
[1]Oracle® AutoVue Integration SDK
Overview and Installation Guide

Release 21.0.1

E84712-01

February 2017

Oracle AutoVue Integration SDK Overview and Installation Guide, Release 21.0.1

E84712-01

Copyright © 1998, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

1 ISDK Overview

1.1 Introduction ... 1-1
1.2 AutoVue and Repository Integration .. 1-1
1.3 GUI Customization... 1-3
1.4 Repository Extension.. 1-4
1.5 VueLink .. 1-4
1.6 Optional Components .. 1-4
1.6.1 CAD Connector.. 1-5
1.7 Overview of ISDK Components ... 1-5
1.7.1 Documentation... 1-5
1.7.2 ISDK Skeleton Project.. 1-6
1.7.3 ISDK Web Services Client... 1-6

2 System Requirements

2.1 Required Software .. 2-1
2.2 Server .. 2-1
2.2.1 Windows ... 2-1
2.2.2 Linux.. 2-1
2.3 Client... 2-1
2.4 Application Servers .. 2-1
2.5 Development Tools... 2-2

3 Installation

3.1 Downloading Required Software ... 3-1
3.1.1 Oracle JDeveloper 11gR1 .. 3-1
3.1.2 Oracle Enterprise Pack for Eclipse 11gR1 .. 3-1
3.1.3 Oracle AutoVue ... 3-1
3.1.4 WebLogic Server .. 3-2
3.2 Installing and Configuring .. 3-2
3.2.1 Installing ISDK ... 3-2
3.2.2 Creating a Server Runtime Environment on IDE.. 3-4
3.2.3 Creating Projects on IDE... 3-5
3.2.4 Configuring ISDK Components .. 3-7

iv

3.3 Configuring Sample Components... 3-10

4 Configuring Sample Projects

4.1 Sample Integration for Filesys DMS... 4-1
4.1.1 Step 1: Copy the AutoVue Jar Files ... 4-1
4.1.2 Step 2: Configure the AutoVue Server ... 4-1
4.1.3 Step 3: Configure log4j.properties for Debugging .. 4-2
4.1.4 Step 4: Configure RootDir for the Filesys Repository .. 4-3
4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional) 4-3
4.1.6 Step 6: Configure the Markup Policy (Optional) .. 4-3
4.1.7 Step 7: Configuring User Control .. 4-4
4.1.8 Step 8: Configure the Picklist ... 4-4
4.1.9 Step 9: Configure the Thumbnail Display.. 4-4
4.1.10 Step 10: Configure for Redirection .. 4-5
4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo 4-6
4.1.12 Step 12: Configure the Oracle Enterprise Visualization Framework (OEVF)............. 4-6
4.1.13 Step 13: Configure New Sample Data... 4-8
4.1.14 Step 14: Run the Filesys Project .. 4-14
4.2 ISDK Web Services Sample Server .. 4-15
4.2.1 Method 1: Use an Existing Project Template .. 4-15
4.2.2 Method 2: Create a Project Manually... 4-16

5 Implementation

5.1 ISDK Skeleton Project... 5-1
5.2 ISDK Web Services Client.. 5-3
5.3 Sample Projects.. 5-5
5.3.1 Sample Integration for Filesys Project .. 5-5
5.3.2 ISDK Web Services Sample Server Project... 5-9
5.4 Implementation ... 5-9
5.4.1 Phase One... 5-10
5.4.2 Phase Two.. 5-10
5.4.3 Phase Three.. 5-10

6 Deployment of ISDK-Based Integrations

6.1 Scaling for High Usage over Distributed Environments .. 6-1

A Updating Existing Integrations to the Java Web Start Client

A.1 Update your Integration .. A-1
A.1.1 Update the server... A-1
A.1.2 Setup the server for SSL Mode.. A-3
A.1.3 Test AutoVue Sample.. A-3
A.1.4 Specify Cookies .. A-5
A.1.5 Update client side code... A-5
A.1.6 Enabling Security ... A-6
A.1.7 Customizing AutoVue .. A-7
A.1.8 AutoVue Constructor Parameters ... A-7

v

A.2 Steps for Integration .. A-9

B Feedback

B.1 General AutoVue Information ... B-1
B.2 Oracle Customer Support ... B-1
B.3 My Oracle Support AutoVue Community... B-1
B.4 Sales Inquiries... B-1

vi

vii

Preface

The Oracle AutoVue Integration SDK Design, Installation and Configuration Guide
provides a high-level overview of the Oracle AutoVue Integration Software
Development Kit (ISDK) and also describes the procedure for building and running a
dynamic Web project in JDeveloper and Eclipse IDEs for Oracle AutoVue.

For the most up-to-date version of this document, go to the AutoVue Documentation
Web site on the Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

Audience
This document is intended for Oracle partners and third-party developers (such as
integrators) who want to implement their own integration with AutoVue.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the AutoVue Integration SDK
library on OTN:

■ Technical Guide

■ Acknowledgments

■ Javadocs

■ Security Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

ISDK Overview 1-1

1ISDK Overview

This chapter provides a general overview of the AutoVue Integration SDK, and is
intended for Oracle partners and third-party developers (such as integrators) who
want to create an integration between Oracle AutoVue and a content repository.

1.1 Introduction
The AutoVue Integration Software Development Toolkit (ISDK) is intended for
third-party developers who want to integrate Oracle AutoVue with their Data
Management System (DMS).

Figure 1–1 AutoVue ISDK work flow

Oracle AutoVue is a thin client viewing and collaboration solution for enterprise-wide
data access.

The ISDK installation package includes four sample projects that can be modified to
suit your integration needs. The following sections describe these projects in more
detail.

1.2 AutoVue and Repository Integration
AutoVue is the key component in Oracle's Enterprise Visualization solutions. AutoVue
solutions deliver native document viewing, markup, and real-time collaboration
capabilities that streamline the information flow and collaborative processes across the
global enterprise. AutoVue solutions help organizations in a variety of industries
including Utilities, Industrial Manufacturing, Electronics & High Tech, Engineering
and Construction, Aerospace and Defense, Automotive, and Oil & Gas. AutoVue
streamlines visualization and collaboration across the global enterprise, improves
productivity, reduces errors, and accelerates innovation and time to market. In an
enterprise, AutoVue can be part of many business workflows and use cases such as
collecting comments and annotations during a design review, recording the actions
and results for a maintenance work order, comparing archived documents, and
collaborating with other users.

AutoVue can offer its capabilities to many different enterprise systems/repositories
such as DMS, PLM, and Content Management Systems (CMS). AutoVue needs to be

AutoVue and Repository Integration

1-2 Oracle AutoVue Integration SDK Overview and Installation Guide

integrated into these repositories in order to be able to access the documents that are
stored in them. There exist many such integrations. For example, there is an
integration between AutoVue and WebCenter Content (WCC) and AutoVue and
Oracle Agile PLM. The Oracle-developed integration is known as a VueLink. The
VueLink provides an interface that allows communication between the repository and
AutoVue in order to retrieve documents and to store data that is generated by
AutoVue for those documents (such as annotations). The VueLink is a Java Web
application that is hosted on a Java Web application server. The following figure shows
how the communication between AutoVue and the repository is done through a
VueLink.

Figure 1–2 Communication between AutoVue and repository/backend system through a
VueLink

Note:

■ AutoVue sends a request to the VueLink.

■ VueLink forwards the request to the repository.

■ The repository sends a response back to the VueLink.

■ VueLink forwards the response to the AutoVue server.

After AutoVue gets access to a document and other related data from the repository, it
then streams the view of the document to the AutoVue client via the VueServlet. The
AutoVue Client provides the user with an interface to manipulate document display
and perform other operations.

As shown in the diagram, the repository contains two important components: the
repository extension and the GUI customization.

In order for the VueLink to communicate with the repository there needs to be a
component on the backend-side whose interface the VueLink understands. This
component is known as the repository extension. For more information, refer to the
Repository Extension section.

GUI Customization

ISDK Overview 1-3

In a seamless integration, the AutoVue client should be launched from inside the
repository user interface. The GUI Customization is applied to the repository user
interface. For more information, refer to GUI Customization section.

The application server component of the diagram includes the VueServlet and the
VueLink. The VueServlet is a Java Servlet that acts as a tunnel between the AutoVue
server and the AutoVue client. The client makes requests using the HTTP/HTTPS
protocol to the VueServlet and the VueServlet communicates with the AutoVue server
using its socket port. All the communication between the AutoVue client and the
AutoVue server goes through the VueServlet. The VueServlet is available out of the
box with AutoVue and can be easily deployed. Information on the VueLink is
provided in VueLink section.

1.3 GUI Customization
Launching AutoVue should be implemented through the customization of the
repositories graphical user interface (GUI). The AutoVue client will be launched in a
second window.

Depending on the underlying technology, the implementation of the GUI
customization can vary from one environment to another. For example, a very simple
implementation may be a hyperlink to an HTML page that loads the AutoVue client. A
more sophisticated implementation may involve a repository-based scripting language
or APIs. In both cases, you must refer to the repository's documentation for
information on how to modify its UI and the available capabilities.

Since the customization can be applied to different places in the repository GUI, its
implementation should be looked at from a usability point of view as well as from a
technical point of view. A good example is customizing the search results page in the
repository GUI. In this example, each document in the Search Results page is
associated with a menu item or icon that launches the AutoVue client to view that
particular document. A sample GUI customization is shown in the following
screenshot. The Search Results page in Oracle Content Server GUI is customized to
launch the AutoVue client.

Figure 1–3 Sample GUI Customization

Repository Extension

1-4 Oracle AutoVue Integration SDK Overview and Installation Guide

1.4 Repository Extension
The repository extension is the layer on the repository that the VueLink communicates
with. It allows the VueLink to access the repository the same way the end-user
accesses the repository through the GUI.

Note: If the repository already provides a programming interface
that gives access to all documents and related data required by the
VueLink, then there is no need to develop a custom extension on the
repository side for an AutoVue integration.

If this interface is not available, then a custom extension must be created using a
technology that the repository supports. The extension must support the different
requests that come from the VueLink. That is, the VueLink requests are related to
retrieving and storing documents and their related data inside the repository. The
extension can be built as a Web service or a Java Application Programming Interface
(API). A Java API is the preferred approach as the performance is generally better and
the overhead is lower in a Java to Java integration than in a Web service integration.
This is because once the interface is provided by the repository then a VueLink-type
component should be implemented to connect and communicate with it. The Web
services should be used when a Java API cannot be provided (such as when
integrating with a .NET environment). For more details about the required interface
refer to the Implementation chapter.

1.5 VueLink
The VueLink is the integration component that acts as the gateway between AutoVue
and the repository. The name VueLink is reserved for these types of Oracle-developed
gateway components. Third-party integrators and partners should choose their own
trademarks or preferred name for this piece of integration. However, regardless of its
name, VueLink-type components enable AutoVue to access documents that are stored
inside the repository. It also enables AutoVue to retrieve any data related to these
documents from the repository. In addition, any data generated by AutoVue (for
example, markups and renditions) can be stored into the repository using this
component.

The VueLink is the center piece of an AutoVue integration with a repository. It is able
to communicate with AutoVue and with the repository, thereby acting as a translator
for each end and isolating AutoVue and the repository from each other's complexity. It
is a Java Web application and needs to be deployed on a Java Web application server
(such as WebLogic, GlassFish, and Tomcat). In case of a Web service-based integration,
the application server must support Java Web service technology. For more
information, refer to Deployment of ISDK-Based Integrations chapter.

Since the interface between the VueLink and AutoVue is the same for all VueLinks
(regardless of the repository they are built for), it is good practice to have an
integration framework that has built-in communication with AutoVue and is ready to
be used as a starting point for building new integrations with any repository. The
AutoVue Integration SDK is designed to fulfill this requirement. For more information,
refer to the Configuring Sample Projects chapter.

1.6 Optional Components
Before discussing the AutoVue Integration SDK, the optional components to be used in
conjunction with building an integration are presented.

Overview of ISDK Components

ISDK Overview 1-5

1.6.1 CAD Connector
One of the characteristics of CAD models is that often they are not stored in one
document. For example, an airplane CAD model consists of many parts (such as
wings, wheels, and so on) which in turn have their own subparts. Each part or subpart
might be designed and stored in a separate document and referenced in the airplane
CAD model document directly or hierarchically. In order to view that airplane CAD
model, all parts must be loaded and put together. These separate parts and subparts
files are known as external references (XRefs). AutoVue supports loading and viewing
documents along with their XRefs documents. However, in an integration, the XRefs
support should also be provided at the repository level since they are all stored inside
the repository. If the repository provides a mechanism to link documents to each other
as references, then this mechanism can be used to provide XRefs support.

The storing and linking of references in a repository should not be done manually. In
order to properly support the XRefs, some software tools should be provided that can
import related documents from the CAD authoring software into the repository. An
example is a CAD connector. A CAD connector is a software tool that integrates the
repository with a CAD authoring software package (such as AutoCAD). It can
check-in/check-out a set of related CAD files into/out-of the repository while
preserving their relations and linkage.

Note: This software tool is not an AutoVue integration requirement.
It is a facilitator for the repository to organize the XRefs.

1.7 Overview of ISDK Components
This section describes the various components included in the AutoVue Integration
SDK.

1.7.1 Documentation
The following AutoVue Integration SDK documentation, with the exception of the
JavaDocs which is included with the installation, can be found on the Oracle AutoVue
Documentation Web site on the Oracle Technology Network (OTN)
http://www.oracle.com/technetwork/documentation/autovue-091442.html:

■ Design, Installation and Configuration Guide

– This guide provides a high-level overview of the Integration SDK. In addition,
it contains information related to the installation, configuration and
deployment of projects included in this ISDK in JDeveloper and Eclipse IDE.

