

[1] Oracle Agile Engineering Data Management
Enterprise Integration Platform Development Guide for Agile

Release e6.2.0.0

E52569-01

June 2015

Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile,
Release e6.2.0.0

E52569-01

Copyright © 1995, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Petra Metz

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... v

1 Introduction

Connectors ... 1-1
Web Services ... 1-1

2 Connectors

Configuration .. 2-1
Implementation .. 2-2

Connector Types... 2-2
Asynchronous Connector .. 2-2
Synchronous Connector... 2-3

Connector Data... 2-3
Connector Modes ... 2-3
Connector Methods.. 2-3

Constructor .. 2-3
init()... 2-4
warmup().. 2-4
start() ... 2-4
sendToController().. 2-4
receiveFromController()... 2-5
process().. 2-5
snapshot() ... 2-5
stop() ... 2-6
release()... 2-6
getMode() ... 2-6

Thread Safety .. 2-6

3 Web Services

Implementation .. 3-1
Configuration .. 3-1

iv

Deployment ... 3-2

4 Additional Documentation

v

Preface

Agile PLM is a comprehensive enterprise PLM solution for managing your product
value chain.

Audience
This document is intended for administrators and users of the Agile PLM products.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Oracle's Agile PLM documentation set includes Adobe® Acrobat PDF files. The Oracle
Technology Network (OTN) website
http://www.oracle.com/technetwork/documentation/agile-085940.html contains
the latest versions of the Agile PLM PDF files. You can view or download these
manuals from the Web site, or you can ask your Agile administrator if there is an Agile
PLM Documentation folder available on your network from which you can access the
Agile PLM documentation (PDF) files.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

vi

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction 1-1

1Introduction

This manual should enable software developers both to implement own connectors for
the Enterprise Integration Platform and to implement own web services for the
WebServiceConnector.

Connectors
Implementing an additional connector consists of the following steps:

■ Provide the application specific configuration parameters in the configuration
XML file, e.g. how to connect to the application (login, password, etc.).

■ Develop the connector itself, which will be called by the Enterprise Integration
Platform controller (kernel) e.g. based on events. The connector either receives
data from the Controller in order to send data (or to execute a function) in the
external application or reads data from the external application and sends it to the
controller for further processing.

Web Services
Implementing an additional Web Service consists of the following steps:

■ Provide the web service specific configuration parameters in the configuration
XML file, e.g. how your web service can be called from a web service client.

■ Develop the web service itself that allows web service calls to be made.

■ Provide web service deployment information to get it properly deployed inside
the EIP's web server.

Web Services

1-2 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

2

Connectors 2-1

2Connectors

Configuration
The configuration file is based on XML. Upon the startup of the Enterprise Integration
Platform, the controller reads the configuration file in order to know which connectors
need to be started etc.

The configuration data is converted into an internal XML Data Object (XDO), which
the controller provides to each connector. The connector itself is responsible for pulling
the connector-specific information out of the configuration XDO.

Below is an example of the minimum configuration for a connector. The tags "name",
"version", "class" and "active" are required.

<connector name="example" version="2.2.0" active="false"
class="com.eigner.eai.connector.ExampleConnector"></connector>

In detail, adding a connector would require to add a section for this specific connector.
It depends on the functionality of the connector, what information needs to be
provided e.g. connection parameters or available functions of the interface. It is
recommended to put all connection related parameters under a connection tag that can
be accessed easily from within the connector's source code.

<connector name="plm" version="2.2.0" active="true"
class="com.eigner.eai.connector.plm.PlmConnector">
 …
 <connectionname="default" active="true">
 <host>plm_server</host>
 <socket>16067</socket>
 <env>axalantORIGIN</env>
 <user>EDB-EIP</user>
 <pwd>{PLM-AES-128}+YEVllbJyH1/jvIH9OgsFY21pmz8LbcuR2OWYJ7Uzog=</pwd>
 <id>''</id>
 <connection-timeout>300000</connection-timeout>
 <call-timeout>300000</call-timeout> </connection>
 …
 </connector>
The connector also needs to be defined either as source or target connector in the
workflow area. This describes the initial direction of the data transfer:

<workflow name="plm-erp" active="true" type="asynchronous">
 <source>plm</source>
 <target>erp</target>
 <request-pipe>plm-erp</request-pipe>
 <response-pipe>erp-plm</response-pipe>

Implementation

2-2 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

</workflow>

The name and path of the mapping file (XSL) must also be provided. The mapping file
is responsible for converting the XDO data from the source system format to the target
system format.

