

Oracle® Real-Time Decisions
Platform Developer's Guide

Release 3.2

E52404-02

June 2014

Explains how to develop adaptive solutions with Oracle
Real-Time Decisions (Oracle RTD). Includes a tutorial,
information about integrating with Oracle RTD, and details
about Inline Services.

Oracle Real-Time Decisions Platform Developer's Guide, Release 3.2

E52404-02

Copyright © 2009, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributors: Oracle Business Intelligence development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xvi
Conventions ... xvi

Part I Getting Started

1 About Oracle Real-Time Decisions

1.1 Terminology... 1-1
1.2 About Decision Studio ... 1-3
1.2.1 Inline Service Explorer View.. 1-4
1.2.2 Problems View ... 1-4
1.2.3 Test View... 1-4
1.2.4 Cheat Sheets View ... 1-4
1.2.5 Editor Area.. 1-5
1.2.6 Arranging Views and Resizing Editors .. 1-5
1.3 About Decision Center ... 1-5
1.4 About the Inline Service Lifecycle .. 1-6

2 Creating an Inline Service

2.1 About the Inline Service Tutorial ... 2-1
2.2 About Deployment and Decision Center Security... 2-3
2.3 About Naming and Descriptions.. 2-4
2.4 Accessing Data .. 2-4
2.4.1 Adding a Data Source ... 2-5
2.4.1.1 Creating the New Data Source ... 2-5
2.4.1.2 Importing the Outputs for a Data Source ... 2-5
2.4.2 Adding an Entity ... 2-6
2.4.2.1 Creating the New Entity.. 2-6
2.4.2.2 About Additional Entity Properties... 2-7
2.4.2.3 Adding an Entity Key .. 2-8
2.5 About the Session Entity.. 2-8
2.5.1 Adding an Attribute to the Session Entity ... 2-8
2.5.2 Creating a Session Key.. 2-8

iv

2.5.3 Mapping the Entity to the Data Source .. 2-9
2.6 Adding an Informant ... 2-9
2.6.1 Creating an Informant.. 2-10
2.6.2 Adding Testing Logic to the Informant... 2-10
2.7 Testing the Inline Service.. 2-11
2.8 Adding Functionality .. 2-12
2.8.1 Creating a Call Entity ... 2-13
2.8.2 Creating the Call Begin Informant ... 2-14
2.8.3 Creating the Service Complete Informant .. 2-15
2.8.4 Creating the Call End Informant .. 2-16
2.8.5 Testing the Informants ... 2-18
2.9 Analyze Call Reasons .. 2-19
2.9.1 About Using Choices for Analysis ... 2-19
2.9.2 Adding a Choice Group... 2-20
2.9.3 Adding an Analytical Model .. 2-21
2.9.4 Adding Logic for Selecting Choices... 2-22
2.9.5 Testing It All Together ... 2-24

3 Simulating Load for Inline Services

3.1 Performance Under Load .. 3-1
3.1.1 Creating the Load Generator Script .. 3-2
3.1.2 Viewing Analysis Results in Decision Center ... 3-6
3.1.3 Excluding the Attribute .. 3-7
3.2 Resetting the Model Learnings ... 3-7
3.2.1 Summary of the Inline Service... 3-8

4 Enhancing the Call Center Inline Service

4.1 About Using Choice Groups and Scoring to Cross Sell .. 4-1
4.2 Creating an Offer Inventory Using Choice Groups ... 4-2
4.3 Configuring Performance Goals ... 4-3
4.4 Scoring the Choices... 4-4
4.5 About Advisors ... 4-6
4.6 Creating the Decisions.. 4-6
4.7 Creating the Advisor .. 4-7
4.8 Viewing the Integration Map ... 4-10
4.9 Testing the Advisor ... 4-11

5 Closing the Feedback Loop

5.1 Using Events to Track Success .. 5-1
5.1.1 Defining Events in Choice Groups.. 5-2
5.1.2 Defining a Choice Event Model... 5-2
5.1.3 Additional Model Settings ... 5-3
5.1.3.1 Partitioning Attributes... 5-3
5.1.3.2 Excluded Attributes ... 5-4
5.1.3.3 Learn Location .. 5-4
5.1.4 Remembering the Extended Offer... 5-4

v

5.1.5 Creating the Feedback Informant.. 5-5
5.1.6 Testing the Feedback Informant .. 5-8
5.1.7 Updating the Load Generator Script .. 5-9
5.2 Using the Predictive Power of Models ... 5-12
5.2.1 Adding a Base Revenue Choice Attribute... 5-13
5.2.2 Adding a Second Performance Goal (Maximize Revenue) .. 5-13
5.2.3 Calculating Score Value for the Maximize Revenue Performance Goal 5-14
5.2.4 Updating the Select Offer Decision to Include the Second Performance Goal........ 5-15
5.2.5 Adding a Choice Attribute to View Likelihood of Acceptance 5-15
5.2.6 Checking the Likelihood Value .. 5-16
5.2.7 Introducing Offer Acceptance Bias for Selected Customers 5-20
5.2.8 Running the Load Generator Script ... 5-21
5.2.9 Studying the Results... 5-23

Part II Integration with Oracle RTD

6 About Integrating with Oracle RTD

6.1 Choosing the Best Means of Integration.. 6-1
6.1.1 About the Java Smart Client... 6-2
6.1.2 About the .NET Smart Client ... 6-3
6.1.3 About the JSP Smart Client .. 6-3
6.1.4 About Web Services... 6-3
6.2 About the CrossSell Inline Service ... 6-3
6.2.1 Using Decision Studio to Identify Object IDs.. 6-4
6.2.2 Determining the Response of an Advisor .. 6-4
6.2.3 Knowing How to Respond to the Server ... 6-5
6.2.4 Identifying Session Keys and Arguments.. 6-5

7 Using the Java Smart Client

7.1 Before you Begin ... 7-1
7.2 Integrating with an Inline Service Using the Java Smart Client .. 7-1
7.2.1 Preparing the Java Smart Client Example.. 7-2
7.2.2 Creating the Java Smart Client Properties File .. 7-3
7.2.3 Creating the Java Smart Client... 7-4
7.2.4 Creating the Request ... 7-6
7.2.5 Examining the Response... 7-6
7.2.6 Closing the Loop.. 7-7
7.2.7 Closing the Client .. 7-7

8 Using Java Smart Client JSP Tags

8.1 Before You Begin... 8-1
8.2 Integrating with an Inline Service Using Java Smart Client JSP Tags................................. 8-2
8.3 Deploying the JSP Smart Client Example.. 8-2
8.3.1 Deploying the JSP Smart Client Example to WebSphere... 8-2
8.3.2 Deploying the JSP Smart Client Example to WebLogic ... 8-4

vi

9 Using the .NET Smart Client

9.1 Before You Begin... 9-1
9.2 Integrating with an Inline Service Using the .NET Smart Client... 9-2
9.3 .NET Integration Example ... 9-2

10 Web Service Client Example

10.1 Before You Begin.. 10-1
10.2 Creating a New NetBeans Java Application Project ... 10-2
10.3 Installing the JAX-RPC Web Services Plug-in ... 10-2
10.4 Creating an Oracle RTD Web Service Client ... 10-2
10.5 Adding the Provided Java Code and Testing the Client.. 10-3

11 Using the Oracle RTD PHP Client

11.1 Before You Begin.. 11-1
11.2 Integrating with an Inline Service Using the Oracle RTD PHP Client............................. 11-2
11.3 Deploying the PHP Client Examples .. 11-2
11.3.1 Installing PHP Client Library and Example Files .. 11-2
11.3.2 Editing the NuSoap Path Library Location... 11-3
11.3.3 Preparing the Oracle RTD PHP Client .ini File .. 11-3
11.3.4 Creating the Oracle RTD PHP Client... 11-5
11.3.5 Creating the Request .. 11-5
11.3.6 Examining the Response.. 11-6
11.3.7 Closing the Loop... 11-6
11.3.8 Testing the PHP Client Example .. 11-7

Part III Decision Studio Reference

12 About Decision Studio

12.1 About Inline Services... 12-2
12.2 Decision Studio and Eclipse ... 12-2
12.2.1 Selecting the Decision Studio Workspace ... 12-2
12.2.2 Setting the Java Compiler Compliance Level ... 12-2
12.2.3 About the Inline Service Explorer .. 12-3
12.2.4 Code Generation ... 12-4
12.2.5 About Decision Studio Perspectives and Views .. 12-5
12.2.6 Arranging Views and Resizing Editors ... 12-6
12.2.7 About Element Logic.. 12-7
12.2.8 Overriding Generated Code.. 12-7
12.2.9 Performing Inline Service Searches.. 12-7
12.3 About Decision Studio Projects.. 12-8
12.3.1 Starting a New Project.. 12-8
12.3.2 Importing a Project ... 12-8
12.3.3 Creating a User-Defined Template .. 12-8
12.3.4 Downloading a Deployed Inline Service... 12-8
12.3.5 About Deployment States.. 12-9
12.3.6 Example Projects ... 12-9

vii

12.3.7 Opening Decision Studio Version 1.2 Files ... 12-11
12.4 Inline Service Directory Structure ... 12-12
12.5 Configuring Inline Services .. 12-12
12.5.1 Observer Inline Services .. 12-12
12.5.2 Advisor Inline Services .. 12-13

13 About Decision Studio Elements and APIs

13.1 The Oracle RTD Decisioning Process.. 13-1
13.2 About Element Display Labels and Object IDs ... 13-2
13.3 About the Application Element ... 13-3
13.3.1 Application Parameters ... 13-3
13.3.1.1 Using Debugging Options.. 13-3
13.3.1.2 Adding Application Parameters ... 13-3
13.3.2 Application APIs... 13-4
13.3.3 Configuring the Control Group.. 13-4
13.3.4 Setting Model Defaults... 13-5
13.3.5 Writing Application Logic... 13-6
13.3.5.1 Adding Imported Java Classes .. 13-6
13.3.6 Setting Inline Service Permissions.. 13-6
13.4 Accessing Data ... 13-7
13.4.1 About Data Sources .. 13-8
13.4.2 Creating SQL Data Sources ... 13-8
13.4.2.1 SQL Data Source Characteristics ... 13-8
13.4.2.2 Adding Columns to the Data Source.. 13-9
13.4.2.3 Importing Database Column Names.. 13-9
13.4.2.4 Setting the Input Column... 13-9
13.4.3 Creating Stored Procedure Data Sources .. 13-9
13.4.3.1 Stored Procedure Data Source Characteristics.. 13-9
13.4.3.2 Importing Stored Procedure Parameters ... 13-10
13.4.3.3 Adding Attributes to the Data Source .. 13-10
13.4.3.4 Adding Result Sets to the Data Source... 13-10
13.4.3.5 Examples of Setting Up Data Sources from Stored Procedures 13-11
13.4.4 Accessing Oracle's Siebel Analytics Data.. 13-11
13.5 Forming Entities ... 13-11
13.5.1 About the Session Entity.. 13-12
13.5.1.1 About Session Keys ... 13-12
13.5.2 Creating Entities.. 13-12
13.5.3 Adding Attributes and Keys to the Entity .. 13-13
13.5.4 Importing Attributes From a Data Source .. 13-13
13.5.5 Using Attributes for Analysis ... 13-14
13.5.6 Decision Center Display .. 13-14
13.5.7 Adding a Session Key .. 13-14
13.5.8 Adding Attributes to the Session ... 13-14
13.5.9 Mapping Attributes to Data Sources ... 13-14
13.5.10 One-to-Many Relationships .. 13-15
13.5.11 Adding Imported Java Classes ... 13-16
13.5.12 Session Logic ... 13-16

viii

13.5.13 Session APIs... 13-16
13.5.14 Entity APIs ... 13-16
13.5.15 About Entity Classes .. 13-17
13.5.16 Referencing Entities in Oracle RTD Logic... 13-17
13.5.17 Adding Entity Keys .. 13-17
13.5.18 Accessing Entity Attributes... 13-17
13.5.19 Resetting and Filling an Entity ... 13-18
13.5.20 About Cached Entities ... 13-18
13.5.21 Enhanced Entity Attribute Logging... 13-19
13.6 Performance Goals... 13-20
13.6.1 Adding a Performance Metric .. 13-20
13.6.2 Calculating a Normalization Factor ... 13-21
13.7 Choice Groups and Choices ... 13-22
13.7.1 About Choice Groups and Choices.. 13-23
13.7.2 About Choice Group and Choice Attributes .. 13-24
13.7.3 Choice Attribute Characteristics... 13-26
13.7.4 Using Choice Attributes for Learning ... 13-27
13.7.5 About Choice Scoring .. 13-27
13.7.6 About Eligibility Rules... 13-27
13.7.7 Evaluating Choice Group Rules and Choice Eligibility Rules 13-28
13.7.8 Determining Eligibility .. 13-28
13.7.9 Choice Group APIs... 13-28
13.7.10 Choice APIs ... 13-29
13.8 Filtering Rules... 13-29
13.9 Scoring Rules .. 13-30
13.10 Using Rule Editors ... 13-32
13.10.1 Oracle RTD Rule Terms and Statements ... 13-33
13.10.2 Adding Statements to Rules.. 13-37
13.10.3 Selecting an Operator ... 13-38
13.10.4 Editing Boolean Statements... 13-39
13.10.4.1 Using Type-Restricted Objects in Rules ... 13-39
13.10.5 Editing Rule Properties.. 13-39
13.10.6 Inverting Rule Elements .. 13-40
13.11 About Decisions ... 13-40
13.11.1 Segmenting Population and Weighting Goals ... 13-42
13.11.2 Using a Custom Selection Function ... 13-44
13.11.3 Pre/Post-Selection Logic ... 13-44
13.11.4 Selection Function APIs for Custom Goal Weights ... 13-44
13.11.5 Adding Imported Java Classes and Changing the Decision Center Display......... 13-44
13.12 About Selection Functions .. 13-44
13.12.1 Selection Function Scriptlets ... 13-45
13.12.2 Adding Imported Java Classes and Changing the Decision Center Display......... 13-46
13.13 About Models ... 13-46
13.13.1 Model Types .. 13-47
13.13.2 Model Common Parameters ... 13-48
13.13.3 Model Attributes... 13-49
13.13.4 Model APIs .. 13-51

ix

13.13.4.1 Querying the Model .. 13-51
13.13.4.2 Recording the Choice with the Model.. 13-52
13.13.4.3 Obtaining Model Object by String Name... 13-52
13.13.4.4 Recording Choice Events for Choice Event Models... 13-53
13.13.4.5 Recording Choices for Choice Models ... 13-54
13.13.4.6 Obtaining Model Choice Likelihood .. 13-55
13.14 About Integration Points .. 13-55
13.14.1 About Informants ... 13-56
13.14.1.1 Adding a Session Key ... 13-57
13.14.1.2 Identifying the External System and Order... 13-57
13.14.1.3 Adding Request Data.. 13-57
13.14.2 Adding Imported Java Classes and Changing the Decision Center Display......... 13-57
13.14.3 Informant APIs.. 13-57
13.14.4 Informant Logic... 13-58
13.14.4.1 Logic .. 13-58
13.14.4.2 Asynchronous Logic ... 13-58
13.14.4.3 Accessing Request Data From the Informant.. 13-58
13.14.5 About Advisors ... 13-58
13.14.6 About the Advisor Decisioning Process.. 13-59
13.14.7 Adding Imported Java Classes and Changing the Decision Center Display......... 13-59
13.14.8 Adding a Session Key .. 13-59
13.14.9 Identifying the External System and Order .. 13-59
13.14.10 Adding Request Data ... 13-60
13.14.11 Adding Response Data .. 13-60
13.14.12 Logic in Advisors.. 13-61
13.14.12.1 Logic .. 13-61
13.14.12.2 Asynchronous Logic ... 13-61
13.14.13 Accessing Request Data from the Advisor ... 13-61
13.15 About External Systems.. 13-61
13.16 About the Categories Object... 13-62
13.17 About Functions... 13-62
13.17.1 Functions to Use with Choice Event History Table... 13-63
13.17.2 About Maintenance Operations ... 13-63
13.17.3 Adding Imported Java Classes and Changing the Decision Center Display......... 13-64
13.18 About Type Restrictions ... 13-64
13.18.1 Managing Type Restrictions ... 13-65
13.18.1.1 Creating and Editing "List of Values" Type Restrictions................................... 13-65
13.18.1.2 Creating and Editing "List of Entities" Type Restrictions.................................. 13-65
13.18.1.3 Creating and Editing Other Restrictions.. 13-66
13.18.1.4 Associating Type Restrictions with Inline Service Objects................................ 13-66
13.18.1.5 Using Type Restrictions in Rules .. 13-67
13.18.1.6 Examples of Type Restrictions... 13-67
13.19 About Statistic Collectors.. 13-69
13.19.1 Creating a Custom Statistics Collector .. 13-70
13.20 About Decision Center Perspectives ... 13-70

x

14 Deploying, Testing, and Debugging Inline Services

14.1 Deploying Inline Services ... 14-1
14.2 Connecting to Real-Time Decision Server.. 14-3
14.3 Redeploying Inline Services ... 14-4
14.4 Testing and Debugging Inline Services .. 14-5
14.4.1 About the Problems View ... 14-5
14.4.2 Using the Test View.. 14-5
14.4.2.1 Using logInfo() ... 14-6
14.4.2.2 Testing for Incoming Request Data .. 14-6
14.4.3 Using System Logs for Testing and Debugging Inline Services 14-7