■ Security Guide

– This guide contains information related to the security and authentication
mechanisms provided in this release of Integration SDK.

■ Release Notes

– Details changes and enhancements made in this release of the ISDK.

■ Technical Guide

– This guide contains in-depth technical information about the integration
framework and describes how to implement your own integration based on
the sample integration included in this ISDK.

■ Acknowledgments

Overview of ISDK Components

1-6 Oracle AutoVue Integration SDK Overview and Installation Guide

– This document lists licenses and third-party notices.

■ JavaDocs

– This contains the JavaDocs of the underlying framework contained in the
AutoVue Integration SDK. The JavaDocs is included the installation of this
ISDK.

1.7.2 ISDK Skeleton Project
To speed up the integration and provide the integrators with a starting point, the ISDK
includes a ISDK skeleton package, and Web service package.

The ISDK Java skeleton package has the structure for building a new VueLink. The
skeleton comes with a set of TODO comments in places where the integrators need to
add their code. The ISDK Java skeleton implementation means adding code to the
skeleton codebase so that it can communicate with the repository's Java API. For more
information, see ISDK Skeleton Project.

1.7.3 ISDK Web Services Client
The Web service package includes a Web Services Description Language (WSDL) file
that describes an interface for a Web service to be implemented by the repository. The
package includes a client-side implementation of this WSDL. This client package itself
is built using the ISDK skeleton. With the ISDK Web service package, the
implementation means building a proper Web service provider based on the defined
WSDL on the repository. For more information, see ISDK Web Services Client.

2

System Requirements 2-1

2System Requirements

The recommended system hardware configuration is:

■ A system supporting the JDK/JRE version 7 or 8 with at least 8GB of main
memory.

■ At least 100MB of free disk space to install the software components and examples.

2.1 Required Software
■ Oracle AutoVue 21.0.1

2.2 Server
The following operating systems have been certified with the Integration SDK:

2.2.1 Windows
■ Windows 2008 R2 64-bit (AutoVue running in 32-bit mode)

■ Windows 2012 R2 64-bit (AutoVue running in 32-bit mode)

2.2.2 Linux
■ Redhat Enterprise Linux 6.X (x86_64), and 7.X (x86_64) 64-bit (AutoVue running in

32-bit mode)

■ Oracle Linux 6.X (x86_64), and 7.X (x86_64) 64-bit (AutoVue running in 32-bit
mode)

2.3 Client
The following Java Virtual Machines have been certified with the Integration SDK:

■ Java JDK 1.7 update 75 (and up) and Java JDK 1.8 update 5 (and up) for Filesys
Sample, Skeleton and Web Services Client.

■ Web browsers supported by Oracle AutoVue 21.0.1.

2.4 Application Servers
The following application servers are compatible with the Integration SDK:

■ Oracle WebLogic Server 11gR1 (and up)

Development Tools

2-2 Oracle AutoVue Integration SDK Overview and Installation Guide

■ Any other application server that supports Servlet 2.5 may work but are not
certified by Oracle

2.5 Development Tools
The following IDEs are compatible with the ISDK:

■ Oracle Enterprise Pack for Eclipse llgR1 (11.1.1.7.3) for Eclipse 3.6.2 Helios Edition

■ Oracle JDeveloper 11gR1 (11.1.1.x)

■ Microsoft Visual Studio 2008 (and up)

3

Installation 3-1

3Installation

This chapter assumes you are familiar with Java development and with basic Web
application development concepts, such as deployment descriptors and WAR archives.
Understanding XML language is beneficial, but not mandatory.

The software products listed in Chapter 2, "System Requirements" must be installed
and configured on your system according to the manufacturer's instructions.

3.1 Downloading Required Software
Before proceeding with the installation of the AutoVue ISDK, the following software
must be installed and configured on your system according to the manufacturer’s
instructions.

3.1.1 Oracle JDeveloper 11gR1
You can download Oracle JDeveloper Studio Edition from
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/jdev11120
download-495887.html.

3.1.2 Oracle Enterprise Pack for Eclipse 11gR1
Oracle Enterprise Pack for Eclipse (OEPE) is a free set of certified plug-ins, enabling
WebLogic developers to support Java EE and Web Service standards. The Oracle
Enterprise Pack for Eclipse All-In-One installer includes a preconfigured version of
Eclipse and the OEPE plug-ins. You can download the Eclipse 3.6 (Galileo) Edition for
your desired platform from
http://www.oracle.com/technetwork/developer-tools/eclipse/downloads/oepe-1
1114-088679.html.

If you download Eclipse IDE for Java EE Developers from the Eclipse Web site, you
must download the Oracle WebLogic Server plug-in separately when creating the
server.

3.1.3 Oracle AutoVue
Oracle AutoVue 21.0.0 is available from http://edelivery.oracle.com. The
description name is Oracle AutoVue 21.0.0. Select a Media Pack for your desired
platform.

Installing and Configuring

3-2 Oracle AutoVue Integration SDK Overview and Installation Guide

3.1.4 WebLogic Server
You can download WebLogic Server from the following location:
http://www.oracle.com/technetwork/middleware/weblogic/downloads/wls-for-de
v-1703574.html.

3.2 Installing and Configuring
This section describes the installation and configuration steps for the ISDK.

Note: If you are planning on deploying the ISDK in a secured
environment, you should read the Oracle AutoVue Integration Software
Development Toolkit (ISDK) Security Guide before installing the ISDK.

To install, run the installer to extract all necessary files. You must then create a server
runtime environment on IDE and create a project. At this point you must manually
configure ISDK components such as the ISDK Skeleton and Web Service Client.

Once these steps are complete, and the ISDK is installed correctly, you can configure
the sample projects. For information on configuring the sample projects, refer to
Configuring Sample Projects.

3.2.1 Installing ISDK
There are two folders included in the Oracle AutoVue SDK Media Pack: win32 and
linux. Each of these folders contains the installer of the ISDK for the corresponding
platform. The following steps outline the installation for Windows and Linux OSes.

1. For Windows, go to the win32 folder and launch the setupwin32.exe file. For
Linux, go to the linux folder and launch the setuplinux.bin file. The Installer dialog
appears.

2. Click Next.

3. Enter the location and directory name for the AutoVue Integration SDK. The
default location and name for Windows is C:\Oracle\AutoVueIntegrationSDK.
Click Next.

4. Select the components to install. By default, the ISDK Skeleton and Web Service
Client are selected. To install the sample projects, select Sample Integration
(filesys and Web Services Sample Server).

5. Click Next. The installation summary page appears.

6. Click Next to begin installation. The files are extracted to the location specified in
step 3. Note that the ISDK is installed by default with Secure Sockets Layer (SSL)
enabled.

7. Click Finish to complete the installation.

Note: If the Linux installer is unable to run in graphical mode, install
the libXp package.

The Quick Start.html file found in the root folder is a top-level readme file that acts as
an entry point to the rest of the ISDK documentation. To view the contents of this file,
open it in your browser. After running the installer, all the required files are created

Installing and Configuring

Installation 3-3

under your AutoVueIntegrationSDK installation directory with the following
structure:

■ The /docs folder contains javadocs. All other ISDK documentation can be found
on the Oracle AutoVue Documentation OTN site at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

■ The /FileSys folder contains four subfolders:

– The /Repository folder contains filesysRepository.zip which contains sample
files used by the Sample Integration for Filesys.

– The /OEVF folder contains two GUI files used for the OEVF demo.

– The /WebApplication folder contains a filesys.war file and a /filesys folder.
The content in the /filesys folder is the unzipped version of the filesys.war
file. The filesys.war can be imported into JDeveloper or Eclipse workspace to
demo the Sample Integration for Filesys and to demo RTC & OEVF
functionalities. The project contains source code for sample integration,
AutoVue client and third party libraries required by the integration.

– The /ESAPI_Resources folder contains the OWASP Enterprise Security API
properties files: ESAPI.properties and validation.properties.

■ The /ISDKSkeleton folder contains two subfolders:

– The /WebApplication folder contains an isdk_skeleton.war file and a /isdk_
skeleton folder. The content in the /isdk_skeleton folder is the unzipped
version of the isdk_skeleton.war file. The isdk_skeleton.war can be imported
into JDeveloper or Eclipse workspace to create the Integration SDK Skeleton
project. Your integration with Java-based backend systems will be developed
based on this skeleton project and fulfill the TODO comments in this project.

– The /ESAPI_Resources folder contains the OWASP Enterprise Security API
properties files: ESAPI.properties and validation.properties.

■ The /WebServicesIntegration folder contains three subfolders:

– The WebServiceClient folder contains the /ESAPI_resources and
/WebApplication folders. The /ESAPI_Resources folder contains the OWASP
Enterprise Security API properties files: ESAPI.properties and
validation.properties. The /WebApplication folder contains the wsclient.war
and a /wslcient folder which is the unzipped version of the WAR file.

– The /WSDL folder contains the BluePrint WSDL file and the XSD file that
accompanies it.

– The /WebServicesSampleServer folder contains a /C# folder. The /C# folder
contains the Service1.asmx.cs file and the zipped project template wsserver_
VisualStudio2008_ProjectTemplate.zip. The Service1.asmx.cs file is used when
creating an ISDK Web Services project manually.

■ The /etc folder contains a list of files and folders structure contained in this ISDK,
and folders containing licenses of third-party software used by the ISDK.

– The /_jvm and /_uninst folders for uninstalling the ISDK.

Note: The ESAPI.properties and validation.properties files are
placed in the folder based on the configuration settings defined by the
user. If there is no path defined in the application, the library looks for
them inside the esapi folder of the user's home directory. One way is
to add the path to the project is: From Project Properties, select
Run/Debug/Profile and then Edit. From Edit, select Java Options,
and then add the path to the ESAPI.properties and
validation.properties files (e.g.:
-Dorg.owasp.esapi.resources=C:\temp\esapi). Make sure you copy
the ESAPI.properties and validation.properties to the location defined
(e.g.: C:\temp\esapi). If there is no path defined in the application,
the library looks for them inside the esapi folder of the user's home
directory.

Installing and Configuring

3-4 Oracle AutoVue Integration SDK Overview and Installation Guide

3.2.2 Creating a Server Runtime Environment on IDE
This section describes how to create a server runtime environment on JDeveloper and
Eclipse IDEs.

3.2.2.1 Create Default Runtime on JDeveloper
JDeveloper has an integrated WebLogic Server (IntegratedWebLogicServer)
configured. As a result, you can skip this step if using JDeveloper.

3.2.2.2 Create Server Runtime on Eclipse
You can create a server to identify the runtime environment that you want to use to
test your Oracle AutoVue project. To create the WebLogic Server, complete the
following steps:

Note: Your Oracle WebLogic Server domain needs to be created in
development mode in order to create the server successfully in
Eclipse.

1. From the File menu, select New, and then select Other.

2. Expand the Server folder, then select Server.

3. Click Next.

The Define a New Server wizard opens. This wizard lets you define a new server
that contains information required to point to a specific runtime environment for
local or remote testing, or for publishing to an application server.

Note: If you installed Eclipse using Oracle Enterprise Pack for
Eclipse Galileo Edition, Oracle WebLogic Server (11gR1) is listed in the
New Server wizard under Oracle server type. If you downloaded
Eclipse 3.6.2 directly from Apache Web site, you need to click
Download Additional Server Adapters and download Oracle
WebLogic Server adapter from the Internet yourself.

4. Select Oracle WebLogic Sever 11gR1, click Next, and then perform the following
steps:

Note: These steps also apply for Oracle WebLogic Server on Linux.

Installing and Configuring

Installation 3-5

a. In the Define WebLogic Runtime dialog, enter the WebLogic Home location.
For example, C:\bea\wlserver_11.1 on Windows and
/home/my/bea/wlserver_11.1on Linux. Then provide the domain directory
at Define a WebLogic Server dialog.

b. If you do not have the WebLogic domain available yet or you want to create a
different one, click Click Here to launch Configuration Wizard to create a
new domain. Write down the Domain Location for your created domain. For
example, C:\bea\user_projects\domains\base_domain.

c. Now suppose you already have a domain directory available. You can input or
browse to get it on your machine and click Next.

5. Select the projects from the available projects list in the Add and Remove dialog
and then click Add to add them to the configured projects list.

6. Click Finish. The Oracle WebLogic Server 11gR1 appears in the Servers view. You
can start and stop the Server from this view.

7. Open the Server view to verify that the server has been created. You can click
Servers or click Window from the menu bar, then Show View and Servers to
display the Server view.

3.2.3 Creating Projects on IDE
This section describes how to create a project on JDeveloper and Eclipse IDEs.

3.2.3.1 Projects on JDeveloper
1. Create an application if you do not have one yet. You can create an application by

clicking File from the menu bar, then select New. The New Gallery dialog appears.

2. Select Applications under the General category from the left panel and then select
Custom Application from the right panel.

3. Click OK. The Create Application dialog appears.

4. Complete the Create Application dialog to create an application with the
Application Package Prefix field left empty. Click Finish to the create the project.

5. Click File and then Import. The Import dialog appears.

6. Select WAR File and then click OK. The Create Project from WAR File dialog
appears.

7. Browse to the ISDK component folder or sample projects folder and then select a
WAR file.

8. In the following Create Project from WAR file dialogs perform the following:

■ Enter your project name.

■ Choose a directory to put your project.

■ Select the WAR file to import. For example, filesys.war.

■ Verify the location for Root Directory for Web Module.

9. Click Finish to finish the creation of your project.

Installing and Configuring

3-6 Oracle AutoVue Integration SDK Overview and Installation Guide

10. In the Project view, browse to verify that your project has been created
successfully.

11. Click Build to make your project. There should be no compilation error.

12. Check Libraries and Classpath:

a. Right-click the project and select Project Properties to bring out the Project
Properties dialog

b. Click Libraries and Classpath in the left panel.

c. Check the JSP Runtime and JSF 1.2 are available under the Classpath Entries.
If there are not available, you can add them manually in the following steps:

Click Add Library in the right panel.