<pipe name="plm-erp">
<path>${eai.conf}/plm_erp.xsl</path></pipe>

Implementation
The connector itself is a Java class, which must provide (extend) certain methods like
init, warmup, start, stop, and release from the connector interface (see JavaDoc for
package com.eigner.eai.connector).

Connector Types
There are two types of connectors: synchronous and asynchronous. The most common
one is the asynchronous connector.

To determine which type of connector to develop, the modes of operation are
important.

■ Asynchronous connector

Used to gather data from its system if it is the source connector. The data is stored
into a queue accessed only by the EIP through its controller and the source
connector is done for now and waits for the next transfer order. The controller then
reads the data from this queue and sends them to the target connector. The target
connector processes the data and sends them back to the controller, which stores
them into the queue again. The data is then read by controller and sent back to the
source connector.

■ Synchronous connector

Used to gather data from its system, sends them in synchronous mode through the
controller to the target connector, and waits for the results to send them to its
system.

Depending on its purpose the connector must implement either the AsyncConnector
interface (methods sendToController and receiveFromController) or the
SyncConnector interface (method process). For convenience reasons, there are the
abstract class AbstractConnector, AbstractAsyncConnector, and
AbstractSyncConnector (also available from the package com.eigner.eai.connector).

Asynchronous Connector
An asynchronous connector usually reads the data from its system when the controller
is requesting them (sendToController). This data is stored in an EIP queue, and the
connector is able to process further requests. When results are returned, the controller
triggers the connector by calling its receiveFromController method.

An asynchronous connector must inherit from the
com.eigner.eai.connector.AsyncConnector interface. There is also an abstract base class
AbstractAsyncConnector, which is recommended to be used since it already
implements most of the basic methods.

Note: For an example please refer to the file
ExampleAsyncConnector.java in the docs directory

Implementation

Connectors 2-3

Synchronous Connector
A synchronous connector is mostly triggered by its system, usually reads the needed
data, sends them to the controller (via the connector's "process" method) and waits for
the results.

A synchronous connector must inherit from the com.eigner.connector.SyncConnector
interface. There is also an abstract base class AbstractSyncConnector, which is
recommended to be used since it already implements most of the basic methods.

Note: For an example please refer to the file
ExampleSyncConnector.java in the docs directory.

Connector Data
The vehicle to transfer the data from controller to connector and back is a
BusinessObject (BO) or a part of the BO (see JavaDoc for package
com.eigner.commons.businessobject). The BO is based on a XDO (XML Data Object,
see JavaDoc for package com.eigner.commons.dataobject), and consists of a control
area (that is maintained by the controller) and a data area that holds the data for the
connector. For further information on the structure of a BO, please refer to the
Enterprise Integration Platform Administration Guide for Agile e6.2.0.0.

Connector Modes
A connector should support at least one of the two possible modes: source mode
(MODE_SOURCE) or target mode (MODE_TARGET).

Source mode means that the connector can act as a data source. It may then be used as
a source in a workflow definition or in a receive activity inside a BPM process.

Target mode means that the connector can act as a data target. It may then be used as a
target in a workflow definition or in an "invoke" or "reply" activity inside a BPM
process.

As a convenience, there is also a mode MODE_BOTH for connectors that support both.

The mode has to be returned by the connector's getMode() method.

As a conclusion, a connector that supports MODE_SOURCE has to implement the
sendToController() method, whereas a connector that supports MODE_TARGET has
to implement the receiveFromController() method.

Connector Methods
We will discuss the single connector methods now in more detail.

It is assumed that there is already a custom connector class that has been derived
properly from one of the abstract base classes.

The constructor and the init method will only be called if the connector's configuration
is set active in the eai_ini.xml.

Constructor
public ExampleSyncConnector()
The constructor must be a default constructor (without any arguments). It must call
the super constructor with the connector's class name, which will be used by the
logging framework. You will have access to the logger inside the connector's source

Implementation

2-4 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

code by calling the method getLogger (). Please refer to the JavaDoc of the package
com.eigner.commons.logging for further information.

It must then call the setVersion () method with a version number string (e.g. "2.2.0")
that must be the same as the one defined in the connector's configuration inside the
eai_ini.xml. It should be the same as the current EIP version. The controller uses these
version numbers to determine if a configuration is compliant with the connector.

The version numbering consists of three numbers where the first one is the major
version, the second one is the minor version and the last one is the revision version. It
is required that a connector that differs only by the revision number should read its
configuration of a lesser or equal revision number (e.g. a connector with version 2.2.2
should read a configuration for version 2.2.0). This is not required if the versions differ
on the major or minor version.

init()
public void init(ControllerInstance controller, String connectorName)
The controller calls this method after the constructor is called. There the connector's
class members should be initialized as well as third party APIs (if any is needed to
communicate with the external system).

