

Oracle® Commerce Retail Extension Module

Implementation Guide
Release 16.0.1
E88029-01

June 2017

Oracle® Commerce Retail Extension Module Implementation Guide, Release 16.0.1

E88029-01

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rakhee Prabhudesai

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S.
Government end users are "commercial computer software" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the programs, including any operating system,
integrated software, any programs installed on the hardware, and/or documentation, shall be
subject to license terms and license restrictions applicable to the programs. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications,
including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or
registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information on content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an
applicable agreement between you and Oracle.

iii

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications
The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you. Notwithstanding
any other term or condition of the agreement and this ordering document, you shall not cause or
permit alteration of any VAR Applications. For purposes of this section, "alteration" refers to all
alterations, translations, upgrades, enhancements, customizations or modifications of all or any
portion of the VAR Applications including all reconfigurations, reassembly or reverse assembly, re-
engineering or reverse engineering and recompilations or reverse compilations of the VAR
Applications or any derivatives of the VAR Applications. You acknowledge that it shall be a breach
of the agreement to utilize the relationship, and/or confidential information of the VAR
Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

v

Contents
Send Us Your Comments .. ix

Preface .. xi
Audience .. xi
Documentation Accessibility ... xi
Customer Support ... xi
Review Patch Documentation ... xi
Improved Process for Oracle Retail Documentation Corrections xi
Oracle Retail Documentation on the Oracle Technology Network xii
Conventions .. xii

1 Introduction .. 1

2 Design Approach ... 1
ServiceConsumers ... 1
Managers .. 2
Tools .. 2

3 Commerce Extensions .. 3
RXM Profile Extensions .. 3

Available API ... 3
Commerce Extensions ... 3
Login and Create Handler .. 3
Repository Listener .. 4
Customer Transformer .. 4
ORCE Support .. 5
Security Considerations .. 5
Customization .. 5

RXM Loyalty Extensions .. 5
Available API ... 5
Commerce Extensions ... 6
Loyalty Transformer .. 6
ORCE Support .. 7
Security Considerations .. 9
Customization .. 9

RXM Shopper Lists Extensions ... 9
Versions ... 10
Pipeline Extensions .. 10
Data Extensions .. 10
Class Extensions ... 10
Repository Listeners .. 11
GiftlistServiceConsumer ... 11
Shopper List Transformers ... 11

vi

RSB XSLT Transformers .. 12
Shopper List Sequence Diagrams .. 13
Differences Between the Commerce/RXM and ORCE Shopper Lists 15
Synchronizing a Customer's Shopper Lists .. 16
Gift List Queries ... 17
Retrieving ORCE Private Registries .. 17
Security Considerations .. 18
ORCE Support .. 18

RXM Purchase History Extensions ... 18
Pipeline Extensions .. 18
Available API ... 19
Purchase History Transformers ... 20
ORCE Support ... 21
Security Considerations .. 22
Customization .. 22

RXM Order Extensions ... 23
Pipeline Extensions .. 23
Repository Extensions ... 24
Class Extensions ... 25
Available API ... 25
Order Transformers ... 26
OROMS Support .. 28
Security Considerations .. 29
Customization .. 29
Nucleus Component Overrides ... 29
Web Service Integration .. 30

RXM Order Broker Extensions .. 30
Versions ... 31
Pipeline Extensions .. 31
Data Extensions .. 31
Class Extensions ... 31
Repository Listeners .. 31
BrokeredStoreInventoryServiceConsumer ... 31
Store Inventory Transformers .. 32
RSB XSLT Transformers .. 32
Differences Between the Commerce AbstractInventoryManagerImpl and OROB
 .. 32
Security Considerations .. 32

4 Securing Commerce Extensions .. 33
Introduction ... 33
Configuration .. 33

Server Side Changes (RSB) ... 33
Client Side Changes (RXM) .. 34

vii

Sample Files ... 35
security.xml .. 35
security.properties – root .. 36
security.properties - end point ... 37

5 RXM Web Services .. 39
Design Approach .. 39

JAX-WS Configuration .. 40
Services Provided .. 40

Item Information Service .. 40
Shopping Cart Service ... 45
Targeted Items Service .. 47

Security ... 48
PathAuthenticationServlet .. 48
NucleusSecurityManager ... 48

Extension .. 49
Troubleshooting .. 49

ix

Send Us Your Comments
Oracle Commerce Retail Extension Module Implementation Guide, Release 16.0.1

Oracle welcomes customers' comments and suggestions on the quality and usefulness of
this document.
Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:
 Are the implementation steps correct and complete?
 Did you understand the context of the procedures?
 Did you find any errors in the information?
 Does the structure of the information help you with your tasks?
 Do you need different information or graphics? If so, where, and in what format?
 Are the examples correct? Do you need more examples?
If you find any errors or have any other suggestions for improvement, then please tell us
your name, the name of the company who has licensed our products, the title and part
number of the documentation and the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to
check that you have the latest version of the document and if
any concerns are already addressed. To do this, access the
Online Documentation available on the Oracle Technology
Network Web site. It contains the most current
Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address: retail-doc_us@oracle.com
Please give your name, address, electronic mail address, and telephone number
(optional).
If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.
If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

http://www.oracle.com/

xi

Preface
This Implementation Guide provides detailed information that can be useful for
implementing and configuring the application.

Audience
This guide is for system administrators.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through
My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:
https://support.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 16.0) or a later patch release (for example, 16.0.1). If you are installing the base
release and additional patch releases, read the documentation for all releases that have
occurred since the base release before you begin installation. Documentation for patch
releases can contain critical information related to the base release, as well as information
about code changes since the base release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in the

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://support.oracle.com/

xii

case of Data Models, to the applicable My Oracle Support Documentation container
where they reside.
An updated version of the applicable Oracle Retail document is indicated by Oracle part
number, as well as print date (month and year). An updated version uses the same part
number, with a higher-numbered suffix. For example, part number E123456-02 is an
updated version of a document with part number E123456-01.
If a more recent version of a document is available, that version supersedes all previous
versions.

Oracle Retail Documentation on the Oracle Technology Network
Oracle Retail product documentation is available on the following Web site:
http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”
This is a code sample
 It is used to display examples of code

Introduction 1

1
Introduction

This chapter introduces Oracle Commerce Retail Extension Module (RXM).
RXM is a module for Oracle Commerce (OC) that converges store shopping concepts
with e-commerce and provides commerce information to the stores. It requires Oracle
Commerce, which is a platform that is modularized for high-extensibility. Oracle
Commerce’s module framework stacks like layers. RXM, as a Commerce module, is
located between the base Commerce platform below and custom merchant modifications
above. Layers above add to and override modules beneath. RXM layers above the DCS
module, which defines the base e-commerce domain and functions. Any additional
extensions and configurations required by the merchant’s unique domain in order to
build their webstore UI are also layered on the very top. However, with RXM, the
merchant’s module must extend RXM classes and override the RXM configuration,
where it exists.

Figure 1: RXM Module

In Figure 1, RXM is divided into separate modules for Base features, Loyalty features,
and Services provided to Xstore. This separation is for configuring OC for different
deployments if system administrators want to separate loads or responsibility.

Conventions

2 Oracle Commerce Retail Extension Module Implementation Guide

Design Approach 1

2
Design Approach

RXM provides integration with other retail systems. Out-of-the-box, these systems are
expected to be Oracle Retail assets, such as Oracle Retail Customer Engagement, Oracle
Retail Order Broker, Oracle Retail Order Management System, Oracle Retail Xstore Point
of Service, and Merchandise Operations Management.
Many of RXM’s integrations are SOAP web services. These web services are actually
defined by the Oracle Retail Service Backbone (RSB). RSB is built upon Oracle Service
Bus, which is an application for decoupling and virtualizing the merchant’s enterprise
applications. RSB comes as part of the Oracle Retail Integration Bus (RIB). RSB provides
decorator paks for each endpoint application. These packs decorate and transform the
service operation payloads. A pack for each endpoint application is required.
RSB provides not just abstraction; it also provides transformation between RSB’s service
definitions and the provider applications’ definitions. Retailers are able to edit this
transformation as well as extend existing service operations or define new service
operations. Since RSB is built upon Oracle Service Bus (OSB) 12c, these development
tasks are done using JDeveloper, which is bundled with OSB. For additional information
on performing modifications to 16.0 RSB services that RXM uses, see the Oracle Retail
Service Backbone Development Guide.
In regards to RXM as a consumer of SOAP web services, there is no integration
framework for this in base Oracle Commerce. RXM uses Apache Camel paired with
Apache CXF for decoupling the integration from the RXM application code and making
the actual SOAP connections.

Figure 2: RXM Accessing SOAP

Figure 2 depicts some of the common ways RXM accesses a SOAP service. For example,
using typical Oracle Commerce extension mechanisms, order processing through the
order pipeline uses pipeline processors added for RXM. These processors can use a
Manager object, which can access a service through a ServiceConsumer façade.
Additionally, it is also possible for FormHandlers to access Managers directly.

ServiceConsumers
The ServiceConsumers are the facades that are responsible for separating business code
from the Apache Camel context and its processing. Application code is not expected to
call a consumer directly but it can. Usually the calls are handled by the manager. Each
method call to the consumer is passed as a message to the Camel context, which is
completely XML configurable. The context defines the message processing steps. Typical

Managers

2 Oracle Commerce Retail Extension Module Implementation Guide

steps are: before connecting the service, the message is transformed to an RSB payload.
Then, Camel uses CXF to call the SOAP service hosted at RSB. RSB also has its own
transformation step to transform from the RSB payload to the provider application
payload. Then it is handled by the provider.

Managers
Managers should be a familiar concept for Oracle Commerce implementers. RXM
extends a few managers where needed (see subclasses of AbstractInventoryManager,
CommerceItemManager, GiftlistManager, and OrderManager). Generally, they are used
to provide methods that have business logic or access ServiceConsumers or Tools classes.

Tools
Tools should also be a familiar concept from base Oracle Commerce. In general, RXM
created Tools classes where a utility must be performed around Repository access or
manipulation. See subclasses of Tools for CatalogTools, OrderTools, GiftlistTools,
CommerceProfileTools, and PricingTools.

Commerce Extensions 3

3
Commerce Extensions

Using the pattern described in chapter 2 and other available Commerce frameworks,
RXM extends the following functional areas.

RXM Profile Extensions
RXM enhances Oracle Commerce base user profile framework with synchronization to
an external customer management system to use as a system of record. The default
external application used for RXM 16.0.1 is Oracle Retail Customer Engagement (ORCE).
Using RXM form handlers, profiles are synchronized upon login and updates using
Oracle Commerce's atg.service.datacollection.DataCollector framework.

Available API
A large amount of profile API is concentrated in the component found at
/retail/commerce/profile/ProfileManager. The implementing class implements this
interface, oracle.retail.commerce.profile.ProfileManager. The manager is the primary API
where clients can access the SOAP service consumer calls to ORCE. Through this
manager interface, clients have access to the following:
 createCustomer(RepositoryItem)
 createCustomerAsync(RepositoryItem)
 mergeCustomer(RepositoryItem)
The component /atg/userprofiling/ProfileTools is updated with a new implementing
class, oracle.retail.commerce.profile.RetailCommerceProfileTools. This class provides the
ability to:
 addEmailAddress(RepositoryItem, String)
 addPhoneNumber(RepositoryItem, String)
 getExternalCustomerId(RepositoryItem)
 getExternalCustomerId(String)
 getProfileItemByCustomerId(String)
This tools class allows for managing the additional emails and phone numbers for a
profile and dealing with a profile's external customer ID.

Commerce Extensions
The Oracle Commerce class atg.core.util.ContactInfo, which contains address
information, is extended by oracle.retail.commerce.profile in order to provide an address
name, type, external ID, and whether it is a primary address.
The oracle.retail.commerce.profile.RetailCommercePropertyManager is an extension to
the base Oracle Commerce property manager in order to provide additional RXM
property names for profiles.

Login and Create Handler
When profiles are created or accessed, RXM will retrieve information from ORCE and
merge it with the profile if it is a known customer. This is done by adding the
/retail/commerce/profile/event/SynchronizingProfileSwapEventListener component to

RXM Profile Extensions

4 Oracle Commerce Retail Extension Module Implementation Guide

the "swapEventListeners" property in Commerce's
/atg/userprofiling/ProfileFormHandler component. Commerce sends an event upon
login and create actions. This listener handles the event to use the ProfileManager to
synchronize the information.

Repository Listener
When profile repository items are updated, RXM will notify ORCE about changes to the
profile so that it can update its customer record. This is done through the
/retail/commerce/profile/event/ProfileChangesCollector component using the profile
manager and tools. This component is wired into the
atg.repository.PropertiesChangedListenerService at
/retail/commerce/profile/event/ProfileDataEventListener. This listener is configured to
only listen for certain properties to change, for example firstName, lastName, and
billingAddress. This listener is one of the initial services started by the RXM module.

