ORACLE
PEOPLESOFT

PeopleTools 8.53: PeopleSoft
Integration Broker

October 2014

ORACLE’

PeopleTools 8.53: PeopleSoft Integration Broker
CDSKU pt853pbrl r03
Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification,

and adaptation of the programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of
Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Contents

Preface xxi
Understanding the PeopleSoft Online Help and PeopleBooKS...........ccceevviiiiieiiiieiiie e, XXi
PeopleSoft Hosted DOCUMENTAtION.ccciieiiieeiieeiieeie ettt eee e eae e seveesbeeereeesseeeseaeens XXi
Locally INStalled HEIP.....o.oooiiiiiiieiieciie ettt ettt e et e et e e eb e e seveessbeesaveesssaessseeensneenes XXi
Downloadable PeopleBook PDF Files........cccciiiiiiiiiiiiieciie ettt e esveeeene e XXi
Common Help DOCUMENTALION.cciierrieeiieiiieeieeeieeerveesteesaeesreesreesbeesssaeesseeesseessseessseens XXi

Field and Control Definitions.cooueeiieieiiieieeie ettt ettt XXii
Typographical CONVENTIONS........cvieciiiiiieriieeiieeieeeeteeertteestaeesebeeseseesbeessseessseeeseeessseessseessseessses xXii

ISO Country and CurrenCy COdES.........cccuieiiieeeriieiiieiiieeieesteeereeesieeeseveesseessseesseeeseeessseessees xXiii
Region and Industry IAentifiers.........cciiiiiiiiiiiiieciie et ettt e e eeeeereessbaeeevee s xXXiii

ACCESS 10 OTACLIE SUPPOTTL..ccueiiiiiieeiieeiieeiee ettt e etee et e e teeeteeestreessbeesebeeesseesnsaeessseessseessseensses xXXiii
Documentation ACCESSIDIIILY.......cciciiiiciiieciieeiie ettt ettt et e et e e e e teeeseaeestaeessseeessaeenseeas XX1V

Using and Managing the PeopleSoft Online Help..........cccveeeiiiiiiiiiiieiiiceeeeeeecee e XX1V
Understanding PeopleSoft Integration BroKer..........cceecviieiiiiiieiiieeie et XX1V
PeopleTools Related LINKS......c..cooiiiiiiiiiieiiieciee ettt veesteesreeeaaeetaeesaeeseaeesssaesenas XXV
(0703117 o A S OO PPUPOUPRUPRUPRRRPRRI XXV
FOLIOW US. .ttt s h e s h e s a e s et e s bt s bt e s bt e satesateeateeaeesaeesaeesatesaeeeaeas XXV
Chapter 1: Getting Started with PeopleSoft Integration Broker 27
PeopleSoft Integration BroKer OVEIVIEW.........ccccviiiiieriieiiieeiieeiee e esieeesireesreesreeereeeseeeseaeessseessnes 27
Implementing PeopleSoft Integration BroKer............cccuiiiiiiiiiiiiiiiiiiecie e 27
Other Sources of INFOrMAatioN.eiiuiiiiiiiiieie ettt ettt et 30
Chapter 2: Understanding PeopleSoft Integration Broker 31
Introduction to PeopleSoft Integration BroKer...........cccveiiiieiiiiiiiiieee ettt 31
WED SEIVICES. ..ttt ettt ettt et e bt e bt e bt e b e bt e bt e bt e sbeesbe e s bt e bt e nbeesbeesbeesaeesaeenas 31
INEEEIAtION GALEWAYccciieeiieeiieeeieeetee et eete e e tee e tbeesebeessbeesabeesssaeessseessseessseessseesnseesssseensseenssennns 32
INtEGration EN@INE.........ccooiiiiiiiiiieiiie ettt ettt e vt esteeeteeestae e taeessseessseesssaaasseesnseeenseeans 32
Integration Gateway ATCRItECIUIE.ccciieiiieiiie ettt et eesbeeebeeebeeeteeesbeessaeenns 33
ATChIteCture EIEIMENTS.coiuiiitiiitieitieiieie sttt st sttt st st st st 33
COMMECTOTS. ..ttt et et et et e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt e bt en bt enbe e bt ebeenbeenbee bt enbe e beenbeenbeenbean 34
GAtEWAY IMANAZET......ueeiiieeiieeiieesteeeteeeteeeteeestteestbeessseeasseessseeassasassseessseessseessseesssesassessnssesssseessses 35
GALEWAY SCIVICES...eeiutieiiieitieeiiteestteesteesreesseesseeaseeesseessseessseasssesasseesssesessssensseessseesssesssessseennses 35
Integration Engine ATCRItECIULE.ccciiiiiieciie ettt et re e e te e e aeeeteeeebeessseessseennseas 36
SEIVICE OPCIALIONS. .. .vieeuiiietieeitieesteeeteesteeeteeeteeesteeestaeessseesssaeasseessseeasseesssseesseessseessseessseesssessssesasseeen 37
SEIVICE OPCIAtION TYPES..eciuriiiiiieitieeiieeiteerteeeteesteeesteeestteesseessbeesssaeasseeasseessseessseessseessseesseeessseesssees 38
OPCTALION TYPCS. e uviiiuiiiiiieeiieestieete ettt ettt e et e e sbeesbeesteeestaeesseessseessseessseeasseessseeasseeenseeesseensseensses 38
Inbound and Outbound Request FIOWS.........ccccuiiiiiiiiiieiiieiecs ettt eve e srae e en 40
INboUNd REQUEST FIOW.....eiiiieiiiiiieieeee ettt et et e e s e e s ateeesbaeennaeensaeenes 41
OutbouNd ReqUEST FIOW.....c.uiiiiiiiiii ittt e e ta e e taeeta e e sbaesssaessseeenees 44
Chapter 3: Understanding Messaging 47
IMESSAGINE TYPS.cuutieieiiieiiieie et ettt ettt e et eeteeeteeeteeetbeessbeessbeesssaeesseeansseessseessseesssaessseeassesensesensseenses 47
ASYNCHIONOUS IMESSAZING......eeeviieriiieriieeiiiieeieeeiteeteeeteeesteeestaeesaseessseessseessseessseeeseesssseessseessseessseesssees 47
Brokers, Contractors and QUEUES.........ccueiieiiiieieiiiiee et et e ettt e eete e eeetreeeeeareeeetreeeeaseeeeeanaeeas 48
Messaging SYStEM SEIVET PrOCESSES.....cuiiiiuiiiiiiiiiieeiieerieesreesteesieeeteeeteeessreessseessseessseessseeasseens 49
Dispatchers and HandIers.........c.ciouiiiiiiiiiiiiiie ettt s veeesteessaeeereesnseeeenas 49
Asynchronous Service Operation PUbliCation............ccuivvuiiiiiieiiieniie et 50
Asynchronous Service Operation SUDSCIIPHION.cccviieriieeiieeriieerteesreeereeereeereeeeeeesereesreesssens 55
SYNCATONOUS IMESSAZINE.ueeeierieirieirieeiiieetieerteesteesteesteesseesseesseeaseeassseessseessseesssessssessssessssesessesans 58
Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. v

Contents

Synchronous Service Operation PubliCation..........c.cccciiiciiriiieeiiii et 59
Synchronous Service Operation SUDSCIIPLION.cevviercrieriieeiieecieerteerreesreesreesreeeeeeeseaeeseneas 61
Chapter 4: Understanding PeopleSoft Integration Broker Metadata 63
PeopleSoft Integration Broker Metadata............cccveeviieriieiiieciiecieeeies et reeebeeeereesene e 63
Order of Precedence for Creating Integration Metadata.............ccccvveecieeeeiieniieniiecieeciee e 64
Chapter 5: Understanding Supported Message Structures 65
SUPPOTtEd MESSAZE STIUCTULES. .. .cccuiiiiiieiieeiiieereeeieeeteeette e beestaeesbeessbeessseessseeesseeessseesssesssseessseesssens 65
Integration Broker MesSSage StITUCTUIES......cccuviiviiiiiiieiieerie et eetee et et e ereeeeeeetaeessaeessseessseessseesnseeas 65
Internal Message Format for Request MeSSaAgEeS......c.uvevvieiiieiiiieeiieeireerreeseeesveesreeeveesveeseeeens 65
Internal Message Format for ReSponse MeESSaZES........eccvieruieeiiieeiieeriieenreesveeereeeveesseeessseesssens 73
L0CAl COMPIESSION. . .c.etiiiiiiiiiieiiierieeeteeeteeeteeeteeeteeetteessseesssaesssaeassaeessesassssassseesssessssesssseessenans 76
Accessing IBInfo Elements Using PeopleCode..........cccveviiiriiiiiiiiiieciie e 77
PeopleSoft Rowset-Based Message FOrmMat..........ccuieivieiiiiieiieiiiie sttt etee e eeee e seveeevee s 78
Understanding the PeopleSoft Rowset-Based Message Format............cccoeeevveviieniienciieccieeeneenee, 79
Rowset-Based Message TemPLate..........cccveeeciieiiieiiiie ettt esveesreeeveeeseeestaeeseveesenee e 80
FIelATYPES SECLION. ... uiiiciiiiitiieiiieeiteeteete et et e et eeteeeteeestaeesebeessbeessseeesseeassseessseesssaessseessseeanes 80

AV Eeq B L 1< 5) s WO USSP 81
PSCAMA ettt ettt et ettt et et et e bt et e e be e bt e beeabeenbeentean 82
Identifying Changes to Field-Level Attributes........cccovveeiiiiiiiiiieciieciee e 85
PeopleSoft Timestamp FOIMAL.........c.coocuiiiiiiiiiiieie ettt ee e eae e ve e reesbeeennaeens 85
CDATA and Special CRATaCETS........ccccvieeciiieiiieeiie et eeteeereeeteesteeeteeetaeessbeessseessseessseessseesseeanes 85
SChemMa RESTIICTIONS.eeutietietieitet ettt ettt et ettt te ettt sttt e et e eaeeeaeeeateeaee 86
Rowset-Based Message EXaAmMPIE.......ccccviiiiiiiiiiiiiiciie ettt eeeeeaeeseveesenae e 86
Nonrowset-Based MesSage StIUCTUIES......ccuiiiiieiiiieeciieerieerieesreesteeereeeaeeeseveesseessseesseessseeessseessseenes 88
XIML MESSAZES...cuvveevreerereesiriesreesseaeseeaseeessseessseassssasssasasseessssesssssassesessseessseesssessssessssessssessssseesses 88
SOAP-COMPHANT IMESSAZES.....ccvveeeerierrieeiieeitieesieesreesteeesseeesseeessseessseesseesssessssessssssesssessssessssesans 89
INON=XIML FILES. ..ttt ettt et et e b e bt e bt et e e sbeesbe e bee bt enbean 89
Using Nonrowset-Based Messages in Service Operations Exposed as WSDL..........ccccoevvenneenes 91
MESSAZE PaArt SIIUCEUIES.viiiviieiieeiieecieecteeetee et e eieeetee e taeesbeessbeessseessseessseeessseessseessseesssessssessssenans 91
Understanding Message Part StruCtUIES........c.eeecviieciiiiieeiiiecieeeiee et eeveeevaeeene e 91
Rowset-Based MesSage Parts........c..ccciiiiiiiiiieiiieeiieeiee et esreesveesveeetaeeeaeesaeesssaesnsaessseeennns 91
Nonrowset-Based MesSage Parts........ccccccvieiiiiiiiiiiiieeiie ettt esreesveeeveeeteeereeesaeessseesenes 93
MesSSaZE CONLAINET SIITUCEUIES.uvieierieerieeteeeitteesireesteesteeesseeesseeessseessseessseessseessessssessssssesssesssessssens 94
Example 1: XML Schema of a Container Message with Rowset-Based Message Parts............... 94
Example 2: XML Schema of a Container Message with Nonrowset-Based Message Parts.......... 94
Chapter 6: Managing Messages 97
Understanding Managing MESSAZES.......c..eeruuiervieriierrieaereeeieeesteeessreesseessseesssesessssessssesssessssessssesssseses 97
MESSAZE DETINILIONS. ...ccuvieetiieiiiieeiieeteeeiee et e eteertteestbeesbeessbeessbeeessaeessseessseessseessseeasseeessseessseensses 97
IMESSAZE TYPCS...ueeeuieeeiieeiiie et e et e et e et e e rteeestteestbeessbeeesbeessseeasseeessseassseenssaesssaessseessseeassseessseensseenes 97
Naming Conventions for Message Metadata...........cceccveeriieriiieiiiieeiee e e e e e 98
Message RECOTA SHIUCIUIE.civiiiiieeiie ettt etee et e et e e teeeeeeesebeessbeessbeessseeessaeessseesssaenes 98
Underlying Record DefiNitions.........cccuueeriiiiriieiiieiiiesieeeteesieeereeeieeeseaeesereeseseessseessseesssessssseesees 98
Fields Defined aS UPPEICASE....ccuieiiieriieiiieeitieesieesireesiteesveesereeeseeeseeessseessseessseessseesssesssseesnsseenes 99
Message Aliases and MeSSAZE VEISIONS.......c.ececueierrieriieriieeieeeteeesereessreessseesseessseesseeessseessseennns 99
Restrictions for Modifying MeESSAZES.cccuuieriierieeriierieeeieeereeeteeeeeeesseessseesseesseessseesssessseees 99
Searching for Message DefiNitions.c.eeeviiiiierciieeiie ettt et e et eeee e e seaeessbeeeseeebeeessaeenens 100
Adding Message DEfINItIONS.c.eeecvieieiieeiiieiieerieesteeeteeeieeestteeereesebeesereesbeeesseeesaeessseessseessseessnes 101
Understanding Adding Message Definitions..........ccecvieiiieiiiieeciieeiieenieesieesve e e ereeeveeesene e 101
Adding Rowset, Nonrowset or Part Message Definitions..........ccceeecveerereeeiieesieenieenieeciee e 101
Adding Document Message DefINitioNnS........c.eeccveeeciireiiierieesieerieeereeereeeeeeeseaeeseveesreesreeesseeas 106
Managing ROWSet-Based MESSAZES.......cccuuieiuiiiiiieiiiieiieesieesteesreeeteeeseeeeeeeseseessseessseessseesssessssesennes 109

vi Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

Understanding Managing Rowset-Based MeSSages.........cccuverviereiieeiieeiieeriieesieesveesveesseeessneens 109
Viewing Rowset-Based MeSsage StIrUCTUIES.ccvieiiieriieiiieeiieeiteeieeesreesveessveesseessveeesneenens 110
Inserting ROOt RECOTAS......cccuviiiiiiiiiecieeeee ettt te e et eete e eteeetaeesbeesssaesnsaenns 114
Inserting Child and Peer ReCOIdS.........cccuiiiiiiiiiiiiiiciie ettt 115
Specifying ReECOrd ALIASES.......cccuiiiiiiiiiieeiieeie ettt et e tee et e e sbe e s b e e ssbeeebeeessaeessseessseessseas 116
DeletiNg RECOTAS. .. .vviiiiieiiieciiecieeetee ettt ste e ste e e te e s teeebeeestaeesaeessseessseessseessseesnseeensseesns 116
Excluding Fields from MESSAgZES.......cccuiiriiiiciieeiieeitieeriieesveesveesreesteeeteeessreessseessseessseessseeenseens 117
Specifying Field Name ALIASES......ccccieiiiieiiieiiieeiie e ete et esteesreeereeetaeeaaeesaeessseesssaesaseeesnes 117
Including Fields in CData Sections in Generated XML.........ccccccveviiiiiiiiiieeie e 118
Managing XML Message Schemas for Rowset-Based Messages..........cccvevvveviierieescieesineennnnnn 119
Enforcing Message Record and Field Aliases in Generated WSDL..........ccccooovviiviiencieeeciieenen. 121
Managing NONrowset-Based MESSAZES.......c.uecvuiieriiierieerieeniiesieeeieeesreeeseeeessseessseessseessseessseessseessnes 121
Understanding Managing Nonrowset-Based MesSages........c.covviervieriieniieiiiiesiieeieeeiveesevee s 122
Adding XML Message Schemas to Nonrowset-Based MeSsages.......c.eecvveerveerieerveencveesveennnens 122
Editing Nonrowset-Based XML SChemas...........cccceeviiiiiiiiiieiiiecie et 122
Deleting Nonrowset-Based XML Message SChemas.........cccuveeviieerireriieniieeieeeieeereeeseeeesene e 123
Managing MeESSAZE PaITS.......c..ccciieiiieiiieciie ettt et e st e e s v e e et e e ebee e tbeessaeessseessseessseesnseeenseeas 124
Understanding MeSSage PartS..........cuieviieiiiiiiieiiiceiie et esire e svee s e saeeetaeeseeeeveessseesnnas 125
Creating Part IMESSAZES. .. .ccuvieiiieerieeitieeiieesreesiteesteeeteesseeessaeesseessseessseessseessseesssesesssesssseesssennns 125
Distinguishing Blank from Zero in Rowset-Based Part Messages..........cccevvvveeeiieevveenveenveennnen. 125
Reusing Rowset-Based Message Parts.........c.ccccuieeiiiiiiiiiieciieciee et e 126
Understanding Reusing Rowset-Based Message Parts..........ccoccveeviiiriieniieeciiesieeeee e 126
Reusing Rowset-Based Message Parts by Reference...........occveviiieciniiiiiiiicciicciie e 126
Managing ContaiNer IMESSAZES.cvverueeerrrrerreerreesteesreeaseessseeasseeessseessseessseessseessseesssessssssssssesssseenes 131
Understanding Managing Container MESSAZES.......ccvierveierreerireerireerieeereeeseeessreessseessseessseessseens 131
Understanding Including Level 0 Rows for Message Parts in Container Messages.................... 132
Adding Message Parts to Container IMESSAZES.......eeevieeerieerieerireeriieerieesreesreeesseeesseeessseessseessnes 133
Adding and Getting Container Messages AttribULeS.........ccveecveeeciieeiieeerie e eree e 137
Generating XML Message Schemas for Container MeSSages.........cvreevererveerveenveescreeeseeesneenes 141
Managing DOCUMENt IMESSAZES.cccvuierieeriieeriieriieiieesreeeteeesteeessreessseessseessseesseessesassesassseessseessses 142
Viewing Service Operations that Reference Messages........cvvvvviieiiiieciieeniienieecieesieeeieeeeeeeeee e 142
Resolving Inconsistencies in Exported WSDL and WADL Documents...........ccccccvverveerveeecneesnneeanns 143
Understanding Using Project Copy and Exported WSDL and WADL...........cccceveviieciieeieeennnn. 143
Viewing Services Operations with Exported WSDL/WADL Inconsistencies...........c.ccecveerunennee 144
Clearing Exported WSDL/WADL Status FIags........ccccverviiiiiiiiiieciie et 145
Renaming and Deleting Message Definitions.........ccccuveecieerieeniienieerieeereeereeeieeeieeesreeseveesveesneeas 147
Renaming Message DefiNitions.ccuieiviiiiiiiiieiiiieeeiie et esteesteesreeeteeeseeeesereeseseesseessseeesneeenes 148
Deleting Message DeEefINItIONS.c.eeecuiiiiiiiiieeiiieeieeeieeeteesee e esreesbeesbeessaeesaeessseessseessseenns 149
Deleting Messages During UPGIade.........cccveeeiieiiieeiiieeieeeieesieesreeereeeeeeesiveeseveesseesssaeeseeessneensnas 149
Chapter 7: Sending and Receiving Messages 151
Understanding Sending and Receiving MeESSaZES.......cccveervieriienireriieeiieesieeesieeesereeseseesseesseessseenns 151
Prerequisites for Sending and Receiving MeSSages.......cccveevieeriirerieerieerieenieeereeereeeseneesseeenens 151
MesSagINg ProCeSS FIOWS......ccuiiiiiiiiieiiieee ettt ettt ettt e e e e beeesbaeesraeensseenens 151
Understanding Integration PeopleCode...........oocviiiiiiiiiiiiiieciiecieeeee et 153
Sending and Receiving PeopleCode........ccuviiiiiiiiiiiiiiiiecieecie ettt aae e s 153
APPIICALION CIASSES...c.uvieiiiiiiiieiiiesteeeteeetee et e eteeesteeestreestreessteessseessseesssesasseeessasessseesssesssseessses 154
ROULING MEthOAS......eiiiiiiiiiecieece ettt et b e e s beeebeeestaeentaeenseessseensnas 155
MeSSAZING METNOMS. .. .c.viiiiiieiieciie ettt e ettt e te e st eesaeeesbee e teeetaeessseessseessseessseeenseennes 158
Messaging PEOPLECOUE.uiiiiieiiieieecieecee ettt e et e e tr e e stae e sbe e sbaeeeraeeabeeenees 163
Document PEOPIECOME..........ccuiiiiieeiiieie ettt ettt seb e e s e e s beeesbeeessaeesaeesseennns 163
Generating and SeNding MESSAZES.cevvieriieiiieriieerteeesteesteesteesreeaseeesseeessseessseessseessseessseeessssensns 164

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. vii

Contents

Understanding Outbound MESSAZING........c..cecvieriierieerieeriieeieeeireeeteeesseeessreesseesseessseessseessseens 165
Handling Outbound Asynchronous Message TranSmiSSiON............ecveerveercveeriveeesreeeseeesveesneens 166
Handling Outbound Asynchronous Request/Response Message TranSmission............cccveeeveennns 168
Handling Outbound Synchronous TranSactions...........cc.eevveervreriveereeeeiieesieeseeesveesveessseesseeans 168
Reading Exceptions for Outbound Synchronous Integrations............cceeeeveeveveencieencieeecreesseeeennnnn 170
Overriding Synchronous Timeout Intervals at Runtime.............cceeoveeviieniieniienieeciee e 170
HandIng COOKIES.ueiiiiiiiieiiieciee ettt ete et et e e s beeeteeesbeeeteeessseessseessseesssaesssaeesseessseenes 171
Setting and Overriding Target Connector Properties at Runtime...........ccccoccveevviiiiiencieencieeenenn. 171
Receiving and Processing MESSAZES.c.uvieuiieriiiiieeiieeiieeeteeereeeteeeteeeseeessseessseessseesssessssesssesenses 174
Handling Inbound Asynchronous Transactions............ccccveeeueeevieeerieerieesiiesieesieeereeeseeesseneenens 175
Handling Inbound Asynchronous Request/Response Transactions...........cccceeveveerveencveencneennnnnnn 184
Handling Inbound Synchronous TranSactions.............cccueeeveereveeecieeeiieenieesreesveesreeeveeesnveesenens 185
Simulating Receiving Messages from External Nodes.........c.cccvveviiieciiieniieniiccieecieecvee e 187
Processing INDOUNA EITOTS.........coiiiiiiiiiiie ettt ettt et e sv e e sveessbe e etaeetaeessseessseeessaeennes 187
Validating Dat........ccccuieiiiiiiiieeiie ettt e et e este e e ste e e ebeessbeessbeeesbaeetae e saeeassaeansaeanseeenseean 188
Using the Exit Built-in FUNCHION.........ccoiiiiiiiiiieciie sttt snee s 189
Using Message Object Functionality With Nonrowset-Based Messages........c.ccccvveviveevveenieeeveennne. 190
Using the SetXMLDOC MEthOd.........coociiiiiiiiiiiciieeie ettt e e e e seveeeaseas 191
Using the GetXMLDOC MEthOd........ccociiiiiiiiiiiciie ettt e e sere e sareeeaneas 191
GENETatiNg TESt IMESSAZES. . cuveeierieeiieeiieeitie ettt estteesreesteeeseesseeeseeeseeessseessseessseessseessseesssseessseensseens 191
Working With MesSage SEEMENLS..........cecviiiiiiiiiieiiieeie et esteesteesreesreeesteeesteeessseeseseesssessseesseenns 191
Understanding MeSSaZe SEZIMENLS.cccvieriieeerieeitirerieerreesseesseeesseeesseeessseessseessseesssessssessssesans 192
Understanding PeopleCode used to Work with Message Segments...........ccceeeveeveeerveencveesneenns 192
Configuring Nodes to Handle Segmented MeSSages........cueevvieriieeiieeeiieenieerieesveesveeeveeeseneenes 194
Setting the Maximum Number of Message Segments in MeSSages.........cccvveerveeeriererveerveenneenns 194
Creating MeSSAZE SCEIMICILS.ccuueeivieeiieeerieeteeesireestreesreesseesseessseesseesssssessseessseessseesssesssseessseens 194
Deleting Message SEEMENTS.......cc.eiecvieiiiieiiierieerieeereeeieeeteeesereessbeessreesseessseessseeassseessseessseessnes 197
Sending and Receiving Segmented Messages between PeopleSoft Systems.........ccccveeevveennennns 198
Sending and Receiving Segmented Messages to/from Third-Party Systems...........cccceevveennnennns 198
Sending, Receiving, and Correlating Multiple Segmented MesSsages..........ccveeviveereeerveenveenne. 201
Accessing SeZMENtS 1N MESSAZES.....ueeruiierurierrieriierreeereesireeesseeesseeessseessseessseessesssseessseesssseensees 202
Viewing Message Segment Data..........ccccvieiiiiiiiiiiiieciie e eee ettt sre e reeereeeaaeessseesaree e 203
Using Restartable Processing for Publishing Large Messages in Batch...........cccoccveveieenciinnnnnnn, 203
Populating and Retrieving Document Data.............cccveecviieiiieniieriiecieeciee et eiee e seveeeevee e 205
Understanding Populating and Retrieving Document Data.............cccoeeveerciieiciienciieecie e 205
Instantiating DOCUMENt ODJECES........iiiiiiiiiiiiie et eee ettt et e et e ete e e sereesaeessbeeesseeeseeesneas 205
Populating Document Data............cceeeeiieiiieiiiiiieeciieeiee et sre e reeeraesaaeenaeeneae s 206
Retrieving Document Data............ccueeviiiiiieiiieciieeiee et et esteesreesveeeteeesaeesaeesssaessseesnseeans 207
Sending and Receiving Binary Data.........ccveccviiiiiiiiieiiie ettt seaeeiaeesbaesveeenree s 210
Understanding Sending and Receiving Binary Data..........c.cccccveeviiiiiieniieciiecieeciee e 210
Sending MTOM-Encoded Binary Data...........ccccccvieiiieiiieiiieiiieciee et sveesvee e 210
Receiving BInary Data..........ccccuiiiiieiiieiiie ettt teesbeeeveeeeteeseveessseesssaesssaesssaeessnaenns 213
Using PeopleCode to Manage REST Service Operations..........ccvecveercveeeereeesrieeseeeseeesseesveesveessnes 216
Using PeopleCode to Manage Provider REST Service Operations..........c.ccceveeeveeecieeenveenveennne. 217
Using PeopleCode to Manage Consumer REST Service Operations...........cceeeveeeeveeerveenveennnenn 219
Generating Fully-Qualified URLs for REST ReSOUICES.........cccveviiiriieiiieeiieciie e 221
Chapter 8: Building Message Schemas 223
Understanding the Message Schema Builder...........c.oooiiiiciiiiiiiiiiice e 223
MESSAZE SCREIMAS.ccceiiiiiiiiiieeiie ettt et e et e et e e staeestbeessbaessbeessbeeessaeessaeensseessaessseesssens 223
Building, Importing, Modifying and Deleting Message Schemas...........c.cccoeevveeciieecieenveennneenne, 223
Selecting and Viewing Data in the Message Schema Builder............ccccoocveevciiiiciincieccie e, 224

viii Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Selecting Data in the Message Schema Builder............ccccoeveviiiciiiiciiecieeieeieeee,
Viewing Message Schema Details.........coovieriieiiiiiiiiiiieecie e
Viewing XML Message SChema...........ccccuiiviiiiciieeiiieeiie et sveeevee e ens
Building Message Schemas for Rowset-Based Messages..........occvveeveerieencieeecieeennneenns
Building a Message Schema for a Rowset-Based Message.........c..cccveeveeecieennenns
Importing Message Schemas for Nonrowset-Based Messages.........cccvveevveerveenreennnenn.
Importing a Message Schema for a Nonrowset-Based Message...........ccceeeveeenenn.
Modifying Message SCREMAS.........cccuieiiieiiie ettt et e e e er e sebeesebeeenreas
Modifying a Message SChema...........cccvieviieiiieiiieciie e s
Deleting Message SChEemAas.........ceievuiiiiiiiiiieiieeciee ettt eeeesre e reesaeesbeeesveeeavee s
Understanding Deleting Message SChemas..........cccveeevieecieiniieniierieeeiee e
Using the Message Schema Builder Page to Delete Message Schemas..................

Chapter 9: Managing Services

Contents

Understanding Managing SEIVICES........ccvervueercveerereerireesireeesseeesseeesseesseessseesssessssessssees
Common Elements Used t0 Manage SeIrVICES.......ccevurervierieeecrieeirieeiieesieeeneveesveesenens
Accessing and Viewing Service Definitions.........ccccveeevierciieecieenieesie e evee e
Accessing Service DefiNItioNnS.......c.eecvieeiieiiieeiieeieerieeereeereeeree e eeeeesveesenee e
Viewing WSDL Documents Generated for Services.........cocvvvvrivieerererieenreenneenns
Viewing Service Operation Information.............cceevveeeeieiriieniiienii e
Viewing Messages Defined for Service Operations...........ceccveevveevveerveencveessneennnes
Adding Service Definitions.........cceeeviiiiiiiiieeiie e eee et sreesveesaeeebeeesveeeeee s
Understanding Naming Services and Service Alases.........cccevvvveevieeereeenveenveennnen.
Adding Service Definitions........cccveecvieeciiiiiiiiie et sve e sree s
Adding Service Operations to Service Definitions..........ccceeeeeeeriienieerieenieeeceeevee e
Understanding Adding Service Operations to Service Definitions.............c.ccuv.e.e.
Adding Existing Service Operations to Service Definitions...........ccccecveeeveeeneennee.

Defining New Service Operations for SOAP-Based Service Definitions

Creating and Managing Integration GIOUPS.........cccueervrerieerciieeriieeiieeesieeeieeesereesveesenens
Understanding INtegration GIrOUPS..........ceceveerevieriveeriieeesieeenereesreesreesreesseesseesssees
Adding Integration GIOUPS.........eceveereiieerieeiieesieerreesreeereeesseeessreessseessseesseesssesanes
Adding Services to Integration GrOUPS..........ccecveevvieerererirenieerieeereesreeeseeeeneenes
Adding Integration SUDZIOUPS........cccviieeiiiiiiieiii ettt e
Deleting Services from Integration Groups and Integration Subgroups..................
Renaming and Deleting Integration GroUPS.........cceeeeveeeeveeiiieerieenieerveesveesveeennes
Copying Integration Groups Using Project Copy.......ccceevveeriierciienciieeiie e

Restricting and Enabling Write Access to Service Definitions..........ccceeeeveeecreeecneeennnn.
Understanding Restricting Write Access to Service Definitions...........cccceeeveeennenns
Restricting Write Access to Service Definitions..........cceeceveevcvieeciieeciieeneeenieenieenns
Enabling Write Access to Service Definitions.........ccccvevveereieerciiencieeecee e

Renaming and Deleting Service Definitions.........c.ccccvveeciieeciieeeieerie e evee e
Renaming Service Definitions.......c.ccccvieiiieiiiieeiie e eeteeereeereeeveeeiaeesveesenee e
Deleting Service Definitions.........ccueevevierciieiiiieiiie et eereesreesreeereeeseaeeseveesveenns

Activating and Deactivating Service Definitions in BulK...........ccccocovieviiiniienciiennenne.

Chapter 10: Managing Service Operations

Understanding Managing Service OPErations............cccvveeeveeerveerveesiveescseesereessseeeseneenens
SEIVICE OPCIALIONS. .. .uviitiieieiieiiieetieeetteesieesteestteesreesseeeseeeseeassseessseessesssseessseeans
Services OPeration TYPES......c.eeecueeeriieeiieeiieerrieereesteeereeesteeesereesreessseesseesseesssees
Naming Conventions for Service Operation Metadata...........cccceeveevveencrieicniennnenns
Service OPeration ALLASES.........cccueeeerieeriireriierreerteesteeereessteeesteeeseeessreessseesseessses
Service OPeration VEISIONS.........ccueecvieecirerieerieerteesteesreesreeesseeeseeessseessseesseessses
Monitoring Service OPEratioNS.........cccueerveeriverriieeeireeesireesreesereessseessseeesseeesseessseenes

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

Accessing and Viewing Service Operation Definitions.........ccccccveeriieriieieiieerie e 259
Accessing Service Operation Definitions..........ccvieriierciieieiieeiiie e et sveesreeereeereeeeees 260
Viewing Service Operation DefiNitions........ceeccvieeeiiiiriiiiiieiieerieeeieeeieeeee e esveesreesreeereeens 261

Adding Service Operation Definitions.........cccvviriiiiciieiiieecie e este e sreesreeereeeseeeeeeessseessseens 264

Configuring Service Operation Definitions.........c..cccvieiiieiiieniiieiieecree e esee e esreesreeebeesveeeseeens 264
Specifying General Service Operation INformation............ceecveeeirerieeeciieniiesiee e eee e 265
Defining Service Operation Version INformation............ccceeceveeriieecieiiieenie e svee e 265
Adding Handlers to Service OPErations.........c.ccvveerveerieerrierireeeiieessieeesreeesseessseessseesssessssesssseens 268
Adding Routing DefiNItionS.........ccccveeeciiieiiieiie et eteeeteeeteeetaeeteeesiveeseseessseessseessseessseeesseeas 268
Activating and Inactivating Routing Definitions...........cccceeveeriiiiriiieeciie e 268

Setting Permissions t0 Service OPErationsS..........cveecveeeeuieerieeriiesirerireessreeeereeesseeessseessseesssessssesssseenns 269
Understanding Setting Permission to Service OPerations............eccveeeeveeeereeerveerveerveescveesoveennnes 269
Setting Permission Access t0 Service OPErations..........cccveeeeveeeireeerreeerreenreesreesseesseesssneesseenes 269

Managing Service OPeration VEISIONS.cccvieruierireerereeeereeeseeesseesreesseesseessseessseesssseessseessseessseesns 269
Creating Service OPeration VEISIONS........cccuveerieeerieeerieerreesseesseesseeasseeesseeessseessseesssesssseesssesssnes 270
Using Non-Default Service Operation VEISIONS..........cccueeeevieriueeriieeesieeesieeesreesseesseessseessseesssees 270

Attaching Files to Service OPEIationsS.........ccueecueerveeriieririeeitieesiteesreesreesreesseessseeesseeessseessseessesssnes 271
Understanding Attaching Files to Service Operations..........cccvevveercieeecieesieeesieesieeeseeesveesveens 271
Using the FTP Attachment UtIit........cccviioiiiiiieiieeie ettt ree e veeeive e 271
Sending Attachment Information with Service Operations...........ccecvveevveerveeniieencieeecieeecee e 272
Processing Attachment Information Included in Service Operations...........cceecveevveerveencveennnenn. 273

Assigning Multiple Queues to Process Service Operations..........cccueeeveeeereeereeereeeseeenveesveessveessnens 274
Understanding Assigning Multiple Queues to Process Service Operations...........cceeeeveeeeveeennnns 274
Enabling Multi-Queue Service Operation ProCessing........c.ccecveeveeereeerieenieenieesreeecieessneeenenens 274
Specifying Multiple Queues to Process Service Operations...........cccveeeveercveesreesiieeesreeesveesneenns 274

Invoking Multiple Service OPErations........c.ccccvierciieeirieerieerireesireesteesreeesseeesseeessseesseessseessseesssesessees 276

Renaming and Deleting Service OPerations........c..cccveeecreeerireriierieerreesreeeeseeessseesseeessseesssesssesssseenns 276
Renaming Service OPEIatiOnS........cccuveecuveerveerieeiieerreeeereeesteeesseeessseessseessseesseesssessssesessssssssesssses 277
Deleting Service OPETatiOnsS........c.eeccveeerieeerirerieerteesreeereeeseeesseeessseesseessseesssessssessssesessssesseessnes 278

Chapter 11: Managing REST Services 279

Understanding Managing REST SeIVICES........cccveiiiiiiiiriieiiie ettt seve e 279

Common Elements Used to Manage REST ServiCes.........ccceeiiiiiiiiriieeriieenieesieesieesieesreesveeesene e 279

Accessing and Viewing REST Service Definitions.........c.ccccveeeciieriieeiciieeiierieesieesveesvee e esveeeenes 281
Accessing REST Service Definitions......c.ccccuieicvieeciieiiiiesii et esieesieeeteeesieeesveeseveesveesseeessneenes 281
Viewing WADL Documents for REST SeIviCes........cccvuveiiiiriiieniiieiiieeiie e ete e esveesevee v 283
Viewing REST Service Operation Information............cceeevierieeriieeciieseie e eseeesveesveesveeeveeens 285
View Messages Defined for REST Service Operations.........c.ccccveeeeeerveeriveencieeesieeeseeesveesneens 285

Adding REST Service Definitions.........cc.eeicvieiiiieiiieeiie ettt esteeereeeieeeseaeeseaeesseesseessreeessaeenens 285
Understanding Naming Services and Service Aliases for REST Service Definitions................. 285
Adding REST Service DefiNitions.........cceecviieriieiiiieiiieeiiecieeeteeeieeeiveesreesveesaeesssaessvaeensaeenens 286

Adding Service Operations to REST Service Definitions...........cccvvevvieeciieirieeiieenieesieeeveeevee e 288
Understanding Adding Service Operations to REST Service Definitions..........ccceeevveevveennnenns 288
Adding Existing Service Operations to REST Service Definitions...........ccceeevvevieencieeecreeeneeenne, 288
Adding New Service Operation Definitions for REST Services........cccceveviieriienciiencieeecieeennenn 288

Restricting and Enabling Write Access to REST Service Definitions..........ccceevveeeeieeeceeenieenveennnen. 291

Renaming and Deleting REST Service Definitions..........cccuveivieiiiieiiiesciieeiieeie e esireesveeeveesnee e 291

Activating and Deactivating REST Service Definitions in BulkK............cccoecvviiiiiiiiiiiiieieeieecies 291

Chapter 12: Managing REST Service Operations 293

Understanding REST Service OPerations..........c.ecccueervieriieeriieesiieesieeesieeesseeesseessseesseesssessssessssesenses 293

Accessing and Viewing REST Service Operation Definitions............ccecveevvieriieniiiencieesciee e 296
Accessing REST Service Operation Definitions..........ccccecveevieeiieenciiesciieeiie e eee e svee e 296

X Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

Viewing REST Service Operation Definitions.........ccceeecveeriiieriiieeciienieecieeeieesreeeveeevee e 298
Adding REST Service OPErations........c.cecueeriierieerieerorieesiieeseeeseseesseesseeasseesssesessssessssessssssssessssess 301
Defining General REST Service Operation Information............cceeveevvierciienciieeciee e eee e 301
Managing REST Resource Definitions..........ccccviiiiieiiiieiiieeiie et esreesreesveesveeeveeereeeseeesseeessveesenas 302

Understanding Managing REST Resource Definitions...........cccueevveercieeniiescieeiie e eee e 302

Understanding REST Resource Definition COoncepts........ccueivveeriieeciieeiieeiieenieesveesveesveesveeens 303

Understanding URI Template Expressions and EXpansions............ccceeecveeeciieiciieesieeeneeenveesneenns 304

Prerequisites for Managing REST Resource Definitions...........cccveeeveeeciieenieenieenieeeieeevee e 306

Configuring REST Resource Definitions........c.cccvieiiieiciieiiieeiiecee e eseveesveesveesveesveeeeneesene s 306

Defining REST Base URLS.......cccuiiciiiiiiiiiiecie ettt eteeseveesve e beesraeeseaeesaeesneenens 307

Defining Document TemMPIates........c.oecciieiciiiiiiieeiieeie ettt e ree et e eseaeeseseeseaeeseseessseesaneeas 309

Building URIL TemMPIAtes.......cccveeiviieiieeiieecieeste et eereeeieeeteeeteeesaeeseseessseessbessssaesssaeesssessssesnsnes 309

Building URI Templates Manually.........cccveeciieeeiieiiiieeiieciiesieeeiee et sre e eeveeevae e s 310

Building URI Templates Using the URI Template Builder...........cccooeveeeiiiniiiniiiieieeieeeee, 311

Validating URIT TempPlates.........cceecvieriiiiiieiiieciieeciteesieeesveesveesreesseeetaeessaeessveessseesssesesseeessnens 314

Example: Using the URI Template Builder to Build URI Templates.........c.cccccceevvrevieenieennenns 318

Adding the Example URI Template to the REST Resource Definition............cccecevveeeiieecvrennnns 327
Defining REST Service Operation Version Information...........ccceeeveeeieeriienieesiieesiieeciee e esveeeennn 328

Understanding Default REST Service Operations............ccueevveervrervienciieeireeeieeeieeeseeeesveesveenes 328

Defining Default REST Service Operation VErSIONS.........c..cccueeecveeecuieesieeneeesveesveeesreessseessseeens 328

Defining Message Instances for REST Service Operations.........c..ecceeecveeevieeereeesveerveescveesneens 329

Specifying Fault Messages for REST Service Operations..........cccccveevveervienveencieeereeesneeeseneenens 330
Managing Provider REST Service OPerations..........cccceccueeeereeeriieeirieenieesriesreesreessseeesseesssseessessnes 331

Managing Target Connectors for Provider REST Service Operations...........cccueeevveevveenveenneenns 331

Managing Messages for Provider REST Service Operations..........ccccveeveeeeieeecieeeneeesveesveennnns 332

Securing Provider REST Service Operations..........ccccecvveervierveercieeeeieeeeeesreesveesseessseessseessseeas 332

Adding Handlers to Provider REST Services Operations.........c.ccccveeeveeeeuieenieenveerveescveesveesnnes 332

Managing Routing Definitions for Provider REST Service Operations...........ccccveeevveecvveereveennen. 333

Defining Routing Header Properties for Provider REST Service Operations............ccceeeuveennee. 333
Managing Consumer REST Service Operations...........cccueervieriiieeiieeesrieeneeesreesreesseessessssessssesessnes 335

Adding Handlers to Consumer REST Service Operations...........ccecceeerveereveesiveessieeesreeeseeenneenns 335

Manage Routing Definitions for Consumer REST Service Operations...........cccceevveerveerveennnen. 336

Securing Consumer REST Service OPerations...........cceeevueeerieerieesireenieesireesreessseeessseessseesseens 336
Managing REST Service Operation VEISIONS.........c.ccccvieicieeeciiesiiieiiiieeiieesiteesreesseesseesseesssessssesesens 339
Setting Compression for REST Service OPerations.........c..cecveeceeervrerveenieeereeeieeesieeeseeeesveesvessnnes 339

Understanding Setting Compression for REST Service Operations...........ccceeeveeevveerveenveenneenns 339

Setting Compression for Provider REST Service Operations...........ccccveeeveeecveercieeeceeeenveeneneenens 339

Defining Compression for Consumer REST Service Operations............cceevveevieenveenveesveennnen. 342
Renaming and Deleting REST Service Operations..........ccueeceeerveerieerieerieenreesreeeseeeseeeseeeessseessns 344

Chapter 13: Managing Service Operation Queues 345
Understanding Service Operation QUEUES.........c.eeevieeiiieeiiieeitieesteerreesteesveesreesseeesseesssesessseessseessnes 345
Adding QUEUE DEfINITIONS......cccviiiiiiiiiieecie et ettt e e eree et e et e eteeetaeessseessbeessseessseessseesssseesseeensns 345
Applying QUEUE PartitiONing.........c.ccccvieiiieeeiieeiiieiitieeriteesteesreesreesreesseseseeesreessseessseessseessseesssesssses 347

Understanding QuUeUe Partitioning..........ccccveeriierireiieeeiieeiiesieeeieeeieeesveesveesaeesseessseessseeesseeas 347

Selecting Partitioning FIeldS.........ccoeccuiiiiiiiiiiiiie ettt sve e e eseaeeaae e 348
Renaming and Deleting QUEUES.........cccvieiiieeiiieeie e erieeetee et et eeteeeebeesbeesbeessseessseeessaeesseensseas 349

Renaming Queue Definitions.........ccuiiiiiieiiiiiie ettt et e st e et een e eaaeessbeeseseeas 350

Deleting QUeue DefINItIONS.c.uieiiieiiieeiieetieeieeeeeestee et esteesreesteeebeesbeeeeseesseessseessseesssenns 351
Deleting Queues DUring UPZIade.........cccveeeiieiiiiiiiieeiieerieeereeecreesteesteeeteeeseseessseessseesssaessseeesseeenes 351

Chapter 14: Enabling Runtime Message Schema Validation 353
Understanding Message Schema Validation............c.ceccviieeiiiiiiiiiiierie et 353

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. Xi

Contents

Message Schema Validation..........c..eeciiiriiiiiieiiie et eee et esre et e e reeebeeeteeetaeessseessseessseenns 353
Message Schema Validation and Transformations...........cceeceveeeviieeeeeenieesieesieeeree e eee e 353
Message Schema Validation and Part MeSSages.........c.cevveeriieriieeciieeiieenie e esieesreeereesvee s 353
Prerequisites for Validating Message SChemas..........cccoccviiiciieiiiieeiii et 354
Selecting SETVICE OPETALIONS......vveeeiieerrirerreerriesreeaiteeeseeestreesseesseessseesssesssseeessssessseessssesssessssessssees 354
Selecting @ Service OPEIAtiON........c.eeecuieeirieeiirerieertieeteeesreeesreeesteeesseesseesseessseeasseeessseessseesseens 354
Viewing Defined MesSage SChemas.........cccuiiiiiiiiiiiiieciie ettt etee et e aeeseveessreesveeearee s 356
Viewing XML Schemas Defined for MeSSages........cccuiiriieriieriieiiieeiie e esee e esveesveesvee s 356
Enabling Runtime Message Schema Validation.............cceeevieiiiiiiieiiieciie et 357
Using the Service Schema Validation Page to Enable Runtime Message Schema Validation..... 357
Using the Service Operations page to Enable Runtime Message Schema Validation.................. 358
Chapter 15: Creating Component Interface-Based Services 359
Understanding Creating Component Interface-Based Services..........cocevevieiciiiviieniienieeeiee e 359
Naming Conventions Integration Metadata Created............ccoevvieeciieecieiiiiecie e 359
User-Defined Method ReStriCIONS.cciuiiiiiiiiiiieiieiieieestece et 360
Impact of Changing Component INterfaces...........cccvieeeiiriiiiieiiieie et eve e 360
Prerequisites for Creating Component Interface-Based Services.........ccovveeiriviiereienieenieeeree e 361
Selecting Component Interfaces to EXP0Se @ SEIVICES.......cccvirvuieriiieeiiieeiiienreesveesveesreeeveeeveeenes 361
Selecting Component Interface Methods to Include as Service Operations..........cccccveeeveeecreeeneenne. 362
Generating Component Interface-Based ServiCes.........ccoviviiiiiiiiiiieiciieeie e eveesveeeree s 364
Generating Services and Service Operations from Component Interface Methods..................... 365
Inheriting Component Interface Security Permission Lists..........cccccceevevieriiieniienieeecie e 366
Adding Message Names and Descriptions to Generated Service Operations............ccceeeveererennns 367
Viewing Component Interface-Based Service Definitions...........ccccveevcveeeciieiciieeiiie e 367
Chapter 16: Managing Service Operation Handlers 371
Understanding Service Operation Handlers............ccuveiiiieciiiioiiiiiecie et sve e 371
Service Operation Handler TYPES......cccuviciiiiiiiiiieciie ettt ettt et et aeeseaeesbeeeseeesree s 371
Handler Types and MesSSaging TYPES.....cccuveeruieerireriieiieeiieeereeeieeesreesseesreesseessseeessseessseessses 371
Understanding Implementing Handlers............ccvieiiiriiiiiiiiiiccieees et 373
Adding Handlers to Service OPCIatiOnsS.........ccecccveeeeieeerieerieerriesieesoreeesseeeseeessseessseesseesssessssesssseeans 374
Understanding Adding Handler Definitions to Service Operations...........ccccvveevvveereveerveesveennnen. 374
Adding a Handler to a Service OpPeration..........ccceecveeriierieenieeeieeeieeeseeesveesseesseesseesssseessees 375
Specifying General Handler Details..........c.cooiieiiiiiiiieiiieciiecieeciee et svee e 376
Implementing Handlers Using Application ClasSes.........cccuuererieiiiiririrerieerieeereesreeeieeeseeeseveeseneens 376
Understanding Implementing Handlers Using Application Classes..........ccccceeeevieecreeecieeenveennenn 377
Developing Application Classes for Implementing Handlers...........ccccoocvvevvienciieicieecieeieeee 377
Specifying Application Class Implementation Details..........ccceeveuierciiiiiieiiiecie e 379
Implementing Handlers Using Application Engine Programs............cccccveeviieviieniieiciieecie e e 379
Understanding Implementing Handlers Using Application Engine Programs..............cccceuue...e. 380
Specifying Application Engine Handler Implementation Details............cceeevveeciiencieeecieeciieenen. 381
Retrieving Service Operation Content from Application Engine Programs...........cccccceevveennnenn. 381
Viewing Subscription Contract StatUs.........ccccveeciieeciieeiieeiie e esve e e ereesree e e ereeeseeeessaeeseseas 382
Implementing Handlers Using Component INterfaces.........cccvevvieriieeerireiie et 383
Understanding Implementing Handlers Using Component Interfaces...........cccceeevvevcieeecieennnnnnns 383
Specifying Component Interface Handler Implementation Details...........cccceevviiviieniiencieennnenn. 384
Implementing Handlers Using Bulk Load Processing.........cccccueveiirciieeiiiienieeniiesieesieeereeevee e 384
Understanding Implementing Handlers Using the Bulk Load Handler.............ccccccvvvvvirnnennnnen. 384
Enabling Transactional ROIIDACK...........ccccuiiiiiiiiiiciicciie ettt e 386
Enabling Table TIUNCAtiON.........cccviiriieiiieeiiecieeecieeeieeesiteesteesveesbeeereeeeaeessseessseesssaesssesasseeanes 387
Specifying XML Record Attribute ValUes...........ccccveeeiiiiiiiiiiiieie ettt eve e 388
Adding Data Structures for Nonrowset-Based MesSages........cueevvveereeerveenieenieenieeereeeeeeeenens 388

Xii Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

Implementing Handlers Using Deprecated PeopleCode Handlers............cccvevevienciienciieeciieeieeeeenee, 391
Understanding the Deprecated PeopleCode Handler.............ccoeevveiiieiiiiiiiiiiiecee e 391
Deleting Deprecated PeopleCode Handlers...........oocvieeiiiiiiiiiieeiieeeeeeee et 391

Chapter 17: Managing Service Operation Routing Definitions 393

Understanding Routing Definitions.........c..cecvieiiiiriiiiiieciieeiiecieesreeeiee e esveesveesereessraeesseeessaeenees 393
ROULING DETINILIONS.uiiiiiiiiiiieiiiecieeeieeetee et sre et e e s e e sb e e eteeesbaeessaeesaeessseessseessseesssens 393
ROULING THPES.. eiitvieiiiieiiieeiieetteette et e ettt e st estbeesbeessbeeestaeessbeessaeessseessseessseessseessseesssaeensseenes 393
Defining Routing DEfINItionS........c.uiiiiiiiiiiiieeiiieeieeeiteeiteeseeesteesreesveesveeeseeesaeessseessseesssenns 394
Methods for Generating and Defining Routing Definitions...........cccceeeveeeiieecieeeciieecie e 394
Routing Definition Naming CONVENtIONS..........cccviererieeerieerireerieesreesseesreesseessseessessssseessseessnes 395
Routing Definition EXternal AlIASeS........cccveriieriiiiiieiiieeiieeiee et esree e eeeeeseveessseessneas 396
Service OPeration MaPPINE........cveecveeerieeriierrieriteeeteeereeestreessaeessseessseessseessseeessesassssessseessseessnes 396
Graphical ROULINGS VIEW......ccuiiiiiiiiieeiie ettt ettt e s bee st eestaeetaeestaeessseessseessseas 397
INEEGTALION STATUS. ...ccutieiiieiiieeiieete et e et e et e et eetee e treestbeessseessseeassaeessseesseassseasssaessseessseeenssennes 397

Managing System-Generated Routing Definitions............ccccveeviiiirieeniieciieciie et 397
Understanding Managing System-Generated Routing Definitions............ccceveveercieercieeeceeennneenns 397
Viewing System-Generated Routing Definition Status...........cccceeeeiieriieniiienieeciee e 398
Initiating System-Generated Routing Definitions...........cccceeeviieeiiieecieeriiecieeciee e eve e 398
Regenerating System-Generated Routing Definitions..........c.ccccveeeiiiniieniieniiccieecee e 400

Adding Routing DefINItIONS.eeevieeiiieiiieeiiecieeeieeeetee et e esteeseveesreeebeessseeessaeessaeessseessseesssessseenns 400
Understanding Adding Routing Definitions............cccveeeiiiiriieiiiieiie et 401
Adding Routing Definitions Using the Routings Component............cccceeeeveeevieeeseeerveencveenneenns 401
Adding Routing Definitions From Service Operation Definitions............ccceeeveeeeieeeeieenveennneenne. 402
Adding Routing Definitions Using the Nodes Component...........ccceeeeveervieneriesiieeesreeeseeesveenenes 403

Configuring Routing Definitions..........cccveercvieiiiieeiiieeiieerieesie et et eereesieeesireesbeesseessseesssseensaeensnas 404
Defining General Routing Information.............cceeecuiiiiiiiiiieiiie e 405
Defining ROUtING Parameters.........ccuveivieiiieiiie e eiieeiee ettt sveesre e et e esbeeetaeeeaeesaeessseessseeas 409
Defining and Overriding Gateway and Connector Properties..........cccoevvverveeriiiencieeecieeeseeenneenns 414
Defining ROULING ProPerti€s......cccviicuiiiiiieiiieiiieeiee ettt et ste e s veesveeetaeessaeeseaeesssaesaseeenns 416

Activating and Inactivating Routing Definitions...........cceervieiciieriiieriie e esee e ereesvee e e 417
Understanding Activating and Inactivating Routing Definitions...........ccccoceeveeevieecieenieenreenne. 418
Activating and Inactivating Routing Definitions in the Routing Component..............c.cccveeeurennne 418
Activating and Inactivating Routing Definitions in the Service Operations Component............. 418
Activating and Inactivating Routing Definitions in the Nodes Component...............ccceeeruvennenn. 418