15 About the Load Generator

15.1 Using Load Generator for Testing... 15-1
15.2 Using Load Generator for Performance Characterization... 15-2
15.3 Running a Load Generator Session ... 15-2
15.3.1 Measuring the Server Load ... 15-2
15.4 Viewing Performance Graphs.. 15-2
15.5 About the General Tab .. 15-3
15.5.1 Load Generator Section.. 15-3
15.5.2 Details Section ... 15-3
15.5.3 Think Time Section... 15-4
15.5.4 Scripts Section ... 15-4
15.5.5 Logging Section... 15-4
15.6 About Variables.. 15-4
15.6.1 Using Variables ... 15-5
15.6.2 Variable Types... 15-5
15.7 About Actions... 15-5
15.7.1 Types of Actions ... 15-6
15.8 Load Generator CSV Log File Contents.. 15-6
15.9 XLS File Contents... 15-7

Part IV Miscellaneous Application Development

16 Oracle RTD Batch Framework

16.1 Batch Framework Architecture.. 16-2
16.1.1 Batch Framework Components .. 16-2
16.1.2 Use of Batch Framework in a Clustered Environment ... 16-4
16.2 Implementing Batch Jobs .. 16-4
16.2.1 Implementing the BatchJob Interface .. 16-5
16.2.2 Registering Batch Jobs with the Batch Framework.. 16-6
16.2.2.1 BatchAgent ... 16-6
16.2.2.2 Registering the Imported Java Classes in the Inline Service 16-6
16.2.2.3 Registering the Batch Jobs in the Inline Service .. 16-6
16.3 Administering Batch Jobs ... 16-7
16.3.1 Using the BatchClientAdmin Interface.. 16-7
16.3.2 Using the Batch Console .. 16-9

xi

16.3.2.1 Notes on Batch Console Commands .. 16-11
16.3.2.2 Running Jobs Sequentially ... 16-12
16.3.2.3 Running Jobs Concurrently.. 16-13

17 Externalized Objects Management

17.1 Dynamic Choices ... 17-2
17.1.1 Simple Example of Dynamic Choices .. 17-3
17.1.2 Basic Dynamic Choice Design Implications ... 17-4
17.1.3 Multiple Category Dynamic Choices from a Single Data Source.............................. 17-5
17.1.3.1 Different Dynamic Choice Categories in the Same Data Source 17-6
17.1.4 Prerequisite External Data Source for Dynamic Choices.. 17-6
17.1.5 Overview of Setting up Dynamic Choices in Decision Studio................................... 17-7
17.1.6 Creating the Dynamic Choice Data Source... 17-8
17.1.7 Creating the Single Dynamic Choice Entity ... 17-9
17.1.8 Creating the Dynamic Choice Set Entity ... 17-10
17.1.9 Creating the Dynamic Choice Data Retrieval Function.. 17-12
17.1.10 Considerations for Choice Group Design ... 17-14
17.1.11 Creating a Single Category Choice Group.. 17-15
17.1.11.1 Group Attributes Tab.. 17-16
17.1.11.2 Choice Attributes Tab ... 17-18
17.1.11.3 Dynamic Choices Tab ... 17-19
17.1.12 Creating a Multi-Category Choice Group... 17-21
17.1.12.1 Choice Attributes Tab in the Parent Choice Group.. 17-22
17.1.12.2 Group Attributes Tab in the Child Choice Groups .. 17-23
17.1.12.3 Dynamic Choices Tab in the Child Choice Groups.. 17-24
17.1.13 Dynamic Choice Reporting Overview... 17-24
17.1.13.1 Applications with Static Choices Only... 17-25
17.1.13.2 Dynamic Choice Visibility.. 17-25
17.1.13.3 System-Created Range Folders.. 17-27
17.1.13.4 Distribution of Choices Across Decision Center Folders................................... 17-27
17.1.13.5 Example of a Decision Center Report with Dynamic Choices.......................... 17-28
17.2 External Rules... 17-29
17.2.1 Introduction to External Rules ... 17-29
17.2.2 External Rule Editor ... 17-31
17.2.3 External Rule Framework.. 17-31
17.2.3.1 External Rule Evaluation Functions ... 17-31
17.2.3.2 External Rule Caching .. 17-33
17.2.3.3 External Rule APIs... 17-34
17.2.3.4 External Rule Error Handling and Logging .. 17-35
17.2.4 Setting Up External Rules in Decision Studio .. 17-35
17.2.4.1 Prerequisite - Setting Up Objects in an External Content Repository 17-36
17.2.4.2 Defining the Inline Service Objects for the Rules.. 17-36
17.2.4.3 Defining External Rules for Inline Service Objects... 17-36
17.2.5 Setting Up the External Interface and Embedded Rule Editor 17-37
17.2.5.1 Defining the Rule Editor Widget... 17-37
17.2.5.2 Changing the Rule Editor Context and Scope... 17-38
17.2.5.3 Defining the Callback Function .. 17-39

xii

17.3 Example of End to End Development Using Dynamic Choices and External Rules... 17-39
17.3.1 Database Driven Dynamic Choices.. 17-40
17.3.2 Evaluating External Rules ... 17-41
17.3.3 Embedding an External Rule Editor in a Third Party Interface............................... 17-41
17.3.4 DC_Demo External Rules Deployment Helper.. 17-44
17.3.5 Pushing External Rules To a Production Environment .. 17-45
17.3.6 Viewing Reports for Dynamic Choices ... 17-46
17.4 Externalized Performance Goal Weighting.. 17-46

18 Transactional Logging and Decision Analytics

18.1 High Level Architecture.. 18-1
18.1.1 Terminology .. 18-1
18.1.2 Logging .. 18-1
18.1.3 Transformation.. 18-2
18.1.4 Reporting ... 18-2
18.2 Specifications .. 18-2
18.2.1 SDDecisionLog.. 18-2
18.2.2 SDChoiceEventLog... 18-4
18.2.3 Partitioning .. 18-6
18.2.4 Inline Service APIs.. 18-6
18.2.4.1 APIs ... 18-7
18.2.4.2 Putting it All Together .. 18-10
18.2.5 Report Schema... 18-11
18.2.5.1 Description ... 18-11
18.2.5.2 Stored Procedures.. 18-12
18.2.5.3 Functions... 18-12
18.2.6 OBIEE Integration... 18-12
18.2.6.1 RPD.. 18-13
18.2.6.2 Web Catalog ... 18-13
18.2.6.3 Compute Functions ... 18-13
18.3 Installation .. 18-14
18.3.1 Post Oracle RTD-Installation Steps .. 18-15
18.3.2 OBIEE Steps ... 18-15
18.3.2.1 Update Repository (RPD)... 18-15
18.3.2.2 Update Web Catalog ... 18-17
18.4 Customization .. 18-18
18.4.1 Adding Flex Fields to the Dashboard .. 18-18

B Examples of Data Sources from Stored Procedures

B.1 Creating a Data Source from Single Result Stored Procedures... B-1
B.2 Creating a Data Source from Stored Procedures with One Result Set............................... B-2
B.3 Creating a Data Source from Stored Procedures with Two Result Sets B-4

C Using External R Models in Oracle RTD

C.1 Oracle R Enterprise (ORE) and Oracle RTD .. C-1
C.1.1 ORE Integration Architecture ... C-1

xiii

C.1.1.1 Overview of Oracle R Enterprise Architecture ... C-1
C.1.1.2 Joint Implementation Architecture for Oracle RTD with ORE............................. C-2
C.1.2 Setting up ORE for Use by Oracle RTD... C-3
C.1.2.1 Obtaining R... C-3
C.1.2.2 Users, Roles, and Privileges ... C-3
C.1.2.3 Special Considerations for Data Sources.. C-3
C.1.3 Integration Example ... C-3
C.1.3.1 Steps for Making Use of R Scripting in Oracle RTD Inline Services C-4
C.1.3.2 Creating a Script Launching Function.. C-4
C.1.3.3 Mapping an Entity Attribute to the New Function .. C-5
C.1.3.4 Using the New Entity Attribute in Decision Logic... C-6
C.1.3.5 Creating a Deployment Function.. C-6
C.1.3.6 Creating a Deployment Informant.. C-7
C.1.3.7 Building and Saving a Linear Regression Model in R ... C-8
C.1.3.8 Updating the Script ... C-8
C.1.3.9 Testing the Inline Service ... C-9
C.1.4 Performance and Scalability Considerations.. C-9

xiv

xv

Preface

Oracle Real-Time Decisions (Oracle RTD) enables you to develop adaptive enterprise
software solutions. These adaptive solutions continuously learn from business process
transactions while they execute and optimize each transaction, in real time, by way of
rules and predictive models.

This document is divided into four parts:

■ Part I, "Getting Started" is a tutorial that provides information and examples to
help you get started using Oracle RTD.

■ Part II, "Integration with Oracle RTD" provides information about integrating with
Oracle RTD, including information about Oracle RTD Smart Clients, Web services,
and directly messaging Real-Time Decision Server.

■ Part III, "Decision Studio Reference" identifies each of the elements used to
configure Inline Services, including the properties of each Inline Service and the
available APIs.

■ Part IV, "Miscellaneous Application Development" provides an in-depth look at
the concepts, components, and processes involved in Oracle RTD application
development that require special processing, such as batch framework and
external editors that enable modification of Oracle RTD application objects.

Audience
Part I of this document is designed to help technical users of Oracle RTD get
acquainted with the capabilities, terminology, tools, and methodologies used to
configure Inline Services.

Part II of this document is intended for developers who will use the Java-based API,
.NET component, or Web services to integrate enterprise applications with Oracle RTD
Inline Services.

Part III of this document is designed for technical users configuring Inline Services
using Decision Studio.

Part IV of this document is designed for technical users who will develop batch jobs or
external editors that interface with Oracle RTD application objects.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

xvi

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle RTD Release 3.2
documentation set:

■ Oracle Real-Time Decisions Release Notes

■ Oracle Real-Time Decisions Installation and Administration Guide

■ Oracle Real-Time Decisions Decison Center User's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Getting Started

The chapters in Part I are a tutorial that provide an introduction to using Oracle RTD.
The examples in these chapters assume the reader has installed Oracle RTD on a
Windows system.

Part I contains the following chapters:

■ Chapter 1, "About Oracle Real-Time Decisions"

■ Chapter 2, "Creating an Inline Service"

■ Chapter 3, "Simulating Load for Inline Services"

■ Chapter 4, "Enhancing the Call Center Inline Service"

■ Chapter 5, "Closing the Feedback Loop"

1

About Oracle Real-Time Decisions 1-1

1 About Oracle Real-Time Decisions

This chapter introduces the components of Oracle Real-Time Decisions (Oracle RTD),
with particular emphasis on the development tool Decision Studio and the Web-based
application Decision Center. This chapter also introduces Inline Services, which are
created to model business processes, gather statistics, and make recommendations,
and describes how Inline Services are used in the development cycle. Decision Studio
is used to configure Inline Services, and Decision Center enables business analysts to
monitor and optimize deployed Inline Services.

Oracle Real-Time Decisions (Oracle RTD) provides a new generation of enterprise
analytics software solutions that enable companies to make better decisions in real
time at key, high-value points in operational business processes.

Oracle RTD easily integrates with enterprise applications both on the front end (such
as CRM applications) and on the back end (such as enterprise data stores). Oracle RTD
also includes other helpful load testing and debugging tools.

This chapter contains the following topics:

■ Section 1.1, "Terminology"

■ Section 1.2, "About Decision Studio"

■ Section 1.3, "About Decision Center"

■ Section 1.4, "About the Inline Service Lifecycle"

1.1 Terminology
Oracle RTD consists of five components:

■ Decision Studio

■ Real-Time Decision Server

■ Decision Center

■ Administration (JMX)

■ Load Generator

Inline Service refers to the configured application that is deployed.

Inline Services are configured and deployed using Decision Studio and analyzed and
updated using Decision Center. Inline Services run on Real-Time Decision Server.

An Inline Service can gather data and analyze characteristics of enterprise business
processes on a real-time and continuous basis. It also leverages that data and analysis
to provide decision-making capability and feedback to key business processes.

Terminology

1-2 Oracle Real-Time Decisions Platform Developer's Guide

Elements are one of the following types of objects:

■ Application: The application object identifies application level settings including
default model parameters, and any parameters needed for the Inline Service
globally.

■ Performance Goals: Performance Goals identify the Key Performance Indicators
(KPIs) used for setting the decision criteria for the scoring of choices in Oracle
RTD.

■ Choices: Choices represent the offers that will be presented through the Inline
Service or the targets of study to be tracked by the self-learning models of Oracle
RTD.

■ Rules: Rules are graphically configured rules used to target segments of
population, decide whether a choice is eligible or score a particular choice.

■ Decisions: Decisions score and rank eligible choices based on the weighted scores
for each associated performance goal.

■ Selection Functions: Selection Functions can be used by Decisions as a custom
way to select which choice to send back through the Oracle RTD Advisors.

An Advisor is an Integration Point. For more information, see the topic Integration
Points that follows in this list.

■ Entities: Entities represent the actors in the system. Entities are a logical
representation of data used for Oracle RTD modeling and decisioning. The
attributes of an entity can be populated via data sources, as incoming parameters
from integration points, or derived in real time through custom logic.

■ Data sources: Data Sources retrieve data from tables or stored procedures.

■ Integration Points: Integration Points serve as the touchpoints with outside
systems interacting with Oracle RTD. There are two classes of Integration Points:
Informants and Advisors. Informants receive data from outside systems, whereas
Advisors receive data and also send recommendations back to outside systems.

■ Models: Self-learning, predictive models that can be used for optimizing decisions
and providing real-time analysis for desired targets of study.

■ Statistics Collectors: Statistic Collectors are special models that track statistics
about entities.

■ Categories: Categories are used to segment data for display in Decision Center.

Note: The following terms are referenced throughout the Oracle RTD
documentation:

■ RTD_HOME: This is the directory into which Oracle RTD is
installed. For example, C:\OracleBI\RTD.

■ RTD_RUNTIME_HOME: This is the application server specific
directory in which the application server runs Oracle RTD.

For more information, see the section "About the Oracle RTD
Run-Time Environment" in Oracle Real-Time Decisions Installation and
Administration Guide.

About Decision Studio

About Oracle Real-Time Decisions 1-3

1.2 About Decision Studio
Decision Studio is the development tool for configuring Inline Services, the services that
are created to model business processes, gather statistics, and make recommendations.

Decision Studio is fully integrated with Eclipse, an open source Java IDE produced by
the Eclipse Foundation. Decision Studio exists as a standard plug-in to the Eclipse
environment. If you are using Eclipse, you have the advantage of using the
environment for additional development and advanced features. If you are not
familiar with Eclipse, it is completely transparent to using Decision Studio. Eclipse and
Decision Studio both have online help available through the Help menu.

Decision Studio allows you to work with an Inline Service from several perspectives. A
perspective defines the initial set and layout of views and editors for the perspective.
Each perspective provides a set of functionality aimed at accomplishing a specific type
of task or works with specific types of resources. Perspectives control what appears in
certain menus and toolbars.

To select or change to a different perspective (such as Inline Service, Java, Resource,
and so on), click the Window menu in Decision Studio and choose Open Perspective,
then choose from the list of available perspectives. The default perspective when
starting Decision Studio for the first time is Inline Service. We will use this
perspective in this tutorial. In general, this will be the perspective you use to develop
Inline Services.

The default Inline Service perspective contains four views and an editor area, as
shown in Figure 1–1.

Figure 1–1 Inline Service Perspective in Decision Studio

This section contains the following topics:

■ Section 1.2.1, "Inline Service Explorer View"

■ Section 1.2.2, "Problems View"

About Decision Studio

1-4 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 1.2.3, "Test View"

■ Section 1.2.4, "Cheat Sheets View"

■ Section 1.2.5, "Editor Area"

■ Section 1.2.6, "Arranging Views and Resizing Editors"

1.2.1 Inline Service Explorer View
The Inline Service Explorer View organizes all of the elements of the Inline Service
that are configured by the user.

1.2.2 Problems View
The Problems View shows validation (.sda files) and compilation errors (.java files) as
you build and compile your Inline Service. If you double-click a validation error,
Problems View opens the metadata/element-editor at the point of the error. If you
double-click a compilation error, Problems View opens the generated source code
(.java files) at the point of the error. You should not edit generated source code files
directly; instead, fix related metadata/element problems, which will then regenerate
and recompile the source code.

1.2.3 Test View
The Test View allows you to test your Inline Services directly from Studio after you
deploy them to the server.

1.2.4 Cheat Sheets View
The Cheat Sheets View provides step-by-step instructions for common tasks. After
installation, it is located on the right-hand side of the window.

1.2.5 Editor Area
The center area of the Inline Service Perspective is the editor area, and shows an editor
that is specific to the node on the project tree you have selected. To change to a new
editor, double-click the element you want to edit from the Inline Service Explorer
View.

1.2.6 Arranging Views and Resizing Editors
Tabs on the editors indicate the names of resources that are currently open for editing.
An asterisk (*) indicates that an editor has unsaved changes.

