

[1] Oracle Agile Engineering Data Management
Web Services Guide for Agile

Release e6.2.0.0

E52562-01

June 2015

Oracle Agile Engineering Data Management/Web Services Guide for Agile, Release e6.2.0.0

E52562-01

Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Petra Metz

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Conventions .. vii

1 Introduction to Web Services

About Web Services... 1-1
Core Technologies.. 1-2

Web Service Description Language (WSDL) .. 1-2
XML and XML Schema .. 1-2
Simple Object Access Protocol (SOAP).. 1-2

Web Services Architecture .. 1-3
About Agile e6 Web Services... 1-3

The Core Web Services .. 1-4
About Agile e6 Web Services Framework ... 1-4

Components of Agile e6 Web Services Framework.. 1-4

2 Getting Started with Web Services

Prerequisites .. 2-1
Operating Environment .. 2-1
Web Services Engines .. 2-1
Standards Compliance .. 2-2

Understanding Web Services Authentication and Performance .. 2-2
The Agile e6 Session Handling .. 2-3

The Agile e6 PLM Session Manager... 2-4
The PLM Ticket ... 2-5

Understanding the Agile e6 Web Services Requests .. 2-5
Obtaining the Agile e6 Metadata ... 2-5

Understanding the Agile e6 Web Services Responses.. 2-5
Response Status Code.. 2-6
Whitelist Mechanism for Masks... 2-6

List of Mask Names .. 2-6
Configuration Parameters ... 2-7

Exceptions and Warnings ... 2-7

iv

countOnly Query Support .. 2-7

3 Setting Up the Web Services Infrastructure

Installing the Agile e6 Web Services Framework .. 3-1
Creating the WebLogic Agile e6 Domain ... 3-1

Testing Inbound Web Services with JDeveloper HTTP Analyzer... 3-1
Testing Inbound Web Services with SoapUI ... 3-2

4 Configuring Agile e6 Web Services Security

Setting Up the Web Services Security Policies... 4-1
Setting Up the Web Services Security ... 4-2
Authenticating a Web Service Client .. 4-3

A Sample of HTTP/S Authentication.. 4-3

5 Working with Agile e6 Web Services

Developing the Outbound Web Services Wrapper ... 5-1
The Web Services Wrapper Interface .. 5-1

The BPEL Facade... 5-1
Endpoint Configurations for the External Wrapper.. 5-2
Session Management Integration ... 5-2

Developing a Custom Wrapper ... 5-2
Calling a Custom Wrapper from Agile e6.. 5-3
Deploying a Custom Wrapper ... 5-4
Web Service Wrapper Log Messages .. 5-4

6 Agile e6 Core Web Services Operations

Bulk Operations.. 6-1
Bulk Processing of Requests .. 6-2

Handling Bulk Requests.. 6-2
BusinessObject Web Service.. 6-2

Binary Data Transfer.. 6-3
Bulk Operations.. 6-3

createObject.. 6-3
getObjects ... 6-5
updateObject.. 6-7
deleteObject.. 6-8
createRelation .. 6-9
updateRelation ... 6-11
getRelations... 6-13
deleteRelation ... 6-14
setReservation... 6-16

DocumentManagement Web Service .. 6-17
DFM Support ... 6-17
StreamingFileServices... 6-19

downloadFile .. 6-19
uploadFile ... 6-21

v

DocumentManagement CoreService.. 6-23
getFiles... 6-23
getCADAssembly .. 6-26
getCADAssemblyNextDataBlock.. 6-30
getFMSVault ... 6-33
createUpdateFileObject ... 6-34

Bulk Operations... 6-36
getFiles... 6-37
getFMSVault ... 6-39

Metadata Web Service .. 6-41
Bulk Operations... 6-41

getEntity .. 6-41
getEntity Type .. 6-44
getEntityRelation.. 6-46
getNumberCycles .. 6-48
getNumbers .. 6-49

Configuration Web Service ... 6-51
getUserContext .. 6-51
setUserContext... 6-52
Bulk Operations... 6-55

getDefault.. 6-55
createDefault... 6-55

EngineeringCollaborationService Web Service .. 6-56
createUpdateStructure.. 6-61

7 Appendix

SAMPLES... 7-1
EchoServiceWrapper.java ... 7-1
SampleWrapper.java ... 7-3
Web Services Security.. 7-7

vi

vii

Preface

Agile PLM is a comprehensive enterprise PLM solution for managing your product
value chain.

Audience
This document is intended for administrators and users of the Agile PLM products.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Oracle's Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle
Technology Network (OTN) website
http://www.oracle.com/technetwork/documentation/agile-085940.html contains
the latest versions of the Agile PLM PDF files. You can view or download these
manuals from the Web site, or you can ask your Agile administrator if there is an Agile
PLM Documentation folder available on your network from which you can access the
Agile PLM documentation (PDF) files.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

viii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction to Web Services 1-1

1Introduction to Web Services

About Web Services
Web Services are technologies for building distributed applications. These services,
which can be made available over the internet, use a standardized XML messaging
system and are not tied to specific operating systems or programming languages.
Through Web Services, companies can encapsulate existing business processes,
publish them as services, search for and subscribe to other services, and exchange
information throughout and beyond the enterprise. Web Services are based on
universally agreed upon specifications for structured data exchange, messaging,
discovery of services, interface description, and business process design.

A Web Service makes remote procedure calls across the internet using:

■ HTTP/HTTPS, or other protocols to transport requests and responses.

■ Simple Object Access Protocol (SOAP) to communicate request and response
information.

The key benefits provided by Web Services are:

■ Service-oriented Architecture

Unlike packaged products, Web Services can be delivered as streams of services
that allow access from any platform. Components can be isolated; only the
business-level services need be exposed.

■ Interoperability

Web Services ensure complete interoperability between systems.

■ Integration

Web Services facilitate flexible integration solutions, particularly if you are
connecting applications on different platforms or written in different languages.

■ Modularity

Web Services offer a modular approach to programming. Each business function
in an application can be exposed as a separate Web Service. Smaller modules
reduce errors and result in more reusable components.

■ Accessibility

Web Services can be completely decentralized. They can be distributed over the
internet and accessed by a wide variety of communications devices.

■ Efficiency

About Web Services

1-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Web Services constructed from applications meant for internal use can be used
externally without changing code. Incremental development using Web Services is
relatively simple because Web Services are declared and implemented in a human
readable format.

Core Technologies
Agile e6 Web Services use industry standard core technologies. These are:

1. Web Services Description Language (WSDL)

2. XML and XML Schema

3. Simple Object Access Protocol (SOAP)

Web Service Description Language (WSDL)
WSDL is an XML-based format for describing the interface of a Web Service. WSDL
describes the endpoints, location, protocol binding operations, parameters, and data
types of all aspects of a Web Service:

■ The WSDL that describes a Web Service has the following characteristics:

– It is published by the service provider.

– It is used by the client to format requests and interpret responses.

– It can be optionally submitted to a registry or service broker to advertise a
service.

■ Additionally, WSDL describes the following:

– The operations that are provided by a Web Service.

– The input and output message structures for each Web Service operation.

– The mechanism to contact the Web Service.

XML and XML Schema
A WSDL file is published via an XML file. Document or Literal are required as part of
the WS-I interoperability standard. This standard sets the basis for modern Web
Service usage.

■ Document

The payload for an operation, however complex, must be defined in a single XML
element.

■ Literal

The definition of single XML elements must be described by an XML Schema
embedded in the WSDL file.

When using Document or Literal formatting, the WSDL file will contain an XML
Schema definition that defines all messages and data types that are used for a
particular service. The payload itself consists entirely of XML data structures.

Simple Object Access Protocol (SOAP)
SOAP is a lightweight protocol intended for exchanging structured information in a
decentralized distributed environment. SOAP uses XML to define an extensible
messaging framework.

SOAP messages consist of the following:

About Agile e6 Web Services

Introduction to Web Services 1-3

■ An envelope for wrapping messages, including addressing and security
information.

■ A set of serialized rules for encoding data types in XML.

■ Conventions for a procedure call and, or response.

Web Services Architecture
You can view Web Services architecture in terms of roles and the protocol stack:

■ Roles:

– Service provider

This provides the service by implementing it and making it available on the
internet.

– Service requester

This is the user of the service who accesses the service by opening a network
connection and sending an XML request.

– Service registry

This is a centralized directory of services where developers can publish new
services or find existing ones.

■ Protocol Stack:

– Service transport layer

This layer uses the HTTP protocol to transport messages between applications.

– XML messaging layer

This layer encodes messages in XML format using SOAP to exchange
information between computers. It defines an envelope specification for
encapsulated data that is transferred, the data encoding rules, and remote
procedure call (RPC) conventions.

– Service description layer

This layer describes the public interface to a specific Web Service using the
Web Service Description Language (WSDL) protocol. With WSDL, it defines
an XML grammar to describe network services. The operations and messages
are described abstractly, and then bound to a network protocol and message
format. WSDL allows description of endpoints and their messages regardless
of what message formats or network protocols are used to communicate.

– Service discovery layer

This layer centralizes services into a common registry using the Universal
Description Discovery and Integration (UDDI) protocol. UDDI is a
platform-independent XML-based registry for businesses worldwide to list
themselves on the internet.

About Agile e6 Web Services
Agile e6 Web Services expose a subset of the Engineering Data Management (EDM)
functionalities of the Agile e6 application. These services support functionalities
provided by EDM modules in Agile e6 application, such as Item Management, Project
Management, and many other functions of Agile e6.

About Agile e6 Web Services Framework

1-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Implementation of Agile e6 Web Services adheres to the following principles:

■ Well defined, standard based discoverable interface

■ Java based Web Services framework using Oracle WebLogic

■ Modularized Agile e6 Schema (XSD) and WSDL for easy maintenance

■ Standard-based WSDL to ensure compatibility across various clients (.NET, Java,
and BPEL)

■ Bulk APIs wherever applicable for better performance

The Core Web Services
Agile e6 Core Web Services is a set of services for the following functionalities:

■ BusinessObject Web Service

■ DocumentManagement Web Service

■ Metadata Web Service

■ Configuration Web Service

■ EngineeringCollaborationService Web Service

About Agile e6 Web Services Framework
The Web Service Framework is an additional layer on top of Agile e6, which supports
inbound and outbound communication based on standard Web Services technology. It
provides the means to call external Web Services from inside Agile e6 LogiView
procedures (outbound direction). In addition, it allows external applications (Web
Service Clients) to call the Agile e6 APIs through Web Services.

The Web Service framework comes with a set of predefined core Web Services, which,
out of the box, support the most common integration scenarios like create EDM object
or get EDM object.

Components of Agile e6 Web Services Framework

The Agile e6 Web Services Framework comprises of the following:

■ Web Service wrapper

To support the outbound Web Service calls from LogiView procedures.

■ Core Web Services

To support the inbound Web Service calls mapped into the ECI-API calls.

2

Getting Started with Web Services 2-1

2Getting Started with Web Services

Prerequisites
Agile e6 Web Services are deployed on an Agile e6 WebLogic application domain.

To use the Agile e6 Web Services framework for inbound and outbound Web Services
based on business data transaction, you are required to ensure the following:

■ Operational environment is set:

– Agile e6.2.0.0 is installed.

– WebLogic Server is installed

■ Web Services framework is configured for the following:

– Authentication provider in WebLogic

– Web Service Security

■ Test the inbound Web Services

You can now call available core services or implement your own outbound Web
Service wrappers.

Operating Environment

Agile e6 Application Release e6.2.0.0 or higher

Default Web Services engine Oracle WebLogic server 12c or higher

Note: The version of this server is the one that is released
with the Agile e6 application.

Java 2 Platform Standard Edition
Development Kit

7.0

Web Services Engines
All application server vendors, such as Oracle, have built-in Web Services
infrastructure solutions that are integrated with their application servers. For non-Web
Services integrated applications, there are stand-alone products, such as AXIS from
Apache, which provide Web Services infrastructure that can be integrated with
different application servers.

Understanding Web Services Authentication and Performance

2-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

The Web Service framework works with WebLogic 12c platforms. Additionally, in a
Distributed File Management (DFM) environment, a subset of the Web Service will be
available on the DFM client side. In addition to the WebLogic 12c platform, Tomcat or
Metro runtime systems can be used as Web Service engines.

Both platforms provide support for MTOM, and for Fileservice operations, the need
for MTOM with Streaming SOAP attachments.

The Agile e6 Web Services framework works on the following Web Service engines:

■ Oracle Apps Server Web Service Infrastructure

■ Oracle SOA Suite

■ WebLogic Web Service Infrastructure

■ Axis version 2.0 to support JAX-WS features, especially the MTOM

Standards Compliance
The Agile e6 Web Services are implemented in compliance with the following
standards:

Standard Location

Simple Object Access Protocol (SOAP)
1.1/1.2

http://www.w3.org/TR/2000/NOTE-SOAP-20
000508/

Web Service Description Language (WSDL)
1.2

http://www.w3.org/TR/2001/NOTE-wsdl-200
10315

WS-I Basic Profile 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-
2004-08-24.html

XML Schema 1.1 http://www.w3.org/XML/Schema

SOAP Message Transmission Optimization
Mechanism (MTOM)

http://www.w3.org/TR/soap12-mtom/

JAX-WS 2.0/2.1/2.2 (JSR 224) http://java.sun.com/developer/technicalArticle
s/J2SE/jax_ws_2/

JAXB 2.0/2.1/2.2 (JSR-222) http://jaxb.java.net/

Understanding Web Services Authentication and Performance
In the implementations where scalability is critical, a lightweight context management
facility for authentication is available and its use is recommended. With this facility,
authentication is managed using a combination of user credentials and a sessionID
token - the standard HTTP session ID maintained by the web container:

■ When user credentials are presented in the SOAP header of a Web Service request,
formal authentication is performed prior to the application execution of the Web
Service operation. If the authentication succeeds, the operation proceeds and a
special SessionID token is placed in the SOAP header of the Web Service reply.

■ Whenever the sessionID is included by the client in subsequent Web Service
requests, this sessionID is used to restore cached session information, thus
bypassing the substantially more time consuming process of re-executing the
authentication.

Note: When presented with both, the sessionID and a valid set of
user credentials, an attempt will be made to use the sessionID before
resorting to the user credentials and re-authentication. As expected,
the session that is being tracked by the sessionID is subject to
expiration and other security checks

Understanding Web Services Authentication and Performance

Getting Started with Web Services 2-3

The facility is a distinct alternative to the basic authentication standard described by
Web Services security. Using the UserName token as provided in Web Service security,
while fully supported as part of Agile e6 WS-I Basic Profile compliance, does not yield
the same benefit as using the higher performance session optimization facility
provided by the Agile e6 implementation.

Note: For information about Web Service single sign-on please refer
to the Security Guide for Agile e6.2.0.0

The Agile e6 Session Handling
Every call of an Agile e6 core Web Service needs an EDM Server instance. It is very
important to limit the number of EDM Server instances to reduce the resource loading
on the server. This is handled by the following mechanisms:

■ HTTP Session

First, the Web Service tries to find an EDM Server instance assigned to the HTTP
session of the current Web Service call. If it is found, the Web Service call uses the
existing EDM Server instance.

■ PLM Ticket - A PLM ticket is returned in the response of a core Web Service
operation. This ticket can be used to access the same EDM Server instance that
created the ticket.

While authenticating a Web Service call, if a ticket is passed instead of the
password, the session manager uses the EDM Server instance, even if no EDM
Server is assigned to the HTTP session.

The PLM ticket mechanism is the only way to let the calls to different core Web
Services, such as metadata, or Business Object Web Services use the same EDM
Server instance.

A Web Service client must use the PLM ticket as soon as it has called the first
operation.

This is the only way to share an Agile e6 session between two different core
services.

To free an EDM Server instance assigned to a Web Service session, the client calls one
of the closeSession operations (every core Web Service provides this function) with the
PLM ticket as the password. This shuts down the EDM Server instance and frees up
the server resources.

Understanding Web Services Authentication and Performance

2-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

The Agile e6 PLM Session Manager

The Agile e6 PLM Session Manager lets you manage the PLM session objects which
are used to keep the existing connections and user contexts to the EDM Server.

The key to an existing PLM session object is the session ID, which is generated by PLM
Session Manager.

The PLM session provides connection to EDM Server.

To retrieve a PLM session, a PLM Ticket is provided. When a new PLM Session is
created, the PLM Ticket is set to the EDM Server instance, which is then set into the
SOAP message to the client side.

The life cycle of a PLM session is the same as the given HTTP session.

Timeout
The configuration parameter "timeout-secs" for the element "session-descriptor" within
<weblogic-web-app></weblogic-web-app> tag is used to set the time in seconds
before the WebLogic is timing out a session. This value is visible in WebLogic
configuration panel. The default value is 3600 seconds. E.g.:

<weblogic-web-app>
 <session-descriptor>
 <timeout-secs>3600</timeout-secs>
 </session-descriptor>

On busy sites, you can tune your application by adjusting the timeout of sessions.
While you want to give a browser client every opportunity to finish a session, you do
not want to tie up the server needlessly if the user has left the site or otherwise
abandoned the session.

This element can be overridden by the session-timeout element defined in minutes in
web.xml. E.g.:

<session-config>
<session-timeout><time-in-minutes></session-timeout>
</session-config>

Understanding the Agile e6 Web Services Responses

Getting Started with Web Services 2-5

The PLM Ticket
A Response contains a string that can be used in subsequent calls. This string is called
the PLM Ticket. The ticket gives the caller access to the same EDM Server instance that
was used in the last request. The ticket remains valid only as long as the EDM Server
instance is running. After obtaining a ticket, the client code needs to configure the port
by setting the ticket string as password. See BindingProvider in the example given
under Authenticating a Web Service Client.