Viewing Routing Definitions in Graphical FOrmat..........c.ccccoueiviiiniiiniieriieciie e 419
Common Elements Used to View Routing Definitions in Graphical Format..............c...ccoc....... 419
Viewing a Routing Definition in Graphical Format..........c.cccceeveiiieeiiiniiiiieeieeciee e 421

Viewing Integration Status and Activating Integration Metadata............ccceoeveeriienciiencie e, 422
Understanding Viewing Integration Status and Activating Integration Metadata........................ 422
Viewing Inactive Integration Metadata............cccueeeiiieiieiiiiieie ettt e sve e sve e 422
Activating Integration Metadata Using the Integration Status Page...........cccoccvvevciveecieenieennnenn, 423

Retrieving Routing Properties Programmatically............ccccooiieiiiiiiiiiiieciie e 423

Configuring Routing Definitions for Deployment............c.ccccveiiiieeciieeiiieniiecie et 424
Understanding Configuring Routing Definitions for Deployment............ccccceevevviviienciiencieennnenn. 424
Understanding Using Routing Deployment Configuration.............ccceeeveeeeieeeiieenieeceeesieeeveeene 424
Using the Deployment Configuration Page............cccvevviiiiiiiiiiiniiiiciee et 425
Using the Routing Deployment Grids..........cccveecvierciieeciieiiieerie e esreesreeseveesreeereeeeseessneesenees 427
Using the Get Routing Information Page..........c.cccccviiiiiiiiiiiiieiiiecie et 431
Selecting Routing Definitions for Routing Deployment Configuration............cccceecvveereveenenennee. 432
Populating Deployment Configurations from Routing Definitions............ccceeevievveenieencriennennns 433
Adding Routing Definitions for Deployment............cccoeevieiiiiiciiencie e 434

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. xiii

Contents

Xiv

Updating Release LeVelS......coccuiiiiiiiiiiiiieie ettt ettt e st e et eeteeetaeessbeesnseesnraeens 434
Searching for Duplicate External RoOUting AlIASeS.........cccueevuiiiriieriieiiieciee et 434
Renaming and Deleting Routing Definitions..........cccuveriierciiiiiiieiiie et esveesreeeveeeveeeeneens 436

Renaming Routing DefiNitions.........c.eeeciieiiiieiiiieeiie ettt ettt ereeeteeeteeetae e eveesveessreesnreas 437

Deleting Routing Definitions..........ccvieeiieiciieiiie e eie et este et e sreeeeeeeeeeeeaeesae e ssaessseesnseesnnes 437
Deleting Duplicate Routing Definitions..........cccvieiiieiciieiiiieieesie et esieeeveeeieeesiveeseveeseseeeeseeesreeenes 437

Chapter 18: Applying Filtering, Transformation and Translation 439
Understanding Filtering, Transformation, and Translation............c.ccceceveveiieecieinieenie e 439
Understanding Transform Programs...........cueeciieiiierieeniiesiie et cee et esveesreeereeesaeesseeseseessseas 439

Transform PrOGIAIMS.cuiiiiiiiiiieiie e eee et ettt e et e e te e e teeetaeesebeessbeessseaessaeessseesseessseesssenns 440
Transformation Programming Languages............cceevvreriieeiiieiiiieeiieeieeeieeesireesveesveesveeeseeessaeeeneens 441
Third-Party ConSideIrations..........cuierieeriieeirieiiieeitieeseeesreesreesreeeseeesseeessseessseessseessseesssessssssessseessses 441
Defining Transform Programis..........cueccuiiiiiiiiiiecie ettt e ete e sive e ve e s reeeraeereeeeneessseessseas 442

Understanding Defining Transform Programs...........cccoecvieriieriienciieeiie e eee e sevee e 442

Defining a Transform Pro@raml..........cccoeiiiiiiiieeeiie ettt eeeetee e ae e e e esveeestaeesene s 443
Developing Transform Programs Using PeopleSoft Application Engine...........cccceocvvevvienveenneennee. 444

Understanding Developing Transform Programs Using PeopleSoft Application Engine............ 444

Inserting Steps and Actions into Transform Programs.............cccoeevveeciieiiiieiiiiesie e, 445

Making Working Storage Data Available Globally..........ccccocviiiiiieciieiiiieieeeceeecee e 446

Preserving Record and Field AASES.......cccveivuieiiieeiiieeiiieie ettt 447

Tracing Transform PrO@rams........c.ccccuiiiuiiiiiieiiieiieeeiieeieeetee e stee e tveesbeesaeesbeeebaesssaeesaeenens 448
Developing Transforms Using Oracle XSL MapPer......ccceeevieriieiieeriiieeiieeiieesreesveesveesveesveeeeees 448

Understanding Oracle XSL MapPer.......cccuveicieeeiieeiiieeiieerteesieesveesveesseesveesssaesssesessseessseesseenns 448

Development ConSidEIrations.........ccvueeereeerirerieesieesteesteesreessteesseeesseeessseessseessseessseessseesssessssesans 449

Prerequisites for Developing Transforms Using Oracle XSL Mapper........ccccceevvverveeecreesneennne. 449

Installing Oracle XSL MapPPer........ccccuieiiiieeiiieeciee et eeree et e eteeereeetae e ebeeseseessseassseessseesssseesssennes 450

Specifying the Installation Path and Classpath for Oracle XSL Mapper.........cccccevveeevieenveenneens 451

Launching Oracle XSL MaPPer.......cccveiciiieiieriieeiieereeesteesteesteesseesseeessseessseessseessessssesssseesnes 452

Accessing Oracle JDeveloper Documentation and Online Resources..........c.cccveeeveeevveenieennens 454

Navigating in Oracle XSL MapPer......c.ceeciiiriieiiieiiieciieeeeeteeeieeesieeesreesseesseessseessseeessseessses 454

Mapping Records and Fields.........coooiiiiiiiiieiiicccce et 457

Deleting Record and Field Maps........ccccociiiiiieiiieeiie ettt evee et e e eeaeeseseessbaesnnee s 457

Viewing Raw XSLT COde......ccuiiiiiiiiieiiieciie ettt ettt et e etteesiveesaveesbaesssaessseeessaeenssaenns 458

TESHING XS IMAPS....ieiutiiiiieeiieeiieeriteeeitteeteesteesteeesteeeteeesseessseesssaeasseessseeasseeassssesssesnssesssseesssens 458

Adding and Modifying XSL Map Code........cccueeciiiriiiiiieiiiecieeeiee ettt ssveeeaneas 459
Developing Transform Programs Using the XSLT Transform Builder...........ccccooevieviiiniiencieecneenne, 461

Understanding the XSLT Transform Builder...........ccoovviiiiiiiiiiiiiicie e 461

Understanding Using Oracle XSL Mapper to Build Transformation Programs in the XSLT

Transform Builder........oo.ooiiiiiie ettt et et 461

Prerequisites for Using the XSLT Transform Builder...........cccoccvieiiiieciiiniieniicieecieeeee e 462

Navigating the XSLT Transform Builder............cccooveiiiioiiiiiiiicr e 463

Adding Transformation Programs to the XSLT Transform Builder...........c.ccccooevviiivciiincininnnnn, 465

Defining Transformation Program Metadata Properties..........ccccevveevvieriieniieesiieeeiee e eeve e 465

Manually Building Transformation Programs in the XSLT Transform Builder.......................... 465

Using the Oracle XSLT Mapper to Build Transformation Programs in the XSLT Transform

BUILACT ...ttt e b e et b et et et e bt e bt et e eabeenteenteenteens 466
Invoking Transform PrOGIamsS........c.ccccuiiiciiiiiiiiiiccie ettt e eae e e e sveesbeessreeessaeesnseessseenns 466
Accessing Transform MesSage Data.........cccueeviieiiieiiiieeiie ettt e eteeesee e eaeeseveessseeesbeeessees 466
Renaming or Deleting Transform Programs............cccvivcvieiiieiiiieiii ettt 468
FAIEETING IMESSAZES. ... veeiurieiuiieeiieeiiteeriteesteesteesteeeteeetbeestseessseessseeasseesssaeessseessseesssaessseeasseeessseesseensns 469

Understanding Message FilteriNg.........cccoveivuieiciiieiiieeiieeiee sttt eee e seaeesve e beesveeeneeenes 469

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

PeopleCode Filtering EXamPIe........c..cocviiiiiiiiieciieeciie ettt eeteeetaeeeve e e seveesnneas 469
APPLYING TranSfOrMAtIONS.ccueiiviiiiiiiiieciieeeeeteeieeetee e beesreesbeesbeesseeesseeesaeesseessseessseesssesssnes 471
Understanding TranSformation..........c.cccveeiiieiieiriieciieeieeeieeeiee et eve e e e sbeesbaeesseeeseaeeeneenens 471
Using XSLT for TranSformation..........cccueeevieriieriieeiieeiieeseeesveesteesveesveesseessaeessssessseesssesssnes 471
Applying Message Transformations at the Integration Gateway...........ccceeevvieriierieencieencieeeereeeneens 472
Understanding Applying Message Transformations at the Integration Gateway......................... 473
Developing and Implementing Gateway-Based Transformation Programs..............cccccevvvennnnnnee. 473
Setting Integration Gateway Properties for Gateway-Based Transformations............ccccccveeeunennes 474
Understanding Logged EITOTS........ccuiiiiiiiiiieieeieeciie ettt et sveesveesreeereeeseeeesaseessseessseas 475
Performing Data Translation...........c.eeccuieiciieiciieiiie ettt eree e e e e e eteeeseaeessaeessseesssaessseesnseeenes 476
Understanding Data Translation...........ccceccvieieiieiiiieeiie ettt teeereeeteeeseeeeseaeeseseessseeseveens 477
Defining CodESEt GIOUPS....cccvieeriiieiieeiiierttesteesteeeeteeesteeestreessaeessseessseessseesseessseesssesesssesssseenssens 478
DEfINING COAESELS. .. .uviiiiiiiiieiiieetieette et eerte et e et e e bt e e beeeteeessaeetaeessseessseessseassseeessseesseensseennns 480
Defining Codeset VAlUES........ccccuiiiiiiiiiecie ettt este e ebeeetaeessaeessseessseesnseeenseeas 481
Importing and Exporting Codesets Between Databases..........coccvveecvieeiiieriienieenieecieeecieeeiee s 482
Deleting COAESELS.....eeciiiirieeiieeiie et eetee et e ste e et e et eetteeseaeessbeessseessseessseesssseasseeensseesssesssseesssens 483
Using XSLT for Data Translation..........ccc.eeevieriiieiieeniieeciee e eseeesreesreesveesereesseesseessneessseenes 483
XSLT Translation EXAMPIE........ccueeciiiiiiiiiieiiieciie ettt svee v e st eetaeeeaeessaesssaessseas 485
PeopleCode Translation EXamPIe........c.ccocvieriiiiiiiiiieciic ettt evee e e s 487
Rejecting Transformation Programs..........cccuieiiiiiiiieciieicie ettt sree s teeeieeeeae v e e ssseeseveeenneas 489
Terminating Transformation Programs...........ccccceeeiiiiiiiiiiieeciie et e veesre e e e evae s 489
Chapter 19: Managing Error Handling, Logging, Tracing, and Debugging 491
Understanding Error Handling, Logging, Tracing and Debugging..........c.cccccuvevvieriieniiencieencreeennnnn 491
Understanding Integration Gateway Error Handling.............ccccooeeiiieiiiiiiiiniicciieceeciee e 491
Target Connector Error Handling...........c.oocvviiiiiiiiiiiieiieceeseesee e s 491
Listening Connector Error Handling...........c.cccoviieiiiiiiieiie et 491
Integration Gateway EXCEption TYPES.....cccciieiiiieiiieiiieriieeieesteeeieeeteeeieeesveeseve e raeeveesnraeenns 492
Managing Integration Gateway Message and Error LOg@ing.........cccvevveeeiieiciieeiiieeniie e e 493
Understanding Message and Error LOZ@INg.........cccvieiiiiiiiiiiieriie e eeeeieeeiee e sveesveeesaaeens 494
Setting Up Message and E1ror LOZZING........cc.eevviiiiieiiieiiiecieeciee et esveesreesiveesveesveeeseee s 494
Viewing Non-English Characters in Integration Gateway Log Files..........ccccoevvveviiencieencieeninnnns 494
Managing MesSage LOZEING........cccuviiiieiiiieiiieeiie ettt e st e ereeeteeetae e eaeessseessseeesseessseeesseeans 494
Managing Error LOGEING.......c.ceciiiiiiriiiiiieeieeeieesteeetee et etee et eetaeesiveeseseessseessseessseeessseessseesssens 496
Managing Application Server Logging and Tracing...........ccceeevveervieiciienciieeiie e esee e sveeevee e 497
Debugging INtEZIAtiONS.cccuviiiiieiieeiieeetee et e etteeriee ettt esbeesbeessseeeseeeseeessseessseessseesssesassesassesenseeans 498
Debugging Handler PEopleCode.........oouiiiiiiiiiieiieeieeteese ettt esve e s 498
Handling CommOn ISSUES.........cccuiiiiieeiieiiieeieeieeerte et sv e s teesveeebeeebeeesbaeessaeessseessseessseesssens 498
Chapter 20: Providing Services 501
Understanding Providing SEIVICES.......ccviicuieiiiieiiiieiieecieesiee st e sveesreeeveeesaeesereessseessseesssessssesssseeans 501
Understanding the Provide Web Service Wizard..........ccceevviiiiieiiiieeiie et 501
Understanding Providing WSDL DOCUMENLS..........c.ccccuiiiiiiiiiiiieiie e ecieeeieeereeeiee e eseveesreeseseeenns 501
WISDL FEALUIES.....ccueeiuiiiiieteete ettt ettt ettt et et e b e e bt et et e bt e be e be e beenbeenbean 501
WSDL Document SPECIfICAtIONS.cccvieiiiieiiiieeiieeiieerieesveesteesreeeteeebeeesaeessaeesseessseessseesssens 502
Supported Operation Types for WSDL DOCUMENLS.........cceeeviiieriieiiieniiecreeciee e eee e e svee e 502
Requirements for Nonrowset-Based Message Schemas..........ccccccveevveeriienieenieeeiee e 503
Locations for Publishing WSDL DOCUMENLS..........c.ccociiiiiiieiiieeiieecieeeieeeveesreeereeeaeeeseveeseveees 503
UDDI Repositories and ENAPOINts.........cceccvieiiieiiieeeiieeiieesie e esreesveesreessieeesaeesneessseessvesssns 503
WSDL URL FOTTALS.ceitiiiiiiieeieee ettt sttt ettt et ettt st sttt eeateentesaeeeas 504
Provided WSDL DOCUIMENLS.cc.eeitieiiiiieitieiiesieesiee sttt ettt ee st et e e bt e sbtesbeesbeesbeesbeesbeesaeenaeas 504
PartnerLinKTYPe SUPPOTL......cccciiieiiieiiieeiieeit ettt ettt reesaeesreeebeeestaeesaeessseessseesssasenseeenes 512
Understanding WADL DOCUMENLS.........ccceeiiiiiiieriieiiieeiteeieeeieeesiveeseveesseessseesseeesseessseesssesssseesnses 514

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. XV

Contents

Xvi

Supported Operation Types for WADL DOCUMENLS..........cccuveeruiiereeeireenriesreeeieeereeereeeseveenenes 514
Locations for Publishing WADL DOCUMENLS..........ccccueeriieriieniieniieeieeeseeesreesereesveeeveessveeenes 514
WADL URL FOIMAL.......eiitiitiieieieie ettt sttt et et eeesee e st esestesseeneensesseeneensennens 515
Provided WADL DOCUMENLS.cooiiiiiiriiiiieeiie ettt ettt ettt sttt st e saeesaee e eas 515
WSDL Document and WADL Document VerSIONiNg...........ccueervrerveerereeesieeesiieeseeesseesseesssessssesenens 518
Prerequisites fOr Providing SeIVICES........ccviiiiiiiiiiiiieeiieeiee et esiveesteesveeereesveeeseeesaeesseessseessseens 518
Common Elements Used t0 Provide ServiCes.........ccivirieriiriiiieiienieniesiiente ettt 519
PrOVIAING SEIVICES.....uiiiitiiiiiieiie et eetee et et e et e e tte et e estbeessbeessseeesseeessaeessseessseessseessseessseessseensseennns 520
Understanding Using the Provide Web Service Wizard..........c.ccoccvvevvieriieniieeciie e 520
Step 1: Select Services t0 ProVIde......c..ceciiiiiieiiiiciie ettt esiveesreeearee s 521
Step 2: Select Service OPEIatiOnsS........cc.eecviercvieriiiererieesreesreesreesreesreesseessseessseessseesssseessseesssees 522
Step 3: View WSDL Documents or WADL Documents............ccceeeveeeciieeiieeniieeniieesieeevee e 523
Step 4: Specify Publishing OPtions.........cccveiiieiiieeiiiieie ettt e etee et e ereeestaeeeeeesereessseesaseas 526
Step 5: View the WSDL/WADL Generation LOg........ccccvevcviiiiiiiiiieiieeeieeeieesre e evee e 528
Accessing Generated WSDL Documents and WADL Documents...........cccccueeevieevieerirenieesveesneenns 529
Using WSDL and WADL URLs To Access Generated WSDL and WADL Documents............. 529
Using the WSDL Repository to Access Generated WSDL and WADL Documents................... 529
Deleting WSDL and WADL DOCUIMENLS.........cccueeriierieeriieeereeeieesteeeieeeseeeessreessneessseessseesssesssesssnes 530
Understanding Deleting WSDL DOCUMENLS.........cceeeeuiieriiiiiieiieeciie e eeeeseeeseveesreesveeseeeenes 530
Deleting a WSDL or WADL DOCUMENL.........ccccuiiiiieeiieeiieeiie e ete et eeveesveesreesreeeeneeseneenes 531
Chapter 21: Consuming Services 533
Understanding CONSUMING SEIVICES.......eecviereiieirrieeriieeseeesteesseesseesseesssesesseesssessssessseesssessssessssesans 533
Understanding the Consume Web Service Wizard...........ccoccveeviiiiiiiiiieniee et 533
Consume Web Service Wizard Features..........ccoecieiiiiiiiiiiiiiieieeeeee e 533
Operation TYPES SUPPOTIEA.....cccuvieiiieiiieeiieeite e ete et et esb e e st e e sbeeebeeesbaeessaeessaeessseessseessseens 533
Sources for Consuming WSDL DOCUMENL.........cccceeeeviiieiiieiiieii ettt ereeeieeeieeeseeeeeveesereeeenes 533
Integration Metadata Created by the Consume Web Service Wizard...........ccceevvvenvieeieenneenne. 534
MeSSAZES GENETALE. ueeiiieeiieeiie et et e et este e et e eteeestbeestbeesabeessbeeesseeessseessseesseesssasassesesseennes 535
FaUIt IMESSAEES. . .cuvieeiiieetieeitieieesteesiteesteeebeeebteeteeetaeetbeessseessseesssaessseeassseessseesaeesseensseenssenns 535
Multiple Root Elements in Message SChemas..........cceecvieeiieiiieniieeiee et 535
Delivered Queues and NOAES........cccuviiiiiiiii et et e e e eare e e e ebee e e 536
Binding Style of Consumed WSDL DOCUMENTS.........ccccviirrieriieriieeciieeieeeieeeseeeesereesereeseveessneas 536
Working with Asynchronous Request/Response Service Operations...........cceeeeveeeeveeereveerveennnenn 536
Prerequisites fOr CONSUMING SEIVICES......cuuiiiiiiriieiirerieeeteeeitteesteeestreesseesreesseessseessseesssessssseessseenns 536
Common Elements Used t0 CONSUME SETVICES......ceoueeruieriieriieniienieenieenieenieenieenieenieesteenieesbeesveeeeeneeas 537
Using the Consume Web Service WIzZard..........cceeccveiiiiieiieinie e esreeereesreesieeesaeeeseaeeseseesssee e 538
Step 1: Select WSDL SOUICE.ccciieeiieciiecieeeiee ettt esee et esveesbeesbeesbaeesteeesaeesseessseesssens 539
StEP 2: SELECT SEIVICE....cccviiiiieeiieeiie ettt et eete e st e steeebeeebeeetaeesaeesbeessseesaseeesseeasseeensseensseensees 541
Step 3: Select SEIVICE POTtS.......iiiiiieiieeiie ettt e e e s re e e te e e teeeeaeesssaessseens 541
Step 4: Select SErvice OPEIatiOnS........ccueeievieririeririeeetieeitreerreesreesteesreeaseessseessseessseesssseessseesssees 542
Step 5: Convert ASYNChronous OPErations.........cccveeeereeerrieerieerrresreesreeereeesseeesseeessseessseessseessnes 543
Step 6: Rename Operation MESSAZES.cuueeruiierirerirerieerriesreesreeesseeesseeessreessseessseesssesssseessseeans 545
Step 7: Select a Queue for Asynchronous OPErations...........cceeecveeecreeereeereeerieerveeereessreessseeens 547
Step 8: Select the RECEIVEr NOMEC.......c.uiiiiiiciieciie ettt et ebe e e aeeeeae s 548
Confirm and VIEW ReSUILS......ccc.oiiiiiiiiiiiee e e e 549
Accessing Integration Metadata for Consumed SETVICES........c.vivvveeiiuieeiieeiieerieereeerieesree e eaee e 550
Chapter 22: Integrating with BPEL Process-Based Services 553
Understanding Integrating with BPEL ProCESSES........cccviiiiiiiiiiiiieiieeciiecieeeieeeieeeiveesveesveesvee e 553
Oracle BPEL Process Manager..........cueevuieeruieereienieeeriesireeesseeesseeessseesseesssessssesssesssssesssessssennns 553
PeopleSoft-Delivered Application Classes for BPEL Integrations...........ccceeeeveerieeecieeeneeenneens 553
Monitoring BPEL Process-Based INtegrations............cccuvevvieeieeecieeeieeenieesveesveesveeeveessseeenenens 554

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

Securing BPEL Process-Based INtegrations..........c.ccecuveivuieeiiieesieesieesiee e ereeeveeeeee e eseve e 554
Prerequisites for Integrating with BPEL ProCesses........ccciuiiiiiiiiiiiiieiiieeiie et 555
Configuring the PeopleSoft-Delivered BPEL NoOde........cccooiieiiiiiiiecieeciecee e 555
Consuming BPEL Process—Based SerVICES.......cciviiiiiiiiiiiiiiiecieecieeereeeee et sve e e evee s 556

Understanding Consuming BPEL Process-Based Services.........cccoeeereiieeiieeniieniieniee e 556

Deploying BPEL PrOCESSES......ccouiiiiiiiiieeiieeiieeiteeiteesiteesereesreesveessaeeteeessseessseessseesssesssseessseens 557

Consuming WSDL Documents from BPEL Processes.........cccocevieriiiniieiciieeie e 557

Consuming Synchronous BPEL Operations..........c.cccccuevcvieeiiieeiiieenieenieesieesveesveeeveeeseeesseneennns 558

Consuming Asynchronous Request/Response BPEL Operations...........cccceevvierieencveeereeeeneenne 559

Consuming Asynchronous Fire-and-Forget (One-Way) BPEL Operations..........c.cccccveevuveennnenn. 562
Providing PeopleSoft Services to BPEL ProCESSES........ccovuiiiiiiiciieiiiecieeeiieeiee et esve e evee s 564

Understanding Providing PeopleSoft Services to BPEL Processes.........ccccvevvvieeciieenieenieenneenns 564

Providing Synchronous PeopleSoft Operations to BPEL Processes.........cccoevveveiieecieeenieenveennne. 565

Providing Asynchronous PeopleSoft Request/Response Operations to BPEL Processes............ 567

Chapter 23: Integrating with Oracle Mediator and Oracle ESB-Based Services 571
Understanding Integrating with Oracle Mediator and Oracle ESB-Based Services...........cccccveennene. 571

Oracle Mediator and Oracle ESB........cccooiiiiiiiieeeee e 571

SOTtWATe COMPONEIILS.uviiiirieriiieriieicteeeeiteestteestteeseeeesteesseesseessseeaseeesseeessseessseessseesssessssessssenans 571

Securing Oracle Mediator and Oracle ESB-Based Services........c.ccocvuveviiiviieniieniiecieeeiee e 572
Prerequisites for Integrating with Oracle Mediator/ESB—Based Services..........cccceeeveeeeveeneveeneneenne. 573
Consuming and Invoking Oracle Mediator/ESB-Based Services.........cccceevrrrireniienieerieenreesveeennes 574

Understanding Consuming and Invoking Oracle Mediator/ESB-Based Services........................ 574

Providing Oracle Mediator/ESB—Based Services for Consuming in PeopleSoft......................... 577

Consuming Oracle Mediator/ESB-Based ServiCes........ccoovuiiviiiiiieriieiiieeiie e esiee e sveeeveens 577

Invoking Synchronous Oracle Mediator/ESB-Based Services..........ccocveevvieniiieniiienieeeiieeieeens 578

Invoking Asynchronous Oracle Mediator/ESB-Based Services.........cccoovvvevieeniienieencieeecieeennenn 579

Invoking Asynchronous Request/Response Oracle Mediator-Based Services..........cccveeveeenenn. 583
Providing and Invoking PeopleSoft Services in Oracle Mediator/ESB............ccccoevvieviienciienriecneens 584

Understanding Providing and Invoking PeopleSoft Services in Oracle Mediator/ESB............... 584

Prerequisites for Providing and Invoking PeopleSoft Services in Oracle Mediator/ESB............ 584

Providing PeopleSoft SEIVICES......ccciiiiiieiiieiiecee ettt e seb e esreeeareas 584

Invoking PeopleSoft Services in Oracle Mediator/ESB...........cccoeeciiieiiieniieciecieeciee e 585

Chapter 24: Using the Inbound File Loader Utility 587
Understanding the Inbound File Loader Utility..........ccoeoiiieeiiiiiiiiiicie et 587

FAIE PrOCESSINE. . uieivieiiieiiieeiie et et e et e et e e et e et e e tbe e abeessbeessseeasseeesseeensseansseesssaenssasssseesnsens 587
Understanding DeveloOpment ACHVITIES.c.ueivieriiieerieeiieesieestiesreeeereeereeessreeseaeeseseessseessseessseesssees 588

General DevelOPMENt ACHIVITIES.cviierieerieeriierteesteeeteeeteeesteeesteeesaeessseessseessseeesseesseeessseessnes 589

Development Activities for PeopleSoft Integration Broker Processing..........ccoccveeevveerveenveennnen. 589

Creating File Layout Definitions.........ccccccuiieiiieiiiieiiieiiieciee et sre e reeeseeeeneeseneeseneas 590

Development Activities for Application Class Processing..........cccvevveerviercieescieeeceeeneeesveeeennn 590
Prerequisites for Using the Inbound File Loader Utility.........ccccoovieviieriienciieeiiecee e 592
Setting Up Inbound File Loader Processing Rules...........ccccccuveiiiiiiieiiiieie e 593

Understanding Setting Up Inbound File Loader Processing Rules............ccccoevvieviienciieicieeninns 593

Setting Up Inbound File Loader Processing Rules..........c.ccccuvveviiieriieniieniieciiecee e 594
INitiating File PrOCESSING......ccuiiiiiieiiieiieeeiie ettt eteeeiee ettt sve e s ve e s teeebeeestbeesaeessseessseessseesnseeenseean 596

Understanding Initiating File ProCessSing.........ccceeeiiiciiiiriieiiierieerieeereeeeeeiee e eseve e e s 596

Initiating Inbound Flat File ProCeSSINg..........ccueiviiiiiiieiiieciieeteesreeereeeteeevteesieeeeveeseaeessseesevee s 598
Testing Inbound Flat File PrOCESSING........ccccuiiriieiiiiiiieiiieeiie et esteeeree st esteeeeaeeeseeseseessseeenns 599

Chapter 25: Copying Integration Metadata between PeopleSoft Databases 601
Copying Integration Metadata Between PeopleSoft Databases...........ccceeeveeeciieniieniiecieeeiee e 601
Understanding Copying Integration Metadata Between PeopleSoft Databases............ccceueee.e.. 601

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. XVii

Contents

Understanding Data Dependencies and Relationships for Copying Data.........c.ccceeeveeeciennnnnnns 601
Using Data Mover Scripts to Copy Message Schema and WSDL Data...........ccccceeevveeeieenieenveennnen. 604
Converting WSDL Documents and Message Schemas to Managed Objects...........ccceevererveenereennee. 605

Understanding Converting WSDL Documents and Message Schema to Managed Objects........ 605

Using the Metadata Convert/Schema Convert Page..........cccoccvveviiieciieiiiiiiie e 605

Converting WSDL Documents to Managed ObJectS........c.eevvvieriierciieeeieeie e esieesveeeveesvne e 606

Converting Message Schemas to Managed ObDJECtS.........cceeevuieeriieeriieriienieeeieeeiee e eveesneees 607

Deleting Data from the Deprecated Data RepOSItOry.......cccveeeieiiriiiiiieiiieciee e 608
Managing Nodes Copied Between Databases and Upgraded from Earlier PeopleTools Releases..... 608

Appendix A: Integration Scenarios 609
Understanding the Integration SCENATIOS.cccviiiiiiieiiieeriieerieerteesteesreeereeeveeereeessreessaeeseseessseessnes 609
Understanding Integration Setup for the Integration SCeNarios.........ccoueeeeeerveerieerieescieeeciee e e 609
Integrating with PeopleSoft Integration Broker Systems..........ccocvvrevuiierieeriieeniiesieecieeeiee e 613

Understanding ThiS SCENATIO......cccuuiiiiiiriiiiieeitieeiteeetieeteeesteeesereesreesseesseesseeesseeessseessseessseenns 614

Configuring the System for This SCENATIO.........ccceevciiirciiiiciiieie e 614
Integrating with PeopleSoft Integration Broker Systems Through Firewalls.........c..ccccceeeviiiviennnnns 616

Understanding ThiS SCENATIO......cccuuiiiiiiriieiieeitieecieeetieeieeeseeesereesreesreesseessseeesseeessseessseessseenns 616

Configuring the System for This SCENATIO.........ccceevcviieciiiiiiieiie e 618
Integrating with PeopleSoft Integration Broker Systems by Using Hubs.............ccceecvveeciieicieennnennee. 620

Understanding ThiS SCENATIO......cccuuiiiiiiriiiiieeitieectteeteeeriteesteeestteesreesbeesseesseeessesessseessseessseeans 621

Understanding Hub ROULING TYPES....cuuiiriiiriieiiieeiieeite ettt et este e ree e e steesseeesaeesaneessseenes 622

Configuring Generic-Routing HubS...........oooiiiiiiiiiicieccceee ettt 622

Configuring Sender-Specified Routing HUbsS...........ccocciiiiiiiiiiciececeee e 624
Integrating with Third-Party SYSteMS..........cccviiiiiiiiieiiieciie et e b e eareesene e 627

Understanding ThiS SCENATIO......cccuuiiiiiirieirieeiiieecieeerieeieeesteeeseteestreesseesbeesseeesseeessseessseesssenans 627

Configuring the System for This SCENATIO.........ccceevcviieciiiiiiieiie e 628
Integrating with Third-Party Systems by Using Remote Gateways.........ccceeeeveercrieerieeenieeeneeerveenenes 629

Understanding ThiS SCENATIO......cccuuiiiiiiriiiiieeitieeteeerteeiteesteeestteesreesbeessbeessseeesseeessseessseessseenns 630

Sending Messages to Third-Party SYStemS.........cccuiieciieieiieeiiierie ettt 632

Receiving Messages from Third-Party SyStems.........cccvieviieiiieriieiieeciie et 634
Integrating with PeopleTools 8.47 and Earlier PeopleTools 8.4x Systems.........ccccecvvevvrerveenveennen. 637

Understanding ThiS SCENATIO......cccuiiiiiiriririeeitieectteerieeiteesteesereesreesseesseesseeesseeessseessseessseenns 637

Configuring the System for This SCENATIO.........ccceevciiieciiiiciiieie e 638
Integrating with PeopleTools 8.1X SYSTEIMS.....cccuiiiiiiriieiiieeiie ettt eere e reesve e e eeaeeenes 639

Understanding ThiS SCENATIO......cccuuiiiiiiriiiiieeitieeiteeetieeteeesteeesereesreesseesseesseeesseeessseessseessseenns 640

Configuring the System for This SCENATIO.........ccceevcviirciiiiiiiieiie e e 640

Appendix B: Transformation Example: Integration Between Two PeopleSoft Nodes.........cccceuuueee 643
Understanding the Transformation EXample..........ccccveviiiiiiiiiiiiiiicie et evee e 643

USING the EXAMPIC...cc.uiiiciiiiiiieciie ettt ettt e et e et e e stbeessbaeesbaeensaeensseessseessseenssens 643

Integration Metadata for This EXample........ccceeviiiiiiiiiiiiiiiece et 643
Creating MesSsage DEfINItIONS.eeeeuiiiiieeiiieiiiesieeeieeeieeeseeestte e teesbeesereessbeeesseeestaeesseessseessseesssens 644

Message Definition: PeopleSoft SCM NOAE.........cccvieriiiiciiiiiie ettt evee e s 644

Message Definition: PeopleSoft CRM NOdE........c.cceciiiiiiiiiiiiiieciieeiee et 645
Setting UpP the COAESELS.....ccuuiiiiiiiiieiiieciie ettt esteesteesbeesbeeeteesteeessaeessseessseessseessseessseesnsseenes 646
Setting Up the Transformation..........c..eecuiierieeiiiirieecieestie ettt erveesreesbeeebeeeraeeeseesseessseesnnes 648
XSL WalKERIOUZN.viiiiiiieiieciie ettt ettt e e e e tb e s b e e sebeessbeeesbeeessaeessaeensseenssaensnes 649

Transformation Processing: First Pass........cccccveeciiiiciiiiiiiiiiecie ettt 650

Transformation Processing: SEcond Pass..........ccccveciiiiiieiiiiiiiie et ens 653
Testing the TranSfOrMAtION.........cccviiiciiieiieecie ettt see e saeesbeeebeeesbaeetaeesbeessseesssaessseeenses 653

Appendix C: Understanding Migrated Integration Metadata 655
Understanding Migrated Integration Metadata............ccoeeiiiriieiiiieniiiecieeeee e 655

xviii Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Contents

INOAE ODJECES....ueiiiiieieiieeii et e ectee et e e rtte et e e s teeebeeetteesbeeessseessseesssaeasseeesssaessssasseessseessseessseeenseean 655
CRANNEL ODJECLS. .. .uiiiiiieiiieciieeieeeie et ee et eette et e et e et e e sbeessbeessbeeessaeessseessseessseessseessseessseesssenans 655
IMESSAZE ODJECLS. ..euuviiieriieiiiieiieerte et e etee st estee e bt eeteeestbeessseessseesssaeassaeasseeassseensseenssaessseessseesssens 656
Node Transaction and Relationship ODJECES........eeecuiiiriiiiiiiiiieciie et 656
Understanding Migrated Integration PeopleCode............cooviiriiiiiiiiiieiiieciie e 657
APPLICALION CIASSES...c.uvieiviiiiiieiiierteesieeetee et e eteeesteeestreestseessaeessseessseesssesesseeesasesseesssessssesssses 658
PeopleCode MEthods........ccuiiiiieiiiecie ettt ettt e e e e b e e s b e e s sbeeessaeessaeessaeessaeennns 658
Built-In FUNCHIONS. ...ttt ettt et ettt sttt 659
Other Migrated CONSIITUCES......cccviiieiiieiiiesiierieeecteeesteeesteeeseeesbeesbeeaseeesseeessseessseessseessseesseesssees 659
SPECIAL CRATACTETS. ... vieeiieiiieeiie ettt et e st e et e e teeestaeestbeesebeessseessseeessaeessaeensseesssassssessssenans 659
Correcting Integration PeopleCode That Did Not Migrate..........cccccveeveeerieenciieniieeiee e e eevee e 659
Understanding Integration PeopleCode That Did Not Migrate..........cccccveevveevieenirencieesree e 659
Correcting Non-Migrated Integration PeopleCode...........cceeviieiiieiiieiciieiiecic e 660
Appendix D: Setting PS_FILEDIR and PS_SERVDIR Environment Variables 663
Understanding Setting PS_FILEDIR and PS SERVDIR Environment Variables..............c.cccven..... 663
Setting PS FILEDIR and PS_SERVDIR in Microsoft Windows Environments...............c.cceeuvennnee. 663
Setting PS FILEDIR and PS_ SERVDIR in UNIX Environments...........ccccceeevierveencreeecneeenveesneennns 664

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. Xix

Contents

XX Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Preface

Understanding the PeopleSoft Online Help and PeopleBooks

The PeopleSoft Online Help is a website that enables you to view all help content for PeopleSoft
Applications and PeopleTools. The help provides standard navigation and full-text searching, as well as
context-sensitive online help for PeopleSoft users.

PeopleSoft Hosted Documentation

You access the PeopleSoft Online Help on Oracle’s PeopleSoft Hosted Documentation website, which
enables you to access the full help website and context-sensitive help directly from an Oracle hosted
server. The hosted documentation is updated on a regular schedule, ensuring that you have access to the
most current documentation. This reduces the need to view separate documentation posts for application
maintenance on My Oracle Support, because that documentation is now incorporated into the hosted
website content. The Hosted Documentation website is available in English only.

Locally Installed Help

If your organization has firewall restrictions that prevent you from using the Hosted Documentation
website, you can install the PeopleSoft Online Help locally. If you install the help locally, you have more
control over which documents users can access and you can include links to your organization’s custom
documentation on help pages.

In addition, if you locally install the PeopleSoft Online Help, you can use any search engine for full-
text searching. Your installation documentation includes instructions about how to set up Oracle Secure
Enterprise Search for full-text searching.

See PeopleTools 8.53 Installation for your database platform, “Installing PeopleSoft Online Help.” If you
do not use Secure Enterprise Search, see the documentation for your chosen search engine.

Note: Before users can access the search engine on a locally installed help website, you must enable the
Search portlet and link. Click the Help link on any page in the PeopleSoft Online Help for instructions.

Downloadable PeopleBook PDF Files

You can access downloadable PDF versions of the help content in the traditional PeopleBook format.
The content in the PeopleBook PDFs is the same as the content in the PeopleSoft Online Help, but it has
a different structure and it does not include the interactive navigation features that are available in the
online help.

Common Help Documentation

Common help documentation contains information that applies to multiple applications. The two main
types of common help are:

* Application Fundamentals

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. XXi

Preface

» Using PeopleSoft Applications

Most product lines provide a set of application fundamentals help topics that discuss essential information
about the setup and design of your system. This information applies to many or all applications in the
PeopleSoft product line. Whether you are implementing a single application, some combination of
applications within the product line, or the entire product line, you should be familiar with the contents

of the appropriate application fundamentals help. They provide the starting points for fundamental
implementation tasks.

In addition, the PeopleTools: PeopleSoft Applications User's Guide introduces you to the various
elements of the PeopleSoft Pure Internet Architecture. It also explains how to use the navigational
hierarchy, components, and pages to perform basic functions as you navigate through the system. While
your application or implementation may differ, the topics in this user’s guide provide general information
about using PeopleSoft Applications.

Field and Control Definitions

PeopleSoft documentation includes definitions for most fields and controls that appear on application
pages. These definitions describe how to use a field or control, where populated values come from, the
effects of selecting certain values, and so on. If a field or control is not defined, then it either requires
no additional explanation or is documented in a common elements section earlier in the documentation.
For example, the Date field rarely requires additional explanation and may not be defined in the
documentation for some pages.

Typographical Conventions

XXii

The following table describes the typographical conventions that are used in the online help.

Typographical Convention Description

Key+Key Indicates a key combination action. For example, a plus sign (
+) between keys means that you must hold down the first key
while you press the second key. For Alt+W, hold down the Alt
key while you press the W key.

... (ellipses) Indicate that the preceding item or series can be repeated any
number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode syntax.
Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

> This continuation character has been inserted at the end of a
line of code that has been wrapped at the page margin. The
code should be viewed or entered as a single, continuous line
of code without the continuation character.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Preface

ISO Country and Currency Codes

PeopleSoft Online Help topics use International Organization for Standardization (ISO) country and
currency codes to identify country-specific information and monetary amounts.

ISO country codes may appear as country identifiers, and ISO currency codes may appear as currency
identifiers in your PeopleSoft documentation. Reference to an ISO country code in your documentation
does not imply that your application includes every ISO country code. The following example is a
country-specific heading: "(FRA) Hiring an Employee."

The PeopleSoft Currency Code table (CURRENCY CD TBL) contains sample currency code data. The
Currency Code table is based on ISO Standard 4217, "Codes for the representation of currencies," and
also relies on ISO country codes in the Country table (COUNTRY TBL). The navigation to the pages
where you maintain currency code and country information depends on which PeopleSoft applications
you are using. To access the pages for maintaining the Currency Code and Country tables, consult the
online help for your applications for more information.

Region and Industry Identifiers

Information that applies only to a specific region or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a region-specific heading: "(Latin America) Setting Up Depreciation"

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in the PeopleSoft
Online Help:

¢ Asia Pacific
* Europe
e Latin America

¢ North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following
industry identifiers may appear in the PeopleSoft Online Help:

e USF (U.S. Federal)

¢ E&G (Education and Government)

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Using and Managing the PeopleSoft Online Help

Click the Help link in the universal navigation header of any page in the PeopleSoft Online Help to see
information on the following topics:

* What’s new in the PeopleSoft Online Help.
* PeopleSoft Online Help acessibility.
* Accessing, navigating, and searching the PeopleSoft Online Help.

* Managing a locally installed PeopleSoft Online Help website.

Understanding PeopleSoft Integration Broker

PeopleSoft Integration Broker facilitates integrations with PeopleSoft and third-party systems. It features
a services-oriented architecture that enables you to expose PeopleSoft business logic as services to
PeopleSoft and third-party systems. It also allows you to consume and invoke services from other
PeopleSoft and third-party systems. The PeopleSoft Integration Broker services framework supports
synchronous and asynchronous messaging, and enables you to use a variety of communication protocols,
while managing message structure, message content, and transport disparities

This product documentation describes the procedures for using PeopleSoft Integration Broker to develop
and administer services. These procedures include defining services, service operations, messages,
queues, routings, and transformations.

This product documentation also discusses developing the necessary PeopleCode to send, receive, and
route service operations. It also discusses how to develop PeopleCode and XSLT code to filter, transform,
and translate message content.

Though not intended for use in production environments, code examples are included throughout this
product documentation to help illustrate technology concepts and the use of product features.

Other PeopleTools product documentation discusses configuring and administering the integration
system, monitoring integrations, and testing integrations. See the following resources for more
information:

* Product documentation for PeopleTools 8.53: PeopleSoft Integration Broker Administration.
* Product documentation for PeopleTools 8.53: Integration Broker Service Operation Monitor.

* Product documentation for PeopleTools 8.53: Integration Broker Testing Tools and Utilities.

XXiv Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Preface

PeopleTools Related Links

Oracle's PeopleSoft PeopleTools 8.53 Documentation Home Page [ID 1494462.1]

PeopleSoft Information Portal on Oracle.com

My Oracle Support

PeopleSoft Training from Oracle University

PeopleSoft Video Feature Overviews on YouTube

Contact Us

Send us your suggestions Please include release numbers for the PeopleTools and applications that you

are using.

Follow Us
n Get the latest PeopleSoft updates on Facebook.
u Follow PeopleSoft on Twitter@PeopleSoft Info.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. XXV

https://support.oracle.com/epmos/faces/ui/km/DocumentDisplay.jspx?id=1494462.1
http://www.oracle.com/us/products/applications/054275.html
https://support.oracle.com/CSP/ui/flash.html
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=402&p_nl=OPSE
http://www.youtube.com/user/PSFTOracle
mailto:PSOFT-INFODEV_US@ORACLE.COM
http://www.facebook.com/pages/Oracle-PeopleSoft/220476464680933?sk=wall&filter=12
https://twitter.com/PeopleSoft_Info

Chapter 1

Getting Started with PeopleSoft Integration
Broker

PeopleSoft Integration Broker Overview

This subject describes using PeopleSoft Integration Broker to:
* Perform asynchronous and synchronous messaging among internal systems and third-party systems.
* Expose PeopleSoft business logic as web services to PeopleSoft and third-party systems.

* Consume and invoke web services from third-party and PeopleSoft systems.

Implementing PeopleSoft Integration Broker

This section provides information to consider before you begin to use PeopleSoft Integration Broker.

Planning the Integration Architecture

The two major components of PeopleSoft Integration Broker are the integration gateway and the
integration engine. The integration gateway is a platform that manages the receipt and delivery of
messages passed among systems through PeopleSoft Integration Broker. The integration engine is an
application server process that routes messages to and from PeopleSoft applications as well as transforms
the structure of messages and translates data according to specifications that you define.

When planning the integration architecture, evaluate historical integration data, current data, as well as
expected growth and increased traffic. Consider the number of interfaces you have in production and

how much system resources they use. Also consider how many of the interfaces will be nightly batch file
loads, versus how many will be real-time service-based integrations. Devise simulated real-life integration
scenarios where you can estimate the volume and the size of the transactions to a certain degree. Then use
this information for benchmarking and stress testing—which should lead to performance tuning, hardware
sizing, and so on.

Planning Integrations

In planning the integrations to develop and execute, consider the following:
* Real-time integrations or scheduled integrations.
Determine if your business needs are best served with real-time integration or scheduled integrations.

Scheduled batch processing and file loads are discussed in other PeopleTools subjects.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 27

Getting Started with PeopleSoft Integration Broker Chapter 1

See the product documentation for PeopleTools 8.53: Process Scheduler and PeopleTools 8.53:
Application Engine..

* Inventory the integrations to develop.
Determine the systems and applications that will participate in each integration.

Consider dependencies on other systems owned by other groups having concurrent releases, and data
dependencies within the context of synchronizing data between systems. Also consider if you will
need permission from business owners to integrate with their systems.

* Generic integrations.

Consider if you can develop generic integrations. Perhaps in your current environment only two
systems need to exchange information and they do so in a proprietary way. But consider that one day
perhaps additional systems in your enterprise may also need to exchange that information with the
source system. Will you need to develop transformations for systems that will be integrating later on?
Can you develop the integration in a way so that other systems will be able to consume the service or
subscribe to the information without requiring complex transformations?

* Determine the integrations that will require synchronous messaging and those that will asynchronous
messaging.

In PeopleSoft Integration Broker synchronous integrations, all processing stops until a response is
received. In PeopleSoft Integration Broker asynchronous integrations, each request is placed in a
queue and is processed as soon as the system can accommodate the request.

Perhaps you may need to stop the processing of fulfilling an order until the system verifies that all
requested items are available in inventory. In such a case, a synchronous integration is needed.

However the processing of support tickets probably should not stop if a system uses integration to add
a new ticket to a queue. In such a scenario, an asynchronous integration might be appropriate.

* Prioritize integration development.

Plan to develop mission-critical integrations first, standard integrations next, and nice-to-have
integrations last.

¢ Determine if data will need transformation or translation.
* Plan on using integration simulation tools.

Plan on using simulation tools such as PeopleSoft Send Master to simulate integrations with external
systems that are not under your control. Even when you do control all systems that are being
integrated, if you can’t get the integration to work using Send Master, you definitely won’t be able to
get it working from the external system. Test integrations using Send Master before spending hours
debugging a system.

See "Understanding Send Master" (PeopleTools 8.53: Integration Broker Testing Ultilities and Tools).

Determining Security

Unlike a public web service on the internet that retrieves a stock quote for a given ticker symbol, the
web services and integrations in your PeopleSoft applications can expose sensitive information such

28 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 1 Getting Started with PeopleSoft Integration Broker

as financial data. PeopleSoft Integration Broker facilitates transfer of information between systems;
however, a security analyst must evaluate security requirements for each individual integration.

For example, security requirements might differ when interfacing with credit card processing vendors,
versus publishing salary information out of human resources, versus synchronizing business units
between applications, and so on.

Perhaps certain information should be available to the public, including systems outside of your company,
such as how many inventory items are available for sale. Other information might be restricted to internal
employees only, internal application systems only, or perhaps only certain users of a particular application
system.

PeopleSoft Integration Broker allows you to secure each individual integration to the level of security
required, as well as all integration data flowing over the wire.

Planning for Support

Develop a support plan for after “go-live.” In doing so, consider the following:
* Determine who in your organization will support integration development and administration.

* Determine the type of error-notification and exception handling to implement to meet your support
requirements. Consider that while system administrators can resolve communication failure between
machines, they may not be able to resolve errors resulting from one system transmitting bad data to
another. Analyst intervention may be required to correct the data. Stronger validation at point of data
entry will result in fewer calls to a functional analyst to resolve integration issues.

Assessing Staff Skills

Assess the skills of the people who will perform development and administrative functions.

Developers working on the implementation of PeopleSoft Integration Broker should have familiarity,
training or experience in the following PeopleSoft areas:

* PeopleTools.

* PeopleCode.

* Application Engine.

In addition, developers should have an understanding and research capabilities in:
* Extensible Markup Language (XML).

* XML schema.

* Simple Object Access Protocol (SOAP).

* Hypertext Transfer Protocol (HTTP).

* Web Services Description Language (WSDL).

* Web Application Description Language (WADL).

* Universal Description, Discovery and Integration (UDDI) standard.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 29

Getting Started with PeopleSoft Integration Broker Chapter 1

» Java programming language.

Other Sources of Information

In addition to the implementation considerations presented in this topic, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, product documentation,
curriculum, and red papers.

The PeopleTools 8.53: Getting Started with PeopleTools documentation may also provide some useful
information.

30 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2

Understanding PeopleSoft Integration
Broker

Introduction to PeopleSoft Integration Broker

PeopleSoft Integration Broker is a middleware technology that:

* Performs asynchronous and synchronous messaging among internal systems and third-party systems.
» Exposes PeopleSoft business logic as web services to PeopleSoft and third-party systems.

* Consumes and invokes web services from third-party and PeopleSoft systems.

PeopleSoft Integration Broker enables you to perform these integrations among internal systems and
third-party integration partners, while managing data structure, data format and transport disparities.
Because of its modular design, you can reuse many elements that you develop for integrations.

PeopleSoft Integration Broker consists of two subsystems: the integration gateway and the integration
engine. The integration gateway resides on a PeopleSoft web server, and the integration engine is installed
on an application server as part of the PeopleSoft application.

Important! PeopleSoft Integration Broker interacts with a wide variety of third-party products. This
documentation is not an authoritative source of information about any third-party product. Most third-
party products are delivered with their own documentation, which you should use as the primary source
for information about them. This product documentation provides guidance that enables you to determine
the configuration settings that PeopleSoft Integration Broker requires to work with third-party products.
It does not address all configuration permutations. Examples of settings and data relative to a third-party
product may not be correct for your particular situation. To properly configure PeopleSoft Integration
Broker, you must apply your own expertise and obtain the most accurate and current information about
third-party products.

Web Services

PeopleSoft Integration Broker enables you to provide web services to other PeopleSoft systems and
external integration partners by generating Web Services Description Language (WSDL) documents and
Web Application Definition Language (WADL) document from integration metadata. PeopleSoft supports
providing WSDL documents and WADL documents to the PeopleSoft WSDL repository. The system

also supports providing WSDL documents to Universal Description, Discovery, and Integration (UDDI)
repositories.

The system enables you to consume WSDL documents from other PeopleSoft and third-party systems,
and automatically creates integration metadata based on the consumed WSDL documents for processing
integrations. You can consume WSDL documents from other PeopleSoft systems, UDDI repositories,
WSDL URLSs, and Web Services Inspection Language (WSIL) URLs.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 31

Understanding PeopleSoft Integration Broker Chapter 2

Integration Gateway

The integration gateway is a platform that manages the receipt and delivery of messages passed among
systems through PeopleSoft Integration Broker. It supports the leading TCP/IP application protocols used
in the marketplace today and provides extensible interfaces to develop new connectors for communication
with legacy, enterprise resource planning, and internet-based systems.

Additional features include:

* Backward compatibility for Extensible Markup Language (XML) links and PeopleSoft Application
Messaging.

» Listening connectors and target connectors that transport messages between integration participants
and the integration engine.

Note: This feature also enables you to build your own connectors to complement those delivered with
PeopleSoft Integration Broker.

» Basic logging information concerning message receipt, delivery, and errors.

* Connection persistence with continuous open feeds to external systems through connectors, with full
failover capabilities.

» Transport protocol and message format management so that when messages reach the integration
engine, they have a PeopleSoft-compatible message format.

Related Links

Integration Gateway Architecture

Integration Engine

32

The integration engine runs on the PeopleSoft application server. Rather than communicating directly
with other applications, the integration engine sends and receives messages through one or more
separately installed integration gateways.

The integration engine:

» Uses a modular architecture, so it can treat gateways as black boxes and communicate with them
using standard connectors.

» Adapts elements of an existing integration to produce a new integration with only minor adjustments.

* Handles messages containing data in a variety of formats. Formats include the PeopleSoft rowset-
based message format, and nonrowset-based message structures including , XML document object
model messages, Simple Object Access Protocol (SOAP) messages, and non-XML files.

* Sends and receives messages asynchronously (like email) or synchronously (suspending activity to
wait for a response).

* Applies message transmission type and routing based on specifications that you define in a PeopleSoft
Pure Internet Architecture component.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

* By developing and applying application engine transform programs, the application engine can
transform message structure and translate data content according to specifications that you define in
PeopleSoft Pure Internet Architecture components.

You develop transform application engine programs in PeopleCode or Extensible Stylesheet Language
Transformation (XSLT) code.

These specifications can be reused for other integrations.
* Handles security features such as authentication, nonrepudiation, and cookies.

Related Links
Integration Engine Architecture

Integration Gateway Architecture

This section discusses:

* Architecture components.
¢ Connectors.

* Gateway manager.

* Gateway services.

Architecture Elements
You use an integration gateway to receive and send messages among integration participant systems.

Listening connectors receive incoming messages and deliver the incoming requests to the gateway
manager, which is a dispatcher for messages that flow through an integration gateway. The gateway
manager determines which target connector to use to properly deliver the messages to their intended

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 33

Understanding PeopleSoft Integration Broker Chapter 2

recipients. The target connector then delivers the messages to the intended recipients using the recipients’
preferred protocols.