Customer Transformer
RXM synchronizes customer and profile information using an external system. This
system is accessed through SOAP web services hosted on the Retail Service Backbone
(RSB). The profile components, such as the profile manager, access the service operations
through the ProfileServiceConsumer component.
The service consumer uses the Apache Camel context for profile services defined at
/retail/commerce/integration/profile/profile-context.xml. The context routes are
configured to make SOAP calls to the RSB. Before and after each SOAP call, the payload
of the route must be transformed. Primarily this is performed by the component at
/retail/commerce/integration/profile/ProfileServiceTransformer. Methods in this
component transform the profile and contact information repository objects to and from
the JAXB objects in com.oracle.retail.integration.base.bo.customerdesc.v1 required by the
RSB. However, in some cases, you will find examples where it is easier to use Camel's
<simple> domain specific language to perform a transform or an object mutation. For
example:
<!-- Transform RSB message to external customer id. -->
<transform><simple>${body[0].customerId}</simple></transform>

In the above example, the response body is transformed into just the customer ID string.
<!-- Invoke query customer RSB service -->
<doTry>
 <to uri="cxf:bean:CustomerServiceEndpoint?loggingFeatureEnabled=false" />
 <!-- Transform RSB message to response. -->
 <bean ref="ProfileServiceTransformer" method="toCustomerIds" />
 <doCatch>
 <exception>org.apache.cxf.binding.soap.SoapFault</exception>
 <onWhen>
 <simple>${exception.message} contains 'customer was not
found'</simple>
 </onWhen>
 <log message="No customer was found, catching SoapFault and returning
empty array of string"/>
 <!-- Set body to empty string array -->
 <setBody>
 <groovy>new String[0]</groovy>
 </setBody>
 </doCatch>
</doTry>

 RXM Loyalty Extensions

 Commerce Extensions 5

In the above example, SoapFaults from ORCE are caught. If they contain the phrase
"customer was not found", then the fault is ignored and an empty string response is set
into the Camel message body, which is returned by the ProfileServiceConsumer.
The transformer is specific to using the expected RSB web services, and in some cases,
ORCE service provider behavior is also expected and coded for. For integrating to other
non-RSB web services, the transformer component's class should be replaced with a
custom implementation and the Camel route updated with appropriate transform calls.
For services abstracted behind the RSB that behave slightly differently from ORCE, it is
best to extend oracle.retail.commerce.integration.profile.ProfileServiceTransformer and
update the component with the extended class.

ORCE Support
RXM integrates with ORCE Customer Services version 3.0. RXM is expected to
communicate with ORCE through the RSB. The RSB application provides application-
specific PAKs that contain additional transformation through XSLT transformations.
Development or changes to these transforms requires Oracle Service Bus (OSB) with
JDeveloper. See Oracle Retail Service Backbone Development Guide for information about
how to develop with these paks.

Security Considerations
New profile synchronization functions have no new access roles defined.
Accessing remote loyalty service operations must be secured by default. Security
properties are loaded by the loyalty Camel context. See the “Securing Commerce
Extensions” section for additional information on these settings.

Customization
The RXM module takes advantage of both Nucleus and Spring to allow for easy
customization and dependency injection. Class names can be found in the profile-
context.xml as well as the various component properties files. See the Oracle Commerce
Platform Development Guide for more information on how to customize Nucleus
components.

RXM Loyalty Extensions
RXM adds loyalty functionality to Oracle Commerce using an external loyalty
management system as the system of record. The default external application used for
RXM 16.0 is Oracle Retail Customer Engagement (ORCE).
Web store developers can access most loyalty functionality though the LoyaltyManager
API.

Available API
The primary access point for the loyalty API is through the component found at
/retail/commerce/loyalty/LoyaltyManager. The implementing class implements this
interface, oracle.retail.commerce.loyalty.LoyaltyManager. Through this interface, clients
have access to:
 applySelectedAwards(RetailOrder, AwardCoupon...)
 calculatePoints(RetailOrder)
 createLoyaltyAccount(Profile)
 recoverPoints(Profile, RetailOrder)

RXM Loyalty Extensions

6 Oracle Commerce Retail Extension Module Implementation Guide

 recoverPoints(Profile, String)
 retrieveLoyalty(String)
 retrieveLoyalty(String, boolean)
RXM provides a basic form handler that can be found at
/retail/commerce/loyalty/LoyaltyFormHandler. The implementing class is
oracle.retail.commerce.loyalty.LoyaltyFormHandler. This class uses LoyaltyManager and
OrderManager, among others. It provides the ability to:
 handleOptIn(DynamoHttpServletRequest, DynamoHttpServletResponse)
 handleRecoverPointsForOrder(DynamoHttpServletRequest,

DynamoHttpServletResponse)
 handleRecoverPointsForOrderId(DynamoHttpServletRequest,

DynamoHttpServletResponse)
There is also a form handler at /retail/commerce/loyalty/LoyaltyAwardFormHandler
that can:
 handleAddAwardsToOrder(DynamoHttpServletRequest,

DynamoHttpServletResponse)
Two drops are available to make estimating points and account lookups easier. See
/retail/commerce/loyalty/droplet/LoyaltyAccountLookupDroplet and
/retail/commerce/loyalty/droplet/EstimateLoyaltyPointsDroplet.
The RXM.Loyalty module has a subclass OrderTools called
oracle.retail.commerce.loyalty.LoyaltyOrderTools that can be found at
/atg/commerce/order/OrderTools. It handles applying awards and estimated points to
orders.

Commerce Extensions
RXM.Loyalty extends the order repository item in order to persist
"estimatedLoyaltyPoints" repository items and multiple award repository items.
As part of the updateOrder and refresh order pipelines in commercepipeline.xml,
additional processors are added to save and load the loyalty awards and points for
orders.
The user repository item is extended to include a loyaltyCardNumber property for
saving the profile's connection to the loyalty system.
Order pricing is updated using these new calculators. In
/atg/commerce/pricing/OrderPricingEngine, the
/retail/commerce/loyalty/pricing/calculators/LoyaltyEstimateResetCalculator and
/retail/commerce/loyalty/pricing/calculators/LoyaltyDiscountCalculator are added.
The first removes any previous estimate from the order upon a price recalculation in
order to avoid the use of stale points. The second calculator inspects the order for awards
that have been applied and discounts the order total by the award's specified amount.

Loyalty Transformer
RXM.Loyalty expects most of its functionality to be backed by an external system. This
system is accessed through SOAP web services hosted on the Retail Service Backbone
(RSB). The loyalty components, such as the loyalty manager, access the service operations
through the LoyaltyServiceConsumer component.
The service consumer uses the Apache Camel context defined for loyalty services defined
at /retail/commerce/integration/loyalty/loyalty-context.xml. The context routes are
configured to make SOAP calls to the RSB. Before and after each SOAP call, the payload

 RXM Loyalty Extensions

 Commerce Extensions 7

of the route must be transformed. Primarily this is performed by the component at
/retail/commerce/integration/loyalty/LoyaltyServiceTransformer. Methods in this
component transform the object model in oracle.retail.commerce.loyalty to and from the
JAXB objects in com.oracle.retail.integration.base.bo.loyacctdesc.v1 required by the RSB.
However, in some cases, you will find examples where it is easier to use Camel's
<simple> domain specific language to perform a transform or an object mutation. For
example:
<when>
 <!-- If order doesn't have id, set to zero to avoid ORCE rejecting it. -->
 <simple>${body.customerOrderId} == null ||
${body.customerOrderId.empty}</simple>
 <setBody>
 <groovy>request.body.customerOrderId = '0'
 return request.body
 </groovy>
 </setBody>
</when>

In the above example, the request body is set with an order ID of "0". Not only is the
element required by the RSB WSDL, but it has to be numerical due to ORCE's
expectations.
The transformer is specific to the use of the expected RSB web services, and in some
cases, ORCE service provider behavior is also expected and coded for. For integrating
with other non-RSB web services, the transformer component's class must be replaced
with a custom implementation and the Camel route updated with appropriate transform
calls. For services abstracted behind the RSB that behave slightly differently from ORCE,
it is best to extend oracle.retail.commerce.integration.loyalty.LoyaltyServiceTransformer
and update the component with the extended class.

ORCE Support
For Loyalty functionality, RXM uses the following ORCE services:
 Card Services 3.1
 Loyalty Account Services 3.1
 Stored Value Card Transaction Services 3.1
RXM is expected to communicate with ORCE through the RSB. The RSB application
provides application-specific PAKs that contain additional transformation through XSLT
transformations. Development or changes to these transformations requires Oracle
Service Bus (OSB) with JDeveloper. See Oracle Retail Service Backbone Development Guide
for how to develop with these paks.

Note: ORCE can be configured to award fractional loyalty
points for things that have partial units such as a half pound
of chocolate. RXM only handles whole points. The partial
points awarded by ORCE are rounded down by RXM.

The following tables show the transformation mapping between RXM and ORCE for
loyalty:
createLoyaltyAccount maps to generateCard in SvcTransactionServices(Ver 3.1)
Request:

Commerce (LoyAcctDesc) ORCE(GenerateCard)

customer_id CustomerId

RXM Loyalty Extensions

8 Oracle Commerce Retail Extension Module Implementation Guide

card_prefix cardPrefix

card_series_sequence cardSeriesSequence

card_number cardNumber

Response:

Commerce(LoyAcctRef) ORCE(CardSeries)

card_number CardNumber

retrieveLoyaltyAccount maps to getCardInquiryData in CardServices(Ver 3.1)
Request:

Commerce (LoyAcctRef) ORCE(GenerateCard)

card_number cardNumber

Response:

Commerce(LoyAcctRef) ORCE(getCardInquiryDataResponse)

customer_id CustomerID

earned Points(Type=earned)

escrow Points(Type=escrow)

bonus Points(Type=bonus)

ytd Points(Type=ytd)

ltd Points(Type=ltd)

calculatePointsCustOrderDesc maps to calculateProformaPoints in
LoyaltyAccountServices(Ver 3.1)
Request:

Commerce (CustOrderDesc) ORCE(transaction)

customer_order_id SequenceNumber

unit_sell_price ActualSalesUnitPrice

unit_regular_price RegularSalesUnitPrice

serial_number SerialNumber

customer_id CustomerID

Response:

Commerce(LoyInvcDesc) ORCE(calculateProformaPointsResponse)

customer_order_id retail_transaction_id

 RXM Shopper Lists Extensions

 Commerce Extensions 9

Commerce(LoyInvcDesc) ORCE(calculateProformaPointsResponse)

earned Points(Type=earned)

escrow Points(Type=escrow)

bonus Points(Type=bonus)

loyalty_account_id LoyaltyAccountID

recoverPoints maps to recoverLoyaltyPoints in LoyaltyAccountServices(Ver 3.1)
Request:

Commerce (LoyPntRcvryCriVo) ORCE(recoverLoyaltyPoints)

transaction_id retailTransactionId

card_number cardNumber

Response:

Commerce(LoyInvcDesc) ORCE(recoverLoyaltyPointsResponse)

earned Points(Type=earned)

escrow Points(Type=escrow)

bonus Points(Type=bonus)

loyalty_account_id loyaltyAccountId

Security Considerations
Loyalty functions have no new access roles defined.
Accessing remote loyalty service operations must be secured by default. Security
properties are loaded by the loyalty Camel context. See “Securing Commerce Extensions”
section for additional information on these settings.

Customization
The RXM.Loyalty module takes advantage of both Nucleus and Spring for easy
customization and dependency injection. Class names can be found in the loyalty-
context.xml as well as the various component properties files. See the Oracle Commerce
Platform Development Guide for more information on how to customize Nucleus
components.

RXM Shopper Lists Extensions
The RXM shopper list extensions are designed to minimize impact to existing users of
Commerce Gift and Wish lists.
Most extensions to the Commerce Gift Wish lists do not change the Commerce base class
method signatures and can be used simply by updating the appropriate Commerce
component property file's "$class" property and adding a few new properties.

RXM Shopper Lists Extensions

10 Oracle Commerce Retail Extension Module Implementation Guide

Versions
RXM shopper lists extensions have been tested with the following versions of ORCE
APIs:
ORCE Registry API version: 3.0
ORCE Customer API version: 3.0

Pipeline Extensions
No pipeline extensions have been extended or modified for RXM Shopper Lists.

