

Oracle® Commerce Retail Extension Module

Merchandising Implementation Guide
Release 16.0.0.1
E85400-01

March 2017

Oracle® Commerce Retail Extension Module Merchandising Implementation Guide, Release
16.0.0.1

E7854006-01

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Bernadette Goodman

Contributors: Nishant Rao

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Send Us Your Comments ... vii

Preface .. ix

Documentation Accessibility ... ix

Related Documents ... ix

Customer Support ... ix

Review Patch Documentation ... ix

Improved Process for Oracle Retail Documentation Corrections ix

Oracle Retail Documentation on the Oracle Technology Network.................................. x

Conventions ... x

1 Introduction .. 1

2 Architecture .. 1

3 Prerequisite Data.. 1

4 Bulk Data Integration (BDI) ... 1

Bulk Feeds ... 1

Importer Jobs .. 1

5 Incremental Data Integration (RIB) ... 1

Message Families ... 1

Overview of Message Flow .. 4

RIB XSD to RXMDI Staging Scheme Mapping .. 22

RXMDI EAR ... 31

Extensibility .. 32

6 Java Batch .. 35

Overview .. 35

RXM Batch Job Admin ... 35

Job XMLs ... 36

Batchlets and Deciders .. 37

RXMDI Job Admin WAR .. 37

Extensibility ... 37

7 Oracle Data Integrator ... 41

Components .. 41

Packaging .. 41

Extensibility ... 42

Transformations .. 42

Database Tables to Database Tables .. 42

Database Tables to XML Files .. 42

Flat Files to Database tables .. 43

8 Promotion and Pricing Integration ... 45

Promotion Integration .. 45

vi

Promotion Commerce Enhancements ... 46

Pricing Integration .. 46

Pricing Commerce Enhancements ... 47

9 Job Mapping ... 49

BDI/RIB .. 49

Pricing and Promotions .. 51

10 Packaging and Deployment .. 53

vii

Send Us Your Comments

Oracle Commerce Retail Extension Module Merchandising Implementation Guide,
Release 16.0.0.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

 Are the implementation steps correct and complete?

 Did you understand the context of the procedures?

 Did you find any errors in the information?

 Does the structure of the information help you with your tasks?

 Do you need different information or graphics? If so, where, and in what format?

 Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest
version of the document and if any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology Network Web site. It contains
the most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/

ix

Preface

This guide provides information needed for an implementation of Oracle Commerce
Retail Extension Module with Oracle Retail Merchandising Operations Management.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at

.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit

 or visit
 if you are

hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Commerce Retail
Extension Module 16.0.0.1 documentation set:

 Oracle Commerce Retail Extension Module Installation Guide

 Oracle Commerce Retail Extension Module Implementation Guide

 Oracle Commerce Retail Extension Module Release Notes

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com

When contacting Customer Support, please provide the following:

 Product version and program/module name

 Functional and technical description of the problem (include business impact)

 Detailed step-by-step instructions to re-create

 Exact error message received

 Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.1). If you are installing the base
release or additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

x

needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the
case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.

This process will prevent delays in making critical corrections available to customers. For
the customer, it means that before you begin installation, you must verify that you have
the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456- is an
updated version of a document with part number E123456- .

If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following web site:

(Data Model documents are not available through Oracle Technology Network. You can
obtain them through My Oracle Support.)

Conventions

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

This is a code sample

 It is used to display examples of code

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Introduction 1

1

Introduction

RXMDI and ODI run on the RXM Staging Server deployed at the Corporate Data Center.
The RXM Staging server has access to two dedicated Oracle databases: BDI Interface
Inbound Schema and RXMDI Staging Schema. RXMDI and ODI run on the Oracle Retail
release 16.0 supported stack with Fusion Middleware 12.2.1.

The incremental and bulk data is staged and primarily mapped into XML files for
feeding to Oracle Commerce’s SQLImport program running on Oracle Commerce
Publishing Server, or placed into the Oracle Commerce Production repository directly.
The promotional data is mapped to staging tables in Oracle Commerce Publishing for
further transformation and import by an RXM scheduled service.

Technologies used for data integration:

 Oracle Data Integrator Enterprise (ODI) 12c (12.2.1)

 Oracle WebLogic 12c (12.2.1)

 Oracle Database 12c (12.1.0.2.0)

 Java 8

Architecture 1

2

Architecture

This diagram shows the BDI, RIB, and RPM processes. MOM and RXMDI are on the
right, RXM Publishing in the middle, and RXM Production on the left.

Oracle Retail Merchandising System

 Bulk data moves from RMS to RXMDI through BDI Process flows. They move the
data into the BDI Input (that is, BDI Inbound Interface) Schema. They are then
transformed by ODI into the RXMDI Staging Schema using the RXM Batch jobs
which invoke the appropriate ODI Scenarios.

 Incremental data moves from RMS to RXMDI through RIB. RIB data is processed by
implementing RIB message injectors and persisting the data directly into the RXMDI
Staging Schema using JPA.

 Merchandise Hierarchy and Item data from the RXMDI Staging Schema is
transformed by ODI into XML files which are then imported into the RXM
publishing server’s Business Control Center (BCC) from where it is published to
RXM’s production server.

 Inventory, Store, and Warehouse data from the RXMDI Staging Schema is
transformed by ODI and inserted into RXM’s production server through Direct SQL
Load.

Oracle Retail Price Management

RPM Regular and Clearance Price change data arrive as flat files into a directory read by
ODI, and are transformed by ODI into XML files which are then imported into the RXM
publishing server’s Business Control Center (BCC) from where it is published to RXM’s
production server.

Conventions

2 Oracle Commerce Retail Extension Module

RPM Promotion data also arrives as flat files into a directory read by ODI, and are
transformed by ODI and inserted directly into RXM’s publishing server through Direct
SQL Load. Using a timed Scheduler, they are then processed through the
PromotionImportExport API provided by Oracle Commerce and imported into the BCC
from where they are published to RXM’s production server.

Prerequisite Data 1

3

Prerequisite Data

Prior to loading data from RXMDI Staging tables to RXM, the following tables need to be
populated with appropriate data.

Based on the values obtained from RMS and set up in RXM Publishing's Business
Control Center (BCC) insert the following values into RXMDI_STORE_SITE:

 store_id: Obtained from RMS

 site id: Created in BCC

 catalog id: Created in BCC

 price_list_id: Created in BCC

 sale_list_id: Created in BCC

 file_name: Leave blank

 folder_id: Created in BCC

Based on the representation of unit of measure's (UOM) in RMS and ATG, map the
UOMs in the RXMDI_LOOKUP_UOM.

RXMDI_LOOKUP_UOM Sample Data
INSERT INTO rxmdi_lookup_uom (mom_uom, atg_uom) VALUES ('EA', 'units');

INSERT INTO rxmdi_lookup_uom (mom_uom, atg_uom) VALUES ('LB', 'pounds');

INSERT INTO rxmdi_lookup_uom (mom_uom, atg_uom) VALUES ('LBS', 'pounds');

INSERT INTO rxmdi_lookup_uom (mom_uom, atg_uom) VALUES ('KG', 'kilograms');

 RXM requires latitude and longitude to be populated for a given address. If they are
not available, latitude and longitude values are defaulted to zero in the
DCS_LOCATION RXM table.

 RXMDI_LOCATION_GEO, located in the RXMDI staging schema, could be
pre-populated with this data. ODI procedure GetGeoCode could also be customized
to call an external geo location service to populate this data.

RXMDI_LOCATION_GEO Sample Data
Insert into RXMDI_LOCATION_GEO

(LOCATION_ID,LATITUDE,LONGITUDE,FORMATTED_ADDRESS,ERROR) values

(5251,'44.6496868','-93.2427200','Lakeville, MN, USA','0');

Insert into RXMDI_LOCATION_GEO

(LOCATION_ID,LATITUDE,LONGITUDE,FORMATTED_ADDRESS,ERROR) values

(4241,'44.8407980','-93.2982799','Bloomington, MN, USA','0');

Insert into RXMDI_LOCATION_GEO

(LOCATION_ID,LATITUDE,LONGITUDE,FORMATTED_ADDRESS,ERROR) values

(3231,'34.9353693','-83.3890464','York, GA 30568, USA','0');

Insert into RXMDI_LOCATION_GEO

(LOCATION_ID,LATITUDE,LONGITUDE,FORMATTED_ADDRESS,ERROR) values

(6261,'45.1607987','-93.2349489','Blaine, MN, USA','0');

Bulk Data Integration (BDI) 1

4

Bulk Data Integration (BDI)

Oracle Bulk Data Integration (BDI) is a product that defines the architecture and
infrastructure used to move bulk data between Oracle Retail applications. BDI sits in the
middle of Oracle Retail Merchandising System (RMS) and other applications, and it is
built on top of Java EE and Java Batch platform. In a Bulk Data Integration system,
Message Families are represented as interface modules. Each interface module (such as
DiffGrp_Fnd) contains an RMS component that takes care of pulling and staging data for
publication to the External BDI system. Interface modules are divided by functional
entity (such as Item Master, Stores, and Diffs).

RMS publishes Bulk Data through the Bulk Data Infrastructure (BDI) Process Flows into
the BDI Interface Inbound Schema. The RXM Importer Jobs are part of the BDI Process
flows and, through RXM Batch Jobs, invoke the corresponding ODI Scenario. This data is
extracted by ODI, transformed, and then persisted into the Retail Extension Module Data
Integration (RXMDI) Staging schema.

All the mappings in tables are same between RXMDI Staging schema and BDI Interface
Inbound Schema. On reclassification of item, it is not deleted from the previously linked
Merchandise Hierarchy.

Bulk Feeds
RXMDI receives Bulk data for the following feeds from RMS BDI:

 InvAvailWh_Tx (Inventory)

 Store_Fnd and StoreAddr_Fnd (Store and Store Address)

 MerchHier_Fnd (Merchandise Hierarchy)

 ItemHdr_Fnd (Item Header)

 ItemLoc_Fnd (Item Location)

 RelatedItem_Fnd (Related Items)

 Diff_Fnd and DiffGrp_Fnd (Diff and Diff Group)

Warehouse ,warehouse address and item image is definition only no data flow.

Importer Jobs
If data is known to be present in the BDI Interface Schema, he RXM Importer jobs can be
directly invoked using the RXM Batch Job Admin through Importer jobs. Each interface
module has its own Importer Job. For example, there is one for Store, one for Store
Address, one for Inventory, and so on. Each Importer Job invokes the corresponding ODI
Scenario which extracts the data from the BDI Interface Schema, transforms it, and
persists it into the RXMDI Staging Schema.

This is how each Importer Job functions:

1. RMS publishes data with a unique data set ID for a particular interface module. This
data set ID maps to a set of sequence numbers representing the records for that
interface module. It is cumulative (that is, includes data from previous data sets).

2. When the Importer Job is invoked, the oracle.retail.commerce.batch.DataSetBatchlet
determines the latest dataset ID and also queries the RXMDI_ODI_JOB_AUDIT table

2 Oracle Commerce Retail Extension Module

in the RXMDI Staging schema to determine if this dataset has already been
successfully processed.

3. If the dataset has not been processed, it computes the sequence numbers that belong
to that data set and pass along that information to the
oracle.retail.commerce.batch.ODIBatchlet.

4. The oracle.retail.commerce.batch.ODIBatchlet invokes the ODI Agent after setting
relevant data retrieved from the Job XML as well as the sequence numbers obtained
from the oracle.retail.commerce.batch.DataSetBatchlet.

5. Once the Job has been processed by ODI, the
oracle.retail.commerce.batch.AuditBatchlet writes a record in the
RXMDI_ODI_JOB_AUDIT table in the RXMDI Staging schema with a status of
Processed or Failed.

6. An oracle.retail.commerce.batch.StepDecider works in conjunction with the logic in
the Job Specification Language (JSL) to allow the Batchlets to decide the next step in
the process or whether the process should be Stopped.

RXMDI_ODI_JOB_AUDIT

 data_set_id DECIMAL(19,0) NOT NULL, -- Data Set Id

provided as part of the Bulk data set

 data_set_begin_seq_num DECIMAL(19,0) NOT NULL, -- Beginning sequence

number of dataset in inbound interface table

 data_set_end_seq_num DECIMAL(19,0) NOT NULL, -- Ending sequence

number of dataset in inbound interface table

 src_sys_data_set_ready_time TIMESTAMP NOT NULL, -- Time when source

system provided data in outbound tables

 job_complete_status VARCHAR2(20) NOT NULL, -- Status after Job

has completed

 interface_module_name VARCHAR2(20) NOT NULL, -- Name of the

Interface Module

 create_time TIMESTAMP NOT NULL -- Time when record

was created

);

-- Add primary key constraint

ALTER TABLE RXMDI_ODI_JOB_AUDIT ADD CONSTRAINT pk_rxmdi_odi_job_audit PRIMARY KEY

(data_set_id, create_time);

Incremental Data Integration (RIB) 1

5

Incremental Data Integration (RIB)

RMS publishes create, modify, and delete messages to the Oracle Retail Integration Bus
(RIB) for various Message Families through the RIB-RXM adapter. The messages from
the adapter are consumed by RXMD) and persisted in the RXMDI Staging schema using
the Java Persistence API (JPA).