Select JSP Runtime under Extension from the pop-up window.

If you are going to deploy the project later to an external WebLogic Server
instead of using the IntegratedWebLogicServer, you also need to add JSF 1.2
under Extension from the pop-up window.

Click OK.

13. This step is for the ISDK Web Service Sample project for WebLogic when the
"WeblogicUserNameTokenHandler.java" (Username token profile security for
WebLogic) is needed.

a. WeblogicUserNameTokenHandler.java.excluded needs to be renamed to
WeblogicUserNameTokenHandler.java.

b. Add weblogic.jar to the project's build path if you see compilation error for
WeblogicUserNameTokenHandler.java. The steps are as follows:

Right-click the project and select Project Properties to bring out the Project
Properties dialog.

Click Libraries and Classpath in the left panel

Click Add JAR/Directory in the right panel

In Add Archive or Directory dialog, browse to WebLogic Server's lib folder to
select weblogic.jar and click on Select. Weblogic.jar appears in the Classpath
Entries.

Click OK to exit the Project Properties dialog.

Rebuild your project and there should be no compilation error.

14. To start the WebLogic Server. You can click on Run from menu bar and then click
Start Server Instance to start or click On from the toolbar.

3.2.3.2 Projects on Eclipse
1. From the File menu select Import. The Import dialog appears.

2. In the Import dialog, expand Web and select WAR file and then click Next to
bring out the WAR Import dialog.

3. To import the sample WAR files, click Browse.

4. Browse to the ISDK component folder or sample projects folder and then select a
WAR file.

5. Provide a name for your Web project. If you have already configured Oracle
WebLogic Server runtime, Oracle WebLogic Server 11gR1 is shown as Target

Installing and Configuring

Installation 3-7

runtime. If you have not created it yet, you can create one now by clicking on
New. For more information, refer to Creating a Server Runtime Environment on
IDE.

6. Click Next.

7. Accept the default at the WAR Import: Web libraries dialog and click Finish to
populate the Web project.

8. Click Yes if Eclipse asks you to open J2EE perspective for this project.

9. This step is for the ISDK Web Service Sample project for WebLogic when the
"WeblogicUserNameTokenHandler.java" (Username token profile security for
WebLogic) is needed.

a. WeblogicUserNameTokenHandler.java.excluded needs to be renamed to
WeblogicUserNameTokenHandler.java.

b. Add weblogic.jar to the project's build path if you see compilation error for
WeblogicUserNameTokenHandler.java. The steps are:

Right-click the project and select Build Path, then select Configure Build Path
to open the Project's Properties dialog.

Click on the Add Library tab and click on Server Runtime, and then click
Next.

If WebLogic appears, you can select and add.

If you cannot find the WebLogic runtime, then click on Add External JAR
from the previous dialog to open the JAR Selection dialog. Browse to
WebLogic Server's lib folder to select weblogic.jar and then click Open.

Weblogic.jar should appear in the Classpath Entries panel.

Click on OK to exit the Properties dialog.

Recompile the project and there should be no compilation error

10. After completing all these steps, there should be no compilation error with Java
code in your project.

3.2.4 Configuring ISDK Components
This section provides information on configuring ISDK components.

3.2.4.1 Configuring the ISDK Skeleton
The AutoVue Integration SDK Skeleton provides a basic framework for you to build
your own integration.

After you complete the steps outlined in Section 3.2.3, "Creating Projects on IDE," you
must configure the ISDK Skeleton as described in the following steps.

3.2.4.1.1 Step 1: Copy the AutoVue Jar Files Copy the following files from the directory
<AutoVue Installation directory>\bin to your project's WebContent\applet folder (for
Eclipse) or public_html\jvue folder (for JDeveloper):

■ jvue.jar

■ jogl.jar

■ gluegen-rt.jar

■ jsonrpc4j.jar

Installing and Configuring

3-8 Oracle AutoVue Integration SDK Overview and Installation Guide

Copy the file vueservlet.jar from the directory <AutoVue Installation directory>\bin to
your project's WebContent\WEB-INF\lib folder (for Eclipse) or public_
html\WEB-INF\lib folder (for JDeveloper).

3.2.4.1.2 Step 2: Configure the AutoVue Server 1.From the WEB-INF folder of your
project, open the web.xml file in a text editor.

2. Locate the following block.

<servlet id="csi_servlet_2">
<servlet-name>VueServlet</servlet-name>
<servlet-class>com.cimmetry.servlet.VueServlet</servlet-class>
<init-param>
<param-name>JVueServer</param-name>
<param-value>localhost:5099</param-value>
</init-param>
<init-param>

3. Update the default location of JVueServer "localhost:5099". You must replace
localhost with the host name/IP address of the machine that is running the
AutoVue server, and replace 5099 with the socket port number that the AutoVue
server is listening to (default is 5099).

4. Save your changes.

3.2.4.1.3 Step 3: Configure log4j.properties for Debugging The location of log4j.properties
file is defined in web.xml. By default, it is located at <ISDK Installation
Directory>\ISDKSkeleton\WebApplication\isdk_skeleton\WEB-INF\lib folder.

<init-param>
<param-name>log4jInitFile</param-name>
<param-value>/WEB-INF/lib/log4j.properties</param-value>
</init-param>

To configure log4j.properties for debugging, do the following:

1. Open the log4j.properties file with a text editor.

2. Set the location and the filename of your log4j logging file, for example,
C:/tmp/filesys.log.

setting the logging file
log4j.appender.R.File=<Your logs directory>/<logfile>.log

3. You can change the level and location of output by modifying this file, for
example, log4j.logger.com.cimmetry.vuelink=DEBUG.

The following table shows the different levels of logging available.

Table 3–1 Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

DEBUG YES YES YES YES YES

INFO NO YES YES YES YES

WARN NO NO YES YES YES

ERROR NO NO NO YES YES

FATAL NO NO NO NO YES

ALL YES YES YES YES YES

Installing and Configuring

Installation 3-9

■ If you set Logger Level to FATAL, then only output messages of level FATAL
are logged in log4j file.

■ If you set Logger Level to ERROR, then only output messages of level ERROR
or FATAL are logged in log4j file.

■ If you set Logger Level to DEBUG, then output messages of any level are
logged in log4j file.

4. Save your changes.

For more information on log4j capabilities, refer to log4j documentation.

3.2.4.2 Configuring the Web Services Client
The AutoVue Integration SDK Web Services Client (WSC) is a package built on top of
ISDK Skeleton. It is developed based on Java API for XML Web Services (JAX-WS) and
is designed to communicate out of the box with any Web Service provider that
implements the BluePrint.wsdl file bundled with this AutoVue Integration SDK
distribution.

The WSC must be configured before using it with your integration. To do so, you must
perform the following steps.

3.2.4.2.1 Step 1: Copy the AutoVue Jar files Copy the following files from the directory
<AutoVue Installation directory>\bin to your project's WebContent\applet folder (for
Eclipse) or public_html\jvue folder (for JDeveloper):

■ jvue.jar

■ jogl.jar

■ gluegen-rt.jar

■ jsonrpc4j.jar

Copy the file vueservlet.jar from the directory <AutoVue Installation directory>\bin to
your project's WebContent\WEB-INF\lib folder (for Eclipse) or public_
html\WEB-INF\lib folder (for JDeveloper

3.2.4.2.2 Step 2: Configure the AutoVue Server Configuring the AutoVue Server for the
ISDK Web Service client project follows the same steps as Section 3.2.4, "Configuring
ISDK Components."

3.2.4.2.3 Step 3: Configure log4j.properties for Debugging Configuring the log4j.properties
for the ISDK Web Service client project debugging follows the same steps as
Section 3.2.4, "Configuring ISDK Components."

3.2.4.2.4 Step 4: Configure the SOAP Handler Locate and uncomment the following block
in web.xml and update the param-value for parameter wsclient.WSHandler.

<!-- the SOAP handler class must extend
com.cimmetry.vuelink.wsclient.backend.WSHandler -->
<init-param>
<param-name>wsclient.WSHanlder</param-name>
<param-value>com.cimmetry.vuelink.wsclient.backend.UserNameTokenHandler</param-val

OFF NO NO NO NO NO

Table 3–1 (Cont.) Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

Configuring Sample Components

3-10 Oracle AutoVue Integration SDK Overview and Installation Guide

ue>
</init-param>

1. Replace the param-value for wsclient.WSHandler with your desired handler.

Here is a list of handlers delivered with the Filesys Sample inside the
com.cimmetry.vuelink.wsclient.backend package.

Table 3–2 List of handlers delivered with Filesys Sample

Handler Name Usage

WSHandler No security implementation.

HTTPBasicHandler HTTP basic authentication.

UserNameTokenHandler Generic username token profile security.

WeblogicUserNameTokenH
andler

Username token profile security for WebLogic.

Use this one if the generic UserNameTokenHandler does not
work on Oracle WebLogic Server. You need to rename the source
code named "WeblogicUserNameTokenHandler.java.excluded"
to "WeblogicUserNameTokenHandler.java" and add
"weblogic.jar" to the project's class path.

3.2.4.2.5 Step 5: Define the Location of BluePrint WSDL Locate the following block in
web.xml and update the <param-value> for parameter WSDL.

<!-- Define the location of BluePrint WSDL -->
<init-param>
<param-name>WSDL</param-name>
<param-value>…. </param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

A sample param-value for WSDL is:

http://mymachine:7001/WSClient/BluePrint?wsdl

3.3 Configuring Sample Components
If you installed the Sample Integration for Filesys project, then you must import the
project into JDeveloper or Eclipse IDE, and then configure, deploy and run the sample
integration. To do so, you must follow the steps outlined in the Deployment of
ISDK-Based Integrations. You need to make sure that you have all the prerequisite
software installed before you start deployment. For the complete list of requirements,
specific to your platform, refer to the System Requirements chapter.

Once you have successfully deployed the Eclipse project, the next step is for you to get
familiar with the sample integration. To learn more about the features and
functionality provided by the sample integration, refer to the Configuring Sample
Projects chapter in this book.

Once you are familiar with the sample integration, the next step is for you to build
your own integration. To do so, refer to the Implementation chapter in Oracle AutoVue
Integration SDK Technical Guide and Javadocs. The Oracle AutoVue Integration SDK
Technical Guide explains the technical details and provides step by step guidance for
developing your own integration.

4

Configuring Sample Projects 4-1

4Configuring Sample Projects

The sample projects included with the ISDK provide a good introduction to the many
uses of the ISDK. You can take the information provided and apply it to your own
integration.

Note: These projects are not installed by default. During ISDK
installation, you must select the Sample Project check box to install.
For more information, refer to Installing ISDK.

The following sections detail the configuration steps for these sample projects.

4.1 Sample Integration for Filesys DMS
This section describes the steps required to run the Sample Integration for Filesys
DMS. This project is located in the <ISDK Installation Directory>\
AutoVueIntegrationSDK\FileSys folder.

4.1.1 Step 1: Copy the AutoVue Jar Files
Copy the following files from the directory <AutoVue Installation directory>\bin to
your project's WebContent\jvue folder (for Eclipse) or public_html\jvue folder (for
JDeveloper):

■ jvue.jar

■ jogl.jar

■ gluegen-rt.jar

■ jsonrpc4j.jar

Copy the file vueservlet.jar from the directory <AutoVue Installation directory>\bin to
your project's WebContent\WEB-INF\lib folder (for Eclipse) or public_html\
WEB-INF\lib folder (for JDeveloper).

4.1.2 Step 2: Configure the AutoVue Server
1. From the WEB-INF folder of your project, open the web.xml file in a text editor.

2. Locate the following block:

<servlet id="csi_servlet_2">
<servlet-name>VueServlet</servlet-name>
<servlet-class>com.cimmetry.servlet.VueServlet</servlet-class>
<init-param>

Sample Integration for Filesys DMS

4-2 Oracle AutoVue Integration SDK Overview and Installation Guide

<param-name>JVueServer</param-name>
<param-value>localhost:5099</param-value>
</init-param>
<init-param>

3. Update the default location of JVueServer "localhost:5099". You must replace
localhost with an IP address/FQDN of the machine that is running the AutoVue
server, and replace 5099 with the socket port number that the AutoVue server is
listening to (default is 5099).

4. Save your changes.

4.1.3 Step 3: Configure log4j.properties for Debugging
The location of log4j.properties file is defined in web.xml. By default, it is located at
WEB-INF/lib folder.

<init-param>
<param-name>log4jInitFile</param-name>
<param-value>/WEB-INF/lib/log4j.properties</param-value>
</init-param>

To configure log4j.properties for debugging, do the following:

1. Open the log4j.properties file with a text editor.

2. Set the location and the filename of your log4j logging file. For example,
C:/tmp/filesys.log.

setting the logging file
log4j.appender.R.File=<Your logs directory>/<logfile>.log

3. You can change the level and location of output by modifying this file. For
example, log4j.logger.com.cimmetry.vuelink=DEBUG

The following table shows the different levels of logging available.

Table 4–1 Will Output Messages of Level

Logger Level DEBUG INFO WARN ERROR FATAL

DEBUG YES YES YES YES YES

INFO NO YES YES YES YES

WARN NO NO YES YES YES

ERROR NO NO NO YES YES

FATAL NO NO NO NO YES

ALL YES YES YES YES YES

OFF NO NO NO NO NO

■ If you set Logger Level to FATAL, then only output messages of level FATAL
are logged in log4j file.

■ If you set Logger Level to ERROR, then only output messages of level ERROR
or FATAL are logged in log4j file.

■ If you set Logger Level to DEBUG, then output messages of any level are
logged in log4j file.]