You can drag the views and editors of a perspective to any space on the screen. Views
and editors will resize themselves to fit the area in which they are placed. Occasionally,
portions of an editor (where you do your main work) or view will become covered by
other views, or resized to an area that is not convenient to use. To resize the editor or
view, either close other open views and the remaining will automatically resize, or
maximize the editor or view by double-clicking the editor tab.

Both editors and views can be toggled between Maximize and Minimize by
double-clicking the tab, or by using the right-click menu item.

Tip: You may want to close the Cheat Sheets View to give more
editor space. The Cheat Sheets are not used in this tutorial.

About the Inline Service Lifecycle

About Oracle Real-Time Decisions 1-5

To show additional views or open views that were closed, click the Window menu in
Decision Studio and choose Show View, then choose from the list of available views.

1.3 About Decision Center
Decision Center is a Web-based application that allows the business analyst to monitor
and optimize deployed Inline Services. From Decision Center, you can view statistics
gathered from the models and fine-tune campaigns such as cross-selling, as well as
adjust how decisions are made.

The Decision Center user interface displays Inline Services in two panes. The left pane
shows the list of Inline Service elements, while the right pane displays detailed
information related to the selected element.

Figure 1–2 Decision Center

1.4 About the Inline Service Lifecycle
Inline Services are created using Decision Studio. Figure 1–3 shows the Inline Service
Lifecycle.

About the Inline Service Lifecycle

1-6 Oracle Real-Time Decisions Platform Developer's Guide

Figure 1–3 Inline Service Lifecycle

The following steps outline the overall process by which Inline Services are created,
deployed, and downloaded:

1. Create: Using Decision Studio, elements are configured to align with the business
process into which Oracle RTD is to be integrated. Examples of elements are:
Choice Groups, Performance Goals, Decisions, Informants, Advisors, Entities, and
Data Sources.

Some elements allow the use of Java scriptlets in Logic and Asynchronous Logic
attributes. For instance, an Informant element is shown in Figure 1–4. This element
is named 'Call Begin.' In addition to the Description and the Advanced button,
there are three tabs, each with a set of attributes for the Informant.

Figure 1–4 Call Begin Informant

In the Logic tab of this 'Call Begin' Informant, we can write optional Java code to
perform specific tasks, as shown in Figure 1–5.

About the Inline Service Lifecycle

About Oracle Real-Time Decisions 1-7

Figure 1–5 Logic Tab of Call Begin Informant

As elements are created and saved, XML metadata is created in memory that
describes the object.

2. Save: By saving the Inline Service in Decision Studio, the metadata is written to an
Inline Service directory on the local file system, in XML files with the extension
*.sda. The metadata that follows is an example of the content saved for the
Informant 'Call Begin', in a file called CallBegin.sda.

<?xml version="1.0" encoding="UTF-8"?>
<sda:RTAPType xmlns:sda="http://www.sigmadynamics.com/schema/sda"
internalName="CallBegin" lastModifiedTime="1133228616435" name="Call Begin"
schemaVersion="20050818" forcesSessionClose="false" order="1.0">
<sda:description>The Call Begin Informant starts the session after the
customer's call enters the IVR system. Logic could be added here to pre-
populate certain values (example: customer profile) that may be used later
on.</sda:description>
<sda:system ref="Ivr"/>
<sda:sessionKey path="customer.customerId" relativeTo="session"/>
<sda:requestMapper internalName="RequestMapper">
<sda:entity type="ApplicationSession" var="session"/>
<sda:dataSource type="RequestDataSource" var="result">
<sda:arg>
<sda:path localVarName="session" path="request" relativeTo="local"/>

</sda:arg>
</sda:dataSource>

</sda:requestMapper>
<sda:requestData internalName="RequestDataSource">
<sda:param internalName="message" dataType="object"

objectType="com.sigmadynamics.client.wp.SDRequest"/>
<sda:request>
<sda:resultSet/>

</sda:request>
</sda:requestData>
<sda:body>
<sda:java order="0">/* Trigger data retrieval

*/
session().getCustomer().fill(); </sda:java>
</sda:body>
<sda:postOutputBody/>

</sda:RTAPType>

The attributes that were assigned to the element in Decision Studio, such as
Session Key and External System, are represented here. Note that the Java
scriptlet is also inserted into the body of the XML file.

About the Inline Service Lifecycle

1-8 Oracle Real-Time Decisions Platform Developer's Guide

As Inline Service elements are added, configured, and saved, Decision Studio
automatically generates the necessary Java code and compiles them into Java class
files. Two classes of Java code are generated. The first set is the base Java files used
by the Inline Service; these files are named the element id preceded by GEN. For
example, the CallBegin element will produce a file called GENCallBegin.java.

The second set of Java files is created to allow overriding of the generated code.
These files are named the same as the element ID. For instance, the CallBegin
element will produce a file named CallBegin.java. Note that by default, the
Java class CallBegin simply extends the class GENCallBegin.

When the Inline Service is compiled, the generated code is used unless we
specifically instruct that the override code be used. To do this, update and move
the override Java file (for example, CallBegin.java) from the generated source
files folder:

Inline_Service_project_root_folder\gensrc\com\sigmadynamics\sdo

to the override source files folder:

Inline_Service_project_root_folder\src\com\sigmadynamics\sdo

Decision Studio will now compile using the override Java file instead of the
generated Java file.

3. Deploy: The Inline Service is deployed to Real-Time Decision Server using
Decision Studio. The Management Service on the server receives the metadata and
compiled Inline Service files, stores the Inline Service in the database, and loads
the Inline Service into memory. The Inline Service can now be utilized to process
requests, view reports, and so on.

4. View and Update: Reports and learnings are viewed through the browser-based
Decision Center interface. Selected elements and parameters of your Inline Service
can be updated from Decision Center. Updated Inline Services are not available for
run-time use until they are redeployed.

Tip: The XML for any Inline Service object can be viewed with
Decision Studio's built-in Text Editor. Right-click an Inline Service
object in the Inline Service Explorer View, then select Text Editor from
the Open With menu. To switch back to normal editor format, select
the option Inline Service Editor.

Note that you should not edit the XML (*.sda) files directly to
modify the Inline Service objects; instead, use the corresponding Inline
Service Editors.

About the Inline Service Lifecycle

About Oracle Real-Time Decisions 1-9

5. Redeploy: If updates are made to the Inline Service in Decision Center, the
changes can be made available for use by redeploying the Inline Service in
Decision Center. The Management Service will regenerate all necessary metadata
and Java files, recompile the Inline Service, store the Inline Service in the database,
and load it in memory.

6. Download: Using Decision Studio, you can download a deployed Inline Service
from the server. Downloading involves copying the Inline Service that resides in
the database and placing all of the metadata, Java, and class files into a Decision
Studio project on the hard drive. This is useful if you were not the original
developer of the Inline Service and thus do not have the metadata files. Even if
you had originally developed and deployed the Inline Service from Decision
Studio, if your business process allows other users to make changes and redeploy
the Inline Service through Decision Center, then to make additional changes to the
Inline Service in Decision Studio, you would first need to download the latest
version from the server.

About the Inline Service Lifecycle

1-10 Oracle Real-Time Decisions Platform Developer's Guide

2

Creating an Inline Service 2-1

2 Creating an Inline Service

This is the introductory chapter in a tutorial section which describes, step by step, how
to create and configure an Inline Service. It introduces the main Inline Service elements
- data sources, entities, informants, advisors, choice groups, models, decisions - and
shows how to create and test them in Decision Studio.

The tutorial section is designed to demonstrate how to build an Inline Service that acts
as an Observer. Observer Inline Services are aimed at analyzing characteristics of
target process on a real-time and continuous basis. An Observer Inline Service guides
business users in their analysis of those various business events and how they change
over time.

The Inline Service for this tutorial is based around a credit card company's call center.
The Inline Service will collect data about the customer and the call center operational
system and will analyze information about the call and its resolution.

The goal of this Inline Service is to analyze the patterns about calls, reasons for calling,
and customers. In later sections, we will extend the capability of this Inline Service to
provide recommendations to the CRM system on cross selling offers and then to add
feedback to the service on the success of its recommendations.

This chapter contains the following topics:

■ Section 2.1, "About the Inline Service Tutorial"

■ Section 2.2, "About Deployment and Decision Center Security"

■ Section 2.3, "About Naming and Descriptions"

■ Section 2.4, "Accessing Data"

■ Section 2.5, "About the Session Entity"

■ Section 2.6, "Adding an Informant"

■ Section 2.7, "Testing the Inline Service"

■ Section 2.8, "Adding Functionality"

■ Section 2.9, "Analyze Call Reasons"

2.1 About the Inline Service Tutorial
An Inline Service is created using the Decision Studio development tool. In general, an
Inline Service is created in the following fashion:

■ A project is started in Decision Studio.

■ Elements are added to that project and then configured to support the desired
business process.

About the Inline Service Tutorial

2-2 Oracle Real-Time Decisions Platform Developer's Guide

■ Logic is added in the form of Java scriptlets to certain elements that perform
operations.

■ The Inline Service is deployed to Real-Time Decision Server, where it runs.

■ Reports generated from the use of the Inline Service are viewed through Decision
Center.

In this tutorial the following elements are added and configured:

1. Application: The Application element establishes any application level settings
that are needed, as well as defines security for the Inline Service. An Application
element is automatically created for every Inline Service.

2. Performance Goals: Performance Goals represent organizational goals composed
of metrics that are optimized using scoring. For instance, revenue and call
duration are performance metrics. An organizational goal would be to maximize
revenue while minimizing call duration.

3. Data source: The data source element acts as a provider of data from an outside
data source. The structure and format of data from data sources can vary. For
example:

■ Rows and columns of a RDBMS table

■ Output values and result row sets from a stored procedure

A data source is a provider of data that you can map to Entity elements to supply
the data for those elements.

For example, in this tutorial we add a data source that connects to a table in the
database. This table contains customer data.

4. Entity: The Entity is a logical representation of data that can be built from one or
more data sources. Entities serve the following purposes:

■ To organize the data into objects for organizational, analytical, and modeling
purposes.

■ To allow relatively easy and intuitive access from Java code of data from
various sources.

■ To hide the details by which the data is obtained so that those details can
change without requiring the logic to change.

■ To hide the mechanisms by which the data is obtained to save the user of this
data from needing to deal with the APIs that are used to obtain the data.

■ To support sharing of objects when objects need to be shared. For example, an
object representing a service agent could be used in multiple sessions.

Attributes of an entity can be key values. The entity key is used to identify an
instance of an entity.

For example, in this tutorial we create an entity to represent a customer. The
attributes of that entity are mapped to the data source for values. The customer ID
is chosen as the key for the customer entity.

Later we will also create an entity that represents a Call.

5. Session Entity: The Session entity is a special entity of an Inline Service. The
Session entity represents a container for attributes that are specific to a particular
defined Session. The Session key uniquely identifies each individual session.

About Deployment and Decision Center Security

Creating an Inline Service 2-3

Entities that have been defined can be associated with the session by being made
attributes of the Session Entity. Only Entities that are Session attributes can have
their keys marked as session keys.

For example, in this tutorial we add the Customer entity to the Session entity as an
attribute, and then we choose the Customer key value, Customer ID, as a Session
key.

6. Informant: An Informant is an Integration Point within the Inline Service that
identifies the business interactions as they occur and triggers business logic that
continuously identifies relevant statistical patterns in the data. Informants watch a
process; they do not interact with it.

In this tutorial, we first create a testing Informant, and then create an Informant
that gathers completion of service data from a CRM system.

Later in the tutorial, we create an Informant that provides feedback to the Inline
Service on the success or failure of the predictions of the model.

7. Choice Groups: Choice Groups are useful for organizing choices. Choice Groups
can be used in one of two ways: they provide a way to organize the observations
that are collected and analyzed; they are also a way to organize the feedback we
will give to the business process through the Advisor Integration Points.

For example, in this tutorial we first create Choice Group that organizes the reason
for calls. When we extend the Inline Service to include an Advisor, a Choice Group
is used to organize cross sell offers that are recommended to the service center
agent.

8. Models: Built-in analytical models allow self-learning and automatic analysis.
Models can be used to simply analyze data, or to make recommendations to the
business process.

In this tutorial, we create a model that analyzes the reasons for calls, and then later
a model which helps to determine the most likely cross sell offer to be accepted by
the customer.

9. Decision: A Decision is used by an Advisor to determine eligible Choices, score
those Choices dynamically, weight the scoring according to segments of the
population and its designated performance goals, and present to best-fit choice.

10. Advisors: An Advisor is an integration point that returns information back to the
business process that calls it. Advisors call Decisions in the Inline Service that
returns one or many ranked choices.

In this tutorial, we will create a Choice Group of offers that can be made to callers
to the credit card service center. The Advisor calls on a Decision to determine the
best offer for the caller based on information about the call and caller. The Advisor
passes that cross sell recommendation to the front end application, so that the call
center agent can make the offer.

2.2 About Deployment and Decision Center Security
To be able to deploy your Inline Service to Real-Time Decision Server, and to see the
results from the Inline Service in Decision Center, you must have the necessary roles,
which are provided through a user name and password.

For this tutorial, it is assumed that an available user login and password has been
created with the assigned roles of RTDUsers, RTDDecisionCenterUsers, and
RTDStudioDeployers.

About Naming and Descriptions

2-4 Oracle Real-Time Decisions Platform Developer's Guide

If necessary, contact the administrator responsible for installing and setting up your
Oracle RTD system.

2.3 About Naming and Descriptions
Element names and descriptions are used extensively in Decision Center, the user
interface for business users. Therefore, it is very important that as you create elements
you take the time to name them intuitively and to write good descriptions for all
elements.

Before you begin, ensure that Real-Time Decision Server is started. See Oracle Real-Time
Decisions Installation and Administration Guide for more information about how to start
Real-Time Decision Server.

To configure the Application element:

1. Open Decision Studio by running RTD_HOME\eclipse\eclipse.exe. After
Decision Studio opens, choose File > New > Inline Service Project to begin a new
project.

2. Enter the name for the project, Tutorial, and choose the Basic template. Click
Finish. If you are asked about upgrading the Inline Service, select Yes. The Inline
Service project is created in the Inline Service Explorer. By default, the files for the
project/Inline Service are stored in the Decision Studio workspace, in a folder with
the same name as the project (for example, C:\Users\Windows_user\Oracle
RTD Studio\Tutorial).

3. In Decision Studio, expand the Tutorial > Service Metadata folder. Double-click
the Application element to bring up the element editor. In the element editor, type
a description for the Tutorial Inline Service.

2.4 Accessing Data
In order to access organizational data, we will configure two elements:

■ Data source: The data source is the element that represents the structure of the
data in the database.

■ Entity: The entity is a logical representation of data that can be populated by one
or more data sources or contextual data retrieved by an Informant.

Note: This tutorial assumes you are using a new installation, with
the original preferences set. If Decision Studio or Eclipse has been
used in the past, you may want to switch to a new workspace. To
switch to a new workspace, choose File > Switch Workspace and
choose a new workspace folder.

Accessing Data

Creating an Inline Service 2-5

Figure 2–1 Data Source/Entity Mapping

This section contains the following topics:

■ Section 2.4.1, "Adding a Data Source"

■ Section 2.4.2, "Adding an Entity"

2.4.1 Adding a Data Source
Adding a data source involves creating the new data source, then importing the
outputs for a data source.

This section contains the following topics:

■ Section 2.4.1.1, "Creating the New Data Source"

■ Section 2.4.1.2, "Importing the Outputs for a Data Source"

2.4.1.1 Creating the New Data Source
To create a data source:

1. In Decision Studio, select Data Sources in the Inline Service Explorer and
right-click it. Select New SQL Data Source. For the Display Label, enter
Customer Data Source, and click OK. The data source Editor appears.

2. Under Description, add the following description for the data source: Customer
data from a database table.

Good descriptions are very important. These descriptions are used in Decision
Center and are essential for business users to identify components of reports and
analysis.

2.4.1.2 Importing the Outputs for a Data Source
The outputs of a data source are the columns that are retrieved from the database.
Outputs do not have to include all the columns in the table.

To import the outputs for a data source:

1. Click Import. Import Database Table appears. You server should appear next to
Server. Click Next to connect to the server. Select Table or View appears.

2. For JDBC Data Source, select SDDS. Then, select CrossSellCustomers under
Tables and Views. This table was created and populated by the default standard
installation.

3. Click Finish.

Note: You may notice that there are some other data sources already
defined. These are part of the Inline Service framework and are not
used in this tutorial.

Accessing Data

2-6 Oracle Real-Time Decisions Platform Developer's Guide

4. All of the columns of the table are imported into the Output columns table.

5. Set the input column for the data source. The input is the column on which you
will be matching to retrieve the data record. In this case, we can select the column
name Id from the Output columns table and click the right arrow to move Id to
the Input columns table. The data type is Integer.

6. Set the output columns for the data source. In the Output columns table, select
and use Remove to remove all except the columns listed in Table 2–1.

7. Save your work by choosing File > Save All. If there are errors in your work, you
will receive notification in the Problems View.

2.4.2 Adding an Entity
Now that we have the data source defined, we can proceed to define a corresponding
Entity. Entities are the objects that are used by the other elements in the configuration.
Entities provide a level of abstraction from sources of data such as Data Sources or
Informants. A single entity can have data coming from many data sources, or even
computed values. For now, we will create a simple entity that maps directly to the
structure of the data source.