The PLM Ticket improves the Web Services performance and simplifies the session
management. If different Web Services are used in a use case flow, which is very likely,
the ticket returned by the response(s) of one service operation (e.g.
Configuration.setUserContext) is used as a password when the client makes a call for
another service operation (e.g. BusinessObject.getObjects).

The ticket sharing among different client ports eliminates the need for the server to
start new Agile e6 sessions, which would result in new EDM Servers being started.

Understanding the Agile e6 Web Services Requests
In the Agile e6 Web Services framework, each operation has its own request data type,
which is inherited from RequestHeaderType. The RequestHeaderType for all the
requests has only the following elements:

■ messageID (String, optional):

Default value for the ID is the current system time in milliseconds.

■ messageName (String, optional):

Default value for the message name is the simple class name.

Obtaining the Agile e6 Metadata
You can obtain the basic Agile e6 metadata through Agile e6 Java Client. Look for the
data model of the Agile e6 application.

To obtain Agile e6 metadata through a Web Services operation, use the metadata
service. This service requires an entity name and a mask name.

For further information see section Configuration Parameter.

Understanding the Agile e6 Web Services Responses
The ResponseHeaderType has the following members:

messageId (String, required) Default value for the ID is the current system time in
milliseconds.

messageName (String, required) Default value for the message name is the simple class
name.

statusCode (ResponseStatusCode,
required)

Default value for the status code is SUCCESS.

exceptions (List<PlmExceptionType>, optional): warnings (List<PlmWarningType>, optional)

ticket (String, optional)

Understanding the Agile e6 Web Services Responses

2-6 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Response Status Code
The response obtained from every Web Service call contains a response statusCode,
which indicates the success or failure of a Web Service operation.

These response status codes are of four types:

SUCCESS Indicates that all Web Services in the batch were executed successfully
and that all operations worked as intended.

FAILURE Indicates that all Web Services in the batch failed during execution,
indicating the intended operations were not performed.

WARNING Indicates that while Web Services in the batch were successfully
executed, however certain warnings were also encountered during the
execution. These warnings need to be analyzed by the client to verify
that all operations worked as intended.

PARTIAL_SUCCESS Indicates a partial success in the execution of batch Web Services when
one or more but not all batch requests have failed. Even if a single Web
Service fails among a batch of Web Services, the response status code
indicates PARTIAL_SUCCESS.

Whitelist Mechanism for Masks
To ensure that only the masks designed for the access of Web Services are used, all the
mask names are checked against a Whitelist that is maintained by the administrator of
the Agile e6 installation.

Note: Please be aware that the configuration parameter EDB-WSI
need to be created first.

List of Mask Names
A configuration rubric named EDB-WSI-MASKS is used. It contains sub-parameters
such as EDB-ARTICLE-WSI and each of these sub-parameters contain a mask name
rule pattern. All rules for an entity are checked for an operation that involves an item
as an entity (or as parent entity in case of a relation).

Caution: It is recommended to implement special masks designed
for Web Services, instead of only adding the standard masks like
EDB-ART-SLI (or "*") to the Whitelist.

Adding standard masks can have certain implications due to the following:

■ Standard masks may expose sensitive data.

■ To be able to access invisible fields, you are required to make them visible. This
must be done as they are not opened to the customer.

■ Performance suffers as the standard masks contain too many fields.

Note: For all fields located on sub-forms that are part of a combined
form, the pre-field userexit will not be executed. Thus, we recommend
using lists instead of combined forms

countOnly Query Support

Getting Started with Web Services 2-7

Configuration Parameters
The Configuration Parameters are entered as shown in the image below.

The rule pattern consists of valid mask name characters and may contain one or more
asterisks (*) to indicate one or more mask name characters.

The Web Service session reads these configuration rules and checks each combination
of entity and mask name passed by a client against the rules for the respective entity. If
one of the rules accepts the mask name, access is granted, If not, the access to the mask
is denied and an IllegalAccessException is thrown and marshaled back to the client.

The rules are cached by the session so that the subsequent operations do not have the
overhead of reading the rules again. The rules can also be cached in the Business
Service, this provides a domain wide cache, instead of a session based cache.

Exceptions and Warnings
The Agile e6 framework throws an exception (WebFault) only if a severe technical
problem occurs, for instance, in an event of a connection loss to the EDM Server. When
an operation is not successful, the system throws an exception or a warning.

■ In case of FAILURE, an exception is issued, while a warning may be issued.

■ In case of WARNING, only a warning is issued.

When the status is WARNING, the outcome of the operation is unknown. You are
manually required to check if the operation was successful.

countOnly Query Support
A count request is indicated by the flag countOnly in the query request object. The
service then executes a count, which ignores the mask limit, and returns a pseudo
PlmObject with a COUNT attribute and a RECORD_LIMIT attribute.

countOnly Query Support

2-8 Oracle Agile Engineering Data Management/Web Services Guide for Agile

The value of the COUNT attribute is an Integer with the number of objects matching
the query, and the value of the RECORD_LIMIT attribute is the record limit of the
mask used for the count operation.

3

Setting Up the Web Services Infrastructure 3-1

3Setting Up the Web Services Infrastructure

Installing the Agile e6 Web Services Framework
The Agile e6 Web Services framework is installed during the basic installation of the
Agile e6 application. The WebLogic domains are created with the Agile e6 application
installer and/or the Agile e6 Administration Client. By default, the installation has
two WebLogic domains - one for installation, and an additional one for every
application. Web Services are deployed on the application specific WebLogic domain.

For complete details, please refer to the Administration Guide for Agile e6.2.0.0.

Creating the WebLogic Agile e6 Domain
You are required to obtain a WebLogic Agile e6 domain name from the Agile e6
administrator, or create a new domain. This is required as the Web Services are
deployed into this WebLogic Agile e6 domain.

During the installation of the WebLogic Server, two domains are created. Each domain
consists of an AdminServer and an eSeries-01 server. The AdminServer is only for the
administration of the domain, while the eSeries-01 contains the Agile e6 deployments.

For example, the domains directory C:\Oracle\Middleware\user_projects\domains
contains the domain names eSeries_domain, and eSeries_domain_plmref.

For complete details on how to install the WebLogic Server and create a domain,
please refer to the Server Installation Guide on Windows and UNIX for Agile e6.2.0.0.

Testing Inbound Web Services with JDeveloper HTTP Analyzer
The Web Service operations can also be called and tested using the JDeveloper HTTP
Analyzer.

You are required to use HTTP/S for the basic authentication with the HTTP analyzer;
otherwise you cannot call an operation.

Note: For further details please see chapter Configuring the Agile e6
Web Services Security.

To test the Web Services with the JDeveloper HTTP Analyzer:
1. Launch the JDeveloper IDE.

2. Open the HTTP Analyzer screen.

Testing Inbound Web Services with SoapUI

3-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

3. Enter the URL of the WSDL of the Web Service you want to call.

4. In the Request area on the left, enter the input parameters for name:string and
mask:string, such as EDB-ARTICLE and EDB-ART-SLI.

5. Click on Send Request.

6. Upon successful call of the Web Service, the result data is displayed in the
Response area of the console.

Testing Inbound Web Services with SoapUI
Adjust SoapUI settings as described below:

1. In SoapUI, go to File > Preferences > HTTP Settings.

2. Check Authenticate Preemptively.

This adds authentication information to outgoing request.

3. On your project. double-click to open TestWebServiceSoapBinding.

4. Switch to Service Endpoints.

5. Enter a valid Agile username and password to your endpoint.

6. Click Assign and then select - All Requests with no endpoint.

4

Configuring Agile e6 Web Services Security 4-1

4Configuring Agile e6 Web Services Security

The Web Services configuration can be used to configure the Web Services security.
Since Web Services are not secured by default, it is required to configure/establish a
Web Service policy that meets your security strategy requirements.

Note: The Agile e6 Web Service needs user credentials to connect to
the Agile e6 application server. These credentials are provided by the
Agile e6 authentication provider which passes this information to the
Web Service. The Web Service has to be configured to be secure. An
unauthorized Web Service cannot work.

Note: or information about Web Service single sign-on please refer to
the Security Guide for Agile e6.2.0.0.

Note: The SSL port needs to be activated for the domain where Web
Services are deployed. The standard listen port (non-SSL) must be
disabled for the domain where Web Services are deployed.

In the examples used in this chapter, a Web Service security policy is used to secure the
entire Web Service. The client has to provide the WSS: SOAP message security user
name token encrypted with an X.509 certificate.

Note: The certificate will be authenticated, too. The certificate must
be valid and the certificate name must be available in the system.

Setting Up the Web Services Security Policies

Note: In the current release of Agile e6 Core Web Services security
policies are supported, except for the StreamingFileServices
uploadFile and downloadFile. The file streaming only works with SSL
(by using HTTPS). It does not work if HTTPS is enforced by adding a
policy. All other Web Services can be controlled by the Web Services
security policies.

Setting Up the Web Services Security Policies

4-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

For more details on setting up Web Service Security Policies, see
http://docs.oracle.com/cd/E24329_01/web.1211/e24488/message.htm#i244059

Setting Up the Web Services Security
1. X.509 Authentication

For X.509 authentication, you need to configure the Web Service Security
Configurations.

2. Use the default providers given by the WebLogic server.

In this example, when you click on the default Web Service default_wss, the
Settings for default_wss mask opens. The Credential Provider column lists a
number of available default providers, created for the Web Service security
configuration.

3. Store the x509 server certificate in a Java keystore.

The following screenshot shows how it can be configured.

Setting Up the Web Services Security Policies

Configuring Agile e6 Web Services Security 4-3

Authenticating a Web Service Client
The caller of an Agile e6 Web Service has to provide user credentials to gain access to
the Agile e6 application. The attributes of these credentials depend on the used Web
Service policy. The following is an example of an unauthenticated Web Service call:

<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns4:getVersion xmlns:ns2="http://xmlns.oracle.com/Agile/e6/Metadata/v0"
 xmlns:ns3="http://xmlns.oracle.com/Agile/e6/plm"
xmlns:ns4="http://xmlns.oracle.com/Agile/e6/HelloWorld/v0" />
 </S:Body>
</S:Envelope>

A Sample of HTTP/S Authentication
You can use the basic authentication of HTTP/S to secure a Web Service. With this
basic authentication of HTTP/S, the user credentials are stored in the HTTP/S header.
The SOAP message does not carry any security information.

Note: Basic authentication without SSL must not be used in a
production environment as the passwords and data are transferred in
plain text. Ideally, HTTP/S must be configured.

WebLogic production servers should always use SSL (HTTP/S) and
should not provide unencrypted access to any of the services.

Setting Up the Web Services Security Policies

4-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

For complete details on WebLogic Security Fundamentals and Transport Level
Security, refer to the WebLogic documentation on OTN.

To add the HTTP/S basic authentication to a SOAP request, the code may look like the
following example:

MetadataService service = new MetadataService(wsdlURL, serviceQName);
BindingProvider bindingProvider = (BindingProvider) service.getPort();

bindingProvider.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
username);
bindingProvider.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
password);
bindingProvider.getRequestContext().put(BindingProvider.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);

Note: The last line of this example configures HTTP/S session
handling. If you do not add this code, each Web Service call creates a
new HTTP/S session which leads to a new EDM Server instance
starting up.

A detailed sample for Web Services Security can be found in chapter Appendix,
section Web Services Security.

5

Working with Agile e6 Web Services 5-1

5Working with Agile e6 Web Services

Developing the Outbound Web Services Wrapper

The Web Services Wrapper Interface
Each wrapper has to implement the Web Service Wrapper interface, which prescribes
the following method:

StringList callWebService(WrapperContext context, CallableParam args)
WrapperPackage.Custom.2 = another.custom.wrapperpackage

The context contains all relevant information for the wrapper to perform the call. The
wrapper then transforms the arguments to an XML payload for the outbound Web
Service and finally makes the call.

If it is an asynchronous Web Service, the wrapper returns a string list with the
correlation ID. Otherwise, it transforms the XML payload returned by the Web Service
into a string list that is expected by the calling EDM Server process.

In case the wrapper is implemented in BPEL (or in any other external Web Service
language), you require a special wrapper called the ExternalWrapper. This wrapper
delegates the call to the respective external Web Service Wrapper.

The BPEL Facade
For the outbound calls, you are required to use the ExternalWrapper to call an external
Web Service or a BPEL process. However, you need to first implement an interface to
adapt the External Wrapper. This interface is called BPEL facade.

Normally, this facade must be a BPEL process that you implement. In this facade, you
can invoke an external Web Service or BPEL process and create their business logic. All
the facades must implement a standard WSDL. The External wrapper uses this
standard WSDL to generate the proxy. It can then use different endpoints to call
different BPEL facades.

Developing the Outbound Web Services Wrapper

5-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Endpoint Configurations for the External Wrapper
All the endpoints for the external wrapper are defined in the properties file
ExternalWrapper.properties. This file resides in the directory APP-INF/classes
together with the file application.properties for the Web Services.

Example:

bpel.wrapper.SampleExternalService2.wsdl=http://<server><port>/soa-infra/services/
default/SOAComposite2/BPELFacadeService?WSDL

In the example above, when we pass the service name as SampleExternalService2 in
xutil_call_ws, the wrapper manager first looks for an internal wrapper named as
SampleExternalService2. If this internal wrapper does not exist, then the wrapper
manager calls the external wrapper and gets the endpoint with the key value
bpel.wrapper.SampleExternalService2.wsdl in the ExternalWrapper.properties file.

Note: You are required to use the custom staging mechanism of the
Agile e6 installer to add your own mappings to the file
ExternalWrapper.properties.

Session Management Integration
In the external wrapper, the user name and ticket must be passed to the BPEL facade.
The BPEL facade uses this information to invoke the Agile e6 core Web Services and
reconnect to the same Agile e6 PLM session to get more data.

Developing a Custom Wrapper
In order to compile a custom wrapper, you need the libraries contained in the Web
Services application. These libraries can be found at ${ep_
root}/staging/product/WebServices/WebServices.ear/APP-INF/lib.

If your wrapper calls an external or internal Web Service, you also need to add the
generated client classes or any other infrastructure classes needed. This depends on
the Web Service client framework that you use.

Caution: We highly recommend using the WebLogic Web Service
framework when implementing a wrapper for a Web Service because
the wrapper is run inside WebLogic.

Developing the Outbound Web Services Wrapper

Working with Agile e6 Web Services 5-3

The name of the wrapper class must be <ID>Wrapper, as the wrapper manager looks
for this string when the EDM Server tries to call it.

The imports used by the wrapper are in the libraries contained in the lib directory
inside the file WebServices.ear (at APP-INF/lib). By default, the wrapper class must be
in the package com.agile.ws.e6.wrappers so that the wrapper manager can find it at
the runtime. However, it is also possible to add other package names to the search
path by adding them to the application.properties file of the Web Services application:

WrapperPackage.Custom.1 = some.custom.wrapperpackage

More sample details can be found in the Appendix at EchoServiceWrapper.Java and
SampleWrapper.java.

Calling a Custom Wrapper from Agile e6
A new C/C++ userexit is provided that can be called from LogiView or C/C++ to
make an outbound Web Service call. The request is sent as an ECI call to the ECI server
embedded in the application server, which then calls the respective wrapper for XML
processing.

To limit any XML parsing in LogiView and C/C++, the userexit sends a string
containing a userexit parameter as an input to the wrapper and it expects a list of
string as a result from the wrapper.

The userexit accepts an input argument that uses the syntax prescribed by
CallableParam and zag_cnv_arg. This argument is passed to the ECI callable Eci_call
Web Service in the application server.

This userexit is called xutil_call_ws and can be used in LogiView as follows:

EP_APP_CMD = "EchoService"
EP_APP_CID_STRING = ""
EP_APP_CONTENTS = "Please echo: something"
RES = #xutil_call_ws(EP_APP_CMD, EP_APP_CID_STRING, EP_APP_CONTENTS, EP_APP_
RESULT, EP_APP_ERROR)
if (RES == 0)
put(strprint("Web service %s returned: %s", EP_APP_CMD, EP_APP_RESULT))
 else
put(strprint("Error %d when calling web service %s, error message is:\n%s", RES,
EP_APP_CMD, EP_APP_ERROR))
 endif

This LogiView code uses four existing string variables and two new ones to call the
wrapper for the EchoService. The EchoService returns the input arguments as a result,
which is provided as a standard wrapper to test the infrastructure.

The userexit xutil_call_ws consists of the following parameters:

EP_APP_CMD Wrapper Name

EP_APP_CID_STRING Correlation ID.

This is used to correlate a later response, which may come in
asynchronously, to the initiating request.

EPP_APP_CONTENTS Any string value that the wrapper must interpret.

RES Result string from the Wrapper

EP_APP_RESULT A new string variable that needs to be created to call the wrapper for
the EchoService.

Developing the Outbound Web Services Wrapper

5-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Deploying a Custom Wrapper
1. Identify the classes you need for your wrapper and create a JAR file containing

them.

Give your JAR files proper names to avoid naming conflicts with existing wrapper
implementations.

For example, use a unique prefix that identifies your company.

2. If you need third party JAR files.

Ensure that they are not already provided by WebLogic server or the Agile e6 Web
Services application. Do not use JAR files that duplicate features or come in
conflict with the WebLogic server, like using different Web Service client
frameworks.

Note: Your wrapper implementation will run inside and as part of a
Web Service application deployed into WebLogic server.

3. Copy all JAR files needed by your wrapper implementation to the custom staging
directory for the Web Services application. This must be:

${ep_root}/staging/custom/WebServices/${app_name}.ear/APP-INF/lib.

Note: Do not copy any library that are already part of the Web
Services application into the custom staging area. These libraries are
only replaced by updates from Oracle, and are always put in the
product staging area.