Image: Integration gateway architecture

Listening Connectors
HTTP PeopleSoft | | T @opleSoft IMS asz || PeopleSoft | | cegr
8.1 Services
Gateway Services
MEBZ‘:;&E Error Message
o irf Handling Validation
Gateway Manager 99ing
XML i e L) Connector
Parsin Zelel Management
9 Objects g
Target Connectors
AS2 HTTP SMTP | |PeopleSoft PE“’E'?’S‘:’“ FTP IMS S'ng'e
Connectors

Listening connectors and target connectors transport messages between integration participants and the
integration gateway. These connectors support asynchronous and synchronous message handling. Many
connectors are configurable at the integration gateway and system levels.

Listening Connectors
Listening connectors receive incoming data streams and perform services based on the content of the
stream. They are invoked externally by other PeopleSoft systems and third-party systems.

Target Connectors

Target connectors initiate communication with other PeopleSoft systems or third-party systems. A
target connector might not receive a response from the target system during each operation, but every
transmission requires a low-level acknowledgment.

PeopleSoft Integration Broker Connector SDK

The integration gateway provides a fully extensible model for developing new connectors built to
the interface specification of the PeopleSoft Integration Broker software development kit (SDK) by
PeopleSoft customers, consultants, and application developers.

34 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Related Links

"Understanding Listening Connectors and Target Connectors" (PeopleTools 8.53: PeopleSoft Integration
Broker Administration)

"Understanding the PeopleSoft Integration Broker Connector SDK" (PeopleTools 8.53: PeopleSoft
Integration Broker Administration)

Gateway Manager

The gateway manager processes every message that flows through an integration gateway and maintains
links to the other major integration gateway components, including target connectors, listening
connectors, and each of the gateway services.

Listening connectors invoke the gateway manager when they receive a request. The gateway manager
uses the messaging objects IBRequest and IBResponse to determine how to route each request.

The gateway manager uses a number of the gateway services during this stage to perform operations such
as message validation. The gateway manager then invokes the appropriate target connector based on the
content of the message object and waits for a reply from the target connector. When the reply is received,
the gateway manager forwards the reply to the calling listening connector.

If an error occurs, the gateway manager uses the error handling service and works with the service to
prepare an error reply for the listening connector.

Gateway Services

This section describes the gateway services that the gateway manager uses.

XML Parsing

Most IBRequest objects and IBResponse objects that are processed in the system contain a content section
that represents the actual business content sent.

Most of the time, these content sections contain XML data. Consequently, often connectors must parse
and traverse XML. The standard Java XML objects are cumbersome for manipulating XML, so the
integration gateway includes an XML parsing service consisting of objects that provide an intuitive
interface for manipulating XML objects. This service is delivered as a set of three classes: XmlDocument,
XmINode and XmINodeList.

See the product documentation for PeopleTools 8.53: PeopleCode API Reference .

Integration Broker Objects

Two objects comprise the messaging objects service in the integration gateway:

» [BRequest

» [BResponse

These objects represent the request and response that enter and exit PeopleSoft Integration Broker.

See Supported Message Structures.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 35

Understanding PeopleSoft Integration Broker Chapter 2

Connector Management

The connector management service is a composite of several services that manage connectors. The
gateway processes each IBRequest to determine the appropriate connector to call in each situation.
This is primarily a message routing function that has varying levels of complexity abstracted from
the connectors. The connector management service also processes the IBResponse returned by each
connector.

WS-Security

WS-Security is an extension to the concept of the SOAP envelope header that enables applications to
construct secure SOAP message exchanges. It also provides a means for associating security tokens with
messages.

See "Implementing Web Services Security” (PeopleTools 8.53: PeopleSoft Integration Broker
Administration).

Error and Service Operation Logging

Most components in the system use a standard error logging interface.

Each PeopleSoft-delivered connector uses the logging API in the same fashion, ensuring that an
administrator can quickly drill down on problems or simply review the logs to see the IBRequest object,
the IBResponse object, and even the raw data exchanged with integration participants.

See Understanding Error Handling, Logging, Tracing and Debugging.

Error Handling

The integration gateway provides a standard error handling interface that is exposed to each connector.
This service provides error handling and error logging for most connectors delivered with PeopleSoft
Integration Broker.

Message Validation

Messages that pass into PeopleSoft Integration Broker must contain certain elements to be processed.
Because the integration gateway is the first component that processes messages sent to a PeopleSoft
application, it performs basic validation—such as making sure that the message identifies its requestor
and service operation name—to ensure that the integration engine and the target application can process
them.

Integration Engine Architecture

36

The integration engine uses a variety of PeopleTools elements to create, implement, manage, and enhance
integrations. Its modular architecture separates integration development activities from administrative
activities.

The integration engine is a combination of PeopleSoft Application Designer definitions, PeopleSoft Pure
Internet Architecture definitions, PeopleCode, and XSLT code, along with the underlying mechanisms
that tie all these elements together. The underlying mechanisms include the request handlers that

process both inbound and outbound messages according to the specifications in the development and
administrative elements.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

The integration engine resides on the PeopleSoft application server.
Image: Integration engine architecture

This diagram illustrates the integration components that reside on the integration engine and the types of
processing it performs.

Application Server

Data Handling Event Handlers
PeopleCode Component | | Application
XML Doc SOAP Doc Rowsets Interface Class Bulk Load
Parts / Message Application
Containers Segments Engine
Security Integration Broker Events
MNode User Digital)
Authentication | | Authentication | | Certificates SRl I Sl L
Monrepudiation || WS-Security PeopleSoft OnRoute OnAckRecaive
Tokens
Performance Throttling Transformation Engine
Multithreaded Load
Procsssing Balancing Master/Slave XSLT Codesets
Routing Management Error Handling and Monitaring
CQueue Management HTTR/HTTPS

Service Operations

A service operation in the PeopleSoft system contains the processing logic for an integration and
determines if the integration is to be processed synchronously or asynchronously. A service operation
definition contains the following definitions:

* Message. A message contains the payload of the integration.

* XML message schema. Message schemas provide the physical description of the data that is being
sent, including descriptions of fields, field types, field lengths, and so on.

* Handler. A service operation handler contains the processing logic for the service operation.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 37

Understanding PeopleSoft Integration Broker Chapter 2

* Routing. A routing definition specifies the direction of the integration (inbound or outbound), routing
alias names, transformations, and more.

Service Operation Types

PeopleSoft Integration Broker supports four types of service operations:
« Asynchronous one-way.

* Asynchronous request/response.

* Asynchronous to synchronous.

* Synchronous

Note: In this section the term transaction is used to describe the exchange of data between integration
partners.

When PeopleSoft Integration Broker sends a service operation, the receiving system returns a response
back to the sender. With asynchronous transactions, the response is automatically generated by the
integration gateway, and it serves only to notify the sending system of the transmission status of the
request . It is processed automatically by the application server, which uses that status information to
update the Service Operations Monitor. With synchronous transactions, however, the response includes
the content that is requested by the sending system, and it must be generated and returned by the receiving
system.

Operation Types

PeopleSoft Integration Broker supports the operation types listed in the table.

For any operation type, the application must invoke PeopleCode, a component interface or data mover
script to generate and send a service operation or to receive and process a service operation.

Operation Type Routing Actions
Asynchronous — One Way. Outbound. 1. The application generates and sends
a request.

2. One or more target system receives
and processes the request.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Understanding PeopleSoft Integration Broker

Operation Type

Routing

Actions

Asynchronous — Request/Response.

Outbound.

1. The application generates and sends
a request.

2. The target system receives and
processes the request.

3. Sometime later the target system
sends a response which contains
the transaction ID from the original
request. This ID serves as the
correlation ID.

4. The application processes the
response using the correlation ID to
map it back to the original request.
The message sent back is a response
in the form of a request.

Asynchronous to Synchronous.

Outbound.

1. The application generates and sends
a request.

2. A single target system receives and
processes the request, then generates
and sends a response.

3. The application receives and
processes the response.

Synchronous.

Outbound.

1. The application generates and sends
a request.

2. The application suspends activity
and waits for a response.

3. A single target system receives and
processes the request, then generates
and sends a response.

4. The application resumes its activity
and receives and processes the
response.

Asynchronous — One way.

Inbound.

1. A source system generates and
sends a request.

2. The application receives and
processes the request.

39

Understanding PeopleSoft Integration Broker Chapter 2

Operation Type Routing Actions

Asynchronous — Request/Response. Inbound. 1. A source system generates and
sends a request.

2. The application receives and
processes the request.

3. Sometime later the application
sends a response back to the
source system. The response
includes a unique identifier from the
original request, which serves as a
correlation ID.

4. The source system processes the
response using the correlation ID to
map it back to the original request.

Asynchronous to Synchronous. Inbound. 1. A source system generates and
sends a request.

2. The application receives and
processes the request, then generates
and sends a response.

3. The source system receives and
processes the response.

Synchronous. Inbound. 1. A source system generates and
sends a request.

2. The source system suspends activity
and waits for a response.

3. The application receives and
processes the request, then generates
and sends a response.

4. The source system resumes its
activity and receives and processes
the response.

Related Links

Services Operation Types

Inbound and Outbound Request Flows

40

This section discusses how inbound and outbound service operation flow through the architecture
components of PeopleSoft Integration Broker.

The PeopleSoft messaging architecture is discussed in greater detail in the Understanding Messaging
topic in the product documentation.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Related Links

Messaging Types
Asynchronous Messaging
Synchronous Messaging

Inbound Request Flow

This section describes the flow of a typical inbound request from an external system through PeopleSoft
Integration Broker.

Image: Flow of an inbound request through PeopleSoft Integration Broker

Integration Gateway

, JOLT
Requestr=» "l PeopleSoft | | Request
External Listening Target Application
System Connector Server
" Connector JOLT
M—Response +— *‘Response

After the incoming request has been received by the integration gateway, the flow through PeopleSoft
Integration Broker is the same, regardless of the listening connector used. With this in mind, no specific
listening connector will be discussed here. The scenario is simple: a request is sent into the gateway,
which then passes it on to the application server. The application server processes the request, and returns
a response.

Step 1: External System Sends a Request to PeopleSoft Integration Broker

The first step is that an external system sends a request to PeopleSoft Integration Broker. The external
system can be another PeopleSoft system or a third-party system.

Step 2: Request is Received by the Listening Connector

When a request is received by a listening connector, the first thing that the connector does is write the
request to the gateway log file. (The gateway’s integration properties file is used to set the logging level,
which controls what is actually written to the log. If messages are not being seen in the log file, check to
ensure that the log level is set correctly.) The request is written exactly as it is received. This is very useful
in that it presents exactly what was sent on the wire, before the connector normalizes the service operation
for use by the application server.

The connector then attempts to populate an internal request class with the particulars from the received
request.

A term often used in conjunction with listening connectors is credentials. Incoming requests are

thought to have two logical parts: the credentials and the body. The credentials can be thought of as the
information required by PeopleSoft Integration Broker to process and deliver the payload of the message.
The payload is located in the body. Since the credentials are separate from the body, the integration
gateway does not need to parse or otherwise examine the request body for information on how to route it.

A request without credentials cannot be processed. If the integration gateway receives such a request an
error will occur and an error message will be returned to the requestor.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 41

Understanding PeopleSoft Integration Broker Chapter 2

42

Step 3: Request is Processed by the PeopleSoft Target Connector

In order for a request to be sent from the gateway to the application server, it must pass through the
PeopleSoft target connector. This connector has two major responsibilities: it serializes the request to a
string, and sends that string via a JOLT connection to the application server.

All communication between the gateway and the application server is done via the use of Multipurpose
Internet Mail Extensions (MIME) messages. When the request is received by the connector, it builds a
MIME message. Typically the MIME message will only have two sections. In the first, the credentials are
stored in an XML document in a specific format. The second section stores the body.

At this point the request is in a standard format understood by both the gateway and the application server.
All requests must eventually resolve to this format before they can be sent to the application server for
processing. This format effectively isolates the application server from the protocols supported by the
gateway; for the most part, there is no information present about what listening connector was initially
invoked by the external request.

One credential element that may be present is the one for cookies. Obviously if this is set, the application
server would be right in assuming that the request came through the HTTP listening connector. However,
as a general rule the application server is isolated from the details of the protocol and the general broker
code on the server does not care what listening connector was used for a given request.

Once the MIME message has been built, it is written to the gateway log.

Finally, the connector looks up the JOLT connection properties from the integration properties file and
attempts to send the MIME to the application server. If these properties are not set up correctly, the
gateway will be unable to send requests. This is a common source of error, so care should be taken when
configuring this file.

An important point to keep in mind is that even though the MIME request to the application server may
appear in the gateway log file, the actual request may not have made it to the application server, since the
log entry is written before the service operation is sent. If a communication error occurs, the entry will
still be present in the log file. However, if this situation occurs an exception will be thrown and an error
log entry will also be created.

Step 4: Request is Received by the Application Server

When the MIME request is received by the application server, the system parses it into a request object.
The MIME structure is not propagated into the server.

Assuming the request parses without error, the application server pre-processes it.
Pre-processing involves:

* Authenticating the service operation, depending on the authentication scheme configured. If the
request fails authentication, an error is returned.

* Determining the direction of the service operation, by looking at the external alias on the routing
definition that is associated with the service operation.

* Determining the runtime handler to invoke. Currently, there are three handler types supported by the
integration broker: Ping, Synchronous, and Asynchronous. The service operation type determines
the handler code to invoke. Synchronous service operations are passed to sync-specific code, and
asynchronous service operations are passed to the publish/subscribe subsystem.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Once a request has been passed to its respective handler, further processing is dictated by the data
and PeopleCode specific to a particular system. Or in the case of hub configurations, the request may
immediately be routed to another external system.

Step 5: Response is Returned by the Application Server

Regardless of how the request is processed, a response must be returned by the application server to the
gateway in the same thread of execution. The connection between the gateway and the application server
is essentially synchronous, independent of the type of the service operation type. When the gateway sends
a request to the application server, it expects and must get a response.

In the case of synchronous processing, the generation of the response is blocked by the processing of
the request. A response cannot be generated until the service operation runs to completion. There may
be a noticeable delay in receiving the response, depending on the processing required by the OnRequest
method or if the request is being sent out of the broker to an external system for additional processing.

Asynchronous requests behave differently. Unlike synchronous requests, there is no blocking. A response
is generated for an asynchronous request as soon as the request is placed on the publication queue.
Because of this, a response generated for an asynchronous request is not a response in the strictest sense
of the term. Such responses should really be considered acknowledgments that the pub/sub system

has received the request. Receipt of such a response is not a guarantee that any applicable notification
PeopleCode has been successfully run.

Responses are converted to the MIME standard by the application server, and are returned to the gateway.

Step 6: Response is Received by the PeopleSoft Target Connector

As soon as the MIME response is received by the PeopleSoft target connector, it is written to the gateway
log file.

The MIME response is then parsed back into a gateway request object, and is then returned to the
listening connector.

Step 7: Response is Received by the Listening Connector

The response object is returned to the listening connector, upon which the response is mapped to a
response suitable for the given protocol.

It should be emphasized that, from the viewpoint of the listening connector, the processing of requests
is done synchronously. A request is received by a listening connector which then coverts it to a suitable
format, makes a blocking call to the gateway to handle the message, and ultimately gets a response back
all in the same thread of execution.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 43

Understanding PeopleSoft Integration Broker Chapter 2

Outbound Request Flow

44

The following diagram shows an outgoing request through PeopleSoft Integration Broker.

Image: Outgoing request through PeopleSoft Integration Broker to an external system

Integration Gateway

HTTP
e Request | | PeopleSoft | 7| Taraet Request—r» e
Listening 9
e HTTP Connector Connector System
Response| | -~ 4—1-Response—

There are several scenarios that might result in a request being sent out of the broker. Requests can be sent
in PeopleCode by using the Publish or SyncRequest methods of the Integration Broker class.

Regardless of how the request is created, the mechanism for sending it out of the broker is the same, and
the flow is the same regardless of the specific outgoing target connector you invoke.
Step 1: Application Server Generates Request

Once an outgoing request has been generated, the application server must perform some basic processing
before it can be sent out.

The application server looks at the request, and extracts the information about the node that it is being
sent to.

If target connector information was not supplied via PeopleCode or as part of the routing, then the node
name is then used to look up the name of the gateway to use, the target connector to use on that gateway,
as well as any specific connector properties that need to be passed to the connector in order to handle the
request. If this information is not found, an error will occur.

The application server modifies the outgoing request with the appropriate connector information.

The request is then converted to the MIME standard format, and is sent to the gateway over an HTTP
connection.

The request must be sent to the PeopleSoft listening connector on the gateway. The application server
uses the value of the Gateway URL defined for the given gateway. If this URL is not valid or does not
point to the PeopleSoft listening connector, the application server will be unable to send the request.

Step 2: Request is Received by the PeopleSoft Listening Connector

When the MIME request is received by the PeopleSoft listening connector, it is written to the gateway log
file.

The request is converted from MIME format to a gateway request object.

The connector then examines the request to determine what target connector the request is to be sent to;
that target connector is then invoked.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Step 3: Request is Received by the Target Connector

The target connector validates the request. Each connector requires certain properties to be set, otherwise
the request cannot be sent. For example, the HTTP target connector requires that the PrimaryURL be set.
If any mandatory connector properties are missing or are invalid, an error will be thrown.

The target connector then converts the request into whatever format is required by the protocol.

The modified request is then written to the gateway log, and then sent out.

Step 4: Response is Received by the Target Connector

The response received by the target connector is written to the gateway log, and the response is used to
build a gateway response object, which is then returned to the PeopleSoft listening connector.

Step 5: Response is Received by the PeopleSoft Listening Connector

The response object is then converted to the MIME standard format by the connector.
The MIME response is then written to the gateway log file, and is then returned to the application server.

Interactions with the gateway are always synchronous. If a request is sent to the gateway, a response
should be expected.

Step 2 is an HTTP POST request made of the gateway, and the response created here in Step 5 is returned
in response to that HTTP request. The HTTP connection is open for the duration of the processing for that
request.

The response object is returned to the listening connector, upon which the response is mapped to a
response suitable for the given protocol.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 45

Chapter 3

Understanding Messaging

Messaging Types

PeopleSoft Integration Broker supports asynchronous and synchronous messaging.

Synchronous messaging In synchronous messaging, a message is sent to a target system.
The sending system must receive a response from the target
system before it continues to process additional messages.

Asynchronous messaging In asynchronous messaging, a message is sent to a target
system. However, the sending system does not need to receive
a response from the target system before it can continue
processing messages. This type of messaging is also referred to
as fire-and-forget messaging.

The remainder of this topic discusses the PeopleSoft Integration Broker architecture for these messaging
types.

Note: For compatibility with previous PeopleTools releases, the PeopleSoft Integration Broker services-
oriented architecture introduced in PeopleTools 8.48 overlays the messaging architecture from earlier
PeopleTools 8.4x releases.

Asynchronous Messaging

This section discusses the PeopleSoft Integration Broker asynchronous messaging architecture.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 47

Understanding Messaging

Chapter 3

Brokers, Contractors and Queues

48

The publication broker, publication contractor, and subscription contractor services are the primary
application server elements required for asynchronous messaging. The publication broker service routes
the workload to both contractor server processes.

Image: Brokers, contractors, and queues

This example illustrates the publication broker service routing the workload the contractor server

processes.

ication
tract
ueue
ication — Puhllcahton
ssage Contractor
ueue
Publication B0
Broker —> E
ueLe
Subscription
Contractor
Application Server

Publication broker

Publication contractor

Subscription contractor

Acts as the routing mechanism. When an asynchronous service
operation arrives in its queue, the publication broker service
runs the defined routing rules. If the service operation needs to
be published to a remote node, it routes the service operation
to the publication contractor service. If the service operation

is subscribed to on the local node, then the publication broker
routes the service operation to the subscription contractor
service. Routing involves submitting either a subscription or
publication contract to the appropriate contractor, followed by
an asynchronous call to the contractor service notifying it that
work is waiting in the queue.

References the publication contract submitted by the publication
broker service and performs an HTTP post of the publication
service operation to the integration gateway. When the
integration gateway sends a reply indicating that it received the
publication service operation, the publication contractor service
updates the publication contract with the status of subscription
processing (Done or Retry).

References the subscription contract submitted by the
publication broker service and runs the appropriate notification

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3 Understanding Messaging

PeopleCode. Then it updates the subscription contract
concerning the status of the subscription processing.

Messaging System Server Processes

The application server offers six server processes to handle asynchronous service operations. They work
in pairs to provide three primary services:

Service Server Processes

Publication broker * Broker dispatcher (PSBRKDSP)

* Broker handler (PSBRKHND)

Publication contractor * Publication dispatcher (PSPUBDSP)

* Publication handler (PSPUBHND)

Subscription contractor * Subscription dispatcher (PSSUBDSP)

* Subscription handler (PSSUBHND)

Dispatchers and Handlers

Each of the publication broker, publication contractor, and subscription contractor is comprised of two
individual server processes that work together to handle incoming requests. One server process functions
as a dispatcher, while the other functions as a handler.

This relationship is analogous to the way that the application server handles workstation connections
and requests. To handle the incoming client requests, the application server has a listener and a handler
(or a pool of handlers). The listener receives the incoming requests and then routes them to an available
handler.

Typically, one listener serves many handlers. The relationship between the dispatcher and the handlers is
analogous to the relationship between the Jolt Server Listener (JSL) and the Jolt Server handler (JSH).
In the case of the application messaging server processes, the dispatcher functions as the listener, and the
handler as similar to the JSH.

For the services discussed in this section (publication contractor, subscription contractor, and publication
broker) there are at least two server processes: a single dispatcher and one or more handlers. The
PSxxxDSP server process is the dispatcher, and the PSxxxHND server process is the handler.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 49

Understanding Messaging Chapter 3

Note: The xxx represents BRK, PUB, or SUB. For example, in the case of the publication broker,
PSBRKDSP is the dispatcher and PSBRKHND is the handler.

Image: Dispatchers and handlers

This example illustrates the messaging server processes grouped by their functions in the messaging
architecture:

ication
—{ | PSBRKDSP | |FSBRKHMDiﬂ — ot | |PsPusose| |P5PUBHNDiﬂ

Dispatcher Handler(s) Dispatcher Handler(s)

— eription _{ '5558psP | [PssuBHND

eue

Dispatcher Handler(s)

Application Server

Asynchronous Service Operation Publication
This section discusses:
* Asynchronous publish of a service operation instance.

* Asynchronous publish of a publication contract.

Understanding Asynchronous Service Operation Publication

This section describes the flow of an asynchronous service operation publication through PeopleSoft
Integration Broker, as well as the status of the service operations as they appear in Service Operations
Monitor.

50 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3

Understanding Messaging

Asynchronous Publish of Service Operation Instances

This topic describes asynchronous publishing of service operation instances in PeopleSoft Integration
Broker.

Image: Asynchronous publication of an operation instance

This example illustrates asynchronous publish of a service operation instance in the messaging system:

Business Event

Publish ()

age
eue

o

h 4

PSERKDSP

Broker
Dispatcher

Publication Broker

o

Broker
Handler
PSERKHND

Publication Contractor

A4
Publication
Dispatcher
PSPUBDSP .
Fublication
—@—) Handler
PSPUBHND

The following table describes the processing steps of an asynchronous publication of a service operation

instance in PeopleSoft Integration Broker:

Step

Process

The service operation is published and enters the message

queue.

The instance is written to the PSAPMSGPUBHDR table in the
database, but is not yet dispatched.

The broker dispatcher process picks up the service operation

instance from its queue.

During this stage, the service operation instance status in the

Service Operations Monitor is New.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

51

Understanding Messaging

52

Chapter 3

Step

Process

The broker dispatcher process passes the service operation
instance to the broker handler process.

During this stage, the service operation instance status in the
Service Operations Monitor is Started.

The broker handler process accepts the service operation
instance, reads the data, and runs the routing rules to determine
where the publication needs to be delivered.

The broker handler process then writes a publication contract
in the PSAPMSGPUBCON table and notifies the publication
contractor service that it has an item to process.

During this stage, the service operation instance status in the
Service Operation Monitor is Working.

After the service operation is stored in the publication contact
queue, the status of the publication contract in the Service
Operations Monitor is New, the service operation instance
status is Done, and the publication dispatcher process picks up
the publication contract from its queue.

The publication dispatcher process passes the service operation

instance to the publication handler process.

During this stage, the publication contract status in the Service
Operations Monitor is Started.

You view service operation instance status information on the Operation Instances page of the Service
Operations Monitor. To access the page select PeopleTools, Integration Broker, Service Operations
Monitor, Monitor, Asynchronous Services, Operation Instances.

See "Monitoring Asynchronous Service Operation Instances" (PeopleTools 8.53: Integration Broker

Service Operations Monitor).

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3

Understanding Messaging

Asynchronous Publish of Publication Contracts

This topic discusses asynchronous publishing of publication contracts in PeopleSoft Integration Broker.

Image: Asynchronous publish of a publication contract

This example illustrates the flow of an asynchronous publication contract through the messaging system.

ication
niract
ueue

lP ublication Contractor

Publication

PSPUBDSP

Dispatcher

—(2)—

Fublication
Handler
PSPUBHND

Destination
Mode
Available?

t |
10}
.

Integration
Gateway

¥

Status
(Done, Error,
Retry, Timeout)

@(l@

The following table describes the processing steps of an asynchronous publish of a publication contract in
PeopleSoft Integration Broker:

Step

Process

The publication dispatcher picks up the publication contract
from the publication contract queue.

The publication contract is written to the PSAPMSGPUBCON
table in the database, but is not yet dispatched. The publication
dispatcher process passes the publication contract to the
publication handler process.

At this stage the status of the publication contract in the
Service Operation Monitor is Started.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

53

Understanding Messaging

54

Chapter 3

Step Process

3 The publication handler process accepts the publication
contract and attempts to deliver the service operation to the
integration gateway.
At this stage, the status of the publication contract in the
Service Operations Monitor is Working.

4 The integration gateway attempts to pass the publication
contract to the destination node.

5 The integration gateway passes the status of the publication
contract back to the publication handler.

6 The publication handler updates the Service Operations

Monitor with the status of the publication contract. The typical
statuses that displays in the Service Operations Monitor are:

* Done. The subscribing node successfully
received the contract.

* Timeout.
The system timed out before the
transaction processing was completed.

* Retry.
The system encountered and error.
The retry is automatic.

When service operations have Retry status, the service
operations are not resent until an internal ping is
successful. This ping is similar to a node ping. The
publication Contract dispatcher, as part of its on idle
processing, pings a node that is in Retry status and
verifies if the connection is reestablished. When the ping
is successful the publication Contract dispatcher resends
the service operation. The service operation goes back to
the publication handler process and returns to Working
status.

You can view the status information for the publication contract using the publication Contracts page in
the Service Operations Monitor. To access the page, select PeopleTools, Integration Broker, Service
Operations Monitor, Monitor, Asynchronous Services, Publication Contracts.

See "Monitoring Publication Contracts" (PeopleTools 8.53: Integration Broker Service Operations

Monitor).

The Service Operations Monitor may display statuses for publication contracts other than those discussed

in this section.

See "Understanding Asynchronous Service Operations Statuses" (PeopleTools 8.53: Integration Broker

Service Operations Monitor)

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3 Understanding Messaging

Asynchronous Service Operation Subscription
This section discusses:
* Asynchronous subscription of a service operation instance.

* Asynchronous subscription contracts.

Understanding Asynchronous Service Operation Subscription

This section describes the flow of an asynchronous service operation subscription through PeopleSoft
Integration Broker, as well as the service operation status at each stage of the process.

Asynchronous Subscription of Service Operation Instances

This topic describes asynchronous subscription process of service operation instances in PeopleSoft
Integration Broker.

Image: Asynchronous subscription of a service operation instance

This example illustrates the flow of an asynchronous service operation subscription through PeopleSoft
Integration Broker.

Integration
Gateway

!

Integration
Engine

!

cription

age tract

o ueue
d) d)
Publication Broker Subscription Contractor
h 4 b A
Broker (3 Subscription
Dispatcher N Dispatcher
PSBRKDSP . PSPUBDSP .
' Broker Subscription
Handler Handler
PSBRKHMND PSPUBHND

The following table describes the processing steps of an asynchronous subscription of a service operation
instance in PeopleSoft Integration Broker:

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 55

Understanding Messaging

56

Chapter 3

Step

Process

The service operation enters the message queue. The instance
is written to the database, but not yet dispatched

The broker dispatcher process picks up the service operation

instance from its queue.

During this stage, the status of the service operation instance in
the Service Operations Monitor is New.

The broker dispatcher process passes the service operation
instance to the broker handler process.

During this stage, the status of the service operation instance in

the Service Operations Monitor is Started.

The broker handler process accepts the service operation
instance, reads the data, and runs the subscription routing rules
to determine if the service operation needs to be processed
locally.

During this stage, the status of the service operation instance in
the Service Operations Monitor is Working.

The broker handler process then writes a subscription contract
in the PSAPMSGPUBCON table (the subscription contract
queue) and notifies the subscription contractor service that it
has an item to process.

During this stage, the status of the service operation instance in
the Service Operations Monitor is Working.

Once the service operation is stored in the subscription contact
queue, the status of the service operation instance in the
Service Operations Monitor is Done.

Processing of the subscription contract begins as the
subscription dispatcher process picks up the subscription
contract from its queue, and the status of the subscription

contract in the Service Operations Monitor is New.

In this example, at the point when the status of the
asynchronous service operation instance is Done, the

subscription contract status is New.

Asynchronous subscription contract processing is described in
the next section.

You can view service operation instance status on the Operation Instances page of the Service Operations
Monitor. To access this page, select PeopleTools, Integration Broker, Service Operations Monitor,
Monitor, Asynchronous Services, Operation Instances.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3

Understanding Messaging

See "Monitoring Asynchronous Service Operation Instances" (PeopleTools 8.53: Integration Broker
Service Operations Monitor).

The Service Operations Monitor may display statuses for subscription instances other than those
discussed in this section.

See "Understanding Asynchronous Service Operations Statuses" (PeopleTools 8.53: Integration Broker
Service Operations Monitor).

Asynchronous Subscription Contract

This topic discuses asynchronous subscription contract processing in PeopleSoft Integration Broker.

Image: Asynchronous subscription contract

This example illustrates the flow of an asynchronous subscription contract.

cription
tract
ueue

Q

¢ Subscription Contractor

Subscription
Dispatcher
PSSUBDSP £
Subscription
Handler
PSPUBHND
A
@
o
INatification
Handler
Application
Class J-

Status
(Done or Error)

----- >

Application
Data Tables

The following table describes the processing steps of an asynchronous subscription contract in PeopleSoft
Integration Broker:

Step

Process

The subscription dispatchers picks up the contract from the

subscription contract queue.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

57

Understanding Messaging

Chapter 3

Step

Process

The subscription dispatcher process passes the subscription
contract to the subscription handler process.

At this stage the status of the subscription contract in the
Service Operations Monitor is Started.

The subscription handler process accepts the subscription
contract and runs the notification PeopleCode.

In the example shown in the diagram, the notification
PeopleCode then uses the service operation data to update
application data tables. However, the notification PeopleCode
can use the service operation data as input to look up
information, create and publish another service operation, and
so forth.

At this stage, the status of the publication contract in the

Service Operations Monitor is Working.

The subscription handler passes the status of the subscription
contract to the Service Operations Monitor. The typical
statuses that display in the Service Operations Monitor for an

asynchronous subscription contract are:
* Done. The notification PeopleCode ran successfully.

e Error. An error occurred.

To view status information for subscription contracts, use the Subscription Contracts page in the Services
Operation Monitor. To access the page select PeopleTools, Integration Broker, Service Operations
Monitor, Monitor, Asynchronous Services, Subscription Contracts.

See "Monitoring Subscription Contracts" (PeopleTools 8.53: Integration Broker Service Operations

Monitor).

The Service Operations Monitor may display statuses for subscription contracts other than those discussed

in this section.

See "Understanding Asynchronous Service Operations Statuses" (PeopleTools 8.53: Integration Broker

Service Operations Monitor).

Synchronous Messaging

This section discusses synchronous messaging in PeopleSoft Integration Broker.

58

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3

Understanding Messaging

Synchronous Service Operation Publication

This topic discusses synchronous service operation publication in PeopleSoft Integration Broker.

Image: Synchronous service operation publication

This example illustrates using PeopleSoft Integration Broker to consume a synchronous service operation.

PSAPPSRY

Integration
Broker

-

O

Integration
Gateway

i <=cccssamanss

b

Status
(Done or Error)

G) Logging Tables

The following table describes the processing steps for a synchronous publication of a service operation in
PeopleSoft Integration Broker:

Step

Process

The integration engine sends the service operation to the
integration gateway.

The integration gateway attempts to deliver the service
operation to the destination node.

The integration gateway sends back the status information to
the integration engine

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

59

Understanding Messaging Chapter 3

60

Step Process

4 The integration engine updates the database tables as well
as sends the status information to the Service Operations
Monitor.

The possible statuses in the Service Operations Monitor for a
synchronous publication are:

* Done. The integration gateway was able to deliver the
service operation to the destination node.

* Error. The integration gateway was not able to deliver the
service operation to the destination node.

You can view the status information for the invocation in the Service Operations Monitor using the
Synchronous Services page. To access the page select PeopleTools, Integration Broker, Service
Operations Monitor, Monitor, Synchronous Services.

For status information for synchronous integrations to be available in the Service Operations Monitor, you
must set the Log Detail parameter in the routing definition for the service operation.

Related Links

Defining General Routing Information
"Understanding Synchronous Service Operation Statuses" (PeopleTools 8.53: Integration Broker Service
Operations Monitor)

"Filtering Synchronous Service Operations Data" (PeopleTools 8.53: Integration Broker Service
Operations Monitor)

"Viewing Monitor Output for Synchronous Service Operations Data" (PeopleTools 8.53: Integration
Broker Service Operations Monitor)

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 3 Understanding Messaging

Synchronous Service Operation Subscription
This topic discusses synchronous service operation subscription in PeopleSoft Integration Broker.
Image: Synchronous service operation subscription

This example illustrates providing a synchronous service operation through PeopleSoft Integration
Broker.

OnRequest Application
FeopleCode Data Tables
Programis)

¥

Integration Integrgtion PSAPPSRY
Gateway () . Engine

Logging Tables

Status
(Done or Error)

The following table describes the processing steps of a synchronous service operation subscription in
PeopleSoft Integration Broker:

Step Process

1 The integration gateway passes an inbound synchronous
service operation to the integration engine.

2 The integration engine runs an OnRequest PeopleCode event
program.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 61

Understanding Messaging Chapter 3

62

Step Process

3 The OnRequest PeopleCode program attempts to update the
application data tables.

4 The integration engine updates the database tables as well
as sends the status information to the Service Operations
Monitor.

The possible statuses in the Service Operations Monitor for a
synchronous publication are:

* Done. The integration gateway was able to deliver the
service operation to the destination node.

* Error. The integration gateway was not able to deliver the
service operation to the destination node.

For status information for synchronous integrations to be available in the Service Operations Monitor, you
must set the Log Detail parameter in the routing definition for the service operation.

You can view the status information for the publication in the Service Operations Monitor by using the
Synchronous Services page. Access this page by selecting PeopleTools, Integration Broker, Service
Operations Monitor, Monitor, Synchronous Services.

Related Links

Defining General Routing Information
"Understanding Synchronous Service Operation Statuses" (PeopleTools 8.53: Integration Broker Service
Operations Monitor)

"Filtering Synchronous Service Operations Data" (PeopleTools 8.53: Integration Broker Service
Operations Monitor)

"Viewing Monitor Output for Synchronous Service Operations Data" (PeopleTools 8.53: Integration
Broker Service Operations Monitor)

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 4

Understanding PeopleSoft Integration

Broker Metadata

PeopleSoft Integration Broker Metadata

You use the following integration metadata to create and implement integrations using PeopleSoft

Integration Broker

Integration PeopleCode

Integration gateway definitions

Message definitions

Node definitions

Queue definitions

Routing definitions

Service definitions

You use integration PeopleCode to send and receive messages,
route messages and manipulate message content.

This definition is an application’s internal representation of an
installed integration gateway. An application requires at least the
local gateway, through which it can send and receive messages.
Multiple nodes can share the same local gateway, which might
be the only gateway that you need for all of the integrations.

Message definitions provide the physical description of the data
that is being sent, including fields, field types, and field lengths.

Nodes represent any organization, application or system
that will play a part in integrations. For example, nodes can
represent customers, business units, suppliers, other trading
partners, external or third-party software systems, and so on.

Node definitions define the locations to or from which messages
can be routed.

Because an application can send messages to itself, a default
local node definition that represents the application is delivered
as part of the integration engine. Each PeopleSoft installation
must have one, and only one, default local node

Queues group asynchronous services for processing. In addition,
they can dictate the order of processing of the asynchronous
service operations .

Routing definitions determine the sender and receiver of an
integration. Routing definitions allow you to specify inbound
and outbound transformations that enable you to transform data
structures into those that the sending or receiving systems can
understand.

Service definitions group service operations into logical groups
or categories.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 63

Understanding PeopleSoft Integration Broker Metadata Chapter 4

Service operation definitions Service operations define the processing logic of an integration.
They specify the inbound, outbound and fault messages
associated with an integration, the integration PeopleCode to
invoke, and the routing to use.

Transformation programs A transformation or transform program is a type of Application
Engine program that you develop and specify as part of a
routing definition. PeopleSoft Integration Broker supports the
use of Extensible Stylesheet Language Transformation (XSLT)
code and PeopleCode for developing transform programs.

Transform programs can transform, filter and translate data.

Order of Precedence for Creating Integration Metadata

Create integration metadata in the following order:
1. Integration gateway definition.
2. Node definition.

3. Message definition.

4. Integration PeopleCode.

5. Transformation programs.

6. Queue definition.

7. Service definition.

8. Service operation definition.
9. Handler definition.

10. Routing definition.

Related Links

"Administering Integration Gateways" (PeopleTools 8.53: PeopleSoft Integration Broker Administration)
"Configuring Nodes" (PeopleTools 8.53: PeopleSoft Integration Broker Administration)

Understanding Managing Messages
Understanding Filtering, Transformation, and Translation

Understanding Service Operation Queues

Understanding Sending and Receiving Messages

Understanding Managing Services
Understanding Managing REST Services

Understanding Managing Service Operations
Understanding REST Service Operations

Understanding Routing Definitions

64 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5

Understanding Supported Message
Structures

Supported Message Structures

This topic discusses the message structures used by PeopleSoft Integration Broker to exchange request
and response messages between the integration gateway and the application server, between other
PeopleSoft systems, and between third-party integration partners.

Note: The code examples in this topic are for illustrative purposes only and are not intended to be used in
a production environment.

Integration Broker Message Structures

This section discusses the internal message formats for request messages and response messages, local
compression, and how to access IBInfo elements.

Internal Message Format for Request Messages

This section discusses the format used to exchange request messages between the integration gateway and
the application server. These messages are frequently referred to as IBRequest messages.

The Multipurpose Internet Mail Extension standard (MIME) is used as the basic structure for internal
messaging. MIME has several advantages in that the standard is well-known and supported, and because
it is text-based, it is human readable and easily serializable.

Messages using the internal format display in the integration gateway log file. Since the log file is a
valuable tool for debugging, anyone reading the file will need to understand how the messages are
structured.

Every request message contains three parts:

Headers The first part of a request message contains headers which
describe the attributes of the whole message.

IBInfo (Integration Broker The IBInfo (Integration Broker Information) section contains

Information) the credentials of the request as well as all other information
required by the PeopleSoft Integration Broker to process the
message. The IBInfo for a request has a specific XML structure
which is used for all request messages in the system, regardless
if the message is being sent to the application server or to the
integration gateway.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 65

Understanding Supported Message Structures Chapter 5

Content section The final section contains the message body of the original
request. This is the payload and is what is ultimately delivered
to the final destination.

The following is an example of a request message in the PeopleSoft internal MIME format:

Message-ID: <-123.123.123.123@nowhere >

Mime-Version: 1.0

Content-Type: multipart/related; boundary="Integration Server MIME Boundary"
Content-ID: PeopleSoft-Internal-Mime-Message

PeopleSoft-ToolsRelease: 8.53

-—-Integration Server MIME Boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: IBInfo

Content-Disposition: inline

<?xml version="1.0" 2>
<IBInfo>
<TransactionID>
<! [CDATA[caa3a040-bdeb5-11da-914c-ecaede80d83b]]>
</TransactionID>
<ExternalOperationName>
<! [CDATA[QE FLIGHTPLAN TRANSFORM.VERSION 1]]>
</ExternalOperationName>
<OperationType>async</OperationType>
<From>
<RequestingNode>
<! [CDATA[QE LOCAL]]>
</RequestingNode>
<RequestingNodeDescription>
<! [CDATA[11>
</RequestingNodeDescription>
<NodePassword>
<! [CDATA[password]]>
</NodePassword>
<ExternalUserName>
<![CDATA[11>
</ExternalUserName>
<ExternalUserPassword>
<![CDATA[11>
</ExternalUserPassword>
<AuthToken>
<! [CDATA[owAAAAQDAgEBAAAAVAIAAAAAAAASAAAABABTaGRyAk4ADLQg4AC4AMQ
AwWABTFZOonLEjJaPtR6v020advRU0Sq2MAAAAFAFNKYXRhV3icHYhNDKAWGEREEQ
srFyFNOcZSaGz8xAmcwAOdzug3yZv53gMUeWaM+s1IVI1IEFnZ0ysjBSv2bm01lmz1
L3Dgt4GrETHSHtQCs6cWBM2ybr 9ftMBLbPOLSQ==]]>
</AuthToken>
<WSA-ReplyTo>
<![CDATA[11>
</WSA-ReplyTo>
<NodeDN>
<! [CDATA[11>
</NodeDN>
<OrigUser>
<! [CDATA[QEDMO]]>
</OrigUser>
<OrigNode>
<! [CDATA[QE LOCAL]]>
</OrigNode>
<OrigProcess>
<! [CDATA[QE FLIGHTDATA]]>
</OrigProcess>
<OrigTimeStamp>2006-03-27T15:02:39.280000-0800</0rigTimeStamp>
<DirectGatewayRequest />
<SyncServiceTimeout />
<ExternalMessageID>
<! [CDATA[11>
</ExternalMessageID>

66 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5

<SegmentsUnOrder>N</SegmentsUnOrder>
<ConversationID>
<![CDATA[11>
</ConversationID>
<WSA-MessageID>

<! [CDATA[11>
</WSA-MessagelD>
<InReplyToID>

<! [CDATA[11>
</InReplyToID>
<DataChunk>

<!'[CDATA[11>
</DataChunk>
<DataChunkCount>

<![CDATA[11>
</DataChunkCount>
</From>
<WS-Security>

<WSTokenType>

<!'[CDATA[11>

</WSTokenType>
</WS-Security>
<To>

<DestinationNode>
<! [CDATA[QE IBTGT]]>
</DestinationNode>
<FinalDestinationNode>
<!'[CDATA[11>
</FinalDestinationNode>
<AppServerDomain>
<![CDATA[11>
</AppServerDomain>
</To>
<Cookies>
<![CDATA[11>
</Cookies>
<PathInfo>
<! [CDATA[11>
</PathInfo>
<HttpSession>
<SessionID>
<! [CDATA[11>
</SessionID>
</HttpSession>
<QStrArgs />
<ContentSections>
<ContentSection>
<ID>ContentSection0</ID>
<NonRepudiation>N</NonRepudiation>
<Headers>
<version>
<! [CDATA[VERSION 1]]1>
</version>
<encoding>
<! [CDATA[baseo6cd (deflate)]]>
</encoding>
<encodedlength>
<! [CDATA[948 (709)11>
</encodedlength>
<length>
<! [CDATA[2840]]>
</length>
</Headers>
</ContentSection>
</ContentSections>
<PublishNode>
<! [CDATA[QE LOCAL]]>
</PublishNode>
<Queue>
<! [CDATA [QE FLIGHTPLAN CHNL]]>
</Queue>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Understanding Supported Message Structures

67

Understanding Supported Message Structures

68

<SubQueue>
<! [CDATA[c9de8110-bdeb5-11da-be79-846bde717ebf]]>
</SubQueue>
<VisitedNodes>
<! [CDATA [QE LOCAL|]]1>
</VisitedNodes>
<Connector>
<ConnectorName>
<! [CDATA[PSFTTARGET]]>
</ConnectorName>
<ConnectorClassName>
<! [CDATA[PeopleSoftTargetConnector]]>
</ConnectorClassName>
<RemoteFrameworkURL>
<![CDATA[11>
</RemoteFrameworkURL>
<ConnectorParameters>
<ConnectorParam>
<Name>
<! [CDATA[URL]]>
</Name>
<Value>
<![CDATA[11>
</Value>
</ConnectorParam>
</ConnectorParameters>
<ConnectorHeaders />
</Connector>
<AttachmentSection ResponseAsAttachment="N" />
</IBInfo>

--Integration Server MIME Boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: ContentSection0
Content-Disposition: inline

eJydl11P2zAUhu8n7T+g/gAKFdt 6UYxOHCelFHIgO1RWEIUMTULIMTRRN2 7+£k7SpvwItd/F57¢
TvG+c5WVz9/£108ufhZfP46/1ycn56Nrl1Cnz8trkl1TVLRcG1kBb4wCrguhGFoUjw9P382/3w8b
tJ+Ug4GT+6£1ZnMS5UZNOAMxr 1hF18mrnXk76wiWTaaUzTRhOuxU7FS9hpopBxELC51SSuY6egqTU
seK/qbhlyJhIIFY+fp8iwuE8yCYk40VpXgZVCEfeml0ileSN1IIRTYw+IhltwFDBG569KUuhU/KK
gBQ8HVAR37VGeUHDzWIOFIdtbx90K1JJANNDsWOxmcrihZbfBIxyv4FYKys2Y5YyAolHgVrDHsk
z4hMpQU+cJpYJRxb7REamlnnz8DakEpoYSHWs21iPakJCLbR7T1kIPaZnhEZvOyTSgqCnXcWT2E1Z
alfLSQZOTNQGkPiJHQLR2I3pYFU3VSyTariWX/yq7iirzTIWpCoS2blh9%esVAOb4Mcm9831BORIJ
TWy//990JDg8A1Nnc2ghbzrMQ6TFalnbuBocflZQ59S0yAviz0C3I3hsHAO1PQ/XFkLhUZVKYKJ
107n1zjGIbMs 6g6heNgquSEMTIN+Y2Em69hCZ7X/bCbQts8yNfveTRwrysnzfr+1 foWg5srFmj+bT
7Tro9tV/H6B7C1UN8GpbdsGmp9eXHRa0913DVScz7£37IZue0Bfvlz0DxwgQ4 9AGXRKPxh6BMrwU
J7tegSyiRRAuR3se8TAgrehi BKmXSh6GHTQ5+POR1yANQ91Ib48ZH0YUykXAaYCMKVg5AEOhTI4L
mhAuH1AGIHWQHCkvDjhcVAx41JAWPfAVAKCHOX0/7PRRAw87ut fFU53bplX4K/MmvRDhSWLgFhy
CJajVz4+gLr4SyEInFjzhLeSWzygPTx6KpgOh9k6D/9z/1gQlWw==
--Integration Server MIME Boundary--

IBRequest Header Section

Chapter 5

The first part of a request message contains headers which describe the attributes of the whole message.

Message-ID: <-123.123.123.123@nowhere >

Mime-Version: 1.0

Content-Type: multipart/related; boundary="Integration Server MIME Boundary"
Content-ID: PeopleSoft-Internal-Mime-Message

PeopleSoft-ToolsRelease: 8.53

--Integration Server MIME Boundary
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: IBInfo

Content-Disposition: inline

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5

Understanding Supported Message Structures

IBRequest IBInfo Section

<?xml version="1.0" ?>
<IBInfo>

<TransactionID>
<! [CDATA[caa3a040-bde5-11da-914c-ecaede80d83b]]>

</TransactionID>

<ExternalOperationName>

<! [CDATA[QE FLIGHTPLAN TRANSFORM.VERSION 1]]>
</ExternalOperationName>
<OperationType>async</OperationType>

<From>

<RequestingNode>
<! [CDATA[QE LOCAL]]>
</RequestingNode>
<RequestingNodeDescription>
<! [CDATA[11>
</RequestingNodeDescription>
<NodePassword>
<! [CDATA[password]]>
</NodePassword>
<ExternalUserName>
<![CDATA[11>
</ExternalUserName>
<ExternalUserPassword>
<! [CDATA[11>
</ExternalUserPassword>
<AuthToken>
<! [CDATA[owAAAAQDAgEBAAAAVAIAAAAAAAASAAAABABTaGRyAk4ADLQg4AC4AMQ
AwWABTFZOonLEjJaPtR6v020advRU0Sq2MAAAAFAFNKYXRhV3icHYhNDKAWGEREEQ
srFyFNOcZSaGz8xAmcwAOdzug3yZv53gMUeWaM+s1IV1I1EFnZ0ysjBSv2bm01lmZ1
L3Dgt4GrETHSHtQCS6CcWBM2ybr 9fMBbPOLSQ==]]>
</AuthToken>
<WSA-ReplyTo>
<![CDATA[11>
</WSA-ReplyTo>
<NodeDN>
<! [CDATA[11>
</NodeDN>
<0OrigUser>
<! [CDATA[QEDMO]]>
</OrigUser>
<OrigNode>
<! [CDATA[QE LOCAL]]>
</0OrigNode>
<OrigProcess>
<! [CDATA[QE FLIGHTDATA]]>
</OrigProcess>
<OrigTimeStamp>2006-03-27T15:02:39.280000-0800</0OrigTimeStamp>
<DirectGatewayRequest />
<SyncServiceTimeout />
<ExternalMessageID>
<! [CDATA[11>
</ExternalMessageID>
<SegmentsUnOrder>N
</SegmentsUnOrder>
<ConversationID>
<! [CDATA[11>
</ConversationID>
<WSA-MessagelD>

<! [CDATA[11>
</WSA-MessageID>
<InReplyToID>

<!'[CDATA[11>
</InReplyTolID>
<DataChunk>

<! [CDATA[11>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

The following example shows an IBInfo section for a request message that was sent from the application
server to the integration gateway (formatted for easier reading):

69

Understanding Supported Message Structures

70

</DataChunk>
<DataChunkCount>
<![CDATA[11>
</DataChunkCount>
</From>
<WS-Security>
<WSTokenType>
<!'[CDATA[11>
</WSTokenType>
</WS-Security>
<To>
<DestinationNode>
<! [CDATA[QE IBTGT]]>
</DestinationNode>
<FinalDestinationNode>
<!'[CDATA[11>
</FinalDestinationNode>
<AppServerDomain>
<![CDATA[11>
</AppServerDomain>
</To>
<Cookies>
<![CDATA[11>
</Cookies>
<PathInfo>
<! [CDATA[11>
</PathInfo>
<HttpSession>
<SessionID>
<! [CDATA[11>
</SessionID>
</HttpSession>
<QStrArgs />
<ContentSections>
<ContentSection>
<ID>ContentSection0</ID>
<NonRepudiation>N</NonRepudiation>
<Headers>
<version>
<! [CDATA[VERSION 1]]1>
</version>
<encoding>
<! [CDATA[baseo6cd (deflate)]]>
</encoding>
<encodedlength>
<! [CDATA[948(709)11>
</encodedlength>
<length>
<! [CDATA[2840]]>
</length>
</Headers>
</ContentSection>
</ContentSections>
<PublishNode>
<! [CDATA[QE LOCAL]]>
</PublishNode>
<Queue>
<! [CDATA [QE FLIGHTPLAN CHNL]]>
</Queue>
<SubQueue>

<! [CDATA[c9de8110-bde5-11da-be79-846bde71l7ebf]]>

</SubQueue>
<VisitedNodes>
<![CDATA[QE LOCAL|]]1>
</VisitedNodes>
<Connector>
<ConnectorName>
<! [CDATA[PSFTTARGET]]>
</ConnectorName>
<ConnectorClassName>
<! [CDATA[PeopleSoftTargetConnector]]>

Chapter 5

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5

</ConnectorClassName>
<RemoteFrameworkURL>
<![CDATA[11>
</RemoteFrameworkURL>
<ConnectorParameters>
<ConnectorParam>
<Name>
<! [CDATA[URL]]>
</Name>
<Value>
<![CDATA[11>
</Value>
</ConnectorParam>
</ConnectorParameters>
<ConnectorHeaders />
</Connector>

Understanding Supported Message Structures

<AttachmentSection ResponseAsAttachment="N" />

</IBInfo>

While the basic structure is the same for all requests, not all elements are always required. An example
of this is the Connector section. The Connector XML is used to tell the integration gateway to route a
message to the named target connector. It also lists configuration parameters for the outbound request.
This XML would only be seen in requests sent from the application server to the integration gateway. For
requests going in the other direction, the section would be empty.

Note: The only element that is always required is ExternalOperationName.

The following is a list of the most important elements that may appear in the IBInfo section of a request

message:

Element

Description

IBInfo / ExternalOperationName

The name of the requested service operation.

IBInfo / Operation Type (Optional.) This is the type of service operation. The valid
values are: asynchronous, synchronous and ping.
IBInfo / TransactionID (Optional.) The transaction ID is used to uniquely identify a

request.

IBInfo / From / RequestingNode

(Optional.) The requesting node is the node that sent the
request to the current system.

IBInfo / From / Password (Optional.) This is the password for the requesting node.

IBInfo / From / DN (Optional.) For incoming requests, the DN gives the
Distinguished Name extracted from the certificate
authentication process.

IBInfo / From / OrigNode (Optional.) For requests that cross multiple nodes, OrigNode is

used to identify the node that initiated the request.

IBInfo / From / OrigTimeStamp

(Optional.) This timestamp corresponds to the time that the
request was created. For requests that cross nodes, this is the
time that the first request was created.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

71

Understanding Supported Message Structures Chapter 5

Element Description

IBInfo / To / DestinationNode (Optional.) This is the node to which the request will be
delivered.

IBInfo / To / FinalDestinationNode (Optional.) In cases where the message will be passed across

several nodes, this value specifies the ultimate target of the

message.