This section contains the following topics:

■ Section 2.4.2.1, "Creating the New Entity"

■ Section 2.4.2.2, "About Additional Entity Properties"

■ Section 2.4.2.3, "Adding an Entity Key"

2.4.2.1 Creating the New Entity
To create the new entity:

1. In the Inline Service Explorer, right-click the Entities folder and select New Entity.
For Display Label, enter the name Customer and click OK. The Entity Editor
appears. Enter Customer entity for Description.

Good descriptions for entity attributes are very important. Make sure you add a
good description for every entity.

Table 2–1 Output Columns to Retain in CrossSellCustomers Table

Name Type

Age Integer

HasCreditProtection String

Language String

LastStatementBalance Double

MaritalStatus String

NumberOfChildren Integer

Occupation String

Note: You can use Import to import the column names and data
types to the Outputs for the data source. Remove any columns you
will not be using with Remove.

Accessing Data

Creating an Inline Service 2-7

2. Click Import to import the attributes names and data types from Customer Data
Source. Leave the option Build data mappings for the selected data source
selected.

3. In the column Default Value of the Definition tab, click to get an insertion point
and add a default value for each of the attributes listed in Table 2–2. Values for
String data types will be automatically surrounded by double quotes.

2.4.2.2 About Additional Entity Properties
You can modify additional settings about the attributes of an entity. For example, in
more complex Inline Services, you may want to define categories of attributes. To do
this, create a category element and assign it using the Category on the attribute's
Properties. To view the properties of an attribute, select the attribute in the Definition
tab, then right-click and choose Properties from the menu.

You may also want to indicate that an attribute should not be used for learning. For
example, if you have the phone number of the customer, it does not make sense to
have analytics on the number, so in that case you would deselect Use for Analysis.

The Show in Decision Center option is used to control whether the attribute is visible
in Decision Center. This is useful when an attribute has only technical meaning and no
direct or interesting business meaning.

2.4.2.3 Adding an Entity Key
In order to fully map the entity object to the data source, we need an entity attribute to
map to the key value of the data source and complete the mapping. To do this:

1. On the Definition tab of the Customer Entity, click Add Key to add a key
attribute. Add Key appears. Enter customerId for Display Label, add a
description for the key value, change the data type to Integer, and click OK.

Note: Object IDs are automatically made to conform to Java naming
conventions: variables are mixed case with a lowercase first letter;
classes are mixed case with an uppercase first letter. If you have spaces
in your label name, they will be removed when forming the object ID.

Use the Toggle icon on the Inline Explorer task bar to toggle between
the label of the object and its object ID:

Table 2–2 Attributes for Default Value Column of Definition Tab

Name Type Default Value

Age Integer 35

HasCreditProtection String No

Language String English

LastStatementBalance Double 1000

MaritalStatus String Single

NumberOfChildren Integer 0

Occupation String Student

About the Session Entity

2-8 Oracle Real-Time Decisions Platform Developer's Guide

2. Save your work using File > Save All. You may see several errors in the Problems
View - this is expected because the mapping definition of the Customer entity
attributes to its data source is incomplete. Proceed to the next section in order to
complete the mapping definition.

2.5 About the Session Entity
The Session is the root of run time data for a unit of a process. Data is kept in memory
during the duration of the session. In order to track data about an Entity, we associate
it with the Session entity that is part of the Oracle RTD framework. To associate the
Entity to the session, make it an attribute of the Session entity. A key is chosen for the
session. When a unique instance of that key is detected, the session begins.

As an example, consider a call center process being tracked by Oracle RTD. The
Session contains entities that represent the Caller and the Agent. For the duration of
the session (in other words, the call in this case) the data defined by those entities and
the interaction between them is kept in memory and available for analysis and
decision making.

This section contains the following topics:

■ Section 2.5.1, "Adding an Attribute to the Session Entity"

■ Section 2.5.2, "Creating a Session Key"

■ Section 2.5.3, "Mapping the Entity to the Data Source"

2.5.1 Adding an Attribute to the Session Entity
To add an attribute to the Session entity:

1. In the Inline Service Explorer, double-click Session under Entities.

2. From the Definition tab, click Add Attribute. For Display Label, enter an
attribute name, customer, then add a Description. Note that the initial data type
is type String. We'll change this in the next step.

3. For Data type, select Other. A Type selection dialog appears. Under Entity Types,
choose Customer. Click OK.

2.5.2 Creating a Session Key
To create a session key:

1. In Session Keys from Dependent Entities, click Select.

2. Expand the tree to see the keys of all entities associated with the Session. Expand
customer and select customerId as a session key by checking the box. Click OK.

2.5.3 Mapping the Entity to the Data Source
We associate the Customer entity with the Customer Data Source through mappings
defined in the Entity object editor. Our mapping of the Customer entity's attributes to
the Customer Data Source output columns was automatically done when the attributes
were imported from the Customer Data Source (see Section 2.4.2, "Adding an Entity"

Tip: Oracle RTD supports multiple session keys to enable the
tracking of a session when different systems are sending Informants
and Advisors to the same Inline Service. In this tutorial and in many
real installations, only one session key is needed.

Adding an Informant

Creating an Inline Service 2-9

for more information). We need to now map the input column value for the Customer
Data Source in the Customer entity.

To map the input column value for the Customer Data Source:

1. Open the Customer Entity and select the Mapping tab. Entity editors are identified
by an E icon:

2. Because we used Import, the Customer Data Source attributes are already mapped
to the Customer entity attributes. For attribute Age, the Source value should look
like Customer Data Source / Age (or Customer Data Source.Age if the
Show Object ID icon is selected). If you had added additional attributes beyond
the import, they are mapped by clicking the ellipsis under Source and locating the
data source attribute.

3. We need to identify the input column values for each Data Source (in this case,
Customer Data Source) in the Attributes table. The input columns for the data
source are the identifier (the WHERE clause in a SQL select statement) by which
records are retrieved. In the Customer Data Source, we had only one input
column, Id, thus in the Mapping tab, we will see only one entry in the Data
Source Input Values table, located below the Attributes table. In the Input Value
cell of this entry, click the ellipsis to open the Edit Value dialog.

4. For this Inline Service, we will select the Customer entity's key. Choose Attribute
or Variable. Expand Customer, select customerId, then click OK.

Figure 2–2 Edit Value Dialog for Id Column

5. Save the Inline Service by choosing File > Save All.

2.6 Adding an Informant
Informants are a type of Integration Point that can send a message to Real-Time
Decision Server containing information about a specific unit in a process.

To test the Inline Service at this stage, we will create a testing Informant that prints out
the age of the customer. To view the actual printed statement, we will need to deploy
the Inline Service to Real-Time Decision Server and then call the Informant.

If we get a number back, we will know that the entity, mapping, and data source are
working.

This section contains the following topics:

■ Section 2.6.1, "Creating an Informant"

■ Section 2.6.2, "Adding Testing Logic to the Informant"

2.6.1 Creating an Informant
To create an informant:

Adding an Informant

2-10 Oracle Real-Time Decisions Platform Developer's Guide

1. In the Inline Service Explorer, go to Integration Points and then select Informants.
Right-click and select New Informant from the menu. Enter an object name,
Testing, then click OK.

2. In the Testing Editor, add a description under Description.

3. Click Advanced next to Description. Deselect Show in Decision Center. This will
make this Informant invisible to the business users of Decision Center. Click OK.

2.6.2 Adding Testing Logic to the Informant
To add testing logic to the Informant:

1. On the Testing Informant Editor, select the Request tab. Informants are identified
by an i icon:

2. To add a session key, click Select under Session Keys. Choose customerId from
Customer. Click OK.

3. Choose the Logic tab. Under Logic, add the following scriptlet:

logInfo("Customer age = " + session().getCustomer().getAge());

The logInfo call allows us to output information to the Log subtab of the Test view
and also the server log file (usually in RTD_HOME\log). We will use the session
to access the Customer object and get the contents of the age attribute.

4. Now we should be ready to deploy. Save the configuration by choosing File >
Save All.

Figure 2–3 shows how the Testing Informant will access customer data when the
Informant is called and a session created.

Note: When you configure an entity in Decision Studio, a class is
generated. The generated classes have a property, getter, and setter for
each attribute.

Testing the Inline Service

Creating an Inline Service 2-11

Figure 2–3 Tutorial Inline Service Objects

2.7 Testing the Inline Service
To test the Inline Service, we deploy it, call the Informant with test data, and use the
Test View to observe the results. Because Informants do not return value to their
callers, the results will be seen in the Log tab of Test View.

To deploy the Inline Service for testing:

1. Click the Deploy icon on the taskbar to deploy the Inline Service:

You can also use the menu item Project > Deploy to deploy your Inline Service.

2. Click Select to select the server where you want to deploy. Deploy to the location
of your Real-Time Decision Server. This defaults to localhost, as does the
default configuration of the installation. Enter the user name and password
provided for you, as described in Section 2.2, "About Deployment and Decision
Center Security." Use the drop-down list to select a deployment state,
Development. Select Terminate Active Sessions (used for testing). Click Deploy.

Deployment takes anywhere from about 10 seconds to a few minutes. A message
'Tutorial deployed successfully' will appear below the Inline Service Explorer
when deployment is complete.

3. In the Test View at the bottom of the screen, select Testing as the Integration Point
to test. Enter a value for customerId by typing 7 in the field. Click the Send icon:

Note: The reason we terminate active sessions is that we want to
make sure we are testing against the latest deployed Inline Service. If
there were active sessions and we used the same session id (in this
case, it is also the customerId), testing of the Informant would be
against an earlier version of the deployed Inline Service. If we
terminate the currently active sessions, then we are guaranteed to be
testing against the latest deployed Inline Service, regardless of the
session id used.

Adding Functionality

2-12 Oracle Real-Time Decisions Platform Developer's Guide

4. Select the Log tab within Test View to see the results. Every printout coming from
a logInfo command will be printed out with a timestamp.

Your results should look similar to the following:

11:53:54,102 Customer age = 38

2.8 Adding Functionality
We will now create an entity to hold information specific to the call. This is contextual
information about the nature of the interaction with the customer. The data in this
entity will come from Informants or be computed, but it will not be retrieved from any
database.

First we create an entity to represent a call, then an Informant that gathers data from
calls. Choices are created as the targets of our analysis of the calls. In our case we are
interested in focusing our analysis on the reasons for the calls.

Figure 2–4 Session Entity

Using this entity, we will explore the factors related to the reasons for calls, like the call
lengths for each call reason, the most likely customer characteristics for these calls, and
so on. In order to gather and analyze the call reasons gathered by the Informant, a
self-learning analytical model will be added and reports will be displayed in Decision
Center.

This section contains the following topics:

■ Section 2.8.1, "Creating a Call Entity"

■ Section 2.8.2, "Creating the Call Begin Informant"

■ Section 2.8.3, "Creating the Service Complete Informant"

■ Section 2.8.4, "Creating the Call End Informant"

■ Section 2.8.5, "Testing the Informants"

2.8.1 Creating a Call Entity
To create a call entity:

1. In the Inline Service Explorer, right-click the Entities folder and select New Entity.
Enter the object name Call and click OK.

2. For each attribute listed in Table 2–3, do the following:

Adding Functionality

Creating an Inline Service 2-13

■ On the Definition tab of the Entity Editor, click Add Attribute. Add Attribute
appears. Enter the values from the table and click OK.

■ Click in Type. Choose the proper data type for each attribute using the
drop-down list.

3. In the Inline Service Explorer, double-click Session under Entities.

4. From the Definition tab, click Add Attribute. Enter an object name, call. Note
that the default type is String. We will change the default type in the next step.

5. For Data type, select Other. In the Type dialog box, expand Entity types and select
Call as the type, then click OK. Add a Description for 'call'. Click OK.

6. Save the changes to the Inline Service by choosing File > Save All.

2.8.2 Creating the Call Begin Informant
We will now create three Informants that will be called by the CRM application: Call
Begin, Service Complete, and Call End. The first, Call Begin, will start the session. In
this Informant, we could optionally preload and cache certain session attribute values
so they can be accessed more quickly later. For example, we may want to preload the
customer's profile if this information will be used later on and the loading of this
information is expected to be slow due to database calls or other constraints.

Note that it is not necessary to preload session attribute values as they are
automatically loaded whenever they are needed. For example, when we want to print
the customer's Age, as the Testing Informant did in the previous section, Real-Time
Decision Server will automatically populate the entire session's Customer entity
attribute and return the Age value. In this Tutorial Inline Service, our Call Begin
Informant will simply start the session, but will not pre-populate any session attribute
values.

To create the Call Begin Informant:

1. In the Inline Service Explorer, under Integration Points, right-click the External
Systems folder and select New External System. Object Name appears. Name the
system IVR and click OK. Give the element a description. Save this object.

2. In the Inline Service Explorer, under Integration Points, right-click the Informants
folder and select New Informant. Object Name appears. Name the Informant
Call Begin and click OK.

3. Using the Informant Editor, enter a description for Call Begin.

4. To add a session key to the Call Begin Informant, click Select next to Session Keys
in the Request tab. Choose customerId. Click OK.

5. While still in the Request tab, choose IVR from the External System drop-down
list and enter 1 in the Order box. Do not select Force session close. The External
System and Order determine the display layout and order in Decision Center's
Integration Map (see Section 4.8, "Viewing the Integration Map" for more
information). When we have finished defining the three Informants and deployed

Table 2–3 Attributes for Call Entity

Name Type

agent String

length Integer

reason code Integer

Adding Functionality

2-14 Oracle Real-Time Decisions Platform Developer's Guide

the Inline Service, the Integration Map in Decision Center will look like the one
shown in Figure 2–5.

Figure 2–5 Decision Center Integration Map

6. In the Logic tab, add the following code:

/*
Prepopulate customer data during start of call even though the information may
not be used until much later. This is not explicitly necessary since the
server will automatically retrieve the information whenever logic in the
Inline Service needs it.
*/
//session().getCustomer().fill();
int CustomerID = session().getCustomer().getCustomerID();
logInfo("Integration Point - CallBegin: Start Session for customerID = " +
CustomerID);

7. Save the changes to the Inline Service by choosing File > Save All.

2.8.3 Creating the Service Complete Informant
The second Informant will report on call information such as the agent that handled
the call, the length of the call, and the reason for the customer's call. This Informant is
called by the CRM application when the call center agent has responded to the
customer's need, or in other words, when service is complete. The data that is gathered
by the Informant will populate the Call entity.

To create the Service Complete Informant:

1. In the Inline Service Explorer, under Integration Points, right-click the External
Systems folder and select New External System. Object Name appears. Name the
system CRM and click OK. Give the element a description. Save this object.

2. In the Inline Service Explorer, under Integration Points, right-click the Informants
folder and select New Informant. Object Name appears. Name the Informant
Service Complete and click OK.

3. Using the Informant Editor, enter a description for Service Complete.

4. To add a session key to the Service Complete Informant, click Select adjacent to
Session Keys in the Request tab. Select customerId and click OK.

Adding Functionality

Creating an Inline Service 2-15

5. While still in the Request tab, choose CRM from the External System drop-down
list and enter 2 in the Order box. Do not select Force session close.

6. To add the additional pieces of data to the Informant, do the following for each
incoming parameter listed in Table 2–4:

■ On the Request tab of the Informant Editor, click Add. Enter the name and
then select the data type using the drop-down list. Click OK.

■ Under Session Attribute, click the ellipsis to use Assignment. Expand the
Session folder, then expand call and then the select the call attribute that
matches the incoming item.

7. In the Logic tab, add the following code:

logInfo("Integration Point - Service Complete");
logInfo(" Reason Code: " + session().getCall().getReasonCode());
logInfo(" Agent: " + session().getCall().getAgent());
logInfo(" Call Length: " + session().getCall().getLength());

8. Save the changes to the Inline Service by choosing File > Save All.

2.8.4 Creating the Call End Informant
The third Informant will close the session and could be the last Informant called by the
CRM application. In this Tutorial Inline Service, we will only use this Informant to
close the session, but in a real system, you might perform additional processing or
trigger learning for a model.

To create the Call End Informant:

1. In the Inline Service Explorer, under Integration Points, right-click the Informants
folder and select New Informant. Object Name appears. Name the Informant
Call End and click OK.

2. Using the Informant Editor, enter a description for Call End.

3. To add a session key to the Call End Informant, click Select next to Session Keys
in the Request tab. Select customerId and click OK.

4. While still in the Request tab, choose CRM from the External System drop-down
list and enter 5 in the Order box. We set the Order to 5 because we will add two
more integration points (an Advisor and another Informant) later in this tutorial.

5. Make sure the option Force session close is selected. Choosing this option will
explicitly close the session once the Informant has been called and its logic
processed. Note that if we do not explicitly close a session, the session will
automatically close after some period of time - the default is 30 minutes and can be
changed using JConsole.

6. In the Logic tab, add the following code:

Table 2–4 Data Types and Session Attributes for Incoming Parameters

Incoming Parameter Name Type Session Attribute

agent String call / agent (or call.agent if the Show Object
ID icon is selected)

length Integer call / length (or call.length if the Show
Object ID icon is selected

reason code Integer call / reason code (or call.reason code if the
Show Object ID icon is selected)

Adding Functionality

2-16 Oracle Real-Time Decisions Platform Developer's Guide

logInfo("Integration Point - CallEnd");
logInfo("***************************");

7. Save the changes to the Inline Service by choosing File > Save All.

Figure 2–6 shows how the three Informants access and update the same session.

