
[1]Oracle® AutoVue
API Guide

Release 21.0.1

E84706-01

February 2017

Oracle AutoVue API Guide, Release 21.0.1

E84706-01

Copyright © 1999-2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Portions of this software Copyright 1996-2007 Glyph & Cog, LLC.

iii

Contents

Preface .. vii

Part I Java API Guide

1 Introduction – Java API

2 AutoVue API Packages

2.1 VueBean Package .. 2-1
2.1.1 Event Package .. 2-2
2.1.1.1 VueEvent.. 2-3
2.1.1.2 VueModelEvent .. 2-3
2.1.1.3 VueEventBroadcaster... 2-3
2.1.1.4 VueFileListener ... 2-4
2.1.1.5 VueMarkupListener ... 2-4
2.1.1.6 VueViewListener .. 2-4
2.1.1.7 VueStateListener... 2-4
2.1.1.8 VueModelListener .. 2-4
2.1.2 MarkupBean Package.. 2-4
2.1.2.1 Markup... 2-5
2.1.2.2 MarkupLayer... 2-5
2.1.2.3 MarkupEntity .. 2-5
2.2 Server Control.. 2-6
2.3 VueAction Package... 2-7
2.3.1 AbstractVueAction .. 2-7
2.3.2 VueAction ... 2-7
2.3.2.1 Create an action that performs a single function ... 2-7
2.3.2.2 Create an action that performs multiple functions.. 2-8

3 Sample Cases

3.1 Building an AutoVue API Application.. 3-1
3.2 Custom VueAction ... 3-4
3.2.1 Action that Performs a Single Function.. 3-5
3.2.2 Action that Performs Multiple Functions... 3-6
3.3 Directly Invoking VueActions .. 3-9
3.4 Markups ... 3-9

iv

3.4.1 Entering Markup Mode .. 3-9
3.4.2 Checking Whether Markup Mode is Enabled ... 3-9
3.4.3 Exiting Markup Mode.. 3-10
3.4.4 Adding an Entity to an Active Markup/Layer .. 3-10
3.4.5 Enumerating Entities.. 3-10
3.4.6 Getting Entity Specification of a Given Entity.. 3-10
3.4.7 Changing Specification of an Existing Entity Programmatically 3-10
3.4.8 Adding a Text Box Entity .. 3-11
3.4.9 Open Existing Markup... 3-11
3.4.10 Saving Markups to a DMS/PLM.. 3-12
3.4.11 Adding a Markup Listener to Your Application ... 3-13
3.5 Converting Files ... 3-13
3.5.1 Making a Call to a Convert Method... 3-13
3.5.2 Converting to JPEG (Custom Conversion) ... 3-14
3.5.3 Converting to PDF.. 3-14
3.6 Printing a File to 11x17 Paper... 3-15
3.7 Monitoring Event Notifications ... 3-15
3.8 Retrieving the Dimension and Units of a File.. 3-16

4 FAQs

4.1 MarkupBean .. 4-1
4.2 Printing ... 4-2
4.3 Upgrading .. 4-2
4.4 General.. 4-2

Part II JavaScript API

5 Introduction – JavaScript API

6 Architecture

7 AutoVue Client Launch

7.1 AutoVue Client Launch from Java Web Start... 7-1
7.1.1 Include AutoVue JavaScript API... 7-1
7.1.2 Instantiate an AutoVue JavaScript Object.. 7-1
7.1.3 Start AutoVue Client ... 7-3

8 AutoVue Advanced Scripting

8.1 Advanced Scripting .. 8-1
8.2 Applet API vs. New API.. 8-11

Part III ABV Guide

v

9 Introduction – ABV Guide

10 Hotspots

10.1 Creating a Visual Dashboard ... 10-1
10.2 Creating a Visual Action... 10-2
10.3 Hotspot Features .. 10-2
10.3.1 Tooltips... 10-2
10.3.2 Triggering Actions.. 10-3
10.4 3D Hotspots .. 10-3
10.4.1 Defining a 3D Hotspot ... 10-4
10.5 Text Hotspots in 2D and EDA Documents .. 10-4
10.5.1 Defining a Text Hotspot... 10-4
10.6 Regional Hotspots.. 10-5
10.6.1 Defining Page-Specific Regional Hotspots ... 10-6
10.6.2 Defining Coordinates of a Box/Polygon... 10-6
10.6.3 Defining a Box Hotspot.. 10-6
10.6.4 Defining a Polygon Hotspot.. 10-6
10.6.5 Invoking performHotspot()... 10-7
10.7 Web CGM Hotspots... 10-7

11 AutoVue Hotspot API

11.1 Hotspot INI Options.. 11-1
11.1.1 PDF Text Hotspot ... 11-1
11.1.2 PDF Text Hotspot INI Options ... 11-2
11.2 Define Hotspots.. 11-2
11.2.1 Hotspot Definition Types .. 11-2
11.2.2 Hotspot Definition Parameters ... 11-2
11.2.2.1 Common Definition Parameters.. 11-2
11.2.2.2 Text Definition Parameters .. 11-3
11.2.2.3 3D Definition Parameters ... 11-3
11.2.2.4 Regional Definition Parameters... 11-4
11.2.3 Perform an Action on a Hotspot... 11-4
11.2.3.1 Hotspot Actions ... 11-5
11.3 AutoVue API for ABV Integration .. 11-5
11.4 Interactions with Hotspots from JavaScript... 11-5

12 Hotspot Samples

12.1 Adding a Hotspot .. 12-1
12.2 3D Hotspot .. 12-3
12.3 Box Hotspot .. 12-3
12.4 Polygon Hotspot .. 12-4
12.5 Text Hotspot ... 12-4
12.6 Text Hotspot with Visual Actions and Visual Dashboard... 12-5
12.7 3D Hotspot with Visual Actions and Visual Dashboard ... 12-6

vi

13 VueAction Sample

13.1 Running the VueAction Sample .. 13-2
13.2 Customizing the VueAction Sample... 13-2

14 ABV Design and Security Recommendations

A Feedback

A.1 General AutoVue Information ... A-1
A.2 Oracle Customer Support ... A-1
A.3 My Oracle Support AutoVue Community... A-1
A.4 Sales Inquiries... A-1

vii

Preface

This document has two parts:

■ The first part of this document - AutoVue API Developer’s Guide provides
detailed technical information on the AutoVue API concepts introduced in Oracle
AutoVue Integration Guide.

■ The second part covers information about AutoVue JavaScript API allowing
integration of AutoVue application into Web context.

■ The third part of this guide discusses Augmented Business Visualization(ABV)
solution that connects portion of documents to business data found in enterprise
applications.

For the most up-to-date version of this document, go to the AutoVue
Documentation Web site on the Oracle Technology Network at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
The first part of this document is intended for Oracle partners and third-party
developers (such as integrators) who want to implement their own integration with
AutoVue. Note that these developers are expected to have a good understanding of
JAVA programming. The instructions in the first part of the guide serves as a good
starting point for developers and professional services to become more familiar with
the AutoVue API.

The second part of this document is intended for system integrators and developers
looking to create links between objects in AutoVue's data model and objects in an
external system.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program Web site at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

viii

Related Documents
For more information, see the following documents on OTN:

■ Oracle AutoVue Integration Guide

■ VueBean and jVueApp Javadocs

■ Oracle AutoVue Installation and Configuration Guide

■ Oracle AutoVue Planning Guide

■ Oracle AutoVue Integration SDK Overview

■ Oracle AutoVue Web Services Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Java API Guide

This part includes information on the AutoVue API, its fundamental packages and
classes, as well as sample code for building your own integration.

Part I contains the following chapters:

■ Introduction – Java API

■ AutoVue API Packages

■ Sample Cases

■ FAQs

1

Introduction – Java API 1-1

1Introduction – Java API

The AutoVue Application Programming Interface (API) is a Java-based toolset that
provides tools to modify the functionality of Oracle's AutoVue client, and allows you
to create your own customized Java applications based on AutoVue API components.

This document presents the technical application of the AutoVue Java API and its
packages and classes. Additionally, basic and advanced applications of the AutoVue
Java API are provided along with their source code.

Note: For a more general introduction to the AutoVue API, refer to
the "AutoVue API Solution" section of the Oracle AutoVue Integration
Guide. For detailed information on the packages and classes included
in the AutoVue API, refer to the VueBean and jVueApp Javadocs.

1-2 Oracle AutoVue API Guide

2

AutoVue API Packages 2-1

2AutoVue API Packages

The chapter provides an overview of common classes and interfaces that are used to
create a solution based on the AutoVue API.

Note: For more information on classes/packages, refer to the
VueBean Javadocs located in the <AutoVue Installation>\docs
directory.

2.1 VueBean Package
The VueBean component is central to the AutoVue client architecture. An application
can embed the VueBean component and use its API to provide comprehensive support
for file viewing, markup, real-time collaboration, and so on. The Figure 2–1 provides a
graphical overview of how the VueBean can be used when developing your own
application.

Figure 2–1 VueBean overview

Note: It is possible to have multiple instances of the VueBean class.
For example, when AutoVue is in Compare mode there are three
instances of the VueBean class.

VueBean Package

2-2 Oracle AutoVue API Guide

A typical VueBean usage scenario is as follows:

1. Create a VueBean Object.

2. Create a server control or use the default one obtained from the VueBean.

3. Use the server control to connect to the server and open a session on it.

4. View a file by invoking the VueBean.setFile(DocID) method.

The following file types are supported by the VueBean:

■ Vector files (2D and 3D)

■ Raster files

■ Document files (MS Word, and so on)

■ Spreadsheet files

■ Archive files

The file type can be queried through the VueBean.getFileType() method and file
information can be retrieved through the VueBean.getFileInfo() method.

You may have to convert a file to another file type. To do so, use the VueBean.convert()
method.

In its various modes, such as viewing and markup, the VueBean manages the
representation of a file including the management of overlays, layers, and external
references to other files or resources upon which the file depends. Use the
VueBean.getResourceInfoState() method to query for resources that are attached to a
file.

To search for a particular string in the file use the VueBean.search(PAN_CtlSearchInfo)
method. The following is an example of how to build the PAN_CtlSearchInfo object.

// Construct the search object with arguments (Search String, Search Multiple
// Occurrences, Search Downwards, Wrapped Search, Match Case, Whole Word),
// in this example we search for the word "line".
PAN_CtlSearchInfo searchInfo = new PAN_CtlSearchInfo("line", true, true,

true, false, true);

Note: Since the VueBean is only a client-side component, the
connection to the AutoVue server must be established before any
operation can be performed on the VueBean. Refer to Server Control
for more information.

2.1.1 Event Package
com.cimmetry.vuebean.event

For VueBean-specific events, the event delegation model of the VueBean is slightly
different from the standard Java one. Listeners such as VueViewListener,
VueFileListener, VueMarkupListener, or VueStateListener should register to the
VueBean's VueEventBroadcaster object instead of the VueBean itself.

For example: vueBean.getVueEventBroadcaster().addFileListener(listener).

This package provides interfaces and classes for VueBean event broadcasting. Every
VueBean object has an event broadcaster. Depending on the operation type, the
broadcaster notifies listeners using an instance of VueEvent or VueModelEvent. The
following types of events are supported:

VueBean Package

AutoVue API Packages 2-3

■ File events

■ View events

■ Markup events

■ State events

■ Model events

Every event type has a corresponding event listener interface which is registered to the
broadcaster. Objects that are responsible for handling of events should implement one
or more of the listener interfaces.

The following code sample defines and registers an event handler:

import com.cimmetry.vuebean.*;
import com.cimmetry.vuebean.event.*;
.
.
.
final VueBean vueBean = getVueBean();// Get the valid active VueBean
if (vueBean != null) {

VueFileListener eventHandler = new VueFileListener() {
public void onFileEvent(VueEvent ev) {

switch (ev.getType()) {
case VueEvent.ONSETFILE:

System.out.println("Set file: " + vueBean.getFile());
break;

case VueEvent.ONSETPAGE:
System.out.println("Set page: " + vueBean.getPage());
break;

}
}

};
vueBean.getVueEventBroadcaster().addFileListener(eventHandler);

}
.
.
.

2.1.1.1 VueEvent
com.cimmetry.vuebean.event.VueEvent

VueEvent object encapsulates information for all notifications sent by VueBean and is
generated for the VueFileListener, VueViewListener, VueMarkupListener and
VueStateListener interfaces. The event type is used to differentiate between a view
event, file event, markup event or state event.

2.1.1.2 VueModelEvent
com.cimmetry.vuebean.event.VueModelEvent

The VueModelEvent class handles all notifications for model-related events such as
entity attributes, 3D transformation, and so on. It is generated for objects
implementing VueModelListener interface.

2.1.1.3 VueEventBroadcaster
com.cimmetry.vuebean.event.VueEventBroadcaster

VueBean Package

2-4 Oracle AutoVue API Guide

VueEventBroadcaster is used to manage the event delegation model for the VueBean.
Each listener has to register to a VueEventBroadcaster to be notified of events in the
VueBean. By design, each VueBean owns its own VueEventBroadcaster. However, you
may find it useful to use only one VueEventBroadcaster for all beans by using the
VueBean.setVueEventBroadcaster method.

2.1.1.4 VueFileListener
com.cimmetry.vuebean.event.VueFileListener

Objects implementing this interface listen for file event notifications (such as setting
file, setting page, and so on).

2.1.1.5 VueMarkupListener
com.cimmetry.vuebean.event.VueMarkupListener

Objects implementing this interface listen for markup event notifications (such as
entering or exiting markup mode).

2.1.1.6 VueViewListener
com.cimmetry.vuebean.event.VueViewListener

Objects implementing this interface listen for view event notifications (such as zoom,
begin and end paint, and so on).

2.1.1.7 VueStateListener
com.cimmetry.vuebean.event.VueStateListener

Objects implementing this interface listen for state event notifications (such as server
error, file error, and so on).

2.1.1.8 VueModelListener
com.cimmetry.vuebean.event.VueModelListener

Objects implementing this interface listen for model event notifications (such as model
attribute, selection, transformation changes, and so on).

2.1.2 MarkupBean Package
com.cimmetry.markupbean

The top-level class for the com.cimmetry.markupbean package is the MarkupBean
class. MarkupBean represents the Markup functionality in the VueBean API. Each
VueBean instance can contain only one MarkupBean instance, represented by a private
member variable. Through the MarkupBean class, you can add/modify/remove
Markup Files, Markup Layers, and Markup Entities, as well as open and save Markup
Files.

The following diagram displays how the architecture of a Markup is structured into
four separate levels: Section 2.1.2.1, "Markup," Section 2.1.2.2, "MarkupLayer,"
Section 2.1.2.3, "MarkupEntity," and Section 2.1.2.3.1, "MarkupEntitySpec."