IBInfo / QStrArgs (Optional.) Specific to incoming HTTP requests. These are the
query string parameters found when the request was received
by the HTTP listening connector.

IBInfo / Cookies (Optional.) Specific to incoming HTTP requests. This is
cookie string found when the request was received by the
HTTP listening connector.

IBInfo / PathInfo (Optional.) Specific to incoming HTTP requests. This is the
path information extracted from the request.

IBInfo / ContentSections / ContentSection (Optional.) This node provides metadata about the text present
in the ContentSection.

IBInfo / ContentSections / ContentSection / ID (Optional.) The index number of the content section.

IBInfo / ContentSections / ContentSection / NonRepudiation | (Optional.) Indicates as to whether nonrepudiation should be

performed.

IBInfo / ContentSections / ContentSection / Headers (Optional.) Provides additional information about the data.

IBInfo / PublishingNode (Optional.) The node that published the message.

IBInfo / Queue (Optional.) The queue to which the service operation was
published.

IBInfo / Internallnfo / AppMsg / SubQueue (Optional.) The subqueue to which the service operation was
published.

IBInfo / Internallnfo / AppMsg / VisitedNodes (Optional.) The list of nodes that have already received this

message. This is useful when a message is being propagated
across multiple nodes.

IBInfo / Internallnfo / AppMsg / PublicationID (Optional.) The publication ID for this message.

IBInfo / Connector (Optional.) Connector information instructs the gateway as to
how to process the request.

IBInfo / Connector / ConnectorName (Optional.) This is the proper name of the target connector to

invoke to send the message.

72 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

Element Description

IBInfo / Connector / ConnectorClassName (Optional.) This is the class name of the target connector to
invoke.

IBInfo / Connector / ConnectorParameters (Optional.) Connector parameters are processing instructions

for the target connector to be invoked.

IBInfo / Connector / ConnectorHeaders (Optional.) Connector headers provide further metadata about
the contents of the message to be sent.

IBRequest Content Section
The content section of a request message features the message body.

--Integration Server MIME Boundary

Content-Type: text/plain; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: ContentSection0

Content-Disposition: inline

eJydl11P2zAUhu8n7T+g/gAKFdt 6UYxOHCelFHIgO1RWE1UMTUiIMTRRN2 7+£fk7SpvwItd/F5
eJydl11P2zAUhu8n7T+7¢c TvG+c5WVz9/£108ufhzfP46/1ycn56NrlCnz8trkl1TVLRcG1kBDb
4wCrguhGFoUjw9P382/3w TvG+8btJ+UgdGT+6f1ZnM5UZNOAMxr1hF18mrnXk76wiWTaaUzTRh
OuxU7FS9hpopBxEbC51SSuY6gqtJ+Ug4GT+TUseK/gbhlyJhIIFY+fp8iwuE8yCYk40VpXgzZVC
feml0ileSN1IRTYw+IhltwFDBG569KUuhU/KKgBQ8HVAR37VGeUHDzWIFIdtbx90K1JJANNDSWO
xmcrihZbfBIxyv4FYKys2Y5YyAolHgVrDHskz4hMpQU+cJpYJRxb7REamlnnz8DakEpoYSHWs21
PakJCLbR7T1kIPazZnhEZv0yTSqCnXcWT2z4hMpQU+EiZalfLSQZ0TNQGkPiJHQLR2I3pYFU3V5y
TarWX/yg7iirzTIWpCoS2blh9esVAOb4Mcm9831BORIJTWY//9g0JDg8A1INnc2ghbZrMQ6TFalnb
uBocf17059S0yAviz0C3JI3hsHAO1PQ/XFKLhUZVKYKJI1Q7n1zjGJIbMs6q6heNgquSEMTN+Y2Em69
hCZ7X/bChbQts8yNfve7/Rwrysnzfr+1fbWg5rFmjlQ7nlzjGIbMs 6q6heNgquSEMTN++bT
7Tro9tV/H6B7C1UN8GpbdsGmp9eXHRa0913DVScz7f37IZue0Bfv1z0DxwgQ4 9AGXRKPxh6BMrwU
J7tegSyiRRdAuR3se8TAgrehiBKmXSh6GHTQ5+POR1yANQ91Ib48ZH0YUykXAaYCMKVg5AEOh
J7tegSyiRRAuR3se8TAgrehi BKmXShoGHTQ5+I4LmhAuH1AGIiHwQHCkvDjhcVAx41 JAWPfAVAKCHOX0
/7PRRdw87ut fFU53bplX4K/MnvRDhSWLGFhyCJajVz4+qLr4SyEInFj ZhLeSWzyqPTx6KpgOh9k6D
/92/19Q1Ww==

Internal Message Format for Response Messages

The internal format for response messages parallels that for request messages, and has the same basic
MIME structure. These messages are frequently referred to as [IBResponse messages.

There are three logical components to a MIME response message: the IBResponse header section, the
IBInfo section, and the Content section.

The following code shows an example of a response message:

Message-ID: <32004392.1143500580241.JavaMail .KCOLLIN2@PLE-KCOLLIN2>
Date: Mon, 27 Mar 2006 15:03:00 -0800 (PST)

Mime-Version: 1.0

Content-Type: multipart/related;
boundary="----= Part 4 9069393.1143500580221"

Content-ID: PeopleSoft-Integration-Broker-Internal-Mime-Message
PeopleSoft-ToolsRelease: 8.53

—————— = Part 4 9069393.1143500580221
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-Disposition: inline
Content-ID: IBInfo

<?xml version="1.0"?><IBInfo><Status><StatusCode>0</StatusCode>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 73

Understanding Supported Message Structures Chapter 5

<MsgSet>158</MsgSet>

<MsgID>10000</MsgID><DefaultTitle>Integration Broker Response
Message</DefaultTitle>

</Status><ContentSections><ContentSection><ID>ContentSection0</ID>
<NonRepudiation>N</NonRepudiation></ContentSection></ContentSections></IBInfo>
—————— = Part 4 7210339.1008355101202

IBResponse Header
The first part of a response message contains headers which describe the attributes of the whole message.

Message-ID: <32004392.1143500580241.JavaMail .KCOLLIN2@PLE-KCOLLIN2>
Date: Mon, 27 Mar 2006 15:03:00 -0800 (PST)

Mime-Version: 1.0

Content-Type: multipart/related;
boundary="----= Part 4 9069393.1143500580221"

Content-ID: PeopleSoft-Integration-Broker-Internal-Mime-Message
PeopleSoft-ToolsRelease: 8.53

IBResponse IBInfo Section

The format for the XML for the IBInfo for a response message is different than that for the request
message. The following is a sample (formatted for easier reading):

<?xml version="1.0"?2>
<IBInfo>
<Status>
<StatusCode>0</StatusCode>
<MsgSet>158</MsgSet>
<MsgID>10000</MsgID>
<DefaultMsg>0K</DefaultMsg>
<DefaultTitle>Integration Broker Response Message</DefaultTitle>
</Status>
<ContentSections>
<ContentSection>
<ID>ContentSection0</ID>
<NonRepudiation>N</NonRepudiation>
</ContentSection>
</ContentSections>
</IBInfo>

The following is the list of all the elements that may be present in the IBInfo for a response message:

Element Description

IBInfo / Status / StatusCode Describes the result of the request. The possible values are:
* 0 (zero). Request successfully processed.

* 10. Temporary error occurred. Request can be resent.

* 20. Fatal error occurred. Do not resend request.

* 30. Request message is a duplicate of a message
previously received.

IBInfo / Status / MsgSet The MessageSetNumber for this message in the Message
Catalog. Message set number 158 is assigned to the PeopleSoft
Integration Broker.

74 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

Element Description

IBInfo / Status / MsgID The Message Number for this message in the Message
Catalog. If no errors occurred during the processing of the
request, the MsgID will be set to the value ‘10000°.

IBInfo / Status / DefaultTitle Used if the message catalog is unavailable. This value
corresponds to the “Message Text” for a given entry in the

message catalog.

IBInfo / Status / DefaultMsg Used if the message catalog is unavailable. This value
corresponds to the “Explanation” for a given entry in the

message catalog.

IBInfo / Status / Parameters Parameters may be used to provide additional information for

€Iror réSponses.

IBInfo / ContentSection A description of the content section returned with the

response.

Note: Not all response messages will have a content section.
The structure of the content section and all child elements is
the same as was seen in the request IBInfo.

IBResponse Content Section

The content section of a response message features the message body only when working with
SyncRequests

<?xml version="1.0"?>
<TestXml>This is a sample response message.</TestXml>

Error Codes and Message Catalog Entries

A response message may contain data relating to the processing of the request message, or it may contain
error information if there were problems in fulfilling the request.

The status code describes the nature of the response message. The following table describes possible
request message status codes and their meaning.

Value Meaning Description

0 Success The message transport and processing
were successful.

10 Retry The transport was not successful.
PeopleSoft Integration Broker will
perform its retry logic and send the

message again.

20 Error An error occurred.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 75

Understanding Supported Message Structures Chapter 5

Value Meaning Description

30 Duplicate message The transaction ID for the message has
already been received.

40 Acknowledgement error This status is used for SOAP messages
and indicates that the contents of the
data is not proper, but the transport was

successful.

50 Acknowledgement hold Used for asynchronous chunking of
messages from PeopleSoft to PeopleSoft
nodes when sending multiple message

segments.

All PeopleSoft Integration Broker error messages are stored in the message catalog. A short and long
description for every error can be found there. Catalog entries are given a number, and this number is used
in the response messages.

Here is a sample error message:

Message-ID: <32004392.1143500580241.JavaMail .KCOLLIN2@PLE-KCOLLIN2>
Date: Mon, 27 Mar 2006 15:03:00 -0800 (PST)

Mime-Version: 1.0

Content-Type: multipart/related;
boundary="----= Part 4 9069393.1143500580221"

Content-ID: PeopleSoft-Integration-Broker-Internal-Mime-Message
PeopleSoft-ToolsRelease: 8.53

—————— = Part 25 2235074.1008270392277
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-Disposition: inline
Content-ID: IBInfo

<?xml version="1.0"?><IBInfo><Status><StatusCode>10</StatusCode>
<MsgSet>158</MsgSet><MsgID>10721</MsgID><Parameters count="1"><Parm>404</Parm></Par=
ameters>

<DefaultTitle>Integration Gateway Error</DefaultTitle></Status></IBInfo>
—————— = Part 25 2235074.1008270392277--

All PeopleSoft Integration Broker errors use message set /58. The actual error seen here is /0721. Going
to the message catalog, the description for message set 158, error 10721 is:

Message Text: Integration Gateway - External System Contact Error

Explanation: Integration Gateway was not able to contact the external system.
The network location specified may be incorrect, or the site is permanently
or temporarily down.

Therefore this error was created by the integration gateway when it tried to send a request message to an
external system.

Local Compression

This section provides an overview of local compression and discusses how to:

* Set local compression for asynchronous messages.

76 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

* Set local compression for synchronous messages.

* Override local compression for synchronous messages.

Understanding Local Compression

The integration engine compresses and base64—encodes messages destined for the PeopleSoft listening
connector on its local integration gateway.

Setting Local Compression for Asynchronous Messages

Asynchronous messages are always compressed and base64 encoded when sent to the integration
gateway. There are no settings you need to make.

Setting Local Compression for Synchronous Messages

In PSAdmin you can set a threshold message size above which the system compresses synchronous
messages. The setting is shown here:

Values for config section - Integration Broker
Min Message Size For Compression=10000

Do you want to change any values (y/n)? [n]:

The value is the message size in bytes; the default value is /0000 (10 kilobytes). You can specify a setting
of 0 to compress all messages.

To turn off compression, set the value to -1.

Warning! Turning compression off can negatively impact system performance when transporting
synchronous messages greater than 1 MB. As a result, you should turn off compression only during
integration development and testing.

Note: This setting does not affect the compression of messages that the integration gateway sends using
its target connectors.

Overridding Local Compression for Synchronous Messages

You can override the PSAdmin message compression setting for synchronous messages at the transaction
level. The following method on the IBInfo object in the Message class is provided for this purpose:

&MSG.IBInfo.CompressionOverride

The valid parameters for this method are: %IntBroker Compress, %IntBroker UnCompress, and
%IntBroker Compress Reset.

See ."Understanding Message Classes" (PeopleTools 8.53: PeopleCode API Reference)

Accessing IBInfo Elements Using PeopleCode

You can use the PeopleCode Message object to access IBRequest and IBResponse IBInfo data.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 77

Understanding Supported Message Structures Chapter 5

The following example demonstrates reading target connector information on a notification method for a
rowset-based asynchronous message.

method OnNotify
/+ & MSG as Message +/
/+ Extends/implements PS_ PT:Integration:INotificationHandler.OnNotify +/

/* Variable Declaration */

integer &i;
string &strReturn;
rowset &RS;

For &1 = 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfConnectorProperties ()
/* get Query arguments */

&strReturn = &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgName (&1i) ;
&strReturn &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgValue (&1) ;

End-For;

/* access the content data */
&RS = &MSG.GetRowset () ;
end-method;

The following example demonstrates reading target connector information on notification method for a
nonrowset-based asynchronous message.

method OnNotify
/+ & MSG as Message +/
/+ Extends/implements PS PT:Integration:INotificationHandler.OnNotify +/
/* Variable Declaration */
integer &i;
string &&strReturn;
xmldoc &xmldoc;

For &1 = 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfConnectorProperties|()

&strReturn = &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgName (&i);
&strReturn = &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgValue (&1);

End-For;

/* access the content data */
&xmldoc = &MSG.GetXmlDoc () ;
end-method;

If an HTTP header is passed with a dollar sign ($), PeopleSoft Integration Broker converts the dollar sign
to an underscore ().

PeopleSoft Rowset-Based Message Format

This section discusses the PeopleSoft rowset-based message format and discusses:
* FieldTypes section of a rowset-based message.

* MsgData section of a rowset-based message.

78 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5

Unde

Copyright

Understanding Supported Message Structures

* PeopleSoft rowset-based message example.

» PeopleSoft timestamp format.

* CDATA and special characters.

* Schema restrictions.

This section also provides an example of a rowset-based message.

Related Links

Message Part Structures

rstanding the PeopleSoft Rowset-Based Message Format

To work with rowset-based messages—the PeopleSoft native format—you define a message in the
PeopleSoft Pure Internet Architecture, insert records into the message definition in a hierarchical
structure, and then populate the message and manipulate its contents by using the PeopleCode Rowset and
Message classes. Externally, the message is transmitted as XML with a prescribed PeopleSoft schema.

The PeopleSoft message schema includes a PSCAMA record, which PeopleTools adds to every level of
the message structure to convey basic information about the message and its data rows.

The Rowset and IntBroker classes are recommended for messaging between PeopleSoft applications.
If a message is populated with data from a PeopleSoft application’s database or component buffer, the
Message class is best for handling that data.

Record and Field Aliases

You can specify an alias for any record or field in a rowset-based message definition. Each node
participating in a transaction maintains its own independent definition of the message and its versions,
including record and field names and their aliases.

When you send a message with an alias defined and the message is converted to XML for sending,

only the alias appears in the XML. If you don’t specify an alias, the original name is used. If the service
operation is routed to multiple target nodes with different record or field naming schemes, you create for
each target a separate service operation version with its own aliases and send each version separately.

The only requirement for a successful transaction is that the record and field names in the XML match
either the original names or the aliases that are defined for that message and version at the node receiving
the message. This behavior applies to both request and synchronous response messages, but typically only
the source node applies aliases to accommodate the target node’s naming scheme in both directions.

In a synchronous transaction, the request and response messages can be completely different from each
other. Upon receiving a synchronous request, the target node generates and sends a response message.
Upon receiving the response, the source node uses its defined aliases to find and reapply its original
record and field names. The resulting inbound message contains the original names that were defined at
the source node, not the aliases. Therefore, both the sending and receiving PeopleCode at the source node
should expect to work with the source node’s original record and field names.

Related Links
PSCAMA

© 1988, 2014, Oracle and/or its affiliates. All rights reserved. 79

Understanding Supported Message Structures Chapter 5

Understanding Integration PeopleCode

Understanding Filtering, Transformation, and Translation

Rowset-Based Message Template

The following template shows the overall structure of a message in the PeopleSoft rowset-based message
format:

<?xml version="1.0"?2>
<psft message name>
<FieldTypes>

</FieldTypes>
<MsgData>
<Transaction>

</Transaction>
</MsgData>
</psft _message name>

Note: Psft message name is the name of the message definition in the PeopleSoft database. Integration
Broker inserts this message content into a standard PeopleSoft XML message wrapper for transmission.

FieldTypes Section

Each PeopleSoft message includes field type information. Fieldtype information conveys the name of
each data record and its constituent fields, along with each field’s data type. Your receiving application
can use this information to validate data types. The field type information is contained in the FieldTypes
section of the message.

There are two FieldTypes tags:

* Each record tag consists of the name of a record, followed by a class attribute with a single valid
value: R. The record tag encloses that record’s field tags.

* Each field tag consists of the name of a field, followed by a #ype attribute with three valid values:
CHAR for a character field, DATE for a date field, and NUMBER for a numeric field.

Following is a simple FieldTypes template.

<FieldTypes>
<recordnamel class="R">
<fieldnamel type="CHAR"/>
<fieldname2 type="DATE"/>
<fieldname3 type="NUMBER"/>
</recordnamel>
<recordnameZ2 class="R">
<fieldname4 type="NUMBER"/>
</recordname2>
<FieldTypes>

Note: Third-party sending applications must include a valid FieldTypes section in each message. The
PeopleSoft system expects fieldtype information for each record and field in the message.

80 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

MsgData Section

In addition to field type information, each PeopleSoft message contains data content in the MsgData
section of the message. Between the MsgData tags are one or more Transaction sections. Each transaction
represents one row of data.

Between the Transaction tags is a rowset hierarchy of records and fields. The record tags at each level
contain the fields for that record, followed by any records at the next lower level.

The last record within a transaction is a fully specified PeopleSoft Common Application Message
Attributes (PSCAMA) record, which provides information about the entire transaction. Immediately
following the closing tag of every record below level 0 is a PSCAMA record containing only the
AUDIT_ACTN field that specifies the action for that record.

Simple MsgData Template

Following is a simple MsgData template.

Note: The PSCAMA PUBLISH RULE ID and MSGNODENAME fields (shown emphasized) are used
internally by certain PeopleSoft utilities, but third-party systems can generally ignore them and don’t need
to include them in messages.

<MsgData>
<Transaction>
<levelOrecnamel class="R">
<fieldnamel>value</fieldnamel>
<fieldname2>value</fieldnamelZ>
<levellrecnamel class="R">
<fieldname3>value</fieldname3>
<fieldname4>value</fieldname4>
</levellrecnamel>
<PSCAMA class="R">
<AUDIT_ACTN>Value</AUDIT_ACTN>
</PSCAMA>
<levellrecname2 class="R">
<fieldnameb5>value</fieldname5>
</levellrecname2>
<PSCAMA class="R">
<AUDIT7ACTN>Value</AUDIT7ACTN>
</PSCAMA>
</levelOrecnamel>
<levelOrecname2 class="R">
<fieldnameé6>value</fieldname6>
</levelOrecname2>
<PSCAMA class="R">
<LANGUAGE CD>value</LANGUAGE CD>
<AUDIT7ACTN>Value</AUDIT7ACTN>
<BASE_LANGUAGE_CD>Value</BASE_LANGUAGE_CD>
<MSG_SEQ_FLG>value</MSG_SEQ FLG>
<PROCESS_INSTANCE>Value</PROCESS_INSTANCE><PUBLISH_RULE_ID>Value</PUBLISH_:
RULE_ID><MSGNODENAME>Value</MSGNODENAME>
</PSCAMA>
<Transaction>
</MsgData>

Related Links
PSCAMA

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 81

Understanding Supported Message Structures Chapter 5

PSCAMA

PeopleTools adds the PSCAMA record to every level of the message structure during processing. It isn’t
accessible in the message definition, but you can reference it as part of the Message object in the sending
and receiving PeopleCode, and you can see it in the Integration Broker Monitor. PeopleCode processes
this record the same way as any other record.

Note: PSCAMA records are automatically included in messages only if you insert database records to
define the message structure. You can use the PeopleCode XmlDoc class to handle an inbound message
containing PSCAMA records, but the PeopleCode Message class is much better suited for this.

PSCAMA contains fields that are common to all messages. The <PSCAMA> tag repeats for each row in
each level of the transaction section of the message. The sender can set PSCAMA fields to provide basic
information about the message; for example, to indicate the message language or the type of transaction

a row represents. When receiving a message, your PeopleCode should inspect the PSCAMA records for

this information and respond accordingly.

PSCAMA Record Definition
The PSCAMA record definition includes the following fields:

LANGUAGE_CD Indicates the language in which the message is generated, so
the receiving application can take that information into account
when processing the message. When sending a message with
component PeopleCode, the system sets this field to the user’s

default language code.
AUDIT _ACTN Identifies each row of data as an Add, Change, or Delete action.
BASE _LANGUAGE_CD (Optional.) Indicates the base language of the sending database.

This is used by generic, full-table subscription PeopleCode to
help determine which tables to update.

MSG_SEQ _FLG (Optional.) Supports the transmission of large transactions that
may span multiple messages. Indicates whether the message is
a header (H) or trailer (7) or contains data (blank). The header
and trailer messages don’t contain message data. The receiving
system can use this information to determine the start and end
of the set of messages and initiate processes accordingly. For
example, the header message might cause staging tables to be
cleared, while the trailer might indicate that all of the data has
been received and an update job should be initiated.

PROCESS _INSTANCE (Optional.) Process instance of the batch job that created the
message. Along with the sending node and publication ID, the
receiving node can use this to identify a group of messages from
the sending node.

PUBLISH_RULE_ID (Optional.) Indicates the publish rule that is invoked to create
the message. This is used by routing PeopleCode to locate the
appropriate chunking rule, which then determines to which
nodes the message should be sent. Third-party applications can
ignore this field.

82 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

MSGNODENAME (Optional.) The node to which the message should be sent. This
field is passed to the Publish utility by the Application Engine
program. Routing PeopleCode must look for a value in this
field and return that value to the application server. Third-party
applications can ignore this field.

Language Codes

Each message can contain only one language code (the LANGUAGE_CD field) in the first PSCAMA
record.

PeopleSoft language codes contain three characters and are mapped to corresponding International
Organization for Standardization (ISO) locale codes in an external properties file. This mapping enables
the PeopleSoft Pure Internet Architecture to derive certain defaults from the ISO locales that are stored
in a user's browser settings. Your PeopleSoft application is delivered with a set of predefined language
codes; you can define your own codes, as well.

Note: There can be only one language code for the entire message. To send messages in multiple
languages, send multiple messages.

See "Understanding International Preferences" (PeopleTools 8.53: Global Technology).

Audit Action Codes

A PSCAMA record appears following each row of the message. At a minimum, it contains an audit action
code (the AUDIT ACTN field), denoting the action to be applied to the data row. The audit action is
required so that the receiving system knows how to process the incoming data.

The valid audit action codes match those that are used in the PeopleSoft audit trail processing: 4, C, D, K,
N, O, and blank.

The audit action values are set by the system or by the sending PeopleCode to specify that a record should
be added, changed, or deleted:

Audit Action Code Description

A Add a noneffective or effective-dated row.
To add an effective-dated row, the value is A4.

If you populate the row data by using the
CopyRowsetDeltaOriginal method in the PeopleCode Message
class, an additional record is created with an audit action value
of O, containing the original values of the current effective-

dated row.
C Change non-key values in a row.
D Delete a row.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 83

Understanding Supported Message Structures Chapter 5

84

Audit Action Code Description

K If you change at least one key value in a row (in addition to
any non-key values) and then populate the row data by using
the CopyRowsetDeltaOriginal or CopyRowsetDelta methods
in the Message class, an additional record is created with an
audit action value of K, containing the original values of the
current effective-dated row.

N Change at least one key value in a row (in addition to any non-
key values).

o If you change non-key values in a row and populate the row
data by using the CopyRowsetDeltaOriginal method in the
Message class, an additional record is created with an audit
action value of O, containing the original values of the current
effective-dated row.

Blank Default value.
If a row’s content hasn’t changed, the value is blank.

This audit action code is also used to tag the parents of rows
that have changed.

Other PSCAMA Considerations

You can update values on the PSCAMA record just like any other record in the message definition before
sending the message.

The receiving process can access the fields in this record just like any other fields in the message.

The size of the PSCAMA record varies. In particular, notice a difference between the first PSCAMA
record and the ones that follow. The first record contains all of the fields, while the other PSCAMA
records have only the AUDIT ACTN field, which is the only field that can differ for each row of data.

Although the first PSCAMA record is always present, not all of the remaining PSCAMA records are
sent in the message. If a <PSCAMA> tag is not included for a specific row, you can assume that the row
hasn’t changed. In addition, if the <AUDIT ACTN> tag is blank or null, you can also assume the row
hasn’t changed.

If you’re receiving a message that has incremental changes, only the rows that have changed and their
parent rows are present in the message.

You can view an example of an outbound message with the PSCAMA records inserted by testing your
message definition using the Schema Tester.

See "Understanding the Schema Tester Utility" (PeopleTools 8.53: Integration Broker Testing Utilities
and Tools).

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

Identifying Changes to Field-Level Attributes

When sending and receiving messages, all blank data values get stripped. As a result, you cannot
determine if a field value is blank by definition, or if its value was stripped in the messaging process.

The PeopleCode CopyRowset functions CopyRowset, CopyRowsetDelta and CopyRowsetDeltaOriginal,
feature an IsChanged attribute that automatically gets set to identify fields that have been changed. Any
field that has been changed displays the attribute IsChanged="Y".

Note: The IsChanged attribute applies only to rowset-based messages. For rowset-based message parts,
use the Message Part Default Indicator field to distinguish blanks from zeros in part messages. The
IsChanged attribute does not apply to nonrowset-based messages, including nonrowset-based container
messages and nonrowset-based part messages.

For example:

<QE_ACNUMBER IsChanged="Y">2</QE ACNUMBER>

Fields that had data and then were blanked contain the IsChanged attribute.
For example:

<DESCRLONG IsChanged="Y"/>

Fields that were always blank and thus were not changed do not feature this attribute. For example:

<QE NAVDESC/>

If you are writing subscription PeopleCode you reference the IsChanged value of the field in the message
rowset, as always. However, the blanks appear with the attribute IsChanged="Y".

Related Links

Distinguishing Blank from Zero in Rowset-Based Part Messages

PeopleSoft Timestamp Format

The PeopleSoft format for all timestamps is ISO-8601. If any message fields are type timestamp, the
following format is used:

CCYY-MM-DDTHH:MM:SS.ssssss+/—-hhmm

Note: The ISO format specifies that the +/-hhmm parameter is optional, but PeopleSoft requires it. All
date and time stamps in the header and the body of the message must include the Greenwich Mean Time
(GMT) offset as +/—-hhmm. This ensures that the timestamp is correctly understood by the receiving
application.

CDATA and Special Characters
Consider the following points regarding rowset-based messages:
* You cannot use CDATA in message XML if you plan to use GetRowSet to parse the message.

* When using the ampersand character (&) in a string, it must be URL-encoded. For example: &.
Passing only the ampersand character results in a PeopleCode error when you get the rowset values.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 85

Understanding Supported Message Structures Chapter 5

* Other special characters are best passed encoded as well, such as > for “<” and &It ">."

Schema Restrictions

For stronger schema validation control, some PeopleSoft field types have certain implicit restrictions
regarding the format of field data that is acceptable in a runtime message. These restrictions appear in
message schema.

The restrictions apply to fields having the following formats.
* Mixed case.

¢ Name.

* Phone number.

* Social security number.

» Uppercase.

e Zip code.

Note: These restrictions apply to rowset-based messages and rowset-based message parts.

The restrictions for each are shown in the following example:

<xsd:simpleType name="BASE LANGUAGE CD TypeDef">
<xsd:annotation>
<xsd:documentation>BASE LANGUAGE CD is a character of length 3.
Allows Uppercase characters including numbers
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="3"/>
<xsd:whiteSpace value="preserve"/>
<xsd:pattern value="([A-Z]|[0-9] |\p{Z}I\p{P}I|\p{Lu})*"/>
</xsd:restriction>
</xsd:simpleType>

Rowset-Based Message Example

The message data is enclosed in a tag with the name of the message, and consists of one FieldTypes
section followed by one MsgData section. The FieldTypes section describes the records and fields that
appear in the MsgData section, which contains the actual data.

Note: The PSCAMA record requires field type information just like any other record.

<SDK_BUS_EXP APPR MSG>
<FieldTypes>

<SDK BUS EXP PER class="R">
<SDK_EMPLID type="CHAR"/>
<SDK_EXP PER DT type="DATE"/>
<SDK_SUBMIT FLG type="CHAR"/>
<SDK_INTL FLG type="CHAR"/>
<SDK_APPR STATUS type="CHAR"/>
<SDK_APPR INSTANCE type="NUMBER"/>
<SDK_DESCR type="CHAR"/>
<SDK_COMMENTS type="CHAR"/>

</SDK_BUS_EXP PER>

<SDK_DERIVED class="R">

86 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

<SDK_BUS_EXP SUM type="NUMBER"/>
</SDK DERIVED>
<SDK_BUS_EXP_DTL class="R">
<SDK_CHARGE DT type="DATE"/>
<SDK_EXPENSE CD type="CHAR" />
<SDK_EXPENSE AMT type="NUMBER" />
<SDK_CURRENCY CD type="CHAR"/>
<SDK_BUS_PURPOSE type="CHAR"/>
<SDK_DEPTID type="CHAR" />
</SDK_BUS_EXP_DTL>
<PSCAMA class="R">
<LANGUAGE CD type="CHAR"/>
<AUDIT ACTN type="CHAR" />
<BASE_LANGUAGE_ CD type="CHAR" />
<MSG_SEQ FLG type="CHAR"/>
<PROCESS INSTANCE type="NUMBER"/>
</PSCAMA>
</FieldTypes>
<MsgData>
<Transaction>
<SDK BUS EXP PER class="R">
<SDK EMPLID>800l</SDK EMPLID>
<SDK EXP PER DT>1998-08- 22</SDK EXP_PER DT>
<SDK SUBMIT FLG>N</SDK SUBMIT FLG>
<SDK INTL FLG>N</SDK INTL FLG>
<SDK APPR STATUS>P</SDK APPR STATUS>
<SDK APPR INSTANCE>O</SDK APPR INSTANCE>
<SDK DESCR>Reglonal Users Group Meeting</SDK DESCR>
<SDK_COMMENTS>Attending Northeast Regional Users Group
Meeting and presented new release functionality.
</SDK_COMMENTS>
<SDK_BUS EXP DTL class="R">
<SDK_CHARGE DT>1998-08-22</SDK_CHARGE DT>
<SDK EXPENSE CD>10</SDK EXPENSE CD>
<SDK EXPENSE AMT>45 690</SDK EXPENSE AMT>
<SDK CURRENCY CD>USD</SDK CURRENCY CD>
<SDK BUS PURPOSE>Drive to Meet1ng</SDK_BUS_PURPOSE>
<SDK DEPTID>lOlOO</SDK DEPTID>
</SDK_BUS_EXP DTL>
<PSCAMA class="R">
<AUDIT ACTN>A</AUDIT ACTN>
</PSCAMA>
<SDK BUS EXP DTL class="R">
<SDK_ CHARGE DT>1998-08-22</SDK ~ CHARGE DT>
<SDK EXPENSE CD>O9</SDK EXPENSE CD>
<SDK EXPENSE AMT>12.440</SDK EXPENSE AMT>
<SDK_CURRENCY CD>USD</SDK_CURRENCY CD>
<SDK_BUS_ PURPOSE>City Parking</SDK BUS PURPOSE>
<SDK_DEPTID>10100</SDK_DEPTID>
</SDK_BUS_EXP_DTL>
<PSCAMA class="R">
<AUDIT7ACTN>A</AUDITiACTN>
</PSCAMA>
</SDK_BUS_EXP_PER>
<SDK DERIVED class="R">
<SDK_BUS_EXP SUM>58.13</SDK BUS_ EXP SUM>
</SDK_DERIVED>
<PSCAMA class="R">
<LANGUAGE CD>ENG</LANGUAGE CD>
<AUDIT ACTN>A</AUDIT ACTN>
<BASE LANGUAGE CD>ENG</BASE LANGUAGE _CD>
<MSG SEQ FLG></MSG SEQ FLG>
<PROCESS_INSTANCE>0</PROCESS INSTANCE>
</PSCAMA>
</Transaction>
</MsgData>
</SDK_BUS_EXP APPR MSG>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 87

Understanding Supported Message Structures Chapter 5

Nonrowset-Based Message Structures

This section discusses nonrowset-based message structures that you can use with PeopleSoft Integration
Broker. This section discusses:

* XML messages.
* SOAP-compliant messages.

e Non-XML files.

XML Messages

88

The World Wide Web Consortium (W3C) has established a Document Object Model (DOM) for
accessing and manipulating structured data. The DOM specifies a standardized application programming
interface (API) that provides a consistent, familiar way to work with almost any XML data. This API—
the XML DOM—enables you to create, retrieve, navigate, and modify messages.

You define an XML message in the PeopleSoft Pure Internet Architecture by either uploading an XML
file or entering an XML schema definition. The following example shows an XML message schema:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" targetNamespace=
"http://xmlns.oracle.com/Common/schemas/COMPANY" xmlns="http://xmlns.
oracle.com/Common/schemas/COMPANY" elementFormDefault="qualified">
<xsd:element name="Company" type="CompanyType"/>
<xsd:complexType name="CompanyType">
<xsd:sequence>
<xsd:element name="Person" type="PersonType"/>
<xsd:element name="Product" type="ProductType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="PersonType">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="SSN" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ProductType">
<xsd:sequence>
<xsd:element name="Type" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Then populate the message and manipulate its contents by using the PeopleCode XmlDoc class and built-
in functions, which reflect the XML DOM.

Note: You can use the XmlDoc class to access inbound, rowset-based messages; however, the
PeopleCode Message and Rowset classes handle the PeopleSoft native format more easily.

Use the XmlDoc class if any of the following is true:
» The message structure doesn’t fit the PeopleSoft rowset model.

* The message data doesn’t come from PeopleSoft database records.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

e The third-party source or target node requires non-XML message data.

Although you can use the XmlDoc class to generate or process messages that use the SOAP protocol, the
PeopleCode SoapDoc class is more efficient and is strongly recommended.

Note: Non-XML message data must be embedded in an XML wrapper, which you send and receive by
using the XmlDoc class.

SOAP-Compliant Messages

The W3C SOAP specification defines synchronous transactions in a distributed web environment. SOAP
is appropriate for Universal Description, Discovery, and Integration (UDDI) interactions, or to interact
with SOAP-compliant servers.

You define a message in PeopleSoft Application Designer without inserting any records to define its
structure, then populate the message and manipulate its contents by using the PeopleCode SoapDoc class
and built-in functions, which comply with the W3C SOAP specification. The SoapDoc class is well-
suited for messages that are populated with SOAP-compliant XML data.

SoapDoc complies with the W3C XML DOM specification. The SoapDoc class is based on the
PeopleCode XmlDoc class, with some identical methods and properties. To send and receive SoapDoc
messages, you must convert them to XmlDoc objects and use the XMLDoc built-in functions,
SyncRequestXmlDoc and GetMessageXmlDoc. SoapDoc provides a property for handling the conversion
easily.

Use the SoapDoc class if all of the following are true:

* The third-party source or target node requires SOAP-compliant messages.
* The third-party source or target node requires synchronous transactions.

* The message conforms to the SOAP specification.

Related Links

Generating and Sending Messages

Receiving and Processing Messages

Non-XML Files

To send non-XML files through PeopleSoft Integration Broker to their destination, you must wrap them
in the PeopleSoft non-XML message element, CDATA. However, when you send messages to third-party
systems, the recipient systems may not be able to interpret that element.

The Message class features a method, SetXMLDoc, that you can use to remove the tags upon execution
of the method. Another alternative to removing the tags is to write a transformation to do so. If you do not
use either option, the data remains in the wrapper through to the destination.

The following code example shows a non-XML file wrapped in the PeopleSoft non-XML message
element, PsNonXmL, for transport through PeopleSoft Integration Broker:

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 89

Understanding Supported Message Structures Chapter 5

90

Note: The element PsNonXml is not case-sensitive.

<?xml version="1.0"?2>
<AsyncRequest>
<data PsNonXml="Yes">
<! [CDATA[<?xml version="1.0"7?>101 123456789
12345678902 0510145 60094101First Bank First Bank 5200 University
000001 PPDDIRECT PAY020510020510000112345678000000162200000111 222
0000001000USA0000001 USA0000001 0000001110000001627123456
789131415511 0000001000 University 0123456780000
002 82000000020012345789000000001000000000001000 123456780000001
90000010000010000000200123457890000000010000000000010009999999999
999
999
999
999
999
999
11>
</data>
</AsyncRequest>

The following example shows an alternative way to wrap a non-XML file in the PeopleSoft non-XML
message element for transport through PeopleSoft Integration Broker:

<?xml version="1.0"?>

<AsyncRequest PsNonXml = ’'Yes’>

<![CDATA[<?xml version="1.0"?>101 123456789 12345678902

0510145 60094101First Bank First Bank 5200 University 000001 PPDDIRECT
PAY020510020510000112345678000000162200000111 222

0000001000USA0000001 USA0000001 0000001110000001627123456

789131415511 0000001000 University 0123456780000

002 82000000020012345789000000001000000000001000 123456780000001
900000100000100000002001234578900000000100000000000100099999999999999999
99
99
99
99
999
11>

</AsyncRequest>

The following example shows using the SetXMLDoc method to remove the PsNonXML wrapper from a
message:

// create xmldoc with PSNonXml tag and load it into the message

// create an instance of the Message object
&MSG = CreateMessage (OPERATION.QE F18 ASYNC XMLDOC) ;

// Load the Message object via the SetXmlDoc method with the xmldoc data.
// This will also remove the PSNonXml wrapper
&MSG.SetXmlDoc (&XmlDoc) ;

// perform a publish for the nonrowset-based message
$IntBroker.Publish (&MSG) ;

As stated previously in this section, if you do not use the SetXMLDoc method to remove the PsNonXml
wrapper, you must write a transformation to physically remove the tags.

Related Links
"Understanding Message Classes" (PeopleTools 8.53: PeopleCode API Reference)
Understanding Filtering, Transformation, and Translation

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

"Complying With Message Formatting and Transmission Requirements" (PeopleTools 8.53: PeopleSoft
Integration Broker Administration)

Using Nonrowset-Based Messages in Service Operations Exposed as
WSDL

If a nonrowset-based message is used in a service operation which will be exposed as a WSDL to third
parties, the schema cannot be empty. The schema has to have at least the header elements, as shown in the
following example:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"/>

Message Part Structures

This section discusses:
* Rowset-based message parts.

* Nonrowset-based message parts.

Understanding Message Part Structures

Message parts are rowset-based messages or nonrowset-based messages that you designate as a part
message on the message definition. Message parts are used in container messages

Message parts can be re-used in multiple containers.
All parts in a container must be of the same type (Rowset-based or Nonrowset-based).
You create messages using the Message Builder page in the PeopleSoft Pure Internet Architecture.

Related Links
PeopleSoft Rowset-Based Message Format

Nonrowset-Based Message Structures
Understanding Managing Messages

Rowset-Based Message Parts

Rowset-based message parts provide all the ease of use of using rowsets, yet the generated XML message
is industry standard and not PeopleSoft proprietary. Rowset-based message parts, like nonrowset-based
parts, can only be part of a container type message.

These are the benefits of using Rowset-based parts:

* The XML schema generated is standard XML and not the PeopleSoft message format. Rowset-based
message parts do not have a PSCAMA section, FieldTypes section, IsChanged attributes, and so forth.

* The message API for rowset-based parts is simple to use and understand.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 91

Understanding Supported Message Structures Chapter 5

e XML serialization and deserialization to and from part rowset is provided by Integration Broker
framework.

* You can use a CopyRowSet type method to populate the rowset from another rowset (component
rowset).

The following example shows a sample schema from a rowset-based message part:

<?xml version="1.0"?>
<xsd:schema elementFormDefault="qualified" targetNamespace="http://xmlns.
oracle.com/Enterprise/Tools/schemas/Part 1.V1" xmlns="http://xmlns.oracle.
com/Enterprise/Tools/schemas/Part 1.V1" xmlns:xsd="http://www.w3.org/
2001/XMLSchema">
<xsd:element name="Part 1" type="Part 1 TypeShape"/>
<xsd:complexType name="Part 1 TypeShape">
<xsd:sequence>
<xsd:element name="First Part" type="First PartMsgDataRecord TypeShape"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="First PartMsgDataRecord TypeShape">
<xsd:sequence>
<xsd:element name="QE ACNUMBER" type="QE ACNUMBER TypeDef"/>
<xsd:element name="QE WAYPOINT NBR" type="QE WAYPOINT NBR TypeDef"/>
<xsd:element minOccurs="0" name="QE BEARING" type="QE BEARING TypeDef"/>
<xsd:element minOccurs="0" name="QE RANGE" type="QE RANGE TypeDef"/>
<xsd:element minOccurs="0" name="QE ALTITUDE" type="QE ALTITUDE TypeDef"/>
<xsd:element minOccurs="0" name="QE LATITUDE" type="QE LATITUDE TypeDef"/>
<xsd:element minOccurs="0" name="QE LONGITUDE" type="QE LONGITUDE TypeDef"/>
<xsd:element name="QE HEADING" type="QE HEADING TypeDef"/>
<xsd:element name="QE VELOCITIES" type="QE VELOCITIES TypeDef"/>
<xsd:element minOccurs="0" name="QE NAVDESC" type="QE NAVDESC TypeDef"/>
</xsd:sequence>
<xsd:attribute fixed="R" name="class" type="xsd:string" use="required"/>
</xsd:complexType>
<xsd:simpleType name="QE ACNUMBER TypeDef">
<xsd:annotation>
<xsd:documentation>QE ACNUMBER is a number of length 10 with a decimal
position of 0</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:integer">
<xsd:totalDigits value="10"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE WAYPOINT NBR TypeDef">
<xsd:annotation>
<xsd:documentation>QE WAYPOINT NBR is a number of length 3 with a decimal
position of 0</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:integer">
<xsd:totalDigits value="3"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE BEARING TypeDef">
<xsd:annotation>
<xsd:documentation>QE BEARING is a character of length 10</xsd:documentation>=

</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="10"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE RANGE TypeDef">
<xsd:annotation>
<xsd:documentation>QE RANGE is a character of length 10</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="10"/>
<xsd:whiteSpace value="preserve"/>

92 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE ALTITUDE TypeDef">
<xsd:annotation>
<xsd:documentation>QE ALTITUDE is a character of length 10</xsd:documentation=

</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="10"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE LATITUDE TypeDef">
<xsd:annotation>
<xsd:documentation>QE LATITUDE is a character of length 15
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="15"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE LONGITUDE TypeDef">
<xsd:annotation>
<xsd:documentation>QE LONGITUDE is a character of length 15
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="15"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE HEADING TypeDef">
<xsd:annotation>
<xsd:documentation>QE HEADING is a character of length 4
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="MAG"/>
<xsd:enumeration value="TRUE"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE VELOCITIES TypeDef">
<xsd:annotation>
<xsd:documentation>QE VELOCITIES is a character of length 4
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ADC"/>
<xsd:enumeration value="GPS"/>
<xsd:enumeration value="INS"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="QE NAVDESC TypeDef">
<xsd:annotation>
<xsd:documentation>QE NAVDESC is a character of length 30
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="30"/>
<xsd:whiteSpace value="preserve"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Nonrowset-Based Message Parts

A nonrowset-based message part schema is similar to a regular nonrowset-based message, however a
nonrowset-based message part can be reused in multiple containers.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 93

Understanding Supported Message Structures Chapter 5

Message Container Structures

Message container structures hold rowset-based or nonrowset-based message part structures. All message
parts assigned to a container must of the same type, rowset-based or nonrowset-based.

A message container is always a nonrowset-based message.
You create container messages using the Message Builder in the PeopleSoft Pure Internet Architecture.

Related Links

Nonrowset-Based Message Structures
Understanding Managing Messages

Example 1: XML Schema of a Container Message with Rowset-Based
Message Parts

The following example shows a sample schema of a container message with three rowset-based message
parts:

<?xml version="1.0"?>
<xsd:schema elementFormDefault="unqualified" targetNamespace="http://xmlns.
oracle.com/Enterprise/Tools/schemas/Part Container.vV1"
xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/Part Container.v1"
xmlns:Part 1.VI1="http://xmlns.oracle.com/Enterprise/Tools/schemas/Part 1.V1"
xmlns:Part 2.V1="http://xmlns.oracle.com/Enterprise/Tools/schemas/Part 2.V1"
xmlns:Part 3.VI1="http://xmlns.oracle.com/Enterprise/Tools/schemas/Part 3.V1"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:import namespace="http://xmlns.oracle.com/Enterprise/Tools/schemas/
Part 1.V1" schemalLocation="http://kcollin2042803:5000/PSIGW/PeopleSoft
ServiceListeningConnector?Operation=GetSchema&xsd=Part 1.V1"/>
<xsd:import namespace="http://xmlns.oracle.com/Enterprise/Tools/schemas/
Part 3.V1" schemaLocation="http://kcollin2042803:5000/PSIGW/PeopleSoft
ServiceListeningConnector?Operation=GetSchema&xsd=Part 3.V1"/>
<xsd:import namespace="http://xmlns.oracle.com/Enterprise/Tools/schemas/
Part 2.V1" schemaLocation="http://kcollin2042803:5000/PSIGW/PeopleSoft
ServiceListeningConnector?Operation=GetSchema&xsd=Part 2.V1"/>
<xsd:element name="Part Container" type="Part ContainerType"/>
<xsd:complexType name="Part ContainerType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="Part 1" type="
Part 1.V1:Part 1 TypeShape"/>
<xsd:element maxOccurs="10" minOccurs="0" name="Part 3" type="Part 3.Vl:
Part 3 TypeShape"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="Part 2" type="
Part 2.V1:Part 2 TypeShape"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Example 2: XML Schema of a Container Message with Nonrowset-Based
Message Parts

94

The following example shows a sample schema from a container message that contains three nonrowset-
based parts:

<?xml version="1.0"?>
<xsd:schema elementFormDefault="unqualified" targetNamespace="http://xmlns.
oracle.com/Enterprise/Tools/schemas/NonRowSetContainer.v1l"

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 5 Understanding Supported Message Structures

xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/NonRowSetContainer.v1l"
xmlns:Part One NonRowset.vl="http://xmlns.oracle.com/Enterprise/Tools/
schemas/Part One.v1"
xmlns:Part Three NonRowset.vl="http://xmlns.oracle.com/Enterprise/Tools/
schemas/Part Two.v1"
xmlns:Part Two NonRowset.vl="http://xmlns.oracle.com/Enterprise/Tools/
schemas/Part Three.vl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:import schemalocation="http://kcoll1in2042803:5000/PSIGW/PeopleSoft
ServiceListeningConnector?Operation=GetSchema& xsd=Part One NonRowset.v1"/>
<xsd:import schemalocation="http://kcol1in2042803:5000/PSIGW/PeopleSoft
ServiceListeningConnector?Operation=GetSchema& xsd=Part Two NonRowset.vl"/>
<xsd:import schemalocation="http://kcoll1in2042803:5000/PSIGW/PeopleSoft
ServiceListening Connector?Operation=GetSchema&xsd=Part Three Non
Rowset.v1"/>
<xsd:element name="NonRowSetContainer" type="NonRowSetContainerType"/>
<xsd:complexType name="NonRowSetContainerType">
<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="Part One NonRowset"
type="Part One NonRowset.vl:Part One TypeShape"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="Part Two NonRowset"
type="Part Two NonRowset.vl:Part Two_ TypeShape"/>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="Part Three NonRowset"
type="Part Three NonRowset.vl:Part Three TypeShape"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

95

Chapter 6

Managing Messages

Understanding Managing Messages

This section provides an overview of messages.

Message Definitions

Message definitions provide the physical description of the data that is being sent, including fields, field
types, and field lengths. You create message definitions in the PeopleSoft Internet Architecture.

Note: Messages are shapes that describe the contents of a service operation transaction. Unlike prior
PeopleTools releases, messages do not contain any processing logic. All processing logic is defined in
service operations, using service operation handlers.

Message Types
Five types of messages are available:

Rowset-based messages

Nonrowset-based messages

Container messages

Message parts

For hierarchical data that is based on PeopleSoft records, you
create a message definition by assembling records, organizing
them into a hierarchy, and selecting fields from those records to
include in the message. The result is a rowset that doesn't need
to match an existing rowset structure in the application. Use the
PeopleCode Rowset and operation classes to generate, send,
receive, and process these messages.

These messages can have virtually any structure and content.
You create a message definition, but you do not insert any
records. The message definition serves as a placeholder for the
actual message. Use the PeopleCode XmlDoc and operation
classes to generate, send, receive, and process these messages.
If you're handling Simple Object Access Protocol (SOAP)
compliant data, you can also use the SoapDoc class to generate
and process these messages.

A container message is a nonrowset-based message that holds
one or more part messages.

A container message must contain all rowset-based messages or
all nonrowset-based message parts.

Message parts are rowset-based messages or nonrowset-based
messages that you designate as a part message, to be used in a
container message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 97

Managing Messages Chapter 6

Document messages A document messages are messages based on the PeopleSoft
XML document technology. You create and manage these
messages in the PeopleSoft Document Builder, either by
creating the XML documents from the ground up, importing
them from schema definitions, or from PeopleSoft records.

The following table describes when to use a given message type:

Message Type When to Use

Rowset-based message. All PeopleSoft-to-PeopleSoft integrations.

Nonrowset-based message. Integrations with third-party systems.

Container message with rowset-based message parts. Exposing PeopleSoft services to third-party systems.

Container message with nonrowset-based message parts. Exposing PeopleSoft services to third-party systems and need
to provide nested parts.

Document message. Integrations with third-party systems.

Naming Conventions for Message Metadata

When naming the following message metadata, names cannot start with “xml,” digits or special
characters:

* Message names.
* Message aliases.
* Record aliases.

* Field aliases.

Message Record Structure

If a message handles PeopleSoft record data, that is, a rowset-based message, you must insert records in
the message definition in an appropriate hierarchical structure.

However, if the message data doesn't map to a record hierarchy, do not insert any records. You supply
or receive the data and its structure from an external source, using the PeopleCode XmlDoc or SoapDoc
classes.

See Understanding Sending and Receiving Messages.

Underlying Record Definitions

Records that you insert in a message definition have live references to the original record definitions.
Any change that you make to an underlying record definition is automatically reflected by a change in the
corresponding record in the message definition.

98 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Fields Defined as Uppercase

If a message definition includes character fields that are defined as uppercase, then character data in those
fields is automatically converted to uppercase when the message is received. This happens when the
receiving PeopleCode inserts the message data in a rowset, and it overrides any previous changes in the
data, including transformation and data translation.

Message Aliases and Message Versions

Message aliases are read-only once you save the message definition. As a result, once you create a
message alias for a message definition, any subsequent versions of the message that you create use the
original alias.

Restrictions for Modifying Messages

This section lists the conditions under which a message may become restricted and read-only. This list
applies to all message types, including rowset-based messages, nonrowset-based messages, container
messages, part messages, and subpart messages.

You cannot modify a message if one or more of the following conditions exists:
* The service to which a message is contained in a restricted service.

* The message is used internally by the system. For example, the delivered IB. GENERIC message is
read-only and is used internally by the system.

» The message is referenced in the runtime tables.
To work around this, you must remove any entries in the runtime tables that reference the message.
* The message is used in a service operation where WSDL documents have been generated.

» The message is used in a service operation that has validation enabled.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 99

Managing Messages Chapter 6

Searching for Message Definitions

To search for an existing message definition in the system use the Messages - Search page
(IB_MSGSEARCH). To access the page select PeopleTools, Integration Broker, Integration Setup,
Messages.

Image: Messages — Search page

This example illustrates the Messages — Search page.

Messages - Search

¥ Search Criteria

Type: | v| Add a New Value

Message Name:

Version:

Search

To search for a message definition:
1. Access the Messages - Search page (PeopleTools, Integration Broker, Integration Setup, Messages).
2. Search for a message definition.

You can search for message definition in one of two ways:

» Enter search criteria in one or more of the following fields, and then click the Search button:

Type From the drop-down list, select the type of message for
which you are searching. The options are:

e Container.

e Document.

* Nonrowset.

e Part nonrowset.

e Part rowset.

* Rowset.
Message Name Enter the name of the message.
Version Enter the version of the message.

* Click the Search button to display all message definitions in the system.

The results appear in the Search Results grid.

100 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

3. Click the name of the message to view.

Adding Message Definitions

This section discusses how to:
* Add rowset, nonrowset and part message definitions.

* Add document message definitions.

Understanding Adding Message Definitions
When you add a message definition to the system you first give the message a name and specify a
message version. After doing so, you can then define additional aspects of the message definition.
Adding Rowset, Nonrowset or Part Message Definitions

Use the Add a New Message page (IB_ MSGSEARCH ADD) to name a new message definition and
assign a version to it:

Image: Add New Message page

This example illustrates the Add a New Message page.

Add New Message

Type:
Message Hame:
Message Version:

Add Return to Search

After you add a new message definition and version to the system, you can configure the message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 101

Managing Messages

102

Chapter 6

Use the Messages - Message Definition page (IB. MESSAGE BUILDER) to configure a message after

you create the message definition.

Image: Messages - Message Definition page

This example illustrates the Messages — Message Definition page.

Message:
Version:
Alias:
Description:
Owner ID:

Comments:

Message Definition Schema

MOMROWSET_TEST_MESG

V1

Schema Exists: Mo
Part Message

W Root Element:

Message Type

Rowset-based

Nonrowset-based
Container

The example shows the page when the message type is a Nonrowset-based message. Different options
appear on the Message—Message Definition page, depending on the type of message that you are defining.

Note: You determine the message type when you create the definition using the Add New Message page.
The Message Type group box options on the Messages — Message Definition page are read-only.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

Additional options appear on the Messages — Message Definition page when you are working with

Rowset-based or Container message types.

Image: Messages - Message Definition page

Managing Messages

This example illustrates the Messages — Message Definition page. The example shows the page when the

message type is a Rowset-based message type.