Technologies

 EclipseLink JPA provider

 Apache Camel

 JPA (through xml)

Message Families

Stores

Stores can have multiple addresses one-to-many mapping using JPA.

Message Types:

 storecre: Message gets persisted in RXMDI_STORE, RXMDI_STORE_ADDRESS
tables creating a new row with rxmdi_control as N (New) in both the
RXMDI_STORE and RXMDI_STORE_ADDRESS (list of addresses) tables.

 storemod: Existing row in the database is updated and rxmdi_control is set to N
(New) in both the RXMDI_STORE and RXMDI_STORE_ADDRESS (list of addresses)
tables.

 storedel: Row with corresponding storeId is first retrieved from the database and
then updated with corresponding values from StoreRef; rxmdi_control is set to DN
(Delete) in both RXMDI_STORE, and RXMDI_STORE_ADDRESS (list of addresses)
tables.

 storedtlcre: Same as storecre

 storedtlmod: Same as storemod

 storedtldel: It is just address delete, so store's rxmdi_control will remain as only the
corresponding addresses' rxmdi_control is set to DN (Delete). Store changes
rxmdi_control to DN (Delete) only when there is a storedel message.

Item Locations

Message Types:

 ItemLocCre: Record is persisted in rxmdi_item_loc with rxmdi_control as N (New).

 ItemLocMod: Record is modified in rxmdi_item_loc with rxmdi_control as N (New).

 ItemLocDel: Record is persisted in rxmdi_item_loc with rxmdi_control as DN
(Delete).

 ItemLocReplMod: Not supported for RXMDI.

2 Oracle Commerce Retail Extension Module

Warehouses

Message Types:

 whcre: Message gets persisted in the RXMDI_WH and RXMDI_WH_ADDR tables
creating a new row with rxmdi_control as N (New) in both the RXMDI_WH and
RXMDI_WH_ADDR (list of addresses) tables.

 whmod: Existing row in the database is updated and rxmdi_control is set to N
(New)in both the RXMDI_WH and RXMDI_WH_ADDR (list of addresses) tables.

 whdel: Row with corresponding wh_Id is first retrieved from the database and then
updated with the corresponding values from WHRef; rxmdi_control is set to DN
(Delete) in both the RXMDI_WH and RXMDI_WH_ADDR (list of addresses) tables.

 whdtlcre: Same as whcre.

 whdtlmod: Same as whmod.

 whdtldel: It is just address delete, so the WH’s rxmdi_control will remain as is and
only the corresponding addresses' rxmdi_control is set to DN (Delete). WH changes
rxmdi_control to DN (Delete) only when there is a whdel message.

 whaddcre: Message to handle internal RMS processing, but it still comes out of RMS.
Not supported by RXMDI.

 whaddmod: Message to handle internal RMS processing, but it still comes out of
RMS. Not supported by RXMDI.

Merchandise Hierarchy

This table lists the attributes being statically set in the staging table, as these are not
provided by the RIB.

Attribute in RXMDI_MERCH_HIER Valid Values

HierarchyLevel For department: Department

For Class: CLASS

For Subclass: SUBCLASS

HierarchyId Field introduced by us for creating primary key.
It is a unique identifier comprising all three
display id plus prepended prefix. Example:

For department 3: d3

For department 3, class 1: d3c1

For department 3, class 1 and subclass 4: d3c1s

Parent Level For department: GROUP

For class: DEPARTMENT

For Subclass: CLASS

The rest of the attributes are obtained from RIB messages. RIB does not provide the
hierarchy node ID and parent node ID.

 Message Types:

 Record is persisted in the RXMDI_MERC_HIER table in the RXMDI staging schema.

 deptcre: New record is persisted and rxmdi_control is set to N (New).

 deptmod: Modifies record persisted in deptcre; rxmdi_control is set to N (New).

 deptdel: Modifies record persisted in above two; rxmdi_control is set to DN (Delete).

 subclasscre: Creates new record is persisted; rxmdi_control is set to N (New).

 Incremental Data Integration (RIB) 3

 subclassmod: Modifies record persisted in subclasscre; rxmdi_control is set to N
(New).

 subclassdel: Modifies record persisted in deptdel and subclasscre; rxmdi_control is
set to DN (Delete).

 classcre: Creates new record is persisted; rxmdi_control is set to N (New).

 classmod: Modifies record persisted in classcre; rxmdi_control is set to N (New).

 classdel: Modifies record persisted in subclassdel and classcre; rxmdi_control is set to
DN (Delete).

Items

The Item in RMS maps to either Product or SKU in RXM. On reclassification of item, item
is not deleted from previously linked Merchandise Hierarchy.

Message Type:

 Items: Items and item components make up what is called the Items message family:

– ItemCre: Comprised of several other messages, but RXMDI subscribes only to
relatedItem, itemHeader, and itemImage. Record is persisted in the
RXMDI_ITEM_HDR, RXMDI_ITEM_IMAGE, RXMDI_RELATED_ITEM, and
RXMDI_RELATED_ITEM_DTL tables in RXMDI staging.

– ItemHdrMod: Modifies record persisted in itemCre in the RXMDI_ITEM_HDR
table with rxmdi_control as N (New).

– ItemDel: Modifies record persisted in itemCre in RXMDI_ITEM_HDR table
with rxmdi_control as DN (Delete).

– ItemImageCre: New record is persisted to the RXMDI_ITEM_IMAGE table with
rxmdi_control as N (New).

– ItemImageMod: Modify record is persisted to the RXMDI_ITEM_IMAGE table
with rxmdi_control as N (New).

– ItemImageDel: Modify record is persisted to the RXMDI_ITEM_IMAGE table
with rxmdi_control as DN (Delete).

– RelItemHeadCre: New record is persisted to the RXMDI_RELATED_ITEM and
RXMDI_RELATED_ITEM_DTL tables with rxmdi_control as N (New) in each.

– RelItemHeadMod: Modify record is persisted to the RXMDI_RELATED_ITEM
and RXMDI_RELATED_ITEM_DTL tables with rxmdi_control as N (New) in
each.

– RelItemHeadDel: Modify record is persisted to the RXMDI_RELATED_ITEM
and RXMDI_RELATED_ITEM_DTL tables with rxmdi_control as DN (Delete) in
each.

– ItemBOMCre: New record is persisted to the RXMDI_PACK_ITEM table with
rxmdi_control as N (New).

– ItemBOMMod: Modify record is persisted to the RXMDI_PACK_ITEM table
with rxmdi_control as N (New).

 Differentiator Groups: Differentiator Groups allow clients to group differentiator
identifiers (Diff IDs) into logical groupings (for example: pant sizes, shirt colors, or
flavors).

 DiffGrpHdrCre: Record is persisted in rxmdi_diff_grp with rxmdi_control as N
(New). BDI provides diff_type_desc attribute which is available in RIB in another
message family called Seed Data message family: DiffTypeDesc.xsd to which RXM is
not subscribing, so this attribute is changed to nullable in the schema:

4 Oracle Commerce Retail Extension Module

– DiffGrpHdrMod: Record is modified in rxmdi_diff_grp with rxmdi_control as N
(New).

– DiffGrpDel: Record is persisted in rxmdi_diff_grp with rxmdi_control as DN
(Delete).
 DiffGrpDtl comprised of mapping between diff and diff group.

– DiffGrpDtlCre: Record is persisted in rxmdi_diff_grp_dtl with rxmdi_control as
N (New).

– DiffGrpDtlMod: Record is modified in rxmdi_diff_grp_dtl with rxmdi_control as
N(New).

– DiffGrpDtlDel: Record is persisted in rxmdi_diff_grp_dtl with rxmdi_control as
DN (Delete).

 Differentiator Identifiers: Differentiators (Diffs, as they are commonly called) allow
users to further distinguish items:

– DiffCre: Record is persisted in rxmdi_diff with rxmdi_control as N (New).

– DiffMod: Record is modified in rxmdi_diff with rxmdi_control as N (New).

– DiffDel: Record is persisted in rxmdi_diff with rxmdi_control as DN (Delete).

Overview of Message Flow
These are the steps in the message flow:

1. RIB-RXM adapter publishes messages which are consumed by RXMDI. The message
types and families which can be consumed are referenced in injectors.xml.
Injectors.xml can be modified to add or remove additional Message Families and
Message Types. Following is a snippet of injectors.xml:

 Message Family: STORES

 Message Types: STORECRE, STOREDEL, STOREMOD

injectors.xml
<injector_config>

 <family name="STORES">

 <injector

class="oracle.retail.commerce.incremental.location.LocationMessageInjector">

 <type>STORECRE</type>

 </injector>

 <injector

class="oracle.retail.commerce.incremental.location.LocationMessageInjector">

 <type>STOREDEL</type>

 </injector>

 <injector

class="oracle.retail.commerce.incremental.location.LocationMessageInjector">

 <type>STOREMOD</type>

 </injector>

2. Any Message Type that is out of scope for RXM or is not in use is filtered out using a
Message Filter. Following is a snippet of a Message Filter:

Message Filter
 <injector

class="oracle.retail.commerce.incremental.filter.MessageFilteringInjector">

 Incremental Data Integration (RIB) 5

 <type>DIVISIONCRE</type>

 </injector>

 <injector

class="oracle.retail.commerce.incremental.filter.MessageFilteringInjector">

 <type>DIVISIONMOD</type>

 </injector>

 <injector

class="oracle.retail.commerce.incremental.filter.MessageFilteringInjector">

 <type>DIVISIONDEL</type>

 </injector>

3. The nessage injected by RIB is mapped to the appropriate Apache Camel route. The
payload will be wrapped into a new Apache Camel integration framework message
and sent to the mapped Camel route. The Camel route will be responsible for
persistence and any other business logic. Following is a snippet of the camel route for
STORECRE message:

Camel Route
<!-- CamelContext is the Camel runtime, where Camel routes are defined. -->

 <camel:camelContext id="LocationCamelContext" trace="false"

xmlns="http://camel.apache.org/schema/spring">

 <!-- Route to create data received from StoreDesc RIB Message for message type:

STORECRE or STOREDTLCRE -->

 <route id="createStoreData">

 <from uri="direct:createStoreData"/>

 <bean ref="Store" method="createStore"/>

 <to uri="jpa://oracle.retail.commerce.incremental.location.Store"/>

 <log message="Store created with id: ${body.store}"/>

 </route>

4. There is an Entity for every message. It has setters and getters along with the
business logic which gets mapped using entity mapping to the respective tables in
the RXMDI schema. JPA uses XML to persist data to database. Following is a snippet
of entity mapping for Store:

Store Entity Mapping
<entity-mappings

 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm

 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"

 version="2.4">

 <!-- Entities -->

 <entity name="Store"

class="oracle.retail.commerce.incremental.location.Store" access="PROPERTY">

 <table name="rxmdi_store"/>

 <attributes>

 <id name="store" access="PROPERTY">

 <column name="store_id" length="10"/>

 </id>

 <basic name="storeType" access="PROPERTY">

 <column name="store_type" length="6"/>

 </basic>

 <basic name="storeName" access="PROPERTY">

 <column name="store_name" length="150"/>

 </basic>

 <basic name="storeName10" access="PROPERTY">

6 Oracle Commerce Retail Extension Module

 <column name="store_name_10" length="10"/>

 </basic>

 <basic name="storeName3" access="PROPERTY">

 <column name="store_name_abbr" length="3"/>

 </basic>

 ...

 <basic name="timezone" access="PROPERTY">

 <column name="timezone" length="64"/>

 </basic>

 <basic name="rxmdiControl">

 <column name="rxmdi_control" length="20"/>

</basic>

 <basic name="lastUpdate">

 <column name="last_update" length="6"/>

 </basic>

 <!-- unidirectional one-to-many -->

 <one-to-many name="storeAddress" target-

entity="oracle.retail.commerce.incremental.location.StoreAddress">

 <join-column name="store_id" referenced-column-name="store_id"

nullable="false" />

 <cascade>

 <cascade-all/>

 </cascade>

 </one-to-many>

 </attributes>

 </entity>

</entity-mappings>

5. On delete, RXM gets a sparse RIB message, for delete to get a hold of the JPA object
from the schema. Make changes based on the new RIB message and then persist.
Similarly for modify (one-to-many objects), RXM retrieves the row from the
database, updates the respective columns, and then persists it. This logic of getting a
hold of the JPA object and then modifying it is based on requirements for
implementation as a Camel Processor.