VueBean Package

AutoVue API Packages 2-5

Figure 2–2 Markup architecture

2.1.2.1 Markup
com.cimmetry.markupbean.Markup

This interface represents an individual Markup file. The key functionalities are as
follows:

■ Get/set information regarding the Markup files, such as:

■ Name

■ Visibility

■ Whether Markup is modified

■ Whether Markup is read-only

■ Get information regarding the base file

■ Get the layers in the Markup

2.1.2.2 MarkupLayer
com.cimmetry.markupbean.MarkupLayer

This interface represents an individual Markup layer. The key functionalities are as
follows:

■ Get/set information regarding the specific layer, such as:

■ Name

■ Color

■ Visibility

■ Line type and width

■ Get the entities in the Markup layer

2.1.2.3 MarkupEntity
com.cimmetry.markupbean.MarkupEntity

Server Control

2-6 Oracle AutoVue API Guide

This interface represents an individual Markup entity. The key functionalities are as
follows:

■ Get/set information regarding the specific Markup entity, such as:

– Name

– Author

– Date modified

– Color

– Line type and width

– Tooltip text

– Visibility

– Selection state

■ Get children entities of the specific entity

■ Perform actions when user double-clicks on entity

2.1.2.3.1 MarkupEntitySpec

com.cimmetry.markupbean.MarkupEntitySpec

This class represents an entity's specification. Each entity has its own specification
class that is derived from this class that defines the attributes specific to that entity's
context.

For example, the specification for a rectangle entity includes attributes for the XY
coordinates of all four corners, while the specification for a text entity includes
attributes for the contained text as well as its alignment.

2.2 Server Control
com.cimmetry.vueconnection.ServerControl

The ServerControl class handles the server connection object and the user session.
Prior to using the VueBean, you must first set its ServerControl properties, connect to
the server via the connect() method, and then open a session via the sessionOpen()
method.

For example:

import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;
…
VueBean bean = new VueBean();
ServerControl control = bean.getServerControl();
try {

control.setHost(<SERVER URL>);
control.connect();
control.setUser("scarlati");
control.sessionOpen();

} catch (Exception e) {
System.out.println("Failed to connect to AutoVue Server.");

}
…

Note: Set the server URL to the VueServlet URL.

VueAction Package

AutoVue API Packages 2-7

For example, http://<HostName>:5098/servlet/VueServlet

2.3 VueAction Package
com.cimmetry.vueaction

This package provides a hierarchy of classes implementing the AutoVue action API. It
can be used to add graphical user interface (GUI) elements to different contexts (such
as menu bar, toolbar, status bar, and so on). For example, when a menu option is
selected in the GUI, a VueAction is triggered.

To add a new action to the AutoVue client, create a new action class by extending
VueAction.

Use the methods in this package to:

■ Specify resources for an action. For example, menu item text, an icon, tooltip text,
and so on.

■ Specify which resource bundle (a properties file with resource mappings) to search
in for the action's resources.

■ Specify sub-actions (for example, Zoom In, Zoom Out, Zoom Previous, and so on)
for the action if it can perform more than one function.

■ Receive a message signifying that the action should be performed. If the action has
sub-actions, the sub-action to perform is specified.

■ Specify the display properties of the action or its sub-actions that appear in the
GUI in the menu bars, toolbars, and popup menus. For example, specify whether
the action can be selected (behaves as a checkbox) and/or whether it is enabled.

■ Specify groups of sub-actions (if the action includes sub-actions) in which selection
is exclusive (that is, in which only one sub-action can be selected at a time).

2.3.1 AbstractVueAction
com.cimmetry.vueaction.AbstractVueAction

The abstract class AbstractVueAction is the super class of all action classes. All actions
performed on the session must be derived from this class or a descendent of this class.

2.3.2 VueAction
com.cimmetry.vueaction.VueAction

VueAction is an abstract class that extends VueActionMultiMenu. It provides a simple
yet powerful interface for creating actions.

To create a new action class, you must extend this class. There are two ways to do this
depending on whether your action performs a single function or multiple functions.
The following sections describe both scenarios.

2.3.2.1 Create an action that performs a single function
1. Make sure your class extends VueAction.

VueAction Package

2-8 Oracle AutoVue API Guide

2. In the constructor of your class, call the appropriate super constructor.

Note: Since your action performs only one function, the super
constructor takes the two String arguments: resource key and resource
bundle. The resource bundle identifies the set of text files (one for each
locale your action supports) containing the resources identified by the
resource key for your action.

3. Implement a perform() method to override the one in VueAction.

Note: This method is called when your action has been fired. In this
method, enter your action's code.

4. Implement event handlers onFileEvent and onViewEvent to ensure that your
action is enabled or disabled when appropriate. For example, if no base file has
been loaded yet, your action will be disabled. However, once a file has been
reloaded, your action must be enabled.

5. Create one or more resource files (one resource file per language your action
supports) containing the resource keys and their values needed by your action.
Together with any icon files used by your action, these files are referred to as a
resource bundle. For an example of a resource file, refer to VueFrame_en.properties.

6. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location.

To view an example of implementing an action that performs a single function, refer to
Action that Performs a Single Function.

2.3.2.2 Create an action that performs multiple functions
1. Make sure your class extends VueAction.

2. In the constructor of your class, call the appropriate super constructor.

Note: Since your action performs multiple functions, the super
constructor takes one String argument: the resource bundle name. The
resource bundle name identifies the set of text files (one for each
language your action supports) containing the resources for your
action.

3. After you call the super constructor, call defineSubAction() to define each
sub-action your action can perform.

Note: In each case, specify the name by which you want to refer to
the sub-action and its resource key. The resource key identifies where
to find the resources for your action (for example, menu item text,
icon, tooltip text and so on) in your resource bundle. Optionally, you
can call defineExclusiveGroup() to define a subset of your sub-actions
that form an exclusive group. That is, sub-actions that are selectable
where only one can be selected at a time.

4. Implement a performSubAction(String) method to override the one in VueAction.

Note: This method is called when your action's sub-action has been
fired. The method is passed the name of the sub-action fired, so that
you will know which one to perform. In this method, enter your
sub-action's code.

VueAction Package

AutoVue API Packages 2-9

5. Implement event handlers onFileEvent and onViewEvent to ensure that your
sub-actions are enabled or disabled when appropriate. For example, if no base file
has been loaded, your sub-action will be disabled. However, once a file has been
reloaded, your sub-actions must be enabled.

6. Create one or more resource files (one resource file per language that your action
supports) containing the keys and values needed by your action.

Note: Together with any icon files used by your action, these files are
referred to as a resource bundle.

7. Create a copy of AutoVue's .gui file and insert the name of your new action in the
appropriate location. You must also specify the appropriate sub-actions.

To view an example of implementing an action that performs multiple functions, refer
to Action that Performs Multiple Functions.

Note: When deploying VueAction jar on the web, you have to
properly sign the jar. Refer to how to Configure and Run the AutoVue
VueActionSample (Doc ID 1677471.1)

VueAction Package

2-10 Oracle AutoVue API Guide

3

Sample Cases 3-1

3Sample Cases

This chapter provides information on typical use cases you may come upon when
creating an AutoVue API application or adding enhanced functionality to the AutoVue
client. Refer to the VueBean and jVueApp Javadocs for more information.

Important: When executing a task in sequence you must make sure
the previous task is completed before starting a new one. For example,
when opening a file, the process should listen for the file event
VueEvent.ONPAGELOADED to be notified. In the event of a file error,
the state even VueEvent.ONFILEERROR is notified. When loading
markups, listen and wait for the markup event
MarkupEvent.ONMARKUPLOADED to be notified.

Note: Throughout this document, m_vueBean is used as a valid
active VueBean object and m_JVue as a valid JVueApp object. This is
done assuming that the methods or segments of code that use objects
have access to a class which owns them.

3.1 Building an AutoVue API Application
A good starting point with the AutoVue API is to create an application that opens and
displays a file.

This section provides detailed steps for creating a file open application using the
AutoVue API.

1. Import required packages.

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;
import com.cimmetry.util.Messages;

import com.cimmetry.core.*;
import com.cimmetry.vuebean.*;
import com.cimmetry.vueconnection.ServerControl;

2. Create a Java class, ApplicationSample, that can be run as a stand-alone
application, and declare all external parameters and internal data members.

public class ApplicationSample {
private String m_host = "http://<HostName>:5098/servlet/VueServlet";

Building an AutoVue API Application

3-2 Oracle AutoVue API Guide

private String m_user = "guest";
private String m_fileName = null;
private String m_verbose = null;
private String m_format = "AUTO";
// Internal data members
private VueBean m_vueBean = null;
private ServerControl m_control = null;
private static JFrame m_frame = null;
private JMenu m_fileMenu = null;

}

3. Create stand-alone application support.

public static void main(final String args[]) {
ApplicationSample app = new ApplicationSample();
app.init(args);

}
public void init(final String[] args) {
switch (args.length) {
case 4:
m_verbose = args[3];

case 3:
m_fileName = args[2];

case 2:
m_user = args[1];

case 1:
m_host = args[0];

default:
break;

}
init();

}

4. Initialize the application.

public void init() {
// Setup verbosity
if (m_verbose != null && m_verbose.length() > 0) {
Messages.setVerbosity(m_verbose);

}
…

Note: The init() method continues until step 13.

5. Establish a connection with the server.

m_control = new ServerControl();
try {
m_control.setHost(m_host);
m_control.connect();

} catch (Exception e) {
System.out.println("Unable to connect to:"+m_host);
e.printStackTrace();
return;

}

6. Open the session.

try {
m_control.setUser(m_user);

Building an AutoVue API Application

Sample Cases 3-3

m_control.sessionOpen();
} catch (Exception e) {
System.out.println("Unable to open session for " + m_user);
e.printStackTrace();
return;

}

7. Initialize the frame.

m_frame = new JFrame("VueBean Sample");
m_frame.setBounds(100, 100, 640, 480);
m_frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
destroy();

}
});

8. Set the menus and actions.

setMenuBar();

9. Create the bean.

m_vueBean = new VueBean(m_format);
m_vueBean.setServerControl(m_control);
m_vueBean.setBackground(Color.lightGray);

10. Add the VueBean to the frame.

m_frame.getContentPane().add(m_vueBean);

11. Display the frame.

m_frame.setVisible(true);

12. Show the file.

updateFile();
}// Closing bracket for init() method

Note: This step marks the end of the init() method.

13. Close the session.

public void destroy() {
try {

m_control.sessionClose();
} catch (Exception ex) {

ex.printStackTrace();
}
m_frame.setVisible(false);
m_frame.dispose();
System.exit(0);

}

14. Get the attached VueBean.

public VueBean getVueBean() {
return m_vueBean;

}
15. Get the attached frame.

Custom VueAction

3-4 Oracle AutoVue API Guide

public JFrame getFrame() {
return m_frame;

}
16. Get the file menu.

protected JMenu getFileMenu() {
return m_fileMenu;

}
17. Get the frame. The following method sets the client’s menu bar to File Open, Print,

and Exit.

public void setMenuBar() {
m_fileMenu = new JMenu("File");
JMenuItem menuItem;
// File open menu item
menuItem = m_fileMenu.add(new JMenuItem("Open"));
menuItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
showFile();

}
});
// set the client’s menu bar
JMenuBar menu_bar = new JMenuBar();
m_frame.setJMenuBar(menu_bar);
menu_bar.add(m_fileMenu);

}
18. Load the file.

public void updateFile() {
// Set the vuebean's file
if (m_fileName != null && !m_fileName.equals("")) {
m_vueBean.setFile(new DocID(m_fileName));
m_vueBean.setBackground(Color.lightGray);

}
}

19. Display the client-side (upload) File Open dialog and set the selected file in the
bean.

public void showFile() {
FileDialog openDlg = new FileDialog(m_frame, "File Open", FileDialog.LOAD);
openDlg.setVisible(true);
m_fileName = "upload://"+openDlg.getDirectory() + openDlg.getFile();
openDlg.dispose();
updateFile();

}
}//end of class

Note: End of class ApplicationSample. In order to run the
application properly, an AutoVue server needs to be running on either
a local or remote host that is specified through command line
arguments. Refer to step 3 for the definition of each argument.

3.2 Custom VueAction
This section presents examples implementing a custom VueAction class.

Custom VueAction

Sample Cases 3-5

3.2.1 Action that Performs a Single Function
The following example shows how to implement a custom action for AutoVue that
performs a single function. That is, when a user double-clicks on a hotspot, a dialog
appears and lists all components of a drawing that are represented by the hotspot.

For information on AutoVue’s hotspot capabilities, refer to the ABV Guide.

Note: The following are segments of the source code of the
VueAction example to illustrate the essential steps of creating a
custom action, it may not compile if you just copy and paste the code
here. For the complete source code, refer to PartListAction.java.

1. Import all required packages.

import java.awt.*;
import java.util.Vector;
import com.cimmetry.vuebean.*;
import java.awt.event.*;
import com.cimmetry.vuebean.event.*;
import com.cimmetry.vueframe.*;
import com.cimmetry.vueframe.hotspot.*;
import com.cimmetry.core.*;
import com.cimmetry.dialogs.VueBasicDialog;
import com.cimmetry.vueaction.VueAction;
import com.cimmetry.gui.*;

2. Make your class extend VueAction.

public class PartListAction extends VueAction { …}

3. In the constructor of your class, call the appropriate super constructor. Since this
action only performs a single function, a call to the super-constructor of VueAction
takes this action's resource key as well as its resource bundle name.

public PartListAction() {
super("LIST_PARTS",RESOURCE_BUNDLE_NAME);
setViewListener(true);

}

Note: The resource bundle name here is the common part of resource
bundle files for different languages. The actual name of a resource
bundle file should include the language suffix and file extension. For
example, PartListAction_en.properties is the resource bundle file for
English.

4. Implement a perform method for this action.

public void perform() {
PartInfo[] parts = new PartInfo[m_cart.size()];
m_cart.copyInto(parts);
PartListDialog dialog = new PartListDialog(getFrame(), parts);
dialog.show();

}
5. Implement the event handlers onFileEvent and onViewEvent to notify when a file

has changed and to update the user-interface.

public void onFileEvent(VueEvent e) {

Custom VueAction

3-6 Oracle AutoVue API Guide

switch (e.getEvent()) {
case VueEvent.ONPAGELOADED:
setEnabledByCurrentState();
break;

}
}
public void onViewEvent(VueEvent e) {

switch(e.getEvent()) {
case VueEvent.ONLINKCLICKED:
Object[] params = (Object[]) e.getParameter();
MouseEvent me = (MouseEvent) params[0];
if (me.getClickCount() == 2) {

Object link = params[1];
if (link instanceof HotSpot) {

HotSpot hotspot = (HotSpot) link;
PartInfo part = getPartInfo(hotspot);
m_cart.addElement(part);

}
}
break;
default:
super.onViewEvent(e);
break;

}
}

6. The dialog that lists all components of a drawing extends VueBasicDialog. You
must implement your own constructor that calls the super-constructor and
over-rides buildDialog() and buttonAction(int).

public static class PartListDialog
extends

VueBasicDialog
implements

ActionListener (…)
protected void buildDialog() {

super.buildDialog();
…
}
protected void buttonAction(int index){…}

7. You must define a model for the table that represents the displayed product parts
list.

public static class PartListModel implements CTableModel { …}

8. Close the PartListDialog() method.

9. Get a PartInfo associated with a given hotspot.

private PartInfo getPartInfo (HotSpot hotspot) {
return new PartInfo(hotspot.getDefinitionKey(),
hotspot.getHotSpotKey(),
hotspot.getProperty(HotSpot.PROPERTY_DESCRIPTION));

)

3.2.2 Action that Performs Multiple Functions
The following example shows how to implement a custom action for AutoVue that
performs multiple tasks. The custom action consists of several related sub-actions that
access information about parts of a model. One sub-action permits the user to order a

Custom VueAction

Sample Cases 3-7

part, another permits the user to display part information, and another sub-action
displays a list of all the model's parts.