Message Definition Schema

Message: ROWSET_TEST_M3G

Version: W1

Description: |

Owner ID: |

W

Comments:

VWiew Records Only YWiew Included Fields Only
Left | Right

Schema Exists: Mo
Part Message

[] Exclude Description in Schema
[single Level 0 Row

[Include Namespace

[] Suppress Empty XML Tags

Rowset-based
Honrowset-based
Container

Add Record to Root

[= ROWSET_TEST_MSG

In the previous example, notice the additional options that display on the upper right portion of the page.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

103

Managing Messages

When you define a container message, it, too, has its own unique options that you define.

Image: Messages - Message Definition page

Chapter 6

This example illustrates the Messages — Message Definition page. The example shows the page when the

message type is a Container message.

Message Definition Schema

Minimum |Maximum |*Unbound

Messzage Hame Messzage Version Sequence

Dccurs Dccurs Maximum

Schema Exists: Mo
Message: COMTAIMER_TEST_MSG
Part Message
Version: W1
Alias: |
Description: |
Owner 1Dz i
Comments:
Rowset-based
Nonrowset-based
Container
Add Parts

Parts Customize | Find | View Al | B0 B First B 4 o 1 B Last

i

Note: For asynchronous integrations, define a single message. For synchronous integrations, define two
messages: one request message and one response message, unless the request and response have the same

shape.

To add a rowset, nonrowset, or part message definition:

1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
The Messages — Search page appears.

2. Click the Add a New Valuelink.

3. From the Type drop-down list, select a message type to create. The options are:
* Container. Select this value to add a container message to the system.

* Document. Select this value to add a document message to the system.

Adding a document message type to the system is described elsewhere in this section.

See Adding Document Message Definitions.

* Nonrowset. Select this value to add a nonrowset-based message to the system.

* Part Nonrowset. Select this value to add a nonrowset-based message part to the system.

* Part Rowset. Select this value to add a rowset-based message part to the system.

104 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

10.

I1.

12.

13.

Managing Messages

* Rowset. Select this value to add a rowset-based message to the system.

In the Message Name field, enter a name for the message.

The message name cannot exceed 30 characters. Do not include any spaces in the message name.

In the Version field, enter a version for the message.

The message version cannot exceed 30 characters. Do not include any spaces in the message version.
Accepted formats for the message version include:

* Version 1.

- VI

Click the Add button.
The Messages - Message Definition page appears.

(Optional) In the Alias field, enter the name that the external system is expecting, if different from the
value in the Message Name field.

This field appears only when you are defining nonrowset-based or container messages.

(Optional) Select the Message Parts check box if the message will be used as a message part in a
container message definition.

(Optional) In the Description field, enter a description for the definition.
(Optional) From the Owner ID drop-down list box, select an owner for the definition.

The owner ID helps to determine the application team that last made a change to the definition.
The values in the drop-down list box are translate table values that you can define in the
OBJECTOWNERID field record.

(Optional) In the Comment field, enter any pertinent comments about the definition.

In the Root Element field, enter a value to appear in the root element in generated WADL documents
when the message is used in a REST service operation.

Note: You must provide a value in this field if you are using the message in a REST-based service
operation. This field value is required for proper WADL document generation.

This field appears only when you are defining nonrowset-based messages.

The next steps to adding a message definition depend on the type of message definition that you are
creating:

* Rowset-Based Message or Message Part. You must add a root record to the definition before you
can save it.

See Managing Rowset-Based Messages.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 105

Managing Messages Chapter 6

* Nonrowset-Based Message or Message Part. The message definition is complete and you can
click the Save button to save the changes. You can now add an XML message schema to the
definition.

See Managing Nonrowset-Based Messages.

* Container Message. You must add at least one message part to the definition before you can save
the changes.

See Managing Container Messages.

Adding Document Message Definitions

106

This section discusses adding document message definitions.

Understanding Adding Document Message Definitions

When you create a document message definition in the system, you create a message definition that
references a document. .

Prerequisites for Adding Document Message Definitions

Before you add a document message definition to the system, the document definition that the message
will reference must exist in the system

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Adding a Document Message Definition

When you add a document message definition, additional options appear on the page than when you add
other message types.

Image: Add a New Value page

This example illustrates the Add a New Value page. The example shows adding a Document message type
to the system.

Type: | Document "
Message Name: |TEST_DOC_MSG
Message Version: V1
Alias: |
Hote: Select an existing docurmnent objectto link to the new message at save time.
Package: |DEMG Q
Document: |Line_ltem 5 Q
Version: V1 Q
Add

After you provide a message name, version, and optional alias, you specify the document package,
document name, and version to which to link the message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 107

Managing Messages

After you click the Add button, the document that you specified in the message definition appears
Document Builder — Document page.

Image: Document Builder — Document page

Chapter 6

in the

This example illustrates the Document Builder — Document page. In the example the Metadata References

section shows that the message TEST DOC MSG.vI references the document.

Document XKML Relationa

Package:
Document Name:
Version Name:

DEMO
Line_ltems
vl

108

~ Metadata References
Source
Integration Broker Message

TEST_DOC_MSG.v1

Customize | Find | E

Document Tester
| 5

First 4] 10f1 [Last

} Document Details

Lefl | Right

[= Line items
¥ jtern _numbr
¥ color_code

1

ua
ric

REE

The Metadata References section in the definition shows that there is an Integration Broker message

called TEST DOC MSG.vl that references the document.

Note that the message definition is not saved until you click the Save button in the Document Builder.

To add a document message definition:

1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
2. Select the Add New Value tab.

3. From the Type drop-down list, select Document.

4. In the Message Name field, enter a name for the message.

The message name cannot exceed 30 characters. Do not include any spaces in the message name.

5. Inthe Version field, enter a version for the message.

The message version cannot exceed 30 characters. Do not include any spaces in the message version.

Accepted formats for the message version include:
* Version |I.

e VI

6. (Optional) In the Alias field, enter the name that the external system is expecting, if different from the

value in the Message Name field.

7. In the Package field, enter the document package or click the Lookup button to search for one.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

8.
9.

Managing Messages

In the Document field, enter the document name or click the Lookup button to search for one.

In the Version field, enter the document version or click the Lookup button to search for one.

10. Click the Add button.

The Document Builder—-Document page appears, displaying the document definition for the document
you specified. The Metadata References grid displays the name of the message definition you added.

11. Click the Save button.

Managing Rowset-Based Messages

This section provides an overview of managing rowset-based message definitions and discusses how to:

View rowset-based message structures.

Insert root records.

Insert child and peer records.

Specify record aliases.

Delete records.

Exclude fields from messages.

Specify field name aliases.

Manage XML message schemas for rowset-based messages.

Enforce message record and field aliases in generated WSDL.

Understanding Managing Rowset-Based Messages

This section provides overview information about managing rowset-based message definitions.

Root Records

When you create a rowset-based message, you must at a minimum insert a root record (level 0) into the
definition.

Records and Record Fields

You create and modify records and record fields in PeopleSoft Application Designer.

Note: Avoid using derived/work records in messages. Work records don't behave like regular records
when used with PeopleCode rowset methods. A good alternative is to use dynamic views.

Record and Record Field Aliases

Record and field aliases are optional parameters that are used for schema and XML generation.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

109

Managing Messages Chapter 6

When record and field aliases are used, the receiver of a message sees the alias names instead of the
actual record and field names. The alias names are seen in the message definition, in message schemas,
and on generated runtime XML that is sent to the receiver.

Note that the sender still codes to the actual record and field name.

XML Schema for Rowset-Based Messages

When you create or make changes to a rowset-based message definition, the system automatically
generates message schema.

Viewing Rowset-Based Message Structures

110

This section discusses the three ways to view the structure of rowset-based message definitions. This
section discusses how to:

* View the entire structure of rowset-based message definitions.
* View only the records in rowset-based message definitions.

* View only included records fields in rowset-based message definitions.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Viewing the Entire Structure of Rowset-Based Message Definitions

By default, when you open a rowset-based message definition in the Messages — Message Definition
page, PeopleSoft Integration Broker displays the complete message definition structure.

Image: Messages — Message Definition page

This example illustrates a partial view of the Messages — Message Definition page. The bottom
portion of the page, shown here, shows the complete message definition structure for the message
QE FLIGHTPLAN.

[= QE_FLIGHTPLAN
= & QF FLIGHTDATA
@ o QOF ACHUMBER
& & QOFE M3 SEMSOR
@ & QE OFF
& o QF ACTYPE
@ v QF CALLSIGH
@ o OF SOUADRON
@ W OE COMMI
v QE COMM2
& o QE ECH
@ o DESCRLOMG
= & oF NAVIGATION
& o QE ACHUMBER
W & QE WAYPOINT NBR
& o QOFE BEARIMNG
o B QF RAMGE
W W OF ALTITUDE
& & QOF LATITUDE
W & QE LONGITUDE
& o QFE HEADIMG
& QF YELOCITIES
W W OF MAVDESC
& & GE RADAR PRESET
E & oF ARMAMENT
The system displays the definition in a tree structure. Use the Expand button (+) and the Collapse (-)
button to expand and collapse the tree to view all records, subrecords and fields (both included and
excluded) in the definition.

Record fields that are included in the message definition have a check next to them. Record fields that are
not included in the message definition have a box next to them. In the previous graphic, OF RANGE is
the only record field that is not included in the QF FLIGHTPLAN message definition.

You can view the record or field properties by clicking the record or field name.
To view the entire structure of a rowset-based message:
1. Select PeopleTools, Integration Broker, Integration Setup, Messages.

2. Select a message to view.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 111

Managing Messages Chapter 6

The Messages-Message Definitions page appears and the entire structure of the message appears in a
tree view.

3. Expand and collapse the tree to view the message structure.

Viewing Only the Records in Rowset-Based Message Definitions

You can use the Records Only page (IB_ MESSAGE TR_SEC) to view the records and subrecords in a
rowset-based message definition.

Image: Records Only page

This example illustrates the Records Only page. The example shows records and subrecords for the
QF FLIGHTPLAN message displaying in the Records Only page.

Records Only

Message: QE_FLIGHTPLAM Version: YERSION_1

= QE_FLIGHTPLAN
= & QF FLIGHTDATA
= & oE_MNavIGATION
= & QF_RADAR _PRESET
= & oE_ARMAMENT
= & QF wWPN_PRESETS
= & QE STAT CONFIG

To view only the records in a rowset-based message:
1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
2. Select a message to view.
The Messages-Message Definitions page appears.
3. Just above the tree structure view of the message structure, click the View Records Only link.

The Records Only page appears and the records and subrecords in the message definition display in a
hierarchical view.

4. Click the Return button to return to the Messages-Message Definitions page.

112 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Viewing Only Included Record Fields in Rowset-Based Message Definitions

You can use the Included Fields Only page (IB. MESSAGE TR SEC) to view the included records fields
for a rowset-based message definition.

Image: Included Fields Only page

This example illustrates the Included Fields Only page. The example shows a sample of the records and
their included fields contained in the QF FLIGHTPLAN message definition.

Included Fields Only

Message: CE_FLIGHTPLAR Vfersion: WERSION_1

= QE_FLIGHTPLAN
= & QF_FLIGHTDATA

& « QE_ACNUMBER

& « QE_MS|_SEMNSOR

@ « QE_OFF

@ v QE_ACTYPE

& « QE_CALLSIGN

& « QE_SQUADRON

& v QE_COMMI

& o QE_COMM2

@ v QF_ECM

& « DESCRLONG

= & QE_MAVIGATION
& + QE_ACMUMBER
& v QE_WAYPOINT _MBR
& « QE_BEARING
& v QE_RAMNGE
& « QE_ALTITUDE
& « QE_LATITUDE
&« QE_LOMGITUDE

Included fields are denoted by a green icon in the shape of a check mark.

To view included record fields in a rowset-based message:

1. Select PeopleTools, Integration Broker, Integration Setup, Messages.

2. Select a message to view.
The Messages—Message Definitions page appears.

3. Just above the tree structure view of the message structure, click the View Included Fields Only link.
The Included Fields Only page appears and included records fields contained in the message display.

4. Click the Return button to return to the Messages-Message Definitions page.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 113

Managing Messages Chapter 6

Inserting Root Records

114

You insert a root record into a rowset-based message definition using the Add New Record page
(IB_MESSAGE TOP_SEC).

Image: Add New Record page

This example illustrates the Add New Record page.

Add New Record

New Record Hame Q

Note: There can only be one root record defined for each rowset-based message.

To insert a root record into a definition:
1. Access the Add New Record page.

Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears. Click the Add Record to Root link.

2. Inthe New Record Name field, enter the name of the record to add, or click the Lookup button to
search for and select one.

3. Click the OK button.

The root record appears in the tree structure. Click the Expand button (+) to expand the tree and view
fields that are associated with the record.

You can exclude fields from the record and specify field name aliases. Steps for performing these actions
are described elsewhere in this topic.

See Excluding Fields from Messages.

See Specifying Field Name Aliases.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

Inserting Child and Peer Records

Managing Messages

You insert child and peer records into a rowset-based message definition using the Message Record

Properties page (IB. MESSAGE REC SEC).
Image: Message Record Properties page

This example illustrates the Message Record Properties page.

Message Record Properties

Record: QE_FLIGHTDATA

QE_FLIGHTDATA

Alias Name:

) Delete Record

() Add Record

Peer Record
Child Record

Hew Record Name:

- Field List

Field Hame

Customize | Find | = | i

Include Alias

First n 1-10 of 10 u Last

QE_ACNUMBER |
QE_MS|_SENSOR |
QE_OFP |
QE_ACTYPE |
QFE_CALLSIGN |
QF_SQUADRON |
QE_COMM1 |
QE_COMM2 |
QE_ECM |
DESCRLONG |

To insert a child or peer record into a rowset-based message definition:

1. Access the Message Record Properties page.

(Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears. Click the linked record name to which to add a peer or child record.)

2. In the Action group box, select Add Record.

3. Inthe New Record Name field, enter the name of the record to add, or click the Lookup button to

search for and select a name.
4. Select whether to add the record as a peer record or a child record.
* Select Peer Record to add the record as a peer.

¢ Select Child Record to add the record as a child.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

115

Managing Messages Chapter 6

5. Click the OK button.
The Messages-Message Definitions page appears.

6. Click the Save button.

Specifying Record Aliases

You can specify aliases of the root, peer, and child records that you insert into rowset-based messages
using the Message Record Properties page.

To specify a record alias:
1. Access the Message Record Properties page.

(Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears. Click the linked record name to which to specify an alias.)

2. In the Alias Name field, enter an alias name.
3. Click the OK button.

The Messages-Message Definitions page appears.
4. Click the Save button.

Related Links

Message Aliases and Message Versions

Deleting Records

116

This section describes how to delete records from a rowset-based message.

Note: Deleting the root record deletes all records and their associated fields that are inserted into the
definition.

To delete a record:
1. Access the Message Record Properties page.

(Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears. Click the name of the record to delete.)

2. In the Action group box, select Delete Record.
3. Click the OK button.
The Messages-Message Definitions page appears.

4. Click the Save button.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Excluding Fields from Messages

You can exclude record fields from inclusion in a rowset-based message definition using the Message
Field Properties page.

After you exclude fields from records, the tree view of the message definition on the Message Definitions
page displays a red icon in the shape of box next to the excluded fields.

Image: Message Field Properties page

This example illustrates a partial view of the Message Field Properties page. The example shows that the
field QF ACNUMBER has been excluded from the QF FLIGHTDATA record.

[= TEST_ROWSET_MSG
E & QFE FLIGHTDATA

& W QF ACNUMBER
@ v QF_MSI_SENSOR
@ ¥ QFE OFP
@ ¥ QE ACTYPE
@ ¢ QE CALLSIGN
@ ¢ QF SQUADRON
W OF COMMA
W & OE COMMZ
& v QF_ECM

& « DESCRLONG
To exclude fields:

1. Access the Message Field Properties page.

a. Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears.

b. Click the Expand button (+) to expand the record tree structure, and locate the field to exclude
from the definition.

c. Click the name of the field to exclude.
The Message Field Properties page appears.

2. Click the name of the field to exclude.

3. Deselect the Include check box.
4. Click the OK button.
The Messages-Message Definitions page appears.

5. Click the Save button.

Specifying Field Name Aliases

Use the Message Field Properties page to specify field name aliases.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 117

Managing Messages Chapter 6

To specify a field name alias:
1. Access the Message Field Properties page.

a. Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears.

b. Click the Expand button (+) to expand the record tree structure, and locate the field to exclude
from the definition.

c. Click the name of the field for which to specify a field name alias.
The Message Field Properties page appears.

2. Inthe Alias Name field, enter an alias name.

3. Click the OK button.
The Messages—Message Definitions page appears.

4. Click the Save button.

Including Fields in CData Sections in Generated XML

You can specify that fields be included in CData sections in generated XML. When you select the CData
Wrap check box on the Message Field Properties page, the field will be wrapped in a CData section in
generated XML.

Image: Message Field Properties page

This example illustrates the Message Field Properties page

Message Field Properties

Record: QE_SALES_ORDER
Field Name: QE_ACCOUMNT_MAME
Alias Name:
Include [cData Wrap

To include a field in a CData section in generated XML:
1. Access the Message Field Properties page.

a. Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears.

b. Click the Expand button (+) to expand the record tree structure, and locate the field to exclude
from the definition.

c. Click the name of the field for which to specify a field name alias.
The Message Field Properties page appears.

2. Select the CData Wrap check box.

118 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

3. Click the OK button.
The Messages—Message Definitions page appears.

4. Click the Save button.

Managing XML Message Schemas for Rowset-Based Messages
This section discusses how to:
* View XML message schemas for rowset-based messages.
* Exclude descriptions in XML message schemas.
* Choose the number of level 0 rows to include in generated XML message schema.
* Include namespaces in generated XML message schemas.

e Suppress empty XML tags in message schema.

Viewing XML Message Schemas for Rowset-Based Messages

PeopleSoft Integration Broker automatically generates message schema for rowset-based messages when
you save the message definition.

After you save a message definition on the Messages-Message Definitions page, click the Schema tab to
view the generated XML message schema.

Excluding Descriptions in XML Message Schemas

Message data that is used to define services can have actual database record and field names in the
generated XML message schema. PeopleSoft Integration Broker provides an option where you can
exclude descriptions in generated message schemas so that sensitive information is not exposed.

The Messages—Message Definitions page features an Exclude Descriptions in Schema check box that
enables you to suppress descriptions in generated schema.

To exclude descriptions in XML message schemas:

1. Access the Messages—Message Definition page (PeopleTools, Integration Broker, Integration Setup,
Messages.

2. Select the Exclude Description in Schema check box.
3. Save the changes.

See Managing XML Message Schemas for Rowset-Based Messages.

Choosing the Number of Level 0 Rows to Include in Generated XML Message
Schema

You can choose to include a single level 0 row in the generated schema or all level 0 rows in the generated
schema.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 119

Managing Messages Chapter 6

120

When you select the Single Level 0 Row check box, PeopleSoft Integration Broker includes a single level
0 row in the XML message schema when you Save the definition. If this box is not selected, then the
system includes all level 0 rows in the message in the generated schema.

By default the Single Level 0 Row check box is not selected.

If you check the Single Level 0 Row check box to generate schema with one level 0 row, the level 0 row
included in the schema is the first level 0 row the system encounters in the message.
Including Namespaces in Generated XML Message Schemas

PeopleSoft Integration Broker enables you to include a namespace in XML message schemas that you
generate for rowset-based messages.

When working with a rowset-based message type, the Messages—Message Definition page displays an
Include Namespace check box. When the Include Namespace check box is selected, you can specify a
namespace to include in the generated schema on the Messages-Schema page.

Image: Messages—Schema page

This example illustrates the Messages — Schema page. The example shows the Namespace field is
populated with the namespace as defined in the Service Configuration page.

| [scroma |

Message: QE_ASYMNC_TEST

Version: VERSIOMN_1
Namespace: http:ifemins.oracle.comiEnterprise/Tools/schemas/QE_ASYNC_TESTVER

Schema:

By default the Namespace field is populated with the namespace defined on the Service Configuration
page, however you can change the namespace to use in the message schema as required.

To include a namespace in generated schema:

1. Access the Messages—Message Definition page (PeopleTools, Integration Broker, Integration Setup,
Messages).

2. Select the Include Namespace check box.
3. Click the Schema tab.

The Messages—Schema page appears. By default the namespace as defined on the Service
Configuration page populates the Namespace field.

4. In the Namespace field enter the namespace to use in the generated XML message schema.
5. Click the Message Definition tab.
6. Save your changes.

The system generates the message schema and includes the namespace specified.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Suppressing Empty XML Tags in Message Schema

PeopleSoft Integration Broker enables you to suppress empty XML tags in message schema of rowset-
based messages.

The Messages-Message Definition page features a Suppress Empty XML Tags check box.
When you select this box, message schema generated for the message will not include any XML tags that
contain empty or Null values.
Enforcing Message Record and Field Aliases in Generated WSDL
PeopleSoft Integration Broker enables you to enforce record and field aliases in generated WSDL.

The Service Configuration page features a WSDL Generation Alias Check drop-down list that enables
you to set a system check level for aliases on message definition records and fields.

You can set the following check levels:

Check Level Description

Error. If the system encounters a message definition without proper
record and field aliases, it displays an error and it will not
generate a WSDL document.

None. Default. The system creates a WSDL document regardless of
whether message records and fields are aliased or not.

Warning. As the system creates a WSDL document it displays a warning
it encounters messages definitions that do not have complete
aliasing for records and/or fields. If the system encounters
records or fields that do not have aliases defined, you can
continue to generate the WSDL document or terminate the
generation of the WSDL document.

To enforce message record and field aliases in generated WSDL.:

1. Access the Service Configuration page (PeopleTools, Integration Broker, Configuration, Service
Configuration).

2. From the WSDL Generation Alias Check drop-down list, select a value. The valid options are:

e Error.
e None.
* Warning.

Managing Nonrowset-Based Messages

This section provides an overview of managing nonrowset-based messages and discusses how to:

* Add XML message schemas to nonrowset-based messages.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 121

Managing Messages Chapter 6

* Edit nonrowset-based XML message schemas.

Understanding Managing Nonrowset-Based Messages

After you create a nonrowset-based message definition, you do not need to complete any additional
configuration steps for the definition, except to add an XML schema. The XML schema describes the data
to be sent, and includes the field names, data types, field lengths and so on.

You may add or replace message schemas that are referenced by nonrowset-based messages in runtime
tables. However, once you change a message schema for a nonrowset-based message, you must adjust the
message for a successful integration.

Related Links
Adding Message Definitions

Adding XML Message Schemas to Nonrowset-Based Messages

To add an XML message schema to nonrowset-based messages:

Note: You cannot regenerate message schemas for messages that are defined as part of a restricted
service.

1. Select PeopleTools, Integration Broker, Integration Setup, Messages.

2. Select the nonrowset-based definition to which you want to add an XML schema.
The Messages - Message Definitions page appears.

3. Click the Schema tab.

4. Click the Add Schema button.
The Schema page appears.

5. Add the XML schema to the message.
You can add the schema to the message in two ways:

* Click the Upload Schema From File button to browse for and upload a schema that you have
already saved to a file.

* Enter the XML schema in the Schema text box that is provided.

6. Click the Save button.

If you define the message as a message part, you must supply a schema to save the message. All message
parts require a schema at save time.

Editing Nonrowset-Based XML Schemas

After an XML message schema is added to a nonrowset-based message, you can edit the schema using
the Schema page.

122 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Note: You cannot regenerate message schemas for messages that are defined as part of a restricted
service.

To edit nonrowset-based XML message schemas:
1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
2. Select the nonrowset-based definition that contains the schema that you want to edit.
The Messages - Message Definitions page appears.
3. Click the Schema tab.
The Schema page appears and displays the existing XML message schema for the definition.
4. Click the Edit Schema button.
5. Inthe Schema text box, make your changes and additions to the XML schema.

6. Click the Save button.

Deleting Nonrowset-Based XML Message Schemas
This section discusses how to:
* Delete individual nonrowset-based XML message schemas.

* Delete nonrowset-based XML message schema in bulk.

Deleting Individual Nonrowset-Based XML Message Schemas

Use the Messages-Schema page (IB MESSAGE BUILD?2) to delete individual nonrowset-based XML
message schema.

To delete an individual nonrowset-based XML message schema:

1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
The Messages-Message Definitions page appears.

2. Click the Schema tab.
The Messages-Schema page appears.

3. Click the Delete Schema button.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 123

Managing Messages Chapter 6

Deleting Nonrowset-Based XML Message Schemas in Bulk

To delete one or more nonrowset-based XML message schemas, use the Message Schemas page
(IB_HOME PAGE®?) in the Service Administration component IB_ HOME PAGE).

Image: Service Administration — Message Schemas page

This example illustrates the Service Administration — Message Schemas page.

WsDL Senices Senvice Operations Messages Message Schemas Cueues Routings E)

Service System Status: Development

Container, part, and rowset-based message schemas cannot be deleted.

Message Name: |
Search

Messages with "
< Customize | Find | View A1 B0 3 First Bl 4 or 1 B Last

Schemas

Select Message Name Version Results

Delete

To delete nonrowset-based XML message schemas in bulk:

1. Select PeopleTools, Integration Broker, Service Utilities, Service Administration.
2. Click the Message Schemas tab.

3. Choose the schema or schemas to delete.

To delete an individual schema, in the Message Name field enter the name of the message that
contains the schema to delete.

To delete more than one schema, click the Search button to display all nonrowset-based message in
the system than contain schema.

The message or messages appear in the Messages with Schema grid.

4. In the Select column, select the check box next to each message name that contain schema you want
to delete.

If deleting multiple schemas, use the forward and backward arrows and/or the Last and First links to
page through the results and select schemas to delete.

5. Click the Delete button.

Managing Message Parts

124

This section discusses how to create message parts.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Understanding Message Parts

Message parts are individual message definitions that get used in container messages.

While message parts can be rowset-based or nonrowset-based, the advantage of using message parts
comes when working with rowset-based messages. By using nonrowset-based message parts, you cannot
take advantage of PeopleSoft Integration Broker's framework for creating message definitions, use of
PeopleCode, serialization, porting, and so on. The following table highlights some of the advantages of
using rowset-based message parts:

Rowset-Based Message Parts Nonrowset-Based Message Parts

You can use the PeopleSoft Pure Internet Architecture to build | You cannot use the PeopleSoft Pure Internet Architecture to
rowset-based message parts. build nonrowset-based message parts.

Message schema is automatically generated for rowset-based | You must generate message schema for nonrowset-based

messages. message parts.
The mapping from XML to rowset is managed by the You must use the XMLDoc class to manipulate nonrowset-
framework. based message content.

In addition, you must manually map the XML into XMLDoc
for the parts.

Container messages are always nonrowset-based. So, if you use a container message that contains rowset-
based part messages, the container messages sends XML that contains none of the standard PeopleSoft
message XML structures, such as PSCAMA, FieldTypes, and so on. However, you can use the rowset-
based classes and methods to populate and read the structure of each part message.

Creating Part Messages

To create a part message, create a standard rowset-based or nonrowset-based message and select the Part
Message check box on the Message Definition page.

When the service system status is set to Production, once a message is used in a container message, you
cannot alter the message while it is associated with a container message.

You must generate schemas for all part messages before you can save them.

Schemas for rowset-based messages are automatically built when the message is saved. Schemas for
nonrowset-based parts must be added in order to save the message.

Related Links
Adding Message Definitions

Managing Container Messages

Distinguishing Blank from Zero in Rowset-Based Part Messages

The Message Definitions page features a Message Part Default Indicator field that appears when you
select or define a rowset-based message part.

When you select the check box, XML that has a value of 0 (zero) passed in an integer field, when
serialized to a rowset, causes the IsChanged property flag on the field to set to 7rue.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 125

Managing Messages Chapter 6

By default an integer field has a value of 0. So if a 0 or <blank> is passed in a field, the end result is a 0
when accessing the field via the rowset. However, if you select the Message Part Default Indicator check
box the IsChanged property on such a field is set to 7True, meaning that a 0 (zero) was passed in the field.

Reusing Rowset-Based Message Parts

This section discusses how to:
» Reuse rowset-based message parts by reference.

* Reuse rowset-based message parts by copy.

Understanding Reusing Rowset-Based Message Parts

PeopleSoft Integration Broker enables you to reuse rowset-based message parts by referencing another
message part or by copying another message part.

Note: You cannot reuse message parts at Level 0.

Referencing Message Parts

A reference to a message part is read-only in the message part where it is referenced. To make changes
to a referenced message part, you must make the changes to the referenced message part directly. All
changes are then propagated to every message in which the message part is referenced.

Copying Message Parts

If you copy a message part, the system copies all records and fields and displays them at the record level.
The records and fields become permanent to the new message and you can edit all records and fields
directly in the message where the copied part exists. Changes you make to a copied message part are

not propagated to other copies of the message part that may exist. You must make changes to a copied
message part, you do so manually to each message part that you want to change.

Reusing Rowset-Based Message Parts by Reference

126

This section discusses how to:

* Reuse a message part by reference.

* Check for recursion.

e View referenced message part information.
* View where message parts are referenced.
* Modify referenced message parts.

e Delete referenced message parts.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

Managing Messages

Reusing a Message Part by Reference

To reuse a message part by reference:

1.

2.

Create a rowset-based message part.

Add records to the message part per your requirements. At a minimum, you must add a Level 0
record.

In the tree view of the message part definition, click the name of the record off of which to add the
reused message part.

The Message Record Properties page appears.
In the Action box, click Add Part Reference.
Identify if the message part is a peer part reference or a child part reference.

If you are working off the Level 0 record, these fields are read only and Child Part Reference is
selected by default.

In the Reference Message Version field, click the Lookup button to select the message that the system
should reference.

Click the OK button.

The Messages-Message Definition page appears.

The reference part is identifiable in the tree view for the message part definition by the highlighted color
on the root record of the referenced part. Since this is a reference, you can only view the reference part
data structure. To make any modifications to the referenced part, you must open the message part directly
and make your changes there. The system will propagate the changes to all messages that reference the
message part.

Checking for Recursion

By default, the system checks up to 20 levels for recursion to ensure that no message part references
itself. You can modify this setting to check for recursion in as few as three levels of records and as many
as 50 levels.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 127

Managing Messages

128

Chapter 6

This parameter is set on the System Setup Options page (IB_SYSTEMSETUP).

Image: System Setup Options page

This example illustrates the System Setup Options page.

Message builder depth limit:

" IB Profile Status On

System Setup Options

Rowset-hased message parts maximum recursion level check,

Enahle runtime Frofile information far SynclAsync processing

M

To modify the recursion checking level:

1. Access the System Setup Options page (select PeopleTools, Integration Broker, Configuration,

System Setup Options)

2. In the Message Builder Depth Limit field, enter a value between 3 and 50.

3. Click the Save button.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

Viewing Referenced Message Part Information

A referenced message part appears highlighted in the tree structure for a message in the Messages —

Message Definition page.

Image: Messages — Message Definition page

This example illustrates the Messages — Message Definition page. In the example the message structure
for the FLIGHTDATA message is shown. In the tree structure the message record O ARMAMENT is

Managing Messages

highlighted and is therefore a referenced message part in the FLIGHTDATA message.

Message Definition Schema

Message:

Comments:

View Records Qnly

FLIGHTDATA

Version: W1

Alias: |

Description: |

Owner ID: |

W

FART MESSAGE

Part References

Wiew Included Fields Only

Left | Right

Schema Exists: Yes

Part Message
[Message Part Default Indicator
[[] Exclude Description in Schema

[] Suppress Empty XML Tags

Rowset-based
Nonrowset-based
Container

Add Record to Root

= FLIGHTDATA
= & QFE FLIGHTDATA- [FlightData]

W
Y
@ W
W
W
&
o
& W
W
W

QE ACHMUMBER - [ACHNumber]
QE MS| SENSOR -[MSlSensar
QE OQFP -[OFP

QE ACTYPE - [ACTypel

QE CALLSIGN - [CallSign]

QE SQUADROM - [Squadron]
QE COMMAT - [Comim]

QE COMM2 - [Comm2]

QE ECM-[ECM
DESCRELOMG - [Desc]

= & QF NAVIGATION - [Navigation]
= & QF RADAR PRESET - [RADARPresei]

= 55 QE ARMAMENT - [Armament]

Note: You can make changes to a message part that is referenced in another part or subpart, as long as the

message part is not in the runtime tables, has not been exported as WSDL, or is a restricted message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

129

Managing Messages Chapter 6

130

If you click a referenced message part, the Part Reference page (IB. MESSAGE PARTS?2) appears.
Image: Part Reference page

This example illustrates the Part Reference page.

Part Reference
Message Name: ARMAMEMNT Message Version: W1

Record: QE_ARMAMENT

Alias Name: |*g*“"”EI rnent view Definition
[Delete Part Reference

You can use the Part Reference page to view general information about the referenced message part as
well as view the complete definition for the message part.

You can also use this page to delete the reference to the message part. Deleting a part reference is
discussed elsewhere in this section.

See Reusing Rowset-Based Message Parts

To view the complete message definition for a referenced message part, on the Part References page View
Definition link shown in the previous example. When you click the link the definition for the referenced
message part appears in the Messages — Message Definition page.

Image: Messages — Message Definition page

This example illustrates the Messages — Message Definition page. The example shows the message
definition for he Armament message part.

Message Definition Schema

Message: ARMAMEMT

Schema Exists: Yes

Part Message
Versiom: i [IMessage Part Default Indicator
Alias: Armament] Exclude Description in Schema
Description: |
. W
Owner 1D: |] Suppress Empty XML Tags
Rowset-based
Nonrowset-based
Container
Sub-part References
View Records Only View Included Fields Only Add Record to Root
Left | Right
= ARMAMENT

= & QF ARMAMENT - [Armament]

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

You can use the page to view details about the record structure, view the generated message schema, and
SO on.

Modifying Referenced Message Parts

To make a modification to a referenced message part, you must make the modification in the message part
definition itself. You cannot modify a referenced message part from a message in which it is referenced.

Deleting Referenced Message Parts

You delete a referenced message part in the message where the part is referenced.
To delete a referenced message part:
1. Open the message definition that contains the referenced message part to delete.

2. In the tree structure view of the message definition, click the name of the referenced message part to
delete.

The Part Reference page appears.
3. Select the Delete Part Reference check box.

4. Click the OK button.

Managing Container Messages

This section provides an overview of managing container messages and discusses how to:
* Add message parts to container messages.
* Add and get container message attributes.

* Generate XML message schemas for container messages.

Understanding Managing Container Messages

Container messages are used for those situations where you want to produce XML that contains none of
the standard PeopleSoft messaging XML structures, such as PSCAMA, FieldType, and so on, yet you
want to use PeopleSoft rowset-based classes and methods to populate and read the message structure.

Container messages:
* Hold one or more message parts.
* Are always nonrowset-based messages.

The message parts you add to a container message must all be rowset-based message parts, or all
nonrowset-based message parts.

When working with container messages that contain rowset-based message, PeopleSoft Integration
Broker enables you to add attributes and attribute values to the container messages. Adding attributes
to container messages enables you to provide integration partners with data and information, without

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 131

Managing Messages Chapter 6

the need to modify or provide the information in the container message definition or in any of the part
message definitions.

Understanding Including Level 0 Rows for Message Parts in Container
Messages

132

When you are working with a container message that holds rowset-based message parts, you can specify
the minimum and the maximum number of level 0 rows for each message part.

When you are working with a container message, the Message Definition page, the Parts grid displays the
following fields:

Minimum Occurs The value you enter determines the minimum number of level 0
rows in the message part to include in the container message.

Maximum Occurs The value you enter in this field determines the maximum
number of level 0 rows in the message part to include in the
container message.

By default the Maximum Occurs value is set to 1 to represent
the single row of data on the level 0 record defined on the part (
typical for component processing). However, for the case where
more then one row of data is to be passed on the level 0 record,
for example there is a single record defined on the message part
and you want to send x number of rows of data, then increase
the Maximum Occurs value to the value of x (the number of
rows of data you are sending) or set the Unbounded Maximum
field to Y.

Maximum Unbounded The value you select determines if the system includes unlimited
level 0 rows from the message part in the container message.
The valid values are:

* Y The number of level 0 rows from the part message that the
system includes in the container messages is unlimited, or
unbound. When you select this option all rows from a part
message are included in the container message.

e N. (Default) The number of level 0 rows from the part
message that the system includes in the container message is
limited. You must enter the maximum number of rows from
the part message to include in the container message in the
Maximum Occurs field.

Example: Message XML when Maximum Occurs is Set to a Non-Default Value

The section contains a example of a container message with three message parts: QF PART 1,
QFE PART 2, and QE PART 3.

Each part contains only one record (level 0 record).

As described earlier in this section, the Maximum Occurs value is / by default.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

In the following example QF PART 1 is defined on the container with a Maximum Occurs value of 2 and
what is actually published in this case is two rows on the level 0 record for QF PART 1, as shown in the
example.

<?xml version="1.0"7?>
<QE PARTS xmlns="http://xmlns.oracle.com/Enterprise/Tools/schemas/
QE PARTS.VERSION 1">
<QE_PART 1>
<QE NAVIGATION class="R" xmlns="http://xmlns.oracle.com/Enterprise/
Tools/schemas/QE PART 1.VERSION 1">
<QE ACNUMBER>100</QE ACNUMBER>
<QE_WAYPOINT NBR>10</QE WAYPOINT NBR>
<QE BEARING/>
<QE RANGE/>
<QE ALTITUDE/>
<QE_LATITUDE/>
<QE_LONGITUDE/>
<QE HEADING/>
<QE VELOCITIES/>
<QE_NAVDESC/>
</QE NAVIGATION>
</QE PART 1>
<QE_PART 1>
<QE NAVIGATION class="R" xmlns="http://xmlns.oracle.com/Enterprise/
Tools/schemas/QE PART 1.VERSION 1">
<QE ACNUMBER>100</QE ACNUMBER>
<QF_WAYPOINT NBR>20</QE_WAYPOINT NBR>
<QE_BEARING/>
<QE RANGE/>
<QE ALTITUDE/>
<QE LATITUDE/>
<QE_LONGITUDE/>
<QE HEADING/>
<QE VELOCITIES/>
<QE_NAVDESC/>
</QE_NAVIGATION>
</QE_PART 1>
<QE_PART 2>
<QE RADAR PRESET class="R" xmlns="http://xmlns.oracle.com/Enterprise/
Tools/schemas/QE PART 2.VERSION 1">
<QE ACNUMBER>2</QE ACNUMBER>
<QE RADAR SELECTION>1</QE RADAR SELECTION>
<QE RADARMODE>TWS</QE RADARMODE>
<QE_RADAR OPERMODE>N</QE RADAR OPERMODE>
<QE BARSCAN>4B</QE BARSCAN>
<QE RADARRANGE>40</QE RADARRANGE>
<QE_TGTAGE>8</QE_TGTAGE>
<QE CHANNELSET>B</QE CHANNELSET>
<QE AZIMUTH>80</QE AZIMUTH>
<QF_PRF>H</QFE_PRF>
</QE RADAR PRESET>
</QE_PART 2>
<QE_PART 3>
<QE ARMAMENT class="R" xmlns="http://xmlns.oracle.com/Enterprise/Tools/
schemas/QE PART 3.VERSION 1">
<QE ACNUMBER>2</QE ACNUMBER>
<QE STATION NBR>1</QE STATION NBR>
<QE_AGMODE>CCIP</QE AGMODE>
<QE_BIT>SBIT</QE BIT>
<QE_WEAPONSPECS/>
</QE_ ARMAMENT>
</QE PART 3>
</QE_PARTS>

Adding Message Parts to Container Messages

This section discusses how to add message parts to container messages.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 133

Managing Messages

134

Chapter 6

Use the Messages — Message Definitions page to add message parts to a container message. To access the

page, select PeopleTools, Integration Broker, Integration Setup, Messages.
Image: Messages — Message Definitions page

This example illustrates the Messages — Message Definitions page for the container message
CONTAINER MSG.

Message Definition Schema

Schema Exists: Mo
Message: COMNTAINER_MSG
Part Message
Versiomn: W1
Alias: |
Description: |
owner ID: i
Comments: Message Type
Rowset-based
Nonrowset-based
Container
Add Parts

|
Parts Customize | Find | View Al 20| B8 First Bl 4 or 4 I Last
Minimum (Maximum |*Unbound
Occurs Occurs Maximum

0 0 1 N v

Message Name Message Version uvence | — [—— |—— . —

[=]

When you click the Add Parts link to specify a message, version, and message type to add, the Add Parts

page (IB_MESSAGE_PARTS) appears.
Image: Add Parts page

This example illustrates the Add Parts page.

Add Parts

Message Name: |

Message Version: |
Show Rowset-based Parts
Show Nonrowset-based Parts

For a message definition to be available for you to add to a container message, you must have selected the
Message Parts check box when you created the message definition. In addition, container messages can

contain only all rowset-based messages or all nonrowset-based messages.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

After you add message parts to a container message, the Messages — Message Definitions page displays

and the message parts that you have added to the message are listed

Image: <Messages — Message Definitions

This example illustrates the Messages — Message Definitions page. The example shows three message

parts added to the container message.

Managing Messages

in the Parts grid.

Message Definition Schema

Oeccurs

Schema Exists: Mo
Part Message

Rowset-based
Honrowset-based
Container

Container Attributes

First B 13 of 3 I8 Last
*Unbound

N

Maximum
[=]

N~

Message: CONTAINER_MSG
Version: W1
Alias: |
Description: |
Owner ID: A
Comments:
Add Parts
Parts Customize | Find | view 4l | (2] #
Message Name Message Version | Sequence w Maximum
QE PART 1 YERSIOMN_1 |1 |u |1
QE PART 2 VERSION_1 2 0 K
VERSION_1 3 0 K

Click the name of any of the message parts that appear in the grid to open the individual message

definition. If the service system status is set to Production, when assigned to a container message, you

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

135

Managing Messages Chapter 6

cannot modify a message definition. To modify the definition, you must delete it from the container
message first.

Image: Messages — Message Definitions page

This example illustrations the Messages — Message Definitions page. The example shows how the
PART 1 message part displays if you click the message name in the Parts grid shown in the previous
example.

 essage ennon | it

Schema Exists: Yes
Message: GQE_PART_1
Part Message
Version: VERSION_1 [1 Message Part Default Indicator
Alias: [] Exclude Descri ption in Schema
Description:
Owner ID: b [] suppress Empty XML Tags
Comments: Message Type
Rowset-based
Nonrowset-based
Container
Fart References
View Records Only Wiew Included Fields Only Add Record to Root
Left | Right
[= QE_PART_1

= & oE NAVIGATION

Clicking the Part References link displays all messages to which the message part is assigned.

Note: Before you add nonrowset-based message parts to a container message, you must upload XML
message schemas to each message part that you intend to include in the container message. Nonrowset-
based part messages cannot be saved without a schema.

To add a message part to a container message:
1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
2. Select a container message to which to add message parts.
The Messages - Message Definitions page appears.
3. Click the Add Parts link.
The Add Parts page appears.
4. Select a message to add.
You can use one of two methods to select a message to add:

a. Inthe Message Name and Message Version fields, enter the message name and version to add.

136 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

b. Select the Show Rowset-Based Parts option or the Show Nonrowset-Based Part option and click
the Search button to display all rowset-based or nonrowset-based messages that are designated as
part messages in the system.

Select one or more messages to include in the container message.

5. Click the OK button.

The Messages - Message Definitions page appears, with the Parts grid populated with the message or
messages that you selected.

6. (Optional.) In the Parts grid, enter numeric values in the Sequence column to order message part
placement in the container message.

If you do not enter any values, the system sequences the messages in the order in which you add them
to the container message.

7. (Optional.) In the Minimum Occurs field, enter the number of minimum rows in the message part to
include in the container message.

8. In the Maximum Occurs field, enter the maximum number of level 0 rows from the part message to
include in the container message.

9. In the Unbound Maximum drop-down list, select whether to include all level O rows from the part in
the container message.

Note: If you select ¥, note that the Maximum Occurs field no longer displays on the page, as all rows
are included in the container message.

The Minimum Occurs, Maximum Occurs and Unbound Maximum fields are described elsewhere in this
section.

See Understanding Including Level 0 Rows for Message Parts in Container Messages.

Adding and Getting Container Messages Attributes

This section discusses how to:

* Add the language code of the message sender as an attribute to a container message.
* Add attribute names to a container message.

* Populate attribute values for container message attributes.

* Get attribute names and values from a container message.

This section also provides a summary of PeopleCode that you can use to populate attribute values and get
attribute data from container messages.

Understanding Adding, Populating, and Getting Container Message Attributes

You can add attributes to container messages that contain rowset-based message parts to provide
integration partners with data and information, without adding the information to the message definition.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 137

Managing Messages Chapter 6

138

To add attributes to a container message, you first define the attribute name, length, and required flag

in the container message definition in the PeopleSoft Pure Internet Architecture. This information

appears in generated container message schema. At runtime the attributes appear at the root level of the
generated XML. Next you use PeopleCode to populate the attribute values using the IBInfo object. At
runtime, PeopleSoft Integration Broker validates the attribute values against the lengths you defined in the
container message definition.

PeopleSoft provides a number of IBInfo object methods to get attributes from container messages.
Adding Language Codes of the Message Senders as Attributes to Container
Messages

The language code of the user who executed the publish or sync request is a common attribute to add to
a container message. As such, PeopleSoft provides an Include Language Code attribute box, that when
selected automatically includes the information as an attribute name and value in the container message.

Image: Container Attributes page

This example illustrates the Container Attributes page. The example shows that the Include Language
Code check box is selected.

Container Attributes

Message Name: CONTAINER_MSG

Version: W1

Include Language Code

Container Attributes Customize | Find | View Al | 20) 88 First Kl 12 052 I Last
*Attribute Name Length |Required

| O =
| O =

To add the language code of the message sender as an attribute:

1. Access the Container Attributes page (PeopleTools, Integration Broker, Integration Setup, Messages
and click the Container Attributes link).

2. Select the Include Language Code check box.
3. Click the OK button.

4. The Messages—Message Definitions page appears.

Adding Attribute Names to Container Messages

After you add one or more rowset-based message parts to a container message and save the message,
a Container Attributes link appears on the Messages-Message Definition page under the Message

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6

Copyright

Managing Messages

Type group box. When you click the Container Attributes link, the Container Attributes page

(IB_MESSAGE_ATT SEC).

Image: Container Attributes page

This example illustrates the Container Attributes page. In the example two attribute names are defined,

Messagelmportance and DeveloperID.

Container Attributes

Message Name: COMTAIMNER_MSG

Version: W1

[linclude Language Code

Container Attributes Customize | Find | View All | (2 First Kl 1.2 or 2 I Last

*Attribute Hame

[+ [=]
7 ¥ +] [=]

|I'u'|essagelmpnrtance

|Deve|nperID

To add an attribute name to a container message:

1. Access the Container Attributes page (PeopleTools, Integration Broker, Integration Setup, Messages

and click the Container Attributes link).
2. In the Attribute Name field, enter a name for the attribute.

3. Inthe Length field, enter a numeric field length value.

4. (Optional.) Select the Required check box if you want the attribute name to be required.

5. Click the OK button.

The Messages—Message Definitions page appears.

Populating Attribute Values for Container Message Attributes

PeopleSoft provides several IBInfo object methods within the Message object to populate container

message attributes.

Here is an example of how to populate attributes. The attribute values will be validated at runtime against

the defined lengths.

&MSG = CreateMessage (Operation.MY SVC OPERATION) ;

&ret = &MSG.IBInfo.AddContainerAttribute ("MessageImportance", "Medium") ;
&ret = &MSG.IBInfo.AddContainerAttribute ("DeveloperID", "mdawson");

Additional IBInfo objects that you can use for working with container message attributes are described

elsewhere in this section.

Getting Attribute Names and Values from Container Messages

PeopleSoft provides several IBInfo object methods within the Message object to Get attribute information

from container messages.

© 1988, 2014, Oracle and/or its affiliates. All rights reserved.

139

Managing Messages

140

Chapter 6

Note that if you attempt to read attributes within an Integration Broker event, such as OnNotify,
OnRequest, and so on, you must first Get a part rowset to load the attributes into the Message object from
the XML.

The following code snippet shows one example of how to read attributes from a container message:

RowSet &MSG.GetPartRowset (1) ;
&index = &MSG.Ibinfo.GetNumberOfContainerAttributes();

For &1 = 1 To &index

gattrName = &MSG.Ibinfo.GetContainerAttributeName (&1i) ;
&attrValue = &MSG.Ibinfo.GetContainerAttributeValue (&1i);

End-For;

Additional IBInfo objects that you can use for working with container message attributes are described
elsewhere in this section.

Summary of PeopleCode Use for Working With Container Message Attributes

The following table summarizes the PeopleCode methods that you can use for working with container
message attributes.

Method Description
GetNumberOfContainerAttributes Gets the number of container attributes
Syntax:

&Integer = &MSG.IBInfo.
GetNumberOfContainerAttributes() ;

GetContainerAttributeName Returns the name of the container attribute based on an index.

Syntax:

&String = &MSG.IBInfo.
GetContainerAttributeName (Integer nIndex) ;

GetContainerAttributeValue Returns the value of the container attribute based on an index.

Syntax:

&String = &MSG.IBInfo.
GetContainerAttributeValue (Integer

nIndex) ;
AddContainerAttribute Add container attributes by passing in attribute name and
value.
Syntax:

&Bool = &MSG.IBInfo.AddContainerAttribute (
string name, string value);

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Method Description
DeleteContainerAttribute Delete a container attribute based on the attribute name.
Syntax:

&Bool = &MSG.IBInfo.
DeleteContainerAttribute (string name) ;

ClearContainerAttributes Deletes all container attributes in the IBInfo object.
Syntax:

&MSG.IBInfo.ClearContainerAttributes () ;

Generating XML Message Schemas for Container Messages

XML message schemas for container messages re automatically generated when you save the definition.
You can view the generated XML message schema on the Messages - Schema page. To access the page,
select PeopleTools, Integration Broker, Integration Setup, Messages and click the Schema tab.

Image: Messages — Schema page

This example illustrates the Messages — Schema page. The example shows system-generated XML
message schema for a container message with rowset-based message parts.

[Message Definition y Schema

Message Hame: TEST_01 Updated: 121372005 4:21:04PM
Version: YWersion_1
Name Space: hitpifsmins.aracle.comfEnterprise/Toals/schemas/COMTAINTER _TE Wers
Schema:

=Mmlversion="1.0"%=
=xzd:schema elementFormDefauli="qualified"
targethlamespace="httpJixmins.oracle.comiEnterprise/Toolsischemas/CONTAINTER_TE Wersion_1"
¥mins="httpfikmins. oracle.com/Enterprise/Toalsischemas/CONTAINTER_TE. Wersion_1"
¥mlns:FIRST_MSG_PART Version_1="httpJifkmins.aracle.comiEnterpriserToolsfschemas/FIRST_MSG_PART Version_1"
¥minsSECOND_MSG_PART Version_1="httpJixmins.oracle.comiEnterprise/Toolsischemas/SECOND_MSG_PART Version_1"
¥mins THIRD_MSG_PART Yersion_1="http.fxmins.oracle.com/EnterpriseToolsfschemasiTHIRD_MSG_PART Mersion_1"
¥minsxsd="httphwwan w3 orglf2001 <MLEchema”=
=xsdimpornt namespace="http./imins oracle.com/EnterpriseiToalsischemasiFIRST_MSG_PART Yersion_1"
schemalocation="http:fpho-mdawsona peoplesof.comfPEIGVFeopleSoftServicelisteningConnectar?
Operation=GetSchema&xsd=FIRST_MSG_PART Version_1"f=
=xsdimport namespace="httpJikmins. oracle.comiEnterprise/ToolsiszchemasrSECOND_MESG_PART Version_1"
schemalocation="httpfpho-mdawsona.peoplesofl.com/PSIGVWPeopleSoftServiceListeningConnector?
Operation=GetSchema&xsd=SECOND_MEG_PART Version_1"f=
=wsdimport namespace="httpitkimins. aracle comiEnterpriseiTaoalsizchemasMHIRD _MEG_PART Yersion_1"
schemalocation="httpfpho-mdawsona peoplesof.com/PSIGVPeopleSoftServiceListeningConnector?
Operation=GetSchematampxsd=THIRD_M5G_PART Version_1"r=
=xsdelement name="CONTAINTER_TEST_MSG" type="CONTAINTER_TEST_MSGType"l=
=xsd.complexType name="COMNTAINTER_TEST_MEGType"=
=xsd sequences
=xed:element maxQccurs="unhounded" minOccurs="0" name="FIRST_M5G_PART"
type="FIRST_MSG_PART Version_1 FIRST_MSG_PART_TypeShape"/=
=xsdelement maxOcours="unhounded" mindccurs="0" name="SECOMND_MSG_PART"
type="SECOMND_MEG_PART.Version_1.SECOMD_MEG_PART_TypeShape'f=
=xsd:element maxQccurs="unhounded" minOcocurs="0" name="THIRD_MSG_PART"
type="THIRD_MSG_PART Wersion_1 THIRD_MSG_PART_TypeShape"/=
=ksdgequence=
=hsd.complexType=

=iedschemas=

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 141

Managing Messages Chapter 6

The namespace that is used in the XML message schema becomes by default the value that is defined

on the Service Configuration page. To change the namespace, enter a the new namespace on the Schema
page in the Namespace field, the Message Definition tab, and save the change. The XML message schema
is generated again by means of the modified namespace value.

Managing Document Messages

After you add a document message to the system, you manage the document using the Document Builder
and the document utilities.

Related Links
PeopleSoft Documents Technology

Viewing Service Operations that Reference Messages

142

Use the Service Operation References page (IB MESSAGE SO _SEC) to view a list of service operations
that contain a message. The Messages-Message Definitions page provides a link to this page. To access
the page, select PeopleTools, Integration Broker, Integration Setup, Messages and click the Service
Operation References link.

Image: Service Operation References page

This example illustrates the Service Operation References page. The example shows a list of service
operations that contain the message IB_ EX NONROWSET CONTAINER.