Data Extensions
Two properties have been added to the Commerce gift-list item.
 externalGiftlistID - This field associates the Commerce gift/wish list with the

external ORCE registry list.
 expirationDate - ORCE supports and requires an expiration date. A default offset

can be set for this field if this field is not needed by the application.
The application can extend Commerce/RXM gift/wish lists repository objects using the
standard Commerce data extension model.
See files: /config/atg/commerce/gifts/giftlists.xml and
/sql/install/oracle/create_rxm_schema_ddl.sql

Class Extensions
The following RXM classes extend Commerce to keep Commerce and ORCE gift list and
wish list data synchronized.
 RetailGiftlistTools extends atg.commerce.gifts.GiftlistTools
 RetailGiftlistManager extends atg.commerce.gifts.GiftlistManager
 RetailGiftlistSearchFormHandler extends atg.commerce.gifts.SearchFormHandler
The implementers can extend the above classes if additional properties are required or if
different method behavior is desired.

RetailGiftlistTools extends atg.commerce.gifts.GiftlistTools
 findCustomerForWishList() Several other similar type tool methods are also

contained in this class.
 updateGiftlist() Two overloaded updateGiftlist() methods used to update the RXM

extended properties external gift list ID and expiration date.

RetailGiftlistManager extends atg.commerce.gifts.GiftlistManager
 createGiftlist() These methods are required to handle the saving of the external gift

list ID (ORCE's gift list id). Several overloaded methods are provided to support
expirationDate and the external gift list ID.

 searchGiftlists() This method is used to perform an ORCE gift list search. This is
called before the gift list search form searches the Commerce repository. In this way
the Commerce repository is populated with any matching gift lists from ORCE that
did not exist in Commerce.

 syncGiftlists() This method is used to synchronize a customer's gift lists and wish
list. The application must decide when is best to call this method.

 RXM Shopper Lists Extensions

 Commerce Extensions 11

RetailGiftlistSearchFormHandler extends atg.commerce.gifts.SearchFormHandler
 preSearch() This overrides the base class method and performs a "pre fetch" of

matching gift lists from ORCE. This ensures the base class's doSearch() will find the
most up-to-date set of gift lists from both the Commerce repository and ORCE.

Repository Listeners
Two repository listeners are part of RXM Shopper Lists. These listeners send modified
properties to ORCE in near real time.
 GiftlistItemChangesCollector
 GiftlistChangesCollector
These classes can be extended if custom behavior is desired by the application.
This design sends create and update requests to ORCE when Commerce detects changes.
The application may choose to implement a different mechanism that may, for example,
queue up some changes and then send bulk updates to ORCE.

GiftlistServiceConsumer
The GiftlistServiceConsumer is the RXM interface to the external system of record,
ORCE.
RetailGiftlistManager and the repository listeners use this interface to communicate with
ORCE (through RSB).
This interface uses Camel as a router to the RSB web services.
The camel context file, giftlist-context.xml, maps the interfaces in
GiftlistServiceConsumer to the specific transformers and RSB services for each gift list
operation.

Shopper List Transformers
Below is the list of transformers used to transform Commerce Giftlist repository items to
and from the standard RBO payload.
Each RBO gift list service has a request and result transformer (except for those results
which are simply a status or a gift list ID).
Each of these methods then calls "to" methods to transform the various classes. For
example, the createGiftListRequest() calls the following methods to transform all the
various Commerce repository properties into the RBO payload objects.
public GiftListCreModVo createGiftListRequest(RepositoryItem giftlist)
 {
 GiftListCreModVo giftlistCreModVo = toGiftListCreModVo(giftlist);
 GeoAddrDesc geoAddrDesc = toGeoAddrDesc(giftlist);
 if (geoAddrDesc != null)
 {
 ShippingAddrCreVo shippingAddrCreVo = new ShippingAddrCreVo();
 shippingAddrCreVo.setGeoAddrDesc(geoAddrDesc);
 giftlistCreModVo.setShippingAddrCreVo(shippingAddrCreVo);
 }
 return giftlistCreModVo;
 }

Class: GiftlistServiceTransformer
 createGiftListRequest
 retrieveGiftListRequest
 retrieveWishListRequest

RXM Shopper Lists Extensions

12 Oracle Commerce Retail Extension Module Implementation Guide

 retrieveGiftListResults
 retrieveGiftListItemsResults
 retrieveWishListResults
 retrieveWishListItemsResults
 updateGiftListRequest
 addWishListItemsRequest
 addGiftListItemsRequest
 deleteGiftListItemsRequest
 deleteGiftListRequest
 updateGiftListItemRequest
 deleteWishListItemsRequest
 queryGiftListsRequest
 queryGiftListsResults

Note: Whenever a transformer updates a gift list or gift list
item, the transformer signals to the gift list change collector
to not send an update request to ORCE for the next update
for that particular update. This is to avoid sending
unneeded update requests to ORCE during retrieve
operations that merge changes made to ORCE into the
Commerce repository. See Java Docs for
GiftlistChangesCollector.ignoreNextChange().

RSB XSLT Transformers
Below is a list of RSB XSLT transformers used to transform the RBO payloads into the
format required by ORCE.
Note that ORCE requires a "securityUserId" in all requests. The user ID must be defined
by the application's ORCE administrator and the default ID "RXM" must be replaced in
the XSLT transformers.
 AddGiftListItems.xsl
 AddWishListItemsResponse.xsl
 AddWishListItems.xsl
 CreateGiftListToAddOrUpdateRegistryResponse.xsl
 CreateGiftListToAddOrUpdateRegistry.xsl
 DeleteGiftListItems.xsl
 DeleteGiftListResponse.xsl
 DeleteGiftList.xsl
 DeleteWishListItemsResponse.xsl
 DeleteWishListItems.xsl
 QueryGiftListResponse.xsl
 QueryGiftList.xsl
 RetrieveGiftListItemsResponse.xsl
 RetrieveGiftListItems.xsl
 RetrieveGiftListResponse.xsl
 RetrieveGiftList.xsl

 RXM Shopper Lists Extensions

 Commerce Extensions 13

 RetrieveWishListItemsResponse.xsl
 RetrieveWishListItems.xsl
 UpdateGiftListDetailResponse.xsl
 UpdateGiftListItems.xsl
 UpdateGiftListResponse.xsl
 UpdateGiftList.xsl

Shopper List Sequence Diagrams

Create Gift List
Note that the Commerce gift list creation triggers an event in the change collector. The
change collector then calls the consumer/camel/transformers to create the ORCE gift list.
The external gift list ID is returned and saved.

Figure 3: Create Gift List

Update Gift List
Any update to a gift list triggers an event in the change collector. The event then sends
the update to RSB/ORCE.

RXM Shopper Lists Extensions

14 Oracle Commerce Retail Extension Module Implementation Guide

Figure 4: Update Gift List

Update Gift List Item
Note that gift list item changes trigger events in the GiftlistItemChangeCollector. Adding
a gift list item to a gift list (not this sequence) triggers an event on the
GiftlistChangeCollector.

Figure 5: Update Gift List Item

Gift List Query
In this diagram a query request is sent to RSB/ORCE. A gift list is returned that is not
found in the Commerce repository. The transformer creates the gift list in Commerce
before returning the search results to the form handler.

 RXM Shopper Lists Extensions

 Commerce Extensions 15

Figure 6: Gift List Query

Differences Between the Commerce/RXM and ORCE Shopper Lists

Gift List versus Registry
In version 3.0 of the ORCE APIs, gift lists are called registries and are accessible using the
ORCE Registry API.

Wish Lists
In version 3.0 of the ORCE APIs, wish lists are fairly limited in function and are available
using the ORCE Customer API. ORCE wish lists are available using the ORCE item
visualizer API.
ORCE wish lists do not have a quantity associated with the item.
In later ORCE API revisions, wish lists behave more like registries. This level of API is
not supported by RXM 16.0.1.

Published versus Private
An unpublished registry in ORCE is considered a private gift list in terms of Commerce
nomenclature.

Addresses
Commerce supports a single shipping address for each gift list.
ORCE supports three event addresses and one contact address for each owner of the
event.
ORCE gift list contact addresses/phones/emails are not supported by RXM.
Only the ORCE gift list's "before event shipping address" address is supported. This
address is used for the Commerce gift list shipping address.

Gift List Event Types
Gift lists have an event type such as birthday and wedding.
The default implementations of Commerce, RSB, and ORCE all have unique event types.

RXM Shopper Lists Extensions

16 Oracle Commerce Retail Extension Module Implementation Guide

These types are translated in the RXM translators and RSB XSLTs.
It is the responsibility of the application to define the supported types and configure
Commerce, RSB, and ORCE to support the same set of event types. The RXM translators
and RSB XSLTs must be updated to work properly with the application defined types.
The RXM translators have externalized the conversion between the types into
/config/retail/commerce/integration/giftlist/GiftlistServiceTransformer.properties

Synchronizing a Customer's Shopper Lists
Repository listeners are used to detect Commerce shopper list modifications and to send
those changes to ORCE in near real time.
Real time shopper list updates from ORCE to Commerce are not supported.
Whenever a shopper list is retrieved from Commerce using the RetailGiftlistManager
class, the latest version of that shopper list is retrieved from ORCE and the latest version
of the shopper list is returned.
A syncGiftlist() method is provided in RetailGiftlistManager that synchronizes all gift or
wish lists for a specific customer.
An application may desire to synchronize a customer's gift lists whenever the customer
logs in. To do this:
1. Create a class that extends atg.commerce.profile.CommerceProfileFormHandler
2. Add a component properties file that initializes the class extension (typically located

at /config/atg/userprofiling/ProfileFormHandler.properties)
3. Override handleLogin() with something like the following and provide getter/setter

for giftlistManager.
@Override
public boolean handleLogin(DynamoHttpServletRequest pRequest,
DynamoHttpServletResponse pResponse)
throws ServletException, IOException
{
boolean redirect = super.handleLogin(pRequest, pResponse);
if (getProfile() != null)
{
giftlistManager.syncGiftlists(getProfile());
}
return redirect;
}

A customer may desire to synchronize a gift list just before the editing it with a form
handler. To do this:
1. Create a class that extends atg.repository.servlet.ItemLookupDroplet.
2. Add a component properties file that initializes the class extension (typically located

at /atg/commerce/gifts/GiftlistLookupDroplet.properties).
3. Override service() with something like the following and provide getter/setter for

giftlistManager.
@Override
public void service(DynamoHttpServletRequest pRequest, DynamoHttpServletResponse
pResponse) throws ServletException, IOException
{
String giftlistId = pRequest.getParameter(ID_PARAM);

RepositoryItem giftList = null;
try
{
giftList = giftlistManager.getGiftlist(giftlistId);

 RXM Shopper Lists Extensions

 Commerce Extensions 17

}
catch (CommerceException e)
{
vlogError("Exception occurred while retrieving giftlist {0} from external
system.", giftlistId, e);
}
if (giftList == null)
{
vlogError("Could not retrieve giftlist {0} from external system.", giftlistId);
}

super.service(pRequest, pResponse);
}

Use the droplet in your jsp
<dsp:droplet name="GiftitemLookupDroplet">
<dsp:param name="id" param="giftId"/>
<dsp:param name="elementName" value="giftitem"/>

...

</dsp:droplet>

Gift List Queries
The Commerce Gift List search operation searches the Commerce repository and returns
the results as a collection of RepositoryItems.
RXM extends the atg.commerce.gifts.SearchFormHandler class and provides a form
handler that "pre fetches" the search results from ORCE and synchronizes the results
with the Commerce repository. In this way the results are available in the Commerce
repository and are found by atg.commerce.gifts.SearchFormHandler.
For performance reasons, it is suggested that the search always be limited to a single
customer profile. If the query scope is too large, ORCE queries will return an error code
if the number of records matching the query criteria is too large.
The application may also decide to use atg.commerce.gifts.SearchFormHandler and
search only the Commerce repository. This search does not "pre fetch" gift lists from
ORCE. The application may choose to implement a custom mechanism to import bulk or
real time gift list data from ORCE to improve performance while maintaining accurate
(non-stale) results.
Note that ORCE query results do not return fully populated gift lists. The results do not
return addresses or gift list items. So, be certain to fully populate a gift list repository
item in the search results before allowing the user to view or edit the details of the gift
list. This is done by calling RetailGiftlistManager.getGiftlist().

Retrieving ORCE Private Registries
If a gift list (registry) is defined only in ORCE and has not been published, then it will not
be retrieved using the search operation.
A private/unpublished gift list can only be retrieved from ORCE using its external ID. It
cannot be retrieved by RXM.
If the gift list has been created in Commerce/RXM, then the external ID is known and the
private gift list can be synchronized.
RetailGiftlistManager.syncGiftlists()sync private gift lists that are known to RXM.