4. Save your changes.

Sample Integration for Filesys DMS

Configuring Sample Projects 4-3

For more information on log4j capabilities, refer to log4j documentation.

4.1.4 Step 4: Configure RootDir for the Filesys Repository
1. From the public_html\WEB-INF folder of your project, open the web.xml file in a

text editor.

2. Replace the RootDir param-value. For example, if you have unzipped the Filesys
Repository to folder c:\tmp on Windows, the param-value for RootDir will be
c:\tmp\filesysRepository.

<!-- context parameters are available to all servlets -->
<context-param>
<param-name>RootDir</param-name>
<param-value>Put path to repository here:</param-value>
</context-param>

3. Save your changes.

4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional)
AutoVue applet can be launched in a pop-up window or embedded inside the caller's
browser window.

By default, the Filesys demo uses embedded mode and the RTC demo uses pop-up
mode.

For the OEVF demo, you can select the mode by providing embedded=0 or embedded=1
request parameter in the launching URL. Refer to jvue/OEVFDemo.html.

To change the mode in Filesys demo:

1. Open jvue/frmApplet.jsp.

2. Change the line
boolean embedded = true;
to
boolean embedded = false;

To change the mode in RTC demo:

1. Open jvue/RTCDemo_init.jsp and jvue/RTCDemo_join.jsp.

2. Change the line
boolean embedded = false;
to
boolean embedded = true;

4.1.6 Step 6: Configure the Markup Policy (Optional)
The location of MarkupPolicy.xml file is defined in web.xml that controls markup
operation. By default, it is located at WEB-INF/lib folder.

<init-param>
<param-name>CSI_MarkupPolicyDefLocation</param-name>
<param-value>/WEB-INF/lib/MarkupPolicy.xml</param-value>
</init-param>

If you need to update the Markup Policy file, refer to the Oracle AutoVue User's
Manual. On Windows, the link is
http://localhost/jVue/help/en/AutoVueOnLineHelp.html. If the link does not work,

Sample Integration for Filesys DMS

4-4 Oracle AutoVue Integration SDK Overview and Installation Guide

check whether there is a virtual directory, jVue, with IIS. It is created during AutoVue
server installation.

4.1.7 Step 7: Configuring User Control
By default, the Sample Integration for Filesys bundles a file called credential.txt that
contains valid user information for authentication. The location of credential.txt file is
defined in web.xml.

<init-param>
<param-name>CredentialInfoLocation</param-name>
<param-value>/WEB-INF/lib/credential.txt</param-value>
</init-param>

To add new users or modify existing user name or password, update credential.txt.
Each line of the file contains an entry for a user and its password. The field separator is
colon (:).

4.1.8 Step 8: Configure the Picklist
This list is for controlling the content of a picklist for Stamp (formerly called
Intellistamp) DMS properties. You can remove/modify existing values or add new
values for the <Status> and <RelatedInfo> elements in WEB-INF/lib/picklist.xml, but
you are not supposed to delete these two elements or add new elements directly under
<Data> element.

4.1.9 Step 9: Configure the Thumbnail Display
If you want to show thumbnails based on BMP renditions when browsing the Filesys
Repository, you can do the following configuration.

1. For Windows operating systems, create a virtual directory on Internet Information
Services (IIS) for the Filesys repository. For example, if you have unzipped the
Filesys repository to folder c:\tmp on Windows, you can create a virtual directory
with alias filesysRepository and the location path c:\tmp\filesysRepository.
Suppose IIS is available at the default port 80.

2. For Linux system, if Apache Server is available, do the following configuration.

■ Open Apache's httpd.conf file.

■ Locate the line: DocumentRoot "/var/www/html".

■ Copy this line and comment out the original one.

■ Change the copied line to, for example, DocumentRoot "/home/ucm/tmp"

Suppose your Filesys repository is upzipped to /home/ucm/tmp folder and
your /home/ucm/tmp/filesysReposity folder allow executing file as
program. If your DocumentRoot has already been used, you need to put your
Filesys repository under the existing DocumentRoot folder in order to preview
thumbnails.

■ Save the file and restart Apache Server.

3. Replace the param-value for RootURL in web.xml. This URL is mainly used for
thumbnail displaying. However, you must enter a URL (for example,
http://localhost) even if thumbnail displaying is not intended. With the
configuration sample in Step 1, the param-value for RootURL will be
http://localhost/filesysRepository. Note the case sensitivity of IIS.

Sample Integration for Filesys DMS

Configuring Sample Projects 4-5

<!-- This URL is only needed to construct thumbnail URLs -->
<context-param>
<param-name>RootURL</param-name>
<param-value>http://localhost/filesysRepository</param-value>
</context-param>

4.1.10 Step 10: Configure for Redirection
To test the redirection functionality in Filesys, you need to install IDE and deploy the
Filesys sample project on two machines (a main server and a remote server) and
complete the generic configuration and other configurations based on your needs. You
must then perform the following configurations for redirection:

1. On the main server machine, change the folder permission for the filesys
repository to Full Control for all users.

2. On the remote server machine, create a network mapping drive to the Filesys
repository directory on the main server machine. In Filesys demo, both remote
server and the main server use the same Filesys repository data.

3. On the main server, modify web.xml to comment out the blocks RemoteVueLink,
RemotejVueServer and RemoteVueServlet. Specify the param-values for these three
parameters.

Table 4–2 Param-names and param-values for web.xml

Param-name Description and param-value

RemoteVueLink URL to the remote VueLink.

The param-value is

http://host:port/context/servlet/FilesysVuelink

where host is the remote host name or IP address, port is the
remote IDE's server runtime port number, context is the Filesys
project name on the remote IDE.

RemotejVueServer Hostname or IP address of the remote AutoVue server.

The remote server can use another AutoVue server instead of the
one running on the main server.

RemoteVueServlet URL to the remote VueServlet.

The param-value is

http://host:port/context/servlet/VueServlet

For Example:

<context-param>
<param-name>RemoteVuelink</param-name>
<param-value> http://sremote:7001/ISDK_Remote/servlet/FilesysVuelink</param-value>
</context-param>
<context-param>
<param-name>RemotejVueServer</param-name>
<param-value>sremote</param-value>
</context-param>
<context-param>
<param-name>RemoteVueServlet</param-name>
<param-value>http://sremote:7001/ISDK_Remote/servlet/VueServlet</param-value>
</context-param>

Sample Integration for Filesys DMS

4-6 Oracle AutoVue Integration SDK Overview and Installation Guide

4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo
The following section describe how to configure the RTC demo:

4.1.11.1 Verify the RTC Demo
Make sure the WEB-INF/lib/credential.txt has an entry for user "rtc" and "rtc1".
Although every valid user can initiate and join a meeting, by default the meeting is
initiated as user "rtc" and joined by user "rtc1" and the AutoVue applet is named after
the username.

Prior to running the demo, you must do the following:

■ Uncomment the two users (rtc and rtc1) from the WEB-INF/lib/credential.txt file
and change the default passwords.

■ Update the password parameter in the jvue\RTCDemo_init.jsp file for user rtc:

request.getSession().setAttribute("password", "rtc");

Update the password parameter in the jvue\RTCDemo_join.jsp file for user rtc1:

request.getSession().setAttribute("password", "rtc1");

Updating these parameters avoids an Authentication dialog when initializing or
joining a RTC meeting when using the ISDK RTC demo.

4.1.11.2 Create or Update the meetingfiles.txt
Verify that the meetingfiles.txt file under your <Filesys repository>/Meeting folder
exists. If this file does not exist, you need to create it manually.

If you want to change the files shown in the Meeting File drop down list when
initiating a RTC meeting from RTCDemo_init.jsp page similar to the following figure,
then you need to update the meetingfiles.txt file.

Each entry in the meetingfiles.txt file represents one meeting file; it starts with "/" and
reflects one viewable document file in the Filesys repository.

To select another file to collaborate on during a meeting, form the AutoVue menu bar,
the meeting controller can click File, Open URL, and then DMS Browse. The Meeting
folder shows files already defined in meetingfiles.txt. The new collaborated file is
appended to meetingfiles.txt.

After the host closes a RTC meeting by clicking Collaboration and then Close
Collaboration Session, the chat transcript is saved to the Meeting folder.

4.1.12 Step 12: Configure the Oracle Enterprise Visualization Framework (OEVF)
The following sections describe how to configure the OEVF:

4.1.12.1 Define OEVFInfoLocation in web.xml
By default, ISDK filesys bundles a file called oevf.xml which defines the mapping of
document IDs with assetIDs and workflowIDs. The default location of oevf.xml is
under the folder WEB-INF/lib. If you move the file to another location, then you need
to specify the full path for the parameter OEVFInfoLocation in web.xml.:

<!--
the location of xml file which contains all the info about assetIDs, workflowIDs
and full path of the latest revision in FileSys DMS
-->
<init-param>

Sample Integration for Filesys DMS

Configuring Sample Projects 4-7

<param-name>OEVFInfoLocation</param-name>
<param-value>/WEB-INF/lib/oevf.xml</param-value>
</init-param>

4.1.12.2 Update oevf.xml
This step is required if you want to establish new or update existing mappings of
document IDs with assetIDs and workflowIDs.

The root element of the oevf.xml file is <data>. The direct elements under <data> are
<file> elements that contain the definition for files. Each <file> element represents one
file. If you want to add mapping relationships for a new file, then you need to add a
new <file> entry.

A <file> element can include multiple <revision> elements that represent the multiple
revisions of the file. If you want to add a new revision section to an existing file, then
you must add one new <revision> entry.

Each <version> element includes a <docID>, <assetIDs>, <workflowIDs> and <version>
elements. The value for <version> element is the revision number. The value for
<docID> element is the relative path to a file in the Filesys data repository. It starts with
"/". For example, /2D/MicroStation.dgn/MicroStation.dgn(2)/MicroStation.dgn.

The <assetID> elements can contain multiple <assetID> elements and the <workflowID>
elements can contain multiple <workflowID> elements. You can add or delete an
assetID that is associated with one revision of a file by adding or deleting element a
<assetID> element. You can add or delete a workflowID. that is associated with one
revision of a file by adding or deleting a <workflowID> element.

4.1.12.3 Update OEVFDemo.html
This step is needed to add new or modify existing test cases for OEVF.

The launching OEVF URL defined inside <a> tag calls "…/jvue/frmApplet.jsp" page
combined with some of the following parameters.

Table 4–3 OEVF URL parameters

URL Request Parameter Value and Description

aID A Value defined for <assetID> element in oevf.xml.

docID A value defined for <docID> element in oevf.xml.

wID A value defined for <workflowID> element in oevf.xml.

embedded V0 or new such parameter: AutoVue applet appears in a new
window.

1: AutoVue applet is embedded in the caller's browser window.

goBack Work together with embedded=0.

0 or no such parameter: The caller's browser displays an empty
page with the launching OEVF URL.

1: The caller's browser displays the OEVFDemo.html page.

guiFile Name of the AutoVue GUI to be used.

You can pass in only aID, only wID, aID with wID, aID with dID, wID with dID, aID
with wID and dID in addition with embedded or goBack or guiFile param. Refer to
OEVFDemo.html for the meaning of different combinations.

Sample Integration for Filesys DMS

4-8 Oracle AutoVue Integration SDK Overview and Installation Guide

4.1.12.4 Copy the OEVF GUI files to AutoVue
Copy assetView.gui and assetEdit.gui files from inside the ISDK installation
AutoVueIntegrationSDK/FileSys/OEVF folder to the folder <AutoVue Installation
Directory>/bin/Profiles folder. If the Profiles folder does not exist, create one before
copying.

4.1.13 Step 13: Configure New Sample Data
You can add new data to the existing sample Filesys repository. It is recommended not
to rename the folder name or file name, or delete existing data, because the sample
data is preconfigured to demonstrate certain functionalities (for example, for RTC
Demo and OEVF demo). To add new data to the existing repository, refer to Add new
data to the document repository.

4.1.13.1 Add new data to the document repository
With Filesys DMS application you can add new data to the document repository by
manually creating the data structure or by using a utility class
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator coming with
filesys.

4.1.13.1.1 Create data structure manually To add a new document into the repository,
such as "my.dwg", follow these steps:

1. Browse to the <filesys data repository unzipped folder>/filesysRepository folder.

2. You can create a new folder in parallel to "2D", "3D" and "Meeting" folder or create
a new folder inside "2D" or "3D" folder. Suppose you want to add the file inside
"2D" folder. You can name the folder using the file's name that you want to view,
that is, "my.dwg". This is the convention for sample data.

3. Under this folder, create a new folder for the first revision of the file. Name it
"my.dwg(1)" and put the file "my.dwg" inside the folder.

4. If you have another revision for "my.dwg" file, then you can create "my.dwg(2)"
folder under "my.dwg" folder and put the second revision of the file inside.

5. If the file "my.dwg" has XRefs, then create an "xrefs" folder under the base file's
folder "my.dwg(1)" and put all the XRefs files there.

4.1.13.1.2 Add data from IDE To add the new data to your document repository, you
must execute the main() method of
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator class.