Service Operation References

Message: |B_EX_MONROWSET_COMTAINER

Versiom: vl

. -]
Service Operations customize | Find |0 | 8 First Bl 12 052 B Last

Service ration | Service Operation Version |Validation
IB_EX_MP_MOMNROWSET_ASYMNC vl

IB_EX_MP_MONROWSET_SYMNC v

The following page elements appear on the Service Operation References page:

Message Name of the message that is referenced in one or more service
operations.

Version Version of the message that is reference in one or more service
operations.

Service Operation Name of the service operation that contains the message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

Service Operation Version Version of the service operation that contains the message.

Validation When the check box is selected message schema has been
generated for the message in the service operation.

Resolving Inconsistencies in Exported WSDL and WADL
Documents

This section discusses how to:
* View service operations with exported WSDL or WADL inconsistencies.

* Clear exported WSDL/WADL status flags.

Understanding Using Project Copy and Exported WSDL and WADL

When you generate WSDL or WADL for a service operation, the system sets an internal flag on the
service operation that indicates that WSDL/WADL has been generated or exported for the specific service
operation.

The system uses the same repository for WSDL and WADL documents. The WSDL metadata object is
used for project copy of WSDL and WADL. There is no WADL metadata object only WSDL.

You may later decided to use Project Copy to copy the service operation to a new database. But you may
decide not to or simply neglect to copy the exported WSDL or WADL to the new database.

Even though you have not copied the WSDL/WADL to the new database, the internal flag that says
WSDL/WADL has been generated is still set on the service operation. As a result, the system expects
WSDL/WADL to exist in the new database, when it does not. When this condition exists, the system
displays a status message on the message definition(s) of messages referenced in the service operation.

When this condition exists, the options are:
* Clear the internal WSDL/WADL exported flag on the service operation.
Information about how to perform this task is discussed in this section.
* Use Project Copy to copy the WSDL/WADL to the new database.
See "Copying Projects" (PeopleTools 8.53: Application Designer Lifecycle Management Guide).
* Regenerate the WSDL/WADL on the new database using the Provide Web Service wizard.

See Providing Services.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 143

Managing Messages

Chapter 6

Viewing Services Operations with Exported WSDL/WADL Inconsistencies

144

If the system detects a WSDL/WADL flag inconsistency, the following status message appears on the
Messages-Message Definitions page for those message definitions referenced in the service operation for

the WSDL/WADL in question:

Exported WSDL flag inconsistency detected. WSDL does not exist.

Image: Messages-Message Definitions page

This example illustrates the Messages — Message Definitions page. The example shows the “Exported
WSDL flag inconsistency detected” status message and the Exported WSDL Inconsistency link appearing

on the page.

Message Definition | Schema

& Status: Exported WSDL flag inconsistency detected. WSDL does not exist.

Exported W3DL Inconsistency

Schema Exists: Yes
Part Message

Message: FLIGHTPLAM
Version: w1

Alias:

Description:

Owner IDx
Comments: FlightPlan Container Message

Rowset-based
Nonrowset-based
Service Operation References Container
Add Parts Container Aftributes

|
Parts Customize | Find | View Al | B B First Bl 4 or 1 B Last

. o *Unbound
hessage Name Kessage Version HMimmum UCcurs :
Mess Hame Mess Version Sequence |Minimum Occurs T —

FLIGHTDATA W1 1 0 Y

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

In addition, an Exported WSDL Inconsistency link appears on the Messages-Message Definitions page.
Click this link to view the Exported WSDL Inconsistencies page (IB_ HOME PAGE7_SEC).

Image: Exported WSDL Inconsistencies page

This example illustrates the Exported WSDL Inconsistencies page

Exported WSDL Inconsistencies

Message: oSefhvice operations flagged as having exported WSDL need for that WSDL to exist in the
repasitory. Ifthis is not the case, the data is inconsistent. This erroris caused by importing a
sernvice operation and not bringing along the related service or W3DL objectvia project copy.

Sernvice Admin

Exported WSDL Inconsistent

Operations Customize | Find | View All| BY | First Tl 1 or 1 Il Last

Service Dperation Service Operation Version
FLIGHTPLAM v3

The page displays service operations that exist in the database that are flagged as having WSDL/WADL
exported, yet no WSDL/WADL exists in the database for them. The Exported WSDL Inconsistencies
page features a Service Admin link. Clicking the link opens the Service Administration-WSDL page
(IB_HOME PAGE?7). The Service Administration-WSDL page provides options to clear the internal
exported WSDL flag.

Clearing Exported WSDL/WADL Status Flags

The Clear WSDL Status page (IB_ HOME PAGE7 SEC) enables you to clear the internal exported
WSDL/WADL status flag for service operations that contain specific messages, or for all service
operations in the database.

Note: Clearing the internal exported WSDL/WADL status flag on a service operation is one way to
resolve a WSDL/WADL flag inconsistency. Other options for resolving this condition are discussed
elsewhere in this topic.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 145

Managing Messages Chapter 6

See Understanding Using Project Copy and Exported WSDL and WADL.

Image: Clear WSDL Export Status page

This example shows the Clear WSDL Export Status page

Clear WSDL export status

Operations flagoed as exported but without W3DL.

Senvice =

. Customize | Find | view A1 0] 88 First K0 4 or 1 I Lot
Service Operation 1l.|"~ersi-::ln

FLIGHTPLAM va

| Clear Export Status |

Up to this point, this section has demonstrated accessing the Clear WSDL Export Status page starting
from the Export WSDL Inconsistency link on a message definition, and then clicking on the Service
Admin link from the Exported WSDL Inconsistencies page. When you access the page using this
navigation, only the service operations that reference the message definition that you were originally
viewing on the Messages — Message Definitions page appear. Further, those service operations that appear
are those that are flagged has having WSDL/WADL exported, but for which there is none in the database.

You can also clear the WSDL/WADL export status flag for all service operations in the database that are
in the inconsistent state of having been flagged as having WSDL/WADL generated, but no WSDL/WADL

146 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

exists in the database for them. You can do so by accessing the Service Administration-WSDL page and
clicking the Clear WSDL Export Status link.

Image: Clearing the WSDL Export Status page

This example illustrates the Clear WSDL Export Status page. The example shows a list of service
operation in the database that have inconsistent WSDL.

Clear WSDL export status

Operations flagged as exported but without WSDL.

; Customize | Find | view A1 | 20| B First Bl 110 0721 O Last
Service Operation Version
GEMCOMPOMENTURL_SO v
FRCS_FINDREQUESTS v
FRCS_GETPARAMS v
FRCS_GETPROCESSMAMES v
FRCS_GETFROMPT v
PRCS_GETREPORT v
FRCS_GETREQUEST v
PRCS_SCHEDULE vl
FRCS_UPDATEREQUEST v
PT_SES CREF_GET vl

Clear Export Status

To clear the WSDL/WADL exported status flag:
1. Access the WSDL Export Status page using one of the following methods:

* From a message definition that displays the “Exported WSDL flag inconsistency” status message:
Click the Exported WSDL Inconsistency link. The Exported WSDL Inconsistencies page appears.
Click the Service Admin link.

* From the PeopleTools menu: Select PeopleTools, Integration Broker, Service Utilities, Service
Administration. The Service Administration page appears. Click the WSDL tab. Click the Clear
WSDL Export Status link.

2. Click the Clear Export Status button.

Renaming and Deleting Message Definitions

You can rename and delete messages using the Messages page (IB_ HOME PAGES) in the Services
Administration component (IB_ HOME PAGE). The Message page contains two sections: a Delete
section that enables you to delete message definitions and a Rename section that enables you to rename
message definitions.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 147

Managing Messages Chapter 6

To access the page, select PeopleTools, Integration Broker, Service Utilities, Service Administration,
and click the Messages tab.

When you first access the Messages page, all sections are collapsed. Click the section header arrow
buttons to expand and collapse each section.

Image: Services Administration — Messages page

This example illustrates the Services Administration — Messages page. In the example the Delete and
Rename sections are expanded.

WsDL Senices Service Operations Messages Message Schemas Queues Routings E)

Service System Status: Development

Message Name: |

Search

r £
Messages customize | Find | View A1 |2 B8 First B 4 op g IO Los

Select Message Name Version Description Resulis

Message Name: | Q Message Builder

New Name: |

Rename

Results:

At the top of the page, the Service System Status field displays the current setting. The service system
status, set on the Service Configuration page, affects the ability to rename and delete messages.

See "Understanding Configuring PeopleSoft Integration Broker for Handling Services" (PeopleTools
8.53: PeopleSoft Integration Broker Administration).

Renaming Message Definitions

To rename a message definition:

Note: Renaming a message definition renames all versions.

1. Access the Services Administration - Messages page.

Select PeopleTools, Integration Broker, Service Utilities, Service Administration. Click the
Messages tab.

2. Click the arrow next to the Rename section header to expand the section.

3. In the Message Name field, enter the message definition to rename, or click the Lookup button to
search for and select the message to rename.

148 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 6 Managing Messages

4. (Optional.) Click the Message Builder link to view details about the selected message in the Messages
- Message Definitions page.

When you are done viewing the message details, click the Return button to return to the Services
Administration - Messages page.

5. In the New Name field, enter the new name for the message definition.

6. Click the Rename button.

Deleting Message Definitions
When you delete a message definition the system also deletes it's associated schema.
To delete a message definition:
1. Access the Services Administration - Messages page.

Select PeopleTools, Integration Broker, Service Utilities, Service Administration. Click the
Messages tab.

2. Click the arrow next to the Delete section header to expand the section.

3. In the Message Name field, enter the name of the message to delete, and click the Search button.
Search results appear in the results grid.

4. In the results grid, select the check box next to the message or messages to delete.

5. Click the Delete button.

Deleting Messages During Upgrade

To delete a message definition in an application upgrade project, you must first make sure that no live
instances of the message exist. Archive or delete any such messages in both the source and the target
database. Otherwise, you receive an error message during the copy process indicating that the object is in
use.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 149

Chapter 7

Sending and Receiving Messages

Understanding Sending and Receiving Messages

To send and receive messages you use PeopleCode to:

* Send request messages from PeopleSoft Integration Broker to other systems.
* Receive response messages from other systems.

* Route messages.

* Manipulate message content.

You can also send messages directly to the integration gateway, thereby bypassing processing on the
integration engine.

Note: The code examples in this topic are for illustrative purposes only and are not intended to be used in
a production environment.

Prerequisites for Sending and Receiving Messages

Before you can define PeopleCode to generate, send, receive, and process messages, you must define the
message in PeopleSoft Internet Architecture.

Note: Once you create PeopleCode, you must also define nodes, services and service operations to
implement a complete integration.

See PeopleSoft Integration Broker Metadata.

Messaging Process Flows

The integration engine uses asynchronous request processes and synchronous request processes to
manage outbound and inbound messages. These processes examine the messaging elements that you
create to determine how to treat each message.

Outbound Message Processing Flow

This section discusses message processing flow for outbound messages. In this section, the term process
is used, and refers to either the integration engine's asynchronous request process or its synchronous
request process, depending on the type of integration you are preforming.

Outbound messages you send go through the following steps.

1. The application triggers the sending PeopleCode that you developed.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 151

Sending and Receiving Messages Chapter 7

152

The PeopleCode program populates and sends the message by using an asynchronous or synchronous
method.

The method that the PeopleCode uses to send the message triggers a request process in the
application’s integration engine.

The process searches the outbound routings that are associated with that service operation to
determine the valid target nodes for the message.

The asynchronous process examines only asynchronous routings, and the synchronous process
examines only synchronous routings. If for synchronous processing, a valid single outbound routing
cannot be found, the sending method returns an error.

Note: Only active routings are considered for processing.

For each outbound routing that it finds, the process submits the message to the local gateway, along
with transaction information about the node and the target connector that should be used to send the
message.

The local gateway transmits the message to the specified target node through the specified target
connector.

If this is a synchronous message, the process waits for the target node to pass a response message
back through the gateway, then returns it to the calling PeopleCode method.

Inbound Message Processing Flow

Each received message goes through the following steps:

1.

The application’s gateway receives a request message from a remote node or gateway, which specifies
the application as its target node.

The gateway submits the message to the application’s integration engine, which searches for any
inbound request routing parameter which has the same alias name as the external operation name
passed in.

If a matching routing alias name isn’t found, the integration engine returns an error message through
the gateway to the sending node.

If a routing alias name is found, the integration engine invokes either the asynchronous request
process or the synchronous request process, as appropriate, to handle the message.

Note: Any inbound routing alias that is found must have the proper permissions for that service
operation for the process to proceed.

The process accesses the service operation that matches the routing alias name and passes the message
to the service operation's handler associated with receiving PeopleCode.

» The asynchronous request process invokes the service operation's handler OnNotify event
PeopleCode.

» The synchronous request process invokes the service operation's handler OnRequest event
PeopleCode.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Sending and Receiving Messages

5. If'this is a synchronous transaction, the process waits for the receiving PeopleCode to generate and
return a response message, then passes it back to the sending node through the gateway.

Understanding Integration PeopleCode

This section discusses the PeopleCode used for integrations and describes:

* Sending and receiving PeopleCode.

» Integration application classes.
* Integration methods.

* Messaging methods.

* Error-handling methods.

* Messaging PeopleCode.

* Documents PeopleCode.

Sending and Receiving PeopleCode

This section discusses the PeopleCode you use for sending messages from PeopleSoft Integration Broker
to other systems, and the PeopleCode you use for receiving messages from other systems.

Sending PeopleCode

PeopleCode for sending messages can be located in PeopleCode events associated with records, record

fields, and components, and in application engine programs.

The PeopleCode method used to send messages is highlighted in the following table.

Transmission Type Sending PeopleCode Comments

Synchronous SyncRequest method. The SyncRequest method belongs to the
IntBroker class.

Asynchronous Publish method. The Publish method belongs to the

IntBroker class.

To work with rowset-based messages in SOAP format, transform the SOAP documents into XML
documents and then use the IntBroker class SyncRequest or Publish methods. To work with nonrowset-

based messages in SOAP format use the SOAPDoc class.

Receiving PeopleCode

The PeopleCode that you use to receive a message must be associated with the message definition. The
transmission type of the message determines the location of the PeopleCode program.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

153

Sending and Receiving Messages

Application Classes

154

Chapter 7

Implement the OnRequest method for synchronous messages. Implement the OnNotify method for
asynchronous messages. Both methods are located in the PS_PT application package, in the Integration
sub-package, in the IRequestHandler and INotificationHandler classes, respectively.

Transmission Type

Message Structure

Receiving PeopleCode

Comments

method.

Synchronous Rowset-based Message is passed into the Implement the
method. OnRequest method in the
IRequestHandler application
interface.
Synchronous Nonrowset-based Message is passed into the Implement the
method. OnRequest method in the
[RequestHandler application
interface.
Asynchronous Rowset-based Message is passed into the Implement the
method. OnNotify method in the
INotificationHandler
application interface.
Asynchronous Nonrowset-based Message is passed into the Implement the

OnNotify method in the
INotificationHandler
application interface.

To get content data out of a request message, use the following guidelines.

messages.

Message Structure PeopleCode Comments
Rowset-based GetRowSet method. None.
Nonrowset-based GetXMLDoc method. You can also use Message class

functionality with nonrowset-based

See Using Message Object Functionality

With Nonrowset-Based Messages.

Application classes house the processing logic for asynchronous and synchronous messages. By
implementing the Integration Broker application classes, you can reuse code and access other benefits of

application classes.

The following application classes exist for PeopleSoft Integration Broker. See the individual applicable
application class interfaces for more information about the methods contained in an application class.

To access these application classes, in PeopleSoft Application Designer, open the PS_PT application
package and open the Integration subpackage.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Sending and Receiving Messages

Note: All of the Integration Broker application classes are defined as interfaces. This means that there
is no native implementation of them: you must import them to your program and implement them if you
want to use them.

Application Class Methods Contained in Application | Comments
Class
INotificationHandler * OnNotify This interface is the equivalent of the
Subscription Message event PeopleTools
* OnError releases prior to PeopleTools 8.48.
IReceiver * OnAckReceive This interface is the equivalent of
the OnAckReceive Message event
* OnError in PeopleTools releases prior to

PeopleTools 8.48.

IRequestHandler * OnRequest This interface is the equivalent
of the OnRequest Message event
* OnError in PeopleTools releases prior to

PeopleTools 8.48.

IRouter * OnRouteSend This interface is the equivalent of the
OnRouteSend and OnRouteReceive
* OnRouteReceive Message events in PeopleTools releases

prior to PeopleTools 8.48.
* OnError

ISend * OnRequestSend This interface is the equivalent of the
OnSend Message event in PeopleTools
* OnError releases prior to PeopleTools 8.48.

Each of the methods contained in these application classes is described in this section.

Routing Methods

Routing methods determine how a message is routed to or from PeopleSoft Integration Broker.

OnRouteSend Method

Implement the OnRouteSend method for outbound synchronous and asynchronous service operations to
specify to what node PeopleSoft Integration Broker routes a message. The implementation of this method
enables you to apply PeopleCode that filters the destination nodes to which PeopleSoft Integration Broker
routes messages.

The OnRouteSend method is contained in the IRouter application class, which is contained in the PS_PT
application package, in the Integration subpackage.

When the application PeopleCode is invoked to send a message, the routing definitions in the local
database provide a list of target nodes to which PeopleSoft Integration Broker can route the message.
The integration engine’s request handler invokes the service operation's OnRouteSend event. You can
implement the OnRouteSend method in the application package associated with the handler for this
service operation, which enables you to apply additional PeopleCode that determines the final target
nodes.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 155

Sending and Receiving Messages

156

Chapter 7

You can use OnRouteSend to validate the outbound service operation's target node list, prevent the

message from transmitting, or redirect it to a completely different set of targets.

The following table lists the PeopleCode built-in constants that you can use with the OnRouteSend

method:
Constant Description
%IntBroker ROUTE_NONE Do not send this operation to any of the possible nodes.
%IntBroker ROUTE _SOME Send this operation to a selected list of nodes. The node list
should be an array of strings in the property destinationNodes.
%IntBroker ROUTE_ALL Send this operation to all nodes that have a valid routing.

OnRouteSend enables you to account for multiple synchronous targets. Only one target node at a time
can receive a request message sent with a synchronous transaction. Even though you can define the same
outbound synchronous transaction for multiple nodes, you must make sure the transaction resolves to a

single target node or the transaction fails.

The following code example shows an implementation of this class:

import PS PT:Integration:IRouter;

class RoutingHandler implements PS PT:Integration:IRouter
method RoutingHandler () ;
property array of any destinationNodes;
method OnRouteSend (& MSG As Message) Returns integer;
end-class;

/* constructor */
method RoutingHandler
end-method;

method OnRouteSend
/+ & MSG as Message +/
/+ Returns Integer +/
/+ Extends/implements PS PT:Integration:IRouter.OnRouteSend +/
/* Variable Declaration */
Local any &aNodelist;
Local any &rootNode;
Local any &xmlDoc;

/* Check the message for the instructions on how to execute
the OnRouteSend.*/

&xmlDoc = & MSG.GetXmlDoc () ;
&rootNode = &xmlDoc.DocumentElement;
&aNodelList = &rootNode.GetElementsByTagName ("OnRouteSend") ;

If (&aNodelList.Len <> 1) Then

/* No Nodes are in the list, therefore exit. */
Exit;
Else

/* check the value of the node to determine the action to
take. */

Evaluate &aNodeList [1].NodeValue
When "True"
Return (%IntBroker_ROUTE_ALL);
Break;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Sending and Receiving Messages

When "False"
Return (%IntBroker_ROUTE_NONE);
Break;

When-Other

/* assume that this is to be routed to the node given */
Local array &nodeArray;

&nodeArray = CreateArray();

&nodeArray.Push (&aNodelList [1].NodeValue) ;

Local string &sIBVariableTest = GetCurrentType (&nodeArray) ;
Evaluate &sIBVariableTest
When "Array"
&destinationNodes = &nodeArray.Clone();
Return %IntBroker_ROUTE_SOME;
When "BooleanTrue"
Return %IntBroker_ROUTE_ALL;
When "BooleanFalse™
Return %IntBroker_ROUTE_NONE;
End-Evaluate;
Break;

End-Evaluate;
End-If;

end-method;

OnRouteReceive Method

Implement the OnRouteReceive method for inbound synchronous and asynchronous service operations to
apply PeopleCode that determines whether the default local node accepts inbound messages.

The OnRouteReceive method is contained in the IRouter application class, which is contained in the
PS_PT application package, in the Integration subpackage.

When the integration engine receives a message, the transaction definitions in the local database provide
a list of source nodes from which the application can accept the message. The integration engine’s request
handler invokes the service operation's OnRouteReceive event. You can implement the OnRouteReceive
method in the application package associated with the handler for this service operation, which enables
you to apply PeopleCode that determines whether the default local node accepts the inbound message.
You can employ this event regardless of the message transmission type.

The following is an example implementation of this method:

import PS PT:Integration:IRouter;

class RoutingHandler implements PS PT:Integration:IRouter
method RoutingHandler () ;
property array of any destinationNodes;
method OnRouteReceive (& MSG As Message) Returns boolean;
end-class;

/* constructor */
method RoutingHandler
end-method;

method OnRouteReceive
/+ & MSG as Message +/
/+ Returns Boolean +/
/+ Extends/implements PS PT:Integration:IRouter.OnRouteReceive +/
/* Variable Declaration */
Local any &aNodelList;
Local any &rootNode;
Local any &xmlDoc;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 157

Sending and Receiving Messages Chapter 7

/* Check the message for instructions on how to execute
the OnRouteReceive.*/

&xmlDoc = & MSG.GetXmlDoc () ;
&rootNode = &xmlDoc.DocumentElement;
&aNodelList = &rootNode.GetElementsByTagName ("OnRouteReceive") ;

If (&aNodelList.Len <> 1) Then
/* A single node must be present. */
Exit;

Else

/* check the value of the node to determine the action to
take. */

Evaluate &aNodeList [1].NodeValue
When "True"

Return (True);
Break;

When "False"
Return (False);
Break;

When-Other
/* don't recognize the value. */
Exit;
End-Evaluate;
End-If;

end-method;

Messaging Methods

This section describes methods used in messaging and the application classes in which they are contained.

Outbound Messaging Methods

This section describes methods used on outbound messages from PeopleSoft to other systems.

OnRequestSend Implement for outbound synchronous and asynchronous service
operations to override connector properties before sending a
message to the integration gateway.

This method is contained in the ISend application class.

The OnRequestSend method passes in a message to your
derived application class method. The returned value needs to
be a message.

The following is an example implementation of this method.
import PS PT:Integration:ISend;

class SendHandler implements PS PT:Integration:ISend
method SendHandler () ;
method OnRequestSend (& MSG As Message)
Returns Message;
end-class;

/* constructor */

method SendHandler
end-method;

158 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

OnAckReceive

Sending and Receiving Messages

method OnRequestSend
/+ & MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend. +/
/+ OnRequest Send +/
/* Variable Declaration */
Local any &tempNode;
Local any &rootNode;
Local any &xmlDoc;
Local any &msg;

&msg = & MSG;
&xmlDoc = &msg.GetXmlDoc () ;

/* Add a node to the doc to prove that we can
edit it in this event. */

&rootNode = &xmlDoc.DocumentElement;

&tempNode = &rootNode.AddElement ("OnSend") ;
&tempNode.NodeValue = "If you see this, then
the Sync OnSend PCode has altered the message";
/* and write the data back into the message */
&msg.SetXmlDoc (&xmlDoc) ;

Return (&msg) ;

end-method;

See Setting and Overriding Target Connector Properties at
Runtime.

When using the ISend handler with message parts, specifically
with rowset-based message parts, the rowsets of the parts must
be retrieved in the order that the content data will be sent.

The following is an example that can be used for [Send events
that use rowset-based parts (even for the cases where one is just
overriding the connectors):

method OnRequestSend
/+ &MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend. +/
/+ OnRequestSend +/
If (&MSG.IsPartsStructured) Then
Local number &i;
Local Rowset &rs;
For &1 = 1 To &MSG.PartCount
&rs = &MSG.GetPartRowset (&1) ;
End-For;
End-If;

Return &MSG;

end-method;

Implement for outbound asynchronous service operations to
access the body of a message acknowledgement to check for
SOAP faults.

This method is contained in the [Receiver application class.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 159

Sending and Receiving Messages Chapter 7

The following is an example implementation of this method.

import PS PT:Integration:IReceiver;

class AckReceiveHandler implements PS PT:
Integration:IReceiver
method AckReceiveHandler () ;
method OnAckReceive (& MSG As Message) Returns
integer;
end-class;

/* constructor */
method AckReceiveHandler
end-method;

method OnAckReceive
/+ & MSG as Message +/
/+ Returns Integer +/
/+ Extends/implements PS PT:Integration:+/
/+ IReceiver.OnAck Receive +/
/* Variable Declaration */
/*
/* We return a hardcoded value. In this case, a
message error.*/

Return (%Operation Error);

end-method;

See Handling Inbound Asynchronous Transactions.

Inbound Messaging Methods

This section describes methods used on inbound messages to PeopleSoft from other systems.
OnRequest Implement for inbound synchronous service operations.

This method is contained in the IRequestHandler application
class.

The following is an example implementation of this method:

class RequestHandler implements PS PT:Integration:
IRequestHandler
method RequestHandler () ;
method OnRequest (& MSG As Message) Returns
Message;
end-class;

/* constructor */
method RequestHandler
end-method;

method OnRequest
/+ & MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:+/
/+ IRequestHandler.OnRequest +/
/* Variable Declaration */
Local any &tempNode;
Local any &descNode;
Local any &rootNode;
Local any &xmlDoc;
Local any &xmldata;
Local any &msg;

160 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

OnNotify

OnResponse

Sending and Receiving Messages

&msg = CreateMessage (Operation.QE IB SYNC RESP,
$IntBroker response);

&xmldata = "<?xml version='1.0'?>
<QE IB PeopleCode Test=/>";

&xmlDoc = CreateXmlDoc (&xmldata);
&rootNode = &xmlDoc.documentelement;

&descNode = &rootNode.AddElement ("Description");
&descNode.NodeValue = "Sync test of OnRouteSend.

&tempNode = &rootNode.addelement ("OnRequest") ;
&tempNode.NodeValue = "If you see this,

then the On Request PCode created the response
message";

&msg.SetXmlDoc (&xmlDoc) ;

Return &msg;

Implement for inbound asynchronous service operations. This
method can be used for code that does subscription processing,
and for validating and loading message data.

This method is contained in the INotificationHandler application
class.

The following is an example implementation of this method:

import PS PT:Integration:INotificationHandler;

class NotificationHandler implements PS
PT:Integration:

INotificationHandler

method NotificationHandler () ;

method OnNotify (& MSG As Message);
end-class;

/* constructor */
method NotificationHandler
end-method;

method OnNotify
/+ & MSG as Message +/
/+ Extends/implements PS PT:Integration: +/
/+ INotificationHandler.OnNotify +/
/* Variable Declaration */

Local Rowset &rs;
&rs = &MSG.GetRowset () ;

/* process data from rowset */
end-method;

Implement for inbound response asynchronous service
operations.

This method can be used for code that does response
subscription processing. This method is contained in the
INotificationHandler application class.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 161

Sending and Receiving Messages

Error-Handling Methods

Chapter 7

The following is an example implementation of this method and
shows how to get the request TransactionID.

import PS PT:Integration:INotificationHandler;

class RESPONSE NOTIFICATION implements PS PT:
Integration:INotificationHandler
method RESPONSE NOTIFICATION() ;
method OnNotify (&MSG As Message) ;

end-class;

/* constructor */
method RESPONSE_NOTIFICATION

%Super = create PS
PT:Integration:INotificationHandler () ;
end-method;

method OnNotify
/+ &MSG as Message +/
/+ Extends/implements PS PT:Integration:+/
/+ INotification Handler.OnNotify +/
Local Rowset é&rs;
Local boolean &Ret;
Local string &TransactionID;
&rs = &MSG.GetRowset () ;
If &MSG.IsSourceNodeExternal Then
/* if the request came from an external non
PeopleSoft System then you can get the
original TransactionID from the WSA
MessagelD
from the request message. */
&TransactionID = &MSG.IBInfo.WSA MessagelD;
Else
/* if the request came from a PeopleSoft
System then get the original TransactionID
from the nReplyToID */
&TransactionID = &MSG.IBInfo.InReplyToID;
End-If;

end-method;

Each application class contained in the Integration application subpackage contains an OnError method
that you can use for custom error handling.

Custom error handling can include sending an email notification or entering data in a log when an error

occurs.

For the IRequestHandler application class, the OnError function returns a string. This enables you to send
back custom error messages, for example SOAP faults, to non-PeopleSoft consumers. If the message
consumed was a SOAP message and the custom error message is already wrapped in SOAP, it will not
be modified and is sent as-is. However, if the OnError message is not SOAP, it is wrapped as a standard

SOAP fault and returned to the sender.

162

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Sending and Receiving Messages

If the message consumer is another PeopleSoft system the message set/message ID framework applies.

If an error occurs the OnError method, if implemented, is automatically invoked. The type of exception
can be viewed by using the Message object to retrieve an Exception object populated with information
about the error, using the message class IBException property.

The following is an example of the OnError method implementation:

/*0On Error Implementation */
method OnError
/+ &MSG as Message +/
/+ Returns String +/
/+ Extends/implements PS PT:Integration:IRequestHandler.OnError +/
Local integer &nMsgNumber, &nMsgSetNumber;
Local string &sText;

&nMsgNumber = &MSG.IBException.MessageNumber;
&nMsgSetNumber = &MSG.IBException.MessageSetNumber;

rem &sText = &exception.DefaultText;
&sText = &MSG.IBException.ToString();

/* ADD SPECIFIC ERROR INFO HERE */
Return &sText;

end-method;
See "Understanding Exception Class" (PeopleTools 8.53: PeopleCode API Reference).

See "IBException" (PeopleTools 8.53: PeopleCode API Reference).

Messaging PeopleCode

Messaging PeopleCode enables you to manipulate message content. The messaging PeopleCode classes
you can use for this are:

Message classes Use for rowset or nonrowset-based messages.
SOAPDoc class Use for SOAP-compliant messages.
XMLDoc classes Use for XML messages.

Document class Use for Document type messages.

XML and SOAP-compliant messages are nonrowset-based messages. You can use their respective classes
to manipulate message content, or use the Message classes.

Related Links

Using Message Object Functionality With Nonrowset-Based Messages
"Understanding XmlDoc Classes" (PeopleTools 8.53: PeopleCode API Reference)
"Understanding theSOAPDoc Class" (PeopleTools 8.53: PeopleCode API Reference)
"Understanding Message Classes" (PeopleTools 8.53: PeopleCode API Reference)

Document PeopleCode

Copyright

PeopleSoft provides a Document API for populating and retrieving document data that includes several
built-in functions and classes.

© 1988, 2014, Oracle and/or its affiliates. All rights reserved. 163

Sending and Receiving Messages Chapter 7

The built-in functions are:

CreateDocument Use this built-in function to instantiate a Document object.

CreateDocumentKey Use this built-in function to instantiate a Document Key object

The classes are:

Document class.

Use the methods and properties in this class to populate and retrieve document data.
DocumentKey class.

Use the methods and properties in this class to create document keys.

Document keys enable you to map the document package, document name, and document version, to
one string. As a result, when you populate or retrieve data from a document, you can specify the one
document key, instead of specifying the document package, name, and version.

populating or retrieving data from a document, you can use the one document key
Primitive class.

Use the methods and properties in this class to populate and retrieve document data from primitive
elements.

Compound class.

Use the methods and properties in this class to populate and retrieve document data from compound
elements.

Collection class.

Use the methods and properties in this class to populate and retrieve document data from collection
elements.

The Document API is discussed in the product documentation for PeopleTools 8.53: PeopleCode API
Reference..

Examples of populating and retrieving document data are provided elsewhere in this topic.

Generating and Sending Messages

164

This section provides an overview of outbound messaging and discusses how to:

Handle outbound asynchronous message transmission.
Handle outbound asynchronous request/response message transmission.
Handle outbound synchronous message transmission.

Read exceptions for outbound synchronous integrations.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

* Handle cookies in messages.

Understanding Outbound Messaging
Successful outbound messaging relies on sending messages in the proper order and on testing the
messages. Messages containing non-XML data have special considerations.
Message Order

PeopleSoft Integration Broker guarantees that messages are delivered in the order in which you send them
and that they are single-threaded at the PeopleSoft receiving node. However, message order is not part of
the queue definition. You must send messages in the proper order.

Note: You can modify this behavior by using queue partitioning.

See Applying Queue Partitioning.

Message Testing

Make sure that you adequately unit-test and system-test your messages.

Unit-test a message by triggering the PeopleCode that sends the message and then view the message
details in Service Operations Monitor. From the Service Operations Monitor, you can view the contents of
each field to verify that the message data is formatted correctly.

See the product documentation for PeopleTools 8.53: Integration Broker Service Operations Monitor.
You can also test handler code using the Handler Tester utility.

See the product documentation for PeopleTools 8.53: Integration Testing Utilities and Tools.

Message Class Outbound PeopleCode

Use the record class SelectByKey method whenever possible to get data that isn’t in the component
buffer.

If the record names are the same, use the standard record methods, such as SelectByKey, Insert, and
Update, on the message records.

There are no automatic checks for message size. You must do it programmatically. Use the following code
at level 0 to control message size when dealing with multiple transactions:

If g¢Msg.Size > %MaxMessageSize

Note: The OnRouteSend method enables you to apply PeopleCode that filters the destination nodes.

See "Understanding Record Class" (PeopleTools 8.53: PeopleCode API Reference).

Non-XML Data

If you’re generating a non-XML outbound message, it’s up to you to insert the message content into a
special XML section containing a CDATA tag:

<xml psnonxml="yes">
<! [CDATA [nonXML message datall]>

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 165

Sending and Receiving Messages Chapter 7

Outbound Messaging and Global Variables

When you invoke a SyncRequest method the system clears any declared global variables after
OnRouteSend or OnSend PeopleCode events are fired. If a component attempts to access any of the
global variables after the SyncRequest method, a context error occurs.

OnRouteSend and OnSend events are primarily used for asynchronous messaging, however they can be
use for synchronous messages.

To avoid context errors when using OnRouteSend or OnSend events for synchronous messaging,
following these guidelines:

1. Do not use global variables.

2. Ifyou must use global variables, save them as temporary variables prior to executing a SyncRequest
event, then after the event is fired re-assign them back to the globals.

3. Run OnRouteSend or OnSend logic prior to the SyncRequest and after the node is obtained use
sender-specific routing. In sender-specific routing you pass the node as part of the SyncRequest call.
This will send the request to the node as long as there is an active routing. Any connector overrides
can be performed prior to the SyncRequest call and set on the message.

Handling Outbound Asynchronous Message Transmission
To send a message asynchronously, use the IntBroker class Publish method in:
* A record field PeopleCode event.
* A component PeopleCode event.

When publishing from a component, publish messages only from the SavePostChange event, using
the deferred mode property.

* An Application Engine program.
* An implementation of the OnNotify method.
* An implementation of the OnRequest method .

The OnRequest service operation event is triggered only when an inbound transaction occurs.
However, when the receiving PeopleCode runs, the program can also send messages.

Message Class Outbound Asynchronous Example
The following example uses the Publish method in the PeopleCode IntBroker class:

Local Message &MSG;
Local Rowset &SALES ORDER, &RS;

/*Get a pointer to the component buffer rowset */

&SALES ORDER = GetLevelO();

/*Create an instance of the SALES ORDER ASYNC message object */
&MSG = CreateMessage (OPERATION.SALES ORDER ASYNC) ;

/*Copy the rows from the rowset to the message object */
&MSG.CopyRowset (&SALES ORDER) ;

/*Send the message */

$IntBroker.Publish (&MSG) ;

166 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

XmlIDoc Class Outbound Asynchronous Example
The following example uses the Publish method:

Local XmlDoc é&xmlRequestDoc;
Local Message &MSG;

/*Create an XmlDoc Object */
&xmlRequestDoc = CreateXmlDoc () ;

/* Parse a URL or input XML file into an XmlDoc */

&bool = &xmlRequestDoc.ParseXmlFrom URL ("C:\pt\appserv\files\
input.xml") ;

/* Populate message with XML data */
&MSG = CreateMessage (OPERATION.XmlRequest) ;

&MSG.SetXmlDoc (&xmlRequestDoc) ;
/* Sent request */

$IntBroker.Publish (&MSG) ;

Identifying SOAP Faults

You can implement the OnAckReceive method to access IBInfo data. This enables you to read the content
of acknowledgements returned by recipient systems of asynchronous SOAP messages. The ability to
access acknowledgement content is useful when sending SOAP messages, since although there may be no
HTTP protocol errors while sending them, SOAP faults may occur.

If the message is nonrowset-based, use the message class GetXmlDoc method to get the response data.
This returns an XmlDoc object.

If the message is rowset-based, use the message class GenXMLString method to get the response data.
This returns a string object which you can load into an XmlDoc object.

If SOAP faults are found, you can set the status equal to Error so that the errors appear in the Service
Operations Monitor for the publication contract.

The following code example shows how to use GetXmlDoc and GenXMLString in an implementation
of the OnAckReceive method. Valid status overrides are %Operation_Done, %Operation_Error, and
%Operation_Retry:

import PS PT:Integration:IReceiver;

class AckReceiveHandler implements PS PT:Integration:IReceiver
method AckReceiveHandler () ;
method OnAckReceive (& MSG As Message) Returns integer;
end-class;

/* constructor */
method AckReceiveHandler
end-method;

method OnAckReceive
/+ & MSG as Message +/
/+ Returns Integer +/
/+ Extends/implements PS PT:Integration:IReceiver.OnAckReceive +/
/* Variable Declaration */

If &MSG.IsStructure Then

/* if message is rowset-based */
&str = &MSG.GenXMLString () ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 167

Sending and Receiving Messages Chapter 7

Else

/* if message is nonrowset-based */
&xmldoc = &MSG.GetXmlDoc () ;

End-If;

Return (%Operation Done);
end-method;
You can also implement the OnAckReceive method to read response content data returned from third-

party systems when using the HTTP target connector.

Related Links
"Understanding XmlIDoc Classes" (PeopleTools 8.53: PeopleCode API Reference)

Handling Outbound Asynchronous Request/Response Message
Transmission

To transmit an outbound asynchronous request/response message, send the message asynchronously using
the Publish method.

See Handling Outbound Asynchronous Message Transmission.

Handling Outbound Synchronous Transactions

168

Use the IntBroker class SyncRequest method for handling outbound synchronous transfers. To send a
message synchronously, you can employ SyncRequest in:

* The record field SavePreChange PeopleCode event.
* The record field SavePostChange PeopleCode event.
e The record field Workflow PeopleCode event.

* The record field FieldChange PeopleCode event.

* An implementation of the OnRequest method.

* An implementation of the OnNotify method.

Note: The OnRequest and OnNotify events are triggered only when an inbound transaction occurs,
however, when the receiving PeopleCode runs, it can also send messages.

The response message that is returned from an outbound synchronous transaction is no different from an
inbound request message. Once you have it in a Message, XmlDoc, or SoapDoc object, it has the same
properties as any other object of that type and can, therefore, be treated exactly the same way.

See Receiving and Processing Messages.

Message Class Outbound Synchronous Example 1
The following example uses the IntBroker class SyncRequest method:

Local Message &MSG, &response;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

Local Rowset &SALES ORDER;

&SALES ORDER = GetLevelO();
&MSG = CreateMessage (OPERATION.SALES ORDER SYNC) ;
&MSG.CopyRowsetDelta (&SALES ORDER) ;

/* send the synchronous request; the return value is the response
message object */
&response = $IntBroker.SyncRequest (&MSG) ;

/* check the response status; 0 means OK */
If (&response.ResponseStatus = 0) Then

/* process the response */

MY SALES ORDER SYNC.ORDER ID = &response.GetRowset () .GetRow (1)
.GetRecord (Record.SO RESPONSE) .GetField(Field.ORDER ID) .Value);
else

/* do error handling */

End-If;

Message Class Outbound Synchronous Example 2

The following example shows the use of CopyTo to get the data back from the response and into the
component buffer, and therefore the page:

Local Message &msgZipRequest, &msgZipResponse;
Local Rowset &RS, &rsMessageRowset;

&RS = GetLevelO () ;

&msgZipRequest = CreateMessage (OPERATION.ZIP REQUEST) ;
&msgZipRequest.CopyRowset (&RS) ;

/* send the synchronous request; the return value is the response
message object */

&msgZipResponse = %$IntBroker.SyncRequest (&msgZipRequest,
Node.ZIPTOCITYANDSTATE) ;

/* check the response status; 0 means OK */
If (&msgZipResponse.ResponseStatus = 0) Then
/* process the response */
&rsMessageRowset = &msgZipResponse.GetRowset () ;
&rsMessageRowset.CopyTo (&RS) ;
else
/* do error handling */
End-If;

XmlIDoc Class Outbound Synchronous Example

The following example uses the IntBroker class SyncRequest method:
Local Message &MSG, &RESP MSG;

Local XmlDoc &flightplan xmldoc, &xmldocReturn;

Local XmlNode &ac number, &msi sensor, &ofp;
&flightplan_xmldoc = CreateXmlDoc ("");

&ac number = &flightplan xmldoc.CreateDocumentElement ("flightplan");
&msi_sensor = &ac_number.AddElement("msi_sensor");

&¢msi sensor.NodeValue = "flir";

&ofp = &ac number.AddElement ("ofp");

&ofp.NodeValue = "8.44";

&MSG = CreateMessage (Message.SYNC REQUEST EXAMPLE) ;

&MSG.SetXmlDoc (&flightplan xmldoc) ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 169

Sending and Receiving Messages Chapter 7

&RESP MSG = &MSG.SyncRequest () ;
&xmldocReturn = &RESP MSG.GetXmlDoc () ;

&return data = &xmldocReturn.GenXmlString () ;

Related Links
"Understanding XmlIDoc Classes" (PeopleTools 8.53: PeopleCode API Reference)

Reading Exceptions for Outbound Synchronous Integrations

The Routing — Routings Definition page features a User Exception check box that enables you to capture
Integration Broker exceptions for outbound synchronous integrations using PeopleCode.

Note: Do not use Try/Catch PeopleCode to attempt to read exceptions on outbound SyncRequest calls.

The following code example shows how to read captured exceptions:

&Return MSG = $IntBroker.SyncRequest (&MSG) ;
If &Return MSG.ResponseStatus = $IB Status Success Then

/* process the response message */
&RS = §&MSG.GetPartRowset () ;

Else

/* evauate the error and either throw a PeopleCode exception or continue proces=
sing */
&error string = &Return MSG.IBException.ToString());
&nErrorMsgNumber = &Return MSG.IBException.MessageNumber;
&nErrorMsgSetNumber = &Return MSG.IBException.MessageSetNumber;

End-If;

Related Links
Defining General Routing Information

Overriding Synchronous Timeout Intervals at Runtime

170

For long-running outbound synchronous transactions, you can override the default timeout period the
transaction at runtime using the SyncServiceTimeout property. The default synchronous timeout period is
five minutes.

The HTTP header file is modified to take this parameter. The value you set is sent to the integration
gateway where it is used for the HTTP timeout.

The SyncServiceTimeout property takes a time (in seconds). The property is read-write.

The following code example shows how to use the property. To use this property, note that you must
override and setup the target connector properties for the transaction. As the example demonstrates, there
are helper methods that load properties based on node or transaction.

&MSG.SetXmlDoc (&xmlReq) ;
&MSG.IBInfo.LoadConnectorPropFromNode (Node.EATI) ;
&MSG.IBInfo.SyncServiceTimeout = 360000;
&MSG.IBInfo.ConnectorOverride = True;

&MSG_Resp = %IntBroker.SyncRequest (&MSG, Node.EATI);

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

&xmlResponseDoc = &MSG Resp.GetXmlDoc () ;

Related Links

Setting and Overriding Target Connector Properties at Runtime

Handling Cookies

PeopleSoft Integration Broker provides basic cookie handling for exchanges that are initiated by your
PeopleSoft application. You can accept a synchronous response message containing cookies, save those
cookies in a global variable, and later return them to the remote node in an outbound synchronous or
asynchronous request message. This is a typical application of cookies in a web interaction.

Cookies are implemented as an IBInfo class property, Cookies. You can access this property only in an
inbound synchronous response message or an outbound request message.

Receiving Cookies Example
The following example retains the cookies from a response message to a global variable:

Local Message &SalesRequest, &SalesResponse;
Local Rowset &SALES ORDER;
Global string &SalesCookies;

&SALES ORDER = GetLevelO();
&SalesRequest = CreateMessage (OPERATION.SALES ORDER SYNC) ;
&SalesRequest.CopyRowsetDelta (&§SALES ORDER) ;

/* Send the synchronous request; the return value is the response
message object */

&SalesResponse = %$IntBroker.SyncRequest (&SalesRequest) ;

/* Retrieve cookies from the response message */

&SalesCookies = &SalesResponse.IBInfo.IBConnectorInfo.Cookies;

Returning Cookies Example

The following example retrieves the previously retained cookies from the global variable and inserts them
into a new request message:

Local Message &SalesRequest, &SalesResponse;
Local Rowset &SALES ORDER;
Global string &SalesCookies;

&SALES ORDER = GetLevelO();
&SalesRequest = CreateMessage (OPERATION.SALES ORDER SYNC) ;
&SalesRequest.CopyRowsetDelta (&§SALES ORDER) ;

/* Insert the cookies in the request message */
&SalesRequest.IBInfo.IBConnectorInfo.Cookies = &SalesCookies;

/* Send the asynchronous request */
%$IntBroker.Publish (&SalesRequest) ;

Setting and Overriding Target Connector Properties at Runtime

PeopleSoft Integration Broker enables you to dynamically override target connector properties at runtime
that have previously been set at the node, connector and transaction levels. To set or override target

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 171

Sending and Receiving Messages Chapter 7

172

connectors at runtime, use the PeopleCode IBInfo object, the Connector Info object and implement the
OnRequestSend method.

Note: Properties set at the PeopleCode level take precedence over those set at the node, connector and
routing level.

IBInfo object An IBInfo object is instantiated from a message object.

You can use this object in publishing or synchronous request
PeopleCode. You can also use it in your implementation of the
OnRequestSend method.

ConnectorInfo object A ConnectorInfo object is instantiated from an IBInfo object.
Use this object for reading and writing connector name/value
pair information to and from the IBRequest.

You can use this object in publishing or synchronous request
PeopleCode. You can also use it in your implementation of the
OnRequestSend method.

OnRequestSend Method The OnRequestSend method is included in the ISend application
class. Use your implementation of this method to override
target connector properties at runtime for a subscribing node
transaction.

This event associated with the service operation executes before
any transformations are processed.

You can use this event for asynchronous and synchronous
messages.

Since data is always carried with the message, you can use the IBInfo object, ConnectorInfo object and
your implementation of the OnRequestSend method to populate connector information in the publishing
PeopleCode and then override it for a specific node.

Setting and Overriding Target Connector Properties Using the OnRequestSend
Method

You can use implement the OnRequestSend method to override IBInfo and connector properties at
runtime for a subscribing node transaction.

Any content data that is changed on the message or XMLDoc is sent to the subscribing node or used
within a transformation.

To override the properties of a target connector, you must set the following statement to true:
&MSG.IBInfo.ConnectorOverride=true

If a publication contract fails as a result of using an implementation of the OnRequestSend method to
override connector properties at runtime, correct the PeopleCode in your implementation and resubmit the
message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

Example: Setting Target Connector Properties Using the OnRequestSend Method

The following example shows loading all connectors that exist for the node and adding one additional
property, FileName.

import PS PT:Integration:ISend;

class SendHandler implements PS PT:Integration:ISend
method SendHandler();
method OnRequestSend (&Msg As Message) Returns Message;
end-class;

/* constructor */
method SendHandler
end-method;

method OnRequestSend
/+ &MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend.OnRequestSend +/
/* Variable Declaration */
Local Any &Bo;
Local Message &Msg;

&Bo = &MSG.IBInfo.LoadConnectorPropFromNode ("nodename") ;

&Bo = &MSG.IBInfo.IBConnectorInfo.AddConnectorProperties
("FileName", "temp", $%Property);
&MSG.IBInfo.ConnectorOverride = True;

Return (&Msg);

end-method;

Example: Overriding Connector Properties Using the OnRequestSend Method

The following example demonstrates overriding target connector properties using an implementation of
the OnRequestSend method for a rowset-based asynchronous message.

import PS PT:Integration:ISend;

class SendHandler implements PS PT:Integration:ISend
method SendHandler () ;
method OnRequestSend (&Msg As Message) Returns Message;
end-class;

/* constructor */
method SendHandler
end-method;

method OnRequestSend
/+ &MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend.OnRequestSend +/
/* Variable Declaration */
Local Boolean &bRet;

&bRet= &MSG.IBInfo.LoadConnectorProp ("FILEOUTPUT") ;

&MSG.IBInfo.ConnectorOverride = True;

&bRet= &MSG.IBInfo.IBConnectorInfo.AddConnectorProperties
("sendUncompressed", "Y", $%$Header);

&bRet= &MSG.IBInfo.IBConnectorInfo.AddConnectorProperties
("FilePath", "c:\temp", %Property);

Return (&Msg);

End-Method;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 173

Sending and Receiving Messages

Chapter 7

The following example demonstrates overriding target connector properties using an implementation of

the OnRequestSend method for a nonrowset-based asynchronous message.

import PS PT:Integration:ISend;

class SendHandler implements PS PT:Integration:ISend
method SendHandler () ;
method OnRequestSend (&Msg As Message) Returns Message;
end-class;

/* constructor */
method SendHandler
end-method;

method OnRequestSend
/+ &MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend.OnRequestSend +/
/* Variable Declaration */

Local XmlDoc é&xmldoc;

Local Boolean &bRet;

// if you have to access the content data for content based
// decisions, do this
&xmldoc = &MSG.GetXmlDoc () ;

&bRet= &MSG.IBInfo.LoadConnectorProp ("FILEOUTPUT") ;

&MSG.IBInfo.ConnectorOverride = True;

&bRet= &MSG.IBInfo.IBConnectorInfo.AddConnectorProperties
("sendUncompressed", "Y", $%$Header);

&bRet= &MSG.IBInfo.IBConnectorInfo.AddConnectorProperties
("FilePath", "c:\temp", %Property);

Return (&MSG) ;

End-Method;

Related Links

"IBInfo Class" (PeopleTools 8.53: PeopleCode API Reference)

"IBConnectorInfo Collection" (PeopleTools 8.53: PeopleCode API Reference)
"Understanding Message Classes" (PeopleTools 8.53: PeopleCode API Reference)

Receiving and Processing Messages

174

This section discusses how to:

* Handle inbound asynchronous transactions.

* Handle inbound asynchronous request/response transactions.
* Handle inbound synchronous transactions.

* Simulate receiving messages from external nodes.

Note: The OnRouteReceive method can be implemented to apply PeopleCode that determines whether

the default local node accepts the inbound message.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

Handling Inbound Asynchronous Transactions

Implement the OnNotify method in the PS_PT application package, in the Integration sub-package,
to handle inbound asynchronous transactions. All the examples in this section are assumed to be
implementations of the OnNotify method.