RXM Purchase History Extensions

18 Oracle Commerce Retail Extension Module Implementation Guide

Security Considerations

Gift List Service Decorator Logging
The Gift List service decorator pipeline logs messages for debugging purposes. These
messages can contain customer information such as addresses, e-mail, and phone
numbers.
It is recommended that production deployments disable all logging in the Gift List
pipeline to avoid exposing any sensitive customer information.

ORCE Support
RXM Shopper lists uses RSB services to make requests to ORCE registry services and
ORCE customer services. Below is a mapping between the RSB services used by RXM
and the ORCE services called by RSB.

RSB Gift List Service (Gift Lists) ORCE Registry Service 3.0

createGiftList(GiftListCreModVo) addOrUpdateRegistry

deleteGiftList(GiftListRef) deleteRegistry

queryGiftLists(GiftListCriVo) searchRegistry

retrieveGiftList(GiftListRef) getRegistry

retrieveGiftListItems(GiftListRef) getRegistryDetail

updateGiftList(GiftListCreModVo) addOrUpdateRegistry

addOrUpdateRegistryDetail

RSB Gift List Service (Wish Lists) ORCE Customer Service 3.0

addWishListItems(GiftListItemsCreVo) addWishlistItems

deleteWishListItems(GiftListItemsDelVo) deleteWishlistItems

retrieveWishList(CustomerRef) Not used by RXM.

retrieveWishListItems(CustomerRef) getVisualizerItems

RXM Purchase History Extensions
RXM allows for customers to see their purchase history. This service either obtains the
purchase history (completed orders and transactions) from the external system of record
or in case the system of record is not available, it can obtain orders from local commerce
repository as well. The default external system used is ORCE, which provides only
completed order history and transaction history.

Pipeline Extensions
NA

 RXM Purchase History Extensions

 Commerce Extensions 19

Available API
Purchase history API exists in /oracle/retail/commerce/order/RetailOrderManager that
extends commerce SimpleOrderManager.
/oracle/retail/commerce/history/droplet/PurchaseSummaryLookup droplet calls
getPurchaseHistory(PurchaseHistorySearchCriteria historySearchCriteria) method in
RetailOrderManager, passing PurchaseHistorySearchCriteria.
PurchaseHistorySearchCriteria is criteria sent to external system/local repository to
query for purchase history. It has the following fields:

Field Name Type Purpose Supported by
ORCE

externalCustomerId string Customer ID in system of record Yes

startDate date Start date of purchase history period Yes

endDate date End date of purchase history period Yes

lineItemPopulation int Number of itmes to be returned per order or
transaction

No

maxRecords int Maximum number of records to be fetched
per page (if pagination is supported)

No

pageNumber int Page number of purchase history result No

ascending boolean Order in which results can be displayed No

RXM Purchase History Extensions

20 Oracle Commerce Retail Extension Module Implementation Guide

RetailOrderManager has two configurable properties.

Name Purpose

enableOrdersLocalLookup If this is set to true, purchase history (only
orders) will be retrieved from commerce local
repository as well. Enable this only if external
system is not available because data in
commerce could be stale data.

Default: false

defaultMonthSearchRange In case no end date is mentioned in search
criteria, default end date would be three months
from start date. If start date is not mentioned in
search criteria, then default start date is current
date.

Default: 3

If enableOrdersLocalLookup is true, getPurchaseHistory method will pass all criteria
values to getOrdersForProfile method in
/oracle/retail/commerce/order/RetailOrderQueries. In that method, commerce is being
queried for incomplete orders for customer using RQL.

Purchase History Transformers
/oracle/retail/commerce/history/PurchaseHistoryServiceConsumer is an interface for
consumers of purchase history to call the external service. Implementation class of this
interface calls camel route, which calls the SOAP service on RSB to obtain purchase
history.
/oracle/retail/commerce/integration/history/PurchaseHistoryServiceConsumerImpl
uses camel context /config/retail/commerce/integration/history/purchasehistory-
context.xml for purchase history. The context routes are configured to make SOAP calls
to the RSB. Before and after each SOAP call, the payload of the route must be
transformed. Primarily this is performed by the component at
/retail/commerce/integration/history/PurchaseHistoryServiceTransformer. Methods in
this component transform PurchaseHistorySearchCriteria to
com.oracle.retail.integration.base.bo.purchhistcrivo.v1.PurchHistCriVo while going to
RSB and transform response
(com.oracle.retail.integration.base.bo.purchhistcoldesc.v1.PurchHistColDesc) from RSB
to oracle.retail.commerce.history.PurchaseSummary.
purchasehistory-context does support multiple routes as well.

purchase history route definition
<multicast parallelProcessing="true" strategyRef="aggregatorStrategy">
 <!-- In case of multiple end points, add another URI here and add cxfEndpoint
accordingly(also update security.properties) -->
 <to uri="cxf:bean:PurchaseHistEndpoint?loggingFeatureEnabled=false"/>
</multicast>

The code above refers to aggregatorStrategy, which is defined in context xml like this
<bean id="aggregatorStrategy"
class="oracle.retail.commerce.integration.history.PurchaseHistoryAggregationStrate
gy"/>

PurchaseHistoryAggregationStrategy implements Apache Camel's AggregationStrategy
class and it merge the results from two end points. So in purchase history route

 RXM Purchase History Extensions

 Commerce Extensions 21

definition, if another end point is added, PurchaseHistoryAggregationStrategy will
return the merge result from two end points.
Purchase history transformer is easily extendable. Objects such as
PurchaseHistorySearchCriteria, PurchaseSummary and PurchaseItemSummary are
created using /retail/commerce/history/PurchaseSummaryFactory.

ORCE Support
RXM is expected to communicate to ORCE through the RSB. The RSB application
provides application-specific PAKs that contain additional transformation through XSLT
transformations. Development or changes to these transformations require Oracle Service
Bus (OSB) with JDeveloper. See Oracle Retail Service Backbone Development Guide for how
to develop with these paks.
Here is the transformation mapping between RXM and ORCE for purchase history:
Request:
CustPurchHistCriVo maps to getTransactionHistory in CustomerServices(Ver 3.0)

Commerce (CustPurchHistCriVo) ORCE(getTransactionHistory)

customer_id customerId

start_date startDate

end_date endDate

line_item_population

max_record

page_number

Response:

Commerce(CustPurchHistDesc) ORCE(Transaction / Order) [TransactionReturnType]

initiate_loc_type When

RetailTransaction/LineItem/CustomerOrderForDelivery
!=' ' or
RetailTransaction/LineItem/CustomerOrderForPickup
!= ' '

Then

initiate_loc_type = "W"

Else

initiate_loc_type = "S"

initiate_loc_id Transactions/Transaction/RetailStoreID

RXM Purchase History Extensions

22 Oracle Commerce Retail Extension Module Implementation Guide

Commerce(CustPurchHistDesc) ORCE(Transaction / Order) [TransactionReturnType]

purchase_type When

RetailTransaction/LineItem/CustomerOrderForDelivery
!=' ' or
RetailTransaction/LineItem/CustomerOrderForPickup
!= ' '

Then

purchase_type = "O"

Else

purchase_type = "T"

id Transaction/SequenceNumber

status Transaction/RetailTransaction/@TransactionStatu

currency_code Transaction/CurrencyCode

grand_total Transaction/RetailTransaction/Total
[@TotalType='TransactionGrandAmount']

submitted_date Transaction/EndDateTime

number_of_items count(RetailTransaction/LineItem[not(Tender) and
not(Tax)])

Line Item:

Commerce ORCE (Transaction)

sequence_no Transaction/RetailTransaction/LineItem/SequenceNumber

item_id Transaction/RetailTransaction/LineItem/Sale/ItemID

item_description

quantity Transaction/RetailTransaction/LineItem/Sale/Quantity

currency_code Transaction/CurrencyCode

extended_sell_price Transaction/RetailTransaction/LineItem/Sale/ExtendedAmount

RXM Limitations:
In this release of RXM, all Xstore items have to exist in RXM in order to retrieve the
purchase history for transactions placed in Xstore.

Security Considerations
Purchase History functions have no new access roles defined.
Accessing remote purchase history service operations must be secured by default.
Security properties are loaded by the purchase history camel context. See “Securing
Commerce Extensions” section for additional information on these settings.

Customization
The RXM module takes advantage of both Nucleus and Spring for easy customization
and dependency injection. Class names can be found in the purchasehistory-context.xml
as well as the various component properties files. See the Oracle Commerce Platform
Development Guide for more information on how to customize Nucleus components.

 RXM Order Extensions

 Commerce Extensions 23

RXM Order Extensions
RXM extends Oracle Commerce’s order functionalities by providing additional APIs for
picking up orders in the store, shipping to the store, shipping to the customer, canceling
individual items, and retrieving order’s status from an external Order Management
System (OMS).

Pipeline Extensions
commercepipeline is extended to support submitting, saving, and retrieving of orders
from an external OMS.
 processOrder pipeline is extended to add or overlay the following pipelinelinks and

processors:

– setLineSequenceNumbers

This processor is added after sendGiftPurchasedMessage pipelinelink. It sets
the line sequence numbers for all
RetailShippingGroupCommerceItemRelationship instances.

Transactional
Mode

TX_MANDATORY

Component /retail/commerce/order/processor/SetLineSequenceNumbers

Object oracle.retail.commerce.order.processor ProcSetLineSequenceNumbers

Transitions Return value of 1 executes addOrderToRepository next

– sendFulfillmentMessage

– The object for this processor is replaced with
oracle.retail.commerce.order.processor.ProcExportOrderMessage. This
processor submits an order to external system by calling the submitOrder
API in the RetailOrderManager.

SendFulfillmentMessage.properties
$class=oracle.retail.commerce.order.processor.ProcExportOrderMessage
retailOrderManager = /atg/commerce/order/OrderManager

 validateForCheckout pipeline is extended to add the following processors

– validateOrderForStoreReserve

– This processor is added after checkForDiscontinuedProducts pipelinelink.
This processor verifies that the state of the reserveInStore and shipToStore
flags is consistent.

Transactional
Mode

TX_MANDATORY

Component /retail/commerce/order/processor/ValidateOrderForStoreReserve

Object oracle.retail.commerce.order.processor.ProcValidateOrderForStoreReserve

Transitions Return value of 1 executes checkOrderInventory next

– checkOrderInventory

– This processor is added after validateOrderForStoreReserve pipelinelink.
This processor verifies that there is available inventory for all commerce
items in an Order.

Transactional
Mode

TX_MANDATORY

RXM Order Extensions

24 Oracle Commerce Retail Extension Module Implementation Guide

Component /retail/commerce/order/processor/CheckOrderInventory

Object oracle.retail.commerce.order.processor.ProcCheckOrderInventory

Transitions None, this is the last link in the chain and will cause the PipelineManager
to return to the caller.

 updateOrder pipeline is extended to add or replace the following pipeline links and
processors:

– updateRelationshipObjects

– This processor is replaced with ProcRetailSaveRelationshipObjects. This
processor extends ProcSaveRelationshipObjects in order to save the
associated line references from an external Order Management System.

Transactional
Mode

TX_MANDATORY

Component /retail/commerce/order/processor/SaveRelationshipObjects

Object oracle.retail.commerce.order.processor.ProcRetailSaveRelationshipObjects

Transitions Return value of 1 executes updatePriceInfoObjects

 updatePriceInfoObjects
 This processor is replaced with ProcSavePriceInfo. This processor extends

ProcSavePriceInfoObjects in order to save extended order line item attributes to the
repository.

Transactional
Mode

TX_MANDATORY

Component /retail/commerce/order/processor/SavePriceInfoObjects

Object oracle.retail.commerce.order.processor.ProcSavePriceInfo

Transitions Return value of 1 executes updateCostCenterObjects

Repository Extensions
orderrepository is extended to add or replace the following properties and item
descriptors.
 originOfOrder property is replaced to add option value "store" to retrieve store

originated orders.
 An auxiliary table "rxmpp_order" is added to "order" item descriptor. The property

externalOrderId in the table is added to save the orderId generated by OMS.

orderrepository.xml
 <item-descriptor name="order" xml-combine="append">
 <table name="dcspp_order" xml-combine="append">
 <property name="originOfOrder" column-name="origin_of_order" data-
type="enumerated" default="default" expert="true"
 category-resource="categorySchedule" display-name-
resource="originOfOrder" xml-combine="replace">
 <attribute name="resourceBundle"
value="atg.commerce.OrderRepositoryTemplateResources"/>
 <attribute name="useCodeForValue" value="false"/>
 <option value="default" code="0"/>
 <option value="scheduledOrder" code="1"/>
 <option value="contactCenter" code="2"/>
 <option value="store" code="3"/>
 <attribute name="propertySortPriority" value="30"/>

 RXM Order Extensions

 Commerce Extensions 25

 </property>
 </table>
 <table name="rxmpp_order" type="auxiliary" id-column-name="order_id">
 <property name="externalOrderId" column-name="ext_order_id" data-
type="string" expert="true" category-resource="categoryBasics" display-name-
resource="externalOrderId"/>
 </table>
 </item-descriptor>

 An item descriptor "inStorePickupShippingGroup" is added for the purpose of
differentiating between pickup, ship to store, and reserve in store orders.