Figure 2–6 Tutorial Inline Service Objects: Integration Points

2.8.5 Testing the Informants
We will now test a simple scenario where three Informants you just created are called,
corresponding to 1) start of a call, 2) service completion, and 3) end of the call. We will
use the Test View to call the Informants and view the log messages we had placed in
the logic portions of the Informants.

To test the Informants:

1. Deploy to the server. Click the Deploy icon on the taskbar to deploy the Tutorial
Inline Service:

Remember to select Terminate Active Sessions (used for testing).

2. In the Test view, located in the bottom portion of Decision Studio, select the
Integration Point Call Begin. For the request input customerId, enter an integer
value, say 7. Click the Send icon to send the request to the server:

In the Log tab within the Test View, you should see a message indicating that the
Call Begin integration point was called.

3. Repeat the process for the other two integration points, Service Complete and
Call End, in order and with the input values as shown in Table 2–5. Examples of
what you should see in the Log tab are also shown in Table 2–5.

Analyze Call Reasons

Creating an Inline Service 2-17

Note that you could have called the Informants in any order. The Call Begin
Informant is not needed to start a session and Call End is not needed to end the
session. If we had called only the Service Complete Informant, the session would
still be started correctly and the response would have been the same, although the
session would then remain open. We are working with three Informants in this
tutorial to demonstrate the different locations of a call center process that could
make calls to Real-Time Decision Server.

2.9 Analyze Call Reasons
In the previous sections, we created three Informants. The second Informant, Service
Complete, sends call information from the CRM application to Real-Time Decision
Server. One of the pieces of call information is the call reason, or in other words, why
the customer called. In this section, we will analyze the call reasons registered through
the use of choices and a model. The objective is to able to view basic reports on call
reasons - how many of each reason were recorded and how/if there were correlations
between each call reason and session attributes.

This section contains the following topics:

■ Section 2.9.1, "About Using Choices for Analysis"

■ Section 2.9.2, "Adding a Choice Group"

■ Section 2.9.3, "Adding an Analytical Model"

■ Section 2.9.4, "Adding Logic for Selecting Choices"

■ Section 2.9.5, "Testing It All Together"

2.9.1 About Using Choices for Analysis
Choices are used to create targets for analysis. In our case, we are first interested in
focusing our analysis on the reasons for the calls. We will first create a choice group for
the call reasons. Then, we will define an attribute for this choice group called code.
The individual choices created within this group will then inherit the attribute
definition, although the values can differ for each choice.

Table 2–5 Input Values for Integration Points with Log Results

Integration Point Request Inputs Log Tab

Call Begin customerId: 7 09:15:41,753 Integration Point - CallBegin:
Start Session for customerID = 7

Service Complete customerId: 7

agent: John

length: 21

reason code: 18

09:17:51,845 Integration Point - Service
Complete
09:17:51,845 Reason Code: 18
09:17:51,845 Agent: John
09:17:51,845 Call Length: 21

Call End customerId: 7 09:20:17,342 Integration Point - CallEnd
09:20:17,342 ***************************

Tip: If there are errors in compilation, a dialog in Decision Studio
shows these errors in the Problems View. Double-clicking the error
takes you to the editor of the element that has the error.

Make sure that the server with which you are communicating is
localhost. Because Decision Studio remembers in the drop-downs
the values previously entered, the default may not be localhost.

Analyze Call Reasons

2-18 Oracle Real-Time Decisions Platform Developer's Guide

Figure 2–7 Analyzing Call Data

2.9.2 Adding a Choice Group
To add a choice group:

1. In the Inline Service Explorer, under Service Metadata, right-click the Choices
folder and select New Choice Group. Name the group Call Reason and click
OK. Add a description.

2. In the Choice Group Editor for Call Reason, in the Choice Attributes tab, click
Add next to the Attributes table. For Display Label, enter code. Select the data
type Integer, then select Overridable. Add the description Choice codes and
click OK.

3. To create choices underneath the group, right-click the Call Reason choice group
in the Inline Service Explorer and select New Choice. Add a Choice called Check
Balance.

Repeat this step for the choices Make Payment, Rate Inquiry, and Other.
Add a description for each.

4. In the Inline Service Explorer, under Choices, expand the Call Reason group to
show the choices.

Figure 2–8 Call Reasons in Inline Service Explorer

5. For each of the four choices, select the Choice in the Inline Service Explorer. In the
Editor for that choice, under the Attribute Values tab, for the attribute code, set
the Attribute Value as shown in Table 2–6.

Note: We made this a choice attribute as opposed to a group
attribute. The difference between the two is that choice attributes are
meant to be given values for each of the choices in the hierarchy, while
group attributes are only given to the current group.

Analyze Call Reasons

Creating an Inline Service 2-19

6. Save the changes to the Inline Service by choosing File > Save All.

2.9.3 Adding an Analytical Model
A self-learning analytical Model is created to perform the automatic analysis of the
reasons for calls. This model will track the reason for each call and correlate all the
session attributes with these outcomes. Decision Center uses this model to build
reports.

To add an analytical model:

1. In the Inline Service Explorer, under Service Metadata, right-click the Models
folder and select New Choice Model. Name the model Reason Analysis and
click OK. Make sure to create a Choice Model, and not a Choice Event Model.

2. Deselect Use for prediction.

3. To indicate that the target of analysis is the choice model attribute, select the
Choice tab and choose Call Reason from the Choice Group drop-down list.

4. Select the Learn Location tab, then select On Integration Point.

5. Click Select, then select Service Complete and click OK.

6. Save the changes to the Inline Service by choosing File > Save All.

2.9.4 Adding Logic for Selecting Choices
When the Service Complete Informant is received, we need to select the choice that
represents the corresponding reason for the call. We will do so by adding reasons to
the model's choice array using the method of the Choice Model addToChoice.

To add reasons to the choice array of the model:

1. In the Inline Service Explorer, expand Integration Points. Under Informants,
double-click Service Complete.

2. Select the Logic tab and enter the following logic. This adds the Object ID of the
Choice that represents the reason for call to the model.

logInfo ("Integration Point - Service Complete. ");
logInfo (" Reason Code: " + session().getCall().getReasonCode());
logInfo (" Agent: " + session().getCall().getAgent());
logInfo (" Length: " + session().getCall().getLength());

int code=session().getCall().getReasonCode();
switch (code) {
case 17:

ReasonAnalysis.addToChoice("CheckBalance");
logInfo (" CheckBalance was added to the model");

break;
case 18:

Table 2–6 Attribute Values for Call Reason Choices

Choice Attribute Value

Check Balance 17

Make Payment 18

Other 20

Rate Inquiry 19

Analyze Call Reasons

2-20 Oracle Real-Time Decisions Platform Developer's Guide

ReasonAnalysis.addToChoice("MakePayment");
logInfo (" MakePayment was added to the model");

break;
case 19:

ReasonAnalysis.addToChoice("RateInquiry");
logInfo (" RateInquiry was added to the model");

break;
default:

ReasonAnalysis.addToChoice("Other");
logInfo (" Other was added to the model");

break;
}

3. Save the configuration by choosing File > Save All.

Figure 2–9 shows how the Reason Analysis model is updated when the Service
Complete Informant is called.

Figure 2–9 Tutorial Inline Service Objects

2.9.5 Testing It All Together
To test all the parts of the configuration:

1. Deploy the configuration to the server. Make sure there are no errors in
deployment or compilation.

2. Use the Test view to test the Integration Point. Select Service Complete and set
values for the different arguments: customerId = 7, agent = John, length
= 21, and reasonCode = 18.

3. Click Send. You should see results similar to the following:

13:57:29,794 Integration Point - Service Complete.

Analyze Call Reasons

Creating an Inline Service 2-21

13:57:29,794 Reason Code: 18
13:57:29,794 Agent: John
13:57:29,794 Length: 21
13:57:29,794 MakePayment was added to the model

When this Informant with the shown input values is called, the Call entity, which
is an attribute of the Session, is populated with information about the agent,
length of call, and reason code. The Informant logic then determines that since the
reason code was 18, then the Make Payment choice will be added to the Reason
Analysis model. That is, the count for the Make Payment choice will have been
increased by one. Along with the count, the model also tracks all of the session
attributes and correlation with the choices.

4. Change the values and test a few times to see that the correct Object ID is being
added to the model for other reason codes.

Analyze Call Reasons

2-22 Oracle Real-Time Decisions Platform Developer's Guide

3

Simulating Load for Inline Services 3-1

3Simulating Load for Inline Services

This chapter of the tutorial contains step-by-step instructions for utilizing Load
Generator to simulate the run-time operation of the system.

In general, Load Generator is used in three situations:

■ Performance: To characterize the performance of the system under load,
measuring response time and making sure the whole system, including back-end
data feeds, can cope with the expected load.

■ Initialize: To initialize the learnings and statistics with some significant data for
demonstration purposes.

■ Process: To process off-line batch sources - for example, when exploring
previously collected data at the initial stages of a project.

This chapter contains the following topics:

■ Section 3.1, "Performance Under Load"

■ Section 3.2, "Resetting the Model Learnings"

3.1 Performance Under Load
To evaluate performance under load, we will create a load-simulator script that calls
the integration points defined in the Inline Service: Call Begin, Service Complete, and
Call End. The script will call this series of three integration points multiple times, each
time with different customer id's, call reason codes, agent names, and call lengths. The
Reason Analysis model will learn on each of these iterations and we will be able to see
the analysis results in Decision Center reports.

For this tutorial, we can think of Load Generator as simulating the CRM application
making multiple iterations of integration point calls to Real-Time Decision Server. The
Load Generator script (saved as an xml file) we will create will contain the definition
of this simulation.

Note: When defining the Load Generator script, all references to
Inline Service objects must be in the form of object IDs, not labels. To
view the object IDs in Studio, use the object ID Toggle icon on the
Inline Service Explorer taskbar:

For example, the ID for the Service Complete Informant is
ServiceComplete, the ID for the reason code Informant parameter
is reasonCode, and so forth.

Performance Under Load

3-2 Oracle Real-Time Decisions Platform Developer's Guide

This section contains the following topics:

■ Section 3.1.1, "Creating the Load Generator Script"

■ Section 3.1.2, "Viewing Analysis Results in Decision Center"

■ Section 3.1.3, "Excluding the Attribute"

3.1.1 Creating the Load Generator Script
To create the Load Generator script:

1. Open Load Generator by running RTD_HOME\scripts\loadgen.cmd. Then,
click Create a new Load Generator script.

You can press F1 to read the online help for Load Generator. It explains the
parameters that are not explained in this tutorial.

2. Select the General tab and enter values for the parameters as shown in Table 3–1.

Table 3–1 Parameters for General Tab

Parameter Name Explanation Value

Client Configuration File A properties file that indicates the
protocol to be used to
communicate with the server,
what server to talk to and
through what port. The default is
to communicate using HTTP to
the local server using port 8080.
The default file is suitable for our
needs.

RTD_HOME\client\clientHttp
EndPoints.properties

Graph Refresh Interval
in Seconds

This parameter only affects the
user interface. It determines the
refresh rate for the UI graph and
counters. The default is to refresh
every 2 seconds.

2

Inline Service This is the name we gave the
Inline Service we created in the
previous section.

Tutorial

Random Number
Generator Seed

The seed used to generate
random numbers. Default is -1.

-1

Think Time Think Time is the time in between
transactions. In a session oriented
load simulation you would give
different numbers here. For this
tutorial we will explore the
maximum throughput, sending as
many sessions as possible. Values
for Think Time can be fixed or a
range of values.

Fixed Global Think Time

Constant A fixed constant for think time in
between transactions.

0

Number of concurrent
scripts to run

This is the number of sessions
active at any given point, running
in parallel. In this case we will
just run one session at a time.

1

Performance Under Load

Simulating Load for Inline Services 3-3

In the path names, make sure to replace RTD_HOME with the path where you
installed Real-Time Decision Server (for example, C:\OracleBI\RTD).

Note that parameters related to sessions cannot be changed in the middle of
execution. More precisely, they can be changed, but their changes will not affect
execution until the Load Generator script is stopped and restarted.

3. Save the configuration. It is customary to save Load Generator scripts in a folder
named etc within the inline service project folder. If you had created the Tutorial
Inline Service in the default workspace, the path would be similar to:
C:\Users\Win_User\Oracle RTD Studio\Tutorial\etc. Name the script
(an xml file) anything you like (for example, TutorialLoadgen.xml).

4. To define the values for the parameters to the Integration Point, click the Variables
tab. Variables allow an Integration Point's parameter values to be drawn from
different sources.

5. Right-click the Script folder and select Add Variable. Name it var_customerId.
In Contents, select Integer Range from 1 to 2000, sequential. This definition will
create a variable that is computed once per session and goes from 1 to 2000
sequentially, that is, the first session will have var_customerId = 1 and the last
one will be 2000. Right-click Script and select Add Variable three more times for a

Maximum number of
scripts to run

The total number of session that
will be created. Load Generator
will stop sending events after this
number has been reached.

2000

Enable Logging Option to enable/disable loadgen
counters log. This log maintains a
history of loadgen performance
data, including the number of
requests sent by Load Generator,
number of errors, the average and
peak response times of a request,
etc. If deselected, the remaining
three logging parameters
(Append to Existing File, Log
File, Logging Interval in Seconds)
are ignored.

Deselected

Append to Existing File Option to indicate whether to
overwrite or append to an
existing log file each time a
loadgen script is run.

Deselected

Log File File path to an ascii file. This is
the location where the Load
Generator log will be written, in
tab-delimited format.

RTD_HOME\log\loadgen.csv

Logging Interval in
Seconds

This parameter only affects the
Load Generator log. It determines
the interval for writing to the log.
The default is 10 seconds.

10

Note: It is possible that not all the tree is visible on the left. To make
it all visible, you can drag the bar dividing the two areas.

Table 3–1 (Cont.) Parameters for General Tab

Parameter Name Explanation Value

Performance Under Load

3-4 Oracle Real-Time Decisions Platform Developer's Guide

total of four variables, as shown in Table 3–2.

6. Select the Edit Script tab, then right-click the left area and select Add Action. We
will add three actions, each corresponding to an integration point. We need the
actions to be in the right order - CallBegin, ServiceComplete, and finally CallEnd.

7. For the first action, set the type to Message and the Integration Point name to
CallBegin. In Input Fields, right-click and choose Add item to add an input field.
Double-click in the space under Name and enter the value customerId; press
Enter to register the new value. In the Variable column for customerId, choose
var_customerId from the drop-down list. Select Session Key to identify this field
as the session key.

8. For the action ServiceComplete, add three additional fields, as shown in
Table 3–3.

Again, the names here must match exactly with the incoming parameter IDs for
the ServiceComplete Informant as seen in Decision Studio. Use the Toggle icon on
the Inline Service Explorer task bar in Decision Studio to toggle between the label
of the object and its object ID:

Figure 3–1 shows what the completed Input Fields section for ServiceComplete
should look like.

Table 3–2 Variable Names and Values for Load Generator Script

Parameter Name Content Type Value

var_customerId Integer Range Minimum = 1, Maximum = 2000, Access type
= Sequential

var_reasonCode Integer Range Minimum = 17, Maximum = 20, Access type
= Random

var_agent String Array To add a string to the array, right-click on the
table area and select Add Item. Then select
(double-click) the newly created row to get a
cursor and type the name to be used. Press
the Enter key to register the value for that
row. Add a few sample values of agent
names (for example, John, Peter, Mary, and
Sara).

var_length Integer Range Minimum = 75, Maximum = 567, Access type
= Sequential.

This will be used as the length of the call in
seconds.

Table 3–3 Additional Input Fields for ServiceComplete

Name Variable

reasonCode var_reasonCode

agent var_agent

length var_length

Performance Under Load

Simulating Load for Inline Services 3-5

Figure 3–1 Input Fields for ServiceComplete

9. In the Edit Script tab, right-click the left area and select Add Action. Set the type
to Message and the Integration Point name to CallEnd. In Input Fields, right-click
and chose Add item to add an input field. Set the Name to customerId, the
Variable to var_customerId, and select Session Key.

10. Once again, save the Load Generator configuration script. Our Load Generator
script now contains calls to three integration points. Make sure the order of the
actions in the Edit Script tab is correct: CallBegin, ServiceComplete, and CallEnd.
If not in this order, right-click the actions to move items up or down. Then, save
the script again.

11. Go to the Run tab and press the Play button. Allow Load Generator to complete.

Note that there is a Pause button and a Stop button. The difference between these
two is that Pause remembers the sequences and will continue from the point it
was paused, whereas Stop resets everything.

3.1.2 Viewing Analysis Results in Decision Center
You can use the Decision Center to check what has been learned by the models after
running Load Generator. To do this:

1. Open Decision Center by opening a Web browser and going to the URL
http://server_name:8080/ui. Log in using the user name and password
provided for you, as described in Section 2.2, "About Deployment and Decision
Center Security."

Tip: If you encounter problems, look at the Total Errors in the Run
tab. If the number is above 0, look at the server output window. There
may be an indication of the problem. Common mistakes are:

■ The Inline Service has not been deployed.

■ There is a spelling or case mistake in the name of the Inline
Service or the Integration Point.

■ The server is not running.