6. The Processor implements a camel processor to process message exchanges from the
route. The processor gets the primary key from the message exchange, then reads the
JPA object from the staging schema, updates the object with latest RIB message, and
persists it. Following is a snippet of the StoreDeleteProcessor.java:

Camel Processor
 @Override

 public void process(Exchange exchange) throws Exception

 {

 EntityManager em = exchange.getContext().getEndpoint("jpa:" +

Store.class.getName(), JpaEndpoint.class)

 .getEntityManagerFactory().createEntityManager();

 try

 {

 em.getTransaction().begin();

 StoreRef storeRef = (StoreRef)exchange.getIn().getBody();

 if (storeRef != null)

 {

 Query q =

em.createQuery(ProcessorQuery.selectStore).setParameter("store",

storeRef.getStore());

 if (q.getSingleResult() != null)

 {

 Store store = (Store)q.getSingleResult();

 store.setStockholdingInd(storeRef.getStockholdingInd());

 store.setStoreType(storeRef.getStoreType());

 Incremental Data Integration (RIB) 7

 List<StoreAddress> storeAddressList = store.getStoreAddress();

 for (StoreAddress storeAddress : storeAddressList)

 {

 storeAddress.setRxmdiControl(IncrementalConstants.DELETE);

 storeAddress.setLastUpdate(new Date());

 }

 store.setRxmdiControl(IncrementalConstants.DELETE);

 store.setLastUpdate(new Date());

 logger.info("Store id:" + store.getStore() + " deleted");

 exchange.getOut().setBody(store);

 }

 em.getTransaction().commit();

 }

 }

 catch (Exception e)

7. After the message is persisted in the staging schema, it is picked up by ODI Scenario
and processed, transformed, and persisted in either of the following two forms:

 The Merchandise Hierarchy and Item data from the RXMDI Staging Schema is
transformed by ODI into XML files, which is then imported into the RXM
publishing server’s Business Control Center (BCC) from where it is published to
RXM’s production server.

 Store and Warehouse data from the RXMDI Staging Schema is transformed by
ODI and inserted into RXM’s production server through Direct SQL Load.

Schema

The following tables are in RXMDI Staging:

 Store: RXMDI_STORE, RXMDI_STORE_ADDRESS

 Merchandise Hierarchy: RXMDI_MERCH_HIER

 Items: RXMDI_ITEM_HDR, RXMDI_ITEM_IMAGE, RXMDI_ITEM_LOC,
RXMDI_RELATED_ITEM, RXMDI_RELATED_ITEM_DTL, RXMDI_DIFF,
RXMDI_DIFF_GRP, RXMDI_DIFF_GRP_DTL

 Warehouse: RXMDI_WH, RXMDI_WH_ADDR

The tables in staging closely resemble the BDI Interface Inbound tables. The staging
tables have two additional control columns (rxmdi_control and last_update). The
Controller/Flag in rxmdi_control is used to determine the life-cycle of a record.

The following are the different states for rxmdi_control:

 N: New record for created/modified message

 DN: Record to be Deleted

 DP: Delete being processed

 D: Record deleted from RXM but still remains in rxmdi staging

 RP: Referenced parent for merchandise hierarchy

 P: Record being processed by ODI

 S: Record successfully processed by ODI

 I: Record being ignored by ODI

8 Oracle Commerce Retail Extension Module

The possible life-cycles for the rxmdi_control states are shown in the following figure:

Note: It is the responsibility of the retailer to establish the
business process for handling the purge procedure.

Life-cycle rxmdi_control of delete message:

1. RP(referenced parent of merchandise hierarchy) ->S(After processing successfully)

2. DN(delete RIB message)->DP(processing delete message)->D(once deleted from
RXM schema/productCatalog.xml generated for delete)

Delete

Merchandise Hierarchy :

1. If delete d4, then have to delete d4c41, d4c41s411. If do not, then d4c41, d4c41s411
will become un-categorized.

2. If a subclass is deleted, the parent reference should be updated to not refer to the
deleted child anymore in prodcutCatalogxml.

3. On category delete, the associated item will not be deleted, as items can be associated
to several categories.

Item:

1. If an item is deleted, it could have several related items. If an item is deleted, its
related item will not be deleted. Only the item which gets a delete message will be
deleted; related item will not be deleted.

2. If a product is deleted which has several SKUs, all the SKUs will also get deleted.

Reclassification:

Item reclassification allows moving an item from one department/class/subclass to
another.

 Incremental Data Integration (RIB) 9

1. RXM handles RIB reclassification only. BDI reclassification will be handled by
implementers. One of the ways implementers can handle BDI reclassification is
through BCC.

2. It occurs in the case of ItemHdrMod RIB message. Both old and new subclass gets
persisted in to productCatalog.xml using ODI as mentioned below:

 Old subclass will not have association to item.

 New subclass will have association to item.

Staging DDL

rxmdi_store
CREATE TABLE rxmdi_store (

 store_id NUMBER(10,0) NOT NULL, -- Unique ID of the

store.

 store_type VARCHAR2(6), -- This will indicate whether a

particular store is a franchise or company store.

 store_name VARCHAR2(150), -- Contains the name of the store

which, along with the store number, identifies the store.

 store_name_10 VARCHAR2(10), -- Contains a ten character

abbreviation of the store name.

 store_name_abbr VARCHAR2(3), -- Contains a three character

abbreviation of the store name.

 store_name_sec VARCHAR2(150), -- Secondary name of the store.

 store_class_id VARCHAR2(1), -- Contains the code letter indicating

the class of which the store is a member. Valid values are A through E.

 store_class_desc VARCHAR2(250), -- Contains the name of the store

class.

 manager VARCHAR2(120), -- Contains the name of the store

manager.

 open_date TIMESTAMP, -- Contains the date on which the store

opened.

 close_date TIMESTAMP, -- Contains the date on which the store

closed.

 acquire_date TIMESTAMP, -- Contains the date on which the store

was acquired.

 remodel_date TIMESTAMP, -- Contains the date on which the store

was last remodeled.

 fax_number VARCHAR2(20), -- Contains the fax number for the

store.

 phone_number VARCHAR2(20), -- Contains the phone number for the

store.

 email VARCHAR2(100), -- Holds the email address for the

location.

 total_sq_feet NUMBER(8,0), -- Contains the total square footage

of the store.

 selling_sq_feet NUMBER(8,0), -- Contains the total square footage

of the stores selling area.

 linear_distance NUMBER(8,0), -- Holds the total merchandisable

space of the location.

 vat_region NUMBER(4,0), -- Contains the number of the Value

Added Tax region in which this store is contained.

 vat_incl_ind VARCHAR2(1), -- Indicates whether or not Value

Added Tax will be included in the retail prices for the store. Valid values are Y

or N.

 stock_holding_ind VARCHAR2(1), -- This column indicates whether the

store can hold stock. In a non-multichannel environment this will always be Y.

 channel_id NUMBER(4,0), -- In a multichannel environment this

will contain the channel with which the store is associated. Valid values can be

found on the channels table.

 channel_name VARCHAR2(120), -- Contains the name of the channel.

10 Oracle Commerce Retail Extension Module

 store_format_id NUMBER(4,0), -- Contains the number indicating the

format of the store. Valid values are found on the store format table.

 store_format_name VARCHAR2(60), -- Contains the name of the store

format.

 mall_name VARCHAR2(120), -- Contains the name of the mall in

which the store is located.

 district NUMBER(10,0), -- Contains the number of the

district in which the store is a member.

 transfer_zone NUMBER(4,0), -- Contains the transfer zone in which

the store is located. Valid values are located on the tsfzone table.

 transfer_zone_desc VARCHAR2(120), -- Contains the name of the Transfer

Zone.

 default_wh NUMBER(10,0), -- Contains the number of the

warehouse that may be used as the default for creating crossdock masks. This

determines which stores are associated with or sourced from a warehouse. Will hold

only virtual warehouses in a multi-channel environment.

 stop_order_days NUMBER(3,0), -- Contains the number of days before

a store closing that the store will stop accepting orders.

 start_order_days NUMBER(3,0), -- Contains the number of days before

the store_open_date that the store will begin accepting orders.

 currency_code VARCHAR2(3), -- This field contains the currency

code under which the store operates.

 store_lang_iso_code VARCHAR2(6), -- This column identifies the language

to be used for the given store.

 tran_no_generate VARCHAR2(6), -- Contains the level at which unique

POS transaction numbers are generated. If the store has one sequence

number that is used for all registers, then the value in this columnwill be S

(Store) otherwise it will be R (Register).

 duns_number VARCHAR2(9), -- This field holds the Dun and

Bradstreet number to identify the store.

 sister_store NUMBER(10,0), -- This field will hold a store

number which will be used to relate the current store to the historical data of an

existing store.

 tsf_entity_id NUMBER(10,0), -- This is the Id of the transfer

entity this store belongs to. A transfer entity is a group of locations that are a

part of single legal entity and share same accounting set of books.

 org_unit_id NUMBER(15,0), -- Column will contain the

organizational unit ID value.

 auto_rcv VARCHAR2(1), -- This column will indicate whether

the client is allowing automatic receipt for the store. Valid Values are Y (Yes),

N (No), D (System Default). Default value should be D.

 remerch_ind VARCHAR2(1), -- Identifies stores that are

undergoing a significant remerchandising effort. Used only when AIP is integrated

with RMS.

 wf_customer NUMBER(10,0), -- Numeric Id of the customer.

 timezone VARCHAR2(64), -- Indicates the time zone of the

store. For example, America/New_York.

 customer_order_loc_ind VARCHAR2(1), -- This Column determines whether the

location is customer order location or not.

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_store_p PRIMARY KEY (store_id)

);

rxmdi_store_addr
CREATE TABLE rxmdi_store_addr (

 store_id NUMBER(10,0) NOT NULL DEFERRABLE INITIALLY

DEFERRED, -- Contains the unique ID of the store. Data will always be present in

this field.

 addr NUMBER(11) NOT NULL,-- This column

contains a unique number used to distinguish between different addresses.

 Incremental Data Integration (RIB) 11

 addr_type VARCHAR2(2) NOT NULL, -- Contains the

code used to identify the address type. Common examples include 01 (Business), 02

(Postal), 03 (Returns), 04 (Order), 05 (Invoice) and 06 (Remittance). Data will

always be present in this field.

 addr_type_desc VARCHAR2(20), -- Contains the code used to

identify the address type. Common Common examples include Business, Postal,

Returns, Order, Invoice and Remittance. Description data is only sent in the

primary integration language of the system.

 primary_addr_ind VARCHAR2(1) NOT NULL, -- Indicates

whether the address is the primary address for the address type. Valid values are

Y and N.

 add_1 VARCHAR2(240) NOT NULL, -- Contains the

first line of the address. This information is required.

 add_2 VARCHAR2(240), -- This column contains the second

line of the address.

 add_3 VARCHAR2(240), -- This column contains the third

line of the address.

 city VARCHAR2(120) NOT NULL, -- Contains the

name of the city that is associated with the address. This information is

required.

 county VARCHAR2(250), -- This column holds the county

name for the location.

 state VARCHAR2(3), -- This column contains the state

abbreviation for the address.

 country VARCHAR2(3) NOT NULL, -- Contains the ISO

3166-1 country code associated with the address. This information is required.

 post_code VARCHAR2(30), -- This column contains the zip code

for the address.

 jurisdiction_code VARCHAR2(10), -- This column contains the name of

the contact for the supplier at this address.

 contact_name VARCHAR2(120), -- This column contains the name of

the contact for the supplier at this address.

 contact_phone VARCHAR2(20), -- This column contains the phone

number of the contact person at this address.

 contact_fax VARCHAR2(20), -- This column contains the fax

number of the contact person at this address.

 contact_email VARCHAR2(100), -- This column contains the email

address of the partner or suppliers representative contact.