It is required to call the super init method before all other code. Then you should read
in the connector's connection configuration by calling the controller's
getConnectionContext() method. For further processing of the returned element object,
please refer to the JavaDoc of package com.eigner.commons.dataobject.

Each connector may have a BOR (Business Object Repository) assigned if needed that
defines the calls into the external system depending on the direction (e.g. "SEND"), the
business object (e.g. "BOM") and a verb (e.g. "RELEASE"). Since this BOR is highly
dependent on the external system, no general advice can be given here. The BOR can
be accessed inside the source code by calling the controller's getBorContext() method.
The further processing of the returned element object is equivalent to the one returned
by getConnectionContext()).

Then you may call the third party's API as needed to initialize it.

warmup()
public void warmup() throws ConnectorException
The controller calls this method after method init() and before method start(). This
allows you to do further initialization that depends on a fully initialized connector
before it is started. It is mostly sufficient to not overwrite this method but to use the
base class' default implementation.

start()
public void start() throws ConnectorException
The controller calls this method when the connector should connect to its system. This
is only done when the dynamic-connect feature is not activated or the connector is a
source connector as defined in the workflows.

The dynamic-connect feature is an optional configuration tag for the connector inside
the eai_ini.xml. For further information, please refer to the Enterprise Integration
Platform Administration Guide for Agile e6.2.0.0.

sendToController()
public boolean sendToController() throws ConnectorException, UnavailableException

Implementation

Connectors 2-5

The controller calls this method periodically if the connector is derived from
AsyncConnector. The interval is defined in the controller's configuration via the
parameter polling-interval inside the eai_ini.xml.

This method should read data from the external system, construct a DataArea with
these data, and send it to the controller. If a connection problem occurs when reading
the data from the system, a UnavailableException should be thrown. If another error
occurs, a ConnectorException should be thrown.

The method should return the value "true", if the controller's send() method had been
called. Otherwise, the value "false" should be returned.

receiveFromController()
public boolean receiveFromController(BusinessObject bo) throws ConnectorException,
UnavailableException
The controller calls this method when the controller has data that should be delivered
to the connector in asynchronous mode. The connector may query the BO's control
area, to determine the type of the BO (e.g. isResponse() for data sent by another
connector or previously sent data via its own sendToController() method), or an error
state (by calling hasError()).

This method may write data to the external system, construct a ReturnArea with this
status information, and send it to the controller. If a connection problem occurs when
writing the data to the system, an UnavailableException should be thrown. If another
error occurs, a ConnectorException should be thrown.

The method should return the value "true", if the controller's send() method had been
called. Otherwise, the value "false" should be returned.

process()
public BusinessObject process(String id) throws ConnectorException,
UnavailableExceptionpublic BusinessObject process(Collection params) throws
ConnectorException, UnavailableException
The external system may call these methods when it wants to have data transferred in
synchronous mode. Depending on the third party API, you may also have your own
class that calls directly the controller's process() method.

The first method takes a GUID string that is used to identify and read the data from
the external system.

The second method gets all the required parameters that are needed to process the
synchronous request. The connector may then write the data into the external system,
or just use them to construct a DataArea and call the controller's process method. If a
connection problem occurs when writing the data to the system, an
UnavailableException should be thrown. If another error occurs, a
ConnectorException should be thrown.

The method should return the BO that is received as a return value from the
controller's process() method.

snapshot()
public String snapshot(Collection params) throws ConnectorException,
UnavailableException
The external system may call this method when it wants to have data read and stored
in a snapshot field in synchronous mode. This method should not make any calls into
the controller.

Implementation

2-6 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

When running in asynchronous mode, the EIP reads the data that should be
transferred not at the moment when the request is done. Depending on the
polling-interval, the current amount of transfers and the availability of connectors, this
is a point of time in the near or far future. To have the data collected at the moment the
request is made, the snapshot() method is intended to be used. The data should be
stored in the external system to be accessed later in asynchronous mode.

The method should return the GUID of the data that it has read from the external
system.

stop()
public void stop() throws ConnectorException
The controller calls this method when the connector should disconnect from its
system. This is done when the dynamic-connect feature is activated and the transfer
has been completed or the EIP is terminating.

The dynamic-connect feature is an optional configuration tag for the connector inside
the eai_ini.xml. For further information, please refer to the Enterprise Integration
Platform Administration Guide for Agile e6.2.0.0.

release()
public void release() throws ConnectorException
The controller calls this method when the connector is terminated. This is usually only
the case when the EIP terminates. This method is the counterpart to the method init().

getMode()
public int getMode()
This method returns the connector mode (MODE_SOURCE, MODE_TARGET, or
MODE_BOTH).