4. Redeploy the Web Services into the WebLogic Server.

For complete details on how to deploy an application, see the Administration Guide
for Agile e6.2.0.0 or the Hotfix Readme.

Web Service Wrapper Log Messages
A log file looks similar to the one shown below, depending on what has been
implemented in the Java based wrapper for message logging.

EP_APP_ERROR A new string variable that needs to be created to call the wrapper for
the EchoService.

The userexit provides a return code - "0" for success and any other number for errors.

EP_APP_CMD Wrapper Name

Developing the Outbound Web Services Wrapper

Working with Agile e6 Web Services 5-5

Developing the Outbound Web Services Wrapper

5-6 Oracle Agile Engineering Data Management/Web Services Guide for Agile

6

Agile e6 Core Web Services Operations 6-1

6Agile e6 Core Web Services Operations

This chapter describes the Agile e6 Core Web Services operations. The use of these
operations to process the bulk requests is described in section Bulk Processing of
Requests.

Some of the operations, such as getRelations, require counting the number of records.
For more information on these, see section countOnly Query Support in this
document.

For additional information on these Web Services and operations, the following
documents will also be available from the Oracle Software Delivery Cloud website:
https://edelivery.oracle.com:

■ Agile e6 Web Services Schema Docs, including the PLM Data Types document

■ Agile e6 Web Services SOAP Samples

Bulk Operations
Certain situations require several calls to be made to a Web Service operation. In a
WAN environment, calling the operation several times would result in an
unacceptable performance penalty. So it is critical to limit the number of Web Service
calls for each use case. Therefore, most of the Agile e6 Web Service operations support
bulk mechanism.

Example:

Instead of calling the Web Service operation BusinessObjectService.createObject one
hundred times, you can call the operation BusinessObjectService.AN and assign a list
of the one hundred single requests to create an object. Each nested request in the bulk
call has the full flexibility of the single request, so it is possible to create ten projects,
fifty items and forty documents in one bulk call.

To link the objects together, you can call another bulk operation called
BusinessObjectService.createRelationBulk.

Note: You are allowed to create a complex graph of objects in only
two Web Service calls.

Note: The bulk mechanism can be configured to either stop on the
first failure of a nested request, or to continue and report all errors and
warnings that occurred during the processing of the nested requests.

Bulk Processing of Requests

6-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

The result is a bulk response with nested responses, matching the list of nested
requests in the bulk request.

Bulk Processing of Requests
Most of the Agile e6 Web Service operations support bulk processing of requests. The
operations with one request input object and one response output object can be
configured to process multiple or bulk requests and corresponding responses.

Handling Bulk Requests
A bulk request contains a list of requests for the non-bulk operation. These requests
are executed one by one, and each response is stored in the result list of the bulk
response object. All requests contained in the bulk request list are executed in
sequence using the order of the list, as a result of which the results are in random
sequence. The bulk requests can be configured to either stop on the first failure, or to
continue regardless of a failing request.

If a request fails with a response FAILURE, the loop is aborted if the stopOnFailure
member of the bulk request is set. If stopOnFailure is not requested, the status of the
bulk response is set to PARTIAL_SUCCESS. This requires you to look into each
response in the list to check the individual status.

However, if a request fails with a PlmFault (or any other exception), the bulk
processing is aborted and the list of requests processed until the fault occurred is
returned. Additionally, the causing fault is returned in the bulk response.

If the bulk request does not contain any request, a WARNING response is returned.

The content of the response object depends on the status code, as listed below:

SUCCESS A list with all response objects matching the list of requests.

All requests succeeded.

FAILURE A list with all response objects matching the list of requests.

One or more requests failed, check the respective responses.

The last executed request failed with an exception, which is returned as
the fault in the bulk response.

If one request fails due to lack of mask in Whitelist, status code would
be FAILURE instead of PARTIAL_SUCCESS even if other services are
successful.

WARNING The bulk request does not contain any request.

PARTIAL_SUCCESS A list with all response objects matching the list of requests.

One or more requests failed, check the respective responses.

If stopOnFailure was requested, the list ends with the first response that
failed.

BusinessObject Web Service
The BusinessObject Web Service enables you to create retrieve, update, and delete
PLM objects belonging to an entity, an entity type, and a relation. All operations
require one request object as input, and return one response object.

■ The request contains attribute values used to search or create a PLM object.

■ The response contains the data of the respective objects.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-3

■ Bulk operations allow you to execute a whole list of requests with a single Web
Service call. The response of a bulk operation contains a list of responses matching
the list of requests.

The PLM objects are read from the Agile e6 application using the mask specified in the
request. It is only possible to access Agile e6 attributes that are visible in this mask,
with the exception of the ID fields EDB_ID and C_ID. Only the masks listed in the Web
Service Whitelist of the Agile e6 application can be accessed.

■ Use the EBD_ID if you need to keep the reference to a PLM object, especially if it is
stored in another system.

■ The C_ID needs to be used only to build internal object graphs, for instance when
filling a UI element.

Note: Not all PLM objects have an EDB_ID or a C_ID. Check the
customization of the respective Agile e6 system before deciding how
to make external references to PLM objects of that system.

All operations allow you to specify the attributes that you require to return from the
PLM object. If no return attributes are specified, all the accessible attributes are
returned, which correspond to all visible fields of the mask. Optionally, all languages
of multi-lingual attributes can be returned, but may result in a considerably larger
response object.

Binary Data Transfer
It is possible to request the transfer of binary data (BLOBs). However, by default,
binary data is not transmitted; binary attributes that are to be transferred need to be
visible in the underlying Agile e6 mask. BLOBs are transferred using the MTOM
feature of JAX-WS.

Bulk Operations
The following are the bulk operation names of the single request operations for
Business Object Web Services describing the concurrent sections.

■ createObjectBulk

■ getObjectsBulk

■ updateObjectBulk

■ deleteObjectBulk

■ createRelationBulk

■ updateRelationBulk

■ getRelationsBulk

■ deleteRelationBulk

■ setReservationBulk

createObject
■ Service

To create an object in the Agile e6 system.

BusinessObject Web Service

6-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Usage

The request includes a PlmObject which describe the object to create and a
PlmResult to define the return values of the response. By default, the response
returns values of all visible fields (plus some important ID fields like EDB_ID and
C_ID) that are contained in the mask.

Response information can be restricted by defining the list of fields that must be
returned in the PlmResult of the request, but note that you can only return values
for fields which are available in the mask. The settings of the mask determines the
sorting of the data. Return values are provided in a standardized format as
marshaled by the JAXB framework. Date values are in UTC, based on the
assumption that the data returned by the EDM server is in server local time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the Web Service client can request to retrieve all language values in the
same call.

If the object already exists in Agile e6, or an error occurs during creation of the
object, an error code is returned.

■ Request Type

CreateObjectRequestType

– messageId (String): ID to be returned in the response (optional)

– messageName (String): Name to be returned in the response (optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmObject: The PLM class reference and a list of object attributes (name/value
pairs) used to create the new object.

* The metadata of the plmObject is currently ignored by this operation, thus
you can pass empty values for these elements.

* Only the list of attribute values is used to fill the new record in Agile e6.

– plmResult: Describes how the result of the operation is returned to the client.

attributeNames (Boolean) List of field names to be
returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues
(Boolean)

Include binary values? ■ Optional

■ Default – False

includeAllLanguages
(Boolean)

Include all languages? ■ Optional

■ Default – False

■ Response Type

CreateObjectResponseType

– statusCode (ResponseStatusCode):

SUCCESS The newly created PLM object including all attributes defined by the
PlmResult of the request.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-5

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

■ messageId (String): Copied from the request, or generated.

■ messageName (String): Copied from the request, or the operation name.

■ warnings: List of warnings (PlmWarningType) that occurred during the operation.

■ exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

■ object (PlmObject): The object created by this operation.

■ It contains the attributes requested in the PlmResult, or all visible attributes if no
attributes have been requested.

getObjects
■ Service

To retrieve the requested objects from the Agile e6 system.

■ Usage

It executes a query in the Agile e6 system and returns the matching objects. The
operation uses the mask that is specified in the request to retrieve the data (search
in mask).

Response information can be restricted by defining the list of fields that must be
returned. Note that you can get the values only for fields that are available in the
mask.

The sorting of data determines the settings of the mask.

Date values are returned in UTC, based on the assumption that the data returned
by the EDM server is in Server Local Time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the Web Service client can request to retrieve all language values in the
same call.

Objects for which the current user does not have access to, does not show up in the
response (this is contrary to client behavior where one can see such objects as
dotted (...) objects. At the server, this is controlled by a DataView default.

The countOnly flag of the request is very important here. For more information on
this, refer to countOnly Query Support in this document.

■ Request Type

GetObjectsRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

PARTIAL_SUCCESS The newly created PLM object including some of the attributes defined
by the PlmResult of the request.

FAILURE A faulty description including an error message and the type of error.

BusinessObject Web Service

6-6 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmQuery (PlmQuery):

* plmClass: The object type as a PlmClassRef (PLM class reference, as
provided by the metadata service).

* selection: A list of PlmCondition objects representing the search criteria for
object attributes.

ignoreRecordLimit (Boolean) Ignore the record limit? ■ Optional

■ Default - False

countOnly (Boolean Count only? ■ Optional

■ Default - False

attributeNames (Boolean) List of field names to
be returned?

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values? ■ Optional

■ Default - False

includeAllLanguages (Boolean) Include all languages? ■ Optional

■ Default - False

■ Response Type

GetObjectsResponseType

– statusCode (ResponseStatusCode):

SUCCESS The query was executed without any problem. The list of objects might
be empty.

PARTIAL_SUCCESS One or more attributes, defined by the PlmResult of the request, were
not found in the queried objects. Details can be found in the list of
warnings and exceptions.

FAILURE A faulty description including error message and the type of error.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– recordLimitHit (Boolean): Indicates whether the query result has hit the mask
limit.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-7

– objects: List of objects (PlmObject) found including all the object attribute
values listed in the PlmResult of the request.

* If a count request was made, the response will have one PlmObject with
an Integer attribute named COUNT containing the number of objects
matching the query, and an Integer attribute called RECORD_LIMIT
containing the current record limit of the mask used for the count
operation.

updateObject
■ Service

To update an object in the Agile e6 system.

■ Usage

The operation supports an automatic creation of an object if it was not found. The
flag autoCreate in the request controls this behavior.

By default, the response returns values of all visible fields (plus some important ID
fields like EDB_ID and C_ID) that are contained in the mask. The response
information can be restricted by defining the list of fields that must be returned in
the PLM Result of the request, but note, that you can only return values for fields
which are available in the mask. The settings of the mask determines the sorting of
the data. Return values are provided in a standardized format as marshaled by the
JAXB framework. Date values are in UTC, based on the assumption that the data
returned by the EDM server is in server local time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the Web Service client can request to retrieve all language values in the
same call.

If an error occurs while creating the object, an error message is returned.

■ Request Type

UpdateObjectRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmObject: The PLM class reference, the ID of the object to update, and a list of
object attributes (name/value pairs) used to update or create the object.

autoCreate (Boolean) Automatically create
the object if it does
not exist.

■ Optional

■ False (default)

Returns a FAILURE code in case the object
ID does not match the existing Agile e6
record.

■ True

Object will be created with the attributes
passed in the request, in case the object ID
does not match an existing Agile e6 record.

– plmResult: Describes how the result of the operation is returned to the client.

attributeNames (Boolean) List of field names to be
returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues
(Boolean)

includeBinaryValues (Boolean) ■ Optional

■ False (default)

includeAllLanguages
(Boolean)

Include all languages ■ Optional

■ False (default)

BusinessObject Web Service

6-8 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Response Type

UpdateObjectResponseType

– statusCode (ResponseStatusCode):

SUCCESS The newly created PLM object, including all attributes defined by the
PlmResult of the request.

PARTIAL_SUCCESS The newly created PLM object including some of the attributes defined
by the PlmResult of the request.

PARTIAL_SUCCESS A fault description including error message and the type of error.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PLMWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PLMExceptionType) that occurred during the
operation.

– object (PLMObject): The object updated or created by this operation.

* It contains the attributes requested in the PlmResult, or all visible
attributes if no attributes have been requested.

– autoCreated (Boolean): This flag is true, if the object has been created by this
operation, and false if the object has been updated.

deleteObject
■ Service

To delete an object in the Agile e6 system.

■ Usage

Note: The object is deleted permanently without using the trash
basket.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-9

A mask can be specified, which is used to process the delete operation. This allows
to fire customer specific triggers on the EDM server during record deletion.

■ Request Type

DeleteObjectRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmObject (PlmObject or PlmObjectRef): The PLM class reference and the ID
query of the object to be deleted.

■ Response Type

DeleteObjectResponseType

– statusCode (SUCCESS or FAILURE)

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PLMWarningType) that occurred during the
operation.

– exceptions: List of errors (PLMExceptioType) that occurred during the
operation.

– object (PLMObject): PLM object with ID information like EDB_ID and C_ID, if
available (optional).

* This is only returned if the object is found, but the operation fails.

createRelation
■ Service

To create a relation between one parent object and one child object of an Agile e6
entity.

■ Usage

The request includes a PlmObject which describes the relation object to create a
PlmObjectReference for the parent and the child object, a PlmMetaRelation object
defining the relation between them and a PlmResult to define the return values of
the response.

By default, the response returns values of all visible fields (plus some important ID
fields like EDB_ID and C_ID) that are contained in the mask.

Response information can be restricted by defining the list of fields that must be
returned in the PlmResult of the request, but note that you can only return values
for fields which are available in the mask. The settings of the mask determines the

BusinessObject Web Service

6-10 Oracle Agile Engineering Data Management/Web Services Guide for Agile

sorting of the data. Return values are provided in a standardized format as
marshaled by the JAXB framework.

Date values are in UTC, based on the assumption that the data returned by the
EDM server is in server local time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the web service client can request to retrieve all language values in the
same call.

If the object already exists in Agile e6, or an error occurs while creating the relation
object, an error code is returned.

■ Request Type

CreateRelationRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– relationObject (PlmObject): The relation Object with the PLM class reference
and a list of relationship attributes (name/value pairs) used to create the new
object.

– The metadata of the relationObject is currently ignored by this operation, so
you can pass empty values for these elements.

– Only the list of attribute values is used to fill the new relation record in Agile
e6.

– parent (PlmObjectRef) Object reference: This is either a PlmObject as returned
by the BusinessService.getObjects operation, or a PlmObjectReference
containing the query for the record.

– child (PlmObjectRef) as object reference: This is either a PlmObject as returned
by the BusinessService.getObjects operation, or a PlmObjectReference
containing the query for the record.

– relation (PlmMetaRelation) a relationship metadata: This is a PlmMetaRelation
as returned by the MetadataService.getRelation operation. It defines the
relation of the parent and the child object.

– plmResult (PlmResult): This describes how the result of the operation is
returned to the client.

attributeNames (Boolean) List of field names to be
returned?

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages (Boolean) Include all languages? ■ Optional

■ False (default)

■ Response Type

CreateRelationResponseType

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-11

– statusCode (ResponseStatusCode)

SUCCESS The newly created PLM object including all attributes defined by the
PlmResult of the request.

PARTIAL_SUCCESS The newly created PLM object including some of the attributes defined
by the PlmResult of the request.

FAILURE A faulty description including error message and the type of error.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– relationObject (PlmObject): The created PLM relation object contains the
attributes listed in the PlmResult of the request.

* Additionally, the ID attributes of the parent and the child record are
added.

* The parent IDs are named PARENT.EDB_ID and PARENT.C_ID, the
attributes for child IDs are named CHILD.EDB_ID and CHILD.C_ID.

* This is necessary to prevent name clashes if the parent and child entity are
the same (for instance in an Item BOM).

updateRelation
■ Service

Updates an existing relationship entry in the Agile e6 system.

■ Usage

By default, the response returns values of all visible fields (plus some important ID
fields like EDB_ID and C_ID) that are contained in the mask. The response
information can be restricted by defining the list of fields that must be returned in
the PlmResult of the request, but note, that you can only return values for fields
which are available in the mask. The settings of the mask determines the sorting of
the data. Return values are provided in a standardized format as marshaled by the
JAXB framework. Date values are in UTC, based on the assumption that the data
returned by the EDM server is in server local time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the Web Service client can request to retrieve all language values in the
same call.

If the object already exists in Agile e6, or an error occurs while creating the relation
object, an error code is returned.

BusinessObject Web Service

6-12 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Request Type

UpdateRelationRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmRelationQuery (PlmRelationQuery):

* PlmObject or PlmObjectReference: Defines the parent record of the
relation. This is either a PlmObject as returned by the BusinessObject Web
Service, or (to improve the performance) only a reference to it.

* PlmMetaRelationRef: The metadata of the relation to be read (parent,
child, type, view). This allows specifying the aggregate, refined,
constraint, or type relation.

* Selection: A list of PlmCondition objects representing the search criteria
for object attributes. The rest of the PlmRelationQuery members are
ignored.

– relationObject (PlmObject): The relation object with the PLM class reference,
and a list of relationship attributes (name/value pairs) is used to create the
new object.

– plmResult (PlmResult): This describes how the result of the operation is
returned to the client.

attributeNames (Boolean) List of field names to be
returned

■ Optional

■ Default

All visible fields and ID field

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages (Boolean) Include all languages ■ Optional

■ False (default)

■ Response Type

UpdateRelationResponseType

– statusCode (ResponseStatusCode)

SUCCESS The newly created PLM object including all attributes defined by the
PlmResult of the request.

PARTIAL_SUCCESS The updated PLM object including only some of the attributes defined
by the PlmResult of the request.

FAILURE A faulty description including error message and the type of error.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-13

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– relationObject (PlmObject): The updated PLM relation object contains the
attributes listed in the PlmResult of the request.