Note: The following are segments of the source code of the
VueAction example to illustrate the essential steps of creating a
custom action, it may not compile if you just copy and paste the code
here. For the complete source code, refer to PartCatalogueAction.java.

1. Make your class extend VueAction.

public class PartCatalogueAction extends VueAction {
private static final String RESOURCE_BUNDLE_NAME ="/PartCatalogueAction";

// Names of the sub-actions used in *.gui file
private static final String ORDER_SUBACTION = "Order";
private static final String LIST_PARTS_SUBACTION = "ListParts";
private static final String SHOW_INFO_SUBACTION = "ShowInfo";
…

}
2. In the constructor of your class, call the appropriate super constructor.

public PartCatalogueAction() {
super(RESOURCE_BUNDLE_NAME);
defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");

Note: The resource bundle name used here is the common part of
resource bundle files for different languages. The actual name of a
resource bundle file should include the language suffix and file
extension. For example, PartCatalogueAction_en.properties is the
resource bundle file for English.

3. Call defineSubAction to define each sub-action your action can perform.

defineSubAction(ORDER_SUBACTION,"ORDER_PART");
defineSubAction(LIST_PARTS_SUBACTION,"LIST_PARTS");
defineSubAction(SHOW_INFO_SUBACTION,"SHOW_PART_INFO");
}

4. Implement a performSubAction(String) method to override the one in VueAction.

public void performSubAction(String subActionName) {
if (subActionName.equals(ORDER_SUBACTION)) {
//Code for performing the "Order" subaction
…

} else if (subActionName.equals(LIST_PARTS_SUBACTION)) {
//Code for performing the "List Parts" subaction
…

}
…
}

5. Implement the event handlers onFileEvent and onViewEvent to ensure that your
sub-actions are enabled or disabled when appropriate.

public void onFileEvent(VueEvent e) {
switch (e.getEvent()) {

case VueEvent.ONSETFILE:
//Code for handling ONSETFILE event
…

case VueEvent.ONPAGELOADED:

Custom VueAction

3-8 Oracle AutoVue API Guide

//Code for handling ONPAGELOADED event
setEnabledByCurrentState();
…
break;

}
}

public void onViewEvent(VueEvent e) {
switch(e.getEvent()) {

case VueEvent.ONVIEWCHANGED:
//Code for handling ONVIEWCHANGED event
setEnabledByCurrentState();
…
break;

case VueEvent.ONOPTIONSCHANGED:
//Code for handling ONOPTIONSCHANGED event
…
break;

}
}

6. Create one or more resource files, one per language your action supports,
containing the keys and values needed by your action. For example:

…
FILE_MARKUP_NEW_MARKUP=&New Markup, 32_new_markup_red.png, New Markup
FILE_MARKUP_OPEN=&Open..., 57_markup_red.png, Open Markup(s)
FILE_MARKUP_SMALL= &Markup, 57_markup_red_small.png, Markup
FILE_MRU=Recent Files
FILE_NOTFOUND=File not found.
FILE_NOTSUPPORTED=This file format is not supported by your server.
FILE_NOTUPLOADED=Failed to upload file.
FILE_OPEN=&Open...\\tCTrL+O, 59_open.png, Open File
FILE_OPEN_SERVER=Open from &Server..., , Open a file from the server
…
Similarly, in our resource bundle file for English language PartCatalogueAction_
en.properties, it should contain the resource keys for the PartCatalogueAction
shown in the following:

…
ORDER_PART = &Order Part, order_part.png, Order a part
LIST_PARTS = &List Parts, list_parts.png, List product parts
SHOW_INFO_SUBACTION = &Show Part Info, show_info.png, Show part information
…

Note: Each resource key has three entries separated by a comma ",".
The first entry (for example, &Order Part) is the text displayed on the
GUI item (such as a menu item or toolbar button) and the ampersand
"&" defines a shortcut key. The second entry (for example, order_
part.png) is the file of the icon displayed on its GUI item. The third
entry is the tooltip text for the GUI item. The second and third entries
are optional. You should get the icon files ready if needed and add
them to the JAR file for your custom action.

7. Make a copy of AutoVue's default.gui file located in the <AutoVue Installation
Root>\bin directory, and insert the name of your new action in the appropriate
locations of your GUI file. Note that for an action that performs multiple tasks,
you must also specify the appropriate sub-actions.

Note: For information on how PartCatalogueAction sub-actions are
inserted into a menu bar, tool bar, and custom pop-up menu, refer to
default.gui and the custom.gui file located in the <AutoVue
Installation Root>\examples\VueActionSample\ directory.

Markups

Sample Cases 3-9

8. To allow the custom action to take effect, you may need to create a JAR file with
your custom VueAction classes and all resource files they depend on. For example,
for the resource bundle files for different languages and icon files, if any, place
your JAR file under AutoVue's bin directory or its web root directory and include
your JAR file in the classpath of the stand-alone AutoVue (JVueApp) application.

9. You must specify the name of the modified GUI file through Applet or Command
line parameters. For more information, refer to the "Customizing the GUI" section
of the Oracle AutoVue Installation and Configuration Guide.

3.3 Directly Invoking VueActions
You can develop your own customized user interface in an HTML page that
incorporates AutoVue functionality. To do so, you must call invokeAction() of the
AutoVue JavaScript Object from the HTML page (see JavaScript API for more details).
This call to the action can be done purely through JavaScript. For a list of
actions/subactions, refer to the default.gui file located in <AutoVue Install Root>\bin
directory.

Example 3–1 invokeAction()

invokeAction(VueActionFileOpen) //Displays the File Open dialog

3.4 Markups
The following sections describes some ways to execute common Markup actions.

Note: Various MarkupBean functionalities (and various
functionalities throughout the AutoVue API) require the use of the
Property class. This class is used to define various property hierarchies
for other classes in the API.

3.4.1 Entering Markup Mode
VueBean.setMarkupModeEnabled(true)

Checks whether the MarkupBean member is null, and if so:

■ Instantiates a new MarkupBean object

■ Gets the markup settings from the user's profile

■ Sets the markup-specific mouse listeners

■ Points the VueBean's MarkupBean member to the new instance

■ Broadcasts VueEvent.ONENTERMARKUPMODE

3.4.2 Checking Whether Markup Mode is Enabled
VueBean.isMarkupModeEnabled()

Markups

3-10 Oracle AutoVue API Guide

Checks whether the MarkupBean member is enabled.

3.4.3 Exiting Markup Mode
VueBean.setMarkupModeEnabled(false)

Checks whether the MarkupBean member is null, and if not:

■ Sets the MarkupBean member to null

■ Removes markup-specific mouse listeners

■ Saves markup settings into the user's profile

■ Broadcasts VueEvent.ONEXITMARKUPMODE

3.4.4 Adding an Entity to an Active Markup/Layer
MarkupBean.setMarkupEntityClass(<class name of desired markup entity>)
MarkupBean.setActionMode(MarkupBean.ACTION_MODE_ADD)

Adds a new markup entity to the active layer in an active Markup (based on the class
name provided) through user input from the GUI. To programmatically add a markup
entity, you must call: MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

3.4.5 Enumerating Entities
MarkupLayer.getEntities()
or

MarkupBean.getMarkupEntities(MarkupLayer layer)

Returns an array of MarkupEntity objects in a markup layer.

3.4.6 Getting Entity Specification of a Given Entity
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent)

You must pass in the specific entity for MarkupBean to return its specification.

3.4.7 Changing Specification of an Existing Entity Programmatically
MarkupBean.exchangeMarkupEntity(MarkupEntity a, MarkupEntity b)

Allows you to dynamically change the properties of an existing entity. That is, it
replaces markup entity a with markup entity b. Some properties can be directly
changed via the following set methods of MarkupEntitySpec inherited from the
MarkupGraphicSpec parent class:

■ setColor

■ setFillColor

■ setFilled

■ setFilltype

■ setFont

■ setLineType

Markups

Sample Cases 3-11

■ setLineWidth

For other properties, such as the entity position, entity size, entity text content, and so
on, there are no set methods directly on the specification. As a result, you must do the
following:

1. Create a new specification instance (with the new properties).

2. Create a new entity instance (with the new specification).

3. Use exchangeMarkupEntity to replace the existing entity.

4. Make a call to MarkupBean.repaint().

3.4.8 Adding a Text Box Entity
The following code shows how to add a text box entity programmatically.

import com.cimmetry.markupbean.*;
import com.cimmetry.gui.*;
.
.
.
public void addTextBox(String text){

m_vueBean.setMarkupModeEnabled(true);

CTextPane textPane = GUIFactory.createTextPane();
textPane.setText(text);
byte[] textRTF = textPane.getRTF();
PAN_CtlRange rect = new PAN_CtlRange(m_vueBean.getViewExtents());
rect.scale(0.2);
TextBoxSpec spec = new
TextBoxSpec(m_vueBean.getMarkupBean().getMarkupEntitySpec(),

rect.min, textRTF, rect.max,TextBoxSpec.MRK_ALIGN_BOTTOMCENTER);
m_vueBean.getMarkupBean().setMarkupEntityClass(spec.getEntityClassName());
m_vueBean.getMarkupBean().addMarkupEntity(spec);

}

3.4.9 Open Existing Markup
MarkupBean.readMarkup(InputStream is)

InputStream can be relative to the client (for example, a locally-saved Markup),
relative to the AutoVue server (for example, managed by AutoVue's markups.map file)
or from a DMS/PLM/ERP.

To read a Markup from the AutoVue server, you first must get the InputStream by
reading the Markup Property from the VueBean, and then choose a child property (that
represents a Markup file) you want to read into the stream. The following code
illustrates how to create a markup, save it, and then read it into the MarkupBean.

import com.cimmetry.markupbean.*;
.
.
Property[] name = {new Property(Property.PROP_DOC_NAME, <your Markup name>)};
Property prop = new Property(Property.PROP_MARKUP, name);
ByteArrayOutputStream os = new ByteArrayOutputStream();
m_markupBean.writeMarkup(os);
m_vueBean.writeMarkup(prop, os);
Property masterMarkup = m_vueBean.getMarkupProperty();
Property[] listMarkups = masterMarkup.getChildrenWithName(Property.PROP_MARKUP);

Markups

3-12 Oracle AutoVue API Guide

Property aMarkup = listMarkup[0];
InputStream is = m_vueBean.readMarkup(aMarkup);
m_markupBean.readMarkup(is);
…

3.4.10 Saving Markups to a DMS/PLM
Note: This example is not applicable if you are building an ISDK-based application.

The following example uses the same concept as saving a Markup back to the
AutoVue server; you must set the appropriate Property and build the OutputStream. In
order to build the Markup property, you need to first read the CSI_Markups property
so that you can retrieve the values that the user sets in the Markup Save dialog.

private void saveMarkupToDMS() {
// Gets the master markup property for the current file, that is,
// the property containing the GUI and the markup list
Property propMaster = m_vueBean.getMarkupProperty();

// If none, the an output appears stating "Could not get master markup property"
if (propMaster == null) {

System.out.println("Could not get master markup property!");
return;

} else {
// Get the GUI child property under master markup property

Property[] listGuiProp =propMaster.getChildrenWithName(Property.PROP_GUI);
if (listGuiProp == null || listGuiProp.length != 1) {

System.out.println("No valid GUI property!");
return;

}
Property propGui = listGuiProp[0];

// Get the user field (Edit) child property under GUI property
Property[] listEditProp =propGui.getChildrenWithName(Property.PROP_GUI_

EDIT);
if (listEditProp == null || listEditProp.length != 1) {

System.out.println("No valid GUI edit property!");
return;

}
Property propGuiEdit = listEditProp[0];

// Get the list of user fields from save dialog all children items under GUI
// edit property
Property [] itemsEdit = propGuiEdit.getChildren();

// ToDo: Use the list of edit items (GUI element) to construct a
// save dialog to get user input for properties under PROP_GUI_EDIT.
// Assume the input for attribute "CSI_DocName" we got from the dialog
// is "myMarkup" and the input for attribute "CSI_MarkupType" is
// "Normal", now the following code using the inputs to construct
// the markup property contains these two attributes. In reality
// there can be more than two attributes.
Property [] listProp = {

new Property("CSI_DocName", "myMarkup"),
new Property("CSI_MarkupType", "Normal")

};
// Create a Markup property with the specified name & type properties
Property propMarkup = new Property(Property.PROP_MARKUP, listProp);
// Save the Markup
try {

ByteArrayOutputStream os = new ByteArrayOutputStream();
m_vueBean.getMarkupBean().writeMarkup(os);
m_vueBean.writeMarkup(propMarkup, os);

Converting Files

Sample Cases 3-13

} catch (MarkupIOException e) {
System.out.println("Markup IO Exception!");

}
}

}

3.4.11 Adding a Markup Listener to Your Application
MarkupBean.getMarkupBroadcaster().addMarkupEventListener(MarkupEventListener mel);

A Markup listener listens for Markup events related to creating/saving/deleting
Markups, Markup entities, Markup file information, fonts, Markup status, and so on.
Note that you must implement the
com.cimmetry.MarkupBean.event.MarkupEventListener interface (thereby
implementing the onMarkupEvent method).

3.5 Converting Files
The following sections discuss how to execute common Conversion actions such as
making a call to convert, converting an image to a JPEG using a custom conversion,
and converting a vector file to a PDF. In some cases, there are additional methods to
achieve the same functionality. Refer to the VueBean Javadocs for more information.

Note: Conversion of 3D files or pages containing 3D data is no
longer supported.

The class hierarchy for conversion is as follows:

Figure 3–1 Conversion class hierarchy

Note: The classes represent the format which you are converting a
file to. For example, if you are converting to a vector format, you
should define a VectorConvertOptions and pass it into the conversion
method.

3.5.1 Making a Call to a Convert Method
com.cimmetry.vuebean.VueBean.convert(ConvertOptions opts)

or

Converting Files

3-14 Oracle AutoVue API Guide

com.cimmetry.jvue.JVueApp.convertFile

Once the convert options are defined, you must call one of the methods to convert.

Note: When making a call from the VueBean you must call
VueBean.convert. When making a call from the JVueApp layer, you
must call JVueApp.convertFile.