If the Total Requests stays at 1 and does not grow, there may be a
mistake in the definition of the loadgen script. Some things to look for
include:

■ In Integer Range variables, make sure the Minimum is below the
Maximum.

■ Make sure that the mapping of values sent in messages to
variables is correct. For example, if a variable name is changed,
the mapping needs to be redone.

■ Make sure the Client Configuration file is correct.

Performance Under Load

3-6 Oracle Real-Time Decisions Platform Developer's Guide

2. Click Open Inline Services. The Select Inline Service window appears. Select
Tutorial, then expand Call Reason and select one of the Choices, such as Make
Payment. In the right pane, navigate to the Analysis tab and then the Best-fit
subtab. This report summarizes the number of times this call reason was seen, and
correlations between this call reason and attribute values.

You will see something interesting. The call reason code has an unexpectedly
strong correlation to Make Payment, as shown in Figure 3–2.

Figure 3–2 Correlating Attribute Values for Make Payment

Since we generated the call data randomly with Load Generator variables, we
would not expect to have any significant correlations. In this case, however, the
call reason code (sent by the ServiceComplete Informant) absolutely determines
the call reason (see Section 2.9.5, "Testing It All Together" for a discussion of this
logic).

To remove this induced correlation, we should exclude this attribute from being
used as an input to the model. Another type of attribute we might exclude from
models is a customer's full telephone number. After all, it is unlikely that
correlations can be found between unique telephone numbers and the reason
he/she called. On the other hand, there may be correlations between the area
codes of customers and the call reasons, so this would be an attribute that we
would not exclude from the model. In the next section, you will exclude the
'reason code' attribute from the model and re-run the Load Generator script.

3.1.3 Excluding the Attribute
To exclude the reason code attribute:

1. In Decision Studio, open the Tutorial project.

2. Expand Service Metadata > Models, then double-click Reason Analysis from the
Inline Service Explorer.

3. Go to the Attributes tab. In the lower table, titled Excluded Attributes, click Select
to choose an attribute to exclude. Expand the Session node, then expand the call
entity and select reason code. Click OK.

4. Save all and redeploy to the localhost server.

5. You can now re-run the Load Generator script.

Resetting the Model Learnings

Simulating Load for Inline Services 3-7

If you use Decision Center now to look at the counts, you will notice that they include
the events from both runs of Load Generator. This happens because we did not reset
the models between the two times we ran the Load Generator script.

3.2 Resetting the Model Learnings
Use the JConsole administration tool to reset the Model learnings, as follows:

1. If you are using WebLogic, open JConsole by running JAVA_
HOME\bin\jconsole.exe. If you are using WebSphere, run the batch script you
created during JConsole configuration. See Oracle Real-Time Decisions Installation
and Administration Guide for more information about accessing JConsole.

2. Click the Remote tab. Then, enter the appropriate port number (typically 12345)
and the administrator credentials you created during installation and click
Connect.

3. Click the MBean tab, then go to the OracleRTD > InlineServiceManager >
Tutorial > Development > Loadable MBean.

4. Click the Operations tab, then use the deleteAllOperationalData() operation to
remove all operational data, including the study, for this Inline Service.

5. To see the new results in Decision Center, run the Load Generator script again.

3.2.1 Summary of the Inline Service
We have so far created a simple but fully functional Inline Service. We did so by
starting with the definition of the data environment, the data source and entity for the
customer, and then the entity for the current call data. After testing the basic
functionality, we created several Integration Points and a model to perform the
analysis. Logic was added to determine the reasons of the customer calls and to record
occurrence of the different reasons in a model for analysis purposes. We then used
Load Generator to simulate requests against Real-Time Decision Server and the
Tutorial inline service. The results are then viewed in Decision Center.

Resetting the Model Learnings

3-8 Oracle Real-Time Decisions Platform Developer's Guide

4

Enhancing the Call Center Inline Service 4-1

4Enhancing the Call Center Inline Service

This chapter of the tutorial contains instructions for creating and configuring Inline
Service elements - specifically, performance goals, scoring rules, advisors, and
decisions - that together enable Oracle RTD to recommend the best offer to present to a
customer.

In Chapter 2, we created an Inline Service that tracks and analyzes incoming data
related to the reason for calls to a credit card call center. In Chapter 3, we used Load
Generator to simulate client requests (through Informant calls) to our Inline Service.

In this chapter, we will enhance the Tutorial Inline Service to provide cross-selling
advice to the CRM application. The process enhancement is this: after the agent has
finished processing the customer's call in the normal way (Service Complete Informant
called), the agent then takes the opportunity to present an offer to the customer. In
Chapter 5, we will track the customer's response to the offer, and then use what was
learned from the responses in presenting offers to other customers.

This chapter contains the following topics:

■ Section 4.1, "About Using Choice Groups and Scoring to Cross Sell"

■ Section 4.2, "Creating an Offer Inventory Using Choice Groups"

■ Section 4.3, "Configuring Performance Goals"

■ Section 4.4, "Scoring the Choices"

■ Section 4.5, "About Advisors"

■ Section 4.6, "Creating the Decisions"

■ Section 4.7, "Creating the Advisor"

■ Section 4.8, "Viewing the Integration Map"

■ Section 4.9, "Testing the Advisor"

4.1 About Using Choice Groups and Scoring to Cross Sell
We will create a choice group of offers that can be extended to customers calling the
service center. Choice scores are based on cost in order to support our Performance
Metric of minimizing cost. Next, an Advisor is created to pass that cross sell
recommendation to the CRM application, so that the call center agent can extend the
offer.

Creating an Offer Inventory Using Choice Groups

4-2 Oracle Real-Time Decisions Platform Developer's Guide

Figure 4–1 Cross-Selling Offer

4.2 Creating an Offer Inventory Using Choice Groups
To create an offer inventory using Choice Groups:

1. In the Inline Service Explorer, right-click the Choices folder and select New
Choice Group. Name the group Cross Selling Offer and click OK.

2. Expand Choices and select/open the newly created group. Add a description.

3. In the Choice Attributes tab, click Add next to the Attributes table. Add the
attributes shown in Table 4–1, making sure to select Send to client and
Overridable.

4. In the Inline Service Explorer, under Choices, select the Cross Selling Offer choice
group and add five choices with their attributes, as shown in Table 4–2. To add
each of the choices, follow these steps:

a. Right-click Cross Selling Offer in the Inline Service Explorer and select New
Choice. Add the following choices: Credit Card, Savings Account, Life
Insurance, Roth IRA, and Brokerage Account.

b. In the Inline Service Explorer, under Choices, expand the Cross Selling Offer
Group to show the choices. For each choice, follow these steps to add
attributes:

Table 4–1 Attributes for Choice Attributes Tab

Attribute Name Data Type Send to client Overridable

Offer Description String Selected Selected

URL String Selected Selected

Agent Script String Selected Selected

Note: These attributes are sent to the client because they are needed
by the client (call center agent) to present the offer.

The attributes should be overridable because their values will be
different for each actual offer. Cross Selling offers will be represented
by choices in this choice group.

In a real Inline Service, we are likely to see several levels of choice
groups before we get to actual offers. Each choice group provides a
logical group for offers, and may have attributes or business rules that
apply uniformly to a group of offers.

Scoring the Choices

Enhancing the Call Center Inline Service 4-3

– Select the Choice in the Inline Service Explorer. In the Editor for that
choice, add a description.

– On the Attribute Values tab, you will see three attributes: Agent Script,
Offer Description, and URL. Using Attribute Value, add the attribute
values shown in Table 4–2.

5. Save the configuration by choosing File > Save All.

4.3 Configuring Performance Goals
To configure performance goals:

1. In the Inline Service Explorer, double-click the Performance Goals element to
open the editor. Click Add to add a Performance Metric. Name the metric Cost.
Click OK.

2. In Optimization, choose Minimize and make the metric Required.

3. Save the configuration by choosing File > Save All.

4.4 Scoring the Choices
Each product costs the company an average amount to maintain on a yearly basis. The
cost in dollars is the score for that product.

To score the choices:

1. In the Inline Service Explorer, under Choices, select and open the Cross Selling
Offer choice group. In the Scores tab, click Select Metrics and choose the

Table 4–2 Attribute Values for Choices

Choice Name Agent Script
Offer
Description URL

Brokerage
Account

Would you like to
try our new
brokerage account?

Brokerage
Account offer

http://www.offer.com/offer1.html

Credit Card Would you like to
try our new credit
card?

Credit Card
offer

http://www.offer.com/offer2.html

Life Insurance Would you like to
try our new life
insurance?

Life Insurance
offer

http://www.offer.com/offer3.html

Roth IRA Would you like to
try our new Roth
IRA?

Roth IRA offer http://www.offer.com/offer4.html

Savings
Account

Would you like to
try our new savings
account?

Savings
Account offer

http://www.offer.com/offer5.html

Note: If you have more than one performance metric, you must use
the Normalization Factor to normalize the values. For instance, if you
had another metric called "Minimize hold time" measured in seconds,
the normalization factor would be how many minimized seconds are
worth a dollar (revenue) to your organization.

Scoring the Choices

4-4 Oracle Real-Time Decisions Platform Developer's Guide

performance metric Cost, then click OK. This sets up the choice group with a Cost
score. The actual score values will be set on a per-choice basis.

Score values do not have to be constants. In many cases, score for one type of
customer can differ by a significant amount from another customer type. We can
express such differences through the use of formulas or scoring rules. For
example, the Cost to maintain a credit card account may be less for customers who
are age 40 or under. We will define this logic in a Scoring Rule and then assign
this rule to the Cost score for the Credit Card offer.

2. In the Inline Service Explorer, right-click the folder Scoring Rules and select New
Scoring Rule. Name the scoring rule Credit Card Score. The editor for this
new rule opens.

3. Click the Add conditional value icon to set up a rule condition in addition to the
default:

A new row will appear, where the left cell is a two-sided rule and the right cell is
the score value. The logic is as follows: "If the left cell evaluates to true, then the
value in the right cell will be returned, otherwise use the value in the second row
of the rule."

Click the left side of the rule and then on the ellipsis. An Edit Value dialog
appears. Select Attribute, expand session attributes > customer and select Age,
then click OK. Click the condition operator icon, then click the lower-right corner
triangle:

Select the less than or equal to symbol (<=). Click in the right half of the rule and
type the number 40. In the Then cell, type the number 130. In the second row,
select and type in the number 147 for the value. The full rule should look like the
one shown in Figure 4–2.

Figure 4–2 Completed Rule Condition

Save the Credit Card Score scoring rule. For the other offers, we will set constant
values for the Cost score.

4. For each of the choices under the choice group Cross Selling Offer, open the
Scores tab. In the Score column for the Cost metric, enter the values shown in
Table 4–3. To set the Cost score for the Credit Card choice, click the ellipsis in the
Score column, then select Function or rule call as the Value Source. In the
Function to Call drop-down list, select Credit Card Score.

Table 4–3 Cost Scores for Choices

Choice Cost Score

Brokerage Account 150

Creating the Decisions

Enhancing the Call Center Inline Service 4-5

Since our Performance Goal is to minimize costs, it is clear that the Savings
Account offer (score =135) will be chosen unless the customer's age is 40 or below
(score = 130), in which case the Credit Card offer will be chosen. In later sections of
the tutorial, we will add another Performance Goal, Maximize Revenue, to see
how these two competing performance metrics are optimized by the platform.

5. Save the configuration by choosing File > Save All.

4.5 About Advisors
When an external system needs a decision to be made on its behalf, it calls an Advisor.
Here, we create the Advisor that will send back to the CRM application an offer
selected for a specific customer.

The Advisor's internal structure includes a Decision which associates it with one or
more Choice Groups. These Choice Groups contain the offers that are to be made. The
result of the decision is the result sent to the Advisor.

An Advisor has two decisions, one for normal processing and the other for the control
group. The control group serves as a baseline to show performance gains achieved by
Oracle RTD.

Figure 4–3 Structure of Get Cross Sell Offer Advisor

4.6 Creating the Decisions
To create the decisions:

1. In the Inline Service Explorer, right-click the Decisions folder and select New
Decision. Name the Decision Select Offer and click OK.

2. Add a description for Select Offer. On the Selection Criteria tab in the Decision
editor, locate Select Choices from. Click Select, then select the Cross Selling Offer
from the list and click OK.

3. For our control group, we will have a decision that chooses an offer randomly.
Create a new Decision and name it Random Choice.

4. Add a description for Random Choice. On the Selection Criteria tab in the
Decision editor, locate Select Choices from. Click Select, then select the Cross
Selling Offer from the list and click OK.

Credit Card Credit Card Score Scoring Rule: 130 if Age <=40, Otherwise 147

Life Insurance 140

Roth IRA 145

Savings Account 135

Table 4–3 (Cont.) Cost Scores for Choices

Choice Cost Score

Creating the Advisor

4-6 Oracle Real-Time Decisions Platform Developer's Guide

5. Check the Select at random box.

6. Save the configuration by choosing File > Save All.

4.7 Creating the Advisor
To create the Advisor:

1. In the Inline Service Explorer, under Integration Points, right-click the Advisors
folder and select New Advisor. Name the element Get Cross Sell Offer and
click OK.

2. To add a session key to the Get Cross Sell Offer Advisor, click Select under
Session Keys in the Editor and select customerId. Click OK.

3. Under External System, select CRM. For Order, enter 3.

Recall that we had set the Order for Informant 'Service Complete' to 2. We are
preparing to call the Get Cross Sell Offer Advisor after this Informant, and thus
the order number 3. Note that the Order is only used in Decision Center's
integration map to help graphically describe the application process; Order does
not force integration points to execute in any particular sequence.

4. On the Response tab, select a Decision for both the normal processing and the
control group. Select Select Offer for the Decision and Random Choice for the
Control Group Decision.

5. In the Default Choices section, click Select, then choose Life Insurance from the
list and click OK. This will make the selected Offer the default response for this
Advisor. This default will be used when there is any problem in the computation
(for instance, if there is a timeout).

6. In the Asynchronous Logic tab, enter the following code:

logInfo("Integration Point - Get Cross Sell Offer");
logInfo(" Customer age = " + session().getCustomer().getAge());
// 'choices' is array returned by the 'Select Offer' decision
if (choices.size() > 0) {
//Get the first offer from array
Choice offer = choices.get(0);
logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");

}

If we had entered the code in the Logic tab, it would have been executed before
the decision was made on which offer to return, and we would not be able to print
the name of the offer returned. In the preceding code, we print the customer's age
and the presented offer name. Recall that because we are minimizing on Cost, only
the offers Savings Account and Credit Card will be presented, depending on the
age of the customer.

Note: The Control Group acts as a baseline so that the business user
can compare the results of the predictive model against the
pre-existing business process. It is important to correctly define the
Control Group decision to truly reflect the decision as it would have
been made if Oracle RTD was not installed. For example, in a
cross-selling application for a call center, if agents randomly selected
an offer before Oracle RTD was introduced, then the Control Group
Decision should return a random selection.

Viewing the Integration Map

Enhancing the Call Center Inline Service 4-7

7. Save the Inline Service. Click the Deploy button. Select Terminate Active Sessions
(used for testing) to remove any session that is still currently active. Deploy.

Figure 4–4 shows how the Get Cross Sell Offer Advisor retrieves an offer from the
Cross Selling Offer choice group, based on the performance goal Cost.

Figure 4–4 Get Cross Sell Offer Advisor Retrieving an Offer from Cross Selling Offer
Choice Group

4.8 Viewing the Integration Map
To view the Integration Map in Decision Center:

1. Open Decision Center by opening a Web browser and going to the URL
http://server_name:8080/ui. Log in using the default administrator
credentials you created during installation. Real-Time Decision Server must be
started for Decision Center to run.

2. Click Open an Inline Service.

3. Select the Tutorial Inline Service.

4. On the left-hand tree, click the root node Tutorial. In the right pane, on the
Definition tab, click to view the Integration Map subtab. You should see

Testing the Advisor

4-8 Oracle Real-Time Decisions Platform Developer's Guide

something similar to the map shown in Figure 4–5.

Figure 4–5 Tutorial Integration Map

The symbols shown in Table 4–4 are used on the Integration Map to indicate
integration points, processing, entities, and information flow.

4.9 Testing the Advisor
To test the Advisor:

1. In Decision Studio, use the Test View to send a request integration point. Select the
Service Complete Informant and fill in some values for the parameters. For
example: customerId = 7, agent = John, length = 21, reason code = 18 (others:
17, 19, or 20).

2. Click the Send icon:

Table 4–4 Integration Map Symbols

Symbol Significance

Processing on the Real-Time Decision Server

Advisor call

Information provided to Real-Time Decision Server

Informant Call

Testing the Advisor

Enhancing the Call Center Inline Service 4-9

Then, confirm in the Log subtab that the message was sent. This Informant call
creates a new session based on the customer ID and registers the customer's call
reason, agent's name, and call length.

3. Now select the Get Cross Sell Offer Advisor, leaving the customerId as it is, as we
want to continue with the same session. Click Send.

The selected offer and its attributes are returned and displayed in the Response
pane in the Test View.