* Additionally, the ID attributes of the parent and the child record are
added.

* The parent IDs are named PARENT.EDB_ID and PARENT.C_ID, the
attributes for child IDs are named CHILD.EDB_ID and CHILD.C_ID.

* This is necessary to prevent name clashes if the parent and child entity are
the same (for instance in an Item BOM).

getRelations
■ Service

To get the relationship records of a PLM object for a specified PLM relation.

■ Usage

The operation executes a query in the Agile e6 system and returns the list of
matching relationship records of a PLM object for a specified PLM relation.

The operation allows reading aggregate, refined, constraint, and type relation.

The countOnly flag of the request is very important here. For more information on
this, refer to countOnly Query Support in this document.

■ Request Type

CreateRelationRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmRelationQuery (PlmRelationQuery):

* PlmObject or PlmObjectReference: To get the parent record of the relation.
This is either a PlmObject as returned by the BusinessObject Web Service
or - to improve performance - only a reference to it.

* PlmMetaRelationRef: The metadata of the relation to be read (parent,
child, type, view).

* This allows you specifying the aggregate, refined, constraint, or type
relation.

* selection: A list of PlmCondition objects representing the search criteria for
object attributes.

ignoreRecordLimit (Boolean) Ignore the record limit ■ Optional

■ False (default)

countOnly (Boolean) Count only ■ Optional

■ False (default)

attributeNames (Boolean) List of field names to be
returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages (Boolean) Include all languages ■ Optional

■ False (default)

BusinessObject Web Service

6-14 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Response Type

GetRelationsResponseType

– Status code (SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE).

– A PLM ticket (String)

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed or - in case of a backward flow - if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warning: List of warnings (PlmWarningType) that occurred during the
operation.

– List of errors (PlmExceptionType) that occurred during the operation.

– Record limit hit? [true/false]: Indicates if the query result has hit the mask
limit.

– List of objects (PlmObject) found including all the object attribute values listed
in the PlmResult of the request.

* Additionally, the ID attributes of the parent and the child record are
added. The parent IDs are named PARENT.EDB_ID and PARENT.C_ID,
the attributes for child IDs are named CHILD.EDB_ID and CHILD.C_ID.

* This is necessary to prevent name clashes if the parent and child entity are
the same (for instance in an Item BOM).

* If a count request was made, the response will have one PlmObject with
an Integer attribute named COUNT containing the number of objects
matching the query, and an Integer attribute called RECORD_LIMIT
containing the current record limit of the mask used for the count
operation.

deleteRelation
■ Service

Deletes a relationship entry in the Agile e6 system.

BusinessObject Web Service

Agile e6 Core Web Services Operations 6-15

■ Usage

Note: The object is deleted permanently without using the trash
basket.

A mask can be specified, which is used to process the delete operation. This allows
to fire customer specific triggers on the EDM server during record deletion.

■ Request Type

DeleteRelationRequestType

– plmRelationQuery (PlmRelationQuery):

* PlmObject or PlmObjectReference: Defines the parent record of the
relation. This is either a PlmObject as returned by the BusinessObject Web
Service, or - to improve performance - only a reference to it.

* PlmMetaRelationRef: The metadata of the relation to be read (parent,
child, type, view). This allows specifying the aggregate, refined,
constraint, or type relation.

* Selection (List<PlmCondition>: A list of PlmCondition objects
representing the search criteria for object attributes. This query has to
match exactly one relation record, otherwise the operation fails. The rest of
the PlmRelationQuery members are ignored.

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

DeleteRelationResponseType

– status code (ResponseStatusCode):

SUCCESS Relation object is deleted.

FAILURE A faulty description including error message and the type of error.

– A PLM ticket (String)

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

BusinessObject Web Service

6-16 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– plmObject (PlmOjbect): PLM object with ID information like EDB_ID and C_
ID, if available (optional). This is only returned if the object is found, but the
operation fails.

setReservation
■ Service

The Web Service operates similar to the corresponding ECI functions:

– eci_res_ent

– eci_fre_ent

■ Usage

Reserves or un-reserves an object (usually a document object) in the Agile e6
system.

■ Request Type

SetReservationRequestType

– plmObject (PlmObject or PlmObjectRef): The PLM entity reference and the ID
query of the object to be reserved.

– Boolean value true or false:

* True = reserved

* False = un-reserved

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

SetReservationResponseType

– status code (ResponseStatusCode):

SUCCESS Object is reserved/un-reserved.

FAILURE A faulty description including error message and the type of error.

– A PLM ticket (String)

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-17

– plmObject (PlmOjbect): PLM object with ID information like EDB_ID and C_
ID, if available (optional). This is only returned if the object is found, but the
operation fails.

DocumentManagement Web Service
A document is a business object that specifies one or more files that are stored in the
Agile e6 File Vault. You can load a document and add one or more files to its files
table. You can also search for a document and its files, like searching for an item. The
CAD fastload feature is available via the getCADAssembly Web Service.

Note: Before continuing with DFM Support, please refer for further
information about the DFM Web Service Configuration, to the
Administration Guide for Agile e6.2.0.0.

DFM Support
The upLoadFile and downLoadFile web services, which are not a part of the core
Services and are deployed as File Services, are used to access the local File Server on
the remote DFM location. The file services are deployed on WebLogic and for remote
DFM locations on TOMCAT.

The use cases describe how different Web Services interact to implement a DFM
operation.

In a DFM environment are two or more file servers involved. For each DFM site
(remote location) is a file server installed. File operations like check-in or check-out are
executed by calling the local web services.

In the following overview, the remote location has a file server and the
StreamingFileService deployed. The Web Service client, for example a CAD integration
runs on the remote location and calls the CoreServices which are deployed on the main
location to communicate with the EDM server. All file operations are executed on the
remote location by calling the local deployed StreamingFileService. The
StreamingFileService communicates with the local File Server to exchange files and
with the CoreServices to maintain the metadata within Agile e6.

In case a requested file is not available or out-dated on the local File Server, the local
File Server requests the file from the File Server on which the file is available.

DocumentManagement Web Service

6-18 Oracle Agile Engineering Data Management/Web Services Guide for Agile

To download a file from the local File Server, the Web Service client has to contact the
CoreServices to connect to the Agile e6 system.

The Web Service client has to call the setUserContext Web Service to set the DFM site
which should be used.

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-19

Flow:
1. The Web Service Client wants to check-out a file. To start this, the client calls the

getFiles or getCADAssembly Web Service.

2. The getFiles Web Service gains the information from the Agile e6 system (DFM
support).

3. The file and vault lists of the document are returned.

4. The getFiles Web Service sends a response which can be used to call the
downloadFile Web Service.

5. The Web Service client calls the downloadFile Web Service to download the file.

6. The downloadFile Web Service replicates the file from the remote File Server if
necessary.

7. The File Server request the file from the remote File Server.

8. The file will be replicated.

9. The file name of the replicated file is returned and ready for download.

10. Return the file stream to the client.

11. The downloadFile Web Service calls the updateFileObject Web Service to update
the metadata within Agile e6.

12. The updateFileObject Web Service to update the metadata within Agile e6.

13. The metadata is updated.

14. Successful call.

15. If necessary, delete the old file version.

16. Successful call.

StreamingFileServices
In the installed environment, these are deployed as the StreamingFileService web
application, containing the DocumentFileService Web Service. It is deployed on
WebLogic and for remote DFM locations on TOMCAT.

■ downloadFile

■ uploadFile

downloadFile
■ Service

Downloads a file directly from the local File Server. The request needs the
response data provided by the getFiles or getCADAssembly Web Service call.

■ Usage

The Web Service is deployed on a separate installation on the local DFM location.
The service can be deployed on a TOMCAT or WebLogic server.

– If the Web Service is deployed on WebLogic, we recommend updating
metadata (file replication) directly. Do not use the updatedFileObject Web
Service for this.

– The deployment only needs tracing.

– The Web Service should use the HTTPs protocol to secure the file transfer.

DocumentManagement Web Service

6-20 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Request Type

downloadFileRequestType

– messageId (String, required)

– messageName (String, required)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– statusCode (ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE.

– url (String, optional)

* The URL to the createUpdateFileObject Web Service.

– fmsVaultTokens (List<PlmFMSVaultToken>, required)

– PlmFMSVaultToken

* Containing all attributes to contact the File Server via FMS Java Daemon.

vaultName String, required

vaultType String, required

vaultKind String, required

vaultNode String, required

vaultNetRef String, required

vaultPath String, required

fmsJadeNode String, required

fmsJadePort String, required

tokenTimestamp String, required

token String, required

– fmsToken (PlmFmsToken, required)

– PlmFmsToken

* Containing all attributes to contact the File Server via FMS Java Daemon.

id String, required Document to file relation record
CID

parentId String, required Document to file relation record
parent CID (Document CID)

childId String, required Document to file relation record
child CID (File CID)

sourceFileToken PlmFMSFileToken,
optional

targetFileToken PlmFMSFileToken,
required

■ Response Type

downloadFileResponseType

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-21

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– fileData (a javax.activation.DataHandler, optional)

* The file data as a binary MTOM stream with content type
"application/octet-stream".

* Use the streaming API of your JAX-WS implementation to transfer the file.

Note: If streaming is not used, the file is transferred to XML data.
This can lead to performance issues, creates big SOAP messages, and
can cause an OutOfMemoryException on the server or client.

uploadFile
■ Service

Uploads a file directly to the local File Server. The request needs the response data
provided by the getFMSVault Web Service call.

■ Usage

The Web Service is deployed on a separate installation on the local DFM location.
The service can be deployed on a TOMCAT or WebLogic server.

– If the Web Service is deployed on WebLogic, we recommend updating
metadata (file replication) directly. Do not use the createUpdatedFileObject
Web Service for this.

– The deployment only needs tracing.

– The Web Service should use the HTTP/S protocol to secure the file transfer.

– The request contains a token which allows the Web Service client to upload a
file into a specific vault.

– The URL, document and file reference, allows the Web Service to contact the
createUpdateFileObject Web Service to update the metadata in Agile e6.

– For authentication, the PLM ticket can be used, or a system account.

■ Request Type

uploadFileRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

DocumentManagement Web Service

6-22 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– ticket (String, required) The PLM ticket is used to call createUpdateFileObject
() Web Service.

– DocumentFileQuery (PlmDocumentFileQuery, required)

Document PlmObjectRef,
required

The Agile e6 document object as
PlmObjectRef

documentFileMaskName String, required The document file relation list to use for the
query

Selection List<PlmCondition>,
required

List of PlmConditions which contain the
field name/value pairs to search for
document records

ignoreRecordLimit Boolean, optional A flag indicating if the record limit should
be ignored (default = false)

attributeNames List<String>,
optional

Inherited from PlmResult

includeBinaryValues Boolean, optional Inherited from PlmResult

includeAllLanguages Boolean, optional Inherited from PlmResult

– documentFileObject (PlmObject, required)

* The relation object with the Agile e6 class reference, and a list of
relationship attributes (name/value pairs) used to create the new object.

* The metadata of the relationObject is currently ignored by this operation,
thus empty values for these elements can be passed.

* Only the list of attribute values is used to fill the new relation record in
Agile e6.

– url (String, required) The URL to the createUpdateFileObject Web Service.

– fmsVaultToken (PlmFMSVaultToken, required)

– PlmFMSVaultToken Contains all attributes to contact the File Server via FMS
Java Daemon.

vaultName String, required

vaultType String, required

vaultKind String, required

vaultNode String, required

vaultNetRef String, required

vaultPath String, required

fmsJadeNode String, required

fmsJadePort String, required

tokenTimestamp String, required

token String, required

– fileDate (javax.activation.DataHandler, required)

■ Response Type

uploadFileResponseType

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-23

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– dfmResult (DFMResultData, optional)

Note: A PlmFault will be thrown if an unexpected technical problem
occurs, e.g. connection loss.

DocumentManagement CoreService
All operations in DocumentManagement Web Service support DFM.

Note: To create a document, use the Business Object Web Services.

The following are the Web Service operation names of the single request operations for
DocumentManagement Web Services describing the concurrent sections:

■ getFiles

■ getCADAssembly

■ getCADAssemblyNextDataBlock

■ getFMSVault

■ createUpdateFileObject

getFiles
■ Service

Retrieves the list of files assigned to a specific document.

The operation will use the document file relation mask that is specified in the
request to retrieve the data - search in a mask.

■ Usage

The response provides the necessary data to call the downloadFile Web Service
and is divided into the following parts:

1. List of Vault definitions including:

– FMS Server definition

– FMS Java Daemon definition

– FMS vault tokens

2. List of FMS file token including:

– Source file with file tokens

DocumentManagement Web Service

6-24 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– Target file with file tokens

Note: In case of replication, the source file and target file will be
filled. Otherwise, only the target file will be filled.

3. List of files

By default, the response will return values of all visible document file relation
fields, plus some important ID fields (e.g. EDB_ID and C_ID) that are contained in
the mask. Response information can be restricted by defining the list of fields that
should be returned.

Note: Only values for fields, which are available in the mask, can be
returned. The settings of the mask will determine the sorting of the
data.

The response will return file information and vault information. Return values will
be provided in a standardized format as marshaled by the JAXB framework. Date
values will be in UTC, based on the assumption that the data returned by the EDM
server is in server local time.

By default, only the current language value will be retrieved for multi-lingual
fields. However, the Web Service client can request to retrieve all language values
in the same call.

The method fills a list of vault in the form of PlmFMSVaultToken in the response,
which are referenced in one or many from the PlmFMSTokens.

The file tokens in the form PlmFMSTokens in response contains file details and its
generated access tokens. Each file token represents one file from the file list and
can be referenced by doc_fil ID.

The bulk operation is called getFilesBulk.

■ Request Type

GetFilesRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmDocumentFileQuery (PlmDocumentFileQuery):

document (PlmObjectRef,
required)

The Agile e6 document object as PlmObjectRef reference.

documentFileMaskName (String
required)

The document file relation list to use for the query.

Selection (list<PlmCondition>,
required)

List of PlmConditions which contain the field name/value
pairs to search for document records.

ignoreRecordLimit (Boolean,
optional)

A flag indication if the record limit should be ignored
(default is false).

excludeVaultValues (Boolean,
optional)

A flag indication if the vault values should be returned, too
(default is true).

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-25

■ Response Type

GetFileResponeType

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– recordLimitHit (Boolean, required)

* [true|false] Indicates whether the query result has hit the mask limit.

– url (String, optional)

* The URL to the createUpdateFileObject Web Service.

– fmsVaultTokens (List<PlmFMSVaultToken>, optional)

* List of PlmFMSVaultToken containing all attributes to contact the File
Server via FMS Java Daemon.

PlmFMSVaultToken ■ vaultName (String, required)

■ vaultType (String, required)

■ vaultKind (String, required)

■ vaultNode (String, required)

■ vaultNetRef (String, required)

■ vaultPath (String, required)

■ fmsJadeNode (String, required)

■ fmsJadePort (String, required)

■ url (String, required)

■ tokenTimestamp (String, required)

■ token (String, required)

attributeNames (List<String>,
optional)

Inherited from PlmResult.

includeBinaryValues (Boolean,
optional)

Inherited from PlmResult.

includeAllLanguages (Boolean,
optional)

Inherited from PlmResult

DocumentManagement Web Service

6-26 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– fmsTokens (List,PlmFMSToken>, optional)

* List of PlmFMSToken containing all attributes to contact the File Server via
FMS Java Daemon.

PlmFMSToken ■ Id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ sourceFileToken (PlmFMSFileToken, optional)

■ targetFileToken (PlmFMSFileToken, required)

– objects (List<DFMResultData>, required)

* List of Document File relation records found.

DFMResultData ■ Id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID ¡V T_DOC_DAT.C_ID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ attributes (List<PlmAttributeChoice>, required)

– The created objects contain the attributes listed in the request.

– In case one or more of the requested attributes do not exist, PARTIAL_
SUCCESS is returned.

– In case one or more of the requested attributes are not accessible, a WARNING
is returned.

– If no attributes have been requested (attribute list is missing), the whole object
including all visible attributes and the ID attributes (EDB_ID and C_ID) are
returned. If none of the requested attributes exists, or the list is empty, only the
ID attributes (EDB_ID and C_ID) are returned.

getCADAssembly
■ Service

Retrieves the list of document structure records and files needed to load a 3D
assembly into a CAD system.

The operation is similar to the fastload ECI function which allows collecting all
files required to represent a CAD assembly. The CAD fastload feature is also
available for this Web Service.

■ Usage

The Web Service uses the stored procedure to traverse the CAD structure and to
create the document hierarchy list and the file list. This stored procedure specifics
of the CAD structures like external references, drawings, family tables, etc. takes
into account.

Note: See also ECI function eci_loa_cax for more details on the
required parameters.

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-27

The Web Service is used to load the document structure according to:

– the version view which is currently active

– the snapshot view (baseline).

The Web Service returns the hierarchical document structure information and the
list of files.

Note: In case of the snapshot, the Web Service returns a flat list of
document instead of the document hierarchy.

The entry point is a document.

Snapshot (Baselines) handling requires providing additional information when
calling this Web Service. The Snapshot-ID identifies the snapshot to be loaded.

The response provides the necessary data to call the downloadFile Web Service
and is divided into the following parts:

– List of vault definitions including:

* FMS Server definition

* FMS Java Daemon definition

– List of files

– List of document hierarchy

By default, the response returns values provided by the temporary table used by
the stored procedure.

The response information can be restricted by defining the list of fields that must
be returned, but note that you can only return values for fields which are available
in the temporary table.

The stored procedure checks if all files are available of the DFM location. If one or
more files are out-dated the procedure marks the records with the DFM status.