Example 4–1 main() method

public static void main(String[] args) {
BasicConfigurator.configure();

//String[] params = {"-url", "C:/temp/filesysRepository/ECAD", "-b", "C:/program
files/jVue/html/samples/ECAD/PAD//PADS_ILEARN.pcb"};
//params = {"-url", "C:/temp/filesysRepository/2D", "-b", "C:/program
files/jVue/html/samples/2D/MicroStation.dgn" -v 3};

FilesysDataStructureInfos data = new FilesysDataStructureInfos();
try{

data.constructStructure(args);
FilesysDataStructureCreator struct = new FilesysDataStructureCreator(data);
struct.createStructure();

}catch(FileNotFoundException fex){
m_logger.error(fex);

Sample Integration for Filesys DMS

Configuring Sample Projects 4-9

System.exit(0);
}catch(Exception ex){

m_logger.error(ex);
System.exit(0);

You need to pass in arguments for the main() method. These arguments indicate types,
versions and locations of the files to add in the repository. You can add several types of
documents to the repository such as: base documents, XRefs, markups and
conversions files. We use options <-option> to indicate the document type. Here is the
complete list the options:

-url: location of filesys repository

-b: base file

-v: version number

-x: xrefs files

-m: master markups files

-n: normal markups files

-c: consolidated markups files

-tiff: TIFF conversion file

-pdf: PDF conversion file

-meta: metaFile

For the first sample argument in the figure above, the url is
c:\temp\filesysRepository\ECAD (You don't have to specify the exact destination
location of a file, you have just to specify the repository location) and the base file is
PADS_ILEARN.pcb and is located in C:\program
files\jVue\html\samples\ECAD\PAD folder.

For the second sample argument, the url is c:\temp\filesysRepository\2D and the
base file is MicroStation.dgn and is located in C:\program
files\jVue\html\samples\2D folder. The version number is 3.

4.1.13.1.3 Adding Data from JDeveloper On JDeveloper IDE, to run the
FilesysDataStructureCreator class, you need to complete the following steps:

1. Select the filesys project

2. From the Run menu, select Choose Active Run Configuration, and then select
Manage Run Configurations…

Figure 4–1 JDeveloper Manage Run Configurations

3. Click New… at the right side of the Project Properties windows, name it addData
and then click OK. addData appears under the Run Configurations.

Sample Integration for Filesys DMS

4-10 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 4–2 JDeveloper create addData run configuration 1

4. Select addData and click Edit.

5. Browse to set the Default Run Target to be
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator and input
Program Arguments. Click OK to exit. Two sample program arguments are

-url C:/temp/filesysRepository/EDA -b "C:/Program
Files/jVue/html/samples/EDA//PADS/PADS_ILEARN.pcb"
and

-url C:/temp/filesysRepository/2D -b "C:/Program
Files/jVue/html/samples/2D/MicroStation.dgn" -v 3

Sample Integration for Filesys DMS

Configuring Sample Projects 4-11

Figure 4–3 JDeveloper create addData run configuration 2

6. Run addData to create new file structure in the filesys repository.

Figure 4–4 JDeveloper run addData

4.1.13.1.4 Adding Data from Eclipse On Eclipse IDE, to run the
FilesysDataStructureCreator class, you need to complete the following steps:

1. Select the filesys project.

2. From the RUN menu click on the RUN... artifact.

3. Select the Java Application item.

4. Right click and select New from the context menu.

5. Enter addData in the Name field.

6. Search the class to execute (the class must have public static main method)
com.cimmetry.vuelink.filesys.dms.util.FilesysDataStructureCreator

Sample Integration for Filesys DMS

4-12 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 4–5 Eclipse create addData run configuration 1

7. Click the Arguments tab. You can add Program Arguments to create a file. Two
sample arguments are:

-url C:/temp/filesysRepository/EDA -b "C:/Program
Files/jVue/html/samples/EDA//PADS/PADS_ILEARN.pcb"
and

-url C:/temp/filesysRepository/2D -b "C:/Program
Files/jVue/html/samples/2D/MicroStation.dgn" -v 3

Sample Integration for Filesys DMS

Configuring Sample Projects 4-13

Figure 4–6 Eclipse create addData run configuration 2

8. You can click RUN directly from the above to create new file structure in the
filesys repository or you can click Apply and Close, then click on addData artifact
from the RUN icon.

Figure 4–7 Eclipse run addData

If you provide the first sample argument when running the addData, from your
filesys demo application, you can navigate to check the following new repository
structure under the EDA folder.

Sample Integration for Filesys DMS

4-14 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 4–8 Repository structure for PADS_ILEARN.pcb

If you provide the second sample argument when running the addData, from your
filesys demo application, you can navigate to check the following new repository
structure.

Figure 4–9 Repository Structure for the third version of MicroStation.dgn

4.1.14 Step 14: Run the Filesys Project
The following steps describe how to run the Sample Integration for Filesys project:

1. Run the AutoVue Server.

2. Deploy project and start WebLogic server on Eclipse:

■ Go to the Servers view by clicking Servers.

■ Right-click on the Oracle WebLogic Server and then click Add and Remove. In
the Add and Remove dialog, select your project from the left panel, click Add
to add the project to the right panel, and then click Finish to exit.

■ Click to start the server.

3. Start WebLogic server and deploy project on JDeveloper:

a. From menu bar select Run and then select Start Server Instance
(IntegratedWeblogicServer) to start the WebLogic Server.

b. Right-click the project, click Deploy and click your project's name. The Deploy
dialog appears.

c. From the Deploy dialog, select Deploy on Application Server, click Next,
then select IntegratedWeblogicServer.

d. Accept the default setting and click Next.

e. At the last page, click Finish.

ISDK Web Services Sample Server

Configuring Sample Projects 4-15

f. Note down the host IP and port number from the server's Deployment log. For
example, the following may appear in the log: <Channel "Default" is now
listening on 10.10.1.1:7101 for protocols...>. In this case, note down 10.10.1.1:7101.

4. Launch a Web browser and enter the URL address http://<localhost
:port>/<context> to launch the home page for ISDK Demo. For example:

■ For Eclipse, the URL can be http://<localhost> :7001/filesys.

■ For JDeveloper, the URL can be
http://10.10.1.1:7101/ISDKSamples-filesys-context-root.

5. If you run into an issue when launching the project, verify that the FilesysVueLink
and VueServlet servlets are running properly using the following URLs:

■ http://<host:port>/context/servlet/FilesysVuelink

■ http://<host:port>/context/servlet/VueServlet

Replace the <host:port> using your own host name, WebLogic server's port.

Replace context with the context for Filesys project on IDE.

If VueLink and VueServlet are running properly, the URLs load and display their
respective version and build information, and in the case of the VueServlet, whether
the connection state is OK. If you do not get a successful response, perform the
following verifications:

■ Verify that the AutoVue server is running.

■ Verify that your project is installed deployed correctly.

■ Verify that web.xml is configured properly.

■ Verify that your application server is running and functioning properly.

4.2 ISDK Web Services Sample Server
The ISDK Web Services Sample Server project can be created by either basing it on an
existing project or by creating a new project manually. The following sections discuss
both methods.

Note: The SOAP Message Transmission Optimization Mechanism
(MTOM) is not supported in this release of Sample Web Services
Server.

In the event you have updated the BluePrint WSDL file, it is recommended that you
create the project manually by following the steps described in Method 2: Create a
Project Manually.

4.2.1 Method 1: Use an Existing Project Template
The following steps describe how to create an ASP.NET Web Services Server project
using Microsoft Visual Studio 2008 based on an existing project template.

1. Copy the template wsserver_VisualStudio2008.zip from the <ISDK Installation
Root>\WebServicesIntegration\WebServicesSampleServer\C# directory to the
<User home directory>\Templates\ProjectTemplates\Visual C# directory.

2. Select New and then select Project.

3. From the left panel select Other Languages and then select Visual C#.

ISDK Web Services Sample Server

4-16 Oracle AutoVue Integration SDK Overview and Installation Guide

4. From My Templates select wsserver_VisualStudio2008.

5. In the Name field change it to wsserver_VisualStudio2008.

6. Click OK.

7. Open Service1.asmx.cs file.

8. Locate the following lines and verify that the filepaths mentioned are available.

// Path to the filesys repository sample data. You might need to update it.
private static string filesysRepositoryRoot =
"c:\\Oracle\\filesysRepository\\";
// Path to the Stamp files (dmstamps.ini and stampimage.bmp) and
// MarkupPolicy.xml. You might need to update it.
private static string definitionPath = "C:\\Oracle\\definition\\";

9. After the ISDK default installation on Window OSes, the Filesys repository sample
data is available in a compressed format (*.zip) at
C:\Oracle\AutoVueIntegrationSDK\FileSys\Repository\filesysRepository.zip.
You must extract the contents of the file to the filesysRepositoryRoot location as
defined in the Service1.asmx.cs file. The definition files are available from the
C:\Oracle\AutoVueIntegrationSDK\FileSys\WebApplication\filesys\WEB-INF\
lib directory. You must copy these files to definitionPath as defined in the
Service1.asmx.cs file.

10. Verify that the project compiles without error.

11. Run the project.

4.2.2 Method 2: Create a Project Manually
The following steps describe how to create an ASP.NET Web Services Server project
manually using Microsoft Visual Studio 2008.

1. Generate the ASP.NET Web Services code from the ISDK Web Services WSDL file.
To do so:

a. Open Visual Studio Command Prompt.

b. Run the following command from the temp folder: wsdl.exe /Language:CS /si
wsdl_location xsd_location

c. After the ISDK default installation on Windows, the ISDK Web Services WSDL
file is located at
C:\Oracle\AutoVueIntegrationSDK\WebServiceClient\WSDL\BluePrint.wsd
l and the ISDK Web Services XSD file is located at
C:\Oracle\AutoVueIntegrationSDK\WebServiceClient\WSDL\BluePrint.xsd.

d. A BluePrintInterfaces.cs file is generated in the temp folder.

e. Create the ASP.NET Web Services project using Microsoft Visual Studio 2008:

2. Create the ASP.NET Web Services project using Microsoft Visual Studio 2008:

a. Select New and then select Project.

b. Select Visual C# and then select Web.

c. Select ASP.NET Web Services Application.

d. Enter the project name and then click OK.

e. Update the ASP.NET Web Services project:

3. Update the ASP.NET Web Services project:

ISDK Web Services Sample Server

Configuring Sample Projects 4-17

a. Right-click the project you just created and then select Add and then select
Existing Item.

b. Browse to the temp folder and then select BluePrintInterfaces.cs.

c. Click Add.

d. Open the BluePrintInterfaces.cs file and locate the following line:

[System.Web.Services.WebServiceBindingAttribute(Name="BluePrintBinding",
Namespace="artifact.wsclient.vuelink.cimmetry.com")]

e. Change the Name to BluePrint.

f. Open the Service1.asmx.cs file and locate the following lines:

[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
[ToolboxItem(false)]

g. Replace these lines with the following:

[WebService(Name = "BluePrint", Namespace =
"artifact.wsclient.vuelink.cimmetry.com")]
[System.Web.Services.Protocols.SoapDocumentService(RoutingStyle =
SoapServiceRoutingStyle.RequestElement)]

h. Replace the implementation code for the Service class with those available in
the Service1.asmx.cs file.

i. Locate the following lines:

//Path to the filesys repository sample data. You might need to update it.
private static string filesysRepositoryRoot =
"c:\\Oracle\\filesysRepository\\";
//Path to the Stamp files (dmstamps.ini and stampimage.bmp) and
//MarkupPolicy.xml. You might need to update it.
private static string definitionPath = "C:\\Oracle\\definition\\";

Note: After the ISDK default installation on Window OSes, the
Filesys repository sample data is available in a compressed format
(*.zip) at C:\Oracle\AutoVueIntegrationSDK\FileSys\Repository\
filesysRepository.zip. You must extract the contents of the file to the
filesysRepositoryRoot location as defined in the Service1.asmx.cs file.
The definition files are available from the
C:\Oracle\AutoVueIntegrationSDK\FileSys\WebApplication\filesys
\WEB-INF\lib directory. You must copy these files file to
definitionPath as defined in the Sevice1.asmx.cs file.

j. Verify the project compiles without error.

k. Run the project.

ISDK Web Services Sample Server

4-18 Oracle AutoVue Integration SDK Overview and Installation Guide

5

Implementation 5-1

5Implementation

To speed up the integration and provide the integrators with a starting point, the ISDK
includes a skeleton package and a Web service package.

5.1 ISDK Skeleton Project
The ISDK Java skeleton package has the structure for building a new VueLink. The
skeleton comes with a set of TODO comments in places where the integrators need to
add their code. The ISDK Java skeleton implementation means adding code to the
skeleton codebase so that it can communicate with the repository's Java API as shown
in the Figure 5–1:

Figure 5–1 ISDK Java skeleton implementation

This project is located under the ISDKSkeleton/WebApplication folder and is available
as single WAR (isdk_skeleton.war) as well as separate files. It can be imported into
JDeveloper or Eclipse workspace.

ISDK Skeleton Project

5-2 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 5–2 Eclipse workspace

It contains four main subcomponents:

■ Framework (VueLink Core): vuelinkcore.jar

■ Integration Skeleton

■ AutoVue Components:

– AutoVue Client (jvue.jar, jogl.jar, gluegen-rt.jar, jsonrpc4j.jar)

– VueServlet tunneling servlet (VueServlet.jar)

■ Third-Party Libraries:

– log4j-1.2-15.jar

– esapi-2.0.1.jar

Refer to Sample Projects for description about the two subcomponents: Framework
and AutoVue Components.

It includes skeleton classes containing TODO tasks to realize the following
functionalities:

■ Document viewing

■ Retrieve document attributes

■ Create, save and review markups

■ Compare document versions

■ Convert documents to other formats

■ Returning External References (XREFS)

■ Browse DMS repository

■ Search DMS repository

■ Support for Stamps markup entity

ISDK Web Services Client

Implementation 5-3

■ Support for Set Property action

■ Support for AutoVue authorization mechanism

■ Support for integration between Online meeting managements and AutoVue
Real-Time Collaboration (RTC)

■ Support for markup save alert before applet close

■ Enhanced framework to support Oracle Enterprise Visual Framework (OEVF)

The Integration Skeleton contains the following packages:

■ com.mycompany.autovueconnector

■ com.mycompany.autovueconnector.actions

■ com.mycompany.autovueconnector.backend

■ com.mycompany.autovueconnector.context

■ com.mycompany.autovueconnector.defs

■ com.mycompany.autovueconnector.propactions

■ com.mycompany.autovueconnector.session

It includes a sample Front-UI file - applet/csiApplet.jsp - which contains HTML code
for launching AutoVue applet (<applet> tag). When you develop your DMS extension
on the DMS Server, you can customize this sample file.