In the Log subtab in the Test View, for customerId = 7, you should see something
similar to the following:

00:24:40,764 Integration Point - Get Cross Sell Offer
00:24:40,764 Customer age = 38
00:24:40,764 Offer presented: 'Credit Card'

4. Repeat steps 1 to 3 with different values for customerId and other parameters.
Notice that the Credit Card offer is returned if the customer's age is 40 or below,
and the Savings Account offer is returned for all other ages. This is expected
because so far, we have only optimized on the Cost performance metric, thus the
lowest cost offer is either Savings Account or Credit Card, depending on the
customer's age (see the Credit Card Score scoring rule in "Scoring the Choices" on
page 4-3).

5. In the Trace subtab of the Test View, you will find a description of the sequence
taken to arrive at the offer, from determining which offers are eligible to
computing scores for each offer, and finally choosing the offer that met the
performance goal (minimize Cost).

Testing the Advisor

4-10 Oracle Real-Time Decisions Platform Developer's Guide

5

Closing the Feedback Loop 5-1

5Closing the Feedback Loop

This chapter concludes the tutorial section by describing how choice group events and
choice event models are configured to provide feedback information on the
effectiveness of choices recommended by Oracle RTD. The chapter also shows how the
feedback information appears in several Decision Center reports.

In the previous chapter, we added an Advisor that returns an offer to the CRM
application so the call center agent can present it to the customer. Once presented to
the customer, we want to track whether the customer has accepted the offer and thus
close the loop on the offer presentation/acceptance process. The feedback loop can be
closed in different ways and at different times. It is not unusual to know the results
only days or weeks after a decision or offer is made. Even then, in many cases, only the
positive result is seen, but not the negative. Feedback can come directly from
customers, from the agents handling the call, from operational systems that handle
service, fulfillment or billing, or even from batch processes.

The way the feedback loop is closed with an Inline Service is by notifying the
Real-Time Decision Server through the use of Informants.

This chapter contains the following topics:

■ Section 5.1, "Using Events to Track Success"

■ Section 5.2, "Using the Predictive Power of Models"

5.1 Using Events to Track Success
In most cases, there are different events in the lifetime of an offer that are interesting
from the point of view of tracking success. For example, the events in the life of a
credit card offer may be:

■ Offer presented

■ Customer showed interest

■ Applied for the card

■ Received the card

■ Used the card

An argument could be made that only when the customer uses the credit card is there
any real success. The goal is to bring more customers that not only show interest,
apply and get the card, but for them to also use it, as card usage is what brings
revenue to the company.

Usually, it is easier to track events that are closer to the presentation of the offer. For
example, if an offer is presented in the call center by an agent, the agent can gauge the

Using Events to Track Success

5-2 Oracle Real-Time Decisions Platform Developer's Guide

degree of interest shown by the customer. For an offer presented in a Web site, a
click-through may be the indicator of interest.

Events further down the life of an offer may be much more difficult to track and
decide on the right offer. Therefore, it is not unusual to begin a project having only the
immediate feedback loop closed, and adding events further down the road as the
system matures. Nevertheless, even with only immediate feedback, Oracle RTD can
provide significant lift in marketing decisions.

This section contains the following topics:

■ Section 5.1.1, "Defining Events in Choice Groups"

■ Section 5.1.2, "Defining a Choice Event Model"

■ Section 5.1.3, "Additional Model Settings"

■ Section 5.1.4, "Remembering the Extended Offer"

■ Section 5.1.5, "Creating the Feedback Informant"

■ Section 5.1.6, "Testing the Feedback Informant"

■ Section 5.1.7, "Updating the Load Generator Script"

5.1.1 Defining Events in Choice Groups
Events are defined at the Choice Group level. While they can be defined at any level
in the hierarchy, they are usually found at the highest level, close to the root.

We will define two events, one to represent the fact that an offer was presented to the
customer, and the other to represent the fact that the offer was accepted. For the
tutorial, we will assume that every offer selected as a result of the Advisor will be
presented, and that the acceptance of offers is known immediately.

To define events in a choice group:

1. In the Inline Service Explorer, under Choices, double-click the Choice Group
Cross Selling Offer.

2. Select the Choice Events tab. Click Add to add two events, one named
presented and the second named accepted. Note that these event names are
simply labels and do not correspond to any internal state of the offer. These events
will be used in a Choice Event Model (described in the next section), where these
event names will take on meaning.

3. For each event, set the Statistic Collector to Choice Event Statistic Collector using
the drop-down list. This is the default statistics collector. This will provide for
statistics gathering regarding each of the events.

4. Make sure that Event History (days) is set to Session Duration.

5. Leave the Value Attribute empty.

This is used for the automatic computation of the event. In this tutorial, we will be
causing the events to be recorded from the logic of the feedback Informant.

6. Choose File > Save All.

5.1.2 Defining a Choice Event Model
Events are defined and are ready to have statistics tracked. In addition to tracking
statistics, we are interested in having a self-learning-model learn about the correlations

Using Events to Track Success

Closing the Feedback Loop 5-3

between the characteristics of the customers, calls and agents, and the success or
failure of offers. This knowledge is useful in two ways:

■ It is useful for providing insight and understanding to the marketing and
operations people.

■ It is useful to provide automatic predictions of the best offer to present in each
situation.

In this tutorial, we will show both usages.

To define a choice event model:

1. In the Inline Service Explorer, right-click the Models folder and select New Choice
Event Model. Call the new model Offer Acceptance Predictor and click
OK.

2. In the Editor, deselect Default time window and set Time Window to a week.

3. Under Choice Group, select Cross Selling Offer.

This is the group at the top of the choice hierarchy for which we will track offer
acceptance using this model.

4. Under Base Event, select presented. Recall that you had defined these event
names in the choice group in the previous section.

This is the event from which we want to measure the success. We want to track
whether an offer was accepted after it was presented.

5. In Positive Outcome Events, click Select, choose accepted, and click OK. For the
tutorial, this is the only positive outcome. If more events were being tracked, we
would add them here also.

6. Optionally, you can change the labels to be more offer-centric.

5.1.3 Additional Model Settings
There are other settings that are useful for Choice Event Models. Using the Attributes
tab, you see there are two main settings: partitioning attributes and excluded
attributes. The following sections describe these and other settings.

This section contains the following topics:

■ Partitioning Attributes

■ Excluded Attributes

■ Learn Location

5.1.3.1 Partitioning Attributes
Partitioning attributes are used to divide the model along strong lines that make a big
difference. For example, the same offer is likely to have quite different acceptance
profiles when presented in the Web or the call center, thus the presentation channel
can be set as a partitioning attribute.

You can have more than one partitioning attribute, but you should be aware that there
may be memory usage implications. Each partitioning attribute multiplies the number
of models by the number of values it has. For example, a model having one
partitioning attribute with three possible values and another with four possible values
will use twelve times the memory used by a non-partitioned model. Nevertheless, do
use partitioning attributes when it makes sense to do so, as it can significantly improve
the predictive and descriptive capabilities of the model.

Using Events to Track Success

5-4 Oracle Real-Time Decisions Platform Developer's Guide

5.1.3.2 Excluded Attributes
Sometimes, it does not make sense to have an attribute be an input to a model. For
example, we saw in the Reason Analysis model (as described in Section 3.1.2, "Viewing
Analysis Results in Decision Center") that having the reason code as an input created a
correlation between reason code and the call reason choices. This relationship was
entirely expected due to the logic we had written in Section 2.9.4, "Adding Logic for
Selecting Choices." Since this correlation was artificial and did not offer insight, we
excluded reason code from the model.

It should be noted that the reason code could be an important factor for other models
and should not be excluded. For example, in the Offer Acceptance Predictor model, we
would be very interested to see if offer acceptance was correlated with the reason code.

5.1.3.3 Learn Location
The Learn Location tab has the settings for the location in the process where model
learning happens. The default, On session close, is a good one for most cases.
Learning on specific Integration Points may be useful when it is desired to learn from
more than one state in a session.

5.1.4 Remembering the Extended Offer
The choice event model is complete and it is ready to be used. In order to feed it with
the right information, we need to complete the logic for closing the loop.

In order to have available which offer was extended, we will remember the offer ID in
the session. This is not absolutely necessary, as the front-end client could remember
that, but here we do not want to make any assumptions about the capabilities of the
front end. We will just use a simple String attribute to remember the offer; in more
complex cases we would use an array to remember many choices.

To remember the extended offer:

1. In the Inline Service Explorer, double-click Session under Entities.

2. Click Add Attribute, then add an attribute named Offer Extended.

3. Enter a description. Deselect Show in Decision Center and Use for Analysis.
Click OK.

We do so because for now, we will treat this as an internal variable, not to be seen
by the business users.

4. In the Inline Service Explorer, double-click Get Cross Sell Offer under Integration
Points > Advisors.

5. In the Asynchronous Logic tab, update the existing code by adding several lines
to record the presented event and to set the OfferExtended session attribute with
the value of the choice id. The completed code should be as follows:

logInfo("Integration Point - Get Cross Sell Offer");
logInfo(" Customer age = " + session().getCustomer().getAge());
// 'choices' is array returned by the 'Select Offer' decision
if (choices.size() > 0) {
//Get the first offer from array
Choice offer = choices.get(0);
//For the selected offer, record that it has been 'presented'
offer.recordEvent("presented");
//Set the session attribute 'OfferExtended' with the offer's ID.
session().setOfferExtended(offer.getSDOId());
logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");

Using Events to Track Success

Closing the Feedback Loop 5-5

}

This will assign the SDOId of the selected choice to the OfferExtended attribute of
the session entity. The SDOId is a unique identifier. Every object in an Oracle RTD
configuration has a unique SDOId. It will also record the Presented event for the
selected offer. Note the event name is in lowercase and corresponds to the choice
event id for Presented. To see the id, go to Inline Service Explorer, expand Choices,
double-click on Cross Selling Offer, click on the Choice Events tab, and click the
label/id Toggle icon:

At this point of the decision, the session knows which offer has been chosen to be
presented to the customer by the call center agent (through the Get Cross Sell
Offer Advisor). We do not yet know the response from the customer. The response
will be sent through a feedback Informant described in the next section.

5.1.5 Creating the Feedback Informant
This Informant provides Oracle RTD with the information needed to determine the
result of the offer selection decision.

To create the feedback Informant:

1. In the Inline Service Explorer, expand Integration Points, right-click the
Informants folder, and select New Informant. Call the Informant Offer
Feedback.

2. In the Editor, type a description. Under External System, select CRM. Under
Order, enter 4.

3. To add a session key to the Offer Feedback Informant, click Select next to the
Session Keys list. Select customerId and click OK.

4. Click Add to add an incoming parameter. Call it Positive.

5. Select the data type String if is not already selected and click OK.

Leave it unmapped. We do not need to map it to any session attribute because we
will use this argument immediately to determine whether the offer was accepted
or not. A yes value will be used to indicate offer acceptance.

6. Using the Logic tab, enter the following under Logic to record the acceptance
event when appropriate.

logInfo("Integration Point - Offer Feedback");
//"yes" or "no" to accept offer.
String positive = request.getPositive();
positive = positive.toLowerCase();

//Get the offer id from session attribute 'OfferExtended'
String extendedOfferID = session().getOfferExtended();
if (extendedOfferID != null) {
 //Get the offer from choice group 'Cross Selling Offer'
 Choice offer = CrossSellingOffer.getChoice(extendedOfferID);
 if (offer != null){
 String offerId = offer.getSDOId();
 //If response is "yes", then record the offer as accepted.

if (positive.equals("yes")) {
offer.recordEvent ("accepted");
logInfo(" Offer '" + offer.getSDOLabel() + "' accepted");

}

Using Events to Track Success

5-6 Oracle Real-Time Decisions Platform Developer's Guide

}
}

7. Save all and redeploy the Inline Service. On the Deploy dialog, check Terminate
Active Sessions (used for testing).

The following diagram shows how the Get Cross Sell Offer Advisor retrieves and
presents an offer, and then the Offer Feedback Informant accepts or rejects the
offer. When the Call End Informant closes the session, the Offer Acceptance
Predictor model is updated with the offer Presented/Accepted events.

Figure 5–1 Tutorial Inline Service Objects: Advisor/Informant Flow

5.1.6 Testing the Feedback Informant
In order to test the Offer Feedback Informant, we need to first call the Get Cross Sell
Offer to retrieve and present an offer.

To test the feedback Informant:

Using Events to Track Success

Closing the Feedback Loop 5-7

1. In Test View, select the Integration Point Get Cross Sell Offer. Enter a value for
the customerId, such as 10.

2. Click the Send icon:

Then, confirm in the Response subtab that an offer was retrieved. In the Log
subtab, you should see something similar to the following:

00:45:28,466 Integration Point - Get Cross Sell Offer
00:45:28,466 Customer age = 38
00:45:28,466 Offer presented: 'Credit Card'

Note that even if you tried different values for customerId, the offer presented is
always Savings Account or Credit Card. This is because we have only one
performance goal at this point - to minimize cost, and Savings Account or Credit
Card is the lowest cost, depending on the age of the customer.

3. Now select the Offer Feedback Informant from the Integration Point drop-down
list. Leave the customerId as it is, as we want to continue with the same session.
Enter a value for input Positive, such as yes.

4. Click Send and confirm in the Log subtab that the offer retrieved by the Get Cross
Sell Offer Advisor is accepted. You should see something similar to the following:

00:46:01,418 Integration Point - Offer Feedback
00:46:01,418 Offer 'Credit Card' accepted

5. Change the input Positive value to no and re-Send the Offer Feedback Informant.
The Log subtab will look something similar to the following:

00:47:31,494 Integration Point - Offer Feedback

5.1.7 Updating the Load Generator Script
We will now update the Load Generator script to include calls to the GetCrossSellOffer
Advisor and the OfferFeedback Informant. Note that these integration point calls
should take place after the ServiceComplete Informant but before the CallEnd
Informant, which closes the session. The logic is: 1) call begins, 2) regular service is
complete - we record and analyze call reasons using the ReasonAnalysis model, 3)
agent presents a cross sell offer to customer, based on lowest Cost goal, 4) we record if
customer has accepted offer, 5) call/session ends, OfferAcceptancePredictor model
learns on offer presented/accepted.

To add the GetCrossSellOffer Advisor to the Load Generator script:

1. Open Load Generator by running RTD_HOME\scripts\loadgen.cmd. Then,
open the previous script.

2. Select the Edit Script tab, then right-click the left tree view and select Add Action.
The action is of type Message and the Integration Point name should be
GetCrossSellOffer.

3. In Input Fields, right-click and chose Add item to add an input field. Click in the
space under Name and type customerId, then press Enter.

4. Click Variable for the input field and use the drop-down list to choose the
matching variable, var_customerId (see Section 3.1.1, "Creating the Load
Generator Script" for more information). Mark customerId as a session key by
selecting Session Key.

Using Events to Track Success

5-8 Oracle Real-Time Decisions Platform Developer's Guide

5. After we add this action to the script, it is placed at the bottom of the actions list.
We need to adjust the order so that GetCrossSellOffer is called after
ServiceComplete. In the left side of the Edit Script tab, right-click
GetCrossSellOffer and select Move Up or Move Down so that the order is
CallBegin, ServiceComplete, GetCrossSellOffer, and CallEnd.

6. Save the Load Generator script.

To add the OfferFeedback Informant to the Load Generator script:

1. Before we add the call to OfferFeedback in the Edit Script tab, we need to create a
new variable in the Variables tab. Recall in the definition of the OfferFeedback
Informant, the parameter positive is used to indicate offer acceptance. In Load
Generator, we will set the value of this parameter to randomly be yes 30% of the
time and no 70% of the time. We do this by using a weighted string array.

2. In the Variables tab, in the left side, right-click on the folder Script and select Add
Variable. Enter var_positive for Variable name, then set the Contents type to
Weighted String Array. Add two items to the array (right-click in the space below
the content type and select Add Item). For the first item, double-click in the
Weight cell to make it editable and type the value 30, and in the corresponding
String cell, type the value yes. The second item should have the weight value of
70 and string value of no. Note that the weights do not have to add up to 100,
because they are normalized automatically. Weight values of 6 and 14 would have
the same desired effect.

Figure 5–2 Weighted String Array Variable

3. Select the Edit Script tab, then right-click the left tree view and select Add Action.
The action is of type Message and the Integration Point name should be
OfferFeedback.

4. In Input Fields, right-click and chose Add item to add an input field. Click in the
space under Name and add customerId. In the Variable column, select the
matching variable, var_customerId (see Section 3.1.1, "Creating the Load
Generator Script" for more information). Mark customerId as a session key by
selecting Session Key.

5. Again in Input Fields, right-click and chose Add item to add an input field. Click
in the space under Name and add positive. In the Variable column, select the
matching variable, var_positive.

6. After we add this action to the script, it is placed at the bottom of the actions list.
We need to adjust the order so that OfferFeedback is called after GetCrossSellOffer.
In the left side of the Edit Script tab, right-click OfferFeedback and select Move
Up or Move Down so that the order is CallBegin, ServiceComplete,
GetCrossSellOffer, OfferFeedback, and CallEnd.

Using Events to Track Success

Closing the Feedback Loop 5-9

Figure 5–3 Adding the OfferFeedback Informant to the Load Generator Script

7. Save the Load Generator script.

You can run the Load Generator script at this point. Again, it is recommended that you
remove existing data before running the script so the results are not mixed with older
data - see Section 3.2, "Resetting the Model Learnings" for information about how to
do this.