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_store_addr_p PRIMARY KEY (store_id, addr) DEFERRABLE INITIALLY

DEFERRED

);

rxmdi_store_site
CREATE TABLE rxmdi_store_site(

 store_id NUMBER(10) NOT NULL,

 site_id VARCHAR2(40),

 catalog_id VARCHAR2(40),

 price_list_id VARCHAR2(40),

 sale_list_id VARCHAR2(40),

 file_name VARCHAR2(40),

 folder_id VARCHAR2(40),

 CONSTRAINT rxmdi_store_site_p PRIMARY KEY(store_id)

);

rxmdi_wh
CREATE TABLE rxmdi_wh (

 wh_id NUMBER(10,0) NOT NULL,--

12 Oracle Commerce Retail Extension Module

Contains the number which uniquely identifies the warehouse.The wh table stores

all warehouses in the system.Both virtual and physical warehouses will be stored

on this table.The addition of the new column, physical_wh, helps determine which

warehouses are physical and which are virtual.All physical warehouses will have a

physical_wh column value equal to their wh number.Virtual warehouses will have a

valid physical warehouse in this column.

 wh_name VARCHAR2(150) NOT NULL,

Contains the name of the warehouse which, along with the warehouse number,

identifies the warehouse.

 wh_name_secondary VARCHAR2(150),-- Secondary name of the warehouse.

 email VARCHAR2(100),-- Holds the email address for the

location

 vat_region NUMBER(4,0),-- warehouse is located.

 org_hier_type NUMBER(4,0),-- Contains the organization type that

will be used in reporting purposes for the warehouse. The type comes from the

organizational hierarchy.Valid values are:1 = Company 10 = Chain 20 = Area 30 =

Region 40 = District 50 = Store

 org_hier_value NUMBER(10,0),-- Contains the code associated with the

specific organizational hierarchy type. Valid values include the company number,

chain number, area number, etc.

 currency_code VARCHAR2(3) NOT NULL, -- This field contains

the currency code under which the warehouse operates.

 physical_wh NUMBER(10,0), -- This column will contain the number

of the physical warehouse that is assigned to the virtual warehouse.

 primary_vwh NUMBER(10,0), -- This field holds the virtual

warehouse that will used as the basis for all transactions for which only a

physical warehouse and not a virtual warehouse has not been specified.

 channel_id NUMBER(4,0), -- This column will contain the channel

for which the virtual warehouse will be assigned.

 stockholding_ind VARCHAR2(1) NOT NULL,-- This column will

indicate if the warehouse is a stock holding location. In a non-multichannel

environment, this will always be Y. In a multichannel environment it will be N

for a physical warehouse and Y for a virtual warehouse.

 break_pack_ind VARCHAR2(1), -- Indicates whether or not the warehouse

is capable of distributing less than the supplier case quantity. Valid values

are : Y or N.

 redist_wh_ind VARCHAR2(1), -- Indicates that the warehouse is a Re-

Distribution warehouse. Used as a location on Purchase Orders in place of actual

locations that are unknown at the time of Purchase Order creation and approval.

This value allows the Redistribution Report to identify orders requiring

redistribution. A Warehouse with this indicator will not be limited in any RMS

transactions. Valid values are Y or N.

 delivery_policy VARCHAR2(6),-- Contains the delivery policy of the

warehouse. Next Day indicates that the if a location is closed, the warehouse

will deliver on the next day. Next Valid Delivery Day indicates that the

warehouse will wait until the next scheduled delivery day before delivering. Valid

values come from the DLVY code on code_head/code_detail.

 restricted_ind VARCHAR2(1) , -- Indicator used to restrict virtual

warehouses from receiving stock during an inbound type transaction (ex. positive

SOH inventory adjustment, PO over-receipt) when stock needs to be prorated across

virtual warehouses within a physical warehouse because a virtual warehouse in the

physical warehouse has not been identified for the transaction. The indicator

will restrict the virtual warehouse from receiving stock unless all the valid

virtual warehouses determined by the system are restricted, then the stock will be

distributed across those restricted virtual warehouses. This indicator will only

be used in a multi-channel environment. It is always set to No in a single

channel environment.

 Incremental Data Integration (RIB) 13

 protected_ind VARCHAR2(1), -- Indicator used to determine if the

virtual warehouse is affected last in transactions where inventory is removed or

affected first in short-shipment type transactions where inventory is being added.

The indicator will be used in any outbound or inventory removal type transactions

(ex. RTVs, negative SOH inventory adjustments, etc.) when the system has to

distribute the transaction quantity across virtual warehouses within a physical

warehouse either because a virtual warehouse has not been specified or couldnt be

derived or if a virtual warehouse doesnt have enough stock to cover the

transaction quantity and stock needs to be pulled from other virtual warehouse

within the physical warehouse. The indicator will also be used for inbound type

transactions where there is some sort of short-shipment ex. a short-shipment for a

PO). The indicator will determine which virtual warehouses will have their order

quantity fulfilled first with the receipt quantity. Note that this indicator does

not guarantee that stock will not be pulled from the virtual warehouse, it is only

used to ensure that the virtual warehouse is affected last. This indicator will

only be used in a multi-channel environment. It is always set to No in a single

channel environment.

 forecast_wh_ind VARCHAR2(1) , -- This indicator determines if a

warehouse is forecastable. The intent of this indicator is to restrict the

information being sent to RDF against which to generate forecasts.

 rounding_seq NUMBER(10,0), -- This column determines which virtual

warehouses within a physical warehouse should be rounded together as well as

determining which virtual warehouse receives the additional stock or decreased

stock due to rounding. This value will be a virtual warehouse number. All

warehouses will the same rounding seq number will be rounded together with the

warehouse that equals the rounding seq receiving any extra stock.

 repl_ind VARCHAR2(1) , -- This indicator determines if a

warehouse is replenishable.

 repl_wh_link NUMBER(10,0),-- This field holds the replenishable

warehouse that is linked to this virtual warehouse. This link implies that the

virtual warehouse is included in the net inventory calculations for the

replenishable warehouse.

 repl_src_ord NUMBER(1,0), -- This field contains the order from

which the inventory is sourced from the linked warehouses.

 ib_ind VARCHAR2(1) ,-- This field indicates if the warehouse

is an investment buy warehouse.

 ib_wh_link NUMBER(10,0), -- This field contains the investment

buy warehouse that is linked to the virtual warehouse. This link implies that the

virtual warehouse is included in the net inventory calculations for the investment

buy warehouse.

 auto_ib_clear VARCHAR2(1) ,-- This indicator determines if the

investment buys inventory should be automatically transferred to the turn

(replenishable) warehouse when an order is received by the turn warehouse.

 duns_number VARCHAR2(9),-- This field holds the Dun and Bradstreet

number to identify the warehouse

 duns_loc VARCHAR2(4), -- This field holds the Dun and

Bradstreet number to identify the location

 tsf_entity_id NUMBER(10,0), -- ID of the transfer entity with which

this warehouse is associated. Valid values are found on the TSF_ENTITY table. A

transfer entity is a group of locations that share legal requirements around

product management.

 finisher_ind VARCHAR2(1),-- Yes/No value which indicates if this

virtual warehouse is an internal finisher.

 inbound_handling_days NUMBER(2,0) , -- Warehouse inbound handling days are

defined as the number of days that the warehouse requires to receive any item and

get it to the shelf so that it is ready to pick.

 org_unit_id NUMBER(15,0), -- this column will hold the oracle

oraganizational unit id value.

 vwh_type VARCHAR2(6), -- This attribute will be included in the

location downloads to AIP.

14 Oracle Commerce Retail Extension Module

 org_entity_type VARCHAR2(1), -- This is the new column that will

specify if the warehouse is a legal entity (Importer, Exporter) or a regular

warehouse. Valid values are: R - regular warehouse (including finisher); M -

importer; X - exporter. Default value is R.

 rxmdi_control VARCHAR2(20), -- This column indicates the status of

the current row data. Possible values are 'N'- New, 'P' - In Process, 'E' - Error,

S - Success, I- Ignored.

 last_update TIMESTAMP, -- This column contains the timestamp of

when the data in the row has been updated.

 CONSTRAINT rxmdi_wh_p PRIMARY KEY (wh_id)

);

rxmdi_wh_addr
CREATE TABLE rxmdi_wh_addr (

 wh_id NUMBER(10,0) NOT NULL DEFERRABLE INITIALLY

DEFERRED,-- Contains the unique ID of the wh. Data will always be present in this

field.

 addr NUMBER(11) NOT NULL, -- This column contains a

unique number used to distinguish between different addresses.

 addr_type VARCHAR2(2) NOT NULL, -- Contains the code used to

identify the address type. Common examples include 01 (Business), 02 (Postal), 03

(Returns), 04 (Order), 05 (Invoice) and 06 (Remittance). Data will always be

present in this field.

 addr_type_desc VARCHAR2(20),-- Contains the code used to identify the

address type. Common Common examples include Business, Postal, Returns, Order,

Invoice and Remittance. Description data is only sent in the primary integration

language of the system.

 primary_addr_ind VARCHAR2(1) NOT NULL, -- Indicates whether the

address is the primary address for the address type. Valid values are Y and N.

 add_1 VARCHAR2(240) NOT NULL,-- Contains the first line of

the address. This information is required.

 add_2 VARCHAR2(240),-- This column contains the second line of

the address.

 add_3 VARCHAR2(240), -- This column contains the third line of

the address.

 city VARCHAR2(120) NOT NULL, -- Contains the name of the

city that is associated with the address. This information is required.

 county VARCHAR2(250),-- This column holds the county name for the

location.

 state VARCHAR2(3),-- This column contains the state abbreviation

for the address.

 country VARCHAR2(3) NOT NULL,-- Contains the ISO 3166-1

country code associated with the address. This information is required.

 post_code VARCHAR2(30), -- This column contains the zip code for the

address.

 jurisdiction_code VARCHAR2(10), -- Identifies the jurisdiction code for the

country-state relationship.

 contact_name VARCHAR2(120),-- This column contains the name of the

contact for the supplier at this address.

contact_phone VARCHAR2(20), -- This column contains the phone number of the

contact person at this address.

 contact_fax VARCHAR2(20),-- This column contains the fax number of the

contact person at this address.

 contact_email VARCHAR2(100),-- This column contains the email address of

the partner or suppliers representative contact.

 rxmdi_control VARCHAR2(20), -- This column indicates the status of the

current row data. Possible values are 'N'- New, 'P' - In Process, 'E' - Error, S -

Success, I- Ignored.

 last_update TIMESTAMP, -- This column contains the timestamp of when

the data in the row has been updated.

 CONSTRAINT rxmdi_wh_addr_p PRIMARY KEY (wh_id, addr)DEFERRABLE INITIALLY

DEFERRED

 Incremental Data Integration (RIB) 15

);

rxmdi_diff
CREATE TABLE rxmdi_diff(

 diff_id VARCHAR2(10) NOT NULL, -- Contains the unique ID of

the diff. Data will always be present in this field.

 diff_desc VARCHAR2(120) NOT NULL,-- Contains the type code for

the diff. All diffs belong to one and only one type.

 diff_type VARCHAR2(6) NOT NULL, -- This field will hold a

value of the types of differentiators contained in this differentiator group,such

as S -size, C -color, F -flavor, E -scent, P -pattern. Valid values are stored in

the DIFF_TYPE table.

 diff_type_desc VARCHAR2(120) NULL, -- Contains the description of

the diff. Data will always exist in this field.

 industry_code VARCHAR2(10) NULL,-- Optionally can hold the unique

code used by industry standards to identify the differentiator. For example, in

the US, the National Retail Federation defines a standard Color and Size Codes

that gives retailers, vendors and manufacturers a common language for product

color and size identification for EDI purposes. For example, mens pants size

combination 32x32 has a NRF code number 10492.

 industry_subgroup VARCHAR2(10) NULL,-- Optionally can hold a sub-

grouping code used by industry standards to further identify the differentiator.

For example, in the US, the National uses a subgroup for colors (e.g. purple is

defined as 500; dark purple represents a range from 501 - 509, medium purple

represents a range from 510 - 519, bright purple represents a range from 520 -

529, etc.).

 rxmdi_control VARCHAR2(20) NULL,-- Controller/Flag for RXMDI to

determine state of record

 last_update TIMESTAMP NULL,--Timestamp of when the row is

updated

 CONSTRAINT rxmdi_diff_p PRIMARY KEY(diff_id)

);

rxmdi_diff_grp
CREATE TABLE rxmdi_diff_grp (

 diff_group_id VARCHAR2(10) NOT NULL,-- This field will hold a

unique number id for the differentiator group. Data will always be present in

this field.

 diff_group_desc VARCHAR2(120) NOT NULL, -- Description of the

differentiator group (for example: Mens Shirt Sizes, Womens Shoe Sizes, Girls

Dress Sizes, Shower Gel Scents, Yogurt Flavors, etc.). Description data is only

sent in the primary integration language of the system.

 diff_type_id VARCHAR2(6) NOT NULL,-- This field will hold a

value of the types of differentiators contained in this differentiator group,

including but not limited to: S (size), C (color), F (flavor), E (scent), P

(pattern).

 diff_type_desc VARCHAR2(120) NULL, -- Contains the description

of the differentiator type. For Example: Size, Color, Flavor, Scent, Pattern.

Description data is only sent in the primary integration language of the system.

rxmdi_control VARCHAR2(20) NULL,-- Controller/Flag for RXMDI to

determine state of record

 last_update TIMESTAMP NULL,--Timestamp of when the row is

updated

 CONSTRAINT diff_grp_p PRIMARY KEY(diff_group_id)

);

rxmdi_diff_grp_dtl
CREATE TABLE rxmdi_diff_grp_dtl(

 diff_group_id VARCHAR2(10) NOT NULL,-- This field will hold a

unique id for the differentiator group. Data will always be present in this

field.