3.5.2 Converting to JPEG (Custom Conversion)
To convert an image to a JPEG, you must use the encode() method that Java provides
as part of the com.sun.image.coded.jpeg.JPEGImageEncoder interface. This method
encodes buffers of the image data in JPEG data streams. To use this interface, you must
provide the image data in raster format or a BufferedImage. The following example
illustrates how to use this interface with the AutoVue API:

import java.io.*;
import java.awt.*;
import java.awt.image.*
import com.cimmetry.core.*;
import com.sun.image.codec.jpeg.*;
…

double scaling=0.5; BufferedImage bi = new BufferedImage(
(int)(m_vueBean.getWidth()*scaling),(int)(m_vueBean.getHeight()*scaling),
BufferedImage.TYPE_INT_RGB);

//Create or get Graphics and RenderOptions object here
Graphics2D g = bi.createGraphics();
RenderOptions optsRender = new RenderOptions();
//TODO: Initialize the Graphics object and RenderOptions object properly such
//as setting the source and destination.
try {

m_vueBean.renderOntoGraphics(g,optsRender);
FileOutputStream out = new FileOutputStream("c:\\temp\\my.jpeg");
JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder(out);
JPEGEncodeParam param = encoder.getDefaultJPEGEncodeParam(bi);
//TODO: Use the JPEGEncodeParam Interface to set the encoder parameters.
encoder.encode(bi, param);
out.flush();
out.close();

} catch (Exception e) {
System.out.println("Exception while converting to JPEG ");
return;

}
…

3.5.3 Converting to PDF
To convert a vector file to a PDF you must perform the following steps:

■ Create new VectorConvertOptions() object

■ Set all appropriate convert options

■ Call VueBean.convert and pass in the convert options

The following convertToPDF() method converts a vector file to a PDF.

public void convertToPDF() {

Monitoring Event Notifications

Sample Cases 3-15

VectorConvertOptions opts = new VectorConvertOptions();

opts.setStepsPerInch(1);
PAN_CtlFileInfo fi = m_vueBean.getFileInfo();
PAN_CtlRange ps = m_vueBean.getPageSizeEx();

if (fi.getType() == fi.PAN_DocumentFile) {
ps = fi.getPageSize();

}
opts.setInputRange(ps);
opts.setArea(ConvertOptions2D.AREA_EXTENTS);
opts.setScaleFactor(100);
opts.setScaleType(ConvertOptions2D.TYPE_SCALE);
opts.setUnits(Constants.UNITS_INCH);
opts.setPages(ConvertOptions2D.PAGES_ALL);
opts.setFromPage(1);
opts.setToPage(fi.getPagesNumber());
opts.setFormat("PCVC_PDF");
opts.setSubFormatID(0);
opts.setFileName("c:\\output.pdf");

//Uploads all currently loaded markups to the AutoVue server
Property[] p = m_ vueBean.uploadMarkups();

opts.setProperties(p);
m_ vueBean.convert(opts);

}

3.6 Printing a File to 11x17 Paper
The following code prints a file to 11x17 paper size using the
com.cimmerty.common.PrintProperties and com.cimmetry.common.PrintOptions
classes.

import com.cimmetry.common.PrintProperties;
import com.cimmetry.common.PrintOptions;
public void printFile() {

PrintProperties paramPrintProperties = new PrintProperties();
PrintOptions po = new PrintOptions();
po.setPrinter("AutoVue Document Converter");
po.setPaperSize(po.PAPER_11X17);
paramPrintProperties.setOptions(po);
// The second parameter will enable the bypass of the Windows dialog
m_ JVue.printFile(paramPrintProperties, true);

}

3.7 Monitoring Event Notifications
com.cimmetry.vuebean.event

If you have a requirement to programmatically execute specific file actions (such as
rotation, zooming, and so on) as soon as a file has finished loading, you must monitor
for the appropriate event notifications. If you do not check for file load completion,
you might call a file action too early which may lead to errors.

The VueBean includes a set of notifications known as VueEvents. You can set up a
listener to catch VueEvents, and catch the specific events that represent the completion
of a file loading. In order to catch file loading completion, you must use a file listener,
with the VueFileListener interface.

Retrieving the Dimension and Units of a File

3-16 Oracle AutoVue API Guide

The steps are as follows:

1. Implement your own VueFileListener.

2. In the onFileEvent method, check for occurrence of the
Vue.Event.ONPAGELOADED event.

3. Implement your code to be executed when the Vue.Event.ONPAGELOADED
event is detected.

4. Add your file listener to the VueBean.

5. Add this to your application.

3.8 Retrieving the Dimension and Units of a File
The following sample code shows how to get the dimensions and units of a file.

PAN_CtlDimensions pctlDim = m_vueBean.getFileInfo().getDimensions();
double height = pctlDim.getHeight();
double width = pctlDim.getWidth();
double depth = pctlDim.getDepth();
int units = m_vueBean.getFileInfo().getInsertion().units;

4

FAQs 4-1

4FAQs

The following sections provide frequently asked questions regarding the AutoVue
API.

4.1 MarkupBean
Q: How do you determine the layer that a given entity is in?

A: Get the entity's specification and then get the layer from the specification.

Q: Do I have to implement the entire text editing dialog for the Text/Leader/Note
entity?

A: No. The text editing dialog is inherent to these entities.

Q: An entity specification is tied to a given entity. Why was it decided to have an
entity specification tied to the MarkupBean?

A: The entity specification on the MarkupBean was designed to be a reference to the
most recent specification settings. When you create a new Markup entity, it defaults
much of its specification attributes to the current specification in the MarkupBean. To
retrieve the most recent specification settings, you can call
MarkupBean.getMarkupEntitySpec().

Note: The other two methods
MarkupBean.getMarkupEntitySpec(MarkupEntity ent) and
MarkupBean.getMarkupEntityFullSpec(MarkupEntity ent) are for
when you need to get the specification of a specific entity.

Q: What is the difference between MarkupGraphicSpec and MarkupEntitySpec? Why
are the specs such as ArcSpec subclass not derived directly from MarkupGraphicSpec?

A: The MarkupGraphicSpec is a top-level specification that manages visual attributes
such as color, fill type, and so on. The MarkupEntitySpec is a top-level specification
that has access to the overall structure such as the MarkupBean, Markups, layers,
pages, and so on. Since MarkupEntitySpec extends MarkupGraphicSpec, and this is
the base class for all markup entities, the ArcSpec subclass is derived from
MarkupEntitySpec.

Q: Can you work with MarkupBean independent of VueBean?

A: In theory it is possible to instantiate and work with MarkupBean without having a
VueBean. However, there are not many use cases or practical reasons where this would
be valuable.

Printing

4-2 Oracle AutoVue API Guide

Q: Are the Markup tree and Markup toolbars from the AutoVue client accessible if I
am building a custom application from VueBean/MarkupBean?

A: No. The UI such as toolbars and Markup tree are part of the "JVueApp" class. If you
build your solution using the JVueApp class you can use or customize this UI.
However, if you build your solution directly from VueBean you need to implement
your own UI.

Q: Is it possible to add AutoVue markup capabilities to a third-party application?

A: Yes. There are two primary ways to add markup entities using MarkupBean:

■ With user input, using MarkupBean.setActionMode(MarkupBean.ACTION_
MODE_ADD)

■ Programmatically, using MarkupBean.addMarkupEntity(MarkupEntitySpec spec)

4.2 Printing
Q: What is the purpose of com.cimmetry.core.PrintInfo class?

A: It is used to pass information between the client and server.

4.3 Upgrading
Q: Will my custom code still work when I perform an AutoVue upgrade?

A: Yes. You must recompile your custom code against the latest release and update the
path to the new jvue.jar.

4.4 General
Q: Can I perform file type-dependent operations?

A: Yes. You can do so by using the getFileInfo() method. The PAN_CtlFileInfo object
that is returned can be queried to determine file format (such as vector, raster,
spreadsheet, document, archive, or a database file).

Q: Can I delete server-side Markups when using the VueBean API?

A: No. It is not currently possible to programmatically delete server-managed
Markups (referenced in the markups.map file on the server) using the VueBean API.

Part II
Part II JavaScript API

This part covers information about AutoVue JavaScript API allowing integration of
AutoVue application into Web context, in a simple way.

Part II contains the following chapters:

■ Introduction – JavaScript API

■ Architecture

■ AutoVue Client Launch

■ AutoVue Advanced Scripting

Note: This part applies only to the Oracle AutoVue Client/Server
Deployment product.

5

Introduction – JavaScript API 5-1

5Introduction – JavaScript API

The AutoVue JavaScript API is wrapped into a JavaScript Object allowing launching
an AutoVue client from a WEB context. It supports a scripting API that the browser
can use to interact with AutoVue, and allows you to write your own customized
HTML client interfacing with AutoVue.

This document presents the technical application of AutoVue JavaScript API and its
scripting commands. Additionally, basic applications of the AutoVue JavaScript API
are provided along with their source code.

5-2 Oracle AutoVue API Guide

6

Architecture 6-1

6Architecture

AutoVue Client is a Java application that can be started through Java Web Start
framework. This framework requires a JNLP file to start the application. An
integration solution requires that the server generate a JNLP file to be used by Java
Web Start framework to launch AutoVue client. The servlet – VueJNLPServlet,
provided with AutoVue is designed to generate the required JNLP file.

Note: For more information about the required VueJNLPServlet,
JNLP file specifications and its generation, refer to the "Deploying
JNLP Components" section of the Oracle AutoVue Client/Server
Deployment Installation and Configuration Guide.

Figure 6–1 Architecture

AutoVue client supports a scripting API and starts a socket listening to XML HTTP
requests invoking this API. These requests are wrapped into a JavaScript Object
named AutoVue and implemented in the file autovue.js. This object is designed to
simplify the integration of AutoVue into a WEB context and provides a JavaScript
method for each scripting API supported by AutoVue.

Note: If you want to send XML HTTP requests using your own
approach or scripting language, then look at the methods
initScriptService and processScriptMethod of the file autovue.js.
These methods show you how to build these XML HTTP requests.

6-2 Oracle AutoVue API Guide

A typical usage scenario of AutoVue JavaScript API is as follows:

1. Include the source of AutoVue JavaScript API into an HTML page.

2. Instantiate an AutoVue JavaScript Object.

3. Invoke the start API of the AutoVue JavaScript Object to launch AutoVue client.

4. Invoke the public methods of the AutoVue JavaScript Object to interact with
AutoVue.

7

AutoVue Client Launch 7-1

7AutoVue Client Launch

This chapter provides the procedure of how to start AutoVue Client using the new
Java Web Start technology.

7.1 AutoVue Client Launch from Java Web Start
In order to launch AutoVue Client using the Java Web Start technology, do the
following:

1. Include AutoVue JavaScript API

2. Instantiate an AutoVue JavaScript Object

3. Start AutoVue Client

7.1.1 Include AutoVue JavaScript API
The first step would be to include the source of AutoVue JavaScript API into an HTML
page as shown in Example 7–1:

Example 7–1 Code to include AutoVue JavaScript API

<script type="text/javascript" src="autovue.js"></script>

7.1.2 Instantiate an AutoVue JavaScript Object
Then, you must instantiate an AutoVue Object into a JavaScript block within your
HTML code as shown in Example 7–2:

Example 7–2 Code to instantiate AutoVue JavaScript Object

<script>
var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST, CLIENT_PORTS,

INIT_PARAMS, ENCRYPT_COOKIES, VERBOSITY,
STARTUP_DELAY)

</script>

The parameters required by AutoVue JavaScript Object Constructor are described in
Table 7–1.

Table 7–1 Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

JNLP_HOST Specifies the URL on your Web/application server,
to a host returning the JNLP File required by Java
Web Start to run AutoVue client.

No default. This
parameter is
required

AutoVue Client Launch from Java Web Start

7-2 Oracle AutoVue API Guide

CODEBASE_HOST Specifies the location URL of AutoVue client files
(jvue.jar, jogl.jar, gluegen-rt.jar and jsonrpc.jar) on
your Web/application server.

No default. This
parameter is
required

CLIENT_PORTS Specify a list of localhost ports for communication
between the browser and AutoVue client. The
expected format is a vector of port values or port
intervals.

Example:[2345, [7500, 7510], [8500, 8510], 8888]

No default. This
parameter is
required

INIT_PARAMS Specify the client parameters to pass at the start-up
of AutoVue client. The expected format is a JSON
format of an object where the parameter/value
fields are the names/values pairs of AutoVue client
parameters.

Example:{'JVUESERVER':
'http://AutoVueServer:ServletPort
/servlet/VueServlet','VERBOSE':'debug'}

Note: For a complete list of the client parameters,
refer to the table H-1 in "AutoVue Client
parameters" section of the Oracle AutoVue
Installation and Configuration Guide.

null

ENCRYPT_
COOKIES

Toggle On/Off the encryption of the cookies passed
from the browser to AutoVue Client, by the JNLP
file generator, on Server side (typically;
VueJNLPServlet). When the parameter is set to
"true", then you must provide encryption key-pair
using the JavaScript method setEncryptionKeyPair,
otherwise; for security reasons, the cookies won't be
sent:

myAvApp.setEncryptionKeyPair(public_key,
private_key)

The public and private key values above are
expected to be encoded using base64 and serialized
into HEX format. The servlet VueKeyPairServlet
provided with AutoVue produces them into this
format. If you decide to use it then you must
include its URL in the HTML page instantiating
AutoVue object; as illustrated in the sample av_
jnlp.html.

<script type="text/javascript"
src="graphics/VueKeyPairServlet"></script>

Note: For more information about the cookies
encryption and VueKeyPariServlet, refer to
"Deploying JNLP Components" section of the Oracle
AutoVue Installation and Configuration Guide.

true

VERBOSITY Specify how the browser should output error
messages related to its connection with AutoVue
client. The expected value should be one of the
following:

0: No output

1: Output connection errors on the browser console

2: Output connection errors as alerts to the user

3: Output connection errors on the browser console
and also as alerts

1

Table 7–1 (Cont.) Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

AutoVue Client Launch from Java Web Start

AutoVue Client Launch 7-3

7.1.3 Start AutoVue Client
In order to start an AutoVue client, you need to invoke the start API of AutoVue
JavaScript Object as shown in Example 7–3.

Example 7–3 Code to start AutoVue Client

<script>
myAvApp.start(onInit, onFail, user_data)

</script>

This API performs the following actions:

1. Connects to the JNLP file generator used to start AutoVue through Java Web Start,
given by its URL in the argument JNLP_HOST of AutoVue JavaScript Object
Constructor.

2. Sends the client parameters available or required at this stage (Ticket, Ports and
Cookies). Then, it establishes the communication with AutoVue sending the rest of
initialization parameters to complete the initialization stage.

The method takes the following optional parameters:

■ user_data: Custom object that will be sent within the arguments of the onFail
callback.

■ onInit: JavaScript Callback method invoked when the custom client connects to
AutoVue and the scripting API is ready for use.

■ onFail: JavaScript Callback method invoked when the custom client fails to
connect to AutoVue. It must follow the prototype above:

function onFail(xmlhttp_request, error_msg, user_data)

where:

■ xmlhttp_request is the last XML HTTP request object used to communicate with
AutoVue.

■ error_msg is a text string describing the error preventing the connection to
AutoVue.

■ user_data Custom object sent among the argument of this start API.

STARTUP_DELAY The start-up process can take some time to
complete since the java classes (jars) have to be
downloaded to the client machine and the browser
may prompt the user before starting any download.
At the same time, AutoVue JavaScript Object tries
to establish communication with AutoVue client to
detect when it is ready to handle scripting calls.
This parameter specifies the required delay before
assuming a start-up failure of AutoVue client.

30

Table 7–1 (Cont.) Parameters required by AutoVue JavaScript Object Constructor

Parameter Description Default Value

AutoVue Client Launch from Java Web Start

7-4 Oracle AutoVue API Guide

8

AutoVue Advanced Scripting 8-1

8AutoVue Advanced Scripting

This chapter discusses the public scripting API that has been provided within the
interface of the AutoVue JavaScript Object to integrate with the AutoVue client in
dynamic Web pages.