Refer to the Oracle AutoVue Integration SDK Technical Guide about steps to design your
integration based the ISDK Skeleton.

5.2 ISDK Web Services Client
The Web service package includes a Web Services Description Language (WSDL) file
that describes an interface for a Web service to be implemented by the repository. The
package includes a client-side implementation of this WSDL. This client package itself
is built using the ISDK skeleton. With the ISDK Web service package, the
implementation means building a proper Web service provider based on the defined
WSDL on the repository as shown in Figure 5–3. This means more flexibility since the
Web service provider can be implemented on any platform and with any
programming language.

Figure 5–3 ISDK Web Services client implementation

The ISDK Web Services Client project is located under the
WebServiceClient/WebApplication folder and is available as a single WAR
(wsclient.war) and separate files. It can be imported into JDeveloper or Eclipse
workspace. The BluePrint.wsdl is located in WebServiceClient/WSDL folder.

ISDK Web Services Client

5-4 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 5–4 Oracle JDeveloper workspace

It contains also four main subcomponents:

■ Framework (VueLink Core): vuelinkcore.jar

■ Web Services Client

■ AutoVue Components:

– AutoVue Client (jvue.jar, jogl.jar, gluegen-rt.jar, jsonrpc4j.jar)

– VueServlet tunneling servlet (VueServlet.jar)

■ Third-Party Libraries:

– log4j-1.2-15.jar

– esapi-2.0.1.jar

Refer to the Sample Projects for descriptions of the three subcomponents: Framework,
AutoVue Components and Third-Party Libraries.

The Web Services Client project includes APIs that provide the same functionalities as
ISDK Skeleton. The following packages are included:

■ com.cimmetry.vuelink.wsclient

■ com.cimmetry.vuelink.wsclient.actions

■ com.cimmetry.vuelink.wsclient.artifact

■ com.cimmetry.vuelink.wsclient.backend

■ com.cimmetry.vuelink.wsclient.context

■ com.cimmetry.vuelink.wsclient.defs

Sample Projects

Implementation 5-5

■ com.cimmetry.vuelink.wsclient.propactions

■ com.cimmetry.vuelink.wsclient.session

It includes a sample Front-UI file - applet/wsfrmApplet.jsp - which contains HTML
code for launching AutoVue applet (<applet> tag). When you develop your DMS
extension on the DMS Server, you can customize this sample file.

5.3 Sample Projects
The installation of the ISDK includes two sample projects:

■ Sample Integration for Filesys DMS

■ Web Services Sample Server

These projects provide a good introduction to the many uses of the ISDK. The
following sections provide an introduction to each project. For full configuration
information, refer to Configuring Sample Projects.

5.3.1 Sample Integration for Filesys Project
The AutoVue Integration SDK bundles a sample integration into a JDeveloper-based
or Eclipse-based project. This project is located under the FileSys\WebApplication
folder and is available as single web archive (WAR) filesys.war file and separate files.
This provides you with an option of either importing the project from single WAR file
into your workspace or manually creating a project and adding individual pieces to it.

The following high-level architectural diagram shows how various components
included in the Sample Integration for Filesys are related to each other as well as to
others. For detailed description about this architectural diagram, refer to Oracle
AutoVue Integration SDK Technical Guide.

Figure 5–5 High-level architectural diagram of Sample Integration for Filesys
components

The following is a sample integration project on Eclipse.

Sample Projects

5-6 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 5–6 Sample integration project on Eclipse

The following is a sample integration project on JDeveloper:

Figure 5–7 Sample integration project on JDeveloper

The project contains four main subcomponents:

■ Framework (VueLink Core)

Sample Projects

Implementation 5-7

■ Sample Integration

■ AutoVue Components

■ Third-Party Libraries

The following sections describe each of these subcomponents.

5.3.1.1 Framework (VueLink Core)
The framework is implemented based on Java Servlet API provided by SUN as part of
J2EE. The main class is called com.cimmetry.Vuelink which extends
javax.servlet.http.HttpServlet. Servlets do not run on their own, they require a servlet
engine such as Oracle WebLogic Server.

The framework links AutoVue system with a third-party DMS. Integration framework
receives requests from AutoVue, obtains information from the DMS, and then builds a
response back to AutoVue.

The framework provides plumbing for parsing XML requests received from AutoVue
Server as well as constructing XML responses sent back to AutoVue Server. The
framework uses XML parser libraries included in your servlet container.

The framework defines a set of interfaces and classes that facilitate the integration task.
The framework is packaged into vuelinkcore.jar and contains many packages
including following:

■ com.cimmetry.vuelink

■ com.cimmetry.vuelink.authentication

■ com.cimmetry.vuelink.backend

■ com.cimmetry.vuelink.context

■ com.cimmetry.vuelink.defs

■ com.cimmetry.vuelink.io

■ com.cimmetry.vuelink.property

■ com.cimmetry.vuelink.prosaction

■ com.cimmetry.vuelink.query

■ com.cimmetry.vuelink.session

■ com.cimmetry.vuelink.util

■ com.cimmetry.vuelink.xml

The framework uses log4j for logging messages into application server log file or
console.

5.3.1.2 Sample Integration
The ISDK includes a sample integration of a simplified file system management
(Filesys). This sample includes VueLink for filesys DMS and aims to act as a starting
point for developing your own integration as well as familiarizing yourself with the
integration framework.

Sample Projects

5-8 Oracle AutoVue Integration SDK Overview and Installation Guide

Figure 5–8 Sample integration framework

The Filesys DMS comes with a database repository that is preloaded with some sample
files in 2D/3D formats. To simplify things, the structure of this repository is based on
local file system. Markups and renditions are stored back into this content repository.

The sample integration demonstrates how you can add basic and advanced
functionalities to your own integration including:

■ Document viewing of native formats

■ Retrieve document attributes

■ Create, save and review markups

■ Browse DMS repository

■ Search DMS repository

■ Compare document versions

■ Convert documents to other formats

■ Support for Stamps markup entity

■ Support for Set Property action (with Pick List support)

■ Enhanced framework to support Oracle Enterprise Visual Framework (OEVF)

■ Support for markup save alert before applet close

■ Support for browser Pop-up blocker notification

■ Support for AutoVue authorization mechanism (encrypted Authorization block
and password)

■ Improved performance with support for distributed file servers

■ Support for integration between Online meeting managements and AutoVue
Real-Time Collaboration (RTC)

■ Support for saving/deleting on-line master markups based on default markup
policy

■ Support for read-only markups

■ Bundled demos for OEVA and RTC

The sample integration for Filesys contains many packages including the following:

■ com.cimmetry.vuelink.filesys

■ com.cimmetry.vuelink.filesys.actions

■ com.cimmetry.vuelink.filesys.backend

■ com.cimmetry.vuelink.filesys.dms

■ com.cimmetry.vuelink.filesys.dms.gui

■ com.cimmetry.vuelink.filesys.propactions

Implementation

Implementation 5-9

■ com.cimmetry.vuelink.filesys.session

■ com.cimmetry.vuelink.filesys.util

The sample integration includes a front-end UI which allows users to navigate the
Filesys DMS data structure. This UI consists of:

■ A default home page: index.jsp. It provides links for Filesys demo, RTC demo and
OEVF demo.

■ RTC demo pages: RTCDemo.jsp, RTCDemo_init.jsp, RTCDemo_join.jsp

■ OEVF demo pages: OEVFDemo.html, OEVFDemoDes.html

■ Filesys demo pages: jVue.html, frmApplet.jsp and a single servlet called
com.cimmetry.vuelink.filesys.dms.gui.ListDirServlet. The main filesys demo page
contains two frames as shown in the following figure.

■ The frame on the left displays the structure of Filesys DMS data. The content of
this frame is displayed by ListDirServlet which allows you to navigate the Filesys
DMS by expanding folders and selecting documents to view.

■ The frame on the right displays the AutoVue applet using frmApplet.jsp. When
you click a document in the frame on the left, it displays in the frame on the right.

5.3.1.3 AutoVue Components
The ISDK bundles following two components of Oracle AutoVue:

■ AutoVue Applet Client (jvue.jar, jogl.jar,gluegen-rt.jar)

Referenced by frmApplet.jsp which contains HTML code for AutoVue Applet
(<applet> tag).

■ VueServlet tunneling servlet (vueservlet.jar)

This servlet is used to allow AutoVue applet connects to AutoVue Servlet.

The AutoVue Integration SDK does not bundle AutoVue Server. You need to
download and install it separately. Refer to the Installation chapter for more
information.

5.3.1.3.1 Third-Party Libraries The Sample Integration for Filesys bundles third-party
open-source libraries needed by the framework. For information, refer to the
Acknowledgments document.

5.3.2 ISDK Web Services Sample Server Project
The Web Services Sample Server project is a sample implementation of the Web
Services provider and uses the Filesys repository as the backend DMS.

It implements the Web Services methods defined in the BluePrint WSDL file. The ISDK
Web Services Sample Server project is located under the
WebServiceIntegration/WebSserviceSampleFolder folder.

5.4 Implementation
The ISDK Java skeleton should be used when a Java API is available in the repository.
The reason is the ISDK is written in Java and a Java-to-Java integration with a
repository (if possible) performs better with less overhead than a Web service-based
integration.

Implementation

5-10 Oracle AutoVue Integration SDK Overview and Installation Guide

On the other hand, if Java API is not available on the repository (or the flexibility in
implementation is more important and/or all other parties in the enterprise are using
Web services to communicate), then the ISDK Web service package is more suitable for
building the AutoVue integration.

The implementation steps are dependent on whether the ISDK Java skeleton or the
Web service package is being used. However, the expected functionality of the
integration can be understood in three phases that range from the most basic (phase
one) to the more advanced (phase three) capabilities. The following sections discuss
these integration phases.

5.4.1 Phase One
The requirement for phase one is viewing the document. To view the document, the
integration should cover the Open and Download actions and a subset of
GetProperties (get name, size, last modified date and multi-content values) actions.

5.4.2 Phase Two
Phase two of the integration adds the following capabilities:

■ Save, update and delete markups (annotations) inside the repository

■ Compare a document with other versions of the same document

■ Download the external references (XRefs) of a document from the repository (if
applicable)

■ Save (and reuse) the renditions of a document into the repository

■ Add the repository attributes to the print output in the header/footer sections

For this to happen, the integrators should add implementation for the Save and Delete
and a subset of GetProperties related to listing versions, listing markups, listing XRefs,
listing renditions and listing all attributes of a document.

As mentioned in Optional Components, the repository should support XRefs and the
development of a CAD connector for the repository may be required.

5.4.3 Phase Three
Phase three of the integration adds the following capabilities:

■ Search and browse the repository through the AutoVue client UI

■ Use the AutoVue Intellistamp with the repository attributes

AutoVue Intellistamp is one of the AutoVue advanced markup features. For more
information, refer to the Oracle AutoVue User's Manual.

For these features, integrators must add an implementation for SetProperties and the
remaining subset of GetProperties that are defined to retrieve these information:
search/browse UI, search/browse query results, and the collaboration-related data
from the repository.

6

Deployment of ISDK-Based Integrations 6-1

6Deployment of ISDK-Based Integrations

Once the development of an ISDK-based component is complete, it should be
deployed on a Java Web application server. If the integration is done using the ISDK
Web services package, then deployment should be done on an application server that
supports Java Web services (that is, Java EE5 or higher).

The deployment may involve some configuration depending on its complexity. For
example, if multiple instances of integrations are being used in a server farm, the
deployment must be scaled for high usage. For more information, refer to Scaling for
High Usage over Distributed Environments. Additionally, it may be required to
support proper failover when deploying in a distributed environment.

For technical information on deploying the ISDK and supported Web application
servers, refer to the Oracle AutoVue Integration SDK Technical Guide.

6.1 Scaling for High Usage over Distributed Environments
Depending on the number of concurrent users, the type and size of documents that
users typically view, and whether files are to be loaded natively or from streaming
files, it may be required to deploy your ISDK-based integration in a server farm.
Additionally, it may be required to deploy it in distributed environments. In order to
support proper failover in a distributed environment, the HTTP session needs to be
replicated across all cluster nodes. In the event that a node fails, a second cluster node
takes over and continues to process the requests. Seamless failover is when the user's
actions are not disrupted and no authorization dialog is requested during this process.

Depending on the type of DMS integration and connection, login or session
information may need to be remembered. For the information to be replicated across
nodes, the objects attached to the HTTP session need to be serializable.

For example, in the FileSys sample integration, the
com.cimmetry.vuelink.filesys.FilesysContext class manages this aspect. The back-end
session objects may not always be serializable. The FilesysContext stores the username
and password strings in the session. This allows the node that is taking over another
session to reinitialize the connection with the back-end. The DMSSession class is
provided by the ISDK to wrap the HTTP session variable. It provides the setAttribute()
and getAttribute() methods to handle the storing of serializable objects to be saved and
replicated. For more information, refer to the Oracle AutoVue Integration SDK Technical
Guide.

Consider the following when serializing objects:

■ The DMS provides a session ID: If the back-end DMS provides a session ID, this
session ID can be serialized into the DMSSession object. This way when a cluster

Scaling for High Usage over Distributed Environments

6-2 Oracle AutoVue Integration SDK Overview and Installation Guide

node fails, the new node can pick up the replicated DMSSession and use the stored
session ID to continue communicating with the back-end DMS.