 "detailedItemPriceInfo" item descriptor is extended to include depositPaidAmount
and depositPaidPercent properties in support of reserve in store orders.

 Auxiliary tables "rxmpp_shipitem_rel" and "rxm_ship_rel_ci_line_ref" are added to
"shipItemRel" item descriptor to save additional order line item attributes.

 "commerceItemLineRef" item descriptor with properties lineRefLowBound and
lineRefHighBound is added to capture line references from the OMS.

Class Extensions
The following extensions have been made to support submission, retrieval of store and
web orders, and cancelling order items from the OMS.
 RetailOrder, RetailOrderImpl: This class extends atg.commerce.order.Order to add

additional attributes to the order such as externalOrderId, and
estimatedLoyaltyPoints .

 RetailOrderQueries: This class extends atg.commerce.order.OrderQueries and
contains methods for executing various types of order queries, for example
getOrderIdFromRepository(String) which queries the order repository to obtain the
orderId associated with the external order ID passed as an input.

 RetailOrderTools: This class extends atg.commerce.order.OrderTools and provides
order behavior unique to the RXM environment.

 RetailShippingGroupCommerceItemRelationship: This class extends the
atg.commerce.order.ShippingGroupCommerceItemRelationship to capture of
information mainly the line item number information retrieved from the OMS.

 RetailCommerceItem, RetailCommerceItemImpl: This class extends CommerceItem
to add additional item attributes such as ItemDescription and CurrencyCode.

 RetailCommerceItemManager: This class extends CommerceItemManager to
provide access to the protected methods.

 RetailInStorePickupShippingGroup: This class extends
InStorePickupShippingGroup to add additional flags to indicate whether it is ship to
store and reserve in store.

 AddRetailCommerceItemInfo: This class extends AddCommerceItemInfo and and
adds additional properties that determines if an item needs to be shipped to store.

 PickupAwarePurchaseProcessHelper: This class extends PurchaseProcessHelper.
 RetailDetailedItemPriceInfo: This class extends DetailedItemPriceInfo in order to

include additional order line item attributes.

Available API
OrderManager component is overlayed by
oracle.retail.commerce.order.RetailOrderManager object.

OrderManager.properties

RXM Order Extensions

26 Oracle Commerce Retail Extension Module Implementation Guide

$class=oracle.retail.commerce.order.RetailOrderManager

enableOrdersLocalLookup=false
defaultMonthSearchRange=3

profileTools=/atg/userprofiling/ProfileTools

customerOrderServiceConsumer=/retail/commerce/integration/order/CustomerOrderServi
ceConsumer
purchaseHistoryServiceConsumer=/retail/commerce/integration/history/PurchaseHistor
yServiceConsumer

RetailOrderManager extends SimpleOrderManager and provides the following APIs for
submitting, querying, and manipulating orders.
 retrieveOrder(String)
 cancelCommerceItems(RetailOrder, Map<String, Double>)
 submitOrder(RetailOrder)

Order Transformers
After the purchase process is successfully completed and the order is placed, the order
must be submitted to the Order Management System to handle the fulfillment process.
CustomerOrderServiceConsumer component contains the operations to submit, retrieve,
and cancel order items to the external system. These operations invoke the routes defined
in /retail/commerce/integration/order/order-context.xml that calls the SOAP
operations hosted at the Retail Service Backbone (RSB) with the required payload. To
obtain the desired input/output payloads, transformer components are used to
transform to and from RXM objects and Retail Business Objects (RBO).
createCustomerOrder - This route defined in the order-context xml, takes
oracle.retail.commerce.order.RetailOrder transformed into a
com.oracle.retail.integration.base.bo.custorderdesc.v1.CustOrderDesc as an input
payload, invokes the "createCustomerOrder" service operation on the RSB and returns
the CustOrderDesc payload which is transformed into RetailOrder object.
 OrderTransformer.toCustOrderDesc(RetailOrder)
 OrderTransformer.toRetailOrder(CustOrderDesc)
After the successful submission to the external system,
OrderManager.replaceOrderContects(sourceOrder, targetOrder) is invoked to replace the
contents of the submitted order with order returned as response by the external system.
The properties to be ignored during this copy can be found in OrderTools.properties.

Note: The flag "replacePriceinfo" in OrderTools.properties is
provided in case integrated OMS is assumed to override
pricing information. Under such circumstances, the flag can
be enabled. Additional extensions may be needed to support
the price information retrieval from OMS.

OrderTools.properties

Properties ignored during bean copy for various beans

ignoredCommerceItemProperties=priceInfo
ignoredPricingAdjustmentProperties=adjustment
ignoredItemPriceInfoProperties=adjustments,currentPriceDetails
ignoredRetailDetailedItemPriceInfoProperties=
ignoredOrderPriceInfoProperties=taxableShippingItemsSubtotalPriceInfos,\

 RXM Order Extensions

 Commerce Extensions 27

 nonTaxableShippingItemsSubtotalPriceInfos,shippingItemsSubtotalPriceInfos
ignoredTaxPriceInfoProperties=shippingItemsTaxPriceInfos
ignoredPaymentGroupProperties=id, repositoryItem,billingAddress
ignoredPaymentGroupShippingGroupRelationshipProperties=
ignoredPaymentGroupCommerceItemRelationshipProperties=
ignoredOrderProperties=id,approvalSystemMessages,approverIds,approverMessages,
 authorizedApproverIds,awards,estimatedLoyaltyPoints,externalReturnRequests,

manualAdjustments,priceInfo,quoteInfo,taxPriceInfo,transient,transientData,reposit
oryItem,priceInfoRepositoryItem,taxPriceInfoRepositoryItem,explicitlySaved,
creationSiteId,createdByOrderId,organizationId,originOfOrder,profileId,salesChanne
l,siteId,changed,orderClassType

queryCustomerOrder - This route is defined in the order-context xml, takes String
orderId transformed into a
com.oracle.retail.integration.base.bo.custordercrivo.v1.CustOrderCriVo as an input
payload, invokes the "queryCustomerOrder" service operation on the RSB, and returns
the CustOrderColDesc payload that is transformed into RetailOrder object.
 OrderTransformer.toCustOrderCriVo(String)
 OrderTransformer.toRetailOrder(CustOrderDesc)

order-context.xml
 <route id="queryCustomerOrder">
 <from uri="direct:queryCustomerOrder"/>
 <bean ref="OrderTransformer" method="toCustOrderCriVo"/>
 <to uri="cxf:bean:CustomerOrderServiceEndpoint"/>
 <bean ref="OrderTransformer" method="toRetailOrder"/>
 </route>

After the successful submission to the external system,
OrderManager.replaceOrderContects(sourceOrder, targetOrder) is invoked to replace the
order contents of submitted order with the order returned in response by the external
system.
cancelCustomerOrderItems - This route, defined in the order-context xml, takes
RetailOrder transformed into a
com.oracle.retail.integration.base.bo.custorderpicvo.v1.CustOrderPicVo as an input
payload, invokes the "pickupCustomerOrderItems" service operation on the RSB.
 OrderTransformer.toCustOrderPicVo(RetailOrder)
Components involved in transformations are
 OrderTransformer - Loads the required Managers and Tools to perform the

transformations. orderStatusMap could be extended to map any additional statuses
required by the OMS.

OrderTransformer#orderStatusMap
CustomerOrderDesc order status to Oracle Commerce Order States map
orderStatusMap=\
NEW=2,\
PARTIAL=2,\
FILLED=2,\
CANCELED=4,\
COMPLETED=5,\
OPEN=1,\
HELD=7,\
ERROR=6,\
SUSPENDED=8

RXM Order Extensions

28 Oracle Commerce Retail Extension Module Implementation Guide

 OrderLineItemTransformer -This class contains the methods used to transform
order line item information between the Retail Service Bus (RSB) and the Oracle
Commerce formats.

 PaymentTransformer - This class provides the methods to convert PaymentGroup
objects into com.oracle.retail.integration.base.bo.paymentdesc.v1.PaymentDesc. In
this component's properties file, the cardTypeMap can be extended to map
additional card types.

 ProfileServiceTransformer - To transform to and from
com.oracle.retail.integration.base.bo.customerdesc.v1.CustomerDesc and RXM
profile atg.repository.RepositoryItem.

OROMS Support
RXM integrates with the following OROMS 16.0 services:
 CWOrderIn
 CWMessageIn
 CWServiceIn
The messages (that is, XSDs) that the above services use are:
 CWCancel: 1.0
 CWCUSTHISTIN: 2.0
 CWORDERIN: 8.0
 CWOrderOut: 9.0
RXM is expected to communicate to OROMS through the RSB. The RSB application
provides application-specific PAKs that contain additional transformations through
XSLT transformations. Development or changes to these transformations require Oracle
Service Bus (OSB) with JDeveloper. See Oracle Retail Service Backbone Development Guide
on how to develop using these PAKs.
Some of the constants used in the XSLTs are "externalized" using JDeveloper variables.
These variables values depend on how OROMS is set up.

CreateOrderToCWOrderIn.xsl
 <xsl:variable name="MSG_DESTINATION">RDC</xsl:variable>
 <xsl:variable name="MSG_TYPE">CWORDERIN</xsl:variable>
 <xsl:variable name="COMPANY_CODE">17</xsl:variable>
 <xsl:variable name="ORCE_INTEGRATED">N</xsl:variable>
 <xsl:variable name="OMS_VISA_PAY_TYPE">4</xsl:variable>
 <xsl:variable name="OMS_MC_PAY_TYPE">5</xsl:variable>
 <xsl:variable name="OMS_CASH_CHECK_PAY_TYPE">1</xsl:variable>
 <xsl:variable name="OMS_AMEX_PAY_TYPE">3</xsl:variable>
 <xsl:variable name="OMS_DISCOVER_PAY_TYPE">6</xsl:variable>

OROMS Limitations:
 Fractional item quantities are not supported.
 Mixed orders are not supported.
 RXM handles the price, promotions, and tax calculations; therefore, this information

is not sent to OROMS.
 Payment types supported are credit cards with tokenization, gift cards, and checks.

RXM Limitations:

 RXM Order Extensions

 Commerce Extensions 29

In this release of RXM, cancel order operation is not supported. RXM supports only
cancel of the individual order items. An order with all the order items canceled is
canceled automatically by OMS.
In this release of RXM, splitting of order line items from OROMS is not supported. RXM
expects that the order line items retrieved from OMS keep their integrity with respect to
structure and total number.
This version of RXM warehouse inventory lookup was only tested with a simulator and
not with RMS.

Security Considerations
There are some specific security concerns in the order handling with RXM.

Payment
Out of the box, RXM only sends credit card tokens to OMS. This means retailers are
required to use a tokenization service. For more details on tokenization support in RXM,
see the Oracle Commerce Retail Extension Module Security Guide.

Order ID Validation
RXM provides an ESAPI validator to format the Order ID generated by OMS. This is
available through the oracle.retail.commerce.security.EsapiSecurityTools validate
method. Use the constant
oracle.retail.commerce.security.BaseSecurityTools.EXTERNAL_ORDER_ID_SECURITY_
CONTEXT to access the correct validator.
To modify this validator, update the validationRules.properties file. This file is packaged
with the RXM.Base module in /lib/oracle.retail.commerce.base-16.0.1.jar under
/retail/commerce/security.

Customization
The Order Extensions provide several additional points of customization.

OMS Endpoint Configuration
The Order extensions are designed to submit the Commerce order to an external OMS
through a web services call. The endpoint for that web service is configured in
retail/commerce/integration/order/security.properties. This file is packaged as part of
the oracle.retail.commerce.base-16.0.1.jar in the RXM.Base module's lib directory. No
value is provided by default.

Order endpoint security.properties file
Web Service options
endpointUri can be changed to HTTP or HTTPS
endpointUri=

Nucleus Component Overrides
The RetailOrderManager and OrderTransformer follow the Commerce model for
initializing components through Nucleus. As such, both components are available for
extension and replacement through common Commerce development patterns.
Additionally, each component wires in additional components that can be customized as
well. This section provides a description of the configuration options.