8.1 Advanced Scripting
When integrating the AutoVue client in dynamic Web pages, a public scripting API is
provided within the interface of the AutoVue JavaScript Object. Most of the API
methods (except start, connect, setEventListener and closeAutoVue) do take a
parameter called frameID which is set by default to null. This parameter is provided
by the caller to identify the AutoVue frame that he wants to invoke the API on. When
this parameter is null, the API will be invoked on the main frame. However, if it has
another value, it will be invoked on the frame that was created initially with the given
frameID. If such frame was never created before (or closed in between), then it will be
created dynamically and the API invoked on it. For example, if the caller wants to
create a secondary empty frame with a frameID "foo", then he can do it making the
following call:

myAvApp.setFile(null, 'foo');

Afterwards, the caller can invoke any API on this frame using the identifier "foo" for
the frameID parameter:

Advanced Scripting

8-2 Oracle AutoVue API Guide

Table 8–1 Methods of AutoVue Advanced Scripting

Method Description

connect(onInit, onFail,
user_data)

Connects to AutoVue Client. It assumes that AutoVue start-up process was already
launched and waiting for the custom client connection to complete the initialization
stage. The method establishes the communication with AutoVue sending the rest of
initialization parameters to complete the initialization stage. It is called for instance by
the "start" method above after launching AutoVue start-up process through Java Web
Start.

To be authenticated, the browser must use the same AutoVue JavaScript Object to
connect to AutoVue as the one used to start it, otherwise; the connection will be rejected
by AutoVue to prevent illicit communication cross independent AutoVue sessions.

The method takes the same optional parameters as the start method.

setFile(file, frameID) Open a file in AutoVue. It takes the following parameters:

■ file

URL of the file to load. If it is null or an empty string then no action will be
performed.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

setPage(page, frameID) Switch the document to a given page. It takes the following parameters:

■ page

Index of the page to set (Number, 1-based).

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

setGUI(guiFile,
frameID)

Customize AutoVue User Interface by providing a UI configuration file. It takes the
following parameters:

■ guiFile

UI configuration file identifier AutoVue needs to run with. The GUI files must be
deployed on the server side (Profiles folder).

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

openMarkup(markup,
frameID)

Open a Markup. It takes the following parameters:

■ markup

Optional, semicolon (;) separated key-value list (name1=value1; name2= value2; ...)
holding the markup attributes. If not provided, AutoVue will simply start a new
empty markup.

Example: 'CSI_DocID=mmMarkupID;CSI_DocName=mmMarkupName'

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Advanced Scripting

AutoVue Advanced Scripting 8-3

saveModifiedMarkups
(mayCancel, frameID)

In the event that the user has modified markups since the last save, it will prompt the
user whether he wants to save the markups or not. It takes the following parameters:

■ mayCancel

Specify whether the user can cancel the operation or not.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

setCompareFile(file,
frameID)

Compare a given file with the current one. It takes the following parameters:

■ file

URL of the file to compare with.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

import3DFile(file,
transform, frameID)

Import a 3D file in the current 3D model (DMU). It takes the following parameters:

■ file

URL of the file to compare with.

■ transform

Specify a 4x4 transformation matrix (HMatrix). The API expects a four-sized
JavaScript array containing the rows of the matrix. So each entry of this array is
itself expected to be four-sized array of floats.

Example: [[1,-1,0,0],[1,1,0,0.1],[0,0,1.414,0],[0,0,0,1]]

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

addOverlay(file,
frameID)

Overlay a file onto the current one (2D). It takes the following parameters:

■ file

URL of the file to overlay.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

crossProbe(file,
frameID)

Load an EDA file in cross-probe mode to cross-probe with the current EDA file. It takes
the following parameters:

■ file

URL of the file to cross-probe.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-4 Oracle AutoVue API Guide

invokeAction(actionCl
assStr, frameID)

Invoke a VueAction. For example, the VueActionOptionsConfiguration will trigger AutoVue
Configuration dialog. It takes the following parameters:

■ actionClassStr

VueAction string name. The names of the supported VueAction are listed in the
AutoVue Viewing and Configuration Guide.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-5

printFile(printOptions,
useDefaultPrinter,
frameID)

Print the current file. It takes the following parameters:

■ printOptions

Printing options used during printing. The API expects a JavaScript object wrapping
the following fields in the following hierarchy:

■ printer: Name of the printer to output to

■ forceToBlack: Whether to apply "Force to Black"
rendering in the print out (Default: false)

■ pages: Sub-object holding information about the
pages to print. It has the following attributes:

* choice: 0: All, 1: Current, 2: Range

* from: First page to print. Used only with when
printOptions.pages.choice = 2 (Range)

* to: Last page to print. Used only with when
printOptions.pages.choice = 2 (Range)

■ scale Sub-object holding information about the paper
to use. It holds the attributes below:

* value: Scaling type, value could be "FIT", a string
"<percentage>%" indicates a scale or a string
"<factor>" indicates scaling to a factor (Default:
"FIT")

* units: Scaling Units (1: in, 2: mm)

■ paper Sub-object holding info about the paper to use.
It has the following attributes:

* choice: See AutoVue Documentation about
supported paper sizes

* orientation: 0: Portrait, 1: Landscape, 2: Auto

■ margins Sub-object holding the print margins to set. It
has the following attributes:

* top:float

* bottom:float

* left:float

* right:float

* units: Units in which the margin values above are
given (1: in, 2: mm)

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-6 Oracle AutoVue API Guide

■ printoptions (continued)

■ headers Sub-object holding additional information
about the headers to add to the output. It holds the
attributes below:

* lh: Left header text

* ch: Center header text

* rh: Right header text

* lf: Left footer text

* cf: Center footer text

* rf: Right footer text

The options have been used in the following example:

{'printer':'PrimoPDF',
'forceToBlack':true,
'pages':{'choice':2, 'from':2, 'to':3},
'scale':{'value':'75%'},
'paper':{'choice':1, 'orientation':0},
'margins':{ 'top':.25, 'bottom':.21,

'left':.25, 'right':.25,
'units':1},

'headers':{ 'lh':'Left-Header',
'ch':'Center-Header',
'rh':'Right-Header',
'lf':'Left-Footer',
'cf':'Center-Footer',
'rf':'Right-Footer' } }

■ useDefaultPrinter

Specify whether to apply directly the given Print-Options as they are or allow user
to change them. If this parameter is false, AutoVue will popup the print
configuration dialog allowing user to modify the printer and printing parameters.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Note: AutoVue will initiate the print options from INI and override the ones given
by the API.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-7

batchPrint(fileList,
printOptions,
openAllMarkups,
useDefaultPrinter,
frameID)

Print a list of files. It takes the following parameters:

■ fileList

List of URLs of the files to print provided into a JavaScript array.

■ printOptions

Printing options to apply during the printing operation (same structure defined in
printFile API).

■ openAllMarkups

This takes a Boolean value, and determines whether to include all associated
markups during the printing operation.

■ useDefaultPrinter

Specify whether to apply directly the given Print-Options as they are or allow user
to change them. If this parameter is false, AutoVue will popup the print
configuration dialog allowing user to modify the printer and printing parameters.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

collaborationInit
(session, frameID)

Initiates a collaboration session. It takes the following parameters:

■ session

Property string describing collaboration session in the following format:

CSI_ClbSessionID=987654321;CSI_ClbDMS=dmsIndex;CSI_
ClbSessionData=123456789;CSI_ClbSessionSubject=Subject;CSI_
ClbSessionType=public|private;CSI_ClbUsers=user1,user2,x;

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

collaborationJoin
(session, frameID)

Joins a collaboration session. It takes the following parameters:

■ session

Property string describing collaboration session in the following format:

CSI_ClbSessionID=987654321;CSI_ClbDMS=dmsIndex;CSI_
ClbSessionData=123456789;

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-8 Oracle AutoVue API Guide

convertFile(convertOpt
ions, frameID)

Convert the current file to a given format. It takes the following parameters:

■ convertOptions

Conversion options to use in the conversion operation. The API expects a JavaScript
object wrapping the following fields in the following hierarchy:

■ file: Mandatory. Sub-object holding information
about the conversion file. It has the following
attributes:

* format: 'PCRS_BMP' or 'PCRS_TIF' or 'PCVC_
PDF'

* subFormat: Format flavour: Specific to Tif
(Currently ignored for the others)

PCRS_TIF => 0: Uncompressed, 1: PackBits, 2: Fax
III, 3: Fax IV)

* filePath: Path of the destination file

■ pages: Sub-object holding information about the
pages to convert. Used in multi-page formats (PCRS_
TIF, PCVC_PDF). It has the following attributes:

* choice: 0 – All, 1– Range, 2 – Current

* from: First page to convert. Used only when
printOptions.pages.choice = 1 (Range)

* to: Last page to convert. Used only when
printOptions.pages.choice = 1 (Range)

■ Output: Sub-object holding information about
conversion output settings, with the following
attributes:

* colorDepth: Color depth

* fgColor: Foreground color (in windows RGB)

* stepsPerInch: Steps per inch value. For rasters
this will contain DPI value

Example: { 'file':{ 'format': 'PCVC_PDF',
'subFormat':0,
'filePath':'C:/temp/converted.pdf'},
'pages':{'choice':1, 'from':2, 'to':3},
'output':{ 'colorDepth':-1,
'fgColor':0,
'stepsPerInch':1016 } }

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

AutoVue Advanced Scripting 8-9

setHotSpotHandler(
definitionType,
definitionKey,
definition, frameID,
caller)

Sets the hotspot handler for the given hotspot definition. This method should be called
before the file session. It will initialize the hotspots in the file of AutoVue based on
external application data. It takes the following parameters:

■ definitionType

Hotspot definition type (Native WebCGM, Text Search, Attribute search...).

Note: See Hotspot Definition Types for more information about the definition types
supported for Hotspots.

■ definitionKey

Hotspot definition key string, used to refer to this definition later.

■ definition

Semicolon (";") separated key-value string specifying hotspot definition parameters:

param1=value1;param2=value2,…;paramN=valueN

Note: See Hotspot Definition Parameters for more information about the supported
parameters and values of this argument.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

■ caller

Parent object of the callback function mentioned in the definition (E.g.: window).

performHotSpot
(definitionKey,
hotspotKey, action,
params, frameID)

Performs a hotspot action on the given hotspot. This method should only be called
during the file session when the hotspots have been already initialized. It takes the
following parameters:

■ definitionKey

Hotspot definition key string provided at the creation.

■ hotspotKey

Hotspot property key string identifying the hotspot instance, to interpret based on
the definition key.

■ action

Action to perform on the hotspot. The supported actions are: 'highlight', 'zoomTo',
'zoomNext' and 'zoomPrev'.

■ params

Semicolon (";") separated key-value string specifying hotspot action parameters:

param1=value1;param2=value2,Ã¢Â Â¦;paramN=valueN

Note: See Hotspot Actions for more information about the arguments supported for
each hot spot action.

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Advanced Scripting

8-10 Oracle AutoVue API Guide

getInfo(info, callback,
frameID, caller)

Get the requested information asynchronously. It takes the following parameters:

■ info

Identifies the requested info. Currently only 'Custom Properties' is supported.

■ callback

JavaScript Callback to invoke when the requested information is ready.

■ frameID

User identifier of the secondary frame on which this API method will be invoked. The
frame will be created dynamically if it does not exist. If this parameter is null, then the
method will be invoked on the main frame.

■ caller

Parent object of the callback parameter (E.g.: window).

setEventListener(listen
er, filter, caller)

Enable event notifications by registering a listener to AutoVue frame events. It takes the
following parameters:

■ listener

Name of the JavaScript Callback to invoke when an event is fired and caught by
AutoVue Frame. The callback should have the following signature:

function onEvent(type, event, frameID)

where:

■ type is the type of the event (Model Event, or Markup
Event)

■ event us a JavaScript Object wrapping the event
information

■ frameID is the frame ID used initially to generate the
frame issuing this event

If the listener is set to null, then event notifications are disabled (Default behaviour).

■ filter

Hotspot definition key string, used to refer to this definition later.

Specifies the type of events that caller wants to receive. Here are the types
supported:

■ AutoVue.EVENTFILTER_FILE: File Events (Page switch,
Loading progress, etc)

■ AutoVue.EVENTFILTER_MARKUP: Markup Events
(Enter/Exit Markup mode)

■ caller

Parent object of the listener callback (E.g.: window).

closeDocument(frameI
D)

Close the current document. It takes the following parameters:

■ frameID

User identifier of the secondary frame on which this API method will be invoked.
The frame will be created dynamically if it does not exist. If this parameter is null,
then the method will be invoked on the main frame.

closeAutoVue() Close AutoVue Client exiting AutoVue JNLP process.

Table 8–1 (Cont.) Methods of AutoVue Advanced Scripting

Method Description

Applet API vs. New API

AutoVue Advanced Scripting 8-11

8.2 Applet API vs. New API
The JavaScript API provided by the Java Web Start client was based on the API that
was supported by the AutoVue applet. For developers who used the applet's
JavaScript capabilities, note the following differences:

■ The functions printFile, batchPrint and convertFile were ported with trimmed
options. The function invokeAction was ported but without the second parameter
referring to sub-action. Additional options and parameters may be included in the
future based on customer needs. However, the Java classes options that were
earlier sent through the applet are now initialized from the INI options on
AutoVue side before applying the options sent through the new API.

■ The following functions were removed and merged to other functions available in
the new API:

– setFileInNewWindow: Call setFile and set its second argument (bNewWindow)
to true. By default this argument is set to false.

– setMarkupMode: Call openMarkup without arguments. Notice that even
though the applet function setMarkupMode expects a boolean argument, it
ignores it and always enables the markup mode.

■ The following functions are not ported to the new API:

– setFileThreaded

– isPrinting

– saveActiveMarkup

– importMarkup

– exportMarkup

– getActiveVueBean

– getClass

– createMobilePack

– syncMobilePack

– getDMSInfo

– collaborationJoin

– collaborationEnd

– waitForLastMethod

– SetStatusListener

Applet API vs. New API

8-12 Oracle AutoVue API Guide

Part III
Part III ABV Guide

The Augmented Business Visualization (ABV) is a visualization framework which
provides rich and actionable visual decision making environments by connecting
portions of documents to business data found in enterprise applications.

Part II contains the following chapters:

■ Introduction – ABV Guide

■ Hotspots

■ AutoVue Hotspot API

■ Hotspot Samples

■ VueAction Sample

■ ABV Design and Security Recommendations

Note: The content in the ABV Guide is applicable to the
Client/Server Deployment of AutoVue only.

9

Introduction – ABV Guide 9-1

9Introduction – ABV Guide

The Augmented Business Visualization (ABV) is a visualization framework which
provides rich and actionable visual decision making environments by connecting
portions of documents to business data found in enterprise applications. ABV's
hotspot capabilities allow you to create links between objects in AutoVue's data model
and objects in an external system. With this hotspot feature, an ABV solution can be
built that integrates AutoVue tightly into other applications. By clicking an area of a
document in AutoVue, a visual action is triggered and/or information displays in
other applications. With visual dashboards, you can expose data from enterprise
systems visually by changing the hotspot color.