■ The DMS connection object is not serializable: If the connection object cannot be
serialized into the DMSSession, the information needed for recreating this object
should be serialized and replicated. This way, when the active node fails, the
second node retrieves this information and recreates the DMS connection object.

If seamless failover is not possible, an authorization exception can be thrown to
request the user login information. This way, the user retains the ability to save any
markups that they have created provided that they can enter a valid username and
password.

Non-serializable objects should be added to the DMSSession to increase performance
and allow caching of data between requests. However, they need to be declared as
transient in order not to break the session replication during failover. These transient
objects will need to be regenerated once the session was migrated to a different cluster
node.

For information on scaling AutoVue servers for high usage and seamless failover, refer
to the "Scaling AutoVue for High Usage" section of the Oracle AutoVue Planning Guide.

A

Updating Existing Integrations to the Java Web Start Client A-1

AUpdating Existing Integrations to the Java Web
Start Client

As an alternative to browser based Java Applets, the new solution is based on "Java
Web Start" utility. Java Web Start provides a facility for launching Java-based
applications from web browsers, running out of the browser as a separate process. The
browser uses file download and file association capabilities to start Web Start
automatically. In place of the HTML APPLET tag and attributes, a new "Java Network
Launching Protocol" (JNLP) XML file allows developers to specify where the
application can be obtained, how it should be launched, and what the initial
parameters are. The sections covered in this chapter will help you migrate your Applet
based deployment to the new version of AutoVue.

A.1 Update your Integration
This section will help you migrate your Applet based deployment to the new version
of AutoVue. Do the following for updating your integration to the new solution of
AutoVue:

1. Update the server: Deploy the different AutoVue artefacts on the server side.

2. Setup the server for SSL mode: This is required only if you need to run AutoVue
under HTTPS protocol.

3. Test the AutoVue sample: Test the sample to ensure you have properly deployed
all the artefacts on the server side.

4. Specify Cookies: Specify cookies that are necessary for authenticating the
different components necessary for a seamless integration. These cookies must be
specified in the VueJNLPServlet so that AutoVue can correctly integrate with your
application (single sign on).

5. Update the client side code: Update the Client code (customization) to use the
new AutoVue JavaScriptAPI provided in autovue.js.

6. Security: Ensure your deployment is secure and follows all the security guidelines
of your organization.

7. Customize your code: If needed, customize your integration solution to fulfill
your specific needs.

A.1.1 Update the server
Add VueJNLPServlet descriptor and mapping to the deployment descriptor file –
web.xml of the VueServlet container. Then setup VueJNLPServlet initialization
parameters in it. Following are the servlet initialization parameters:

Update your Integration

A-2 Oracle AutoVue Integration SDK Overview and Installation Guide

■ URL-Dir: This parameter refers to the URL of AutoVue Client folder with respect
to the context root in your Java Servlet container. You may use the integrated jetty
servlet container AutoVue ships with. Make sure your root context is used
consistently across your entire deployment. From now on, your root context is
"/AutoVue", which would be the value of this "URL-Dir" parameter.

Note: An integrator specific implementation will most certainly not
need this parameter defined, as the context root is usually known by
the servlet and does not need to be different from the one present
inside the JNLP.

■ Cookies: Semicolon ';' separated list of cookie names identifying the cookies to
transfer to AutoVue at the start-up:

The rest of initialization parameters are usual AutoVue Client Parameters (also called
"Applet Parameters", usually). Refer to the section – Client Parameters for more
information about these parameters. Following is the sample code to be included in
the deployment descriptor file web.xml:

<servlet id="VueJNLPServlet">
<servlet-name>VueJNLPServlet</servlet-name>

<servlet-class>com.cimmetry.servlet.VueJNLPServlet</servlet-class>
<init-param>

<param-name>URL-Dir</param-name>
<param-value>/AutoVue</param-value>

</init-param>
<init-param>

<param-name>Cookies</param-name>
<param-value>JSESSIONID;COOKIE2;COOKIE3...</param-value>

</init-param>
...
<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>VueJNLPServlet</servlet-name>

<url-pattern>/servlet/VueJNLPServlet</url-pattern
<url-pattern>/servlet/VueJNLPServlet/*</url-pattern>

</servlet-mapping>

Validation:
■ Start AutoVue Server

■ Start AutoVue Servlet Container (Jetty, Tomcat or WebLogic)

■ Connect with a browser to the URL of VueJNLPServlet and CodebaseHost as an
argument indicating the codebase URL:

As an example, for Jetty:
http://localhost:5098/servlet/VueJNLPServlet?CodebaseHost=http://
localhost:5098/AutoVue

If you follow the steps provided above, AutoVue Client should start.

Update your Integration

Updating Existing Integrations to the Java Web Start Client A-3

A.1.2 Setup the server for SSL Mode
To run AutoVue under HTTPS Protocol, the administrator has to follow these
additional steps:

1. Generate a security certificate for "localhost". This certificate will only be used to
enable SSL communication between users' browsers and the AutoVue Client, so it
should be as restricted as possible. An administrative tool is provided with
AutoVue (makeAvCert) which produces suitable certificates. Running the utility
will generate two files: av_cert.pem which contains the complete certificate with
key-pair, and localhost.cer which contains the public information. The utility need
the package tools.jar to run.

2. Copy the complete certificate file (av_cert.pem) to a secure location in the
application server where it can be accessed by web browsers when their users
have been authenticated.

In the application-desc portion of the autovue.jnlp template, add the URL which will
reference the SSL certificate file, as a parameter:

<application-desc main-class="com.cimmetry.jvue.JVueApp">
<argument>-paramsslcert_url=https://plm.example.com/AutoVue/secure/av_
cert.pem

</argument>

...

</application-desc>

Note that you have to load the self-signed localhost as a certificate exception in each
user's browser (the localhost.cer file generated by makeAvCert is intended for this
purpose). It would be better to do this before users attempt to use AutoVue. In
Microsoft Windows environments, administrators can automate this operation by
using the Group Policy Management facility. Mozilla Firefox maintains its own
independent certificate store, normally stored in a file named cert8.db. A variety of
third party tools have been developed for administrators to manage the certificates
pushed to users. Any of these tools may be used to import the localhost certificate for
AutoVue.

In Apple and Linux environments, there are fewer standard distributed administration
tools. Importing the certificate may be handled manually if necessary by exporting the
certificate from the keystore to DER or PEM format and importing to certificate stores
by opening the files in the browser, or by using the command line tools provided in
each system (keychain application (macOS), certutil (Linux)).

In Enterprise environments where a local certificate authority has been set up, a
localhost certificate can be generated that is signed by the local CA. Since users will
already have the local CA configured in their browsers, importing of a self-signed
certificate can be omitted. This option is applicable for environments where the
infrastructure work has already been configured.

A.1.3 Test AutoVue Sample
A new HTML sample page (av_jnlp.html) illustrating a basic AutoVue integration and
similar to the usual sample page autovue.html is delivered within the files of the new
solution.

In order to test this client sample, you should:

■ Start AutoVue Server

Update your Integration

A-4 Oracle AutoVue Integration SDK Overview and Installation Guide

■ Start AutoVue Servlet Container (Jetty, Tomcat or WebLogic)

■ Connect with a browser to the URL of the new HTML sample page av_jnlp.html. As
an example, for Jetty, the URL is

http://localhost:5098/AutoVue/av_jnlp.html

As soon as the page loads, Java Web Start is triggered and launches AutoVue Client
standalone outside of the browser. You can then test the file links and the scripting
API. It should work exactly as it used to do for the Applet sample autovue.html, except
that AutoVue Client is not embedded in the browser as an Applet.

The new HTML sample av_jnlp.html has similar options as autovue.html, and they can
be customized. Following are the options:

■ CL_PRTS

■ INIT_PARAMS

■ ONINIT

■ ONINITERROR

■ USER_DATA

All these options are explained in detail in the following sections.

A.1.3.1 CL_PRTS
A JavaScript array representing a list of client ports and/or range ports to try in order
to establish communication between the browser and the AutoVue Client. The
communication will be established with the first available port of the list. E.g.: [4545,
[7000, 7010], [8000, 8050], 55555].

A.1.3.2 INIT_PARAMS
Similar to "Applet Parameters", INIT_PARAMS is the list of AutoVue Client parameters
that is set at initialization stage. They should be provided into a Java Script Object
wrapping the parameters to pass. An example follows:

INIT_PARAMS = {'FILENAME':'<myFileURL>', 'LOCALE':'fr_CA'}

A.1.3.3 USER_DATA
Custom object to provide within the start API and receive within the failure callback
ONINITERROR below.

A.1.3.4 ONINIT
This is a JavaScript callback to register. It will be called when AutoVue starts and
listens to JSON-RPC requests in order to handle JavaScript calls. By default it is set to
the function onAvStartup provided in av_jnlp.html sample. This callback is similar to
the one used in the earlier solution and has the same name.

A.1.3.5 ONINITERROR
This is a JavaScript callback to send within the start API. It will be called in case
AutoVue does not start. As for AutoVue Applet, a suggestion is given inav_jnlp.html
(onAvInitError) which prompts the user 3 times to retry, then; suggests sending an
e-mail to the server administrator notifying him about this failure. This callback is
similar to the one used in the earlier solution and has the same name. It must follow
the prototype described in the start API.

Update your Integration

Updating Existing Integrations to the Java Web Start Client A-5

A.1.4 Specify Cookies
AutoVue Client is not an applet anymore. It cannot access the cookies directly. You
need to pass these cookies to AutoVue at the start-up. A new AutoVue Client
parameter is introduced to address this. The new parameter "COOKIES" holds a list of
cookies in a key-value format (name=value) separated by a semicolon ";".

The server administrator should specify a semicolon ";" separated list of cookie names
passed as init parameter of VueJNLPServlet, named COOKIES as well. This init
parameter supports two special values:

■ true: Pass all the browser cookies of the domain to AutoVue (this must be
combined with filtering in the VueJNLPServlet and encryption to ensure a secure
deployment).

■ false: Do not pass any cookie to AutoVue

Basically, add cookies' names to the server configuration file web.xml:

<servlet id="VueJNLPServlet">
<servlet-class>com.cimmetry.servlet.VueJNLPServlet</servlet-class>
<init-param>

<param-name>Cookies</param-name>
<param-value>JSESSIONID;...</param-value>

</init-param>
<load-on-startup>0</load-on-startup>

</servlet>

The required cookies' values will be collected by the "GET" method of VueJNLPServlet
during the client start-up and passed to the client within the new Client parameter
(COOKIES).

A.1.5 Update client side code
In order to update the client side code, you have to do the following:

■ Remove AutoVue Applet tag and related code, after that include autovue.js as
follows:

<script type="text/javascript" src="graphics/autovue.js"></script>

Instantiate an AutoVue object within a JavaScript block as in av_jnlp.html (refer to the
section – AutoVue Constructor Parameters for more information about the constructor
parameters):

var myAvApp = new AutoVue(<VueJNLPServlet Host>, <Codebase Host>, ...);

■ If you need to pass sensitive cookies to AutoVue, you need to generate an
Encryption key-pair and set it in AutoVue Object before you start AutoVue Client,
as follows:

myAvApp.setEncryptionKeyPair(public_key, private_key);

See the section – Enabling Security for more details about security.

■ Call the start method to launch an AutoVue Client (refer to the JavaScript API
section of the Oracle AutoVue API Guide for more information about the function
parameters):

myAvApp.start(onInit, onFail, user_data);
myAvApp.setFile(<URL of a file to load in AutoVue>);

Update your Integration

A-6 Oracle AutoVue Integration SDK Overview and Installation Guide

Update the calls to AutoVue Applet scripting API using the new AutoVue Object. Refer
to the JavaScript API section of the Oracle AutoVue API Guide for a complete description
of AutoVue scripting API supported by AutoVueJavaScript Object. An example follows:

Validation: Start AutoVue Server, AutoVue Servlet Container and launch AutoVue
Client using your integration solution. It should work as before and AutoVue will start
in a separate window.

Note:

■ If you call the Scripting API directly without starting AutoVue, the
JavaScriptAutoVue Object will start AutoVue client automatically
for you before invoking the scripting API.

■ You can recycle this JavaScriptAutoVue Object across your HTML
pages. The object will remember its previous state. For example, if
you had previously connected to AutoVue, the JavaScript will
remember the port used for that. The JavaScript will re-connect to
a new AutoVue application using the previously defined
parameters in case AutoVue was closed.

A.1.6 Enabling Security
Cookies contain sensitive information that will become a security concern if they are
not encrypted when passed from the server to the client. The new AutoVue solution
encrypts these cookies on server side before passing them to AutoVue client. However,
you need to give an encryption key-pair, in order to enable it in AutoVue. You should
specifically call the following API before you start AutoVue Client in order to enable
encryption:

myAvApp.setEncryptionKeyPair(public_key, private_key);

Cookie encryption may be disabled when you initialize AutoVue from JavaScript. The
section – AutoVue Constructor Parameters has information about this functionality
(see item for ENCRYPT_COOKIES).

When the encryption of the cookies is enabled but no encryption keys were specified,
no cookie will be forwarded to the JNLP application.

You can use the VueKeyPairServlet servlet to generate an encryption keypair. The
communication with this servlet should be over HTTPS. This is how you can use it:

■ Include the following line in your client code next to the inclusion of autovue.js:

<script type="text/javascript"

■ Invoke the included script within your JavaScript code, as follows:

if(typeof getEncryptionKeys !== 'undefined'){
myAvApp.setEncryptionKeyPair(getEncryptionKeys().public_key,
getEncryptionKeys().private_key);
}

■ Supported ciphers

Only RSA encryption and "RSA/ECB/PKCS1Padding" ciphers are currently
supported.

■ Constraints

It is essential that you keep the list of cookies short for security reasons.