Message Class Inbound Asynchronous Example 1
The following example implements the OnNotify method.
import PS PT:Integration:INotificationHandler;

class FLIGHTPROFILE implements PS PT:Integration:INotificationHandler
method FLIGHTPROFILE () ;
method OnNotify (& MSG As Message);

end-class;

/* constructor */
method FLIGHTPROFILE
end-method;

method OnNotify
/+ & MSG as Message +/
/+ Extends/implements PS PT:Integration:INotificationHandler.+/
/+ OnNotify +/
/* Variable Declaration */
Local any &outstring;
Local any &i;
Local any &CRLF;

Local Message &MSG;
Local Rowset &rs, &rsl;
Local Record &FLIGHTDATA, &REC;

Local string &acnumber value, &msi sensor value, &ofp value,
&actype value, &callsign value, &squadron value, &comml value,
&comm2_ value, &ecm value;

Local XmlDoc é&xmldoc;
Local string &return string value;
Local boolean &return bool value;

&CRLF = Char(13) | Char(10);
&MSG = & MSG;

&rs = &MSG.GetRowset () ;
&REC = &rs(1l) .QE FLIGHTDATA;

&FLIGHTDATA = CreateRecord(Record.QE FLIGHTDATA) ;
&REC.CopyFieldsTo (&§FLIGHTDATA) ;

/* Parse out Message Data */

&acnumber value = &FLIGHTDATA.QE ACNUMBER.Value;
&msiisensorivalue = &FLIGHTDATA.QE MSI SENSOR.Value;
&ofp value = &FLIGHTDATA.QE OFP.Value;

&actype value = &FLIGHTDATA.QE ACTYPE.Value;
&callsign_value = &FLIGHTDATA.QE_CALLSIGN.Value;
&squadron value = &FLIGHTDATA.QE SQUADRON.Value;
&comml value = &FLIGHTDATA.QE COMMI1.Value;

&comm2 value = &FLIGHTDATA.QE COMM2.Value;
&ecm_value = &FLIGHTDATA.QE_ECM.Value;

&outstring = "Send Async FLight test";
/* Construct Output String */

&outstring = goutstring | &acnumber value | &CRLF |
&msi_ sensor value |

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 175

Sending and Receiving Messages

176

&CRLF | &ofp value | &CRLF | &actype value | &CRLF |
&callsign value |

&CRLF | &squadron value | &CRLF | &comml value | &CRLF |
&comm2_ value |

&CRLF | &ecm value;

/* Log Output String into page record */
&FLIGHTDATA.GetField (Field.DESCRLONG) .Value = &outstring;

SQLExec ("DELETE FROM PS QE FLIGHTDATA");
&FLIGHTDATA.Insert () ;

end-method;

Message Class Inbound Asynchronous Example 2

Chapter 7

The following example shows notification PeopleCode that checks the PSCAMA to determine the audit
action code and that examines the language code to determine whether related language processing is

needed:

method OnNotify
/+ &MSG as Message +/

/* Simple PeopleCode Notifcation- - Check the PSCAMA*/

Local Rowset &MSG RS;

Local Record &REC NAME PREFIX, &REC, &REC RL;

Local integer &I;

Local string &ACTION, &LNG, &BASE LNG, &RELLNG, &KEY1l, &KEY2;

&MSG RS = &MSG.GetRowset () ;

For &I = 1 To &MSG_RS.RowCount /* Loop through all transactions */
&REC = &MSG_RS.GetRow (&I) .GetRecord(Record.NAME PREFIX TBL);

/* Get Audit Action for this transaction */

&ACTION = &MSG RS.GetRow (&I) .PSCAMA.AUDIT ACTN.Value;
/* Get Language code for this transaction */

&LNG = &MSG_RS.GetRow (&I) .PSCAMA.LANGUAGE CD.Value;
&BASE LNG = %Language;

Evaluate &ACTION /*****************************/

/******** Add a Record *******/
/*****************************/

When "A"
/* Add the base language record */

&REC _NAME PREFIX = CreateRecord(Record.NAME PREFIX TBL);

&REC.CopyFieldsTo(&REC_NAME_PREFIX);

&REC NAME PREFIX.ExecuteEdits();

If &RECiNAMEiPREFIX.IsEditError Then
/* error handling */

Else

&REC _NAME PREFIX.Insert();

/* Need error handling here if insert fails */

If &LNG <> %Language Then
/* add related language record */
&RELLNG = &REC.RellLangRecName;
&REC RL = CreateRecord(Record.NAME PREFIX LNG);
&REC.CopyFieldsTo (&REC _RL) ;
&REC_RL.LANGUAGE_CD.Value =
&REC _RL.Insert ();

&LNG;

/* Need error handling here if insert fails */
End-If;
End-If;

/*****************************/

/***%% Change a Record ***#*#**x/
/*****************************/

/**** Using record objects ***/

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Sending and Receiving Messages

When "C"

/* Get the Record - insert it */
SKEY1 = &REC.GetField(Field.NAMEiPREFIX).Value;
&REC_NAME PREFIX = CreateRecord(Record.NAME_PREFIX_TBL);

&REC NAME PREFIX.NAME PREFIX.Value = &REC.GetField(Field.
NAME PREFIX) .Value;
If &REC NAME PREFIX.SelectByKey () Then

&REC.CopyFieldsTo (§REC NAME PREFIX) ;
&REC _NAME PREFIX.ExecuteEdits();
If &REC NAME PREFIX.IsEditError Then
/* error handling */
Else
&REC _NAME PREFIX.Update() ;
End-If;

Else
&REC.CopyFieldsTo (§REC NAME PREFIX) ;
&REC _NAME PREFIX.ExecuteEdits();

If &REC NAME PREFIX.IsEditError Then
/* error handling */
Else
&REC NAME PREFIX.Insert();
End-If;
End-If;

/*****************************/

/***x*** Delete a Record ***x*x*x/
/*****************************/

/*** USing SQLEXeC ***********/

When "D"

/* Get the Record using SQLExec- error */
&KEY1 = &REC.GetField(Field.NAME_PREFIX).Value;
SQLExec ("Select NAME PREFIX from PS NAME PREFIX TBL where
NAME PREFIX = 21" &KEYI1, &KEY2) ;
If None (&KEY2) Then
/* Send to error log */
Else
SQLExec ("Delete from PS NAME PREFIX TBL where
NAME PREFIX = :1", &KEY1);

SQLExec ("Delete from PS NAME PREFIX LNG where
NAME PREFIX = :1", &KEY1);
End-If;

End-Evaluate;
End-For;

end-method;

Message Class Inbound Asynchronous Example 3

There’s a practical limit to how large a message can be, and this can be controlled by a system-wide
variable called %MaxMessageSize. The system administrator can change this size in the PSOPTIONS
settings. This size can be set only for all messages, not for individual definitions.

PeopleCode that populates a Message object should include code that is similar to the following example
to check the message size before inserting a new Level 0 row.

Note: Always code the %MaxMessageSize checkpoint at the Level 0 record. A batch of transactions can
be split across multiple messages, but do not split a single transaction (logical unit of work) into multiple

Local SQL &hdr sql, &ln sql;
Local Message &MSG;
Local Rowset &hdr rs, &ln rs;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 177

Sending and Receiving Messages Chapter 7

178

Local Record &hdr rec, &ln rec, &hdr rec msg, &ln rec msg;

/* This PeopleCode will publish messages for a simple Header/
Line record combination. Multiple Header/Lines are copied to the
message until the $MaxMessageSize is exceeded at which point a
new message is built. This references MSR HDR INV (Header) and
DEMAND INF INV (Line) records */

/* Create an instance of the STOCK REQUEST message */
&MSG = CreateMessage (OPERATION.STOCK REQUEST) ;

/* Create an App. Message Rowset that includes the
MSR_HDR INV (Header) and DEMAND INF INV (Line)*/
&hdr rs = &MSG.GetRowset ()

/* Create a SQL object to select the Header rows */
&hdr sqgl = CreateSQL("Select * from PS MSR HDR INV
WHERE BUSINESS UNIT='MO4Al'
AND ORDER_NO LIKE 'Z%' ORDER BY BUSINESS_UNIT,ORDER_NO");
&I = 1;

/* Create record objects for the Header and Lines */
&ln_rec = CreateRecord(Record.DEMAND_INF_INV);
&¢hdr rec = CreateRecord(Record.MSR HDR INV);

/* Loop through each Header row that is fetched */
While &hdr sqgl.Fetch (&hdr rec)
/* Publish the message if its size exceeds the MaxMessageSize
/* specified in Utilities/Use/PeopleTools Options */
If &MSG.Size > %$MaxMessageSize Then
$IntBroker.Publish (&MSG) ;
&I = 1;
/* Create a new instance of the message object */
&MSG = CreateMessage (OPERATION.STOCK REQUEST) ;
&¢hdr rs = &MSG.GetRowset () ;
End-If;
If &I > 1 Then
&hdr rs.InsertRow (&I - 1);
End-If;
/* Instantiate the row within the Header portion of the
App Message rowset to which data will be copied */
&hdr rec msg = &hdr rs.GetRow (&I) .GetRecord(Record.MSR HDR INV) ;
/* Copy data into the level 0 (Header portion) of
/* &MSG message structure */
&¢hdr rec.CopyFieldsTo (&hdr rec msg);

/* Publish the last message if it has been changed*/
If &¢hdr rec msg.IsChanged Then
$IntBroker.Publish (&MSG) ;
End-If;
End-While;

Message Class Inbound Asynchronous Example 4
The following code example shows how to get data out of the IBInfo object for a rowset-based message.

Local Rowset é&rs, &rsl;
Local Record &FLIGHTDATA, &REC;

Local string &acnumber value, &msi sensor value, &ofp value,
&actype value, &callsign value, &squadron value, &comml value,
&comm2 value, &ecm value, &datetime;

Local XmlDoc é&xmldoc;

Local string é&data;

Local boolean é&return bool value;

&CRLF = Char (13) | Char(10);

/* this is how one would access data from IBinfo and
/* IBConnectorInfo objects*/

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Copyright

&return bool value &MSG.IBInfo.ConnectorOverride;

For &i 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfConnector
Properties|()

&data
&data

End-For;
&MSG.IBInfo.IBConnectorInfo.ClearConnectorProperties () ;

&data
&data
&data
&data
&data

&MSG.
&MSG.
&MSG.
&MSG.
&MSG.

IBInfo.
IBInfo.
IBInfo.
IBInfo.
IBInfo.

IBConnectorInfo.
IBConnectorInfo.
IBConnectorInfo.
IBConnectorInfo.
IBConnectorInfo.

ConnectorName;
ConnectorClassName;
RemoteFrameworkURL;
PathInfo;

Cookies;

For &i

&data
&data

(&1);
&data

End-For;

&MSG.IBInfo.IBConnectorInfo.ClearQueryStringArgs () ;

&data = &MSG.IBInfo.MessageType;

&data = &MSG.IBInfo.RequestingNodeName;
&data = &MSG.IBInfo.OrigUser;

&data = &MSG.IBInfo.OrigNode;

&data = &MSG.IBInfo.AppServerDomain;
&data = &MSG.IBInfo.OrigProcess;

&data = &MSG.IBInfo.OrigTimeStamp;
s&data = &MSG.IBInfo.DestinationNode;
s&data = &MSG.IBInfo.FinalDestinationNode;
&data = &MSG.IBInfo.SourceNode;

&data = &MSG.IBInfo.MessageName;

&data = &MSG.IBInfo.MessageVersion;
&data = &MSG.IBInfo.VisitedNodes;

/* get the content data from the message rowset*/

&rs = &MSG.GetRowset () ;
&REC = &rs (1) .QE FLIGHTDATA;
&FLIGHTDATA = CreateRecord(Record.QE FLIGHTDATA) ;

&REC.CopyFieldsTo (&FLIGHTDATA) ;

/* Parse out Message Data */

&acnumber value &FLIGHTDATA.QE ACNUMBER.Value;
&msi_ sensor value &FLIGHTDATA.QE MSI SENSOR.Value;
&ofp value = &FLIGHTDATA.QE OFP.Value;

&actype value &FLIGHTDATA.QE ACTYPE.Value;
&callsignivalue &FLIGHTDATA.QE CALLSIGN.Value;
&squadron_value &FLIGHTDATA.QE SQUADRON.Value;
&comml value &FLIGHTDATA.QE COMMI1.Value;
&comm2_value &FLIGHTDATA.QE_COMM2.Value;
&ecmﬁvalue &FLIGHTDATA.QEiECM.Value;

&datetime &FLIGHTDATA.ACTIONDTTM.Value;

&outstring = "Send Async FLight test";

/* Construct Output String */
&outstring &outstring | &acnumber value | &CRLF | -~
| &CRLF | &ofp value | &CRLF | &actype value | &CRLF
| &callsign value | &CRLF | &squadron value | &CRLF
| &comml value | &CRLF | &comm2 value | &CRLEF | &ecm value
&datetime;

© 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Sending and Receiving Messages

&MSG.IBInfo.IBConnectorInfo.GetQueryStringArgName (&1) ;
&MSG.IBInfo.IBConnectorInfo.GetQueryStringArgValue (&1) ;

To &MSG.IBInfo.IBConnectorInfo.GetNumberOfQueryStringArgs ()

&MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesName (&1i) ;
&MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesValue

&MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesType (&1i) ;

&msi_ sensor value

179

Sending and Receiving Messages

180

/* Log Output String into page record */
&FLIGHTDATA.GetField (Field.DESCRLONG) .Value = &outstring;

SQLExec ("DELETE FROM PS QE FLIGHTDATA");
&FLIGHTDATA.Insert () ;

Message Class Inbound Asynchronous Example 5

Chapter 7

The following code example shows how to get data out of the IBInfo object for a nonrowset-based

message.

Local XmlDoc é&xmldoc;

Local XmlNode &node, &root, &acct id node, &acct name node,
&address node, &phone node;

Local string &outstring, &CRLE;

Local Record &FLIGHT DATA INFO, &REC;

Local string &data;
Local boolean é&return bool value;

/* this is how one wouild access data from IBinfo and
/* IBConnectorInfo objects*/

&return bool value = &MSG.IBInfo.ConnectorOverride;

For &1 = 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfConnector
Properties ()

&data = &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgName (&1) ;
&data = &MSG.IBInfo.IBConnectorInfo.GetQueryStringArgValue (&i);

End-For;

&MSG.IBInfo.IBConnectorInfo.ClearConnectorProperties () ;

&data = &MSG.IBInfo.IBConnectorInfo.ConnectorName;

&data = &MSG.IBInfo.IBConnectorInfo.ConnectorClassName;

&data = &MSG.IBInfo.IBConnectorInfo.RemoteFrameworkURL;

&data = &MSG.IBInfo.IBConnectorInfo.PathInfo;

s&data = &MSG.IBInfo.IBConnectorInfo.Cookies;

For &1 = 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfQueryStringArgs ()

&data = &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesName (&1i);

&data = &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesValue
(&1) 7
&data = &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesType (&1);
End-For;

&MSG.IBInfo.IBConnectorInfo.ClearQueryStringArgs () ;

&data = &MSG.IBInfo.MessageType;

&data = &MSG.IBInfo.RequestingNodeName;
&data = &MSG.IBInfo.OrigUser;

&data = &MSG.IBInfo.OrigNode;

&data = &MSG.IBInfo.AppServerDomain;
&data = &MSG.IBInfo.OrigProcess;

&data = &MSG.IBInfo.OrigTimeStamp;
s&data = &MSG.IBInfo.DestinationNode;
&data = &MSG.IBInfo.FinalDestinationNode;
&data = &MSG.IBInfo.SourceNode;

&data = &MSG.IBInfo.MessageName;

&data = &MSG.IBInfo.MessageVersion;
&data = &MSG.IBInfo.VisitedNodes;

&xmldoc = &MSG.GetXmlDoc () ;

&CRLF = Char (13) | Char(10);

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Sending and Receiving Messages

&root = &xmldoc.DocumentElement;

/* Get values out of XMLDoc */

&node_ array = &root.GetElementsByTagName ("actype");
&ac_type node = &node_array.Get(l);

&ac_type value = &ac_ type node.NodeValue;

&node array = &root.GetElementsByTagName ("msi sensor");
&¢msi_ sensor node = &node array.Get(1l);
&¢msi sensor value = &msi sensor node.NodeValue;

&node_array = &root.GetElementsByTagName ("callsign");
&callsign_node = &node array.Get(1l);
&callsign value = &callsign node.NodeValue;

&node array = &root.GetElementsByTagName ("ofp");
&ofp node = &node_array.Get(l);
&ofp value = &ofp node.NodeValue;

&outstring = "GetDataout of xmldoc Test";

&outstring = &outstring | &CRLF | &ac type value | &CRLF |
&msi sensor node
| &CRLF | &callsign value | &CRLF | &ofp value;

/* Write out the result string */
SQLExec ("DELETE FROM PSiQEiFLIGHTiDATA") ;
&FLIGHT DATA INFO = CreateRecord(Record.QE FLIGHT DATA);

&FLIGHT DATA INFO.GetField(Field.DESCRLONG) .Value = &outstring;
&FLIGHT DATA INFO.Insert();

Message Class Inbound Asynchronous Example 6

The following example show a notification that could be an implementation of the OnNotify method,
using a component interface in the notification. This example shows error trapping and has multilanguage
support:

Component string &PUBNODENAME;

/* save pubnodename to prevent circular publishes */
Local Message &MSG;

Local Rowset &MSG ROWSET, &cur rowset;

Local ApiObject &oSession;

Local ApiObject &CONTACT CI;

Local number &I;

Local string &KEY1;

Local Record &REC;

Local boolean &BC CREATE, &ADD;

Local boolean &TRANSACTION ERROR, &MSG ERROR;
/** Transaction/Message Error Flags**/

Function errorHandler ()
Local ApiObject &oPSMessageColl;
Local ApiObject &oPSMessage;
Local string &strErrMsgSetNum, &strErrMsgNum, &strErrMsgText,
&strErrType;
&oPSMessageColl = &oSession.PSMessages;
For &I = 1 To &oPSMessageColl.Count
&oPSMessage = &oPSMessageColl.Item(&I);
&strErrMsgSetNum = &oPSMessage.MessageSetNumber;
&strErrMsgNum = &oPSMessage.MessageNumber;
&strErrMsgText = &oPSMessage.Text;
&LogFile.WritelLine (&strErrType | " (" | &strErrMsgSetNum | ","
| &strErrMsgNum | ") - " | &strErrMsgText);
End-For;
rem ***** Delete the Messages from the collection *****x;
&oPSMessageColl.DeleteAll () ;
End-Function;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 181

Sending and Receiving Messages

182

Function DO_CI SUBSCRIBE ()

&oSession = %Session;

&CONTACT CI = &oSession.GETCOMPONENT (CompIntfc.CONTACT) ;
If (&CONTACT CI = Null) Then
/* Replace this message with Tools message set when available */

Error MsgGet (91, 58, " Unable to get the Component Interface.");
Exit (1);
End-If;

/** Set Component Interface Properties **/
&CONTACT_CI.GetHistoryItems = True;

&CONTACT CI.Interactivemode = False; /** set this to True while
debugging **/

rem Send messages to the PSMessage Collection;
&oSession.PSMessagesMode = 1;

&MSG_ERROR = False;
For &I = 1 To &MSG_ROWSET.ActiveRowCount

/** Set Session Language Code Property **/

®IONALSETTINGS = &oSession.RegionalSettings;

®IONALSETTINGS.LanguageCd = &MSG ROWSET (&I) . PSCAMA.
LANGUAGE CD.Value;

&TRANSACTION ERROR = False;
&BC CREATE = False;

/** Instantiate Component Interface **/
&KEY1 = &MSGiROWSET(&I).CONTACTiTBL.PERSONilD.Value;
&CONTACT CI.PERSON ID = &KEY1;

Evaluate &MSG ROWSET (&I) .PSCAMA.AUDIT ACTN.Value
When = "A"
When = "N"

&ADD = True;

/* Check if Keys already exist. */
&CONTACT CIColl = &CONTACT_CI.Find();

/*If None (&§EXISTS) Then*/
If &CONTACT CIColl.Count = 0 Then
If &CONTACT CI.Create() Then
&BC_CREATE = True;
Else
/* Replace this message with Tools message set
when available */
Warning MsgGet (18022, 56, "Error creating Component
Interface for transaction %1", &I);
&TRANSACTION ERROR = True;
End-If;
Else
If Not &CONTACT CI.Get() Then
/* Replace this message with Tools message set
when available */
Warning MsgGet (18022, 59, "Could not Get Component
Interface for transaction %1", &I);
&TRANSACTION ERROR = True;
End-If;
End-If;
Break;
When = "C"
&ADD = False;
If Not &CONTACT CI.Get() Then
/* Replace this message with Tools message set when
available */
Warning MsgGet (18022, 59, "Could not Get Component
Interface for transaction %1", &I);
&TRANSACTION_ERROR = True;

Chapter 7

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

End-If;
Break;
When = "D"
When = "K"
When-Other
/* delete and old key action codes not allowed at this
time */
&TRANSACTION ERROR = True;
Warning MsgGet (18022, 61, "Audit Action 'D' not allowed on
transaction %1", &TRANSACTION) ;
Break;
End-Evaluate;

&CONTACT CI.CopyRowset (&MSG ROWSET, &I);

If Not &TRANSACTION ERROR Then
If Not &CONTACT CI.save() Then
/* Replace this message with Tools message set when
available */
Warning MsgGet (18022, 57, "Error saving Component
Interface for transaction %1", &TRANSACTION) ;
&TRANSACTION ERROR = True;
End-If;
End-If;

/** close the last Component Interface in preparation for
getting the next **/
If Not &CONTACT CI.Cancel() Then
/* Replace this message with Tools message set when
available */
Warning MsgGet (18022, 58, "Error Canceling Component
Interface for transaction %1", &TRANSACTION) ;
Exit (1);
End-If;

/* Reset &TRANSACTION ERROR to "False" for &BusComp.Save ()
to execute if no

/* Transaction Error found in the next Transaction. */

&TRANSACTION_ERROR = False;

End-For;

If &TRANSACTION ERROR Then
&MSG_ERROR = True;
End-If;

End-Function;

/**** Main Process ***x*/
&MSG.ExecuteEdits (¥Edit Required + %Edit TranslateTable);
If &MSG.IsEditError Then

&MSG_ERROR = True;
Else

&PUBNODENAME = &MSG.PubNodeName;

&MSG ROWSET = &MSG.GetRowset () ;

/* Do Component Interface subscribe */

DO CI SUBSCRIBE() ;
End-If;

If &MSG_ERROR Then
Exit (1) ;
End-If;
XmlIDoc Class Inbound Asynchronous Example
The following example uses the GetXmlDoc method.
Local XmlDoc &Document;

Local XmlNode &node, &root;
Local string &outstring;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 183

Sending and Receiving Messages Chapter 7

Local Rowset &LEVELO;
Local Record &SALES ORDER INFO, &REC;

&CRLF = Char(13) | Char(10);
& Document = &MSG.GetXmlDoc () ;

&root = & Document.DocumentElement;
&child count = &root.ChildNodeCount;

/* Get values out of XmlDoc */

&node array = &root.GetElementsByTagName ("QE ACCT ID");
&acct_id node = &node array.Get (2);

&account id value = &acct id node.NodeValue;

&node array = &root.GetElementsByTagName ("QE ACCOUNT NAME") ;
&acct name node = &node array.Get (2);
&account name value = &acct name node.NodeValue;

&node_ array = &root.GetElementsByTagName ("QE ADDRESS") ;
&address node = &node_array.Get(Z);
&address value = &address node.NodeValue;

&node array = &root.GetElementsByTagName ("QE PHONE") ;

&phone node = &node_array.Get(Z);
&phone value = &phone node.NodeValue;
&outstring = "GetMessageXmlDoc Test";
&outstring = &outstring | &CRLF | &account id value | &CRLF
| &account name value | &CRLF | &address value | &CRLF |

sphone_value;

&SALES ORDER INFO = CreateRecord(Record.QE SALES ORDER) ;

&SALES ORDER INFO.GetField(Field.QE ACCT ID) .Value =
&account id value;

&SALES ORDER_INFO.GetField(Field.DESCRLONG) .Value = &outstring;

&SALES ORDER INFO.Update();

Handling Inbound Asynchronous Request/Response Transactions

184

Implement the OnNotify method in the PS_PT application package, located in the Integration subpackage,
to handle inbound asynchronous request/response transactions.

import PS PT:Integration:INotificationHandler;

class FLIGHTDATA RETURN implements PS PT:Integration:INotificationHandler
method FLIGHTDATA RETURN () ;
method OnNotify (&MSG As Message);

end-class;

/* constructor */
method FLIGHTDATA RETURN
end-method;

method OnNotify
/+ & MSG as Message +/
/+ Extends/implements PS PT:Integration:INotificationHandler.OnNotify +/
/* Variable Declaration */

Local string &str, &value;
Local Rowset &rs;
Local integer #

Local Message &MSG, &MSG resp;
Local Record &FLIGHTDATA, &REC;

&rs = &MSG.GetPartRowset (1) ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

/* process request rowset */

&MSG resp = CreateMessage (Operation.FLIGHTPLAN ARR, %IntBroker Response);
&rs = &MSG resp.GetPartRowset (1);

/* populate response rowset */

&MSG _resp.IBInfo.WSA MessageID = &MSG.IBInfo.WSA MessagelD;
&MSG _resp.IBInfo.WSA ReplyTo = &MSG.IBInfo.WSA ReplyTo;
&MSG resp.IBInfo.WS RequestAliasName = &MSG.IBInfo.WS RequestAliasName;

sIntBroker.Publish (&MSG resp) ;
end-method;

Handling Inbound Synchronous Transactions

Implement the OnRequest method in the PS_PT application package, in the Integration subpackage,
to handle inbound synchronous transactions. All the examples in this section are assumed to be
implementations of the OnRequest method.

Message Class Inbound Synchronous Example
The following example implements both the OnRequest method and the OnError method

import PS PT:Integration:IRequestHandler;

class RequestMan implements PS PT:Integration:IRequestHandler
method RequestMan () ;
method OnRequest (&MSG As Message) Returns Message;
method OnError (&MSG As Message) Returns string;

end-class;

/* constructor */
method RequestMan

$Super = create PS PT:Integration:IRequestHandler();
end-method;

method OnRequest
/+ &MSG as Message +/
/+ Returns Message +/
Local Message &response;

&response = CreateMessage (Operation.SYNC REMOTE,
%IntBroker Response);

&response.GetRowset () .GetRow (1) .GetRecord (Record.QE FLIGHTDATA) .
GetField (Field.DESCRLONG) .Value = &MSG.GenXMLString() ;

Return &response;
end-method;

method OnError
/+ &MSG as Message +/
/+ Returns String +/
/+ Extends/implements PS PT:Integration:IRequestHandler.OnError +/
Local integer &nMsgNumber, &nMsgSetNumber;
Local string &sText;

&nMsgNumber = &MSG.IBException.MessageNumber;
&nMsgSetNumber = &MSG.IBException.MessageSetNumber;

rem &sText = &exception.DefaultText;
&sText = &MSG.IBException.ToString();

/* ADD SPECIFIC ERROR INFO HERE */

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 185

Sending and Receiving Messages

Return &sText;

end-method;

XmIDoc Class Inbound Synchronous Example
The following example uses the GetXmlDoc method:

Local XmlDoc é&xmlRequestDoc;

Local XmlDoc é&xmlResponseDoc;

Local XmlNode é&select;

Local Message &Return MSG;

Local array of XmlNode &whereClause;

Local string &recordName;

Local string &fieldName;

Local string &fieldValue;

Local Rowset &outputRowset;

Local boolean é&return bool value;

&xmlRequestDoc = &MSG.GetXmlDoc () ;
&select = &xmlRequestDoc.DocumentElement;

&recordName = &select.GetAttributeValue ("record");
&outputRowset = CreateRowset (@ ("Record." | &recordName)) ;

&whereClause = &select.GetElementsByTagName ("where") ;
If &whereClause <> Null And
&whereClause.Len <> 0 Then
&fieldName = &whereClause.Get (1) .GetAttributeValue ("field");
&fieldValue = &whereClause.Get (1) .GetAttributeValue ("value") ;
&outputRowset .Fill ("WHERE " | &fieldName | "= :1", &fieldValue);
Else
&outputRowset.Fill () ;
End-If;

&Return MSG = CreateMessage (OPERATION.EXAMPLE, %IntBroker Response);
&xmlResponseDoc = &Return MSG.GetXmlDoc () ;

&b = &xmlResponseDoc.CopyRawset(&outputRowset);
Return &Return MSG;

SoapDoc Class Inbound Synchronous Example

The following example uses the GetXmIDoc method.

Chapter 7

Note: Because GetXmlDoc returns an XmlDoc object, you must receive the inbound request message as
an XmlDoc object, then convert it to a SoapDoc object to process it with SOAP methods.

Local XmlDoc &request, &response;
Local string &strXml;

Local SoapDocs &soapReq, &soapRes;
Local Message &Response Message;

&soapReqg = CreateSoapDoc () ;

&request = &MSG.GetXmlDoc () ;

&soapReqg.XmlDoc = &request;

&0OK = &soapReqg.ValidateSoapDoc () ;

&parmN = &soapReq.GetParmName (1) ;

&parmV = &soapReqg.GetParmValue (1) ;

&Response Message = CreateMessage (OPERATION.SoapExample,
$IntBroker Response);

&response = &Response Message.GetXmlDoc () ;

&soapRes = CreateSoangc();
&soapRes.AddEnvelope (0) ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

&soapRes.AddBody () ;
&soapRes.AddMethod ("StockPrice"

, 1)
&soapRes.AddParm(&parmN, &parmV) ;
)

&soapRes.AddParm("Price", "29");
&0K = &soapRes.ValidateSoapDoc (

’

&response = &soapRes.XmlDoc;
Return &Response Message;

Simulating Receiving Messages from External Nodes

You can use PeopleCode to simulate receiving asynchronous messages from external nodes, including
running transformations.

Use can use the IntBroker class InboundPublish method to work with rowset-based and nonrowset-based
messages.

The following example shows an inbound publish as part of an OnNotify method implementation with a
rowset-based message:

Local Message &MSG REMOTE;
Local Rowset é&rs;

&rs = &MSG.GetRowset () ;
/*create the message to be re-published from a simualted remote node*/

&MSG_REMOTE = CreateMessage (OPERATION.QE FLIGHTPLAN) ;
&MSGfREMOTE.IBInfo.RequestingNodeName = "QE IBTGT";

&MSG REMOTE.IBInfo.ExternalOperationName = &MSG REMOTE.OperationName | "."
&MSG REMOTE.OperationVersion;

&MSG_ REMOTE.CopyRowset (&rs) ;

&Ret = $IntBroker.InBoundPublish (&MSG REMOTE) ;

The following example shows an inbound publish as part of an OnNotify implementation with a
nonrowset-based message:

Local Message &MSG REMOTE;
Local XmlDoc &xmldoc;
Local Rowset &rs;

&xmldoc = &MSG.GetXmlDoc () ;
/*create the message to be re-published from a simualted remote node*/

&MSG REMOTE = CreateMessage (OPERATION.QE FLIGHTPLAN) ;
/* populate the Remote Message with data to be re-published*/
&MSG REMOTE.SetXmlDoc (&xmldoc) ;

%IntBroker.InBoundPublish(&MSG_REMOTE, Node.REMOTE NODE) ;

Processing Inbound Errors

This section discusses how to:

e Validate data.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 187

Sending and Receiving Messages Chapter 7

¢ Use the Exit built-in function.

+ Correct messaging errors.

Validating Data

188

You validate data differently depending on the PeopleCode class that you’re using to receive the message.

XMLDoc Class Validation

You can validate incoming XML DOM-compliant messages by using the XmlDoc document type
definition (DTD) that is delivered with your PeopleSoft application.

See "Understanding XmlDoc Classes" (PeopleTools 8.53: PeopleCode API Reference).

SoapDoc Class Validation

You can validate SOAP-compliant messages by using the ValidateSoapDoc method in the PeopleCode
SoapDoc class.

See "Understanding theSOAPDoc Class" (PeopleTools 8.53: PeopleCode API Reference).

Message Class Validation

Have a message receiving process validate incoming data by:
» Using the ExecuteEdits method in the code to invoke the definitional edits.

* Calling PeopleCode validation built-in functions (if they already exist, for example in a FUNCLIB
record, or if validation logic can be encapsulated within a small set of built-in functions) from within
the receiving PeopleCode.

* Calling a component interface or Application Engine program from the receiving process (for
complex validation logic).

This enables you to reuse logic that is embedded in the component.

The ExecuteEdits method uses the definitional edits to validate the message. You can specify the
following system variables alone or in combination. If you don’t specify a variable, all of the edits are
processed.

* %Edit_DateRange

* %Edit_ OneZero

* %Edit PromptTable

* %Edit_Required

* %Edit_TranslateTable
* %kEdit_YesNo

The following example processes all edits for all levels of data in the message structure:

&MYMSG.ExecuteEdits () ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

The following example processes the Required Field and Prompt Table edits:

&RECPURCHASEORDER.ExecuteEdits ($Edit Required +
$Edit PromptTable);

ExecuteEdits uses set processing to validate data. Validation by using a component interface or a
PeopleCode built-in function is usually done with row-by-row processing. If a message contains a large
number of rows per rowset, consider writing the message to a staging table and calling an Application
Engine program to do set processing if you want additional error checking.

ExecuteEdits sets several properties on several objects if there are any errors:
» IsEditError is set on the Message, Rowset, Row, and Record objects if any fields contain errors.
» EditError, MessageNumber, and MessageSetNumber are set on the Field object that contains the error.

If you don’t want to use ExecuteEdits, you can set your own errors by using the field properties. Setting
the EditError property to True automatically sets the IsEditError message property to True. You can also
specify your own message number, message set number, and so on, for the field. If you use the Exit(1)

built-in function, the message status changes to Error when you finish setting the fields that are in error.

Using the Exit Built-in Function

Use the Exit built-in function to invoke a messaging error process when the application finds an error.
This works only when you use the PeopleCode Message class to process inbound transactions. The same
error processing is invoked automatically if PeopleTools finds an unexpected error, such as a Structured
Query Language (SQL) error. The Exit built-in function has an optional parameter that affects how the
error is handled.

To handle error processing in application tables, use the Exit built-in function with no parameter, or just
let the notification process finish normally. This marks the message receipt as successful and commits the
data.

To handle the error tracking and correction with PeopleSoft Integration Broker, use the Exit built-in
function with 1 as a parameter to log the errors, perform a rollback, and stop processing.

Using the Exit Built-in Function Without Parameters

Inthe Exit () form (that is, Exit without any parameters specified), all data is committed and the
message is marked as complete. Use this to indicate that everything processed correctly and to stop
program processing. Note, though, that the message status is set to Complete; therefore, you can’t detect
or access errors in the Service Operations Monitor. If errors did occur, the subscription code should write
them to a staging table, and then you must handle all of the error processing.

The Exit built-in function:

» Sets the message status in the application message queue for the subscription to Done.
* Commits the transaction.

* Stops processing.

Following is an example of using Exit without a parameter:

&MSG.ExecuteEdits () ;
If &MSG.IsEditError then

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 189

Sending and Receiving Messages Chapter 7

App Specific Error Processing();
Exit () ;
Else
Specific Message Processing();
End-if;
Using the Exit Built-in Function with Parameters

When you supply a 1 as a parameter for the Exit built-in function, the function:
* Processes a rollback.

» Sets the message status in the message queue for the subscription to Error.
* Writes the errors to the subscription contract error table.

* Stops processing.

You can view all errors that have occurred for this message in the Service Operations Monitor, even those
errors that are detected by ExecuteEdits.

Following is an example of using the Exit function with 1 as a parameter:

&MSG.ExecuteEdits () ;
If &MSG.IsEditError then
Exit (1) ;
Else
Process Message () ;
End-1if;

Related Links

Integration Broker Service Operations Monitor

Using Message Object Functionality With Nonrowset-Based
Messages

190

Prior to the PeopleTools 8.44 release, there were two distinct paths for writing and executing PeopleCode
for PeopleSoft Integration Broker which were based on whether you were working with rowset-based
XML messages or nonrowset-based XML messages.

For rowset-based XML messages, you could use a rowset and all the properties and methods associated
with the Message class. For nonrowset-based XML messages, you could not use the Message class,

but instead used built-in functions such as PublishXmlIDoc and GetMessageXmlDoc. In addition, when
working with nonrowset-based messages and these built-in functions, you could only access content data.

Effective with the PeopleTools 8.44 release, when working with nonrowset-based XML messages you can
use all of the functionality of the Message object using two new methods, SetXMLDoc and GetXMLDoc.

SetXMLDoc Use this method to load and pass nonrowset-based data into the
Message object.

GetXMLDoc Use this method to get nonrowset-based data out of the message
object.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

Using the SetXMLDoc Method

The following example shows how to use SetXMLDoc to use the Message object to publish a nonrowset-
based message.

//&XmlDoc holds the nonrowset-based data as before.

// create an instance of the Message object

&MSG = CreateMessage (OPERATION.QE F18 ASYNC XMLDOC) ;
// Load the Message object with the xmldoc data.
&MSG.SetXmlDoc (&XmlDoc) ;
// perform a publish for the nonrowset-based message
$IntBroker.Publish (&MSG) ;

Using the GetXMLDoc Method

The following code example shows how to use GetXMLDoc to get nonrowset-based XML out of the
Message object.

Local XMLDOC &XmlDoc;

// get an xmldoc object loaded with the content data.
&XmlDoc = &MSG.GetXmlDoc () ;

Related Links
"Understanding Message Classes" (PeopleTools 8.53: PeopleCode API Reference)

Generating Test Messages

Use the Handler Tester utility to generate test messages.

See "Understanding the Handler Tester Utility" (PeopleTools 8.53: Integration Broker Testing Utilities
and Tools)

Working With Message Segments

This section provides an overview of message segments and discusses how to:
* Configure nodes to handle segmented messages.

* Set the maximum number of messages in a message segment.

* Create message segments.

* Delete message segments.

* Send and receive segmented messages between PeopleSoft systems.

* Send and receive segmented messages to/from third-party systems.

» Send and receive large segmented messages using parallel processing.

* Access message segments.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 191

Sending and Receiving Messages Chapter 7

* View message segment data.
» Use restartable processing for publishing large messages in batch.

Related Links

"Sending and Receiving Large Segmented Messages Using Parallel Processing" (PeopleTools 8.53:
PeopleSoft Integration Broker Administration)

Understanding Message Segments

When you create message segments, you can divide rowset-based and nonrowset-based messages into
multiple data containers, or segments, for sending. Depending on the order in which you send a message
that contains message segments, the receiving system can process the message as a whole, or process one
segment at a time while the others are compressed in memory or held in the application database.

As a result creating message segments can enhance system performance and message exchange,
especially when you are working with large messages that exceed one gigabyte (1 GB).

To create and manage message segments, you use several methods and properties of the PeopleCode
Message class.

Understanding PeopleCode used to Work with Message Segments

192

This section discusses:
* Methods used with message segments.

* Properties used with message segments.

Methods Used with Message Segments

The following table lists the PeopleCode methods you can use when you work with message segments.

Method Class Description

CreateNextSegment Message Designates the end point of one segment
and the beginning of a new segment.

DeleteOrphanedSegments IntBroker Used to delete segments that might have
been orphaned if you were processing
message segments using a PeopleSoft
Application Engine program that had to
be restarted.

DeleteSegment Message Deletes a segment.

GetSegment Message Gets the segment specified by the passed
value. The passed value is the segment
number.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages
Method Class Description
UpdateSegment Message Use this method to update data within
the current segment.

Note: Use the DeleteSegment and UpdateSegment methods only when storing segments data in memory.
These methods do not function when segment data is stored in the database.

Properties Used with Message Segments

The following table lists PeopleCode properties that you can use when you work with message segments.

Property

Class

Description

CurrentSegment

Message

Returns a number, indicating which

segment is the current segment.

SegmentsUnOrder

IBInfo

Determines whether to process message
segments in order or unordered. This
property pertains to asynchronous
messages only.

The values are:

* True: Process message segments

unordered.

» False: Process message segments in
order. (Default.)

SegmentCount

Message

Returns the total number of segments in
a message.

SegmentsByDatabase

Message

Enables you to override where message
segment data is stored for a message.

The values are:

* True: Store message segments
awaiting processing in the
application database.

* False: Store message segments
awaiting processing in memory. (
Default.)

Related Links

PeopleCode API Reference

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

193

Sending and Receiving Messages Chapter 7

Configuring Nodes to Handle Segmented Messages

This section describes how to configure nodes to handle segmented messages.

Understanding Configuring Nodes to Handle Segmented Messages

Before you can send segmented messages, you must configure the remote node defined on the local
system to handle segmented messages by setting the Segment Aware option on the Node Definitions page
in the PeopleSoft Pure Internet Architecture.

Warning! Do not set the Segment Aware option for remote PeopleSoft 8.45 or earlier nodes, or for third-
party systems. If you do so, the receiving system will consume only the first segment of the messages and
ignore any subsequent segments.

Configuring a Node to Handle Segmented Messages

To configure a node to handle segmented messages:
1. Select PeopleTools, Integration Broker, Integration Setup, Node Definitions.
2. Select a node with which to work and click OK.
The Node Definitions page appears.
3. Select the Segment Aware check box.

4. Click the Save button.

Setting the Maximum Number of Message Segments in Messages

The Maximum Number of Segments parameter is a built-in global parameter that determines the
maximum number of segments that can exist in a message. When the number is met, a new message is
created and begins to be populated.

The default value is /0.

The Maximum Number of Segments parameter is set on the PeopleTools Options page (PSOPTIONS). To
access the page select PeopleTools, Utilities, Administration, PeopleTools Options.

You can also manipulate the maximum number of message segments for a message in PeopleCode using
the Y%oMAXNBRSEGMENTS built-in function.

Creating Message Segments

194

This section provides an overview of creating message segments and message segment numbers and
discusses how to:

* Create message segments.
* Count the number of segments in messages.
» Store message segments awaiting processing.

* Override where to store message segment awaiting processing.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Copyright

Sending and Receiving Messages

* Specify the order in which to process message segments.

* Chunk asynchronous segmented messages.

Understanding Creating Message Segments

By default every message has one segment.

To create multiple message segments use the CreateNextSegment method in the location in the message
where you want one segment to end and next segment to begin. Continue this process until you have
created the desired number of segments for the message.

Segments can contain any number of rowsets of data (rowset-based messages) or rows of data
(nonrowset-based messages).

Understanding Message Segment Numbers

When you create a message segment, PeopleSoft Integration Broker assigns a message segment number
to the segment.

The first message segment has a message segment number or 1, and message segment numbers are
increment by one sequentially thereafter. As an example, if you break a message into three segments, the
first segment number is /, the second segment number is 2, and the third segment number is 3.

Creating Message Segments

The following example shows using the CreateNextSegment method to create three segments in the
message QE_FLIGHTPLAN, populating each segment with data from the component buffer.

&MSG = CreateMessage (OPERATION.QE FLIGHTPLAN) ;
&rs=&MSG.GetRowset () ;

//Now populate rowset

// End of first segment. Beginning of second segment.
&MSG.CreateNextSegment () ;

&rs=&MSG.GetRowset () ;

//Now populate rowset

//End of second segment. Beginning of third segment.
&MSG.CreateNextSegment () ;

&rs=&MSG.GetRowset () ;
//Now populate rowset

$IntBroker.Publish (&MSG) ;

Counting the Number of Segments in Messages

You might have the need to determine the number of segments in a message. Use the SegmentCount
property to determine this information.

Storing Message Segments Awaiting Processing

By default, message segments awaiting processing are stored in memory until all segments are processed.
Once all segments are processed, PeopleSoft Integration Broker sends all data as one message.

Use the MessageSegmentFromDB parameter in PSAdmin to specify the number of segments to keep in
memory before writing segmented messages to the database. The default value is /0.

© 1988, 2014, Oracle and/or its affiliates. All rights reserved. 195

Sending and Receiving Messages Chapter 7

For synchronous messages, if the number of segments sent for processing exceeds the set for the
MessageSegmentsFromDB parameter, an error occurs.
Overriding Where to Store Message Segments Awaiting Processing

You can override the number of segments to keep in memory before writing segmented messages to the
database for a single message using the SegmentsByDatabase property of the Message class.

Storage Location Description

Memory When message segments are stored in memory, PeopleSoft
Integration Broker writes all segments as one message to the

database when you send the message.

To store message segment data in memory, set the
SegmentsByDatabase property to False. (Default.)

Application database When message segments are stored in the database, PeopleSoft
Integration Broker writes the segments to the database
individually. When you store message segments in the
database you can have an infinite number of segments in a

message.

To store message segment data in the application database, set
the SegmentsByDatabase property to True.

When you store message segments in memory, the number of segments is limited by the value set in the
MessageSegmentFromDB parameter in PSAdmin in the Setting for PUB/SUB servers section of the file.

When working with asynchronous messages, if you create more message segments then the value
set, all segments are written to the database automatically and the SegmentsByDatabase property will
automatically be set to True.

For synchronous messages, attempting to create more segments then the specified value will result in an
error message.
Specifying the Order in Which to Process Message Segments

When you work with segmented asynchronous messages you can specify that PeopleSoft Integration
Broker process the segments in order or unordered, using the SegmentsUnOrder property of the Message

class.
Message Segment Processing Description
In order When Integration Broker processes message segments in

order, it decompresses all message segments sequentially and
then processes the message as a whole. In this situation, only

one publication or subscription contract is created.

To process message segment in order, set the
SegmentsUnOrder property to False.

196 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

Message Segment Processing Description

Unordered When Integration Broker processes message segments
unordered, it decompresses and processes all segments in
parallel. In this situation, the system creates one publication or
subscription contract for each message segment.

To process message segment unordered, set the
SegmentsUnOrder property to True.

If you attempt to send ordered segmented messages to a node that is not segment aware an error message
will be created and can be viewed on the Message Errors tab on the Message Details page in Service
Operations Monitor.

See the product documentation for PeopleTools 8.53: Integration Broker Service Operations Monitor.

Chunking Asynchronous Segmented Messages

Chunking asynchronous segmented messages sends message in blocks to the receiving node.

When using chunking, message instances display in Hold status in the Service Operations Monitor until
all chunks are received. Once all chunks are received, the message status switches to New.

Note: Chunking applies to ordered asynchronous messages only.

The number of segments to chunk for an asynchronous message is determined by the value you set for the
MessageSegmentByDatabase parameter in PSAdmin. The default value is /0.

As an example, if a message has 20 segments and you set MessageSegmentByDatabase to 5, PeopleSoft
Integration Broker will send four groups (array of messages) of segments to the integration gateway, and
each group will contain five segments.

Deleting Message Segments
You can delete message segments in a message only before you publish the message.
Use the DeleteSegment method of the Message class to perform the action.
You cannot delete the first segment in a message.

The following example demonstrates using the DeleteSegment method in an implementation of the
OnRequestSend method.

import PS_PT:Integration:ISend;

class Send implements PS PT:Integration:ISend
method Send() ;
method OnRequestSend (&message As Message) Returns Message;
method OnError (&message As Message)

end-class;

/* constructor */
method Send

%Super = create PS PT:Integration:ISend();
end-method;

method OnRequestSend

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 197

Sending and Receiving Messages Chapter 7

/+ &message as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:ISend.OnRequestSend +/
Local integer &segment number, &i;
Local Rowset &rs;
For &1 = 1 To &message.SegmentCount
&rs = Null;
&message.GetSegment (&1) ;
&rs = &message.GetRowset () ;

/* determine that segment 3 needs to be deleted. */
&segment number = &i;

End-For;

&message.DeleteSegment (&segment number) ;

Return &message;
end-method;

method OnError
/+ &message as Message +/
/+ Extends/implements PS PT:Integration:ISend.OnError +/

end-method;

Sending and Receiving Segmented Messages between PeopleSoft Systems
This section discusses how to:
* Send segmented messages to PeopleSoft systems.

* Receive segmented messages from PeopleSoft systems.

Sending Segmented Messages to PeopleSoft Systems

To send a segmented message, use sending PeopleCode and events as you would with any other message.

Use the PeopleSoft target connector when the receiving node is a PeopleSoft system. The PeopleSoft
target connector automatically handles message segments, and no additional configuration is required on
the connector.

Before sending a transaction with message segments, on the sending PeopleSoft system, be sure that the
Segment Aware check box is selected for the remote node that represents the receiving system.

Receiving Segmented Messages from PeopleSoft Systems

To receive segmented message from PeopleSoft systems, use notification PeopleCode or implement the
OnRequest method.

Use the PeopleSoft listening connector to receive transactions that contain message segments from other
PeopleSoft systems. The PeopleSoft listening connector automatically handles message segments, and no
additional configuration is required on the connector.

Sending and Receiving Segmented Messages to/from Third-Party Systems

This section discusses how to:

198 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7

Copyright

Sending and Receiving Messages

* Send segmented messages to third-party systems.

* Receive segmented messages from third-party systems.

Understanding DataChunkCount and DataChunk Properties

PeopleSoft Integration Broker uses two properties to communicate to sending and receiving systems the
number of message segments that are contained in a transaction:

DataChunkCount Indicates the total number of data chunks or message segments
contained in the transaction.

DataChunk Indicates the number of the data chunk or message segment that
you are sending.

For example, if there are a total of seven data chunks in the
transaction, and the current segment is the third chunk, the
DataChunk value for the current message is 3.

Note that when you are sending and receiving message segments between PeopleSoft systems these
properties are not used. The PeopleSoft target and listening connectors perform all necessary processing.
Sending Segmented Messages to Third-Party Systems

To send segmented messages from PeopleSoft systems to third-party system, use one of the following
target connectors:

* AS2 target connector
* HTTP target connector
» JMS target connector
* SMTP target connector

No additional target connector configuration is required to send segmented messages. These connectors
read the messaging PeopleCode on the integration gateway and determine the number of segments
contained in the transaction. They then populate the DataChunkCount and DataChunk parameters and
include this information with each outbound segment sent. All of these connectors except for the HTTP
target connector send the DataChunkCount and DataChunk information in the message header of each
outbound message segment. The HTTP target connector includes the DataChunkCount and DataChunk
parameter information in the HTTP header of each outbound message segment.

Before sending a transaction with message segments, on the PeopleSoft system, be sure that the Segment
Aware check box is selected for the remote node that represents the third-party integration partner.
Receiving Segmented Messages from Third-Party Systems

At this time, only the HTTP listening connector can be used to receive message segments from third-party
systems.

To receive segmented messages with third-party integration partners, the third-party must specify the
following DataChunkCount and DataChunk parameters in the HTTP properties, query arguments, or
SOAP header:

© 1988, 2014, Oracle and/or its affiliates. All rights reserved. 199

Sending and Receiving Messages Chapter 7

200

The receiving PeopleSoft system must use the HTTP listening connector as only this connector monitors
transactions for these parameters.

After the third party sends in the first segment, the PeopleSoft system sends an acknowledgement to the
third-party system. The acknowledgment contains a transaction ID that the third-party integration partner
must include with all subsequent segments.

The following bullet points describe sample processing for a third-party integration partner sending a
transaction to a PeopleSoft system that contains three segments:

1. First segment processing:

a.

The third-party integration partner prepares the first message/segment of the transaction. In the
HTTP properties, query string, or SOAP header, it sets the DataChunk equal to / indicating the
first chunk, and sets the DataChunkCount equal to 3 indicating total number of chunks to be sent
for the transaction.

When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

In the Service Operations Monitor the transaction displays a status of Hold.

The PeopleSoft system sends an acknowledgement to the third-party system, which includes a
transaction ID.

Note: The third-party integration partner must include the transaction ID as part of all subsequent
requests for the transaction. The PeopleSoft system uses the transaction ID to identify the
segments that belong to the transaction.

2. Second segment processing:

a.

The third-party integration partner prepares the second message/segment of the transaction. In the
HTTP properties, query string, or SOAP header, it sets the DataChunk equal to 2 indicating that
the message is the second chunk, and sets the DataChunkCount equal to 3 indicating total number
of chunks to be sent for the transaction. It also specifies the transaction ID sent by the PeopleSoft
system in the acknowledgement for the first segment.

When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

In the Service Operations Monitor the transaction displays a status of Hold.

3. Third segment processing:

a.

The third-party integration partner prepares the third message/segment of the transaction. In the
HTTP properties, query string, or SOAP header, it sets the DataChunk equal to 3 indicating that
the message is the third chunk, and sets the DataChunkCount equal to 3 indicating total number
of chunks to be sent for the transaction. It also specifies the transaction ID sent by the PeopleSoft
system in the acknowledgement for the first segment.

When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

c. Since the PeopleSoft system has received all of the segments in the transaction, in the Service
Operations Monitor the transaction displays a status of New.

d. The PeopleSoft system processing the transaction like any other transaction at this point.
The PeopleCode to read the data chunks/segments is the Message Segment APIL.

Sending, Receiving, and Correlating Multiple Segmented Messages

Previous sections in this topic have discussed sending one message that contains multiple message
segments. For very large messages this can have performance impact due to the large number of
segments.

PeopleSoft provides PeopleCode that allows you to send multiple messages with multiple segments and
then correlate them into one transaction on the receiving system. So instead of sending one message with
50 message segments, you can send 10 messages with 5 message segments using parallel processing, and
then correlate the 10 messages on the receiving system.

The InitializeConversationld property on the Message object, provides the correlation between messages.
The FirstCorrelation method on the Message object ensures that the database table is truncated after
receipt of the first message only.

On the first message to be published set the InitializeConversationld property to True. After the
message is published retrieve the transaction ID from the message. For all subsequent messages, set the
CorrelationID property to the value of the transaction ID returned from the first message. As a result,
when the messages arrive at the receiving system they have different transaction IDs, but all have the
same correlation ID.

On the receiving system when the first message is received the database table is truncated. To prevent

a destructive load from occurring with the receipt and processing of each subsequent message, use the
PreNotify event. You can use the PreNotify event to truncate the database table upon receipt of the first
message. In subsequent messages use the FirstCorrelation method in the event, setting the method to True,
to determine if a prior message with the same correlation ID has already run the event.

The following example shows an example of how the sending system uses the InitializeConversationld
property:

/*First Message to Publish */

&MSG. InitializeConversationId = true;

$IntBroker.Publish (&MSG) ;

&strCorrelationID = &MSG.TransactionId;

/* all subsequent message to correlate*/

&MSG. IBInfo.ConversationID = &strCorrelationID;
$IntBroker.Publish (&MSG) ;

The following example shows an example of how the receiving system uses the FirstCorrelation method
in the PreNotify event:

PreNotify Event:

If &MSG.FirstCorrelation() = true Then
/* process the event logic */

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 201

Sending and Receiving Messages Chapter 7

End-If;
Accessing message segments is described elsewhere in this section.

See Accessing Segments in Messages.

Related Links
"FirstCorrelation" (PeopleTools 8.53: PeopleCode API Reference)
"InitializeConversationld" (PeopleTools 8.53: PeopleCode API Reference)

"Sending and Receiving Large Segmented Messages Using Parallel Processing" (PeopleTools 8.53:
PeopleSoft Integration Broker Administration)

Accessing Segments in Messages

202

After you receive a segmented message, use the GetSegment method of the Message class to access
message segment data.

After you access a message segment, use the Message class GetRowset or GetXmlDoc methods to work
with the contents of the segment.

Warning! You can access only one segment in a message at a time. When you access a message segment,
PeopleSoft Integration Broker removes the previously accessed message segment from memory.

When you access a message segment, set the existing rowset to null to eliminate storing multiple rowsets
in the data cache.

The following example shows using the GetSegment method to access a message segment in the message
QE _FLIGHTDATA.

For &1 = 1 To &MSG.SegmentCount
&rs = Null; //Null the rowset to remove it from memory
&MSG.GetSegment (&1i) ;

&rs = &MSG.GetRowset () ;
&REC = &rs(l).QEiFLIGHTDATA;

&FLIGHTDATA = CreateRecord(Record.QE_FLIGHTDATA);
&REC.CopyFieldsTo (&FLIGHTDATA) ;

/* Parse out Message Data */

&acnumber value = &FLIGHTDATA.QE ACNUMBER.Value;
&msi_sensor_value = &FLIGHTDATA.QE_MSI_SENSOR.Value;
&ofp value = &FLIGHTDATA.QE OFP.Value;

&actype value = &FLIGHTDATA.QE ACTYPE.Value;
&callsign value = &FLIGHTDATA.QE CALLSIGN.Value;
&squadron value = &FLIGHTDATA.QE SQUADRON.Value;
&comml value = &FLIGHTDATA.QE COMMI1.Value;

&comm2 value = &FLIGHTDATA.QE COMM2.Value;

&ecm value = &FLIGHTDATA.QE ECM.Value;

&outstring = "Send Async Flight test";

/* Construct Output String */

&outstring = &outstring | &acnumber value | &CRLF |

&msi sensor value | &CRLF | &ofp value | &CRLF | &actype value |
&CRLF | &callsign_value | &CRLF | &squadron value | &CRLFE |
&comml value | &CRLF | &comm2 value | &CRLF | &ecm value;

/* Log Output String into page record */
&FLIGHTDATA.GetField (Field.DESCRLONG) .Value = &outstring;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

SQLExec ("DELETE FROM PS QE FLIGHTDATA");
&FLIGHTDATA.Insert ();

End-For;

Viewing Message Segment Data
The Service Operations Monitor Message Details page provides information about messages that contain

segments.