The response returns file information and vault information (see Response Type).
Return values are provided in a standardized format as marshaled by the JAXB
framework. Date values are in UTC, based on the assumption that the data
returned by the EDM server is in server local time.

Note: Since the operation handles large structures, there will be no
bulk support.

■ Request Type

GetCADAssemblyRequestType

– messageId (String, optional)

– messageName (String, optional)

DocumentManagement Web Service

6-28 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmDocumentCADQuery (PlmDocumentCADQuery):

document (PlmObjectRef, required) An object reference to the document.

creationSystem (String, required)

logicType (String, required)

structureFlag (boolean, required)

bomFunction (String, required)

snapshotID (String, optional) The ID of the snapshot.

externalReferences (boolean, optional) Obey external references for snapshots?

■ True

■ False

– plmFileResult (PlmResult, optional): This describes how the result of the
operation is returned to the client.

attributeNames(List<
String>)

List of field names of the file
list to be returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues
(Boolean)

Include binary values ■ Optional

■ False (default)

includeAllLanguages
(Boolean)

Include all languages ■ Optional

■ False (default)

omitEmptyValues
(Boolean)

Omit empty attribute values
from the response

■ Optional

■ False (default)

– plmDocStrResult (PlmResult, optional): This describes how the result of the
operation is returned to the client.

attributeNames(List<
String>)

List of field names of the
document structure list to
be returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues
(Boolean)

Include binary values ■ Optional

■ False (default)

includeAllLanguages
(Boolean)

Include all languages ■ Optional

■ False (default)

omitEmptyValues
(Boolean)

Omit empty attribute
values from the response

■ Optional

■ False (default)

■ Response Type

GetCAD AssemblyResponeType

– messageId (String, required)

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-29

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session is
closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– fileWidgetID (String, optional)

– structureWidgetID (String, optional)

– url (String, optional)

* The URL to the createUpdateFileObject Web Service. This URL is provided
if DFM is active.

– fmsVaultTokens (List<PlmFMSVaultToken>, optional)

* List of PLMFMSVaultToken containing all attributes to contact the File
Server via FMS Java daemon.

PlmFMSVaultToken ■ vaultName (String, required)

■ vaultType (String, required)

■ vaultKind (String, required)

■ vaultNode (String, required)

■ vaultNetRef (String, required)

■ vaultPath (String, required)

■ fmsJadeNode (String, required)

■ fmsJadePort (String, required)

■ url (String, required)

■ token Timestamp (String, required)

■ token (String, required)

– fmsTokens (List,PlmFMSToken>, optional)

* List of PlmFMSToken containing all attributes to contact the file server via
FMS Java daemon.

PlmFMSToken ■ id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ sourceFileToken (PlmFMSFileToken, optional)

■ targetFileToken (PlmFMSFileToken, required)

DocumentManagement Web Service

6-30 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– files (List<DFMResultData>, optional)

* List of Document to File relation records found.

DFMResultData ■ Id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ attributes (List<PlmAttributeChoice>, required)

– structure (List<DFMResultData>, optional)

* List of Document to Document relation records found.

DFMResultData ■ Id (String, required) Document to Document relation Record CID

■ parentId (String, required) Document to Document relation Record
Parent CID (Document CID)

■ childId (String, required) Document to Document relation Record
Child CID (File CID)

■ attributes (List<PlmAttributeChoice>, required)

– The created objects contain the attributes listed in the request.

– In case one or more of the requested attributes do not exist, PARTIAL_
SUCCESS is returned.

– In case one or more of the requested attributes are not accessible, a WARNING
is returned.

– If no attributes have been requested (attribute list is missing), the whole object
including all visible attributes and the ID attributes (EDB_ID and C_ID) are
returned. If none of the requested attributes exists, or the list is empty, only the
ID attributes (EDB_ID and C_ID) are returned.

getCADAssemblyNextDataBlock
■ Service

The service retrieves the next set of data for the widget IDs and closes if the next
set of data is empty. It does not open the new widgets.

■ Usage

This operation can only be used in conjunction with "getCADAssembly"
webservice. This service takes the widgetIDs of file and structure for the mask
EDB-CAX-FIL-TMP-SLI and EDB-CAX-STR-TMP-SLI, which is returned by the
getCADAssembly service.

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-31

■ Request Type

GetCADAssemblyNextDataBlockRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– fileWidgetID (String, optional)

– structureWidgetID (String, optional)

– plmFileResult (PlmResult, optional)

This describes how the result of the operation is returned to the client.

attributeNames(List<String>) List of field names of the
file list to be returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages
(Boolean)

Include all languages ■ Optional

■ False (default)

omitEmptyValues (Boolean) Omit empty attribute
values from the response

■ Optional

■ False (default)

– plmDocStrResult (PlmResult, optional):

This describes how the result of the operation is returned to the client.

attributeNames(List<String>) List of field names of the
document structure list
to be returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages
(Boolean)

Include all languages ■ Optional

■ False (default)

omitEmptyValues (Boolean) Omit empty attribute
values from the response

■ Optional

■ False (default)

■ Response Type

GetCAD AssemblyResponeType

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

DocumentManagement Web Service

6-32 Oracle Agile Engineering Data Management/Web Services Guide for Agile

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– fileWidgetID (String, optional)

– structureWidgetID (String, optional)

– url (String, optional)

* The URL to the createUpdateFileObject Web Service. This URL is provided
if DFM is active.

– fmsVaultTokens (List<PlmFMSVaultToken>, optional)

* List of PLMFMSVaultToken containing all attributes to contact the File
Server via FMS Java daemon.

PlmFMSVaultToken ■ vaultName (String, required)

■ vaultType (String, required)

■ vaultKind (String, required)

■ vaultNode (String, required)

■ vaultNetRef (String, required)

■ vaultPath (String, required)

■ fmsJadeNode (String, required)

■ fmsJadePort (String, required)

■ url (String, required)

■ token Timestamp (String, required)

■ token (String, required)

– fmsTokens (List,PlmFMSToken>, optional)

* List of PlmFMSToken containing all attributes to contact the File Server via
FMS Java daemon.

PlmFMSToken ■ Id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ sourceFileToken (PlmFMSFileToken, optional)

■ targetFileToken (PlmFMSFileToken, required)

– files (List<DFMResultData>, optional)

* List of Document to File relation records found.

DFMResultData ■ Id (String, required) Document to File relation Record CID

■ parentId (String, required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ attributes (List<PlmAttributeChoice>, required)

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-33

– structure (List<DFMResultData>, optional)

* List of Document To Document relation records found.

DFMResultData ■ Id (String, required) Document to Document relation Record CID

■ parentId (String, required) Document to Document relation Record
Parent CID (Document CID)

■ childId (String, required) Document to Document relation Record
Child CID (File CID)

■ attributes (List<PlmAttributeChoice>, required)

– The created objects contain the attributes listed in the request.

– In case one or more of the requested attributes do not exist, PARTIAL_
SUCCESS is returned.

– In case one or more of the requested attributes are not accessible, a WARNING
is returned.

– If no attributes have been requested (attribute list is missing), the whole object
including all visible attributes and the ID attributes (EDB_ID and C_ID) are
returned. If none of the requested attributes exists, or the list is empty, only the
ID attributes (EDB_ID and C_ID) are returned.

getFMSVault
■ Service

This operation gets the upload information for different types of documents, Cax,
file and creation systems, or for the given vault name that is used if DFM is not
active.

■ Usage

The Web Service client provides the different needed combinations as request and
gets the information for the upload. The provided metadata will be cached for
later use (createUpdateFileObject)

■ Request Type

getFMSVaultRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– document (PlmObjectRef, optional)

* An object reference to the document (the parent).

DocumentManagement Web Service

6-34 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– fileFormat (String, optional)

– stepCreationSystem (String, optional)

* The Step Creation System.

– vaultName (String, optional)

* The vault name for which details will be retrieved.

■ Response Type

getFMSVaultResponseType

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– fileData (javax.activation.DataHandler, optional)

* The file data as a binary MTOM stream with content type
"application/octet-stream".

* Use the Streaming API of your JAX-WS implementation to transfer the
file. If streaming is not used, the file is transferred to XML data, which
takes considerably longer leading to huge SOAP messages, and might
even result in an OutOfMemoryException on the server or the client.

createUpdateFileObject

Note: This Web Service is used only internally and is only called by
the system.

■ Service

This Web Service creates and updates the metadata for the upload file object.

■ Usage

The Web Service implements two different use cases - one called from uploadFile,
and the other called from downloadFile to finish a relocation.

■ Request Type

CreateUpdateFileRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– documentFileQuery (PlmDocumentFileQuery, optional used by uploadFile):

document (PlmObjectRef, required) The PLM document object as PlmObjectReference.

documentFileMaskName (String,
optional)

The document file relation list to use for the query.

selection (List<PlmCondition>, required) List of PlmConditions which contain the field
name/value pairs to search for file records.

ignoreRecordLimit (boolean, optional A flag indicates if the record limit should be
ignored. The default is false.

attributeNames (List<String>, optional) inherited from PlmResult

includeBinaryValues (boolean, optional) inherited from PlmResult

includeAllLanguages (boolean, optional) inherited from PlmResult

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-35

– documentFileobject (PlmObject, optional user by uploadFile) the relation
Object with the PLM class reference and a list of relationship attributes
(name/value pairs) used to create the new object.

The metadata of the relationObject is currently ignored by this operation, thus
empty values can be passed for these elements. Only the list of attribute values
is used to fill the new relation record in Agile e6.

– documentCid (String, optional)

Used by downloadFile (replication), document C_ID.

– fileCid (String, optional)

Used by downloadFile (replication), fileC_ID.

– docFileCid (String, optional)

Used by downloadFile (replication), fileC_ID.

– fileCrypName (String, required)

– fileSize (String, required)

– vaultName (String, required)

■ Response Type

CreateUpdateFileResponseType

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
has been closed, or, in case of a backward flow, if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

DocumentManagement Web Service

6-36 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– fmsVaultToken (PlmFMSVAultToken, optional (delete old file))

PlmFMSVaultToken containing all attributes to contact the File Server via FMS
Java daemon.

* vaultName (String required)

* vaultType (String, required)

* vaultKind (String, required)

* vaultNode (String, required)

* vaultNetRef (String, required)

* vaultPath (String, required)

* fmsJadeNode (String, required)

* fmsJadePort (String, required)

* url (String, required)

* tokenTimestamp (String, required)

* token (String, required)

– fmsTokens (PlmFMSToken, optional (delete old file))

PlmFMStoken containing all attributes to contact the File Server via FMS Java
daemon.

* id (String, required)

Document to File relation Record CID

* parentId (String, required)

Document to File relation Record Parent CID (Document CID)

* childId (String, required)

Document to File relation Record Child CID (File CID)

* sourceFileToken (PlmFMSFileToken, optional)

* targetFileToken (PLMFMSFileToken, required)

– fileInfo (DFMREsultData, optional)

* id (String, required)

Document to Document relation Record CID.

* parentId (String, required)

Document to Document relation Record Parent CID (Document CID.

* childId (String, required)

Document to Document relation Record Child CID (Document CID

* attributes (List<PlmAttributeChoice>, required)

Bulk Operations
The following are the bulk operation names of the single request operations for
DocumentManagement Web Services describing the concurrent sections:

■ getFiles(Bulk)

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-37

■ createUpdateFileObject(Bulk)

■ getFMSVault(Bulk)

getFiles
■ Service

To get a list of files assigned to a specific document.

■ Usage

The operation uses the document file relation mask that is specified in the request
to retrieve the data (search in mask).

The response provides the necessary data to call the downloadFile Web Service
and is divided into the following parts:

– List of Vault definitions including:

* FMS Server definition

* FMS Java Daemon definition

* FMS Vault Tokens

– List of FMS File Tokens including (in-case of replication, the source file and
target file are filled if not only the target file):

* Source File with file tokens

* Target file with file tokens

– List of Files

By default the response returns values of all visible document file relation fields
(plus some important ID fields like EDB_ID and C_ID) that are contained in the
mask. Response information can be restricted by defining the list of fields that
must be returned, but note that you can only return values for fields which are
available in the mask.

The settings of the mask determines the sorting of the data.

Return values are provided in a standardized format as marshaled by the JAXB
framework. Date values are in UTC, based on the assumption that the data
returned by the EDM server is in server local time.

By default, only the current language value is retrieved for multi-lingual fields.
However, the Web Service client can request to retrieve all language values in the
same call.

The method fills a list of Vault in the form of PlmFMSVaultToken in the response,
which is referenced in one or many from the PlmFMSTokens.

The file tokens in the form PlmFMSTokens in the response contains file details and
its generated access tokens. Each file token represents one file from the file list and
can be referenced by doc_fil ID.

■ Request Type

GetFilesRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

DocumentManagement Web Service

6-38 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– plmDocumentFileQuery (PlmDocumentFileQuery):

document (PlmObjectRef, required) The PLM document object as PlmObjectReference.

documentFileMaskName (String,
required)

The document file relation list to use for the query.

selection (List<PlmCondition>,
required)

List of PlmConditions which contain the field
name/value pairs to search for document records.

ignoreRecordLimit (Boolean,
optional, default=false)

A flag indicates if the record limit must be ignored.

excludeVaultValues (Boolean,
optional, default=true)

A flag indicates if the vault values must be returned, too.

attributeNames (List<String>,
optional)

inherited from PlmResult

includeBinaryValues (Boolean,
optional)

inherited from PlmResult

includeAllLanguages (Boolean,
optional)

inherited from PlmResult

■ Response Type

GetFilesResponeType

– messageId (String, required)

– messageName (String, required)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– recordLimitHit (boolean, required)

* [true | false] Indicates if the query result has hit the mask limit.

– url (String, optional)

* The URL to the createUpdateFileObject web service.

– fmsVaultTokens (List<PlmFMSVaultToken>, optional)

* List of PlmFMSVaultToken containing all attributes to contact the File
Server via FMS Java daemon.

PlmFMSVaultToken ■ vaultName (String, required)

■ vaultType (String, required)

■ vaultKind (String, required)

■ vaultNode (String, required)

■ vaultNetRef (String, required)

■ vaultPath (String, required)

■ vaultfmsJadeNode (String, required)

■ fmsJadePort (String, required)

■ url (String, required)

■ tokenTimestamp (String, required)

■ token (String, required)

DocumentManagement Web Service

Agile e6 Core Web Services Operations 6-39

– fmsTokens (List<PlmFMSToken>, optional)

* List of PlmFMSToken containing all attributes to contact the File Server via
FMS Java daemon.

PlmFMSToken ■ Id (String, required) Document to File relation Record CID

■ parentId (String required) Document to File relation Record Parent
CID (Document CID)

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ sourceFileToken (PlmFMSFileToken), optional)

■ targetFileToken (PlmFMSFileToken, required)

– objects (List<DFMResultData>, required)

* List of Document File relation record found.

DFMResultData ■ Id (String, required) Document to File relation Record CID

■ parentId (String required) Document to File relation Record Parent
CID (Document CID-T_DOC_DAT.C_ID))

■ childId (String, required) Document to File relation Record Child
CID (File CID)

■ attributes (List<PlmAttributeChoice., required)

– The created objects contain the attributes listed in the request.

– In case one or more of the requested attributes do not exist, PARTIAL_
SUCCESS is returned.

– In case one or more of the requested attributes are not accessible, a WARNING
is returned.

– If no attributes have been requested (attribute list is missing), the whole object
including all visible attributes and the ID attributes (EDB_ID and C_ID) are
returned. If none of the requested attributes exists or the list is empty, only the
ID attributes (EDB_ID and C_ID) are returned.

getFMSVault
■ Service

DocumentManagement Web Service

6-40 Oracle Agile Engineering Data Management/Web Services Guide for Agile

This operation retrieves upload information for different types of documents, Cax,
file and creation systems, or for the given Vault name used. (applies whether DFM
is active or not).

■ Usage

The Web Service client provides the different needed combinations as request and
gets the information for the upload of the different combinations.

■ Request Type

getFMSVaultRequestType

– messageId (String, optional)

– messageName (String, optional)

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– document (PlmObjectRef, optional): An object reference to the document (the
parent)

– fileFormat (String, optional)

– stepCreationSystem (String, optional): The Step Creation System

– vaultName (String, optional): The Vault name for which the details are to be
retrieved

■ Response Type

getFMSVaultResponseType

– messageId (String, required)

– messageName (String, required)

– statusCode(ResponseStatusCode, required)

* SUCCESS, PARTIAL_SUCCESS, WARNING, or FAILURE

– exceptions (List<PlmExceptionType>, optional)

* List of exceptions that occurred during the operation.

– warnings (List<PlmWarningType>, optional)

* List of warnings that occurred during the operation.

– ticket (String, optional)

* The PLM ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– url (String, required)

* The URL to the createUpdateFileObject Web Service.

– fmsVaultToken (PlmFMSVaultToken,required)

* PlmFMSVaultToken containing all attributes to contact the File Server via
FMS Java daemon.

PlmFMSVaultTokent ■ vaultName (String, required)

■ vaultType (String, required)

■ vaultKind (String, required)

■ vaultNode (String, required)

■ vaultNetRef (String, required)

■ vaultPath (String, required)

■ fmsJadeNode (String, required)

■ fmsJadePort (String, required)

■ url (String, required)

■ token Timestamp (String, required)

■ token (String, required)

Metadata Web Service

Agile e6 Core Web Services Operations 6-41

Metadata Web Service
The Metadata Service enables you to read the definition of Agile e6 classes like entities,
entity types, and relations.

■ All operations need one request object as input and return one response object.

– The request contains at least the name of Agile e6 class and a mask name.

– The response contains the metadata of the respective Agile e6 class.