Thread Safety
When implementing the connector please ensure that the access to member variables
is thread-safe when they are used in multiple methods.

Please have also in mind to use the smallest synchronization blocks as possible. You
should not synchronize the interface methods since this may lead to locking problems
on the connector itself.

3

Web Services 3-1

3Web Services

To provide own Web Services to the Enterprise Integration Platform, you have to
create an implementation class, add it to the configuration and deploy it to the Web
Server's directory.

Implementation
When implementing the Web Service Java class, you may inherit your class from
com.eigner.eai.connector.net.ws.WebService. This abstract base class provides you
with a Logger instance and convenience methods for handling the Web Service
request.

Basically, your code should do the following:

// The context (name of the web service connector) must be either provided by
// the method call or by a dynamic mapping.WebServiceContext wsc =
WebServiceContextFactory.getContext(context);
// Extract the required data from the method call.
// key: Unique key for data// noun: Business Object noun (e.g. ITEM)
// verb: Business Object verb (e.g. CREATE)
// message: XML data
// language: Language code (see Common Section in the Administration Manual)
// synchronous: Flag for synchronous data transmissionString resultString =
wsc.process(key, noun, verb, message, language, synchronous);
// Prepare the result XML string for the return value of the method call (if any)
For further information regarding the data, please refer to the chapter about the XDOs
in the Enterprise Integration Platform Administration Guide for Agile e6.2.0.0.

Configuration
Depending on the type of connector, the definition of the Web Service must be added
to the synchronous connector's configuration or the asynchronous connector's
configuration, although the definition is identical.

Example:

<connector name="ws" version="2.2.0" active="false"
class="com.eigner.eai.connector.net.WebServiceConnector">
 <connection name="default" active="true">
 …
 <service name="myservice" wsdd="/com/foo/MyService.wsdd"
location="/axis/services/MyService"/>
 …
 </connection>
 …
</connector>

Deployment

3-2 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

Deployment
For deploying your Web Service into the EIP, please provide a proper WSDD (Web
Service Deployment Description) file.

Example:

<deployment name="eip" xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="MyService" provider="java:MSG">
 <parameter name="className" value="com.foo.MyService"/>
 <parameter name="allowedMethods" value="*"/>
 </service>
</deployment>
For further information, please see http://ws.apache.org/axis/java/user-guide.html
(esp. "Custom Deployment - Introducing WSDD" and "Service Styles - RPC,
Document, Wrapped, and Message").

Then pack your Java classes and this WSDD file into a JAR and deploy it to the
webapps's axis/WEB-INF/lib directory. The webapps's directory is specified in the file
conf/eai_ini.xml under eai-root/controller/webserver.

You may need to delete the file axis/WEB-INF/server-config.xml and restart the
Integration Platform in order to use your Web Service.

4

Additional Documentation 4-1

4Additional Documentation

In addition to this document, Agile Software also provides the Java Documentation of
Java classes and methods, which are necessary to develop your connector.

The Javadoc package (HTML files) includes following pages (which are located in
docs/apidocs directory):

■ Documentation of the BusinessObject class and its relatives
(com.eigner.commons.businessobject) that represent the internal data structure
which is sent and received by the connectors.

■ Documentation of the XDO and XDOTransformer classes
(com.eigner.commons.dataobject), which are necessary for the creation and
parsing of XML Data Objects.

■ Documentation of the connector interfaces (com.eigner.eai.connector), which
explains what methods a connector needs to implement and which exceptions
(ConnectorException and UnavailableException) can be thrown into the
application controller.

■ Documentation of the ControllerInstance interface (com.eigner.eai.connector) that
is used to interact with the controller, of the ContextException class
(com.eigner.commons.config) that may be thrown, and of the Decrypter interface
(com.eigner.commons.crypt) that may be used to decrypt sensible data like
passwords.

■ Documentation of the logging framework.

■ Documentation of the NestedException and NestedRuntimeException classes
(com.eigner.commons.lang) which are base classes for most of the actually thrown
exceptions.

■ Documentation of some utility classes, which you may use when needed.

4-2 Oracle Agile Engineering Data Management/Enterprise Integration Platform Development Guide for Agile

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction
	Connectors
	Web Services

	2 Connectors
	Configuration
	Implementation
	Connector Types
	Asynchronous Connector
	Synchronous Connector

	Connector Data
	Connector Modes
	Connector Methods
	Constructor
	init()
	warmup()
	start()
	sendToController()
	receiveFromController()
	process()
	snapshot()
	stop()
	release()
	getMode()

	Thread Safety

	3 Web Services
	Implementation
	Configuration
	Deployment

	4 Additional Documentation

