveMetafile() while the file is still loaded (between the
setFile() and closeFile()). It can also be retrieved via
VueBeanController.getMetafile().

■ How to change the color of an existing markup entity using AutoVue APIs?

Note: The markup must be selected for the following AutoVue API
code snippet to work.

FAQ 4-3

MarkupBean markupBean = vueBean.getMarkupBean();
MarkupEntity ent = markupBean.selectionGetEntity();
MarkupEntitySpec spec = markupBean.getMarkupEntitySpec(ent);
spec.setColor(lineColor);
markupBean.selectionSetSpec(spec);

■ How to hide a certain markup type in the UI

– Use a custom GUI file and remove the Markup actions corresponding to the
type to hide. For example, if you want to remove Text markups from the UI,
copy the default.gui file to create a new GUI file. In the custom GUI file,
remove all entries with MrkActionText.

■ What format types are supported for stamps?

– AutoVue supports adding Windows Metafile (WMF), Enhanced Metafile
(EMF), and Bitmap (BMP) files as background images for your Stamp. It is
recommended to use EMF as the background image for Stamps.

■ What formats are supported in conversion using AutoVue APIs vs. Web Services

– For AutoVue API, the following formats are supported:

* PDF

* TIFF (Uncompressed, PackBits, Fax III and Fax IV)

* Windows Bitmap

The AutoVue API does not explicitly support conversion to JPEG or PNG, but
this can be done in conjunction with other Java libraries. An example of the
version to JPEG is included in the AutoVue API Developer’s Guide.

– For Web Services, the following formats are supported:

* JPEG

* PNG

* PDF

* Windows Bitmap

* TIFF

■ How do you close an AutoVue application cleanly programmatically?

– To cleanly close AutoVue programmatically, using the AutoVue API directly,
call the following VueBean API methods:

* vueBean.closeFile()

* vueBean.destroy()

* vueBean.getServerControl().sessionClose()

Then call the com.cimmetry.JVueApp class’ destroy() method.

■ How to give a name to a new markup programmatically?

– To give a name to a new markup programmatically, call the
com.cimmetry.markupbean.Markup class’ setName() method and call
MarkupBean.notifyMarkupChanged().

For example:

Markup mrk = getMarkupBean().getActiveMarkup();
mrk.setName(markupName);

4-4 Oracle AutoVue Integration Guide

■ How can I get technical assistance with API/customization questions?

– Consult the product documentation, JavaDocs, and My Oracle Support
knowledge base as primary resources answering technical questions and
issues.

– For basic questions regarding the purpose or usage of specific API methods, a
Service request can be logged to the Oracle Support team via the My Oracle
Support portal.

Note: Support’s scope does not include customizations, application
development to include creating code/examples, or debugging
custom code, demo code, or sample code.

– For more complex technical questions regarding design, development or
debugging, it is recommended to either post in the AutoVue Integrations
Forum or reach out to the Oracle Consulting Services (OCS) or one of the
Oracle AutoVue Development partners.

A

Feedback A-1

AFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us
using the links below.

A.1 General AutoVue Information

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

A.2 Oracle Customer Support

Web Site http://www.oracle.com/support/index.html

A.3 My Oracle Support AutoVue Community

Web Site https://communities.oracle.com/portal/server.pt

A.4 Sales Inquiries

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

A-2 Oracle AutoVue Integration Guide

	Preface
	1 Introduction
	2 AutoVue Integration Technologies
	2.1 Oracle AutoVue
	2.1.1 Client/Server Deployment
	2.1.1.1 Deployment Architecture of Oracle AutoVue Client/Server Deployment
	2.1.1.1.1 AutoVue Server
	2.1.1.1.2 VueServlet
	2.1.1.1.3 JNLP Generator
	2.1.1.1.4 AutoVue Client Components

	2.1.2 Desktop Deployment

	2.2 AutoVue Integration Software Development Kit
	2.2.1 AutoVue ISDK Architecture
	2.2.2 AutoVue ISDK Framework
	2.2.3 AutoVue ISDK Sequence Flow
	2.2.4 VueLink
	2.2.4.1 VueLink Architecture
	2.2.4.1.1 GUI Customization

	2.3 AutoVue Web Services
	2.3.1 AutoVue Web Services Architecture

	2.4 AutoVue Java-based Application Programming Interface
	2.4.1 AutoVue API Design Options
	2.4.1.1 Implementing Functions from AutoVue in a WEB client
	2.4.1.2 Building an AutoVue API Application
	2.4.1.3 Customizing AutoVue

	2.5 AutoVue JavaScript Application Programming Interface
	2.6 Augmented Business Visualization
	2.6.1 Architecture
	2.6.2 Hotspots

	3 Integration Scenarios
	3.1 AutoVue API Use Case
	3.1.1 Printing Documents from a DMS
	3.1.1.1 Requirements
	3.1.1.2 Integrator steps
	3.1.1.3 End-user steps

	3.2 AutoVue ISDK Use Cases
	3.2.1 Reviewing and Annotating Documents
	3.2.1.1 Requirements
	3.2.1.2 Integrator steps
	3.2.1.3 End-user steps

	3.2.2 Reviewing and Approving Documents
	3.2.2.1 Requirements
	3.2.2.2 Integrator steps
	3.2.2.3 End-user steps

	3.3 AutoVue Web Services Use Cases
	3.3.1 Managing Work Orders
	3.3.1.1 Requirements
	3.3.1.2 Integrator steps
	3.3.1.3 End-user steps

	3.3.2 Identifying Recalled Components
	3.3.2.1 Requirements
	3.3.2.2 Integrator steps
	3.3.2.3 End-user steps

	3.4 ABV Use Cases
	3.4.1 Material Availability Using Hotspots
	3.4.1.1 Requirements
	3.4.1.2 End-user steps

	3.4.2 Property Management Using Hotspots
	3.4.2.1 Requirements
	3.4.2.2 Integrator steps
	3.4.2.3 End-user steps

	3.4.3 Tracking Delivery and Stock Quantities of Product Parts Using 3D Hotspots
	3.4.3.1 Requirements
	3.4.3.2 Integrator steps
	3.4.3.3 End-user steps

	3.4.4 Plant Maintenance Using Text Hotspots
	3.4.4.1 Requirements
	3.4.4.2 Integrator steps
	3.4.4.3 End-user steps

	4 FAQ
	A Feedback
	A.1 General AutoVue Information
	A.2 Oracle Customer Support
	A.3 My Oracle Support AutoVue Community
	A.4 Sales Inquiries