– Bulk operations allow you to execute a whole list of requests with one Web
Service call. The response of a bulk operation contains a list of responses
matching the list of requests.

■ The Agile e6 metadata is read from Agile e6 using the mask specified in the
request.

■ It is only possible to access Agile e6 attributes that are visible in this mask, with
the exception of the ID fields EDB_ID and C_ID.

■ Only masks listed in the so called Web Service Whitelist of Agile e6 can be
accessed.

Bulk Operations
The following are the bulk operation names of the single request operations for
Metadata Web Services describing the concurrent sections.

■ getEntity(Bulk)

■ getEntityType(Bulk)

■ getEntityRelation(Bulk)

■ getNumberCycles(Bulk)

■ getNumbers(Bulk)

getEntity
■ Service

To get the metadata of an Agile e6 entity.

■ Usage

Metadata Web Service

6-42 Oracle Agile Engineering Data Management/Web Services Guide for Agile

The data is based on the mask used to access the data. If the request does not pass
a specific mask name, the default mask of the entity is used. The response contains
the definition of all visible attributes in the mask. If an attribute has mode specific
access, it is returned regardless of the mode specific access value.

■ Request Type

GetEntityRequestType

– name (String): The entity name.

– mask (String): The mask name to use to read this entity (optional).

* If empty, the default list of the entity is used.

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

GetEntityResponseType

– statusCode (ResponseStatusCode): SUCCESS or FAILURE.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– entity (PlmEntity): contains the entity definition (all information is returned
with type String, unless noted otherwise):

Metadata Web Service

Agile e6 Core Web Services Operations 6-43

■ Entity ID

■ Entity name

■ Mask name

■ Default form

■ Default list

■ Table name

■ Join table name

■ Entity title (in the
current session
language)

■ Mask title (in the
current session
language)

■ Record limit

■ Number of
significant fields

■ List of attribute
definitions
(PlmMetaAttribute)
containing:

■ Attribute name

■ Attribute type

■ Attribute title (in the current
session language)

■ Attribute description (in the
current session language)

■ Attribute format

■ Attribute default value

■ Attribute Checkstring

■ Attribute access
(visible/invisible/mandatory/read
-only/mode specific):

■ Query mode specific
attribute access (if
applicable)

■ Update mode specific
attribute access (if
applicable)

■ Insert mode specific
attribute access (if
applicable)

■ Data size of the attribute in this
mask.

■ Visible field width in this mask.
(useful if a UI is generated from
this metadata)

■ Visible field height in this mask.
(useful if a UI is generated from
this metadata)

■ Attribute visible? Tells you if the
attribute is visible in this mask.

Metadata Web Service

6-44 Oracle Agile Engineering Data Management/Web Services Guide for Agile

getEntity Type
■ Service

To get the metadata of an Agile e6 entity type.

■ Usage

The data is based on the mask used to access the data. If the request does not pass
a specific mask name, the default mask of the entity type is used. The response
contains the definition of all visible attributes in the mask. If an attribute has mode
specific access, it is returned regardless of the mode specific access value.

If the mask contains visible multi-lingual attributes, all generated invisible
multi-lingual attribute siblings are returned.

■ Request Type

GetEntityTypeRequestType

– name (String): the name of the master entity for this type.

– type (String): the name of the type.

– mask (String): The mask name to be used to read this entity (optional).

■ List of relation
metadata
(PlmMetaRelation)
defined for this
entity:

■ The name of the parent entity

■ The name of the child entity

■ The relation type

■ The name of the view

■ The name of the relation

■ The internal ID of the relation

■ The table name

■ The title of the relation (in the
current session language)

■ The default list

■ The default form (empty for most
relations)

■ The mask name used to read the
metadata

Later, this data can be used to call
MetadataService.getEntityRelation
to get all attribute metadata for one
specific relation

■ List of type
metadata
(PlmMetaType)
defined for this
entity:

■ The name of the master entity

■ The type name

■ The table name

■ The title of the type

■ The default list

■ The default form

■ The mask name used to read the
metadata

Later, this data can be used to call
MetadataService.getEntityType to
get all attribute metadata for one
specific type.

Metadata Web Service

Agile e6 Core Web Services Operations 6-45

* If empty, the default list of the entity is used.

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

GetEntityTypeResponseType

– statusCode (ResponseStatusCode): SUCCESS or FAILURE.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType)) that occurred during the
operation.

– An entity type definition of type PlmEntityType (all information is returned
with type String, unless noted otherwise):

■ Entity name

■ Type name

■ Mask name

■ Table name

■ Join table name

■ Entity type title (in the
current session language)

■ Mask title (in the current
session language)

■ Mask limit

■ Number of significant
fields

■ Master: the reference to the
master entity as a
PlmClassRef

■ List of attribute definitions
containing:

■ Attribute type

■ Attribute title (in the current
session language)

■ Attribute description (in the
current session language)

■ Attribute format

■ Attribute default value

Metadata Web Service

6-46 Oracle Agile Engineering Data Management/Web Services Guide for Agile

getEntityRelation
■ Service

To get the metadata of an Agile e6 constraint, refine, or aggregate relation.

■ Usage

The data is based on the mask used to access the data. If the request does not pass
a specific mask name, the default mask of the entity is used.

The response contains the definition of all visible attributes in the mask. If an
attribute has mode specific access, it is returned regardless of the mode specific
access value.

In addition, the response contains the default ID fields of the relation (EDB_ID and
C_ID, if available), even if these are invisible.

■ Attribute access
(visible/invisible/mandatory
read-only/mode specific):

■ Query mode
specific attribute
access (if applicable)

■ Update mode
specific attribute
access (if applicable)

■ Insert mode specific
attribute access (if
applicable)

■ Data size of the attribute in
this mask

■ Visible field width in this
mask. (useful if a UI is
generated from this metadata)

■ Visible field height in this
mask. (useful if a UI is
generated from this metadata)

■ Attribute visible? Tells you if
the attribute is visible in this
mask

■ List of relation metadata
(PlmMetaRelation) defined
for this entity:

■ The name of the parent entity

■ The name of the child entity

■ The relation type

■ The name of the view

■ The name of the relation

■ The internal ID of the relation

■ The table name

■ The title of the relation (in the
current session language)

■ The default list

■ The default form

This data can be used later to
call
MetadataService.getEntityRel
ation to get all attribute
metadata for one specific
relation.

Metadata Web Service

Agile e6 Core Web Services Operations 6-47

If the mask contains visible multi-lingual attributes, all generated invisible
multi-lingual attribute siblings are returned.

■ Request Type

GetEntityRelationRequestType

– metaRelation (PlmMetaRelation): Describes the relation to be read, and must
contain at least the following information:

parent: The name of the parent entity (e.g. "EDB-ARTICLE")

child: The name of the child entity (e.g. "EDB-DOCUMENT")

type: The relation type (e.g. PlmRelationTypeEnum.REFINE)

view: The name of the view. (e.g. "STR")

* The meta relation object can either be taken from the response of a call to
getEntity/getEntity type, or it can be created using hard coded default
values. The four attributes listed above are needed to identify the relation
data, the rest of the attributes in PlmMetaRelation are not relevant.

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

GetEntityRelationResponseType

– statusCode (ResponseStatusCode): SUCCESS or FAILURE.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– plmRelation (PlmRelation): The relation definition containing:

■ Relation name.

■ PlmMetaRelation: D
etailed meta
information of
the relation

■ Mask name.

■ Table name.

■ Entity type title
(in the current
session
language).

■ Mask title (in the
current session
language).

■ Mask limit

■ Number of
significant fields.

■ List of attribute
definitions
containing:

■ Attribute type

■ Attribute title (in the
current session language)

■ Attribute description (in
the current session
language)

■ Attribute format

■ Attribute default value

■ Attribute access
(visible/invisible/mandato
ry/read-only/mode
specific):

■ Query mode specific attribute
access (if applicable)

■ Update mode specific attribute
access (if applicable)

■ Insert mode specific attribute
access (if applicable)

■ Data size of the attribute in
this mask.

■ Visible field width in this
mask. (useful if a UI is
generated from this
metadata)

■ Visible field height in this
mask. (useful if a UI is
generated from this
metadata)

■ Attribute visible? Tells you
if the attribute is visible in
this mask.

Metadata Web Service

6-48 Oracle Agile Engineering Data Management/Web Services Guide for Agile

getNumberCycles
■ This operation is used to retrieve several number cycles which are used in a mask

of an entity or a relation.Service

■ Usage

Metadata Web Service

Agile e6 Core Web Services Operations 6-49

The operation scans the field default definition in the mask and returns the
number cycle names. The operation considers field defaults as well as mask
specific field defaults. The Web Service returns number cycles from visible fields
only, because invisible fields cannot be populated with a number cycle number
returned by getNumber Web Service

■ Request Type

GetNumberCyclesRequestType

– plmClass (PlmClassRef)

* The class definition containing the entity and a mask name (optional).

Note: Leave it empty to read a relation mask, metaRelation is used in
this case.

– metaRelation (PlmMetaRelationRef)

* The relation definition including parent and child entity, relation type,
view, and mask name (optional).

Note: Leave it empty to read an entity mask, plmClass is used in this
case.

– messageId (String)

* ID to be returned in the response (optional).

– messageName (String)

* Name to be returned in the response (optional).

– sessionTicket (String, optional)

The PLM session ticket to use for this request, if it has not been passed as user
credentials in the HTTP header.

■ Response Type

GetNumberCyclesResponseType

– statusCode (ResponseStatusCode):

* SUCCESS or FAILURE.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– numberCycles (List<PlmFieldNumberCycle>)

* The list of all number cycles used in this mask, consisting of field name
and number cycle name.

getNumbers
■ Service

This operation is used to get one or more numbers generated by a number
generator. Number generators are used to create instance object IDs. The format of
the number can be defined in a flexible way by defining the numbering template.

Metadata Web Service

6-50 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Usage

Note: It is not possible to hand back unused numbers, once the
numbers have been retrieved. Thus, it is important to use this Web
Service carefully; otherwise the number cycle might run out of range.

In order to control which number cycles are available for the Web Service call
"getNumbers", field "Max # of Numbers per Web Service" is available. If the value
is "0" or NULL, the number cycle is not accessible for the Web service, else the
value defines how many numbers (<=) can be generated by one getNumbers Web
Service call.

■ Request Type

GetNumbersRequestType

– messageId (String)

* ID to be returned in the response (optional).

– messageName (String)

* Name to be returned in the response (optional).

– sessionTicket (String, optional)

The PLM session ticket to use for this request, if it has not been passed as user
credentials in the HTTP header.

– numberCycleName (String)

* The name of the number cycle to be used.

– Range (Integer)

The amount of numbers to be requested from the number server.

■ Response Type

GetNumberCyclesResponseType

– statusCode (ResponseStatusCode): SUCCESS, PARTIAL_SUCCESS,
WARNING or FAILURE.

SUCCESS Object deleted successfully.

PARTIAL_SUCCESS Is returned when all numbers are generated, but threshold warning is
issued (number variant will be exhausted soon).

WARNING Is returned with a list of only some of the requested numbers that are
generated. Reasons are that number variant is exhausted after
generating a few numbers or that more numbers than allowed were
requested for one Web Service call.

FAILURE Is returned when the number variant is not found, has the wrong
format (missing #), when the Web Service is not enabled, exhausted, or
the definition for the number variant is incorrect.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

Configuration Web Service

Agile e6 Core Web Services Operations 6-51

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings (List< PlmWarningType >): List of warnings that occurred during
the operation.

– exceptions (List< PlmExceptionType >): List of exceptions that occurred
during the operation.

– numberCycleName (String): Name of the number cycle, copied from the
request.

– numbers (List<String>): List of numbers returned from this number cycle.

Configuration Web Service
The Configuration Web Service enables you to retrieve PLM objects from Agile e6. It
retrieves configuration data of a PLM object, such as Default, User Context, etc.,
specified by its name.

The requests include the value(s) for specifying the requested object. Responses
include the requested objects.

Bulk operations require a list of requests to execute. These return with a list of
responses.

The following are the Web Service operation names of the single request operations for
Configuration Web Services describing the concurrent sections.

■ getUserContext

■ setUserContext

getUserContext
■ Service

To get all the information of the current user context of an Agile e6 session.

■ Usage

The request object carries current Agile e6 user's details and only an optional
message ID and name. The response object delivers the user attributes, all group
assignments attributes, current view (Released, Global etc.), current context (DSG,
ENG), current project assignment (Project ID) and current Org assignment (Org
ID).

■ Request Type

GetUserContextRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

■ Response Type

GetUserContextResponseType

– statusCode (ResponseStatusCode): SUCCESS or FAILURE.

SUCCESS All objects from user context are returned, if they are available.

There could be some warnings in the message block, if some objects
(e.g. currentJob, currentRole) are not available. It could make sense for
setUserContext, but it is not necessary to check for getUserContext.

FAILURE There was a connection problem.

Configuration Web Service

6-52 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the PLM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– plmUserContext (PlmUserContext):

plmUserInfo
(PlmUserContextUserInfo):

■ userName

■ userID

■ group

■ groupID

■ userLanguage

■ userLocale

plmViewInfo
(PlmUserContextView):

■ preliminaryFlag (Boolean.TRUE, Boolean.False, null)

■ referenceDate (yyyy-MM-dd HH:mm:ss, @NOW, empty_
string)

■ versionViewTitle (Current, Production, Global,
Development_extended)

■ versionView (PlmVersionViewEnum)

plmChangeManagementInfo
(PlmUserContextChg):

■ currentChgFlag (Boolean.TRUE, Boolean.False,null)

■ currentWorkOrder (EDB_ID, empty_string)

■ currentWorkSet (EDB_ID, empty_string)

plmMoaMpaInfo
(PlmUserContextMoaMpa):

■ moaMpaConfFlag(PlmUserContextMOAEnum, null)

■ currentJob (empty_string)

■ currentRole (empty_string)

■ currentProjectOrOrganisation (empty_string)

■ currentProjectOrOrganisationCid (empty_string)

plmDFMInfo
(PlmUserContextDFM):

■ dfmConfigFlag (Boolean.TRUE, Boolean.False,null)

■ site (Reserved for future use)

setUserContext
■ Service

Configuration Web Service

Agile e6 Core Web Services Operations 6-53

To modify one or more settings of the current user context in the current Agile e6
session.

■ Usage

This operation is used to set current job in MOA/MPA environment. The request
object carries the user context details, such as the new view, new assignment, new
organization assignment, and new project assignment. The response object
delivers the user attributes, group assignments, new current view, new current
context, new current project assignment, new current org assignment.

■ Request Type

SetUserContextRequestType

– messageId (String): ID to be returned in the response.

– messageName (String): Name to be returned in the response.

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– plmUserContext (PlmUserContext):

plmUserInfo
(PlmUserContextUserInfo):

■ userName (not changeable by current user)

■ userID (not changeable by current user)

■ group (Reserved for future use: currently there is no API to
implement it.)

■ groupID (Reserved for future use : currently there is no API
to implement it.)

■ userLanguage (e.g. ENG, GER, FRA)

■ userLocale (always changed with user language)

plmViewInfo
(PlmUserContextView):

■ preliminaryFlag (Boolean.TRUE, Boolean.FALSE)

■ referenceDate (in the form of yyyy-MM-dd HH:mm:ss)

■ versionViewTitle (ignored)

■ versionView (PlmVersionViewEnum)

plmChangeManagementInfo
(PlmUserContextChg):

■ currentChgFlag (not changeable by current user)

■ currentWorkOrder (EDB-ID of work order, no check of
currentChgFlag)

■ currentWorkSet (EDB-ID of work set, no check of
currentChgFlag)

plmMoaMpaInfo
(PlmUserContextMoaMpa):

■ moaMpaConfFlag (not changeable by current user)

■ currentJob EDB_ID of the job, access is checked by EDM
server

■ currentProjectOrOrganisation - ignored in the request,
filled by the response

■ currentProjectOrOrganisationCid - ignored in the request,
filled by the response

■ currentRole - ignored in the request, filled by the response

plmDFMInfo
(PlmUserContextDFM):

■ dFMConfigFlag (not changeable by current user)

■ site (reserved for future use)

■ Response Type

SetUserContextRequestType

Configuration Web Service

6-54 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– statusCode (ResponseStatusCode): SUCCESS. PARTIAL_SUCCESS,or
FAILURE.

SUCCESS All objects could be set successfully; some objects could not be set with
warnings.

PARTIAL_SUCCESS Some objects could be set successfully, while some could not be set with
warnings.

FAILURE There was a connection problem.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings: List of warnings (PlmWarningType) that occurred during the
operation.

– exceptions: List of exceptions (PlmExceptionType) that occurred during the
operation.

– plmUserContext (PlmUserContext):

plmUserInfo
(PlmUserContextUserInfo):

■ userName

■ userID

■ group

■ groupID

■ userLanguage

■ userLocale

plmViewInfo
(PlmUserContextView):

■ preliminaryFlag (Boolean.TRUE, Boolean.False, null)

■ referenceDate (yyyy-MM-dd HH:mm:ss, @NOW, empty_
string)

■ versionViewTitle (Current, Production, Global,
Development_extended)

■ versionView (PlmVersionViewEnum)

plmChangeManagementInfo
(PlmUserContextChg):

■ currentChgFlag (Boolean.TRUE, Boolean.False,null)

■ currentWorkOrder (EDB_ID, empty_string)

■ currentWorkSet (EDB_ID, empty_string)

plmMoaMpaInfo
(PlmUserContextMoaMpa):

■ moaMpaConfFlag(PlmUserContextMOAEnum, null)

■ currentJob (empty_string)

■ currentRole (empty_string)

■ currentProjectOrOrganisation (empty_string)

■ currentProjectOrOrganisationCid (empty_string)

plmDFMInfo
(PlmUserContextDFM):

■ dfmConfigFlag (Boolean.TRUE, Boolean.False,null)

■ site (Reserved for future use)

Configuration Web Service

Agile e6 Core Web Services Operations 6-55

Bulk Operations
The following are the bulk operation names of the single request operations for
Configuration Web Services describing the concurrent sections.