Related Links

"Viewing Asynchronous Service Operation Instance Details" (PeopleTools 8.53: Integration Broker
Service Operations Monitor)

Using Restartable Processing for Publishing Large Messages in Batch

This section provides an overview, prerequisites and setup steps for using restartable processing for
publishing large asynchronous segmented messages in batch.

Understanding Using Restartable Processing

PeopleSoft provides a PeopleSoft Application Engine library module, IB_ SEGTEST, that you can use
as a template to create a module to aid in processing large messages and messages in batch for outbound
asynchronous PeopleSoft Integration Broker segment data with restart capability.

With restart capability, if there is an abnormal program termination, you can correct any data errors and
continue processing from the point of the last commit without having to reload message segment data
from the beginning.

Understanding the IB_SEGTEST Application Engine Library Module

This section provides overview information for using the IB_ SEGTEST

The IB_SEGTEST library module consists of three sections:

e Section 1: Sectionl. The main processing section.

» Section 2: ABORT. Use to trigger a user abort of the running application engine program

» Section 3: CLEANSEG. An independent section you can call to clean up pending segment data that
had been committed to the database but is no longer to be used.

Prerequisites

To use the information provided in this section, you should have a thorough understanding of PeopleSoft
Application Engine.

Using the IB_SEGTEST Library Module

This section provides an overview of the high-level list of tasks to perform to set up a PeopleSoft
Application Engine program to perform restartable message processing.

1. Make a copy of IB_SEGTEST, including all sections and PeopleCode.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 203

Sending and Receiving Messages Chapter 7

204

From here on, the copy of the application engine library module is referred to as IB_ SEGTEST], but
you can use any name you choose.

In the State Records tab of IB_ SEGTEST]1, verify that PSIBSEGRSTR_AET is the default state
record. Replace PT_EIP_ ERR AET with whatever state record is used in the main application engine
program that will be calling the Library module.

Note that IB_ SEGTEST]1 is flagged as not restartable. Since database commits will be performed in
the middle of PeopleCode processing, the only way the commits can take effect is if the module is
flagged as not restartable.

The application engine program used to call IB_SEGTEST1 should be restartable.
Always issue a commit in the step prior to calling the library module IB_ SEGTEST].

In the application engine program that will be calling IB_SEGTEST], insert a step to call
IB_SEGTEST]1, section Sectionl. Insert the step at the point in time when you want to do the message
publish. You must issue a commit prior to calling this section, otherwise there will be a ‘Unable to
Process Commit’ error issued from within IB_ SEGTESTI.

Add PSIBSEGRSTR_AET as an additional state record to the calling application engine program.

Since both programs now share state records, when IB_SEGTEST!] is called, all state record
values will be passed on to the called module. Presumably all application values needed to extract
application data would be stored in the application state record.

Modify the PeopleCode in IB_SEGTEST1.Section]l. Several comments have been added to the code
to aid in the modifications. Note the following:

. Change &MSG = CreateMessage (OPERATION. QE_FLIGHTPLAN) to create whatever
message will be used.

* SegmentsByDatabase should always be set to True.

* The While loop is used to simulate application code processing large volumes of data. This can be
changed to meet application needs. However, pay close attention as to when commits are issued,
when state records are updated, when new segments are created, and finally, when the message
publish is executed. The order of these events is crucial to proper workability. In the sample
program, also note how to break out of the While loop.

* Note the location where the application state record needs to be updated. A comment instructs in
the PeopleCode provides instructions on where to perform this task.

* Do not remove the Exit (1) from the end of the PeopleCode. This is necessary to bypass the
Abort action that is coded into the same Step.

* Ifin the middle of processing, the application code determines that an abort needs to be triggered,
an Exit (0) can be coded. This triggers the Abort step to be called, which will terminate
application engine processing. A restart could then be issued if processing needs to continue.

If you determine that a message no longer needs to be published, the calling application engine
program could then call the CLEANSEG step to get rid of all the pending data that has been saved

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

in the database. Alternatively, the Abort step could be modified to call CLEANSEG if on any
abort, no old data is to be kept.

See the product documentation for PeopleTools 8.53: PeopleSoft Application Engine for more
information about application engine programs.

Populating and Retrieving Document Data

This section discusses how to:
» Instantiate Documents objects.
* Populate document data.

* Retrieve document data.

Understanding Populating and Retrieving Document Data

This section provides guidelines for instantiating Document objects, and populating and retrieving
document data from document message types.

Memory Management in Message Segments that Use Documents

Following these guidelines when populating or retrieving document data from message segments:

* After your code to populate a segment, set the following statement to NULL:

&DOC = null;

Including this statement in your code releases the segment data from memory. If you do not include
this statement in your code, data from all segments accumulates in memory.

» Start each new segment processing section by setting the following statement to TRUE:

&DOC = &MSG.GetDocument (true)

Including this statement in your code guarantees that only one segment is in memory at a given time.

Instantiating Document Objects
This section discusses and provides examples for how to:
» Instantiate Document objects using package, name, and version.
» Instantiate Document objects using document keys.

* Instantiate Document objects for document message types.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 205

Sending and Receiving Messages Chapter 7

Instantiating Document Objects Using Package, Name, and Version

You can instantiate a Document object using the CreateDocument built-in function. Using this approach,
you use the Create Document built-in function, and then specify the document package name, the
document name, and the document version, as shown in the following example:

&DOC = CreateDocument ("Purchasing", "PurchaseOrder", "v1");

Instantiating Document Objects Using Document Keys

The following code example shows instantiating a Document object using the a document key. This
approach uses the CreateDocumentKey and CreateDocument built-in functions.

First you instantiate a Document Key object, using the CreateDocumentKey built-in function and passing
in the document package name, document name, and document version. You then instantiate a Document
object using the CreateDocument built-in function, and pass in the document key.

&DOCKEY = CreateDocumentKey ("Purchasing", "PurchaseOrder", "v1");
&DOC = CreateDocument (&DOCKEY) ;

Instantiating Document Objects for Document Message Types

The following example shows how to instantiate a document object when the document is being used as a
message type.

&DOC = &MSG.GetDocument () ;

Populating Document Data

206

This section discusses and provides examples for how to:
» Populate documents from messages.
* Populate document using rowsets.

* Populate message segments with documents.

Populating Documents from Messages

The following example shows how to use the CreateMessage built-in function to populate a document
from a message:

&MSG
&DOC

CreateMessage (Operation. PURCHASE ORDER) ;
&MSG.GetDocument () ;

Populating Documents Using Rowsets

The following example shows using the CreateMessage built-in function and the Document class to
populate a document using a rowset:

Local Message &MSG;
Local Document &DOC;

&MSG = CreateMessage (Operation.PURCHASE ORDER) ;
&DOC = &MSG.GetDocument () ;

/* Get Rowset */

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

&Rowset = &DOC.GetRowset () ;
/* populate rowset like any other rowset

/* update document with popualted rowset * /
&nRet = &DOC.UpdateFromRowset (&Rowset) ;

If (&nRet) = True Then
$IntBroker.Publish (&MSG) ;
End-If;

Populating Message Segments with Documents

The following example shows code for populating message segments with documents.

After you code to populate a segment, set the following statement to NULL to release memory:
&DOC = null;

Then, set the following statement to TRUE to manage memory and guarantee that only one segment is in
memory at a given time:

&DOC = &MSG.GetDocument (true) ;

If you do not following these coding guidelines, memory will get filled with data from all segments in the
message.

The previous statements are in emphasis in the following example:

Declare Function PopulateDocument PeopleCode QE FLIGHTDATA.QE ACNUMBER FieldFormula=
Local Document &DOC;

&MSG = CreateMessage(Operation.FLIGHTPLAN_DOC);

/*pass 1in true to get ownership of the object*/

/

&DOC = &MSG.GetDocument (true) ;

/*popualte the docment with data */
PopulateDocument (&DOC, 1);

/*create a new segment */
&MSG.CreateNewSegment () ;

/* null out object to release memory */
&DOC = null;&DOC = &MSG.GetDocument (true) ;
PopulateDocument (&DOC, 2);
&MSG.CreateNewSegment () ; &DOC = null;

&DOC = &MSG.GetDocument (true) ;
PopulateDocument (&DOC, 3);

/* publish segmented Message (3 segments) */
$IntBroker.Publish (&MSG) ;

Retrieving Document Data

This section discusses and provides code examples for how to:
» Retrieve document data from the Message object.

* Retrieve document data from message segments.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 207

Sending and Receiving Messages Chapter 7

208

* Retrieve document data within a Notification event using message segments

Retrieving Document Data from the Message Object
The following code provides an example of how to retrieve a document from the Message object:

Local Message &MSG;

Local Document &DOC;

Local Primitive &PRIM;

Local Compound &COM, &COM ID, &COM BILL, &COM SHIP, &COM ITEM;
Local Collection &COL ITEM;

&MSG CreateMessage (Operation.PURCHASE ORDER) ;
&DOC &MSG.GetDocument () ;
&COM = &DOC.DocumentElement;

&COM.GetPropertyByName ("LanguageCode") .Value = "ENG";

/* Populate TransactionID Compound */

&COM_ID = &COM.GetPropertyByName ("TransactionId");
&COM2 .GetPropertyByIndex (1) .value = "KAC";

&COM2 .GetPropertyByIndex (1) .value = "12345678";

/* Populate BillTo Compound */

&COM BILL = &COM.GetPropertyByName ("BillTo") ;
&COM5.GetPropertyByName ("name") .Value = "RobbyNash";
&COM5.GetPropertyByName ("number") .Value = 713;
&COM5.GetPropertyByName ("street") .Value = "High Wind";
&COM5.GetPropertyByName ("unit") .Value = "";
&COM5.GetPropertyByName ("city") .Value = "Paia";
&COM5.GetPropertyByName ("state") .Value = "Maui HI";
&COM5 .GetPropertyByName ("zipcode") .Value = "96779";

/* Populate item collection Collection (2 rows) */
&COL_ITEM = &COM.GetPropertyByName ("item collection");

&COM ITEM = &COL ITEM.CreatelItem();
&PRIM = &COM_ITEM.GetPropertyByName ("item");

&PRIM.Value = "mast";
&PRIM = &COM ITEM.GetPropertyByName ("sku") ;
&PRIM.Value = "123322";

&PRIM = &COM_ITEM.GetPropertyByName ("price");
&§PRIM.Value = 300;

&PRIM = &COM _ITEM.GetPropertyByName ("quantity");
&PRIM.Value = 12;

&nRet = &COL ITEM.AppendItem(&COM ITEM) ;

&COM ITEM = &COL_ITEM.CreatelItem();
&COM5.GetPropertyByName ("item") .Value = "boom";
&COM5.GetPropertyByName ("sku") .Value = "123334";
&COM5.GetPropertyByName ("price") .Value = 270;
&COM5.GetPropertyByName ("quantity") .Value = 10;
&nRet = &COL ITEM.AppendItem(&COM ITEM) ;

$IntBroker.Publish (&MSG) ;

Retrieving Document Data from Message Segments

The following code example shows an example of retrieving document data from message segments. As
discussed elsewhere in this section, the example shows setting the following statement to NULL :

&DOC = Null;

Setting the statement to NULL clears memory between segment loops:

import PS PT:Integration:INotificationHandler;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

class DOCUMENT TESTER implements PS PT:Integration:INotificationHandler
method FLIGHTDATA() ;
method OnNotify (&MSG As Message) ;

end-class;

/* constructor */
method FLIGHTDATA
end-method;
method OnNotify
/+ &MSG as Message +/
/+ Extends/implements PS_ PT:Integration:INotificationHandler.OnNotify +/
/* Variable Declaration */
Local Rowset &rs;
Local Document &DOC;
Local Record &FLIGHTDATA, &REC;
Local integer &i;
/* get each segment of data via a Document and proces it */
For &1 = 1 To &MSG.SegmentCount
/* null out object to release memory */
&DOC = Null;
&MSG.GetSegment (&1) ;

/* pass true to GetDocument method to take ownership of object */&DOC = &MSG.=
GetDocument (True) ;

/* process Document data for each segment */

End-For;

end-method;

Retrieving Document Data within a Notification Event Using Message Segments

The following code example demonstrates how to retrieve document data within an Notification event
using message segments.

As discussed elsewhere in this section, the example shows setting the following statement to NULL :
&DOC = Null;
Setting the statement to NULL clears memory between segment loops:
For &1 = 1 To &MSG.SegmentCount
&DOC = Null;
&MSG.GetSegment (&1) ;
&DOC = &MSG.GetDocument () ;

&COM

&DOC.DocumentElement;

&str &COM.GetPropertyByName ("LanguageCode") .Value;

&COM ID = &COM.GetPropertyByName ("TransactionId") ;
&str = &COM ID.GetPropertyByIndex(2) .Value;

&COM BILL = &COM.GetPropertyByName ("BillTo") .Value;
&str = &COM BILL.GetPropertyByName ("name") .Value;

&COL_ITEM = &COM.GetPropertyByName ("item collecion");
For &j = 1 To &COL_ITEM.count

&COM_ITEM = &COL ITEM.GetItem(&J);

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 209

Sending and Receiving Messages Chapter 7

&str = &COM_ITEM.GetPropertyByName ("item") .Value;

End-For;
End-For;

Sending and Receiving Binary Data

This section discusses how to:
* Send binary data.

» Receive binary data.

Understanding Sending and Receiving Binary Data

PeopleSoft supports the MTOM protocol for sending and receiving binary data using service operations.
While you can send and receive binary data using SOAP, doing so requires that you Base64-encode the

data, which can increase message size by 33 percent or more. The MTOM protocol enables you to send

and receive binary data in its original binary form, without any increase in size due to encoding.

Whether sending or receiving MTOM-encoded binary data, you use message segments to store the data.
The SegmentContentType property of the Message object is used to set or read the content type of each
message segment.

Sending MTOM-Encoded Binary Data
This section discusses how to send MTOM-encoded binary data and discusses how to:
» Set target connector properties to send MTOM-encoded binary data.

* Develop messages to send MTOM-encoded binary data.

Setting Target Connector Properties to Send MTOM-Encoded Binary Data

When sending MTOM-encoded binary data, you must use the HTTP target connector. The HTTP target
connector features an MTOM property that you must set to ¥ for MTOM encoding to occur. When you
set the MTOM property to Y, the HTTP target connector attempts to convert all outgoing message to the
MTOM wire format.

See "Using the HTTP Target Connector" (PeopleTools 8.53: PeopleSoft Integration Broker
Administration).

Developing Messages to Send MTOM-Encoded Binary Data

An outgoing MTOM message is composed of a SOAP message and one or more sets of binary data.
Segments are used to add the binary data to the outgoing request.

For each chunk of data, use a single segment as follows:
1. Create the segment.

2. Copy the data to the segment.

210 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

3. Add the MIME type that is to appear for the MIME part containing the binary in the outgoing MTOM
wire message.

4. Set the content transfer encoding to binary.

In PeopleCode this appears as:

&theMessage.CreateNextSegment () ;

If (&theMessage.SetContentString(&dataString)) Then

&theMessage.SegmentContentType = "image/jpeg";
&theMessage.SegmentContentTransfer = $ContentTransfer Binary;
End-If;

The SetContentString method requires character data, and is not capable of passing binary data.

For MTOM, pass in a Base64—encoded string that contains the binary data. The File object method
GetBase64StringFromBinary allows a binary file to be read in and captured as a string; use this string to
set the data for the newly created segment.

See "SetContentString" (PeopleTools 8.53: PeopleCode API Reference), "GetBase64StringFromBinary"
(PeopleTools 8.53: PeopleCode API Reference).

When seen on the wire, the SOAP XML in the MIME multipart message contains xop:Include references.
These references point to the MIME parts that contain the binary data. In order to be able to construct
these references, Integration Broker requires that a specific XML element, PsftXoplInclude, is present in
the outgoing message.

Each PsftXoplnclude element corresponds directly to an xop:include in the outgoing wire message, and
therefore each PsftXoplnclude element logically corresponds to an instance of binary data. Placement of
the PsftXopInclude element in the XML is application-specific; Integration Broker does not require any
particular location.

In the following example the first instance of the PsftXopInclude element corresponds to the logical point
to include an image and the second PsftXopInclude element corresponds to the logical point to include a
binary document:

<?xml version='1.0'"'?>
<JobApplication>
<Photo name='JohnSmith'>
<PsftXopInclude SegmentNumber='1l"'/>
</Photo>
<Resume name='JohnSmithCV'>
<PsftXopInclude SegmentNumber='2"'/>
</Resume>
</JobApplication>

The value of the SegmentNumber attribute is used by Integration Broker to link the PsftXopInclude entry
to a specific segment used to add the data. For the purposes of MTOM, the first segment used to add
binary data is considered to be number 1, the second segment, number 2, and so on. Care should be taken
when setting these values as Integration Broker does not check to ensure that they are correct; they are
used as-is to build the xop:include references in the wire message.

In the previous example, the message data is not SOAP-wrapped. You can choose to build your own
SOAP wrapper or elect to have Integration Broker SOAP-wrap the message. If Integration Broker is to
SOAP wrap the message, you must set the HTTP target connector property SOAPUpContent to Y.

See "Using the HTTP Target Connector" (PeopleTools 8.53: PeopleSoft Integration Broker
Administration).

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 211

Sending and Receiving Messages

212

An example of XML to use this feature is as follows:

<?xml version="1.0"?>
<flt:process xmlns:flt=" http://xmlns.oracle.com/Enterprise/
Tools/schemas/flightdata.v1">
<PsftXopInclude/>
<flt:inputl>515</flt:inputl>
<PsftXopInclude/>
<flt:input2>664</flt:input2>
</flt:process>

You would include the previous XML in the XmIDoc object and add it to the first segment of the

message.

The additional segments include the binary data associated with each declaration. For example:

&MSG = CreateMessage (Message.FLIGHTDATA) ;
&MSG.SetXmlDoc (&xmldoc) ;

&MSG.CreateNextSegment () ;

&MSG.SetContentString ("your encoded image data");
&MSG.SegmentContentType = "image/gif";
&MSG.SegmentContentTransfer = %ContentTransfer Binary;

&MSG.CreateNextSegment () ;

&MSG.SetContentString ("your encoded video here")
&MSG.SegmentContentType = "video/mp4";
&MSG.SegmentContentTransfer = $ContentTransfer Binary;

$IntBroker.Publish (&MSG) ;

The following code example provides another XML example that demonstrates using this feature:

Local File &theFile;

Local XmlDoc &theXmlDoc;

Local Message &theMessage;

Local string &theBase64encodedString;

/* note: this example does not have any error handling, in */
/* order to keep the code relatively short and concise. */

/* create the message, and add the basic XML message data */

/* __ */

&theMessage = CreateMessage (Operation.QE FLIGHTPLAN UNSTRUCT) ;

Local string &xml;

/* this example requires the SOAPUPContent HTTP Target */
/* connector property to be set to "Y", so that the */
/* outbound XML will be SOAP wrapped. */

&xml = &xml "<?xml version='1.0'?>";

|
&xml = &xml | "<JobApplication>";
&xml = &xml | "<Photo name='JohnSmith'>";
&xml = &xml | "<PsftXopInclude SegmentNumber='1l'/>";
&xml = &xml | "</Photo>";
&xml = &xml | "<Resume name='JohnSmithCV'>";
&xml = &xml | "<PsftXopInclude SegmentNumber='2'/>";
&xml = &xml | "</Resume>";
|

&xml = &xml "</JobApplication>";

&theXmlDoc = CreateXmlDoc (&xml) ;
&theMessage.SetXmlDoc (&theXmlDoc) ;

/* add an image to the outgoing message */

/* ____________________________________ */

Chapter 7

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

&theFile = GetFile ("D:\output\smallPicture.jpg", "R", $FilePath Absolute);
If &theFile.IsOpen Then
&theBase64encodedString = &theFile.GetBase64StringFromBinary () ;
&theFile.Close();
End-If;

&theMessage.CreateNextSegment () ;
If (&theMessage.SetContentString(&theBase6d4encodedString)) Then

&theMessage.SegmentContentType = "image/jpeg";
&theMessage.SegmentContentTransfer = $ContentTransfer Binary;
End-If;

/* add a PDF file to the outgoing message */
2 —— * /

&theFile = GetFile ("D:\output\smallDocument.pdf", "R", $FilePath Absolute);
If &theFile.IsOpen Then
&theBase64encodedString = &theFile.GetBase64StringFromBinary () ;
&theFile.Close();
End-If;

&theMessage.CreateNextSegment () ;
If (&theMessage.SetContentString(&theBase6d4encodedString)) Then

&theMessage.SegmentContentType = "application/pdf";
&theMessage.SegmentContentTransfer = $ContentTransfer Binary;
End-If;

/* send the message */

/* ________________ */

%$IntBroker.Publish (&theMessage) ;

Related Links

Working With Message Segments
"SetContentString" (PeopleTools 8.53: PeopleCode API Reference)

"SegmentContentType" (PeopleTools 8.53: PeopleCode API Reference)

Receiving Binary Data
This section discusses receiving MTOM-encoded binary data requests and discusses how to:
* Enable listening connectors to receive MTOM-enoded binary data.

» Use PeopleCode to process inbound MTOM-encoded binary data.

Understanding Receiving MTOM-Encoded Binary Data

To receive MTOM-encoded binary data from integration partners, you must use the PeopleSoft services
listening connector or the HTTP listening connector.

When a message is received by an MTOM-enabled connector, the gateway first determines if the message
is using MTOM. If it is not, the message is processed normally. If MTOM is detected, the gateway
extracts the SOAP message from the MIME and then encodes the binary data in the MIME parts. This is
effectively a pre-processing step and is done first, before normal processing can occur. Once complete, the
SOAP message is then treated no differently from any other SOAP message received. The binary data is
Base64 encoded, and is attached to the message in the form of segments.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 213

Sending and Receiving Messages Chapter 7

214

Enabling Listening Connectors to Receive MTOM-Encoded Binary Data

The following listening connectors can receive and process MTOM-encoded messages:
* PeopleSoft services listening connector.
e HTTP listening connector.

You must enable these connectors for receiving and processing MTOM messages for any MTOM
processing to occur. You enable these properties in the integration gateway properties file. The properties
appear the MTOM Enable ListeningConnectors section as shown in the following example:

MTOM Enable ListeningConnectors

#
#1g.MTOM.enablePeopleSoftServiceListeningConnector=true
#1g.MTOM.enableHttpListeningConnector=true

By default the properties are not enabled and are commented out.

To enable a given connector, remove the comment (#) and ensure that the property is set to frue.

Note: When these properties are enabled there is a slight performance degradation to all non-MTOM
requests sent to the connectors. The degradation is a result of system process that takes place to determine
if requests are MTOM-encoded messages.

Using PeopleCode to Process Inbound MTOM-Encoded Binary Data

MTOM messages are processed in the form of message segments. The system processes inbound MTOM
requests in two general steps:

* Process the XML data contained in the first segment.
» For each subsequent segment, process the binary data.

The first segment contains the XML data. The xop:include references in the XML are replaced with
PsftXoplnclude elements, and each instance will point to the segment containing the associated binary
data.

The structure of this XML is application-specific, and therefore processing of this XML cannot be easily
generalized. You may be able to use the location of the PsftXopInclude elements in the XML to derive
information about the binary data segments.

Consider the following inbound MTOM request example:

<?xml version='1.0'?>
<JobApplication>
<Photo name='JohnSmith'>
<PsftXopInclude SegmentNumber='2"'/>
</Photo>
<Resume name='JohnSmithCV'>
<PsftXopInclude SegmentNumber='3'/>
</Resume>
</JobApplication>

In this example, the XML has been structured such that the parent element contains a name value for the
associated binary content. A more complete XML might also contain information such as file type, size,
or creation date. Again, the structure of this XML is not necessarily determined by Integration Broker, but
rather by the design of the application itself.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

All segments after the first contain the Base64—encoded binary data. This data is accessible as a string.
Processing of this is also application-specific. Some applications may decide to store the encoded string
for later use, while others may wish to decode it immediately.

To process the string immediately, use the PeopleCode File object method WriteBase64StringToBinary to
decode the string and to write it out as a byte array to a file. Once the method has completed and the file
closed, the file can be accessed as any other file on the file system.

See "WriteBase64StringToBinary" (PeopleTools 8.53: PeopleCode API Reference).

The following code example shows how to use PeopleCode to process and inbound MTOM request:

import PS PT:Integration:INotificationHandler;

class MTOM CLASS implements PS PT:Integration:INotificationHandler
method MTOM CLASS () ;
method OnNotify (&MSG As Message) ;
method getFileExtensionForContentType (&contentType As string)
Returns string;

end-class;

/* constructor */
method MTOM CLASS
end-method;

method getFileExtensionForContentType
/+ &contentType as String +/
/+ Returns String +/

Evaluate &contentType

When = "image/Jjpeg"
Return "jpg"
When = "application/pdf"

Return "pdf"
When-Other

Return "unk"
End-Evaluate;

end-method;
method OnNotify

/+ &MSG as Message +/
/+ Extends/implements PS_ PT:Integration:INotificationHandler.OnNotify +/

/* note: this example does not have any error handling, in */
/* order to keep the code relatively short and concise. */

/* Variable Declaration */

Local integer &i, &3;

Local string &contentSectionData, &contentSectionType;
Local File &theFile;

Local XmlDoc &theXml;

/* the first section will be XML */
JH */

&MSG.GetSegment (1) ;
&contentSectionData = &MSG.GetContentString(l);

&theXml = CreateXmlDoc (&contentSectionData) ;
Local array of XmlNode &nodelist;

/* get all PsftXopInclude nodes, ignore namespaces */

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 215

Sending and Receiving Messages Chapter 7

&nodelist = &theXml.DocumentElement.FindNodes ("//*[local-name ()=
'PsftXopInclude']™);

/* all subsequent sections will be binary data */

2 * /
For &1 = 2 To &MSG.SegmentCount

&MSG.GetSegment (&1) ;
&contentSectionData = &MSG.GetContentString(&i);

/* get the type information directly from the segment */
/* we'll use this to determine the file extension */
&contentSectionType = &MSG.SegmentContentType;

Local string &theFileName = "D:\output\";

For &j = 1 To &nodelList.Len
If (&nodelist [&]].GetAttributeValue ("SegmentNumber") =
String(&i)) Then

rem we've found the entry that matches this content section;
rem use the 'name' attribute from the parent XML element to

rem get the file name

rem NOTE - this assumes a particular XML format that may not
rem be the same for most applications;

&theFileName = &theFileName | &nodelList [&]].ParentNode.
GetAttributeValue ("name") ;

End-If;
End-For;

rem build the complete filename, including the extension;
&theFileName = &theFileName | "." | %$This.getFileExtensionForContentType
(&contentSectionType) ;

&theFile = GetFile (&theFileName, "W", %FilePath Absolute);
If &theFile.IsOpen Then
&theFile.WriteBase64StringToBinary (&contentSectionData) ;
&theFile.Close();
End-If;

End-For;

end-method;

Related Links
"Using the integrationGateway.properties File" (PeopleTools 8.53: PeopleSoft Integration Broker
Administration)

Working With Message Segments
"WriteBase64StringToBinary" (PeopleTools 8.53: PeopleCode API Reference)

Using PeopleCode to Manage REST Service Operations

This section discusses how to:
* Use PeopleCode to manage provider REST service operations.

* Use PeopleCode to manage consumer REST service operations.

216 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

* Generate fully-qualified URLs for REST resources.

Using PeopleCode to Manage Provider REST Service Operations

This section discusses how to:

* Read document template data and populate response messages.
* Set HTTP response headers.

* Retrieve HTTP response header data.

* Set server-side caching.

Reading Document Template Data and Populating Response Messages

To read document template data and populate provider response messages, use the OnRequest method.
You implement the OnRequest method using an application class, specifically using the IRequestHandler
application interface.

When the OnRequest event is fired the document template is populated with the values based on the
corresponding URI template. You can use the populated primitive values along with the URI Template
index to determine the proper response message data to send back to the client. The code snippet below
shows a simple example of reading the document template data and populating the response message.
Note that one can override the HTTP return code that is sent as part of the response to the client.

import PS PT:Integration:IRequestHandler;

class WeatherData implements PS PT:Integration:IRequestHandler
method WeatherData();
method OnRequest (&MSG As Message) Returns Message;
method OnError (&request As Message) Returns string;
end-class;

/* constructor */
method WeatherData
end-method;

method OnRequest
/+ &MSG as Message +/
/+ Returns Message +/
/+ Extends/implements PS PT:Integration:IRequestHandler.OnRequest +/
/* Variable Declaration */

Local Document &Doc;

Local Compound &COM;

Local Message &response;

Local XmlDoc &weather xmldoc;

Local XmlNode &info, &country, &state, &city, &day, &data, &flightdata;
Local Rowset &RS;

/* get populated Document Template */
&Doc = &MSG.GetURIDocument () ;
&COM = &Doc.DocumentElement;

&weather xmldoc = CreateXmlDoc ("");

/* populate xmldoc with data from the Document Template */
&info = &weather_xmldoc.CreateDocumentElement("WeatherInformation");
&country = &info.AddElement ("Country");
&country.NodeValue = &COM.GetPropertyByName ("country") .Value;
&state = &info.AddElement ("State");
&state.NodeValue = &COM.GetPropertyByName ("state") .Value;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 217

Sending and Receiving Messages Chapter 7

218

&city = &info.AddElement ("City");

&city.NodeValue = &COM.GetPropertyByName ("city") .Value;
&day = &info.AddElement ("Day") ;

&day.NodeValue = &COM.GetPropertyByName ("day") .Value;

/* determine HTTP method that was invoked to determine proper response
/* message */
If &MSG.HTTPMethod = %IntBroker HTTP GET Then

&data = &info.AddElement ("Forecast");

&data.NodeValue = "55 degrees and raining";

&response = CreateMessage (Operation.WEATHERSTATION GET,
$IntBroker Response);

&response.SetXmlDoc (&weather xmldoc) ;

End-If;
If &MSG.HTTPMethod = %$IntBroker HTTP DELETE Then

&data = &info.AddElement ("Forecast") ;

&data.NodeValue = "deleted";

&response = CreateMessage (Operation.WEATHERSTATION DELETE,
$IntBroker Response);

&response.SetXmlDoc (&weather xmldoc) ;

End-If;

Return &response;
end-method;

method OnError
/+ &request as Message +/
/+ Returns String +/
/+ Extends/implements PS PT:Integration:IRequestHandler.OnError +/
Local Message &Fault Msg;
Local Document &fault doc;
Local Compound &COM;

If &request.HTTPMethod = %IntBroker HTTP GET Then
&Fault Msg = CreateMessage (Operation.WEATHERSTATION GET,
%IntBroker Fault);
&fault doc = &Fault Msg.GetDocument () ;
&COM = &fault doc.DocumentElement;
&COM.GetPropertyByName ("fault data") .Value = &request.IBException.
ToString () ;

Return &fault doc.GenXmlString();
End-If;

Return "";

end-method;

Setting HTTP Reponse Headers

Use the LoadRESTHeaders method of the IBInfo class to load the response headers defined on the
routing for a REST-based service operation. Once loaded, the headers can be modified without specifying
the connector override property.

The code snippet below shows how to add HTTP response headers to the any REST based service
operation response within the OnRequest event.

&response = CreateMessage (Operation.WEATHERSTATION GET, $%IntBroker Response);

&bRet = &response.IBInfo.LoadRESTHeaders () ;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

/* any/ modify additional Headers not defined on Routing */
&bRet = &response.IBInfo.IBConnectorInfo.AddConnectorProperties
("Content-Language ", "eng ", %HttpHeader);

Return &response;

Retrieving Response HTTP Header Data

You can use the REST method type Head to retrieve meta-information written in response HTTP headers,
without having to transport the entire content.

The REST-based service operation created with a method of HEAD does not have a request or response
message.

You can assign the OnRequest handler used for the GET method to the service operation to check if the
method type is HEAD and, if so, simply send back the HTTP response headers.

The following code snippet shows how to use the OnRequest method to retrieve HTTP response headers

Note: HTTP response headers can be sent back to the client for all REST method types.

If &MSG.HTTPMethod = %IntBroker HTTP HEAD Then

&response = CreateMessage (Operation.WEATHERSTATION HEAD,
%IntBroker Response);

&bRet = &response.IBInfo.LoadRESTHeaders () ;
/* any additional Headers not defined on Routing */
&bRet = &response.IBInfo.IBConnectorInfo.AddConnectorProperties

("Content-Language ","eng ", SHttpHeader):;

&bRet = &response.IBInfo.IBConnectorInfo.AddConnectorProperties
("WWW-Authenticate", "Basic", $HttpHeader) ;

Return &response;
End-If;

Setting Server-Side Caching

For provider REST GET service operations you can set server-side caching by setting the SetRESTCache
method on the Message object in the OnRequest PeopleCode event. The SetRESTCache method takes a
future Date Time object.

If you set server-side caching the system caches the entire transactional data for the specific URI resource.
Subsequent requests from a client with an identical resource will result in the data being pulled from
memory/file cache.

At any time you can delete the cache by calling the DeleteRESTCache method on the IntBroker
PeopleCode object. The DeleteRESTCache method takes the service operation and service operation
version as input variables.

Using PeopleCode to Manage Consumer REST Service Operations
This section discusses how to:

* Invoke a consumer REST service operation.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 219

Sending and Receiving Messages Chapter 7

¢ Add REST HTTP connector headers.

Invoking a Consumer REST Service Operations

To invoke a consumer REST service operation, the message is instantiated and then the document
template is retrieved and populated. The URI index is selected and a SyncRequest method is invoked.
The response message contains the HTTP return code. Processing of the data is the same as any other
SyncRequest method. In the case of an error, if the User Exception option is selected on the routing, you
can attempt to read the fault if defined on the service operation. If the HTTP response code is the same as
that defined on the fault message, then the fault message is created and returned. You can read the fault in
the document, if the fault message is a Document message type. The message property IsFault is read to
determine if a fault message was created.

The code example shows a simple example of populating the document template data and entering the
URI resource index to use and invoking the SyncRequest method.

The GetURIDocument method of the Message class is used to retrieve the URI for the REST based on
the specified index. The URIResourcelndex property of the Message class is used to set or return the
index for the URI as an integer. This index corresponds to the row number in the URI grid of the REST
Resource Definition section of the service operation definition.

Declare Function out BI results PeopleCode QE FLIGHTDATA.QE ACNUMBER
FieldFormula;

&MSG = CreateMessage(Operation.MAPS_GET);

/* Get URI Document and populate with data */
&DOC = &MSG.GetURIDocument () ;

&COM = &DOC.DocumentElement;

&COM.GetPropertyByName ("MapType") .Value = "topographic";
&COM.GetPropertyByName ("Scale") .Value = "1:63";
&COM.GetPropertyByName ("Planet") .Value = "Earth";
&COM.GetPropertyByName ("Country") .Value = "USA";
&COM.GetPropertyByName ("City") .Value = "WhiteSalmon";
&COM.GetPropertyByName ("Name") .Value = "MainSteet";

/* Set URI Resource Index to be used */
&MSG.URIResourceIndex = 1;

&return message = %IntBroker.SyncRequest (&MSG) ;
/* Get return data and display */

If &return message.ResponseStatus = %IB Status_ Success Then

&xmldocReturn = &return mesage.GetXmlDoc () ;
out_BI_results(&xmldocReturn.GenXmlString());

/* Read Response Headers if set */
For &1 = 1 To &MSG.IBInfo.IBConnectorInfo.GetNumberOfConnectorProperties ()

If &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesType (&i) =

$HttpHeader
Then
&name = &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesName (&1) ;
&value = &MSG.IBInfo.IBConnectorInfo.GetConnectorPropertiesValue (&1);
End-If;
End-For;

Else

220 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 7 Sending and Receiving Messages

If &return message.IsFault = True Then

&Fault Doc = &return message.GetDocument () ;

&COM = &Fault Doc.DocumentElement;

out BI results (&COM.GetPropertyByName ("fault data") .Value);
Else

out BI results(&return message.IBException.ToString());
End-If;

End-If;

Adding REST HTTP Connector Headers

Use the LoadRESTHeader method of the Message class to add HTTP header properties not defined on the
routing for the service operation.

The code snippet below shows how to modify HTTP headers using PeopleCode

Note: The connector override flag in PeopleCode does not need to be set in this case.

No HTTP properties are currently applicable for REST and will be removed by the Integration Broker
framework.

&request = CreateMessage (Operation.MAPS GET) ;
&bRet = &request.LoadRESTHeaders () ;
/* add any additional Headers not defined on Routing */

&bRet = &request.IBInfo.IBConnectorInfo.AddConnectorProperties
("Content-Language ", "eng ", %HttpHeader);

Generating Fully-Qualified URLs for REST Resources

In most REST-based services, representations are hypermedia documents that contain not just data, but
links to other resources.

Use the GetUrl method contained in the %IntBroker class to generate fully-qualified URLs for REST
service operation resources. You can use the URLs with defined HTML definitions to dynamically add
REST-based web service URL links.

Note: A provider or a consumer REST based service operation representation can be used to generate the
fully-qualified link(s).

The syntax of the GetUrl method is:

string &str = %IntBroker.GetURL(string <Service Operation>, integer
<Resource Index of Service Operation>, document <Document object

defined for document Template> , <optional> bool <secure/ unsecure

REST tgt location>, <optional> bool <add encoding for unsafe characters >

The following example shows within an implementation (OnRequest event) of a REST-based provider
service, HTML is generated using links defined from other REST-based service operations.

method OnRequest

Local Document &Doc Tmpl, &DOC;

Local Compound &COM Tmpl, &COM;

Local Message &response;

Local string &STR, &STR1, &STR2, &STR3, &STR4, &strHTML;
Local boolean &bRet;

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 221

Sending and Receiving Messages Chapter 7

&response = CreateMessage (Operation.WEATHERSTATION GET, %IntBroker Response);
/* read URI Document to get parms out from the request*/

&Doc_Tmpl = &MSG.GetURIDocument () ;

&COM Tmpl = &Doc Tmpl.DocumentElement;

/* Instantiate a Document object based on the REST based Service */
/* Operations Document Template for which to create a link. */

&DOC = CreateDocument ("Weather", "WeatherTemplate", "v1");
&COM = &DOC.DocumentElement;

/* based off the data from the request populate the Document object */
If &COM Tmpl.GetPropertyByName ("state") .Value = "Washington" Then
&COM.GetPropertyByName ("state") .Value = "Washington";
/* call new method to create fully qualified URL(s) */

&COM.GetPropertyByName ("city") .Value = "WhiteSalmon";
&STR = %IntBroker.GetURL ("WEATHERSTATION GET", 2, &DOC);

&COM.GetPropertyByName ("city") .Value = "Troutlake";
&STR1 = %IntBroker.GetURL ("WEATHERSTATION GET", 2, &DOC);

&COM.GetPropertyByName ("city") .Value = "Yakima";
&STR2 = %IntBroker.GetURL ("WEATHERSTATION GET", 2, &DOC);

&COM.GetPropertyByName ("city") .Value = "Lyle";
&STR3 = $IntBroker.GetURL ("WEATHERSTATION GET", 2, &DOC);

/* use these URLs as bind variables for the HTML definition */
&strHTML = GetHTMLTeXt(HTML.WEATHER_CITIES, &STR, &STR1, &STR2, &STR3);

/* set the data in the response message */
&bRet = &response.SetContentString (&strHTML) ;

End-If;

Return &response;
end-method;

222 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 8

Building Message Schemas

Understanding the Message Schema Builder

The message Schema Builder enables you to build, import, modify and delete XML message schemas.

Note: The terms message schema, XML message schema, and schema are used interchangeably in this
topic.

To test message schemas during development, use the Schema Tester utility.

Use the Service Operations - General page to enable runtime validation for a service operation, or use the
Service Schema Validation page to enable validation for several service operations at a time.

Related Links

"Understanding the Schema Tester Utility" (PeopleTools 8.53: Integration Broker Testing Utilities and
Tools)

Understanding Message Schema Validation

Enabling Runtime Message Schema Validation

Message Schemas

An XML message schema describes a model for the arrangement of tags and text in a valid XML
document. A schema provides a common vocabulary for a particular application that exchanges
documents.

Building, Importing, Modifying and Deleting Message Schemas

You can use the Message Schema Builder to manage message schemas for rowset-based messages in the
application database.

Note: You can also use the pages of the Message Builder component to manage rowset-based and
nonrowset-based schemas. However, the Message Builder enables you to work with only one message
schema at a time, whereas , the Message Schema Builder enables you to perform actions, such as building
and deleting message schemas, on multiple messages at a time.

Note: You cannot use the Message Schema Builder to build schemas for message parts or container
messages. You must use the Message Builder component to build schemas for these message types.

Rowset-Based Message Schemas

Use the Message Schema Builder to generate, regenerate, view or delete rowset-based message schemas.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 223

Building Message Schemas Chapter 8

You cannot regenerate or delete a rowset-based message schema that is a message part. Part and container
schemas are automatically generated at save time so there's no need to explicitly regenerate or delete
them.

Nonrowset-Based Message Schemas

Use the Message Schema Builder to import new nonrowset-based schemas into the database, modify
existing nonrowset-based message schemas, or delete them.

Schemas for nonrowset-based message parts can be deleted or modified, but message parts should never
be without a schema. After deleting a nonrowset-based message part, you should always import or enter a
new schema for the message.

Selecting and Viewing Data in the Message Schema Builder

This section discusses how to:
* Select data in the Message Schema Builder.
* View message schema data details.

* View XML message schema code.

Selecting Data in the Message Schema Builder

When you access the Message Schema Builder component (IB. SCHEMABUILD) the Schema Builder
page (IB_SCHEMABUILD) displays a search engine to use to search for messages and message schema
data with which to work and view.

224 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 8

Building Message Schemas

To access the Schema Builder page, select PeopleTools, Integration Broker, Service Utilities, Message

Schema Builder.

Image: Schema Builder page

This example illustrates the fields and controls on the Schema Builder page. You can find definitions for

the fields and controls later on this page.

Message Schema Builder

Message Criteria

Message Hame: |

owneriD: |

) Schema Exists) Rowset-based
) Mo Schema) Nonrowset-based
(® Both (%) Both
Search
¥ Select Al Clear All Build Selected Schemas | Delete Selected Schemas

The Schema Builder page provides the following options for searching for data with which to work and

view in the application database.

Message Name

Owner ID

Schema

Structure

(Optional.) Click the Lookup button to locate a message
definition with which to work.

If you do not select a message name, the search will be based on
all message definitions in the application database.

(Optional.) From the Owner ID drop-down list, select the owner
ID for the message definition.

The owner ID helps to determine the application team that last
made a change to a message definition. The values in the drop-
down list box are translate table values that you can define in
the OBJECTOWNERID field record.

Select from the following options in the Schema group box:

* Schema Exists. Select this option to search message versions
for which schemas have been built.

* No Schema. Select this option to search message versions
for which no schemas have been built.

* Both. (Default.) Select this option to search all message
versions.

Select from the following options in the Structure group box:

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 225

Building Message Schemas Chapter 8

* Rowset-based. Select this option to search for rowset-based
message versions.

* Nonrowset-based. Select this option to search for
nonrowset-based message versions.

* Both. (Default.) Select this option to search for rowset-based
and nonrowset-based message versions.

Search Click the button to search the database based on the criteria
selected.

Viewing Message Schema Details

226

When you search for data in the Schema Builder, message detail results appear in the Message Schemas
grid.

Image: Message Schema Builder page

This example illustrates the Message Schema Builder page. The example shows search results appearing
in the Message Schemas grid at the bottom of the page.

Message Schema Builder

Message Criteria

Message Name: |QE_FLIGHTPLAN Q,

OwneriD: | v|

O schema Exists O Rowset-based
) Ho Schema O Honrowset based
® Both ® Both
Message Schemas Customize | Find | View Al | B0 | B8 First Bl 17 o7 I Last
Message Message Version | SOt |yists |Updatedon | Build Results
07/06/2009
[] QE FLIGHTPLAN VERSION_1 Yes Yes 0iaoaay
07/06/2009
[] QE FLIGHTPLAN ASYNCCOMBO VERSION_1 No No Jotes0amm
07/06/2009
[] QE FLIGHTPLAN SYNC VERSION_1 Yes No Joies0amm
07/06/2009
[] QE FLIGHTPLAN SYNCCOMBO VERSION_1 No No 3o anam
07/06/2009
[] QE FLIGHTPLAN TRANSFORM VERSION_1 Yes No it eoan
07/06/2009
[] QE FLIGHTPLAN UNSTRUCT VERSION_1 No No it aoan
07/06/2009
[] QE FLIGHTPLAN UNSTRUCT SYNC VERSION_1 No No it eoam
SelectAll [0 Clearal Build Selected Schemas | Delete Selected Schemas |
Message Message name returned from the search of the application
database.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 8

Message Version

Rowset-based

Exists

Updated On

Build Results
Build Selected Schemas

Delete Selected Schemas

Building Message Schemas

Version of the message returned from the search of the
application database.

Indicates the structure of the message. The valid values are:
* Yes. Indicates that the message is a rowset-based message.

e No. Indicates that the message is a nonrowset-based
message.

Indicates whether a schema has been built for the message. The
valid values are:

* Yes. A schema has been built for the message.
* No. A schema has not been built for the message.

Timestamp of the last update of the record. A new timestamp
displays when a schema is generated or deleted for a message.

Displays the results of actions performed on a schema.
Click the button to build schemas for the selected messages.

Click the button to delete schemas that exist for the selected
messages.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 227

Building Message Schemas

Viewing XML Message Schema

the schema details in the Schema Viewer page (IB_ SCHEMABUILD_ SEC).

Image: Schema details for version 1 of the QE_FLIGHTPLAN message definition

Chapter 8

If a message schema exists for a message, click the message name in the Message Schema grid to view

This example illustrates the Schema Viewer page. The example shows schema details for version I of the

QE FLIGHTPLAN message definition

Message: QE_FLIGHTPLAN . VERSION_1

Schema:

=%ml version="1.0"%=
=x¥sd:schema xmins:xsd="http:/fwww. w3.org/2001MLSchema™
=x¥sd:element name="0E_FLIGHTPLAN" type="CE_FLIGHTPLAMN_Type3hape™/=
=¥sd.complexType name="QE_FLIGHTPLAMN_TypeShape™=
=xsd.sequence=
=¥sd:element name="FieldTypes" type="FieldTypes_TypeShape"/=
=¥sd:element name="MsgData” type="MsgData_TypeShape"f=
=hsd:sequence=
=fsd.complexType=
=¥sd.complexType name="FieldTypes_TypeShape™=
=xsd:all=
=¥sd:element name="0E_FLIGHTDATA"
type="FieldTypesQE_FLIGHTDATA_TypeShape=

£
Return

Note: For easier viewing, highlight the data with your cursor.

Message schemas for rowset-based messages are read-only. You can edit message schemas for nonrowset-
based messages.

Building Message Schemas for Rowset-Based Messages

This section discusses how to build message schemas for rowset-based messages.

Building a Message Schema for a Rowset-Based Message

To build a message schema for a rowset-based message:

1.

228

Access the Schema Builder page (PeopleTools, Integration Broker, Service Utilities, Message Schema

Builder).

Search the application database for the message or messages for which to build schemas.

See Selecting Data in the Message Schema Builder.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 8 Building Message Schemas

3. Select the check box next to the message or messages for which to build schemas.
4. Click the Build Selected Schemas button.

When the schema is built successfully, a timestamp appears in the Updated On field and the Build Results
field displays Successful Schema Insert.

Importing Message Schemas for Nonrowset-Based Messages

This section discusses how to import message schemas for nonrowset-based messages.

Importing a Message Schema for a Nonrowset-Based Message
To import schemas for nonrowset-based messages:

1. Access the Schema Builder page (PeopleTools, Integration Broker, Service Utilities, Message Schema
Builder).

2. Use the Message Schema Builder search engine to locate the message for which you want to import a
schema.

See Selecting Data in the Message Schema Builder.

3. In the Message Schema grid, click the message name link for the message for which you want to
import a schema.

4. Import the schema.
* Import a schema from a file.

You can import a schema from a file by using the Upload Schema from File button and selecting
the file to import. After you import the file, the contents displays in the Schema text box.

Note: If you receive the error, “Error retrieving the file from database,” verify that one of the
variables PS_FILEDIR or PS_SERVDIR is defined in the system variables on your machine.

See Understanding Setting PS _FILEDIR and PS_SERVDIR Environment Variables.

* Direct data entry.

You can also enter the schema directly in the Schema text box.

5. Click the Save button.
The Schema Builder page appears.

A timestamp appears in the Updated On field and the Build Results field displays Successful Schema
Insert.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 229

Building Message Schemas Chapter 8

Modifying Message Schemas

This section discusses how to modify message schemas.

Note: You can modify the content of message schemas built for nonrowset-based messages only.

To modify a schema, you can edit it directly in the Message Schema Builder, or you can export to make
changes.
Modifying a Message Schema
To modify a message schema:
1. Select PeopleTools, Integration Broker, Service Utilities, Message Schema Builder.
The Schema Builder search page appears.
2. Locate the message with which you want to work.

See Selecting Data in the Message Schema Builder.

3. Inthe Message Schema grid, click the message name link.

A new page displays with the message schema populated in a text box.
4. Modify the schema as needed.

* Modify the schema directly in the text box, or

* Modify the schema in the editor of your choice.

Use your cursor to highlight the contents of the text box and use the keyboard command CTRL
+ C to copy the contents of the text box. Paste the contents into your editor using the keyboard
command CTRL + V. Modify the content as needed. Import the content back into the Message
Schema Builder using the instructions described previously in this topic for importing message
schemas for nonrowset-based messages.

See Importing Message Schemas for Nonrowset-Based Messages.

5. Click the Save button.

The Schema Builder page displays and the Updated On field displays the date and time of the
modification, and the Build Results field displays the results of the new schema build.

Deleting Message Schemas

This section discusses how to delete message schemas.

230 Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved.

Chapter 8 Building Message Schemas

Understanding Deleting Message Schemas

You can delete message schemas using the Message Schema Builder page in the Message Schema Builder
component (IB_ SCHEMABUILD) or using the Message Schemas page in the Service Administration
component (IB_ HOME PAGE).

Note: The Message Schema Builder page provides more comprehensive capabilities for searching for
message schema.

You cannot delete a message schema when the message on which the schema is based is:
* Referenced in a service operation.

» Referenced as a message part in a container message.

* A rowset-based message part.

* A container message.

¢ Referenced in a provided WSDL document.

Using the Message Schema Builder Page to Delete Message Schemas

When deleting a schema using the Message Schema Builder page use only the Delete Selected Schemas
button. Do not attempt to delete message schemas by deleting content in the Schema text box in the
schema details view; if you save the changes, PeopleSoft Integration Broker will attempt to validate the
blank schema at runtime and the validation will fail.

You cannot delete message schemas when the service system status is set to Production.
The service system status that is set on the Service Configuration page.

See "Understanding Configuring PeopleSoft Integration Broker for Handling Services" (PeopleTools
8.53: PeopleSoft Integration Broker Administration).

To delete a message schema:

1. Access the Message Schema Builder page (PeopleTools, Integration Broker, Service Utilities,
Message Schema Builder).

The Schema Builder search page appears.
2. Locate the message with which you want to work.

See Selecting Data in the Message Schema Builder.

The Schema Builder page appears.

3. Inthe Message Schema section, select the check boxes next to the message names that contain
schemas you want to delete.

4. Click the Delete Selected Schemas button.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 231

Chapter 9

Managing Services

Understanding Managing Se

Services are used to logically group a set

rvices

of service operations.

For example, if you have a number of service operations that are related to customers, such as those
pertaining to customer information, adding customers, updating customers, deleting customers, and so on,
you can create a customer web service and then associate the related service operations with that service.

Warning! PeopleSoft delivers two services with PeopleSoft Integration Broker: IB. GENERIC and
IB_UTILITY. These services are used internally by the system. Do not delete or modify these services.

Before you can provide or consume services in a PeopleSoft system, you must configure the system for
handling services."Configuring the Integration System to Handle Services" (PeopleTools 8.53: PeopleSoft

Integration Broker Administration)

Common Elements Used to Manage Services

Comments

Description

Generate SOAP Template

Link Existing Operations

Object Owner ID

Operation Type

(Optional.) Enter comments about the service or service
definition.

Description of the service.

Click to open the Generate SOAP Template utility. The utility
enables you to generate SOAP documents for each service
operation in a service for testing purposes.

The link appears when working with a SOAP-based service and
only if WSDL has been generated for the service. Note that you
can use the Provide Web Service link on the Services page to
generate WSDL for the service.

Click to add service operations already defined in the system to
a service.

(Optional.) Indicates the owner of the service.

The owner ID helps to determine the application team that last
made a change to a service definition. The values in the drop-
down list box are translate table values that you can define in
the OBJECTOWNERID field record.

Specifies how the service is transmitted.

Copyright © 1988, 2014, Oracle and/or its affiliates. All rights reserved. 233

Managing Services

234

Provide Web Service

Schema Namespace

Service

Service Alias

Service Operation

Service Namespace andNamespace

Service System Status

Target Location

Chapter 9

On the Service page this field defines the operation type of the
service operation added.

Click to launch the Provide Web Services component and export
PeopleSoft services as WSDL documents.

Provides qualification for attributes and elements within an
XML schema document (XSD).

The default is http.://xmins.oracle.com/Enterprise/Tools/
schemas.

The namespace on the message definition defaults to the schema
namespace you set as the default on the Service Configuration

page.

Note: If you change the namespace, all future messages will
have the new namespace.

The name of the service.

(Optional.) Overrides the service name and will be the name of
the service when the WSDL is provided or exported. The alias
enables you to use mixed case in the name.

The name of the service operation to associate with the service.

On the Services page, use this field to add new service
operations for the current service.

The namespace field on the Service pages provides qualification
for attributes and elements within a WSDL document.

The value defined in the Service Namespace field in the Service
Configuration page is used as the default service namespace on
the Services page. The default value is Attp://xmin.oracle.com/
enterprise/tools/service.

The status that is selected restricts rename, delete, and other
administrative actions that users can perform on integration
metadata in the Services Administration component.

Values are:
* Production.
* Development.

See "Understanding Configuring PeopleSoft Integration
Broker for Handlin