This document provides the technical details of the ABV architecture, ABV sample
code, and guidelines on how to create visual dashboards and visual actions using
ABV’s hotspot capability.

Note: For a general overview of ABV and its features, refer to the
Oracle AutoVue Integration Guide.

9-2 Oracle AutoVue API Guide

10

Hotspots 10-1

10Hotspots

AutoVue’s hotspot capabilities allow system integrators to create links between objects
in AutoVue's data model and objects in an external system. With this hotspot feature,
an ABV solution can be built that integrates AutoVue tightly into other applications.
By clicking on an area of a document in AutoVue, a visual action is triggered and/or
information displays in other applications. With visual dashboards, you can expose
data from enterprise systems visually by changing the hotspot color.

This chapter provides information on how to create visual dashboards and actions,
and how to define text, 3D, regional and Web CGM hotspots.

Note: For an overview of ABV’s hotspot capabilities, refer to the
Oracle AutoVue Integration Guide.

10.1 Creating a Visual Dashboard

Figure 10–1 Visual dashboard

Your enterprise application can highlight hotspots in your document based on its
Enterprise Resource Planning (ERP) data, creating a visual dashboard. The visual
dashboard displays structured data (enterprise application data) on top of a drawing
by using color-coded hotspots based on the business data of a document.

Creating a Visual Action

10-2 Oracle AutoVue API Guide

To create a visual dashboard, you can highlight various hotspot entities in specific
colors:

■ Hotspots of all types can be highlighted by providing the hotspot definition key,
the appropriate hotspot key, and the desired color.

■ Each hotspot entity must be mapped to the appropriate color by the ABV
integration.

10.2 Creating a Visual Action
A visual action is a hotspot that triggers actions in your enterprise application. These
actions can include highlighting an area of the document, zooming into a component,
opening a browse dialog, and so on.

Actions can be defined for the following:

■ Single-Click

■ Double-Click

■ Selecting a named action from the RMB menu.

Action handlers can be defined to retrieve the appropriate information as follows:

■ Definition key for the hotspot definition used.

■ Hotspot key to identify the hotspot element being acted upon.

■ The action to perform.

■ Any modifiers keys (Shift, Alt, and so on) that are active when the action is started.

10.3 Hotspot Features
AutoVue supports the following user interactions with hotspots:

■ Tooltips

■ Triggering Actions

10.3.1 Tooltips
An active hotspot highlights to indicate that it has an action when a mouse cursor
hovers over it. Additionally, a tooltip appears describing the hotspot’s functionality.

In the event there are multiple layers of tooltips (markup, measurement, hotspot, and
so on) that are associated to an object in the drawing, only one tooltip appears. Which
tooltip appears depends on the tooltip’s priority ranking in the stack of tooltips.

Note: The markup tooltip has top priority.

■ Markup tooltip

■ Measurement tooltip

■ Hotspot tooltip

■ EDA entity information tooltip

■ Hyperlink tooltip

3D Hotspots

Hotspots 10-3

10.3.2 Triggering Actions
When a user clicks on a hotspot, a notification is fired to the ABV integration with the
information identifying the clicked hotspot and the mouse action--single-click,
double-click, and right mouse button (RMB) action--as well as keyboard modifiers
(Ctrl, Shift, Alt).

As with tooltips, when triggering an action the following precedence rules are used:

Note: The markup entity has top priority.

■ Markup: Consumes the mouse action.

■ Measurement: Consumes the mouse action.

■ Hotspot: Notifies the external application but does not consume the mouse action
and allows the subsequent layers to process the mouse clicks as well.

■ Hyperlink: Does not consume the mouse action.

■ EDA Entity selection, 3D Entity selection, Entity properties on double-click, and so
on.

10.4 3D Hotspots
In 3D files, hotspots are defined by the attribute name. Optionally, an attribute value
can be defined. If no attribute value is provided, then AutoVue identifies all parts with
the attribute name as a hotspot. That is, the attribute value is used by AutoVue as a
key to identify the hotspot attached to the owner part.

Figure 10–2 3D Hotspot

3D hotspots can be used to connect a 3D model to unstructured data such as order
status, delivery dates, and so on. By setting up a visual dashboard in the 3D model, all
this information can be pulled from an ERP and displayed in real-time.

The following sections describe how to initialize a 3D hotspot and design
recommendations.

Text Hotspots in 2D and EDA Documents

10-4 Oracle AutoVue API Guide

10.4.1 Defining a 3D Hotspot
Consider the following when defining 3D hotspots:

■ Hotspots are not supported on 3D PMI entities.

■ 3D hotspot definitions cannot contain regular expressions in attribute names or
values. Additionally, leading or trailing spaces are not permitted in attribute
names/values and should exactly match the attribute names/values in the model.

■ AutoVue supports attribute names/values that contain a semi-colon (;). You must
precede the semi-colon with a backslash (\).

■ Internal attributes that AutoVue displays in 3D models (for example, Mesh
Resolution, Transparency, and Layers) should not be used when defining hotspots.

■ To prevent conflicts in highlight color, it is recommended to use the Bounding Box
Highlight for a 3D selection (default AutoVue setting) instead of the Entity
Highlight.

■ If a hotspot is defined with density as an attribute, then the specified density value
must be the same value saved in the native file without measurement units.

■ It is not recommended to define hotspots with attributes that the user can modify
after the model loads (for example, Color, Transparency, Display/Render Mode,
Visibility, Highlight Color, and Bounding Box Color). If these attributes are used
and changed by the user during the file session, then the hotspots may behave
inconsistently.

10.5 Text Hotspots in 2D and EDA Documents
Text hotspots are supported in 2D and EDA documents. They are based on regular
expressions filtering graphical text strings based on AutoVue’s text search. You can use
regular expressions in the hotspot definition.

Figure 10–3 Text Hotspot

Text hotspot can be used to trigger actions such as Create Work Order or Open
Detailed Parts Diagram from assets in piping and instrumentation diagrams. These
hotspots can be clicked to retrieve and display asset information such as failure and
repair history, working status, and so on.

The following sections describe how to define a text-based hotspot, what types of text
and file formats are supported, and design recommendations.

10.5.1 Defining a Text Hotspot
You must use regular expressions in the hotspot definition in order to search for text in
the document. Since AutoVue uses the Java library, it relies on Java’s regular
expression guidelines. For more information, refer to the following Java regular
expression guidelines:

Regional Hotspots

Hotspots 10-5

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/index.html

Consider the following when defining text hotspots:

■ Text hotspot support is not available for raster formats, archive formats, Microsoft
Word, Excel, RTF, and Outlook formats.

Note: Support for Outlook format is deprecated in Release 21.0.1.

■ Since text hotspots can only be detected on searchable text, text stored in Windows
Metafiles (WMF/EMF) cannot be used for hotspotting.

■ If there are multiple occurrences of a text, then they are all handled as valid
hotspots.

■ To be recognized as a text hotspot, characters in a string must share the same
baseline. For example, a string with a normal text and a superscript text cannot be
recognized as a single hotspot as they have different baselines. Alternately,
regional hotspots can be applied.

■ For PDF text with large spacing between characters, it is recommended to use the
ADVANCEGAP INI option. For more information, refer to Section 11.1.1, "PDF
Text Hotspot."

■ Strings that include curved text (curved baseline) cannot be used as a text hotspot.
Alternately, regional hotspots can be applied to include the curved text.

Note: PDF documents generated through OCR are not supported for
hotspots.

10.6 Regional Hotspots
Regional hotspots can be defined in 2D, EDA, and Raster files. The hotspots can either
be drawn as a box or a polygon. The dimensions/extents for the hotspots are based on
the coordinates displayed in the AutoVue status bar. Optionally, a user key can be used
by AutoVue as an identifying key for the hotspot. If the user key is not provided, then
an empty (string) key is used.

Figure 10–4 Box Hotspot

Regional Hotspots

10-6 Oracle AutoVue API Guide

Figure 10–5 Polygon Hotspot

Consider the following when defining regional hotspots:

■ Regional hotspots are not supported for archive formats, Microsoft Word,
Microsoft Excel, and RTF formats.

■ Vector files and raster files do not use the same World Coordinate System in
AutoVue. Vector files use the bottom-left corner of the client area as the origin and
the Y-axis oriented bottom-top, while the raster files use the Top-Left corner as the
origin and the Y-axis oriented bottom-top. This mismatch is already exposed in
AutoVue with the current user interface (UI) because the mouse position is
reported in World Coordinates System on the Status Bar of the UI. Since regional
hotspots are provided relative to World Coordinate System, the regional
definitions need to consider this difference between raster and vector files.

10.6.1 Defining Page-Specific Regional Hotspots
When working with multi-page documents, it may be required to define page-specific
regional hotspots. For example, a floor plan of interest may be on the second or third
page of PDF. As a result, a new parameter allows the administrator to specify the
pages where to apply the defined regional hotspot. Refer to AutoVue Hotspot API for
information on the DEFINITION_PAGE parameter.

10.6.2 Defining Coordinates of a Box/Polygon
To define the coordinates of a box/polygon in a drawing, you can outline the
box/polygon with a markup entity and then dump the coordinates to the regional
hotspot definition. The status bar displays the world coordinates of the mouse
position. The box/polygon hotspot can be manually defined to use these coordinates.
For more information, refer to Polygon Hotspot for an example of using a markup
entity to create a polygon hotspot.

10.6.3 Defining a Box Hotspot
A box hotspot is defined by minimum and maximum points. Where {X1, Y1} and {X2,
Y2} are the coordinates of the box minimum and maximum points, respectively. Refer
to AutoVue Hotspot API for information on the DEFINITION_BOX parameter.

10.6.4 Defining a Polygon Hotspot
A polygon hotspot can include an arbitrary number of sides.You can define as many
sides as required for a polygon hotspot: (x1, y1), (x2, y2),..., (xn, yn). Where n is the
number of sides of the polygon. Refer to AutoVue Hotspot API for information on the

Web CGM Hotspots

Hotspots 10-7

DEFINITION_POLYGON parameter.

10.6.5 Invoking performHotspot()
To perform an action on a regional hotspot, the definition key and hotspot key
parameters must be defined for performHotspot(). The hotspot key for regional
hotspots is the user key. If the user key is not provided then an empty (string) key is
used. For more information, refer to Perform an Action on a Hotspot.

10.7 Web CGM Hotspots
In Web CGM files, hotspots are defined in the native file. The hotspot information
contains three attributes:

■ Name

■ ID

■ URI

External systems can interact with these hotspots using the AutoVue ABV API with a
given name. AutoVue matches the name to the ID property of the hotspot. If this fails,
AutoVue matches the name to the Name property in order to highlight a specific
hotspot. The definition key is always provided by the user (as with all hotspot
definitions). The Web CGM hotspots include a hotspot key and definition key, and are
handled in the same manner as all other hotspots.

Web CGM Hotspots

10-8 Oracle AutoVue API Guide

11

AutoVue Hotspot API 11-1

11AutoVue Hotspot API

The AutoVue Application Programming Interface (API) is a Java-based toolset that
provides tools to modify the functionality of Oracle's AutoVue client, and allows you
to create your own customized Java applications based on AutoVue API components.
For more information on the AutoVue API, refer to the Java API Guide.

The AutoVue API’s jVueApp class includes two methods that handle hotspots:

■ setHotSpotHandler(): Defines a hotspot.

■ performHotSpot(): Performs an action on a hotspot.

Note: It is possible to extend the AutoVue client using the
VueAction() method to implement a hotspot action. Refer to Custom
VueAction for a VueAction() hotspot example.

11.1 Hotspot INI Options
When working with 2D, EDA, PDF and graphic documents, through the use of the
Augmented Business Visualization (ABV) integration framework, you can add
AutoVue’s hotspot capabilities to create links between objects in AutoVue’s data model
and objects in an external system.

The following sections list the configuration options for hotspots provided by
AutoVue:

■ Section 11.1.1, "PDF Text Hotspot"

■ Section 11.1.2, "PDF Text Hotspot INI Options"

11.1.1 PDF Text Hotspot
Syntax and additional information for the option described here is in section
Section 11.1.2, "PDF Text Hotspot INI Options."

AutoVue provides ADVANCEGAP INI option to recognize PDF text with large
spacing between characters as a single hotspot. The value of the option should be less
than the maximum number of spaces between consecutive strings. That is, if the gap
between two consecutive strings is less then the ADVANCEGAP value, then the
strings are recognized as a single hotspot. However, if the gap between the two strings
is larger than the value specified, they are not recognized as a single hotspot.

For more information on available INI options, refer to the Oracle AutoVue Viewing
Configuration Guide.

Define Hotspots

11-2 Oracle AutoVue API Guide

11.1.2 PDF Text Hotspot INI Options
The following option should be placed in the [HOTSPOTS] header of the INI file.

Parameter Description Default

ADVANCEGAP =[integer] Specify the maximum number of spaces
between consecutive text strings.

3

11.2 Define Hotspots
setHotSpotHandler (final String definitionType, final String
definitionKey, final String Definition)

This method sets the hotspot handler for a given hotspot definition. This should
typically be called before opening the file. It initializes hotspots in the files opened in
AutoVue based on external application data.

Parameter Description

definitionType The hotspot definition type. Specify if the hotspot is a WebCGM
hotspot, text search hotspot, box/polygon hotspot, or a 3D hotspot.

definitionKey The hotspot definition key. This is the identifier for the hotspot.

definition A string separated by semicolons specifying hotspot definition
parameters. For example: name1 = value1; name2 = value2.

11.2.1 Hotspot Definition Types
Hotspot definition types supported in setHotSpotHandler():

Parameter Description

DEFINITION_TYPE_NATIVE Native Web CGM hotspot.

DEFINITION_TYPE_TEXT Text search hotspot.

DEFINITION_TYPE_BOX Box hotspot.

DEFINITION_TYPE_POLYGON Polygon hotspot.

DEFINITION_TYPE_3D_ATTRIBUTE 3D entity hotspot.

11.2.2 Hotspot Definition Parameters
The following are hotspot definition parameters supported in the key-value string
parameter (definition) of the method setHotSpotHandler().

11.2.2.1 Common Definition Parameters
The following are definition parameters that are common for all hotspots.

Parameters Description

DEFINITION_TOOLTIP The tooltip that displays when a mouse cursor hovers over
a hotspot defined by the handler.

DEFINITION_ONINIT The JavaScript method to call when page is loaded and
ready to interact.

DEFINITION_FUNCTION The JavaScript function to call when user performs an
action on the hotspot.

Define Hotspots

AutoVue Hotspot API 11-3

11.2.2.2 Text Definition Parameters
The following are definition parameters for text hotspots.

Parameters Description

DEFINITION_REGEX Regular expression to use only in Text Search Hotspot
handlers.

For more information, refer to the following Java regular
expression guidelines.

Pattern Class:
http://docs.oracle.com/javase/7/docs/api/java/util
/regex/Pattern.html

Java Tutorial:
http://docs.oracle.com/javase/tutorial/essential/r
egex/index.html

DEFINITION_MATCHCASE Specify whether to handle case sensitivity.

Syntax: DEFINITION_MATCHCASE=[TRUE|FALSE]

DEFINITION_SCALE Specify the scaling bounds for text hotspots.