■ getDefault(Bulk)

■ createDefault(Bulk)

getDefault
■ Service

To get the contents of a PLM Default value.

■ Usage

It is possible to read all available defaults from system configuration.

■ Request Type

GetDefaultRequestType

– defaultName (String):

* Name of the DataView default.

– messageId (String):

* ID to be returned in the response (optional).

– messageName (String):

* Name to be returned in the response (optional).

– sessionTicket (String, optional)

The PLM session ticket to use for this request, if it has not been passed as user
credentials in the HTTP header.

■ Response Type

GetDefaultResponseType

– Status Code

PARTIAL_SUCCESS Typed default value is NULL

FAILURE Default "Non-existent" - PLM Object is NULL~

– PLM Default as complex data type (String, Integer, Float, Boolean)

createDefault
■ Service

This operation creates/updates the content of a PLM Default value.

■ Usage

Similar to the corresponding ECI function "eci_add_dfv", the Web Service does not
persist the default value. Thus, a default value set via createDefault will exist only
at runtime and for the current Web Service session.

Note: The Web Service allows creating defaults for the current user
only.

EngineeringCollaborationService Web Service

6-56 Oracle Agile Engineering Data Management/Web Services Guide for Agile

It is possible to create/update any defaults in system configuration.

■ Request Type

CreateDefaultRequestType

– messageId (String):

* ID to be returned in the response (optional).

– messageName (String):

* Name to be returned in the response (optional).

– sessionTicket (String, optional)

The PLM session ticket to use for this request, if it has not been passed as user
credentials in the HTTP header.

– PLM Default as complex data type (String, Integer, Float):

* Compared to getDefault and createDefault, it only supports String,
Integer, and Float as input values.

* The format for other types is not defined by DataView, and the value is
always stored as String.

■ Response Type

GetDefaultResponseType

– Status Code

SUCCESS The default is created.

PARTIAL_SUCCESS Typed default value is NULL

FAILURE Default "Non-existent" - PLM Object is NULL~

– ticket (String,): A PLM ticket. PLM Default as complex data type (String,
Integer, Float, Boolean)

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): Copied from the request, or generated.

– messageName (String): Copied from the request, or the operation name.

– warnings (List< PlmWarningType >): List of warnings that occurred during
the operation.

– exceptions (List< PlmExceptionType >): List of exceptions that occurred
during the operation.

EngineeringCollaborationService Web Service
Agile e6 ECService Web Services are a set of Business Services that supplement EDM's
Core Web Services.

EngineeringCollaborationService Web Service

Agile e6 Core Web Services Operations 6-57

Example:
Below are examples given of how CAD scenarios are used to describe the generic
character of the createUpdateStructure Web Service operation.

This operation allows you to process relations like Create/Read/Update/Delete
between the following objects:

■ Document - Document

– Document structure (STR):

The document structure is used in the context of CAD integration to represent
the assembly structure (top-level-assembly -> sub-assembly -> single part).

– Snapshot structure (SNP):

The Snapshot structure allows saving specific document structure
configurations, independent from the version view setting. Furthermore, it is
used to store design variants in Agile e6. The CAD system has full control of
the Snapshot structure. The CAD system is the only authoring system creating
Snapshot structures.

– Intern-Extern Relationship (IER):

CAD assemblies sometimes make use of external references. For instance, if an
engineer is designing a tool to manufacture the work piece, he is using the
work piece geometry to derive the tool geometry. In order to assign the work
piece geometry to the tool assembly structure, the Intern-Extern Relationship
is used.

■ Document - Item (STR Structure)

– Optional use case: Is used if items are derived from CAD structure.

■ Item-Item (STR Bill of Material)

– Optional use case: Is used if BOM is derived from CAD structure.

1. Filtering

Document-Document STR relations, which are created/owned by the CAD
integration, can be identified by the field T_DOC_STR.UG2_IDENT. "UG2_
IDENT" contains a name which indicates the source CAD integration. If the
relation record is owned by the CAD integration, and the access rights of the
relation record allow deletion, the CAD integration is allowed to delete the record.
In other words, if the relation record was created manually by a user, the CAD
integration shall never delete such a record. The UG2_IDENT mechanism is also
used for BOM and Item-Document relation.

In general, the Web Service shall allow defining a set of field value pairs which are
used to identify objects that are managed by the CAD integration. It is possible to
define separate sets of field value pairs for the different relation (BOM,
Item-Document, Document-Document).

Note: You can use wildcards to specify filter criteria.

In order to find out if data records need to be created, updated, or deleted, an
additional comparison pattern can be defined. For the CAD document structure
the comparison pattern typically consists of the following attributes:

■ Parent-ID(C_ID_1)

EngineeringCollaborationService Web Service

6-58 Oracle Agile Engineering Data Management/Web Services Guide for Agile

■ Child-ID (C_ID_2)

■ Transf.-Matrix (ECC_XMAT)

■ Old Filename (CAX_COM)

■ Structure Ref (CAX_REF)

■ CAX-internal value (CAX_04)

This list of attributes is configurable. It is possible to define separate list of fields
for the different relation types (BOM, Item-Document, Document-Document,
Document-File).

If the record, defined by the values of the comparison pattern, already exists in
Agile e6, the record is updated. Otherwise, it is created. Remaining records, which
are not listed in the Web Service, but are owned by the CAD integration (see UG2_
Ident above), are deleted in Agile e6. Records which are not owned by the CAD
integration remain untouched. If updating or deletion fails due to insufficient
access rights, the Web Service reports an error.

2. Scenarios

The scenario below illustrates the basics of structure update.

Note: It focuses on the document structure only.

■ Sample Data: CAD Document Structure (Pre-Update)

■ Sample Data: CAD Document Structure (Post-Update)

EngineeringCollaborationService Web Service

Agile e6 Core Web Services Operations 6-59

3. Create

The create use case is executed if a relation record cannot be found in Agile e6
while comparing the comparison pattern attributes.

4. Read

Reading of data is part of the create/update use case, as create/update returns the
attribute values of created/updated records.

5. Update

In the CAD document structure context, the update is always executed with a
delete and a create operation. Thus, all data is first deleted and then newly created.

However, in the BOM, and maybe in the Item-Document relation, too, the PosNo
information is significant and the approach of deleting and recreating does not
work. Hence, the update use case is required.

6. Delete

The delete operation is implicitly used as part of the update of a CAD document
structure. Additionally, the delete use case applies if a structure contains spare
records in Agile e6. However, this behavior is optional for an object type level.

For instance, there are use cases where the CAD integration loads only part of the
CAD assembly structure and hence saves only part of the CAD structure back to
Agile e6. By setting the delete option for every object type appropriately, the
deletion of alleged spare records is omitted.

Note: In case a complete structure needs to be deleted, it is initiated
by sending an empty structure.

■ Document-Item-BOM Scenario

EngineeringCollaborationService Web Service

6-60 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Sometimes, not all document structure nodes make it into an item node and
the Web Service ignores this. The input parameter structure for the Web
Service clearly defines which item structure needs to be created.

7. Generic Systematic

■ Comparison fields (see green and blue columns in graphic below)

Defines the list of fields which are used to identify a specific record in the old
Agile e6 data structure (see also graphic above)

■ CAD Structure

Shows the new structure as maintained in the CAD system.

■ Old Agile e6 structure

Represents the structure as it is stored in Agile e6 before the update

■ New Agile e6 structure

Represents the structure as it will be stored after the update

■ "CAD Context" (red column):

Defines the field value pair(s), which is/are used to identify all records that
are managed by the CAD integration. Cells with grey fill color are not
managed by the CAD integration.

Note: Record 4|4|4|4 will only be deleted if the delete flag for the
specific relation type is set to true.

EngineeringCollaborationService Web Service

Agile e6 Core Web Services Operations 6-61

8. Access Control

The access control can be applied on different levels.

■ For "update"/"delete" use case the Agile e6 access rights define if the write
and/or delete access is available for the object and for the current user.

■ Especially in the "create" use case, the parent access might be considered. If
current user has write or delete access to the parent record, he is allowed to
create/update/delete the relation record.

■ Specific for documents: The modification of references to files and
sub-documents might require the parent document to be "reserved" by the
current user.

The first two cases will be handled by the widget, which is used in the Web Service
to create/update/delete the relation objects. Specific triggers at the form/widget
assure you that the checks will be performed. Customer specific checks can be
included by adding specific userexits.

It might be sufficient to add a trigger at the forms to check if the parent document
is reserved by the current user. However, it might be better to control the behavior
with Web Service parameters for specific relation types (e.g. reservation of parent
document required in general to create/update/delete the file assignment), or
even on relation record level.

9. Error Handling

While creating/updating/deleting relation records, the following issues can
appear:

■ A unique index violation during create/update, because a duplicate record
will be created.

■ The parent and/or child record is not available (either does not exist at all, or
is not accessible).

■ The user has no access to write and/or delete.

■ Any other relation object trigger throws an error.

In case of an error, the processing of the remaining relation objects continues.
At the end, the Web Service reports which objects failed to be
created/updated/deleted, together with a corresponding error message.

To ensure that only masks designed for Web Service access are used, all mask
names are checked against a Whitelist that is maintained by the administrator
of the Agile e6 installation.

createUpdateStructure
■ Service

This Web Service operation allows you to process relations like
Create/Read/Update/Delete and many more between the following objects:

– Document - Document

– Document - Item (STR Structure)

EngineeringCollaborationService Web Service

6-62 Oracle Agile Engineering Data Management/Web Services Guide for Agile

– Item-Item (STR Bill of Material)

■ Usage

This single request operation for ECService Web Services describes the generic
character of the Web Service.

■ Request Type

CreateUpdateStructureRequestType

– messageId (String): ID to be returned in the response (optional).

– messageName (String): Name to be returned in the response (optional).

– sessionTicket (String, optional): The PLM session ticket to use for this request,
if it has not been passed as user credentials in the HTTP header.

– relationType (List<ECRelationDescriptor<): List of relations to process.

contextFilter
(List<PlmCondition)

CAD Context filter: attribute names (For example: UG2_IDENT) and
values. This is used to query for the relation records of the parent in
the Agile e6 relation list.

comparisonPattern
(List<String>)

List of attribute names used as comparison pattern for relation record
identification.

Comparison pattern (e.g. Parent-ID, Child-ID, Transf.-Matrix, Old
Filename, Structure Ref, CAX-internal value)

cleanupFlag (Boolean) Defines if records not matching any relation object are deleted.

Relation
(PlmMetaRelationRef)

The metadata of the relation to be read (parent, child, type, view). This
allows specifying the aggregate, refined, constraint, or type relation.

Structures
(List<ECStructure>)

List of parents and their relation objects.

parentId (PlmAttributeChoice): Unique ID of the parent (EDB_ID or
C_ID).

data (List<ECData>): The relation data for this parent.

If the list is empty and cleanup is requested, all relation records found
in the CAD context are deleted.

Otherwise, the comparison algorithm checks which records need to be
created, updated, or deleted from the EDM server.

attributes (List<PlmAttributeChoice>: List of attribute values to use
for updating or creating the relation record.

This must contain the attribute CHILD.C_ID if a create operation is
required.

– plmResult(plmResult): This describes how the result of the operation is
returned to the client.

attributeNames (Boolean) List of field names to
be returned

■ Optional

■ Default

All visible fields and ID fields

includeBinaryValues (Boolean) Include binary values ■ Optional

■ False (default)

includeAllLanguages (Boolean) Include all languages ■ Optional

■ False (default)

EngineeringCollaborationService Web Service

Agile e6 Core Web Services Operations 6-63

■ Response Type

CreateUpdateStructureResponseType

– statusCode (ResponseStatusCode):

SUCCESS The newly created PLM object including all attributes defined by the
PLM result of the request.

PARTIAL_SUCCESS The newly created PLM object including some of the attributes defined
by the PlmResult of the request.

FAILURE A faulty description including an error message and the type of error.

– ticket (String): A PLM ticket.

* The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the Agile e6 session, even if the HTTP session
is closed, or (in case of a backward flow) if there is no HTTP session.

* The ticket is only valid for the EDM server instance that generated it.

– messageId (String): copied from the request, or generated.

– messageName (String): copied from the request, or the operation name.

– warnings (List<PlmWarningType>): List of warnings that occurred during the
operation.

– exceptions (List<PlmExceptionType>): List of exceptions that occurred during
the operation.

– relations (List<ECRelationData>): Data with error/success flag, plus error
message (if available). The content and order in the list correspond to the list
of ECRelationDescriptors in the request:

List<ECResultStructure> parentId (PlmAttributeChoice): Unique ID of the parent (EDB_ID or
C_ID)

warnings (List< PlmWarningType >): List of warnings that occurred
when processing this structure (optional).

exceptions (List< PlmExceptionType >): List of exceptions that
occurred when processing this structure (optional). This contains the
information about failed delete attempts if structure cleanup was
requested

resultData (List<ECResultData>): List of structure elements for this
parent. It contains all updated or created relation objects.

■ statusCode (ResponseStatusCode): SUCCESS or FAILURE.

■ statusCode (ResponseStatusCode): SUCCESS or FAILURE.

■ attributes (List<PlmAttributeChoice>: List of attribute values as
requested. These contain the attributes requested in the
PlmResult for the respective relation, or all visible attributes if
no attributes have been requested. The list contains the injected
attributes CHILD.EDB_ID, CHILD.C_ID (EDB_ID only if
available). Parent information is not injected to reduce the
payload; the parent is identical for all rows.

■ exception (PlmExceptionType): Exception that occurred during
the creat or update operation (optional).

EngineeringCollaborationService Web Service

6-64 Oracle Agile Engineering Data Management/Web Services Guide for Agile

7

Appendix 7-1

7Appendix

SAMPLES

EchoServiceWrapper.java
This wrapper does not call an outbound Web Service. It returns the arguments that
have been passed. This wrapper is already contained inside the Web Services
application and can be used to test the infrastructure.

/*
* $Id: EchoServiceWrapper.java,v 1.3 2010/10/15 15:11:56 brg Exp $
 *
 * Copyright (c) 1992, 2010, Oracle. All rights reserved.
 */
package com.agile.ws.e6.wrappers;

import com.agile.eci.EciConnection;
import com.agile.eci.EciPar;
import com.agile.eci.EciParBuffer;
import com.agile.share.callable.CallableParam;
import com.agile.share.trace.Logger;
import com.agile.share.trace.Trace;
import com.agile.share.util.StringArray;
import com.agile.share.util.StringList;
import com.agile.ws.e6.PlmSession;
import com.agile.ws.e6.wrappersupport.WrapperContext;

import java.net.InetAddress;

/**
 * A simple echo wrapper to test the wrapper mechanism.
 */
public class EchoServiceWrapper extends AbstractWrapper {

 private static Logger log = Trace.getLogger(EchoServiceWrapper.class);

 /**
 * The name of this service wrapper.
 */
 public static final String NAME = EchoServiceWrapper.class.getSimpleName();

 /**

SAMPLES

7-2 Oracle Agile Engineering Data Management/Web Services Guide for Agile

 * Creates a new echo service.
 */
 public EchoServiceWrapper() {
 super(NAME);
 }

 /** {@inheritDoc} */
 @Override
 public StringList callWebService(WrapperContext context, CallableParam args) {

 log.enter("callWebService", "context="+context+", args="+args);
 PlmSession session = null;
 String userName = "<unknown>";
 String processId = "<unknown>";

 try {
 session = createPlmSession(context);
 EciConnection con = session.getConnection();

 EciPar par = con.call("eci_rea_edb_usr");

 userName = par.get(1);
 log.info("My name is " + userName + "," +
 "\nI belong to the group " + par.get(2) +
 ".\nMy user ID is " + par.get(3) + "," +
 "\nmy group ID is " + par.get(4) +
 "\nand I am " + ("y".equals(par.get(5)) ? "" : "not ") + "a
manager" +
 ".\n" +
 "\nOur session is " + session + ".\n");

 par = con.call("eci_get_pid");
 processId = par.get(1);

 EciParBuffer buf = new EciParBuffer();
 buf.add("EDB-BAS-WARNING");
 buf.addNew("This is the e6 EchoService running inside WebLogic on host "
+
 InetAddress.getLocalHost().getHostName() + "\n\n" +
 "You are " + userName + " and your process ID is " + processId);
 buf.end();
 con.call("eci_mes_wri", buf);
 }
 catch (Exception e) {
 log.error("Unable to reconnect to e6: ", e);
 }
 finally {
 if (session != null) {
 session.close();
 }
 }
 StringList result = new StringArray(args.getParam());
 log.leave("callWebService", "result=" + result);
 return result;
 }
}

SAMPLES

Appendix 7-3

SampleWrapper.java
This wrapper calls an Agile e6 core service as an example. The generated client code
needed to call the Agile e6 Core Web Service is not included. The generated classes
belong to the wrapper and need to be deployed along with it.

The SampleWrapper class needs a property file, SampleWrapper.properties, which
contains the URL of the Web Service.

When Agile e6 application wants to call a wrapper called Sample, it passes Sample as
the first argument to xutil_call_ws. The wrapper manager then looks for a class called
SampleWrapper in all the packages in its search path. To call the EchoServiceWrapper,
pass EchoService to xutil_call_ws.