16 Oracle Commerce Retail Extension Module

 diff_id VARCHAR2(10) NOT NULL,-- This field will hold a

unique id for the diff that is a member of this diff group. Data will always be

present in this field.

 rxmdi_control VARCHAR2(20) NULL,-- Controller/Flag for RXMDI

to determine state of record

 last_update TIMESTAMP NULL,--Timestamp of when the row is

updated

 CONSTRAINT pk_diff_grp_dtl PRIMARY KEY(diff_group_id,diff_id)

);

rxmdi_item_hdr

CREATE TABLE rxmdi_item_hdr(

 item VARCHAR2(25) NOT NULL,

 item_parent VARCHAR2(25) NULL,

 item_grandparent VARCHAR2(25) NULL,

 pack_ind VARCHAR2(1) NULL,

 simple_pack_ind VARCHAR2(1) NULL,

 item_level NUMBER(1,0) NULL,

 tran_level NUMBER(1,0) NULL,

 inventory_ind VARCHAR2(1) NULL,

 diff_1_level VARCHAR2(6) NULL,

 diff_1_type VARCHAR2(6) NULL,

 diff_1 VARCHAR2(10) NULL,

 diff_2_level VARCHAR2(6) NULL,

 diff_2_type VARCHAR2(6) NULL,

 diff_2 VARCHAR2(10) NULL,

 diff_3_level VARCHAR2(6) NULL,

 diff_3_type VARCHAR2(6) NULL,

 diff_3 VARCHAR2(10) NULL,

 diff_4_level VARCHAR2(6) NULL,

 diff_4_type VARCHAR2(6) NULL,

 diff_4 VARCHAR2(10) NULL,

 dept NUMBER(4,0) NULL,

 unique_class NUMBER(10,0) NULL,

 class NUMBER(4,0) NULL,

 unique_subclass NUMBER(10,0) NULL,

 subclass NUMBER(4,0) NULL,

 status VARCHAR2(1) NULL,

 description VARCHAR2(250),

 secondary_item_desc VARCHAR2(250),

 short_desc VARCHAR2(120),

 brand_name VARCHAR2(30),

 merchandise_ind VARCHAR2(1),

 primary_ref_item_ind VARCHAR2(1) ,

 cost_zone_group_id NUMBER(4,0),

 standard_uom VARCHAR2(4),

 uom_conv_factor NUMBER(20,4),

 package_size NUMBER(12,4),

 package_uom VARCHAR2(4),

 store_order_multiple VARCHAR2(1),

forecast_ind VARCHAR2(1),

 currency_code VARCHAR2(3),

 original_unit_retail NUMBER(20,4),

 mfg_rec_retail NUMBER(20,4),

 retail_label_type VARCHAR2(6),

 retail_label_value NUMBER(20,4),

 item_aggregate_ind VARCHAR2(1) ,

 diff_1_aggregate_ind VARCHAR2(1) ,

 diff_2_aggregate_ind VARCHAR2(1) ,

 diff_3_aggregate_ind VARCHAR2(1) ,

 diff_4_aggregate_ind VARCHAR2(1) ,

 item_number_type VARCHAR2(6) NOT NULL,

 Incremental Data Integration (RIB) 17

 format_id VARCHAR2(6),

 prefix NUMBER(2,0),

 rec_handling_temp VARCHAR2(6),

 rec_handling_sens VARCHAR2(6),

 perishable_ind VARCHAR2(1),

 waste_type VARCHAR2(6),

 waste_pct VARCHAR2(6),

 default_waste_pct NUMBER(12,4),

 constant_dim_ind VARCHAR2(1),

 contains_inner_ind VARCHAR2(1),

 sellable_ind VARCHAR2(1) ,

 orderable_ind VARCHAR2(1) ,

 pack_type VARCHAR2(1),

 order_as_type VARCHAR2(1),

 item_service_level VARCHAR2(6),

 gift_wrap_ind VARCHAR2(1) ,

 ship_alone_ind VARCHAR2(1) ,

 item_form_ind VARCHAR2(1),

 catch_weight_ind VARCHAR2(1) ,

 catch_weight_type VARCHAR2(1),

 catch_weight_order_type VARCHAR2(6),

 catch_weight_sale_type VARCHAR2(6),

 catch_weight_uom VARCHAR2(4),

 deposit_item_type VARCHAR2(6),

 container_item VARCHAR2(25),

 deposit_in_price_per_uom VARCHAR2(6),

 soh_inquiry_at_pack_ind VARCHAR2(1),

 notional_pack_ind VARCHAR2(1),

 comments VARCHAR2(2000),

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_item_hdr_p PRIMARY KEY (item)

);

rxmdi_item_image
CREATE TABLE rxmdi_item_image (

 item VARCHAR2(25) NOT NULL,-- This field contains the

unique alphanumeric identifier for the item, the image is for.

 image_name VARCHAR2(120) NOT NULL,-- This field contains the name

of the image of the item.

 image_addr VARCHAR2(255) NOT NULL, -- This field contains the

actual path where the file of the image of the item is stored.

 image_desc VARCHAR2(40) NULL,-- This field contains the

description associated with the image of the item.

 image_type VARCHAR2(6) NULL, -- This field contains the type of

the image of the item. Valid values are defined as member of IITD code type.

 primary_ind VARCHAR2(1) NULL, -- This field will indicate

whether this record is the primary image of the item or not. Valid values are

Y(es) and N(o) only.Default to N value if left blank or set as NULL.

display_priority NUMBER(4,0) NULL, -- This field will specify the display

sequence order of images associated to the item per priority.

 rxmdi_control VARCHAR2(20) NULL,

 last_update TIMESTAMP NULL,

 CONSTRAINT rxmdi_item_image_p PRIMARY KEY (item,image_name)

);

rxmdi_item_loc
CREATE TABLE RXMDI_ITEM_LOC (

 loc_type VARCHAR2(1) NOT NULL, -- Describes the

type of location. Valid values include S (store), W (warehouse) and E (external

finisher). Data will always be present in this field.

18 Oracle Commerce Retail Extension Module

 location NUMBER(10,0) NOT NULL, -- Numeric ID of

location. The intersection of location and item is a distinct entity. Data will

always be present in this field.

 item VARCHAR2(25) NOT NULL, -- ID of item.

The intersection of location and item is a distinct entity. Data will always be

present in this field.

 item_parent VARCHAR2(25), -- ID identifies the item/group at

the level above the item. This value must exist as an item in another row on the

item_master table.

 item_grandparent VARCHAR2(25), -- identifies the item/group two

levels above the item. This value must exist as both an item and an item parent in

another row on the item_master table.

 currency_code VARCHAR2(3), -- This field contains the currency

code under which the store/wh operates.

 initial_unit_retail NUMBER(20,4), -- Contains the unit retail price in

the standard unit of measure for the item/location combination. This field is

stored in the local currency.

 selling_unit_retail NUMBER(20,4), -- Contains the unit retail price in

the selling unit of measure for the item/location combination. This field is

stored in the local currency.

 selling_uom VARCHAR2(4), -- Contains the selling unit of

measure for an items single-unit retail.

 taxable_ind VARCHAR2(1), -- Indicates if item is taxable at

the store.

 local_item_desc VARCHAR2(250) NOT NULL, -- Contains the

local description of the item. This may be the same as the primary description of

the item, a regional description of the item (e.g. jimmies vs sprinkles in the US

or roll vs bap vs cob vs bun in the UK), or a value in a local language (e.g.

Overlay dress true black knit at US stores vs Lagenkleid - Strick, tiefschwarz at

stores in Germany). The intent is that this string is appropriate to print

description on signage/receipts at this location.

 local_short_desc VARCHAR2(120), -- Contains the local short

description of the item.

 ti NUMBER(12,4), -- Number of shipping units (cases)

that make up one tier of a pallet.

 hi NUMBER(12,4), -- Number of tiers that make up a

complete pallet (height).

 store_order_multiple VARCHAR2(1), -- This column contains the multiple

in which the item needs to be shipped from a warehouse to the location.

 status VARCHAR2(1), -- Current status of item at the

store.

 daily_waste_pct NUMBER(12,4), -- Average percentage lost from

inventory on a daily basis due to natural wastage.

 measure_of_each NUMBER(12,4), -- Size of an each in terms of the

uom_of_price. For example 12 oz. Used in ticketing.

 measure_of_price NUMBER(12,4), -- Size to be used on the ticket in

terms of the uom_of_price.

 uom_of_price VARCHAR2(4), -- Unit of measure that will be used

on the ticket for this item.

 primary_variant VARCHAR2(25), -- This field is used to address

sales of PLUs (i.e. above transaction level items) when inventory is tracked at a

lower level (i.e. UPC). This field will only contain a value for items one level

higher than the transaction level.

 primary_cost_pack VARCHAR2(25), -- This field contains an item

number that is a simple pack containing the item in the item column for this

record.

 primary_supplier NUMBER(10,0), -- Numeric identifier of the

supplier who will be considered the primary supplier for the specified item/loc.

 primary_origin_country VARCHAR2(3), -- Contains the identifier of the

origin country which will be considered the primary country for the specified

item/location.

 Incremental Data Integration (RIB) 19

 receive_as_type VARCHAR2(2), -- This column determines whether the

stock on hand for a pack component item or the buyer pack itself will be updated

when a buyer pack is received at a warehouse.

 inbound_handling_days NUMBER(2,0), -- This field indicates the number of

inbound handling days for an item at a warehouse type location.

 source_method VARCHAR2(1), -- This value will be used to specify

how the adhoc PO/TSF creation process should source the item/location request.

 source_wh NUMBER(10,0), -- This value will be used by the

ad-hoc PO/Transfer creation process to determine which warehouse to fill the

stores request from.

 uin_type VARCHAR2(6), -- This column will contain the

unique identification number (UIN) used to identify the instances of the item at

the location.

 uin_label VARCHAR2(6), -- This column will contain the label

for the UIN when displayed in SIM.

 capture_time_in_proc VARCHAR2(6), -- This column will indicate when the

UIN should be captured for an item during transaction processing.

 ext_uin_ind VARCHAR2(1), -- EXT_UIN_IND This Yes/No indicator

indicates if UIN is being generated in the external system.

 intentionally_range_ind VARCHAR2(1), -- This column determines if the

location is ranged intentionally by the user for replenishment/selling or

incidentally ranged by the RMS programs when item is not ranged to a specific

location on the transaction.

 costing_location NUMBER(10,0), -- Numeric identifier of the costing

location for the franchise store. This field may contain a store or a warehouse.

 costing_loc_type VARCHAR2(1), -- This field holds the type of

costing location in the costing location field.

 launch_date TIMESTAMP, -- Holds the date that they item should

first be sold at the location.

 qty_key_options VARCHAR2(6), -- Determines whether the qty key on

a POS should be used for this item at the location.

 manual_price_entry VARCHAR2(6), -- Determines whether the price

can/should be entered manually on a POS for this item at the location.

 deposit_code VARCHAR2(6), -- Indicates whether a deposit is

associated with this item at the location.

 food_stamp_ind VARCHAR2(1), -- Indicates whether the item is

approved for food stamps at the location. This value will be downloaded to the

POS.

 wic_ind VARCHAR2(1), -- Indicates whether the item is

approved for WIC at the location. This value will be downloaded to the POS.

 proportional_tare_pct NUMBER(12,4), -- Holds the value associated of the

packaging in items sold by weight at the location.

 fixed_tare_value NUMBER(12,4), -- Holds the value associated of the

packaging in items sold by weight at the location.

 fixed_tare_uom VARCHAR2(4), -- Holds the unit of measure value

associated with the tare value. The only processing RMS does involving the fixed

tare value and UOM is downloading it to the POS.

 reward_eligible_ind VARCHAR2(1), -- Holds whether the item is legally

valid for various types of bonus point/award programs at the location.

 natl_brand_comp_item VARCHAR2(25), -- Holds the nationally branded item

to which you would like to compare the current item.

return_policy VARCHAR2(6), -- Holds the return policy for the item

at the location. Valid values for this field belong to the code_type RETP.

 stop_sale_ind VARCHAR2(1), -- Indicates that sale of the item

should be stopped immediately at the location (i.e. in case of recall etc).

 elect_mtk_club VARCHAR2(6), -- Holds the code that represents the

marketing clubs to which the item belongs at the location.

 report_code VARCHAR2(6), -- Code to determine which reports

the location should run.

 req_shelf_life_on_selection NUMBER(4,0), -- Holds the required shelf life for

an item on receipt in days.

 ib_shelf_life NUMBER(4,0), -- This column will hold the

Investment Buyspecific shelf life for the item/location

20 Oracle Commerce Retail Extension Module

 store_orderable_ind VARCHAR2(1), -- STORE_REORDERABLE_IND Indicates

whether the store may re-order the item. This field is required to be either= Y -

yes or N - no. The field will default to N. No RMS processing is based on the

value in this field.

 rack_size VARCHAR2(6), -- Indicates the rack size that

should be used for the item. This field is not required. Valid values for the

field can be found and defined in the code_type RACK.

 full_pallet_item VARCHAR2(1), -- Indicates whether a store must

reorder an item in full pallets only.

 in_store_market_basket VARCHAR2(6), -- Holds the in store market basket

code for this item/location combination. Valid values for the field can be found

in the code_type STMB.

 storage_location VARCHAR2(7), -- Holds the current storage location

or bin number for the item at the location. No RMS processing is based on the

value in this field.

 alt_storage_location VARCHAR2(7), -- Holds the preferred alternate

storage location or bin number for the item at the location.

 returnable_ind VARCHAR2(1), -- This field will contain a value of

Yes when the item can be returned to the location

 refundable_ind VARCHAR2(1), -- This field will contain a value of

Yes when the item is refundable at the location.

 backorder_ind VARCHAR2(1), -- This field will contain a value of

Yes when the item can be back ordered to the location

 merchandise_ind VARCHAR2(1), -- Indicates if the item is a

merchandise item (Y, N).