Possible values:

■ 1: No effect.

■ 1.1: The text hotspot bounds is 10% larger.

■ 2: The text hotspot bounds is 2 times larger.

■ x: The text hotspot bounds is x times larger.

11.2.2.3 3D Definition Parameters
The following are definition parameters for 3D hotspots

Parameters Description

DEFINITION_ATTRIB_NAME The attribute name assigned to a 3D entity on the model.

DEFINITION_ATTRIB_VALUE The attribute value assigned to a 3D entity on the model.
(Optional)

If this parameter is not specified, then all parts with an
attribute of the specified name will be made into a hotspot.

DEFINITION_MATCHCASE Whether to handle case sensitivity when searching name
and value attributes assigned to 3D entities.

Syntax: DEFINITION_MATCHCASE=[TRUE|FALSE]

DEFINITION_ACTIONS Popup actions to show when user right-clicks on a hotspot.

DEFINITION_COLOR The highlight color to use when user hovers the mouse
cursor over a hotspot. Note that AutoVue parses the RGBA
value as a string.

Example: (R, G, B, [A])

Refer to the 3D and Box hotspots examples in Chapter 12,
"Hotspot Samples" for more information.

Note that integer-based colors (for example, 1627283) can
are also supported.

Parameters Description

Define Hotspots

11-4 Oracle AutoVue API Guide

11.2.2.4 Regional Definition Parameters
The following are definition parameters for box and polygon hotspots.

Parameters Description

DEFINITION_BOX Define the bounds of the rectangular box given the
minimum and maximum points. Where {X1, Y1} and {X2,
Y2} are the coordinates of the box minimum and maximum
points.

Note that the points are based on the world-coordinates of
the page.

Syntax:

DEFINITION_BOX=#X1#Y1#X2#Y2

Example:

_boxDef = "DEFINITION_BOX=#0 #0 #100 #100;
DEFINITION_USER_KEY=box1; DEFINITION_PAGE=1"

DEFINITION_PAGE Restricts box and polygon hotspot definitions to the page
specified by this parameter. If no page is specified, then the
hotspots apply to all pages. The following example defines
the hotspot on page 2.

Example:

DEFINITION_PAGE = 2

DEFINITION_POLYGON Define the bounds of the polygon as a set of points in the
world coordinates in the following format:

#(x1, y1) #(x2, y2)...#(xn, yn) where n is the number of points.

Note that the minimum number of points for a polygon is
3 and that it is treated as a closed polygon (do not have to
repeat the final point).

Example:

_defPoly = "DEFINITION_POLYGON=#(0,0) #(50, -50)
#(150, -50) #(200, 0) #(150, 50) #(50, 50)" ; "DEFINITION_
USER_KEY=box; DEFINITION_PAGE=1"

DEFINITION_USER_KEY Define a user key for the box/polygon. This user key
allows you to link multiple boxes with various definitions
to the same external object. This is the hotspot key used for
the hotspot. (Optional)

If the user key is not defined, then the hotspot key is an
empty string.

Syntax:

DEFINITION_USER_KEY=box1

11.2.3 Perform an Action on a Hotspot
performHotSpot (final String definitionKey, final String hotspotKey, final String
action, final String params)

The method performs a hotspot action on the given hotspot. This method should be
called during the file session when the hotspots have been already initialized (only
after the external application is notified that hotspots have been initialized in the file).

Parameters Description

definitionKey The hotspot definition key (the hotspot identifier)
provided at creation.

Interactions with Hotspots from JavaScript

AutoVue Hotspot API 11-5

11.2.3.1 Hotspot Actions
The hotspot actions supported in performHotSpot() and their arguments are as
follows:

Action Name Description Arguments

HIGHLIGHT Perform a highlight action. HOTSPOT_COLOR: The color for a
highlight to add (RGBA Format). If
this argument is not provided, the
action is interpreted as a Highlight
Removal.

ZOOMTO Zoom to all hotspot instances.

ZOOMNEXT Zoom to the next hotspot
instance.

ZOOMPREV Zoom to the previous hotspot
instance.

11.3 AutoVue API for ABV Integration
The ABV integration can call the AutoVue API for manipulating hotspots from the
following user actions:

■ Highlight (Multiple Selection, Add/Remove)

– Text Highlight as used in text search.

– 2D Entity Highlight for Web CGM format.

– 3D Entity Highlight for 3D formats.

– Regional Highlight for regional hotspots.

■ Zoom to a hotspot, or the hotspots associated with a specific external object.

■ Browse the hotspots associated with a specific external object using Zoom
Previous/Zoom Next.

Note: When a user selects a hotspot, all hotspots associated with the
same ABV integration may be selected by using the highlight
mechanism provided above.

11.4 Interactions with Hotspots from JavaScript
The following is a code prototype for a custom JavaScript function call to initialize
hotspots when the file/page loads:

initialization_script(String definitionKey)

hotspotKey The hotspot property key string found based on the
definition key.

action The action to perform on the hotspot. Refer to
Section 11.2.3.1, "Hotspot Actions."

params A string separated by semicolons specifying hotspot action
parameters. For example: name1 = value1; name2 =
value2.

Parameters Description

Interactions with Hotspots from JavaScript

11-6 Oracle AutoVue API Guide

The following is a code prototype for a custom JavaScript function call when a user
interacts with hotspots:

notification_script(String definitionKey, String hotspotKey, String action, int
keyModifiers, String properties)

keyModifiers describes the status of the Shift, Alt and Ctrl keys.

action may be a custom action sent during the definition of the hotspot handler (RMB
actions) or one of these two predefined actions:

OnHotSpotClicked To send when user clicks on the hotspot.

OnHotSpotDoubleClicked To send when user double-clicks on the hotspot.

properties that could be sent to the external application notification script are as follows:

PROPERTY_ID Property ID.

PROPERTY_NAME Name of native WebCGM hotspots.

PROPERTY_URI URI of native WebCGM hotspots.

12

Hotspot Samples 12-1

12Hotspot Samples

This chapter provide sample code on how to implement AutoVue’s hotspot capability
for your enterprise application.

For a detailed ABV integration example, refer to Doc ID 1472899.1 in the Oracle
Customer Support knowledge base:
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=147
2899.1

12.1 Adding a Hotspot
The following hotspot example shows how the setHotSpotHandler() and
performHotSpot() methods are implemented to add hotspot capability to AutoVue.
Note that this example only adds one definition, but it is possible to add multiple
definitions.

1. In the html file where the AutoVue JavaScript Object is instantiated:

<script>
var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST, CLIENT_PORTS,
INIT_PARAMS, ENCRYPT_COOKIES, VERBOSITY, STARTUP_DELAY)

</script>

Initialize the hotspots with the onInit parameter of the start API invoked to launch
the client:

<script>
myAvApp.start(onInit, ...);

</script>

This parameter is a JavaScript callback invoked when AutoVue client is started,
has been initialized and has started to listen to scripting commands.

Note: If a newly added definition key already exists, then the
existing definition is replaced by the new one.

<script>
function onAppletInit() {

var handlerStr = "DEFINITION_REGEX=AutoVue;
DEFINITION_TOOLTIP=AutoVue 2D Professional";
// The following function is called once when AutoVue is ready to
// interact with a hotspot.
handlerStr += ";DEFINITION_ONINIT=onHotSpotInit";
// The following function is called each time a hotspot is fired.
handlerStr += ";DEFINITION_FUNCTION=onHotSpot;

Adding a Hotspot

12-2 Oracle AutoVue API Guide

DEFINITION_ACTIONS=Menu1, Menu2";
color = "(0,0,255,128)";
handlerStr += ";DEFINITION_COLOR=" + color;

//The following call sets up the hotspot definition.

myAvApp.setHotSpotHandler("DEFINITION
_TYPE_TEXT", "AV2D", handlerStr);

}
</script>

2. Method onHotSpotInit() is called for each definition when the current page is
loaded and ready for hotspot interactions.

Note that the method name should be exactly the same as the one specified in the
hotspot definition DEFINITION_ONINIT in step 1.

function onHotSpotInit(hotspotDefinitionKey) {
alert("HotSpot definition initialized: " + hotspotDefinitionKey);

}

3. The following onHotSpot() method is invoked when a hotspot is fired when the
user either clicks on the hotspot or by selecting one of the Hotspot menu items
defined in variable DEFINITION_ACTION in step 1.

function onHotSpot(hotspotDefinitionKey, hotspotKey, action, modifiers,
properties) {
if (equalsIgnoreCase(action, "onHotSpotClicked")) {

alert("User clicked on hotspot: " + hotspotKey);
} else if (equalsIgnoreCase(action, "onHotSpotDoubleClicked")) {

alert("User double clicked on hotspot: " + hotspotKey);
} else if (equalsIgnoreCase(action, "Menu1")) {

alert("User Peformed Menu1 action: " + hotspotKey);
} else if (equalsIgnoreCase(action, "Menu2")) {

alert("User Peformed Menu2 action: " + hotspotKey);
}

}

Note: The method name should be exactly the same as the one
specified in the hotspot definition DEFINITION_FUNCTION in step 2. The
onHotSpotClicked() and onHotSpotDoubleClicked() methods are
predefined keys when the user clicks on the hotspot.

4. The following code performs specific actions on the clicked hotspot such as
Highlight, Zoom, and so on.

// Highlight the "AutoVue" hotspot, "AV2D" is the definition key.
// Color : (R,G,B,A)
// myAvApp refers to the AutoVue JavaScript Object created in item 1
params = "HOTSPOT_COLOR=" + (((128 & 0xFF) << 24) | ((255 & 0xFF) << 16) |
((255 & 0xFF) << 8) | ((0 & 0xFF) << 0));
japplet.performHotSpot("AV2D", "AutoVue", "Highlight", params);

// To clear the hotspot highlight simply set the params (color) to null.
japplet.performHotSpot("AV2D", "AutoVue", "Highlight", null);

// To clear the definition highlights, set the hotspot key to null.
japplet.performHotSpot("Highlight", "AV2D", null, null);

Box Hotspot

Hotspot Samples 12-3

// To clear all hotspot highlights, set the definition key to null.
japplet.performHotSpot(null, null, "Highlight", null);

// Zoom to the next "AutoVue" hotspot.
japplet.performHotSpot("AV2D", "AutoVue", "ZoomNext", null);

// Zoom to the previous "AutoVue" hotspot.
japplet.performHotSpot("AV2D", "AutoVue", "ZoomPrev", null);

12.2 3D Hotspot
The following example defines a 3D hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced
Scripting.

2. Define a 3D hotspot. The following code snippet defines a hotspot matching a part
number in a 3D unigraphics assembly file. The sample file is included with the
AutoVue Client/Server Deployment installation: <AutoVue Installation
Folder>/samples/3D/Unigraphics/3DUnigraphics_iLearn-Assy.prt.

//Turn the part with PART_NUMBER = ITEM-UG-00003 into a hotspot. You can leave
//out the ATTRIB_VALUE if you want to highlight everything with the PART_NUMBER
//attribute
item00003Def = "DEFINITION_ATTRIB_NAME=PART_NUMBER; DEFINITION_ATTRIB_
VALUE=ITEM-UG-00003;"

+ "DEFINITION_TOOLTIP=Board;"
+ "DEFINITION_ONINIT=onHotSpotInit;"
+ "DEFINITION_FUNCTION=onHotSpot;"
+ "DEFINITION_ACTIONS=Add Part, Remove Part;"
+ "DEFINITION_COLOR=(255, 0, 0)";

3. Set the 3D hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_3D_ATTRIBUTE", "item00003",
item00003Def);

12.3 Box Hotspot
The following example details how to define a box hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced
Scripting.

2. Define a box hotspot. The following code snippet defines a box hotspot that
encloses the Oracle logo from the PDF sample file included with the AutoVue
Client/Server Deployment installation: <AutoVue Installation
Folder>/samples/Desktop-Office/Basell_Autovue_Case_Study.pdf.

Note: The box coordinates are defined by #minX #minY #maxX
#maxY. Each coordinate must be preceded by a hash (#).

oracleDef = "DEFINITION_BOX=#6.4 #0.7 #8.1 #0.4; DEFINITION_USER_KEY=oracle;"
+ "DEFINITION_TOOLTIP=www.oracle.com;"
+ "DEFINITION_ONINIT=onHotSpotInit;"

Polygon Hotspot

12-4 Oracle AutoVue API Guide

+ "DEFINITION_FUNCTION=onHotSpot;"
+ "DEFINITION_ACTIONS=Open Link;"
+ "DEFINITION_COLOR=(0, 0, 255, 64)";

3. Set the box hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_BOX", "oracleBox", oracleDef);

12.4 Polygon Hotspot
1. Define a polygon hotspot. The code snippet provided in Example 12–1 defines a

polygon hotspot that encloses the complete drawing on top right corner case from
the DGN sample file included with the AutoVue Client/Server Deployment
installation: <AutoVue Installation Folder>/samples/2D/MicroStation.dgn.

Note: The polygon is defined by the coordinates of its points
#(pt1.X,pt1.Y)#(pt2.X,pt2.Y)… #(ptN.X,ptN.Y). Each point coordinates
must be preceded by a hash (#).

Example 12–1 Code Snippet that defines Polygon Hotspot

drawingDef="DEFINITION_POLYGON=#(666.120514,309.60045)#(928.817686,469.33385)
+ #(1115.035505,167.614443)#(852.338328,7.881023);"
+ "DEFINITION_USER_KEY=fullDrawing;"
+ "DEFINITION_TOOLTIP=The complete drawing;"
+ "DEFINITION_ONINIT=onHotSpotInit;"
+ "DEFINITION_FUNCTION=onHotSpot;"
+ "DEFINITION_ACTIONS=zoomNext;"
+ "DEFINITION_COLOR=(0,0,255,64)";

2. Set the polygon hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_POLYGON","FullDrawingPoly",
drawingDef);

12.5 Text Hotspot
The example details how to define a text hotspot.

1. Get myAvApp.

myAvApp refers to the AutoVue JavaScript Object mentioned in Advanced
Scripting.

2. Define a text hotspot. The following example defines a text hotspot (regular
expression) matching the AutoVue string. The PDF sample from Polygon Hotspot
includes the AutoVue string in multiple locations.

autovueDef = "DEFINITION_REGEX=AutoVue; DEFINITION_MATCHCASE=false;"
+ "DEFINITION_TOOLTIP=AutoVue Professional;"
+ "DEFINITION_ONINIT=onHotSpotInit;"
+ "DEFINITION_FUNCTION=onHotSpot;"
+ "DEFINITION_ACTIONS=AutoVue 2D, AutoVue 3D, AutoVue EDA,

AutoVue Electro-Mechanical;"
+ "DEFINITION_COLOR=(0, 255, 0, 128)";

3. Set the text hotspot handler.

myAvApp.setHotSpotHandler("DEFINITION_TYPE_TEXT", "AutoVue", autovueDef);

Text Hotspot with Visual Actions and Visual Dashboard

Hotspot Samples 12-5

12.6 Text Hotspot with Visual Actions and Visual Dashboard
This example details how to define a text hotspot that utilizes the visual action and
visual dashboard features.