/*
* $Id: SampleWrapper.java,v 1.1.2.2 2011/06/30 15:53:27 brg Exp $
 *
 * Copyright (c) 1992, 2011, Oracle. All rights reserved.
 */

package com.agile.ws.e6.wrappers;

import com.agile.eci.EciConnection;
import com.agile.eci.EciPar;
import com.agile.eci.EciParBuffer;
import com.agile.security.tickets.plm.PlmTicket;
import com.agile.share.callable.CallableException;
import com.agile.share.callable.CallableParam;
import com.agile.share.trace.Logger;
import com.agile.share.trace.Trace;
import com.agile.share.util.StringArray;
import com.agile.share.util.StringList;
import com.agile.ws.e6.PlmSession;
import com.agile.ws.e6.WebServiceEnum;
import com.agile.ws.e6.client.core.common.PlmUserContext;
import com.agile.ws.e6.client.core.common.PlmUserContextUserInfo;
import com.agile.ws.e6.client.core.configuration.Configuration;
import com.agile.ws.e6.client.core.configuration.ConfigurationService;
import com.agile.ws.e6.client.core.configuration.GetUserContextRequestType;
import com.agile.ws.e6.client.core.configuration.GetUserContextResponseType;
import com.agile.ws.e6.wrappersupport.WrapperContext;

import java.net.InetAddress;
import java.net.MalformedURLException;
import java.net.URL;
import java.net.UnknownHostException;
import java.util.Properties;

import javax.xml.namespace.QName;
import javax.xml.ws.BindingProvider;

/**
 * A simple example of a wrapper for an out-bound web service call.
 *
 * <p>It extends the abstract wrapper implementation, which is shipped
 * in the library agile-ws-e6-callables as part of the WebServices.ear file.
 *
* <p>Alternatively, a JAR file containing the wrapper can be added to the
 * WebServices application into the APP_INF/lib directory,
 * so that it is deployed as part of the WebServices application.
 */

SAMPLES

7-4 Oracle Agile Engineering Data Management/Web Services Guide for Agile

public class SampleWrapper extends AbstractWrapper {
 /** The Logger used to print trace messages */
 private static Logger log = Trace.getLogger(SampleWrapper.class);

 /** The name of our properties file */
 private static final String SAMPLE_PROPERTIES = "SampleWrapper.properties";
 /** Property containing the URL of the external web service */
 private static final String PROP_ENDPOINT = "Sample.endPoint";

 /**
 * The service we want to contact.
 *
 * <p>This class - and all the others in the package
com.agile.ws.e6.client.core - is
 * generated by the WebLogic clientgen Ant task.
 */
 private ConfigurationService configurationService;
 /** The URL to the Configuration service */
 private String configurationEndPoint;

 /**
 * The name of this service wrapper.
 */
 public static final String NAME = "Sample";

 /**
 * Creates a new HelloWorld service.
 */
 public SampleWrapper() {
 super(NAME);
 }

 /**
 * @return the RCS information of this object's class (polymorphic)
 */
 @Override
 public final String getRCSId() {
 return getClassRCSId();
 }

 /**
 * @return the RCS information of this class (static)
 */
 public static String getClassRCSId() {
 return "$Id: SampleWrapper.java,v 1.1.2.2 2011/06/30 15:53:27 brg Exp $";
 }

 /**
 * Creates the port to access the Configuration service.
 *
 * @param endPoint the WSDL URL of the service.
 * @param ticket the PLM ticket provided by the e6 server
 *
 * @return the port to call the Configuration service
 */
 private Configuration getConfigurationPort(PlmTicket ticket) throws
MalformedURLException {
 if (configurationService == null) {
 configurationService = new ConfigurationService(
 new URL(configurationEndPoint),

SAMPLES

Appendix 7-5

 new QName(WebServiceEnum.CONFIGURATION.getNamespace(),
 WebServiceEnum.CONFIGURATION.getServiceName()));
 }

 Configuration port = configurationService.getConfigurationPort();

 BindingProvider binding = (BindingProvider) port;

 // Add authentication, we have a ticket so we do not need the password
 binding.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
ticket.getUserName());
 binding.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
String.valueOf(ticket.getRawTicket()));

 // Maintain the HTTP session, in case we do several calls to the server
 binding.getRequestContext().put(BindingProvider.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);

 return port;
 }

 /**
 * Calls the web service.
 *
 * @param context the context that contains the reference to the e6 server
 * @param args arguments passed by the e6 server
 * @return list of return values, or null
 *
 * @throws CallableException Web service call failed
 */
 @Override
 public final StringList callWebService(final WrapperContext context, final
CallableParam args) throws CallableException {
 log.enter("callWebService", "context="+context+", args="+args);

 // Try to load our properties
 Properties sampleProps = new Properties();

 try {
 sampleProps.load(getClass().getResourceAsStream("/" + SAMPLE_
PROPERTIES));
 configurationEndPoint = sampleProps.getProperty(PROP_ENDPOINT);
 }
 catch (Exception e) {
 String msg = "Unable to load SampleWrapper.properties";
 log.error(msg, e);
 throw new CallableException(this, msg);
 }
 if (configurationEndPoint == null) {
 log.error("No WSDL URL found in " + SAMPLE_PROPERTIES);
 throw new CallableException(this, "No web service URL configured for the
Sample wrapper");
 }

 log.info("Using WSDL at " + configurationEndPoint);

 Configuration port = null;
 StringList result = new StringArray();

 try {

SAMPLES

7-6 Oracle Agile Engineering Data Management/Web Services Guide for Agile

 // Create a session object:
 //
 // It gives us access to an ECI connection to the same e6 server instance
that called us,
 // and - if needed - it will create an AxalantRepository instance for us,
 // if we want to make use of the high level Java ECI (JET layer).
 PlmSession session = createPlmSession(context);

 // First some ECI calls
 callEciDemo(session);

 // Now the "external" web service call.
 //
 // Here, we would normally call an external service of another system,
 // but for demo purposes, we just call an e6 Core service.
 port = getConfigurationPort(context.getPlmTicket());
 log.info("Port created with PLM ticket");

 GetUserContextRequestType request = new GetUserContextRequestType();
 GetUserContextResponseType response = port.getUserContext(request);
 log.info("Web method getUserContext() returned with status code " +
response.getStatusCode());

 PlmUserContext e6Context = response.getPlmUserContext();
 PlmUserContextUserInfo userInfo = e6Context.getPlmUserInfo();

 result.add("User name = " + userInfo.getUserName());
 result.add("Group name = " + userInfo.getGroup());
 result.add("Language = " + userInfo.getUserLanguage());
 result.add("Locale = " + userInfo.getUserLocale());

 }
 catch (Exception e) {
 log.error("Unable to call web service", e);
 throw new CallableException(this, "Web service call failed", e);
 }
 finally {
 if (port != null) {
 try {
 // Tell the server that we no longer need the e6 session.
 port.closeSession();
 }
 catch (Exception e) {
 log.error("Unable to close port", e);
 }
 }
 }
 return result;
 }

 /**
 * Calls some ECI functions to demonstrate how to get additional data.
 *
 * @param session the e6 PLM session
 */
 private void callEciDemo(PlmSession session) {
 String userName = null;
 String processId = null;
 String host;

SAMPLES

Appendix 7-7

 try {
 host = InetAddress.getLocalHost().getHostName();
 }
 catch (UnknownHostException e) {
 host = "unknown host";
 }

 EciConnection con = session.getConnection();

 EciPar par = con.call("eci_rea_edb_usr");

 userName = par.get(1);
 log.info("My name is " + userName + "," +
 "\nI belong to the group " + par.get(2) +
 ".\nMy user ID is " + par.get(3) + "," +
 "\nmy group ID is " + par.get(4) +
 "\nand I am " + ("y".equals(par.get(5)) ? "" : "not ") + "a manager" +
 ".\n" +
 "\nOur session is " + session + ".\n");

 par = con.call("eci_get_pid");
 processId = par.get(1);

 EciParBuffer buf = new EciParBuffer();
 buf.add("EDB-BAS-WARNING");
 buf.addNew("This is the e6 SampleWrapper running inside WebLogic on host " +
 host + "\n\n" +
 "You are " + userName + " and your process ID is " + processId);
 buf.end();
 // Prints a message on the client that contacted us
 con.call("eci_mes_wri", buf);
 }
}

Web Services Security
In the following example, a Web Services policy is used for the WSS: SOAP Message
Security.

You are required to provide the username token and a client certificate. The complete
security information is embedded into the SOAP message.

Note: By configuring WSS: SOAP Message Security, the WSDL gets
modified.

<?xml version='1.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd"
 S:mustUnderstand="1">
 <ns1:EncryptedKey xmlns:ns1="http://www.w3.org/2001/04/xmlenc#"
Id="JOLZ6aDu8pt9PRPe">
 <ns1:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

SAMPLES

7-8 Oracle Agile Engineering Data Management/Web Services Guide for Agile

 <ns2:DigestMethod
xmlns:ns2="http://www.w3.org/2000/09/xmldsig#"

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 </ns1:EncryptionMethod>
 <ns3:KeyInfo xmlns:ns3="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 wsu:Id="str_kNu7Vfo6pZLqdYcv">
 <X509Data xmlns="http://www.w3.org/2000/09/xmldsig#">
 <X509IssuerSerial>
 <X509IssuerName>CN=CertGenCAB,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US</X509IssuerName>

<X509SerialNumber>-135694037818432800534509206009756866711</X509SerialNumber>
 </X509IssuerSerial>
 </X509Data>
 </wsse:SecurityTokenReference>
 </ns3:KeyInfo>
 <ns1:CipherData>

<ns1:CipherValue>JHUAfXjSBYxXKAGrpQ............NUWGQ9IPL9M1uODqmnQ8Nlk=</ns1:Ciphe
rValue>
 </ns1:CipherData>
 <ns1:ReferenceList>
 <ns1:DataReference URI="#PJr5jO7puKh5OL5b" />
 </ns1:ReferenceList>
 </ns1:EncryptedKey>
 <wsse:BinarySecurityToken
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"

EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0#Base64Binary"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-prof
ile-1.0#X509v3"
 wsu:Id="bst_
GpDR1niRFucsZsbm">MIICKzCc.......KMuSA1XAQ==</wsse:BinarySecurityToken>
 <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">
 <dsig:SignedInfo>
 <dsig:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 <dsig:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <dsig:Reference URI="#Timestamp_KKvWCLdlrCRB2SNF">
 <dsig:Transforms>
 <dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </dsig:Transforms>
 <dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

SAMPLES

Appendix 7-9

<dsig:DigestValue>xndjH7PWB/yinv/uFzmElQzAezI=</dsig:DigestValue>
 </dsig:Reference>
 <dsig:Reference URI="#Body_0lUdcO0zqWY2bBvU">
 <dsig:Transforms>
 <dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </dsig:Transforms>
 <dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<dsig:DigestValue>gt0av56Xh/gca30jxtDChJkFZck=</dsig:DigestValue>
 </dsig:Reference>
 <dsig:Reference URI="#unt_UROJpKRFSAIZLKFf">
 <dsig:Transforms>
 <dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </dsig:Transforms>
 <dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<dsig:DigestValue>QBSH0z6BxmZgEM56+g3ZS2w00lg=</dsig:DigestValue>
 </dsig:Reference>
 <dsig:Reference URI="#bst_GpDR1niRFucsZsbm">
 <dsig:Transforms>
 <dsig:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </dsig:Transforms>
 <dsig:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<dsig:DigestValue>62PwFQZD1Nj1R77qudrvzJCIUNE=</dsig:DigestValue>
 </dsig:Reference>
 </dsig:SignedInfo>

<dsig:SignatureValue>TfFLyCR9MF4ZepqwmnCned7mj5TavfwjDg69.......MIFR3kBU=</dsig:Si
gnatureValue>
 <dsig:KeyInfo>
 <wsse:SecurityTokenReference
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd"

xmlns:wsse11="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"

wsse11:TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-tok
en-profile-1.0#X509v3"
 wsu:Id="str_KVJy1AtKNAxVYsKq">
 <wsse:Reference URI="#bst_GpDR1niRFucsZsbm"

ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-prof
ile-1.0#X509v3" />
 </wsse:SecurityTokenReference>
 </dsig:KeyInfo>
 </dsig:Signature>
 <ns1:EncryptedData xmlns:ns1="http://www.w3.org/2001/04/xmlenc#"
Encoding="UTF-8" Id="PJr5jO7puKh5OL5b" MimeType="text/xml"
 Type="http://www.w3.org/2001/04/xmlenc#Element">
 <ns1:EncryptionMethod

SAMPLES

7-10 Oracle Agile Engineering Data Management/Web Services Guide for Agile

Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />
 <ns1:CipherData>

<ns1:CipherValue>yG4ULSKvJFL8......OgqkcPmY6yhdpoE=</ns1:CipherValue>
 </ns1:CipherData>
 </ns1:EncryptedData>
 <wsu:Timestamp
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 wsu:Id="Timestamp_KKvWCLdlrCRB2SNF">
 <wsu:Created>2010-02-03T14:44:31Z</wsu:Created>
 <wsu:Expires>2010-02-03T14:45:31Z</wsu:Expires>
 </wsu:Timestamp>
 </wsse:Security>
 </S:Header>
 <S:Body
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-util
ity-1.0.xsd"
 wsu:Id="Body_0lUdcO0zqWY2bBvU">
 <ns4:hello xmlns:ns2="http://xmlns.oracle.com/Agile/e6/Metadata/v0"
 xmlns:ns3="http://xmlns.oracle.com/Agile/e6/plm"
 xmlns:ns4="http://xmlns.oracle.com/Agile/e6/HelloWorld/v0" />
 </S:Body>
</S:Envelope>

In the following example, WSS: SOAP Message Security information is provided for
the SOAP request:

MetadataService service = new MetadataService(wsdlURL, serviceQName);
BindingProvider bindingProvider = (BindingProvider) service.getPort();
List<CredentialProvider> credProviders = new ArrayList<CredentialProvider>();
try {
 // Load server certificate
 X509Certificate serverCert =
(X509Certificate)CertUtils.getCertificate(serverCertFile);

 // Check server certificate
 serverCert.checkValidity();

 // Create a new certificate credential provider
 CredentialProvider cp = new ClientBSTCredentialProvider(clientKeyStore,
 clientKeyStorePass, clientKeyAlias, clientKeyPass, "JKS",
serverCert);

 // Add certificate credential provider to the array list
 credProviders.add(cp);

 // Create a new username token credential provider
 CredentialProvider up = new ClientUNTCredentialProvider(username.getBytes(),
password.getBytes());

 // Add certificate username token credential provider to the array list
 credProviders.add(up);

 Map<String, Object> rc = ((BindingProvider)portName).getRequestContext();

 // Add the credential providers to the request context
 rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 // Add a trusr manager to the request context, you can do here some validation
tests on the return certificate of the SOAP message

SAMPLES

Appendix 7-11

 rc.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager(){
 public boolean certificateCallback(X509Certificate[] chain,
int validateErr){
 return true;
 }
 });
} catch (Exception e) {
 log.printStackTrace(e);}

SAMPLES

7-12 Oracle Agile Engineering Data Management/Web Services Guide for Agile

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Web Services
	About Web Services
	Core Technologies
	Web Service Description Language (WSDL)
	XML and XML Schema
	Simple Object Access Protocol (SOAP)

	Web Services Architecture

	About Agile e6 Web Services
	The Core Web Services

	About Agile e6 Web Services Framework
	Components of Agile e6 Web Services Framework

	2 Getting Started with Web Services
	Prerequisites
	Operating Environment
	Web Services Engines
	Standards Compliance

	Understanding Web Services Authentication and Performance
	The Agile e6 Session Handling
	The Agile e6 PLM Session Manager
	The PLM Ticket

	Understanding the Agile e6 Web Services Requests
	Obtaining the Agile e6 Metadata

	Understanding the Agile e6 Web Services Responses
	Response Status Code
	Whitelist Mechanism for Masks
	List of Mask Names
	Configuration Parameters

	Exceptions and Warnings

	countOnly Query Support

	3 Setting Up the Web Services Infrastructure
	Installing the Agile e6 Web Services Framework
	Creating the WebLogic Agile e6 Domain

	Testing Inbound Web Services with JDeveloper HTTP Analyzer
	Testing Inbound Web Services with SoapUI

	4 Configuring Agile e6 Web Services Security
	Setting Up the Web Services Security Policies
	Setting Up the Web Services Security
	Authenticating a Web Service Client
	A Sample of HTTP/S Authentication

	5 Working with Agile e6 Web Services
	Developing the Outbound Web Services Wrapper
	The Web Services Wrapper Interface
	The BPEL Facade
	Endpoint Configurations for the External Wrapper
	Session Management Integration

	Developing a Custom Wrapper
	Calling a Custom Wrapper from Agile e6
	Deploying a Custom Wrapper
	Web Service Wrapper Log Messages

	6 Agile e6 Core Web Services Operations
	Bulk Operations
	Bulk Processing of Requests
	Handling Bulk Requests

	BusinessObject Web Service
	Binary Data Transfer
	Bulk Operations
	createObject
	getObjects
	updateObject
	deleteObject
	createRelation
	updateRelation
	getRelations
	deleteRelation
	setReservation

	DocumentManagement Web Service
	DFM Support
	StreamingFileServices
	downloadFile
	uploadFile

	DocumentManagement CoreService
	getFiles
	getCADAssembly
	getCADAssemblyNextDataBlock
	getFMSVault
	createUpdateFileObject

	Bulk Operations
	getFiles
	getFMSVault

	Metadata Web Service
	Bulk Operations
	getEntity
	getEntity Type
	getEntityRelation
	getNumberCycles
	getNumbers

	Configuration Web Service
	getUserContext
	setUserContext
	Bulk Operations
	getDefault
	createDefault

	EngineeringCollaborationService Web Service
	createUpdateStructure

	7 Appendix
	SAMPLES
	EchoServiceWrapper.java
	SampleWrapper.java
	Web Services Security