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_item_loc_p PRIMARY KEY (item, location)

);

rxmdi_merch_hier
 CREATE TABLE rxmdi_merch_hier(

 hierarchy_level VARCHAR2(10) NOT NULL, -- This

information identifies the level of the merchandise hierarchy that is described by

this record. Value is always DIVISION, GROUP, DEPT, CLASS, SUBCLASS. This field

can not be null.

 hierarchy_id VARCHAR2(20) NOT NULL, --Prefix plus

Id. Example for department 3 hierarchyId will be d3 . For department 1 and class 2

hierarchyId will be d1c2

 hierarchy_node_id NUMBER(10,0) NULL, -- This

information identifies the the node of the merchandise hierarchy that is described

by this record. This field can not be null. HierarchyNodeId is only unique within

an HierarchyLevel (meaning it is possible, for example, that there is both a

DIVISION 1 and a GROUP 1 in the full merchandise hierarchy).

 hierarchy_node_name VARCHAR2(150) NULL, -- Name of the

merchandise hierarchy entity. Description data is only sent in the primary

integration language of the system.

parent_level VARCHAR2(10) NOT NULL, -- Level of

the merchandise hierarchy above the current node. Both ParentLevel and ParentId

are should be evaluated to correctly traverse the hierarchy

 parent_node_id NUMBER(10,0) NULL, -- Id of the

level of the merchandise hierarchy above the current node. Both ParentLevel and

ParentNodeId are should be evaluated to correctly traverse the hierarchy.

 grandparent_merch_display_id VARCHAR2(20) NULL, -- Only

populated for SUBCLASS entities. For subclasses, this column will hold the

department ID used for display purposes in RMS (department is the grandparent of

subclass). Note that in RMS, dept, class and subclass display IDs are combined to

form a composite unique key. Every department can have a class 1. Every class in

Department 1000 can have a subclass 1. Looking only at the display ids, all three

values are required for uniqueness. Node that for subclasses, the HierarchyNodeId

is unique. It is a non-displayed, unique value that emilinates the need for a

composite key.

 Incremental Data Integration (RIB) 21

 parent_merch_display_id VARCHAR2(20) NULL, -- Only

populated for CLASS and SUBCLASS entities. For classes, this column holds the

department ID used for display purposes in RMS (department is the parent of class)

For subclasses, this column holds the class ID used for display. Note that in

RMS, dept, class and subclass display IDs are combined to form a composite unique

key. Every department can have a class 1. Every class in Department 1000 can

have a subclass 1. Looking only at the display ids, all three values are required

for uniqueness. Node that for subclasses and classes, the HierarchyNodeId is

unique. It is a non-displayed, unique value that emilinates the need for a

composite key.

 merch_display_id VARCHAR2(20) NOT NULL, -- Only

populated for DEPARTMENT, CLASS and SUBCLASS entities. For departments, this

column holds the department display id. For subclasses, this column holds the

subclass display id. Note that in RMS, dept, class and subclass display IDs are

combined to form a composite unique key. Every department can have a class 1.

Every class in Department 1000 can have a subclass 1. Looking only at the display

ids, all three values are required for uniqueness.

 purchase_type NUMBER(1) NULL, -- Contains a

code which indicates whether items in this department are normal merchandise,

consignment stock or concession items. Valid values are: 0 = Normal Merchandise, 1

= Consignment Stock, 2 = Concession Items

 rxmdi_control VARCHAR2(20) NULL,

 last_update TIMESTAMP NULL,

 CONSTRAINT rxmdi_merch_hier_p PRIMARY KEY (hierarchy_level, hierarchy_id)

);

rxmdi_rltd_itm
CREATE TABLE rxmdi_rltd_itm (

 relationship_id NUMBER(20,0) NOT NULL, -- Unique

identifier for each relationship header. Data will always exist in this field.

 item VARCHAR2(25) NOT NULL, -- Item for

which the relationships are defined. Data will always exist in this field.

 relationship_name VARCHAR2(255) NOT NULL, -- Description

of the relationship. Data will always exist in this field.

 relationship_type VARCHAR2(6) NOT NULL, -- Describes the

type of relationship.Valid values include: CRSL (Cross Sell), SUBS (Substitution),

UPSL (Up-sell).

 mandatory_ind VARCHAR2(1) NOT NULL, -- This field

indicates whether the relationship should be mandatory. For example, an item like

a laptop may have a mandatory cross sell relationship. The related items could be

different power cords for the US, UK, Mainland Europe, India, etc. When the laptop

is sold, it should be mandatory that one of the related power cords also be

selected. Generally, only cross sell relationships are mandatory. Substitution

and upsell relationships can be defined as mandatory, but in those cases, the

definition of mandatory is at the discretion of the client and generally means

that substitution or upsell must, as business process, be offered to consumers.

 rxmdi_control VARCHAR2(20),

last_update TIMESTAMP,

 CONSTRAINT rxmdi_rltd_itm_p PRIMARY KEY (relationship_id)

);

rxmdi_rltd_itm_dtl
CREATE TABLE rxmdi_rltd_itm_dtl (

 relationship_id NUMBER(20,0) NOT NULL DEFERRABLE

INITIALLY DEFERRED, -- Unique identifier for each relationship header. Data will

always exist in this field.

 related_item VARCHAR2(25) NOT NULL, -- Item id

of the related item. This is the item that should be Cross Sold, Substituted, or

Up Sold when the item on the parent record is sold.

 priority NUMBER(4,0), -- Applicable only in case of

relationship type SUBS. In case of multiple related substitute items, this column

could be used (optional) to define relative priority.

22 Oracle Commerce Retail Extension Module

 start_date TIMESTAMP, -- From this date related item can

be used on transactions.

 end_date TIMESTAMP, -- Till this date related item can

be used on transactions. A value of null means that it is effective forever.

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_rltd_itm_dtl_p PRIMARY KEY (relationship_id,

related_item)DEFERRABLE INITIALLY DEFERRED

);

rxmdi_pack_item
CREATE TABLE rxmdi_pack_item (

 pack_no VARCHAR2(25) NOT NULL, -- Alphanumeric

value that uniquely identifies the pack for which details are held in this table.

 seq_no NUMBER(4,0) NULL, -- Contains a

sequence number used to uniquely identify a row in the PACKITEM table.

 item VARCHAR2(25), -- Alphanumeric

value that identifies the component item within the pack. If pack item is created

using pack template then the component items are stored in the PACKITEM_BREAKOUT

table and this field is null.

 item_parent VARCHAR2(25), -- This field

contains the parent item (if any) associated with the component item of the pack.

 pack_tmpl_id NUMBER(8,0), -- Contains the

pack template ID associated with the pack item.

 pack_qty NUMBER(12,4) NOT NULL, -- Contains the

quantity of component items within the pack. If the pack item is created using a

pack template then the quantity specified here is 1 and the actual component item

quantities in the pack are stored in PACKITEM_BREAKOUT table.

 rxmdi_control VARCHAR2(20),

 last_update TIMESTAMP,

 CONSTRAINT rxmdi_pack_item_p PRIMARY KEY (pack_no, item)

);

RIB XSD to RXMDI Staging Scheme Mapping
In the following tables, RIB XSD is in the left column and the RXMDI Staging schema is
in the right column.