1. Define the text hotspot.

//Turn strings starting with CV into a Control Valve hotspot
handlerStr = "DEFINITION_REGEX=CV.*;";
handlerStr += "DEFINITION_MATCHCASE=false;";
handlerStr += "DEFINITION_TOOLTIP=Control Valve;";
handlerStr += "DEFINITION_ONINIT=onHotSpotInit;";
//Actions are handled by JavaScript function OnHotSpot
handlerStr += "DEFINITION_FUNCTION=onHotSpot;";
//When a hotspot is right-clicked, a menu appears with the following options:
//View Detailed Parts Diagram, Create Work Order and View Safety Information
handlerStr += "DEFINITION_ACTIONS=View Detailed Parts Diagram, Create Work
Order, View Safety Information;";
//Color : (R,G,B,A). When a mouse hovers over a hotspots, //they are
highlighted in 50% transparent blue
color = "(0,0,255,128)";
handlerStr += "DEFINITION_COLOR=" + color;
myAvApp.setHotSpotHandler("DEFINITION_TYPE_TEXT", definitionKey, handlerStr);

2. Create the hotspot actions.

//Variable hotspotKey contains the identifier for the hotspot entity that
//triggers the action when click.
function onHotSpot(defKey, hotspotKey, action, modifiers, properties) {
//If the hotspot entity is clicked, the side panel updates with information on
//the entity.

if (equals (action, "onHotSpotClicked")) {
updateSidePanel(defKey, hotspotKey, modifiers);

//Otherwise, if the RMB is clicked, an action can be selected from the menu.
} else if (equals (action, "Create Work Order")) {

createWorkOrder(defKey, hotspotKey);
} else if (equals (action, "View Detailed Parts Diagram")) {

showDetailsPartsPage(defKey, hotspotKey);
} else if (equals (action, "View Safety Information")) {

showSafetyInfo(defKey, hotspotKey);
}

}

Note that each function must know how to retrieve the appropriate information
and/or to trigger the appropriate actions in the backend systems.

3. Define the highlighted hotspots for the visual dashboard. The ABV integration
identifies which entities need to be highlighted and their specified color. Each
entity is then passed to performHotspot() to highlight the entity appropriately.

function showHighlights{
data = getData(); // returns array of JSON objects
for (i=0 ; i < data.length() ; i++) {

entity= data[i];
myAvApp.performHotSpot("Highlight", entity.defKey, entity.hotspotKey,

entity.color);
}

}

3D Hotspot with Visual Actions and Visual Dashboard

12-6 Oracle AutoVue API Guide

12.7 3D Hotspot with Visual Actions and Visual Dashboard
This example details how to define a 3D hotspot that utilizes the visual action and
visual dashboard features.

1. Define the 3D hotspots.

//Turn 3D parts with ASSET_ID attribute into hotspots.
handlerStr = "DEFINITION_ATTRIB_NAME=ASSET_ID;";
handlerStr += "DEFINITION_TOOLTIP=ASSET;";
handlerStr += "DEFINITION_ONINIT=onHotSpotInit;";
//Actions are handled by JavaScript funtion onHotSpot.
handlerStr += "DEFINITION_FUNCTION=onHotSpot;";
//When a hotspot is right-clicked, a menu appears with the following options:
//View Detailed Parts Diagram, Create Work Order and View Safety Information
handlerStr += "DEFINITION_ACTIONS=View Detailed Parts Diagram, Create Work
Order, View Safety Information;";
//Color : (R,G,B,A). When a mouse hovers over a hotspots, they are highlighted
//in 50% transparent blue
color = "(0,0,255,128)";
handlerStr += ";DEFINITION_COLOR=" + color;
myAvApp.setHotSpotHandler(

"DEFINITION_TYPE_3D_ATTRIBUTE", definitionKey, handlerStr);

2. Create the 3D hotspot actions.

//Variable hotspotKey contains the identifier for the hotspot entity that
//triggers the action when click.
function onHotSpot(defKey, hotspotKey, action, modifiers, properties) {
//If the hotspot entity is clicked, the side panel updates with information on
//the entity.

if (equals (action, "onHotSpotClicked")) {
updateSidePanel(defKey, hotspotKey, modifiers);

//Otherwise, if the RMB is clicked, an action can be selected from the menu.
} else if (equals (action, "Create Work Order")) {

createWorkOrder(defKey, hotspotKey);
} else if (equals (action, "View Detailed Parts Diagram")) {

showDetailsPartsPage(defKey, hotspotKey);
} else if (equals (action, "View Safety Information")) {

showSafetyInfo(defKey, hotspotKey);
}

}

Note: Each function must know how to retrieve the appropriate
information and/or to trigger the appropriate actions in the backend
systems.

3. Define the highlighted hotspots for the visual dashboard. The ABV integration
identifies which entities need to be highlighted and their specified color. Each
entity is then passed to performHotspot() to highlight the entity appropriately.

function showHighlights{
data = getData(); // returns array of JSON objects
for (i=0 ; i < data.length() ; i++) {

entity= data[i];
myAvApp.performHotSpot("Highlight", entity.defKey, entity.hotspotKey,
entity.color);

}
}

13

VueAction Sample 13-1

13VueAction Sample

The VueAction sample included with the AutoVue installation illustrates how to
implement a custom hotspot action in Java. This sample is ready to be tested out of the
box, but has limited application as it is not integrated with an enterprise visualization
system. It is presented solely as a skeleton framework to show how hostspots can be
applied.

The sample includes the following files:

Table 13–1 Files in VueAction Sample

File Description

PartCatalogueAction.java This is an example of how to write a custom action for
AutoVue. This example illustrates implementation of an
action that does more than one thing. It consists of
several related sub-actions that access information about
parts of a product. This action is added to two
components to the AutoVue GUI: AutoVue toolbar
buttons and hotspot RMB menu items.

AutoVue toolbar buttons:

■ None: Disables mouse detection over hotspots.

■ Description: Enables mouse detection over hotspots
and displays hotspot description as a tooltip.

■ ID: Enables mouse detection over hotspots and
display hotspot ID as a tooltip.

Hotspot RMB menu items:

■ Order Part: Displays a dialog that includes part
information and a quantity order field.
Note that this dialog does not actually retrieve any
part information. It is only used to display possible
RMB menu actions.

■ Show Part Information: Displays part name and ID.

PartListAction.java This is an example of how to write a custom action for
AutoVue. This action performs a single task and is added
to the List Product Parts option of the Analysis menu:

■ List Product Parts: Lists the hotspots that user
double-clicked.

PartInfo.java This class provides product part information. It contains
the catalog ID, part ID and part description.

VueActionSample.jar JAR file for the VueAction sample.

JavaDocs Provides detailed information on the classes included in
the sample.

Running the VueAction Sample

13-2 Oracle AutoVue API Guide

13.1 Running the VueAction Sample
The following steps detail how to test the VueAction sample.

1. Double-click customjvue.bat.
AutoVue launches and populates the toolbar with the None, Description and ID
buttons.

2. To test the hotspot implementation, open the hotspot sample file, Basell_AutoVue_
Case_Study.pdf.

Note: The hotspot definition file, hotspots.txt, is configured for
Basell_AutoVue_Case_Study.pdf. If you want to load another file, you
must update the hotspot definitions in hotspots.txt.

3. Click Description to allow hotspot detection and to view tooltips. Alternately, you
can click ID to allow hotspot detection for the hotspot ID.

The following regular expressions are defined in hotspots.txt: AutoVue.* and
Document. That is, when you hover the mouse cursor over AutoVue, the string
along with any inline text that follows it is highlighted and a AutoVue 2D
Professional tooltip appears. For the Document string, the string is highlighted and
the Basell Document tooltip appears.

13.2 Customizing the VueAction Sample
The VueAction sample can be customized to be used with a different file and with data
from enterprise visualization systems. Take note that all hotspots are defined in
hotspots.txt. In this file, you can specify the definition key, regular expression, whether

custom.gui Defines the custom user interface of AutoVue. It adds
PartCatalogueActions to the AutoVue toolbar and
Hotspot RMB menu and the PartListAction to the
Analysis menu.

hotspots.txt Contains the hotspot definitions. For information on how
to define hotspots, refer to Chapter 10, "Hotspots."

customjvue.bat Batch file that runs the sample. Note that the file
illustrates how to bundle the custom action with the
custom user interface.

Basell_AutoVue_Case_Study.pdf Sample file to be used with the VueAction sample. It is
located in <AutoVue
Installation>\html\samples\Desktop-Office directory.

PartCatalogueAction_de.properties German resource files.

PartCatalogueAction_en.properties English resource files.

PartCatalogueAction_fr.properties French resource files.

Note: For detailed information on PartCatalogueAction.java,
PartInfo.java or PartListAction.java, refer to the Javadocs included
with the VueAction sample.

Table 13–1 Files in VueAction Sample

File Description

Customizing the VueAction Sample

VueAction Sample 13-3

the text search should match case, define a tooltip, and so on. For more information on
defining hotspots, refer to Hotspot Definition Parameters.

The following steps describe how to update the VueAction sample with a customized
hotspots.txt:

1. Updated hotspot definitions in hotspots.txt.

2. Save hotspots.txt.

3. Extract the files from VueActionSample.jar.

4. From the extracted JAR file, replace hotspots.txt with your customized file.

5. Create a new JAR file, VueActionSample.jar.

6. Run the batch file, customjvue.bat.

Customizing the VueAction Sample

13-4 Oracle AutoVue API Guide

14

ABV Design and Security Recommendations 14-1

14ABV Design and Security Recommendations

This chapter provides design and security recommendations for ABV.

■ Store hotspot definitions in a database and set them dynamically rather than
hard-coding in the html.

■ Use JSON or XML and XMLHttpRequest to pass visual dashboard information
from ABV server component to ABV client components.

■ Be aware that if using regional hotspots, the hotspots may need to be updated
when the drawing changes

■ Ensure JavaScript and Java logging is on - need to set VERBOSE=true in client
parameters.

■ If you are using custom GUIFILEs - ensure VueActionHotspots is included in all
GUIFILES.

■ Be aware that performHotSpot() method does not generate errors if given an
invalid hotspotKey—ensure that your hotspotKey is correct if things are not
working.

14-2 Oracle AutoVue API Guide

A

Feedback A-1

AFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us
using the links below.

A.1 General AutoVue Information

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

A.2 Oracle Customer Support

Web Site http://www.oracle.com/support/index.html

A.3 My Oracle Support AutoVue Community

Web Site https://communities.oracle.com/portal/server.pt

A.4 Sales Inquiries

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

A-2 Oracle AutoVue API Guide

	Contents
	Preface
	Part I Java API Guide
	1 Introduction – Java API
	2 AutoVue API Packages
	2.1 VueBean Package
	2.1.1 Event Package
	2.1.1.1 VueEvent
	2.1.1.2 VueModelEvent
	2.1.1.3 VueEventBroadcaster
	2.1.1.4 VueFileListener
	2.1.1.5 VueMarkupListener
	2.1.1.6 VueViewListener
	2.1.1.7 VueStateListener
	2.1.1.8 VueModelListener

	2.1.2 MarkupBean Package
	2.1.2.1 Markup
	2.1.2.2 MarkupLayer
	2.1.2.3 MarkupEntity
	2.1.2.3.1 MarkupEntitySpec

	2.2 Server Control
	2.3 VueAction Package
	2.3.1 AbstractVueAction
	2.3.2 VueAction
	2.3.2.1 Create an action that performs a single function
	2.3.2.2 Create an action that performs multiple functions

	3 Sample Cases
	3.1 Building an AutoVue API Application
	3.2 Custom VueAction
	3.2.1 Action that Performs a Single Function
	3.2.2 Action that Performs Multiple Functions

	3.3 Directly Invoking VueActions
	3.4 Markups
	3.4.1 Entering Markup Mode
	3.4.2 Checking Whether Markup Mode is Enabled
	3.4.3 Exiting Markup Mode
	3.4.4 Adding an Entity to an Active Markup/Layer
	3.4.5 Enumerating Entities
	3.4.6 Getting Entity Specification of a Given Entity
	3.4.7 Changing Specification of an Existing Entity Programmatically
	3.4.8 Adding a Text Box Entity
	3.4.9 Open Existing Markup
	3.4.10 Saving Markups to a DMS/PLM
	3.4.11 Adding a Markup Listener to Your Application

	3.5 Converting Files
	3.5.1 Making a Call to a Convert Method
	3.5.2 Converting to JPEG (Custom Conversion)
	3.5.3 Converting to PDF

	3.6 Printing a File to 11x17 Paper
	3.7 Monitoring Event Notifications
	3.8 Retrieving the Dimension and Units of a File

	4 FAQs
	4.1 MarkupBean
	4.2 Printing
	4.3 Upgrading
	4.4 General

	Part II JavaScript API
	5 Introduction – JavaScript API
	6 Architecture
	7 AutoVue Client Launch
	7.1 AutoVue Client Launch from Java Web Start
	7.1.1 Include AutoVue JavaScript API
	7.1.2 Instantiate an AutoVue JavaScript Object
	7.1.3 Start AutoVue Client

	8 AutoVue Advanced Scripting
	8.1 Advanced Scripting
	8.2 Applet API vs. New API

	Part III ABV Guide
	9 Introduction – ABV Guide
	10 Hotspots
	10.1 Creating a Visual Dashboard
	10.2 Creating a Visual Action
	10.3 Hotspot Features
	10.3.1 Tooltips
	10.3.2 Triggering Actions

	10.4 3D Hotspots
	10.4.1 Defining a 3D Hotspot

	10.5 Text Hotspots in 2D and EDA Documents
	10.5.1 Defining a Text Hotspot

	10.6 Regional Hotspots
	10.6.1 Defining Page-Specific Regional Hotspots
	10.6.2 Defining Coordinates of a Box/Polygon
	10.6.3 Defining a Box Hotspot
	10.6.4 Defining a Polygon Hotspot
	10.6.5 Invoking performHotspot()

	10.7 Web CGM Hotspots

	11 AutoVue Hotspot API
	11.1 Hotspot INI Options
	11.1.1 PDF Text Hotspot
	11.1.2 PDF Text Hotspot INI Options

	11.2 Define Hotspots
	11.2.1 Hotspot Definition Types
	11.2.2 Hotspot Definition Parameters
	11.2.2.1 Common Definition Parameters
	11.2.2.2 Text Definition Parameters
	11.2.2.3 3D Definition Parameters
	11.2.2.4 Regional Definition Parameters

	11.2.3 Perform an Action on a Hotspot
	11.2.3.1 Hotspot Actions

	11.3 AutoVue API for ABV Integration
	11.4 Interactions with Hotspots from JavaScript

	12 Hotspot Samples
	12.1 Adding a Hotspot
	12.2 3D Hotspot
	12.3 Box Hotspot
	12.4 Polygon Hotspot
	12.5 Text Hotspot
	12.6 Text Hotspot with Visual Actions and Visual Dashboard
	12.7 3D Hotspot with Visual Actions and Visual Dashboard

	13 VueAction Sample
	13.1 Running the VueAction Sample
	13.2 Customizing the VueAction Sample

	14 ABV Design and Security Recommendations
	A Feedback
	A.1 General AutoVue Information
	A.2 Oracle Customer Support
	A.3 My Oracle Support AutoVue Community
	A.4 Sales Inquiries