RXM Order Broker Extensions

30 Oracle Commerce Retail Extension Module Implementation Guide

RetailOrderManager
The RetailOrderManager has two additional configuration properties in its component
definition:
 enableOrdersLocalLookup: The setting to control if the RetailOrderManager looks in

the Commerce repository for customer Order history. If set to true, the
RetailOrderManager will query the Commerce repository. If set to false, it will not.
The default value is false.

 defaultMonthSearchRange: The setting to control how much purchase history the
RetailOrderManager will retrieve from the system of record. The default is three
months.

OrderTransformer
The OrderTransformer uses several delegate transformers to deal with the various parts
of an order. These delegates are all configured through its Nucleus component
properties file, /retail/commerce/integration/order/OrderTransformer.properties. Any
or all of these delegates can be customized and replaced using the traditional Commerce
development patterns.

Web Service Integration
All interactions with the OMS web service are done through the Apache Camel
framework. As mentioned above, the Order extensions configuration is housed in the
order-context.xml packaged as part of the RXM.Base module's config/config.jar under
/retail/commerce/integration/order. This file configures the CXF endpoint, sets up the
OrderTransformer, and defines the routes available to the Order extensions. By default,
the follow routes are available:
 createCustomerOrder - Submits a Commerce order to the OMS endpoint for

processing.
 queryCustomerOrder - Retrieves an order from the OMS and transforms it into a

Commerce order.
 cancelCustomerOrderItems - Submits a request to the OMS to cancel a particular

item on an existing order.
 requestNewOrderId - Submits a request to the OMS for a new order ID.
 cancelNewOrderId - Cancels a previous request for an order ID.
Each of these routes can be customized using methods described in the Apache Camel
documentation. By default, these routes use the OrderTransformer to transform the
Commerce order into the RSB order representation, call the OMS, and then transform the
result back to a Commerce object.
To better understand how to secure the communication with the OMS, see the “Securing
Commerce Extension”s section of this guide.

RXM Order Broker Extensions
The RXM Order Broker extensions have been designed to minimize the impact to existing
users of Commerce's AbstractInventoryManagerImpl.
The Order Broker (OROB) supports two operations.
 queryAvailableToPromise()
 queryInventoryInformation()
All methods defined in AbstractInventoryManagerImpl ultimately call one of these two
operations.

 RXM Order Broker Extensions

 Commerce Extensions 31

Both operations map to OROB release16 service call lookupAvailableInventory.

Versions
RXM order broker extensions have been tested with version 16.0 of the OROB APIs.

Pipeline Extensions
ProcCheckOrderInventory is called as part of the commerce pipeline. This processor calls
the BrokeredStoreInventoryManager class, which in turn calls the OROB service to check
if inventory is available to promise.

/atg/commerce/commercepipeline.xml
 <pipelinelink name="checkOrderInventory" transaction="TX_MANDATORY">
 <processor
jndi="/retail/commerce/order/processor/CheckOrderInventory"/>
 </pipelinelink>

Data Extensions
No data extensions are required for the Order Broker extensions.

Class Extensions
The following RXM classes extend Commerce to provide an interface to OROB.
 StoreInventoryManager extends

atg.commerce.inventoryAbstractInventoryManagerImpl
 BrokeredStoreInventoryManager extends StoreInventoryManager
The application can extend the above classes if additional properties are required or if
different method behavior is desired.

StoreInventoryManager extends atg.commerce.inventoryAbstractInventoryManagerImpl
 This class implements or extends the base Commerce class in a generic way that can

potentially work with external systems other than OROB.

BrokeredStoreInventoryManager extends StoreInventoryManager
 This class overrides and customizes the following two methods to work specifically

with OROB.
 queryAvailableToPromise()
 queryInventoryInformation()

Repository Listeners
No repository listeners are required for this RXM extension.

BrokeredStoreInventoryServiceConsumer
The BrokeredStoreInventoryServiceConsumer is the RXM interface to the external system
of record, OROB. BrokeredStoreInventoryManager uses this interface to communicate
with ORCE (through RSB). This interface uses Camel as a router to the RSB web services.
The camel context file, inventory-context.xml, maps the interfaces in
BrokeredStoreInventoryServiceConsumer to the specific transformers and RSB services
for each inventory operation.

RXM Order Broker Extensions

32 Oracle Commerce Retail Extension Module Implementation Guide

Store Inventory Transformers
Here is the list of transformers used to transform inventory requests and results to or
from the standard RBO payloads.

Class: InventoryServiceTransformer
 toInvAvailCriVo()
 toInvAvToPromColCriVo()
 toSearchAreaDesc()
 toDistanceUnit()
 toInventoryInfos()
The class can be extended and these methods can be overridden if needed by the
application.

RSB XSLT Transformers
Here is a list of RSB XSLT transformers used to transform the RBO payloads into the
format required by OROB.
 LocateProductAvailResponseToStoreProductAvailResponse.xsl
 StoreProductAvailRequestToLocateProductAvailRequest.xsl

Differences Between the Commerce AbstractInventoryManagerImpl and OROB
OROB does not support unit of measure quantities. Therefore, OROB does not support
floating point quantities, only "each" quantities (integer).
OROB returns inventory counts as sets of items per location. RSB returns inventory as a
collection of item/location pairs.

Security Considerations
OROB requires basic authentication credentials in the request header.

Securing Commerce Extensions 33

4
Securing Commerce Extensions

This chapter provides a security overview for RXM. For additional information, see the
Oracle Commerce Retail Extension Module Security Guide.
RXM integrates the Commerce Platform with several Oracle Retail assets, effectively
making the platform a client to those services. As a client, it is important to secure the
communications between the remote services and Oracle Commerce. The primary
means of security is through SOAP policy enforcement, specifically Username Token
over HTTPS, referred to here as Policy A.

Introduction
Policy A is relatively simple. The communication is over HTTPS but the UsernameToken
is in plain text. A timestamp element is included as well. The client and server machine
form a trust relationship through a public-private key relationship and the use of
encrypted stores called key stores and trust stores. The following example shows a
typical deployment of Commerce, with RXM communicating with services through the
Oracle Retail Service Backbone (RSB).

Figure 7: Typical Commerce Deployment

Configuration
The configuration of Policy A for RXM occurs in the server and in the client, as described
this section.

Server Side Changes (RSB)
There are three major steps to configuring Policy A for the RSB deployed in WebLogic.

Configure SSL
Policy A requires that HTTPS be used. This step requires a Keystore and Truststore
compatible with the Keystore and Truststore used by the client.

Configuration

34 Oracle Commerce Retail Extension Module Implementation Guide

Create Policy A User
Policy A requires that each inbound message be authenticated. The SOAP header of each
inbound message must contain a user name and password known to WebLogic. To
accomplish this, the expected user credential must be added to the WebLogic security
realm of the server the RSB is deployed on.

Apply Policy to Web Services
Configure each of the web services used by the clients with a Web Service Security
Policy. There are two parts to this configuration:
 Configure a WebLogic WS Security Policy file on each web service. Policy A is

defined in a single WebLogic xml file.
 Configure a user policy condition on each web service. This is how the WS Security

framework knows which user names and passwords are valid for message
authentication.

Client Side Changes (RXM)
Corresponding changes are required on the client side so the correct certificates and WS
security values are sent with the request. Most of the security configurations are
referenced in the camel context file (that is, loyalty-context.xml) but defined in
security.xml. Properties are externalized to security.properties. Both of these files can be
found in the root directory of the oracle.retail.commerce.base-16.0.1.jar located in
RXM/Base/lib.
The security.xml file establishes the security components used by the various Camel
endpoints. It declares five types of components:
 KeyManagerBuilder: This component provides access to a keystore. It is needed

because RXM retrieves all the required user credential and certificate passwords
from a wallet file instead of keeping them as plain text in the XML file.

 TrustManagerBuilder: This component provides access to a truststore. It is required
because RXM retrieves the truststore password from a wallet file instead of keeping
it plain text in the XML file.

 WSS4JOutInterceptor: This component configures WS Security. It is provided by the
Apache CXF API.

 WebServicePasswordHandler: This component configures the password for WS
Security. It is required because RXM retrieves the WebLogic user's password from a
wallet file instead of keeping it as plain text in the XML.

 BasicAuthenticationHeaderInterceptor: This component handles the creation of any
HTTP header authentication requirements.

The values used to create these components are all externalized into the
security.properties file. It contains properties for Keystore, Truststore, and WS Security.
It also contains a soap.mustunderstand property. Setting this to false allows making
requests through HTTP, if the web service is not secured with Policy A.
As mentioned above, all passwords used by RXM for communications are stored in a
CSF wallet file (cwallet.sso) and retrieved using the Credential Store Framework (CSF)
API. For WebLogic 12.1.3 without JRF, the wallet and its associate files must be placed in
the root of the domain containing RXM. These are the required files:
 cwallet.sso
 jazn-data.xml
 jps-config.xml

 Sample Files

 Securing Commerce Extensions 35

As an example, if RXM's domain is called rxm_domain, the files must be placed in
D:\Oracle\Middleware\WLS.12.1.3\user_projects\domains\rxm_domain.

Sample Files

security.xml
 <bean id="keyManagerBuilder"
class="oracle.retail.commerce.integration.security.KeyManagerBuilder" factory-
method="buildKeyManagers">
 <constructor-arg index="0" type="java.lang.String"
value="${keystore.path}"/>
 <constructor-arg index="1" type="java.lang.String"
value="${keystore.password.alias}"/>
 <constructor-arg index="2" type="java.lang.String"
value="${keystore.cert.password.alias}"/>
 <constructor-arg index="3" type="java.lang.String"
value="${keystore.type}"/>
 </bean>

 <bean id="trustManagerBuilder"
class="oracle.retail.commerce.integration.security.TrustManagerBuilder" factory-
method="buildTrustManagers">
 <constructor-arg index="0" type="java.lang.String"
value="${truststore.path}"/>
 <constructor-arg index="1" type="java.lang.String"
value="${truststore.password.alias}"/>
 <constructor-arg index="2" type="java.lang.String"
value="${truststore.type}"/>
 </bean>

 <bean id="wss4jOutInterceptor"
class="org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor">
 <property name="properties">
 <map>
 <entry key="action" value="UsernameToken Timestamp"/>
 <entry key="passwordType" value="PasswordText"/>
 <entry key="user" value="${webservice.user}"/>
 <entry key="timeToLive" value="5000"/>
 <entry key="mustUnderstand" value="${soap.mustunderstand}"/>
 <entry key="passwordCallbackRef">
 <ref bean="passwordCallbackHandler"/>
 </entry>
 </map>
 </property>
 </bean>

 <bean id="passwordCallbackHandler"
class="oracle.retail.commerce.integration.security.WebServicePasswordHandler"/>

 <bean id="AuthenticationHeaderInterceptor"
class="oracle.retail.commerce.integration.security.BasicAuthenticationHeaderInterc
eptor">
 <constructor-arg index="0" type="java.lang.String"
value="${auth.userName}"/>
 <constructor-arg index="1" type="java.lang.String"
value="${auth.password}"/>
 <constructor-arg index="2" type="java.lang.String" value="${auth.orgId}"/>
 <constructor-arg index="3" type="java.lang.String"
value="${auth.scheme}"/>
 </bean>

Sample Files

36 Oracle Commerce Retail Extension Module Implementation Guide

 <bean id="OrderBrokerAuthenticationHeaderInterceptor"
class="oracle.retail.commerce.integration.security.BasicAuthenticationHeaderInterc
eptor">
 <constructor-arg index="0" type="java.lang.String"
value="${orob.auth.userName}"/>
 <constructor-arg index="1" type="java.lang.String"
value="${orob.auth.password}"/>
 <constructor-arg index="2" type="java.lang.String"
value="${orob.auth.orgId}"/>
 <constructor-arg index="3" type="java.lang.String"
value="${orob.auth.scheme}"/>
 </bean>

 <bean id="OMSAuthenticationHeaderInterceptor"
class="oracle.retail.commerce.integration.security.BasicAuthenticationHeaderInterc
eptor">
 <constructor-arg index="0" type="java.lang.String"
value="${oroms.auth.userName}"/>
 <constructor-arg index="1" type="java.lang.String"
value="${oroms.auth.password}"/>
 <constructor-arg index="2" type="java.lang.String"
value="${oroms.auth.orgId}"/>
 <constructor-arg index="3" type="java.lang.String"
value="${oroms.auth.scheme}"/>
 </bean>

security.properties – root
The soap.mustunderstand flag should be set to false when using HTTP so SOAP on
the Server side
does not need to understand Web Service Security related headers needed for
Policy A or B.
soap.mustunderstand=false

Web Service User
webservice.user=

Keystore Properties
Example keystore.path=C://keystores//retail//webservices//keystore.jks
keystore.path=
keystore.password.alias=
keystore.cert.password.alias=
keystore.type=

Truststore Properties
Example: truststore.path=C://jdk1.8.0_112//jre//lib//security//cacerts
truststore.path=
truststore.password.alias=
truststore.type=