StoreDesc rxmdi_store

store store_id

store_type store_type

store_name store_name

store_name10 store_name_10

store_name3 store_name_abbr

store_class store_class_id

store_mgr_name manager

store_open_date open_date

store_close_date close_date

acquired_date acquire_date

fax_number fax_number

email email

 Incremental Data Integration (RIB) 23

StoreDesc rxmdi_store

total_square_ft total_sq_feet

selling_square_ft selling_sq_feet

linear_distance linear_distance

stockholding_ind stock_holding_ind

channel_id channel_id

store_format store_format_id

mall_name mall_name

district district

transfer_zone transfer_zone

description transfer_zone_desc

default_wh default_Wh

stop_order_days stop_order_days

start_order_days start_order_days

currency_code currency_code

lang store_lang_iso_code

duns_number duns_number

org_unit_id org_unit_id

timezone_name timezone

 rxmdi_control

 last_update

AddrDesc rxmdi_store_addr

addr addr

addr_type addr_type

primary_addr_ind primary_addr_ind

add_1 add_1

add_2 add_2

add_3 add_3

city_id city

country_id county

state_name state

country_name country

post post_code

jurisdiction_code jurisdiction_code

24 Oracle Commerce Retail Extension Module

AddrDesc rxmdi_store_addr

contact_name contact_name

contact_phone contact_phone

contact_fax contact_fax

contact_email contact_email

 rxmdi_control

 last_update

WhDesc rxmdi_wh

wh wh_id

wh_name wh_name

email email

currency_code currency_code

physical_wh physical_wh

channel_id channel_id

stockholding_ind stockholding_ind

break_pack_ind break_pack_ind

redist_wh_ind redist_wh_ind

delivery_policy delivery_policy

duns_number duns_number

duns_loc duns_loc

org_unit_id org_unit_id

 rxmdi_control

 last_update

AddrDesc rxmdi_wh_addr

addr addr

addr_type addr_type

primary_addr_ind primary_addr_ind

add_1 add_1

add_2 add_2

add_3 add_3

city_id city

country_id county

 Incremental Data Integration (RIB) 25

AddrDesc rxmdi_wh_addr

state_name state

country_name country

post post_code

jurisdiction_code jurisdiction_code

contact_name contact_name

contact_phone contact_phone

contact_fax contact_fax

contact_email contact_email

 rxmdi_control

 last_update

ItemHdrDesc rxmdi_item_hdr

item item

item_parent item_parent

item_grandparent item_grandparent

pack_ind pack_ind

simple_pack_ind simple_pack_ind

item_level item_level

tran_level tran_level

inventory_ind inventory_ind

diff_1 diff_1

diff_1_type diff_1_type

diff_2 diff_2

diff_2_type diff_2_type

diff_3 diff_3

diff_3_type diff_3_type

diff_4 diff_4

diff_4_type diff_4_type

dept dept

class Class

subclass subclass

status status

item_desc description

short_desc short_desc

26 Oracle Commerce Retail Extension Module

ItemHdrDesc rxmdi_item_hdr

brand brand_name

merchandise_ind merchandise_ind

primary_ref_item_ind primary_ref_item_ind

cost_zone_group_id cost_zone_group_id

standard_uom standard_uom

uom_conv_factor uom_conv_factor

package_size package_size

package_uom package_uom

store_ord_mult store_order_multiple

forecast_ind forecast_ind

mfg_rec_retail mfg_rec_retail

retail_label_type retail_label_type

retail_label_value retail_label_value

item_number_type item_number_type

format_id format_id

prefix prefix

handling_temp rec_handling_temp

handling_sensitivity rec_handling_sens

perishable_ind perishable_ind

waste_type waste_type

waste_pct waste_pct

default_waste_pct default_waste_pct

const_dimen_ind constant_dim_ind

contains_inner_ind contains_inner_ind

sellable_ind sellable_ind

orderable_ind orderable_ind

pack_type pack_type

order_as_type order_as_type

item_service_level item_service_level

gift_wrap_ind gift_wrap_ind

ship_alone_ind ship_alone_ind

item_xform_ind item_form_ind

catch_weight_ind catch_weight_ind

deposit_item_type deposit_item_type

 Incremental Data Integration (RIB) 27

ItemHdrDesc rxmdi_item_hdr

container_item container_item

deposit_in_price_per_uom deposit_in_price_per_uom

soh_inquiry_at_pack_ind soh_inquiry_at_pack_ind

notional_pack_ind notional_pack_ind

comments comments

Not available rxmdi_control

Not available last_update

ItemLocDesc rxmdi_item_loc

loc_type loc_type

loc location

item item

 item_parent

 item_grandparent

 currency_code

unit_retail initial_unit_retail

selling_unit_retail selling_unit_retail

selling_uom selling_uom

taxable_ind taxable_ind

local_item_desc local_item_desc

local_short_desc local_short_desc

 ti

 hi

 store_order_multiple

status status

 daily_waste_pct

 measure_of_each

 measure_of_price

 uom_of_price

 primary_variant

 primary_cost_pack

primary_supp primary_supplier

primary_cntry primary_origin_country

receive_as_type receive_as_type

28 Oracle Commerce Retail Extension Module

ItemLocDesc rxmdi_item_loc

 inbound_handling_days

source_method source_method

source_wh source_wh

uin_type uin_type

uin_label uin_label

capture_time capture_time_in_proc

ext_uin_ind ext_uin_ind

ranged_ind intentionally_range_ind

 costing_location

 costing_loc_type

 launch_date

 qty_key_options

 manual_price_entry

 deposit_code

 food_stamp_ind

 wic_ind

 proportional_tare_pct

 fixed_tare_value

 fixed_tare_uom

 reward_eligible_ind

 natl_brand_comp_item

 return_policy

 stop_sale_ind

 elect_mtk_club

 report_code

 req_shelf_life_on_selection

 ib_shelf_life

 store_orderable_ind

 rack_size

 full_pallet_item

 in_store_market_basket

 storage_location

 alt_storage_location

returnable_ind returnable_ind

 Incremental Data Integration (RIB) 29

ItemLocDesc rxmdi_item_loc

 refundable_ind

 backorder_ind

 merchandise_ind

 rxmdi_control

 last_update

ItemImageDesc rxmdi_item_image

item item

image_name image_name

image_addr image_addr

 image_desc

image_type image_type

primary_ind primary_ind

display_priority display_priority

 rxmdi_control

 last_update

DiffDesc rxmdi_diff

diff_id diff_id

diff_desc diff_desc

diff_type diff_type

 diff_type_desc

industry_code industry_code

industry_subcode industry_subgroup

 rxmdi_control

 last_update

DiffGrpHdrDesc rxmdi_diff_grp

diff_group_id diff_group_id

diff_group_desc diff_group_desc

diff_group_type diff_type_id

 diff_type_desc

 rxmdi_control

30 Oracle Commerce Retail Extension Module

DiffGrpHdrDesc rxmdi_diff_grp

 last_update

DiffGrpDtlDesc rxmdi_diff_grp_dtl

diff_group_id diff_group_id

diff_id diff_id

 rxmdi_control

 last_update

RelatedItemDesc rxmdi_rltd_itm

relationship_id relationship_id

item item

relationship_name relationship_name

relationship_type relationship_type

mandatory_ind mandatory_ind

 rxmdi_control

 last_update

RelatedItemDtl rxmdi_rltd_itm_dtl

related_item related_item

priority priority

effective_date start_date

end_date end_date

 rxmdi_control

 last_update

ItemBOMDesc rxmdi_pack_item

pack_n pack_no

item item

pack_qty pack_qty

 rxmdi_control

 last_update

 Incremental Data Integration (RIB) 31

department:MrchHrDeptDesc

class:MrchHrClsDesc

subclass:MrchHrSclsDesc

rxmdi_merch_hier

For department: DEPARTMENT

For class: CLASS

For subclass: SUBCLASS

hierarchy_level

Field introduced by RXM for creating primary
key. It is a unique identifier comprising all three
display IDs plus prepended prefix. Example:

For department 3: d3

For department 3, class 1: d3c1

For department 3, class 1 & subclass 4: d3c1s4

hierarchy_id

 hierarchy_node_id

 hierarchy_node_name

For department: GROUP

For class: DEPARTMENT

For subclass: CLASS

parent_level

 parent_node_id

For subclass: dept (example 123) grandparent_merch_display_id

For class: dept

For subclass: class

parent_merch_display_id

For department: dept

For class: class

For subclass: subclass

merch_display_id

purchase_type purchase_type

 rxmdi_control

 last_update

The fields not mapped and left empty are not available in the RIB XSD.

The following two attributes are created in the RXMDI Staging Schema tables for
managing the life-cycle of a record:

 rxmdi_control: Controller/Flag

 last_update: Timestamp at which the record was last updated

RXMDI EAR
The RXMDI EAR includes the Incremental binaries containing Camel Processors (JPA) to
process and persist incoming RIB Messages. It is included in the RXMDI release package
and consists of the following components:

 RIB Application Plugin JAR: This is the entry point for incoming RIB Messages from
the RIB-RXM adapter.

 RXMDI WAR: This consists of the web application components like web.xml and
applicationContext.xml.

32 Oracle Commerce Retail Extension Module

 JPA Artifacts: This includes the Entity definition XMLs and is included in the RXMDI
WAR.

 Incremental JAR: This contains all the Camel Processors and other Business Logic
required for processing and persisting incoming RIB Messages.

Extensibility
 SQL queries are externalized. The queries can be customized.

 In the Camel Context XML, the existing route can be changed, new routes can be
added and processors can be updated.

 Additional Message Families and Message Types can be subscribed to by adding
them to injectors.xml, persistence.xml, and web.xml.

 Processors can be customized with different criteria.

– New Entities can be created to extend already existing Entities.

 Incremental Data Integration (RIB) 33

Java Batch 35

6

Java Batch

Overview
Java Batch is used to call the ODI Web Service which invoke ODI Scenarios through the
ODI Java EE Agent. The Java EE Agent is installed during the installation and
configuration of the ODI. ODI Scenarios are imported during ODI setup.

RXM Batch Job Admin

The RXM Batch Job Admin Console is a web-based User Interface (deployed as a WAR)
that allows the launching of different kinds of jobs.

The Job Admin Console uses Java Batch. The Java Batch job xmls are used to invoke
corresponding ODI scenarios which then transform the data.

The Job Admin Console houses jobs which:

 Transform data from BDI to RXMDI Staging (that is, Importer Jobs).

 Transform data from RXMDI Staging to RXM (these include Direct Load SQL as well
as XML file generation).

 Transform Regular and Clearance Price data from flat files to RXM (through Flat file
to DB and then XML file generation).

 Transform Promotion data from flat files to RXMDI Staging (through Flat File to DB)
followed by Staging to RXM (through Direct Load SQL).

Additional jobs can be added by configuring new Job xmls, including them in the WAR,
and then redeploying the WAR. The new Job xmls must have corresponding ODI
scenarios which they will invoke.

RXM Batch Job Admin

36 Oracle Commerce Retail Extension Module

Job XMLs
The following example shows a typical Job XML is written using Java Batch's Job
Specification Language (JSL):

Java Batch Job XML
<?xml version="1.0" encoding="UTF-8"?>

<job id="Diff_Fnd_ImporterJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

version="1.0" >

 <!-- Set the common properties for ODI Batchlet at the Job level. These

properties

 can be overriden by setting a value at the Batchlet level -->

 <properties>

 <property name="description" value="Diff_Fnd Importer Job"/>

 </properties>

 <step id="determineDataset" next="stepDecider1">

 <batchlet ref="oracle.retail.commerce.batch.DatasetBatchlet">

 <properties>

 <property name="sourceSchemaJNDI" value="jdbc/BDIInterface" />

 <property name="stagingSchemaJNDI" value="jdbc/RXMDIStaging" />

 <property name="interfaceModule" value="Diff_Fnd" />

 </properties>

 </batchlet>

 </step>

 <decision id="stepDecider1" ref="oracle.retail.commerce.batch.StepDecider">

 <next on="COMPLETED" to="invokeODIStep"/>

 <stop on="STOPPED" exit-status="STOPPED"/>

 <fail on="FAILED" exit-status="STOPPED"/>

 </decision>

 <step id="invokeODIStep" next="stepDecider2">

 <batchlet ref="oracle.retail.commerce.batch.ODIBatchlet">

 <properties>

 <property name="providerUrl"

value="http://<hostname>:<port>/oraclediagent/OdiInvoke" />

 <property name="odiAgentCredentialKey" value="odiAgent" />

 <property name="workRep" value="WORKREP" />

 <property name="targetName" value="DIFF_BDI_STAGING" />

 <property name="targetVersion" value="001" />

 <property name="targetContext" value="PROD" />

 <property name="scenario" value="true" />

 <property name="projectCode" value="DATAIMPORT" />

 </properties>

 </batchlet>

 </step>

 <decision id="stepDecider2" ref="oracle.retail.commerce.batch.StepDecider">

 <next on="COMPLETED" to="auditStep"/>

 <next on="STOPPED" to="auditStep"/>

 <next on="FAILED" to="auditStep"/>

 </decision>

 <step id="auditStep">

 <batchlet ref="oracle.retail.commerce.batch.AuditBatchlet">

 <properties>

 <property name="stagingSchemaJNDI" value="jdbc/RXMDIStaging" />

 </properties>

 </batchlet>

 <end on="COMPLETED"/>

 </step>

</job>

 Extensibility

 Java Batch 37

Main Components include:

 Schemas: sourceSchemaJNDI, stagingSchemaJNDI. These must match the data
sources set up in the WebLogic domain where ODI is set up and RXMDI is deployed.

 Batchlets: Depending on the Job, different Batchlets may be used in the JSL such as
the DatasetBatchlet, ODIBatchlet, and AuditBatchlet.

 Decider: Depending on the complexity of a Job, a Decider is also configured such as
the StepDecider.

Configurations include:

 providerURL: The Endpoint for the OdiInvoke Web Service. Typically, this is
deployed to a Managed Server secured through HTTPS (TLS).

 odiAgentCredentialKey: The Credential Store Framework (CSF) key for the ODI
Agent credentials.

 workRep: The ODI work repository name for the ODI Agent.

 targetName: The name of the ODI Scenario or Load Plan.

 targetVersion: The target version of the ODI Scenario or Load Plan.

 targetContext: The context for executing the ODI Scenario or Load Plan.

 Scenario: The flag for target type. True if ODI Scenario, false if ODI Load Plan.

There is also an odiInvoke.properties where the Endpoint of the ODIInvoke Web Service
can be configured. The values in the Job XMLs will override the value in the
odiInvoke.properties.

Batchlets and Deciders

Batchlet

A Batchlet is a type of batch step that can be used for any type of background processing.

Decider

A Decider receives control as part of a decision element in a job. It is used to direct
execution flow during job processing. It returns an exit status that updates the current job
execution's exit status.

RXMDI Job Admin WAR
The RXM Batch Job Admin Console is built using the
BdiEdgeAppJobAdminPak16.0.0ForRxm16.0.0 tool. This tool will deploy the war
automatically. The BdiEdgeAppJobAdminPak16.0.0ForRxm16.0.0 tool is available as part
of the RXMDI release package. The configurable components of this WAR include the
Java Batch jar containing Batchlets and Deciders and the Job Xml Batch Jobs.

Extensibility
 Batchlets and Deciders are written in Java and can be extended. New Batchlets and

Deciders can also be written and the JSL can be updated to use the new Batchlets and
Deciders.

 If a new ODI Scenario is created, then a new Job XML can be created with
configurations to match the new ODI Scenario.

 Any new Batchlets and Deciders can be compiled and added to the Java Batch jar and
added to the WAR.

Extensibility

38 Oracle Commerce Retail Extension Module

 Job XMLs can be updated or new Job XMLs can be added to the WAR. The WAR can
then be redeployed to reflect the new changes.

 Extensibility

 Java Batch 39

Oracle Data Integrator 41

7

Oracle Data Integrator

The Oracle Data Integrator (ODI) is an Extract, Load, and Transform tool. ODI is used to
transform data from Database Tables to Database Tables, Database Tables to XML Files
and Flat Files to Database Tables.

Components

ODI Java EE Agent and ODI Standalone Collocated Agent

 The Java EE Agent is invoked by Java Batchlets through the ODI Web Service. The
agent in turn invokes the ODI Scenarios which perform the transformation.

 The Standalone Collocated Agent is used to encrypt passwords used in Physical
Topologies.

ODI Scenarios

 Scenarios are compiled artifacts that perform transformations.

 Scenarios use Logical Topologies.

Logical Topologies

 Logical Topologies are associated with Physical Topologies through a Context.

Context

 A Context not only associates Logical Topologies with Physical Topologies, but also
specifies the ODI Agent to be used.

Physical Topologies

 Physical Topologies represent real resources such as DB Schema, XML File, and so
on.

Java Batchlets

 Batchlets are a part of the RXM Batch Job Admin Console.

 They are used to call the ODI Web Service which invoke ODI Scenarios through the
ODI Java EE Agent.

Packaging
 Scenarios, Logical Topologies, and Context are included in the RXMDI release

package.

 Since Physical Topologies represent real resources, they will need to be created.
Instructions for creating these are included in the RXMDI release package.