Update your Integration

Updating Existing Integrations to the Java Web Start Client A-7

Sensitive information applicable to the document management system could be
carried by the client parameters sent when AutoVue Client starts (usually called
"Applet Parameters"). Setting up these parameters is described in the section – Client
Parameters. The preferred approach is to send data as client parameters. These will be
passed directly to AutoVue Client on the same machine through the port opened for
the scripting API.

Another mechanism has been introduced to prevent a wrong caller from
communicating with an AutoVue Client instantiated by another caller. A ticket is
generated randomly by AutoVueJavaScript Object and passed to AutoVue Client at the
start-up (as Client Parameter). After this a call is sent to init API establishing the
communication with AutoVue Client. This will carry the ticket and creates a session on
AutoVue side to be authenticated in any subsequent call to the scripting API.

A.1.7 Customizing AutoVue
The new solution provides customization capabilities similar to AutoVue applet
solution. Following are the customizable options:

■ Client Parameters

■ AutoVue Constructor Parameters

The sections - Client Parameters and AutoVue Constructor Parameters discuss the
customizable options.

A.1.7.1 Client Parameters
The new solution provides the following mechanism to set Client Parameters (usually
set in the applet and known as "Applet Parameters"):

■ Client Setting

Client Setting: Pass the parameters to the constructor of AutoVueJavaScriptObject.
Refer to the section – AutoVue Constructor Parameters for a description of expected
parameters format.

A.1.8 AutoVue Constructor Parameters
Additional options are specific to the new API and the new solution. They are
available in autovue.js. They can be passed as arguments to the constructor of
AutoVueJavaScript Object:

var myAvApp = new AutoVue(JNLP_HOST, CODEBASE_HOST , CLIENT_PORTS, INIT_PARAMS,
ECNRYPT_COOKIES, VERBOSITY, STARTUP_DELAY);
CSI_ClbSessionSubject=Subject;CSI_ClbSessionType=public|private;CSI_
ClbUsers=user1,user2,x;

The Table A–1 provides the list of AutoVue Constructor Parameters.

Update your Integration

A-8 Oracle AutoVue Integration SDK Overview and Installation Guide

Table A–1 AutoVue Constructor Parameters

Parameter Description Default Value

JNLP_HOST Specifies the URL of VueJNLPServlet deployed
within AutoVue Servlet container. For example,
for an AutoVue fresh installation, this URL would
behttp://localhost:5098/servlet/VueJNLPServlet.
This parameter is mandatory. It is needed to
connect to VueJNLPServlet servlet that generates
the JNLP file required to trigger Java Web Start.
AutoVue Client cannot start without the required
JNLP file.

CODEBASE_HOST Specifies the URL of AutoVue Client codebase
(jvue.jar, jsonrpc4j.jar, jogl.jar, gluegen_rt.jar). For
an AutoVue fresh installation with built-in Jetty
server, this URL would be
http://localhost:5098/AutoVue. This parameter is
also mandatory. Without it, Java Web Start will not
be able to find AutoVue Client's codebase in order
to launch it.

CLIENT_PORTS The client ports are used for communication
between browser and AutoVue Client. Both
AutoVue and the browser will try these client
ports starting with the first one until it finds a free
one to use for communication between AutoVue
and the browser. If nothing is available on the
client machine, then this communication cannot
be established and AutoVue scripting will not be
possible.

INIT_PARAMS These replace the AutoVue applet parameters.
This is the list of AutoVue Client parameters to be
set at an initialization stage. They should be
provided wrapped into a JavaScript object.

null

ENCRYPT_COOKIES This option toggles ON/OFF the encryption of the
cookies passed from the browser to AutoVue
Client, passing by VueJNLPServlet on Server side.
See the section "Specify Cookies" for more details
about the transfer of cookies from the browser to
AutoVue and the section "Enabling Security"
about their encryption. The option is optional and
the encryption is enabled by default.

true

VERBOSITY This parameter specifies how autovue.js should
output error messages:

■ None

■ Browser Console

■ JavaScript alert popup

■ Both Browser Console and JavaScript alert
popup

1

Steps for Integration

Updating Existing Integrations to the Java Web Start Client A-9

A.2 Steps for Integration
For partners who have developed an integration to link AutoVue to a file repository
(typically using the ISDK toolkit), the recommendation is to follow the incremental
process provided in Table A–2 for migrating the implementation to the new Web Start
based AutoVue Client.

STARTUP_DELAY AutoVue is launched using Java Web Start. The
start-up process can take some time to complete
since the java classes (jars) have to be downloaded
to the client machine and the browser may
prompt the user before starting any download. At
the same time, AutoVue JavaScript Object tries to
establish communication with AutoVue Client
through JSON-RPC to detect when it is ready to
handle scripting methods. This variable specifies
the required delay before assuming a start-up
failure of AutoVue Client (For example, AutoVue
Server not running). It is set by default to 30
seconds.

30

Table A–2 Steps for integrating with the new Web Start-based AutoVue Client

Step Tasks Expected Result

AutoVue Client
Launch

The initial goal is to have the
AutoVue Client launched in the
integrated environment through the
Web Start framework.

Actions:

■ Install and configure
VueJNLPServlet and the
template file it uses on the
application server of your
environment.

■ Validate JNLP file produced by
VueJNLPServlet.

■ Verify that AutoVue Client can
be launched from client
machines.

An empty AutoVue Client can
be launched from the
embedding environment. Local
files can be opened from the
user interface of AutoVue.

Table A–1 (Cont.) AutoVue Constructor Parameters

Parameter Description Default Value

Steps for Integration

A-10 Oracle AutoVue Integration SDK Overview and Installation Guide

Basic File Viewing The second step is to enable the
viewing of files from the document
repository. The implementation
work here will involve passing
authentication and document
identification information to the
AutoVue client.

Actions:

■ Adapt viewer launch page in
existing integration to invoke
VueJNLPServlet with parameters
that are currently added as
applet parameters.

■ Validate that viewer can be
launched with files chosen by
the user through the user
interface of the embedding
system.

Files can be selected from the
document repository and
viewed in the AutoVue client.

Migrate Additional
Functionality

Most integrations provide additional
document related functionality
through the use of the
LiveConnectAPI of AutoVue. These
functions may include markup,
printing, comparison, etc. The
JSON-RPCAPI provides the same
functionality as the LiveConnectAPI.

Actions:

■ Identify all LiveConnectAPI
usage in the current integration.
Generate a checklist of user
operations that are built
through these capabilities.

■ Convert integration code that
was using the AutoVue applet's
LiveConnectAPI s to invoke the
functionality through the
JSON-RPC interface. We
recommend using the provided
AutoVue JavaScript class to
simplify this process.

■ Validate that all checklist items
have been successfully
migrated. Provide feedback to
Oracle for any functionality that
cannot be migrated.

Revised integration should
match functionality of original
integration to a very high
degree. Any deficiencies have
been reviewed and a
remediation plan established.

Table A–2 (Cont.) Steps for integrating with the new Web Start-based AutoVue Client

Step Tasks Expected Result

Steps for Integration

Updating Existing Integrations to the Java Web Start Client A-11

Refine Security The migration of the AutoVue
integration from applet-based to
Web Start may allow for an
improvement in the overall system
security. If applicable, the following
actions may be taken:

■ Revise security implementation
to make use of VueJNLPServlet
cookies capabilities.

■ Restore HTTPOnly attribute on
authentication related cookies if
it had been removed for
AutoVue applet use.

Enable cookie encryption feature:

■ Decide on an approach for
generating the required
key-pair information.

■ Enable cookie encryption in
VueJNLPServlet invocation.

Security related cookies are
protected through HTTPOnly
attribute. Security information
in JNLP files is secured to a
level appropriate for the
operating environment.

Table A–2 (Cont.) Steps for integrating with the new Web Start-based AutoVue Client

Step Tasks Expected Result

Steps for Integration

A-12 Oracle AutoVue Integration SDK Overview and Installation Guide

B

Feedback B-1

BFeedback

If you have any questions or require support for AutoVue, please contact your system
administrator. If the administrator is unable to resolve your issue, please contact us
using the links below.

B.1 General AutoVue Information

Web Site http://www.oracle.com/us/products/applications/autovue/index.html

Blog http://blogs.oracle.com/enterprisevisualization/

B.2 Oracle Customer Support

Web Site http://www.oracle.com/support/index.html

B.3 My Oracle Support AutoVue Community

Web Site https://communities.oracle.com/portal/server.pt

B.4 Sales Inquiries

E-mail https://www.oracle.com/corporate/contact/global.html

Sales Inquiries

B-2 Oracle AutoVue Integration SDK Overview and Installation Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 ISDK Overview
	1.1 Introduction
	1.2 AutoVue and Repository Integration
	1.3 GUI Customization
	1.4 Repository Extension
	1.5 VueLink
	1.6 Optional Components
	1.6.1 CAD Connector

	1.7 Overview of ISDK Components
	1.7.1 Documentation
	1.7.2 ISDK Skeleton Project
	1.7.3 ISDK Web Services Client

	2 System Requirements
	2.1 Required Software
	2.2 Server
	2.2.1 Windows
	2.2.2 Linux

	2.3 Client
	2.4 Application Servers
	2.5 Development Tools

	3 Installation
	3.1 Downloading Required Software
	3.1.1 Oracle JDeveloper 11gR1
	3.1.2 Oracle Enterprise Pack for Eclipse 11gR1
	3.1.3 Oracle AutoVue
	3.1.4 WebLogic Server

	3.2 Installing and Configuring
	3.2.1 Installing ISDK
	3.2.2 Creating a Server Runtime Environment on IDE
	3.2.2.1 Create Default Runtime on JDeveloper
	3.2.2.2 Create Server Runtime on Eclipse

	3.2.3 Creating Projects on IDE
	3.2.3.1 Projects on JDeveloper
	3.2.3.2 Projects on Eclipse

	3.2.4 Configuring ISDK Components
	3.2.4.1 Configuring the ISDK Skeleton
	3.2.4.1.1 Step 1: Copy the AutoVue Jar Files
	3.2.4.1.2 Step 2: Configure the AutoVue Server
	3.2.4.1.3 Step 3: Configure log4j.properties for Debugging

	3.2.4.2 Configuring the Web Services Client
	3.2.4.2.1 Step 1: Copy the AutoVue Jar files
	3.2.4.2.2 Step 2: Configure the AutoVue Server
	3.2.4.2.3 Step 3: Configure log4j.properties for Debugging
	3.2.4.2.4 Step 4: Configure the SOAP Handler
	3.2.4.2.5 Step 5: Define the Location of BluePrint WSDL

	3.3 Configuring Sample Components

	4 Configuring Sample Projects
	4.1 Sample Integration for Filesys DMS
	4.1.1 Step 1: Copy the AutoVue Jar Files
	4.1.2 Step 2: Configure the AutoVue Server
	4.1.3 Step 3: Configure log4j.properties for Debugging
	4.1.4 Step 4: Configure RootDir for the Filesys Repository
	4.1.5 Step 5: Configure for an Embedded or Pop-Up Window (Optional)
	4.1.6 Step 6: Configure the Markup Policy (Optional)
	4.1.7 Step 7: Configuring User Control
	4.1.8 Step 8: Configure the Picklist
	4.1.9 Step 9: Configure the Thumbnail Display
	4.1.10 Step 10: Configure for Redirection
	4.1.11 Step 11: Configure the Real-Time Collaboration (RTC) Demo
	4.1.11.1 Verify the RTC Demo
	4.1.11.2 Create or Update the meetingfiles.txt

	4.1.12 Step 12: Configure the Oracle Enterprise Visualization Framework (OEVF)
	4.1.12.1 Define OEVFInfoLocation in web.xml
	4.1.12.2 Update oevf.xml
	4.1.12.3 Update OEVFDemo.html
	4.1.12.4 Copy the OEVF GUI files to AutoVue

	4.1.13 Step 13: Configure New Sample Data
	4.1.13.1 Add new data to the document repository
	4.1.13.1.1 Create data structure manually
	4.1.13.1.2 Add data from IDE
	4.1.13.1.3 Adding Data from JDeveloper
	4.1.13.1.4 Adding Data from Eclipse

	4.1.14 Step 14: Run the Filesys Project

	4.2 ISDK Web Services Sample Server
	4.2.1 Method 1: Use an Existing Project Template
	4.2.2 Method 2: Create a Project Manually

	5 Implementation
	5.1 ISDK Skeleton Project
	5.2 ISDK Web Services Client
	5.3 Sample Projects
	5.3.1 Sample Integration for Filesys Project
	5.3.1.1 Framework (VueLink Core)
	5.3.1.2 Sample Integration
	5.3.1.3 AutoVue Components
	5.3.1.3.1 Third-Party Libraries

	5.3.2 ISDK Web Services Sample Server Project

	5.4 Implementation
	5.4.1 Phase One
	5.4.2 Phase Two
	5.4.3 Phase Three

	6 Deployment of ISDK-Based Integrations
	6.1 Scaling for High Usage over Distributed Environments

	A Updating Existing Integrations to the Java Web Start Client
	A.1 Update your Integration
	A.1.1 Update the server
	A.1.2 Setup the server for SSL Mode
	A.1.3 Test AutoVue Sample
	A.1.3.1 CL_PRTS
	A.1.3.2 INIT_PARAMS
	A.1.3.3 USER_DATA
	A.1.3.4 ONINIT
	A.1.3.5 ONINITERROR

	A.1.4 Specify Cookies
	A.1.5 Update client side code
	A.1.6 Enabling Security
	A.1.7 Customizing AutoVue
	A.1.7.1 Client Parameters

	A.1.8 AutoVue Constructor Parameters

	A.2 Steps for Integration

	B Feedback
	B.1 General AutoVue Information
	B.2 Oracle Customer Support
	B.3 My Oracle Support AutoVue Community
	B.4 Sales Inquiries