HTTP Authentication properties for ORCE Web Services. ORCE does not use the
default "Basic" authorization token scheme. Values are retrieved from wallet.
auth.userName=
auth.password=
auth.orgId=
Example: auth.scheme=Basic
auth.scheme=

HTTP Authentication properties for OROB Web Services.
orob.auth.userName=
orob.auth.password=
orob.auth.orgId=

 Sample Files

 Securing Commerce Extensions 37

orob.auth.scheme=

HTTP Authentication properties for OROMS Web Services.
oroms.auth.userName=
oroms.auth.password=
oroms.auth.orgId=
oroms.auth.scheme=

security.properties - end point
Web Service options
endpointUri can be changed to HTTP or HTTPS
endpointUri=

RXM Web Services 39

5
RXM Web Services

Design Approach
RXM 16.0 provides a set of web services to enable access to web content to the store.
These services are based on the RTG RSB service model and follow a similar
implementation pattern. Each implements a ServiceInterface published as part of the
RSB process. Behind that interface is a ServiceProviderImpl class that implements any
exposed methods. For RXM, this ServiceProviderImpl class is a simple facade that
delegates the implementation to pluggable Nucleus components. The
ServiceProviderImpl invokes Nucleus to access the implementing component and
delegates the call, passing all given parameters along. In most cases, these Nucleus
components are global, but being global is not a requirement.
To enable Nucleus on these JAX-WS services, RXM has introduced a SOAP handler chain
and associated it with each service. The handler chain is defined in the
oraclecommercehandlers.xml file in the same CLASSPATH as the ServiceInterface. By
default, RXM declares two handlers: ServletPipelineHandler and
MessageLoggingSOAPHandler.
 ServletPipelineHandler: This SOAP handler is responsible for establishing the

request context with Nucleus. It works very similarly to the Commerce request
handling pipeline. The pipeline invoked by this handler always starts with a
HeadPipelineServlet that, among other things, sets up the
DynamoHttpServletRequest and DynamoHttpServletResponse. Once the incoming
request is handled, JAX-WS also gives this handler a chance to handle the message,
as the response is outbound. During this time, this handler cleans up any thread-
sensitive state setup during the inbound phase.

 MessageLoggingSOAPHandler: Prints incoming and outgoing messages to sysout,
(that is, System.out). To enable this feature, add this handler to the handler chain of
the web service and set the System property or ServletContext init parameter with
the key oracle.retail.commerce.service.handler.MessageLogging and value to "true".
If the System property is true, it will override any value set into the servlet init
params.

Figure 8: RXM Web Services

For specifics on each service, see the relevant section.

40 Oracle Commerce Retail Extension Module Implementation Guide

JAX-WS Configuration
The SOAP web services provided by RXM.Services use the JAX-WS API, which is
different from the JAX-RPC web service (see Web Services Guide) framework provided
by the Oracle Commerce Platform. These services provide RSB-based operations for use
by other Oracle Retail (and potentially non-Oracle) applications.
The web services are provided with JAX-WS annotations on the appropriate Java class
files.
 @WebService is used to mark classes as web services.
 @HandlerChain is used to configure each service with reference to the

/com/oracle/retail/ooc/integration/services/<service>/v1/oraclecommercehandle
rs.xml path.

The use of annotations means that WebLogic (or other application server) must be told to
look for JEE resources. The ooc-service-ejb-16.0.1.jar must be configured as a <module>
in the EAR's /META-INF/application.xml for the application server to find the services.
The oraclecommercehandlers.xml file configures each service with the JAX-WS
SOAPHandler, oracle.retail.commerce.service.handler.ServletPipelineHandler. The
ServletPipelineHandler is used by each service to execute the servlet request pipeline.

Services Provided
The following services, described in this chapter, are provided: Targeted Item Service,
Shopping Cart Service, and Item Information Service.

Item Information Service
The Item Information Service (also known as the Extended Item Information Service)
provides calling applications with additional Commerce information about Item SKUs
and their related products. This service has a fairly simple API, taking in Item SKUs and
returning a configurable set of Commerce attributes about those SKUs and their related
products. The service also takes an optional language indicator telling the service what
language to return the information in, if possible.

ItemInformationService API
public interface ItemInformationPortType {
 public ItmInfoColDesc retrieveItemInformation(ItmInfoCriVo itmInfoCriVo)
 throws EntityNotFoundWSFaultException, IllegalArgumentWSFaultException,
 IllegalStateWSFaultException, ValidationWSFaultException;
}

 RXM Web Services 41

Figure 9: Item Information Service

Configuration
The Item Information service is backed by the Nucleus component
retail/commerce/service/catalog/ItemInformationService declared by the RXM.Services
module. This component has two main configuration points:
extendedProductAttributeNames and extendedSkuAttributeNames. Both configuration
points take their inputs in the form of <attribute name>=<attribute handler component
identifier>. This allows a variety of attribute types to be handled by a single service call.
RXM provides the following set of property handler components:

Component Purpose

retail/commerce/service/catalog/handler
s/StringPropertyTypeHandler

Returns String properties with proper XML encoding

42 Oracle Commerce Retail Extension Module Implementation Guide

retail/commerce/service/catalog/handler
s/TimestampPropertyTypeHandler

Returns Timestamp properties using the JDBC
timestamp escape format

retail/commerce/service/catalog/handler
s/AuxiliaryMediaPropertyTypeHandler

Returns a given RepositoryItem as an XML block,
wrapped in a CDATA element. Use this handler to
send the entire contents of a related repository item
back to the caller.

retail/commerce/service/catalog/handler
s/ExternalMediaPropertyTypeHandler

Returns the URL property values of the associated
Auxiliary Media on the given repository item. Multiple
URLs will be returned as a keyed list. For example, if
the auxiliaryMedia has two external media instances
associated with it, the result would look like this:
 <key>1</key>
 <url><![CDATA[/docroot/content
/image1.jpg]]></url>
 <key>2</key>
 <url><![CDATA[/docroot/content
/image2.jpg]]></url>

 Returns the URL property value of the
externalMediaItem on the given repository item

By default, the following set of attributes is returned by the service:
 SKU

– displayName

– description

– auxiliaryMedia

– thumbnailImage

– smallImage

– largeImage
 Product

– brand

– longDescription

– manufacturer

– inStoreDetailPageUrl

Extension and Customization
The ItemInformationService is designed to be easily extended. There are several points
of extension, each covered below.

Returning Additional Properties
The set of attributes returned is determined by Nucleus component properties. By
default, the service accesses two repository items from the Catalog Repository: Product
and SKU. To add more attributes to the set returned, update either the
extendedProductAttributeNames property or the extendedSkuAttributeNames
component property with the additional Repository Item properties to return. These are
the Repository Item properties and their handlers provided by default.
extendedProductAttributeNames=\

brand=/retail/commerce/service/catalog/handlers/StringPropertyTypeHandler,\

longDescription=/retail/commerce/service/catalog/handlers/StringPropertyTypeHandle
r,\

 RXM Web Services 43

manufacturer=/retail/commerce/service/catalog/handlers/RepositoryItemPropertyTypeH
andler,\

inStoreDetailPageUrl=/retail/commerce/service/catalog/handlers/StringPropertyTypeH
andler

extendedSkuAttributeNames=\

displayName=/retail/commerce/service/catalog/handlers/StringPropertyTypeHandler,\

description=/retail/commerce/service/catalog/handlers/StringPropertyTypeHandler,\

auxiliaryMedia=/retail/commerce/service/catalog/handlers/AuxiliaryMediaPropertyTyp
eHandler,\

thumbnailImage=/retail/commerce/service/catalog/handlers/ExternalMediaPropertyType
Handler,\

smallImage=/retail/commerce/service/catalog/handlers/ExternalMediaPropertyTypeHand
ler,\

largeImage=/retail/commerce/service/catalog/handlers/ExternalMediaPropertyTypeHand
ler

Handling Different Property Types
If the added property has a new property type, create a new Property Type Handler to
return its String representation. To do this, create a new Java class that implements the
oracle.retail.commerce.service.catalog.handlers.PropertyTypeHandler interface.
public interface PropertyTypeHandler {
 String getPropertyValueAsString(RepositoryItem repoItem, String propertyName,
Locale locale);
}

Figure 10: Property Type Handler

As a practice, all String representations are wrapped in a CDATA element. The
PropertyTypeHander interface provides default methods to assist in that process. All
properties returned by the service are sent as a collection of name/value pairs, so no
additional changes to the ItmInfoColDesc Retail Business Object are required.

Additional Extension Points
The Item Information Service follows the same implementation pattern that the other
RXM services follow, so the extension is similar. The Nucleus component supporting the
services can be updated to reference a customized implementation. The provided

44 Oracle Commerce Retail Extension Module Implementation Guide

implementation, oracle.retail.commerce.service.catalog.ItemInformationServiceImpl,
provides Java hook points for two of its processes: input validation and Locale
processing.

Figure 11: Extension Points

To customize the input validation, override the protected void
validateInput(ServiceOpContext ctx, ItmInfoCriVo input) method. By default, this
method only validates that the caller provided a list of SKU IDs to query.
To customize the Locale handling, override the protected void
applyCurrentLocale(Locale locale) method. By default, this method sets the locale
property on the profile associated with the HTTP request to the language specified in the
caller's input criteria.
To customize the format of the data returned by the service, replace the transformer
associated with the service component. By default, the transformer property refers to the
/retail/commerce/integration/catalog/ItemInformationServiceTransformer component
backed by the
oracle.retail.commerce.integration.catalog.ItemInformationServiceTransformer class.
Any of the provided methods on this class can be overridden to provide custom
behavior. See the class' Javadoc for more information.

Troubleshooting
This section covers the exceptions thrown by the service with possible causes.

Exception Thrown Possible Cause

IllegalStateWSFaultException An error occurred while attempting to
access the product catalog. Generally
wraps a Commerce RepositoryException.
The input ItmInfoCriVo failed validation.
Generally occurs when a need value
missing.

 RXM Web Services 45

Exception Thrown Possible Cause

WebServiceException Access denied. The Basic Authentication
user associated with the request does not
have permission to call the service.

Shopping Cart Service
Shopping Cart Service (also known as Online Shopping Cart Service) is one of the RXM's
SOAP web services that can be called from external systems. This service provides
customer's active shopping cart, based on customer ID.
There are three operations supported by this service:
 Retrieve shopping cart - This operation returns a cart with all items and their

respective quantities.
 Remove item from shopping cart – Once a customer's shopping cart is retrieved,

using this operation, items can be removed from shopping cart.
 Remove all items from shopping cart - This operation is used to remove all the items

from a customer's shopping cart.
This service also supports multi-site. If multi-site is enabled in commerce, location ID
(web-store ID) will also be a required input field. Multi-site is supported by all three
operations.

ShoppingCart Service API
public ShoppingCartDesc retrieveShoppingCart(final ShoppingCartCriVo input)
 throws EntityNotFoundWSFaultException, IllegalArgumentWSFaultException,
 IllegalStateWSFaultException, ValidationWSFaultException;

public InvocationSuccess removeItemsFromCart(final ShoppingCartDelCriVo
shoppingcartdelcrivo)
 throws EntityNotFoundWSFaultException, IllegalArgumentWSFaultException,
 IllegalStateWSFaultException, ValidationWSFaultException;

public InvocationSuccess removeAllItemsFromCart(final ShoppingCartCriVo
shoppingcartcrivo)
 throws EntityNotFoundWSFaultException, IllegalArgumentWSFaultException,
 IllegalStateWSFaultException, ValidationWSFaultException;

Configuration
Implementation class for Shopping Cart Service interface is
com.oracle.retail.ooc.integration.services.shoppingcartservice.v1.ShoppingCartServicePr
oviderImpl, which resides in 'Services' module. This class then delegates implementation
to /oracle/retail/commerce/service/order/ShoppingCartService. This class, after
validating the customer and site (if applicable), retrieves orders for that customer, and
the first incomplete order is returned.
This class starts a transaction in case of removeItemsFromCart and
removeAllItemsFromCart. This transaction removes items in order from repository.
Because of this, whenever this service will be called, active shopping cart will go in bad
state because of changes in repository. Always make sure to reload cart from repository.

46 Oracle Commerce Retail Extension Module Implementation Guide

This class has following properties:

Property Name Property Function

cartOrderState The state of the extracted order for customer
depends on this property. Shopping cart
represents orders in incomplete states.

Default Value: incomplete

ascendingOrder The order in which customer's orders will be
extracted.Values are true for ascending order,
false for descending.

Default Value: false

sortOrdersByProperty Order the results by the given item descriptor
property. By default, orders are extracted by
last modified date in descending order so that
latest modified order can be displayed.