Extensibility

42 Oracle Commerce Retail Extension Module

Extensibility
 The ODI Studio is the development tool to create packages, update mappings, and so

on, using the ODI Designer.

 The updates made in ODI Studio can then be compiled into a new Scenario or used
to update an existing Scenario.

 If a new Scenario is created, then a new Java Batch Job XML can be added to invoke
the new Scenario. An update to an existing Scenario will be invoked by the
corresponding Java Batch Job XML.

Transformations

Database Tables to Database Tables
ODI uses Direct SQL Load to transform data from one DB schema directly into another
DB schema.

Feeds that Use this Type of Transformation

 All feeds from BDI to RXMDI Staging.

 Inventory, Store, Store Address, Warehouse, and Warehouse Address data from
RXMDI Staging to RXM Production.

 Promotion data from RXMDI Staging to RXM Publishing.

Process

1. Using ODI Studio, the relevant tables are reverse engineered for both Source and
Target DBs.

2. A mapping is performed between the Source and Target DB tables.

3. Any transformation required is done as part of the mapping to massage data.

Extensibility

1. For custom solutions, DB tables can once again be reverse engineered so
customizations are visible to ODI.

2. Mappings/Transformations can then be updated.

3. Scenarios can be regenerated based on the changes or new Scenarios can be created
with a corresponding Java Batch Job XML.

Database Tables to XML Files
ODI transforms data from DB schema into an XML file.

Feeds that use this type of transformation

 Regular and Clearance Price data is transformed from RXMDI Staging work tables
into a priceList XML file that can be imported into RXM's Business Control Center
(BCC) using the StartSQLImport Utility provided by Oracle Commerce from where it
is published to RXM’s production server.

 Merchandise Hierarchy and Product SKU data is transformed from RXMDI Staging
tables into a productCatalog XML file that can be imported into BCC using the

 Transformations

 Oracle Data Integrator 43

StartSQLImport Utility provided by Oracle Commerce from where it is published to
RXM’s production server.

Process

1. Using ODI Studio, the relevant Source DB tables are reverse engineered as well as the
XML XSDs.

2. A mapping is performed between the Source DB tables and the XSDs.

3. Anu transformation required is done as part of the mapping to massage data.

Extensibility

 For custom solutions, DB tables and XSDs can be reverse engineered so
customizations are visible to ODI.

 Mappings/Transformations can be updated.

 Scenarios can be regenerated based on the changes or new Scenarios can be created
with a corresponding Java Batch Job XML.

Flat Files to Database tables
ODI transforms data from Flat Files into a DB schema.

Feeds that use this type of transformation

Regular and Clearance Price data is transformed from flat files provided by RPM into
RXMDI Staging work tables which are then converted into a priceList XML file as part of
a different ODI Scenario. This file can be imported into BCC using StartSQLImport
Utility provided by Oracle Commerce from where it is published to RXM’s production
server.

 Promotion data is transformed from flat files provided by RPM into RXMDI Staging
work tables which are then loaded into the RXM Publishing schema as part of a
different ODI Scenario. Using a timed Scheduler, they are then processed via the
PromotionImportExport API provided by Oracle Commerce and imported into BCC
from where it is published to RXM’s production server.

Process

 Using ODI Studio, the relevant flat files are reverse engineered as well as the target
DB tables.

 Then a mapping is performed between the flat files and the target DB tables.

 Finally, any transformation required is done as part of the mapping to massage data.

Extensibility

 For custom solutions, flat files and DB tables can be reverse engineered so
customizations are visible to ODI.

 Mappings/Transformations can be updated.

 Scenarios can be regenerated based on the changes or new Scenarios can be created
with a corresponding Java Batch Job XML.

Transformations

44 Oracle Commerce Retail Extension Module

Promotion and Pricing Integration 45

8

Promotion and Pricing Integration

The RXMDI component integrates Oracle Retail Price Management (RPM) flat files into
Oracle Commerce (including some RXM extensions). It is built upon the Oracle Data
Integrator (ODI) application.

Promotion Integration
Pre-requisite: For promotion flat files, Location(loc_id) should exist in
RXMDI_STORE_SITE table's column STORE_ID.

The RXMDI ODI scenario expects RPM flat files containing promotional information to
arrive in a directory that can be read by ODI. The default location is
C:/ODI/RXMDI/RPM/SOURCE.

The ODI scenario is to be scheduled to run on an interval. It will scan the directory for
incoming files (*.dat).

Upon finding file names that match external site IDs that have already been imported by
ODI (in the format, RPMPC_[timestamp]_[site_id]_S.dat), those files will be one-at-a-time
read and processed. The files are processed in timestamp order.

After processing, promotion flat files will be renamed to PRMPC_INPROGRESS_S.dat.

The files are read into the ODI working table’s area and then ODI maps that data into the
RXMDI_PROMO tables that are inside the Publishing schema (as defined by RXM). ODI
performs some minor transformation upon insertion into Publishing.

In the Publishing stack, RXM has provided a new SingletonScheduledService component
at /retail/commerce/integration/promotion/PromotionImportService. This service is
configured to scan the RXMDI_PROMO tables once a day at 4am. However, this config
can be changed easily. If records are found that have null in the IMPORT_SESSION_ID
column, those records are read and processed.

The service uses a /retail/commerce/integration/promotion/PromotionImportService
to transform the data and then feeds the objects to the Oracle Commerce
PromotionImportExport API. This API is provided by Oracle Commerce to import
promotions into projects for review and publishing within the Business Control Center
(BCC). A business user then logs into BCC to embellish and promote projects to
Production.

46 Oracle Commerce Retail Extension Module

Promotion Commerce Enhancements
A repository is defined for ODI to put the promotions into for staging. The component is
at /retail/commerce/integration/promotion/PromotionIntegrationRepository.

The PromotionImportService scans this repository for new promotions.

The promotion item descriptor is enhanced to support additional IDs, such as
externalPromoId, and a deleted flag. Both support input from RPM. The IDs will match
RPM IDs and when RPM sends a DEL message, the matching promotion will be marked
as "enabled" = false and "deleted" = true.

Note: RPM overlapping promotions are not supported by
this version of RXM.

Pricing Integration
Prerequisites:

 For processing pricing flat files, Location(loc_id) should exist in
RXMDI_STORE_SITE table's column STORE_ID.

 Price List ID and Sales List ID should be created in BCC and those generated IDs
should be inserted into RXMDI_STORE_SITE table before processing pricing flat file.

The pricing integration works in a similar way to the promotion integration with some
differences. RPM is still expected to produce flat files *.dat. The flat file name should be
of the format <event type>_<date in YYYYMMDDHH24MISS format>_<loc id>_<loc
type>.dat (For example: REGPC_20160810121204_2222_S.dat). After processing, flat file
will be moved to SOURCE/archive folder and priceLists.xml will be moved from it's
source folder to SOURCE/processed folder.

Those flat files are picked up by ODI in the same directory as promotions. ODI processes
the flat files into a working area. However, instead of pushing the data into a Publishing
staging area, ODI transforms the data into XML files to be later processed by Oracle
Commerce's startSQLImport program manually.

 Promotion and Pricing Integration 47

Clearance prices are put into the salePriceList instead of the regular priceList.

Pricing Commerce Enhancements
The /atg/commerce/pricing/priceLists/priceLists.xml definition includes an
externalPriceId to identify prices through RPM IDs and a priceType property to identify
clearance prices. Additionally, support is available for clearance endDate since it comes
from RPM in a separate ClearanceReset entity.

Job Mapping 49

9

Job Mapping

BDI/RIB

Note: In the case of RIB, the first step is irrelevant. The data
is pushed through RIB directly into the RXMDI Staging
schema.

Feed Type First Step (BDI

Interface – RXMDI

Staging

Second Step

(RXMDI Staging

– RXM

Target Comments

Inventory INVAvailWH_Tx
IMporter Job

InvAvailWh_Tx
Staging to RXM
Job

RXM Production
DB

Store Store_Fnd
Importer Job

 StoreAddr_Fnd
Importer Job

Store Staging to
RXM Job

RXM Production
DB

50 Oracle Commerce Retail Extension Module

Feed Type First Step (BDI

Interface – RXMDI

Staging

Second Step

(RXMDI Staging

– RXM

Target Comments

Item MerchHier_Fnd
Importer Job

 ItemHdr_Fnd
Importer Job

 ItemLoc_Fnd
Importer Job

 Item
Image_Fnd
Importer Job

 Related
Item_Fnd
Importer Job

 Related
Item_Fnd
Importer Job

 Diff_Fnd
Importer Job

 DiffGrp_Fnd
Importer Job

 PackItem_Fnd
Importer Job

Warehouse Wh_Fnd
Importer Job

 WhAddr_Fnd
Importer Job

Items need to be
ranged to the RMS
webstore location
configured in the
RXMDI_STORE_SITE
table.

BDI business
process flow:

It is very important
to run the BDI jobs
for MerchHier_Fnd,
ItemHdr_Fnd, and
ItemLoc_Fnd prior to
running the
ProductSKU Staging
to RXM Job.

RIB business process
flow:

It is very important
to run the
ProductSKU Staging
to RXM Job after
Merchandise
Hierarchy and its
associated Item data
is in the
RXMDI/Staging
database.

Note: Once in the
publishing database,
the data can be
pushed to the RXM
Production DB
through BCC.

Organization Commerce does not
support OrgHier Out
of the box

Hierarchy

 Job Mapping 51

Pricing and Promotions

Feed Type Source Flat File to XML Destination Additional

Comments

Regular Price Flat File provided
by RPM

Regular Price FF
to XML Job

Generates XML
(priceList.xml)
which needs to be
imported into BCC
using SQLImport
utility.

This data can be
pushed to RXM
Production DB
through BCC.

Clearance Price Flat File provided
by RPM

Clearance Price
FF to XML Job

Generates XML
(priceList.xml)
which needs to be
imported into BCC
using SQLImport
utility.

This data can be
pushed to RXM
Production DB
through BCC.

Promotions Flat File provided
by RPM

Promotion FF to
RXM Job

RXM Publishing
DB.

Commerce
Scheduler
pushes data to
RXM
Production DB.

52 Oracle Commerce Retail Extension Module

Packaging and Deployment 53

10

Packaging and Deployment

RXMDI includes the following artifacts as part of the RXMDI release package:

 RXMDI EAR:

– RIB Application Plugin JAR

– RXMDI WAR

– JPA Artifacts

– Incremental JAR

 RXM Batch Job Admin WAR:

– Job XMLs -> ODI Scenarios

– Java Batch JAR

 ODI:

– Scenarios, Logical Topologies, and Context are included.

– Since Physical Topologies represent real resources, they will need to be created.
Instructions for creating these are included.

 DB:

– RXMDI Staging Schema DDL

– RIB Error Hospital Schema DDL

	Send Us Your Comments
	Preface
	Documentation Accessibility
	Access to Oracle Support

	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Architecture
	Prerequisite Data
	RXMDI_LOOKUP_UOM Sample Data
	RXMDI_LOCATION_GEO Sample Data

	Bulk Data Integration (BDI)
	Bulk Feeds
	Importer Jobs

	Incremental Data Integration (RIB)
	Message Families
	Stores
	Item Locations
	Warehouses
	Merchandise Hierarchy
	Items

	Overview of Message Flow
	injectors.xml
	Message Filter
	Camel Route
	Store Entity Mapping
	Camel Processor
	Schema
	Staging DDL
	rxmdi_store
	rxmdi_store_addr
	rxmdi_store_site
	rxmdi_wh
	rxmdi_wh_addr
	rxmdi_diff
	rxmdi_diff_grp
	rxmdi_diff_grp_dtl
	rxmdi_item_hdr
	rxmdi_item_image
	rxmdi_item_loc
	rxmdi_merch_hier
	rxmdi_rltd_itm
	rxmdi_rltd_itm_dtl
	rxmdi_pack_item

	RIB XSD to RXMDI Staging Scheme Mapping
	RXMDI EAR
	Extensibility

	Java Batch
	Overview
	RXM Batch Job Admin
	Job XMLs
	Java Batch Job XML

	Batchlets and Deciders
	Batchlet
	Decider

	RXMDI Job Admin WAR

	Extensibility

	Oracle Data Integrator
	Components
	ODI Java EE Agent and ODI Standalone Collocated Agent
	ODI Scenarios
	Logical Topologies
	Context
	Physical Topologies
	Java Batchlets

	Packaging
	Extensibility
	Transformations
	Database Tables to Database Tables
	Database Tables to XML Files
	Flat Files to Database tables

	Promotion and Pricing Integration
	Promotion Integration
	Promotion Commerce Enhancements

	Pricing Integration
	Pricing Commerce Enhancements

	Job Mapping
	BDI/RIB
	Pricing and Promotions

	Packaging and Deployment