Default Value: lastModifiedDate

This class also has few static final variables as well.
 /**
 * The index of the first order to return. (This is an index into the result
set return by the repository query.)
 */
 public static final int START_INDEX_OF_ORDER = 0;

 /**
 * The number of orders to return.
 */
 public static final int NUMBER_OF_ORDER = 1;

By default, the sort order is by last modified date in descending order, starting with the
first order and returning one order.

Troubleshooting
Exceptions thrown by this service are:

Exception Expected Release

com.oracle.retail.integration.services.
exception.v1.IllegalArgumentWSFaultException

Input (com.oracle.retail.integration.base.bo.
shoppingcartcrivo.v1.ShoppingCartCriVo)
is null.

In input, Customer is null.

In input, location is null (in case of multisite)

If item is to be removed, quantity is invalid.

com.oracle.retail.integration.services.
exception.v1.EntityNotFoundWSFaultException

Customer does not exist or Profile is not found.

No items in the shopping cart for the customer
or no active shopping cart found.

In case of remove item, item not found in
repository.

In case of multisite, location not found.

com.oracle.retail.integration.services
exception.v1.IllegalStateWSFaultException

An error occurred accessing commerce
repository.

In case of remove items, error occurred while
starting transaction or ending transaction.

 RXM Web Services 47

Targeted Items Service

Note: Out of the box Oracle Commerce GSA IDs, such as sku
IDs, are case sensitive.

In release 16.0.1, Xstore forces all primary keys (such as sku
IDs) to uppercase in the database.

When Xstore is integrated with RXM, the forced-casing
functionality has to be disabled in Xstore in order for the
integration to work.

One of the SOAP web services that the RXM.Services module provides is the Targeted
Items Service. This service relies on Oracle Commerce's framework for defining targeters
and cross-sell/up-sell information. External systems can call this service. Based upon the
input containing the current customer, the customer's current location (such as a retail
store), and their current in-store purchase, RXM will call calculate what additional items
are “targeted” to the customer’s online profile. This allows systems, such as Oracle Retail
Xstore Point of Service, to show the customer the same “you may also like” content as
they would see as if they were online.
In this case, the Commerce deployment acts as a service provider. In an Oracle Retail
deployment, it is expected that Retail Service Backbone (RSB) is also involved,
abstracting and virtualizing the service from consumers. No transformation of the SOAP
payload in the RSB is needed because RXM hosts the same service contract for its services
(or essentially RXM “speaks” RSB language for its hosted services).

Configuration
The Targeted Items Service is hosted by an RSB-generated JAXWS class,
com.oracle.retail.ooc.integration.services.targeteditemsservice.v1.TargetedItemsServicePr
oviderImpl. This class delegates the service implementation to the
/retail/commerce/service/targeting/TargetedItemsService component. This component
first executes the targeter that is configured in its "targeterPath" property. The default
targeter is /atg/registry/RepositoryTargeters/TargetedItems, which is provided out of
the box (only as an example). The products or rules configured in the targeter are
expected to be replaced by the merchant using Business Control Center (BCC).
The provider implementation class mentioned above is invoked by an RSB bean that
implements the
com.oracle.retail.ooc.integration.services.targeteditemsservice.v1.TargetedItemsServiceIn
terface interface. This interface is enhanced with a JAXWS @HandlerChain notation that
specifies the oraclecommercehandlers.xml file to be found in the same package. This
XML defines a list of handlers. The ServletPipelineHandler in this list invokes the Oracle
Commerce Servlet Pipeline Chain before invoking the provider implementation class.
This gives Nucleus knowledge of the current HTTP session and request. See “Web
Services” section for more information.

Troubleshooting
A com.oracle.retail.integration.services.exception.v1.IllegalStateWSFaultException will
occur if the /retail/commerce/service/targeting/TargetedItemsService cannot be found
in the session scope or if the repository fails during the lookup of the customer, the
location, or any items.

48 Oracle Commerce Retail Extension Module Implementation Guide

A com.oracle.retail.integration.services.exception.v1.IllegalArgumentWSFaultException
will occur if the input is null.
A com.oracle.retail.integration.services.exception.v1.EntityNotFoundWSFaultException
will occur if the customer ID or location ID is specified and it cannot be found using a
query.

Security
For all hosted RXM services, the
\atg\dynamo\servlet\dafpipeline\PathAuthenticationServlet Servlet Pipeline
component is enabled. In this component the Targeted Items Service's context path is
configured to use a /retail/commerce/service/security/WebServiceAuthenticator. This
component is atg.servlet.pipeline.UserAuthorityAuthenticator that makes sure that users
accessing the service have the webservices-user-group access role.
Also, the NucleusSecurityManager is used by the service to ensure the user has access to
the service.

Security
Security for RXM is enabled by default. As stated in the Oracle Commerce Retail Extension
Module Security Guide, web service security is comprised of four parts: authentication,
authorization, confidentiality, and integrity. In the RXM.Services module, this primarily
means application-level authorization. When fully configured, these four security aspects
are accomplished.

PathAuthenticationServlet
RXM.Services by default enables the
/atg/dynamo/servlet/dafpipeline/PathAuthenticationServlet Nucleus component
within the servlet request pipeline. Additional authenticators are configured for each of
the web service's context paths. Each is a UserAuthorityAuthenticator, which uses the
database (see below) to check credentials and authorization.

NucleusSecurityManager
Each service component has the NucleusSecurityManager set.
 /retail/commerce/service/catalog/ItemInformationService
 /retail/commerce/service/order/ShoppingCartService
 /retail/commerce/service/targeting/TargetedItemsService
To disable the user authorization provided by these services, set the
NucleusSecurityManager to null (that is, nucleusSecurityManager=). In this
configuration, the service does not check functional access, so authorization for that
service is disabled. Use this configuration if the application server (that is, WebLogic) is
managing all user authentication and authorization duties.

Functional Access
Each service component checks the HTTP request's (see DynamoHttpServletRequest)
user for access to that service's functional name. The user will not be set onto the
DynamoHttpServletRequest unless PathAuthenticationServlet (see above) is enabled. In
this case, access will be denied (unless NucleusSecurityManager is unset [see above]).
The service's functional name is formatted as "Component Name <dot> Operation
Name" (for example, TargetedItemsService.queryTargetedItems).

 RXM Web Services 49

RXM.Services loads these functional names into the
/atg/webservice/security/NucleusSecurityRepository during installation and database
initialization. The database tables involved in the data setup of functions and users are:
 DAS_ACCOUNT
 DAS_GROUP_ASSOC
 DAS_NS_ACLS
 DAS_NUCL_SEC

User Setup
RXM.Services also loads a group (or role) called "webservices-user-group" into the
/atg/dynamo/security/AdminSqlRepository during installation and database
initialization. This group is given access to the above functional names.
The user that has the webservices-user-group role must be manually created. This user is
not created by the installation or configuration process.

Extension
Developers wishing to extend these services may do so. However, consult the Oracle
Retail Service Backbone Development Guide for how to extend the WSDLs and XSDs that
define the contract of the service. Changes to the contract are reflected in a new version
of ServiceProviderImpl and its payloads.
A copy of the generated ServiceInterface must be updated to include this line of code on
its header to ensure the ServletPipelineHandler is invoked.
@HandlerChain(file="oraclecommercehandlers.xml")

Then the component at /retail/commerce/service/package/Service can be extended or
have its class replaced to accept the different JAXB RSB objects.
The component at /retail/commerce/integration/package/ServiceTransformer must
either then be replaced or extended per the extensions made to the service. Its job is to
transform the RSB JAXB objects to and from service input and output, such as results
from the product repository.

Troubleshooting
HTTP requests to the deployed JAX-WS SOAP web service musts provide a basic
"Authorization" header token that matches the user setup in WebLogic and the same in
the DAS_ACCOUNT table.
A bad username or password set up results in a "401 Unauthorized" response.
Here are additional options to set when making a request:
 Provide authorization credentials "preemptively". This assures the request has the

"Authorization" header token when it is challenged by the app server and then
passed to the application. If you do not provide an "Authorization" header
preemptively, then you may see a response such as:

<faultstring>Security token failed to validate.
weblogic.xml.crypto.wss.SecurityTokenValidateResult@2971ce8d[status:
false][msg UNT Error:A duplicated nonce is found!
vRuyx7NIC2ChC8qHWlkheg==]</faultstring>

 Set the request option "WSS-Password Type" to "PasswordText". The application
expects to be able to read the credentials as text. The credentials and request are
encrypted by the TLS layer. If you do not set "PasswordText", then you may see a
response such as:

50 Oracle Commerce Retail Extension Module Implementation Guide

<faultstring>Error on verifying message against security policy Error
codes: 1001 1021 Error codes: 1001 1021</faultstring>

 Set the request option "WSS TimeToLive" to 5000 (5 seconds) or similar. If you do not
set "WSS TimeToLive", then you may see a response such as:

 <faultstring>Timestamp validation failed.</faultstring>

	Oracle Retail VAR Applications
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Access to Oracle Support

	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Design Approach
	ServiceConsumers
	Managers
	Tools

	Commerce Extensions
	RXM Profile Extensions
	Available API
	Commerce Extensions
	Login and Create Handler
	Repository Listener
	Customer Transformer
	ORCE Support
	Security Considerations
	Customization

	RXM Loyalty Extensions
	Available API
	Commerce Extensions
	Loyalty Transformer
	ORCE Support
	Security Considerations
	Customization

	RXM Shopper Lists Extensions
	Versions
	Pipeline Extensions
	Data Extensions
	Class Extensions
	RetailGiftlistTools extends atg.commerce.gifts.GiftlistTools
	RetailGiftlistManager extends atg.commerce.gifts.GiftlistManager
	RetailGiftlistSearchFormHandler extends atg.commerce.gifts.SearchFormHandler

	Repository Listeners
	GiftlistServiceConsumer
	Shopper List Transformers
	Class: GiftlistServiceTransformer

	RSB XSLT Transformers
	Shopper List Sequence Diagrams
	Create Gift List
	Update Gift List
	Update Gift List Item
	Gift List Query

	Differences Between the Commerce/RXM and ORCE Shopper Lists
	Gift List versus Registry
	Wish Lists
	Published versus Private
	Addresses
	Gift List Event Types

	Synchronizing a Customer's Shopper Lists
	Gift List Queries
	Retrieving ORCE Private Registries
	Security Considerations
	Gift List Service Decorator Logging

	ORCE Support

	RXM Purchase History Extensions
	Pipeline Extensions
	Available API
	Purchase History Transformers
	purchase history route definition

	ORCE Support
	Security Considerations
	Customization

	RXM Order Extensions
	Pipeline Extensions
	SendFulfillmentMessage.properties

	Repository Extensions
	orderrepository.xml

	Class Extensions
	Available API
	OrderManager.properties

	Order Transformers
	OrderTools.properties
	order-context.xml
	OrderTransformer#orderStatusMap

	OROMS Support
	CreateOrderToCWOrderIn.xsl
	OROMS Limitations:
	RXM Limitations:

	Security Considerations
	Payment
	Order ID Validation

	Customization
	OMS Endpoint Configuration
	Order endpoint security.properties file

	Nucleus Component Overrides
	RetailOrderManager
	OrderTransformer

	Web Service Integration

	RXM Order Broker Extensions
	Versions
	Pipeline Extensions
	/atg/commerce/commercepipeline.xml

	Data Extensions
	Class Extensions
	StoreInventoryManager extends atg.commerce.inventoryAbstractInventoryManagerImpl
	BrokeredStoreInventoryManager extends StoreInventoryManager

	Repository Listeners
	BrokeredStoreInventoryServiceConsumer
	Store Inventory Transformers
	Class: InventoryServiceTransformer

	RSB XSLT Transformers
	Differences Between the Commerce AbstractInventoryManagerImpl and OROB
	Security Considerations

	Securing Commerce Extensions
	Introduction
	Configuration
	Server Side Changes (RSB)
	Configure SSL
	Create Policy A User
	Apply Policy to Web Services

	Client Side Changes (RXM)

	Sample Files
	security.xml
	security.properties – root
	security.properties - end point

	RXM Web Services
	Design Approach
	JAX-WS Configuration

	Services Provided
	Item Information Service
	ItemInformationService API
	Configuration
	Extension and Customization
	Returning Additional Properties
	Handling Different Property Types
	Additional Extension Points

	Troubleshooting

	Shopping Cart Service
	ShoppingCart Service API
	Configuration
	Troubleshooting

	Targeted Items Service
	Configuration
	Troubleshooting
	Security

	Security
	PathAuthenticationServlet
	NucleusSecurityManager
	Functional Access
	User Setup

	Extension
	Troubleshooting