If you do run the Load Generator script, you can view the results in Decision Center.
Log in to Decision Center and click the Cross Selling Offer choice group to show the
results of the Offer Acceptance Predictor model. Click the Performance tab and then
the Counts subtab. The distribution of offers and the Pareto graph should look like the
one shown in Figure 5–4.

Using Events to Track Success

5-10 Oracle Real-Time Decisions Platform Developer's Guide

Figure 5–4 Decision Center Performance Counts for Cross Selling Offer

Notice that only two offers were presented - Credit Card and Savings Account, and
each one had an acceptance rate of about 30%. This is entirely expected due to the logic
we have set up so far: 1) Only one performance goal - minimizing Cost - was to be
met, and the Cost is lowest for Savings Account or Credit Card, depending on the age
of the customer (see Section 4.4, "Scoring the Choices"). In the Load Generator script,
we specified that 30% of the time, a positive response to an offer is registered through
the OfferFeedback Informant. If we drill down into the analysis reports of individual
offers, we will not see much correlation between the acceptance of an offer and session
attributes. This is because we are using random customer profile data and forcing the
acceptance rate to be 30%, regardless of customer or other attributes (such as call
length, call agent name, call reason, and so on).

We have now demonstrated how to use performance goal to decide which offer to
present and how to use a choice event model to record how often presented offers are
accepted. We have only used the model for analysis so far. In the next section, we will
add a second performance goal (Maximize Revenue) and use what the model has
learned in order to influence which offer is to be presented. We will also introduce an
artificial bias that increases the likelihood of customers who have two or more children
to accept the Life Insurance offer if it is presented. We will then be able to see how the
bias affects the model results.

Using the Predictive Power of Models

Closing the Feedback Loop 5-11

5.2 Using the Predictive Power of Models
The model we have created learns the correlations between the characteristics of the
customers, the call characteristics, and the cross selling results. This model can be used
in a predictive fashion, to predict the likelihood an offer will be accepted. We can use
the likelihood information to adjust the values of offers when deciding which offer to
present. For example, if offer A is twice as likely to be accepted as offer B, it is
reasonable to favor offer A when an offer is picked to be presented. In this section, we
will introduce a second performance goal - Maximize Revenue - whose value/score is
calculated as the product of the likelihood of acceptance and the base Revenue.

For example, if the base Revenue for the Brokerage Account offer is $300, and the
likelihood of acceptance is 30% (0.3), then the Maximize Revenue score is $300 x 0.3 =
$90. If the base Revenue for the offer Life Insurance is $185, but the likelihood of
acceptance is 60% (0.6), then the Maximize Revenue score is $185 x 0.6 = $111. Even
though Brokerage Account had a higher base Revenue value, the Life Insurance offer
would be favored because its Maximize Revenue score is higher.

Note that we will be choosing the offer to present based on both the Cost and
Maximize Revenue performance goals, so in the previous example, Brokerage Account
may still win if the weighted total of its Cost and Maximize Revenue is higher than the
total for Life Insurance.

We will begin this section by adding a base Revenue, then adding the second
performance goal Maximize Revenue. Then we will set the score for the Maximize
Revenue goal to Revenue multiplied by the likelihood of acceptance. Afterwards, we
will update the Select Offer decision so that both Cost and Maximize Revenue goals
are considered when choosing an offer to present. Finally, in the Offer Feedback, we
will add logic to introduce offer acceptance bias for customers with a certain profile
who are presented the Life Insurance offer.

This section contains the following topics:

■ Section 5.2.1, "Adding a Base Revenue Choice Attribute"

■ Section 5.2.2, "Adding a Second Performance Goal (Maximize Revenue)"

■ Section 5.2.3, "Calculating Score Value for the Maximize Revenue Performance
Goal"

■ Section 5.2.4, "Updating the Select Offer Decision to Include the Second
Performance Goal"

■ Section 5.2.5, "Adding a Choice Attribute to View Likelihood of Acceptance"

■ Section 5.2.6, "Checking the Likelihood Value"

■ Section 5.2.7, "Introducing Offer Acceptance Bias for Selected Customers"

■ Section 5.2.8, "Running the Load Generator Script"

■ Section 5.2.9, "Studying the Results"

5.2.1 Adding a Base Revenue Choice Attribute
To add a base Revenue choice attribute:

1. In the Inline Service Explorer, under Choices, double-click the Cross Selling Offer
Choice Group. In the Choice Attributes tab, click Add.

2. Set the name of this attribute to Revenue of data type Integer. Make sure the
Overridable option is selected, as we will assign a different value for each of the
offers, then click OK.

Using the Predictive Power of Models

5-12 Oracle Real-Time Decisions Platform Developer's Guide

3. For each choice under the Cross Selling Offer Choice Group, set the value of the
Revenue attribute as shown in Table 5–1.

5.2.2 Adding a Second Performance Goal (Maximize Revenue)
Earlier in this tutorial, we defined a Cost performance goal. Now we will add a second
performance goal called Maximize Revenue. We will use the likelihood of acceptance
and the base Revenue of the choice in calculating the score for this new performance
metric. The formula for this is: (Revenue) * (likelihood of acceptance) = potential
revenue score.

To add a second performance goal:

1. In the Inline Service Explorer, double-click Performance Goals to open the editor.
Click Add to add a Performance Metric. Name the metric Maximize Revenue,
then click OK.

2. In Optimization, choose Maximize and make the metric Required. Since $1 of
cost equals $1 of revenue, the Normalization Factor does not need to be adjusted.

3. Next, we need to add this metric to the Cross Selling Offer Choice Group. In the
Inline Service Explorer, double-click Cross Selling Offer. In the Scores tab, click
Select Metrics. In the Select dialog, select Maximize Revenue and click OK.

5.2.3 Calculating Score Value for the Maximize Revenue Performance Goal
To calculate the score value for the Maximize Revenue goal, we need the base Revenue
and the likelihood of acceptance value as determined by the Offer Acceptance
Predictor choice event model. This can be retrieved using the edit value dialog by
changing the value source to Model Prediction.

To calculate the score value for the Maximize Revenue goal:

1. In the Inline Service Explorer, under Choices, double-click the Cross Selling Offer
choice group. In the Scores tab, click in the Score column for the Maximize
Revenue metric, then click the ellipsis to bring up the Edit Value dialog.

2. For the Value Source, select Function or rule call. Under Function to Call, choose
the function Multiply. In the Parameters table, click in the Value cell for
parameter a. Click the ellipsis and choose Attribute or variable, then expand the
Choice folder, select Revenue, and click OK. In the Parameters table, click in the
Value cell for parameter b. Click the ellipsis and choose Model Prediction. Choose
the likelihood predicted by the Offer Acceptance Predictor model and the
Accepted event, then click OK. Click OK again in the Edit Value dialog.

Table 5–1 Revenue Value for Choices

Choice Name Revenue Value

Brokerage Account 300

Credit Card 205

Life Insurance 185

Roth IRA 190

Savings Account 175

Using the Predictive Power of Models

Closing the Feedback Loop 5-13

Figure 5–5 Edit Value Dialog for Maximize Revenue Score

The actual value of the likelihood is from 0 to 1, 1 being 100% likely to accept. It is
also possible for the value to be NaN (Not a number), which means the model did
not have enough data to compute a likelihood value. In such situations, the
Maximize Revenue score cannot be computed and the offer selection by the Select
Offer decision will be based on built-in score comparison logic, which depends on
whether the score is or is not required.

3. By defining the score for Maximize Revenue on the choice group level, all of the
choices within this group will inherit the definition and apply choice-specific
values for Revenue and likelihood of acceptance during run time.

5.2.4 Updating the Select Offer Decision to Include the Second Performance Goal
We have so far defined a new performance metric and how to calculate its value. We
will now update the Select Offer decision to consider both performance metrics when
choosing an offer to present.

To update the Select Offer Decision:

1. In the Inline Service Explorer, expand the Decisions folder and double-click Select
Offer.

2. In the Selection Criteria tab, you should see only one Performance Goal in the
Priorities for the "Default" Segment table, Cost, with a Weight value of 100%. Click
Goals, then select the goal Maximize Revenue and click OK.

The priorities table now shows two performance goals, each with a Weight of 50%.
The default is to evenly split weighting between all selected metrics. If you wanted
the Maximize Revenue performance goal to take precedence over Cost, you could
adjust the percentages so that it had more weight. We will use the default Weight
of 50% in this tutorial.

Table 5–2 shows an example of how the Select Offer decision calculates a total
score for a particular offer, assuming the offer's Cost score is 150 and its Maximize
Revenue score is 215.

Using the Predictive Power of Models

5-14 Oracle Real-Time Decisions Platform Developer's Guide

The Total Score based on the values in Table 5–2 is 32.5. The weighted Cost score
is negative because the optimization is Minimize. The total score of the offer is the
sum of the two weighted scores. The total score is calculated for each offer, and the
offer with the highest value will be selected.

5.2.5 Adding a Choice Attribute to View Likelihood of Acceptance
To view the value of the likelihood of acceptance, we can add a choice attribute and
display it through logInfo or in the Response tab of Test view.

To add a choice attribute:

1. In the Inline Service Explorer, under Choices, double-click the Cross Selling
Offers choice group. In the Choice Attributes tab, click Add to add an attribute. In
the properties dialog, set the Display Label to Likelihood Of Acceptance. Set the
Data Type to Double.

2. Deselect the option Overridable, because all choices in this choice group will use
the same definition for this attribute. Then, select the option Send to client and
click OK.

3. In the Value column for the Likelihood Of Acceptance attribute, click the ellipsis
to set its value. In the Edit Value dialog, set the Value Source to Model prediction.
Choose the Offer Acceptance Predictor model and the Accepted event, then click
OK.

4. Save all changes to the Inline Service.

5.2.6 Checking the Likelihood Value
To view values of the likelihood, add a logInfo statement in the Get Cross Sell Offer
Advisor, as follows:

1. In the Inline Service Explorer, double-click the Get Cross Sell Offer folder under
Integration Points > Advisors.

2. In the Asynchronous Logic tab, update the existing code by adding several lines
to print the value of the Likelihood Of Acceptance. The completed code should
appear as follows:

logInfo("Integration Point - Get Cross Sell Offer");
logInfo(" Customer age = " + session().getCustomer().getAge());
// 'choices' is array returned by the 'Select Offer' decision. The
// name 'choices' was set (and can be changed) in the 'Choice Array'
// text box in the 'Select Offer' decision's 'Pre/Post Selection
// Logic' tab.
if (choices.size() > 0) {
//Get the first offer from array
Choice offer = choices.get(0);
//For the selected offer, record that it has been 'presented'
offer.recordEvent("presented");
//Set the session attribute 'OfferExtended' with the offer's ID.
session().setOfferExtended(offer.getSDOId());

Table 5–2 Calculating a Total Score for an Offer

Performance Goal Score Weight Max/Min Norm. Weighted Score

Cost 150 50% Min 1 -75

Maximize Revenue 215 50% Max 1 107.5

Using the Predictive Power of Models

Closing the Feedback Loop 5-15

logInfo(" Offer presented: '" + offer.getSDOLabel() + "'");
//Cast selected offer to type CrossSellingOfficeChoice -
//the base Choice type of choice group 'Cross Selling Offer'
CrossSellingOfferChoice cso = (CrossSellingOfferChoice) offer;
logInfo(" Likelihood of Acceptance = " + cso.getLikelihoodOfAcceptance());

}

3. To see the effect of the changes to the Advisor, save all and deploy the Inline
Service.

4. In Test view, select the Get Cross Sell Offer Integration Point and input a value
for customerId, such as 8. Click Send. In the Response subtab in Test View, you
should see something similar to the image shown in Figure 5–6.

Figure 5–6 Response Subtab in Test View

In the Log subtab, you should see something similar to the following:

14:07:37,908 Integration Point - Get Cross Sell Offer
14:07:37,908 Customer age = 57
14:07:37,908 Offer presented: 'Savings Account'
14:07:37,908 Likelihood of Acceptance = 0.30354643094453865

If you are getting a value of NaN (Not A Number) for Likelihood Of Acceptance,
this means the model did not have enough data to compute the likelihood value
for this offer. The number of iterations necessary to reach model convergence
(likelihood numbers no longer NaN) depends on the application and quality of the
data.

In our case, we had imposed a definite offer acceptance rate of about 30% (see
Section 5.1.7, "Updating the Load Generator Script"), and since we are using
random customer profile data, the Offer Acceptance Predictor model should
converge quickly and be able to compute likelihood of acceptance values within
just a few hundred iterations. Before the model has reached convergence, the offer
selection process is based on built-in score comparison logic, which depends on
whether the score is required.

The following diagram shows the Get Cross Sell Offer Advisor retrieving an offer
from the Cross Selling Offer choice group, where the total score of each offer is a
weighted sum of two scores - Cost and Maximize Revenue.

Using the Predictive Power of Models

5-16 Oracle Real-Time Decisions Platform Developer's Guide

Figure 5–7 Tutorial Inline Service Objects: Weighted Sum

5.2.7 Introducing Offer Acceptance Bias for Selected Customers
Earlier in the Offer Feedback Informant, we specified whether to accept a presented
offer through the Positive Informant parameter. We then updated the Load Generator
script so that when this Informant is called, we pass the value yes to the parameter
Positive 30% of the time (see Section 5.1.7, "Updating the Load Generator Script"). This
percentage did not depend on any customer profile data - any presented offer had a
30% chance of being accepted by any customer.

If we run the Load Generator script at this point, the models would not show any
strong correlation between customer attribute to the acceptance of the offer. We will
introduce an artificial bias in the Offer Feedback Informant logic which will always
record positive offer acceptances for customers who have two or more children and
who were presented the Life Insurance offer. This logic is in addition to the default
acceptance rate (as defined in the Load Generator script) and will skew the acceptance
rate for the Life Insurance offer to more than 30%. In Decision Center, we will be able

Using the Predictive Power of Models

Closing the Feedback Loop 5-17

to see clear correlations between the number of children and the acceptance rate of this
offer.

To introduce the Offer Acceptance bias:

1. In the Inline Service Explorer, double-click Offer Feedback under Integration
Points > Informants.

2. In the Logic tab, update the existing code by adding several lines to add offer
acceptance bias for customers who have two or more children and who were
presented the Life Insurance offer. The completed code should appear as follows:

logInfo("Integration Point - Offer Feedback");
//"yes" or "no" to accept offer.
String positive = request.getPositive();
positive = positive.toLowerCase();

//Get the offer id from session attribute 'OfferExtended'
String extendedOfferID = session().getOfferExtended();
if (extendedOfferID != null) {
//Get the offer from choice group 'Cross Selling Offer'
Choice offer = CrossSellingOffer.getChoice(extendedOfferID);
if (offer != null){
String offerId = offer.getSDOId();
//Introduce artificial bias for customers with 2 or more
//children to always accept "LifeInsurance" if it was
//selected after scoring.
//If data source is Oracle, change the following method from
//getNumberOfChildren() to getNumberofchildren()
int numOfChildren = session().getCustomer().getNumberOfChildren();
if (numOfChildren >= 2 && offerId.equals("LifeInsurance")) {

positive="yes";
}
//If response is "yes", then record the offer as accepted.
if (positive.equals("yes")) {
offer.recordEvent ("accepted");
logInfo(" Offer '" + offer.getSDOLabel() + "' accepted");

}
}

}

3. Save all changes and deploy the inline service.

5.2.8 Running the Load Generator Script
In Section 5.1.7, "Updating the Load Generator Script," we updated the Load
Generator Script to include the GetCrossSellOffer Advisor and the OfferFeedback
Informant. At that point, the offer selection process was based on only one
performance goal - to minimize Cost. We then added a second performance goal,
Maximize Revenue, which uses predicted values of acceptance likelihoods as
computed by the Offer Acceptance Predictor model. The offer selection process now
depends on both performance goals. We have also introduced an artificial acceptance
bias for customers who fit a certain profile, and who were presented the Life Insurance
offer. We will now run the Load Generator script again to see the results.

To run the Load Generator script:

1. If you are using WebLogic, open JConsole by running JAVA_
HOME\bin\jconsole.exe. If you are using WebSphere, run the batch script you
created during JConsole configuration. See Oracle Real-Time Decisions Installation
and Administration Guide for more information about using JConsole.

Using the Predictive Power of Models

5-18 Oracle Real-Time Decisions Platform Developer's Guide

2. Click the Remote tab. Then, enter the appropriate port number (typically 12345)
and the administrator credentials you created during installation and click
Connect.

3. Click the MBean tab, then go to the OracleRTD > InlineServiceManager >
Tutorial > Development > Loadable MBean.

4. Click the Operations tab, then use the deleteAllOperationalData() operation to
remove all operational data, including the study, for this Inline Service.

5. Start Load Generator and open the Load Generator script previously defined.
There should be no changes necessary.

6. Start the Load Generator script. After about 200 total finished scripts, click the
Pause icon to temporarily stop sending requests to the server:

Then, view the server's output in the server.log file, which is in the RTD_
RUNTIME_HOME\log directory.

You will see that the printed Likelihood Of Acceptance values are NaN for all
sessions. This is an indication that the model has not yet learned enough data to be
able to compute the likelihood of acceptance. Note that offers are still being
presented despite the lack of likelihood values. Offers are being selected using
built-in scores comparison logic.

7. Un-pause the Load Generator script and let it finish running for 2000 total finished
scripts. In the server output, you should now see actual values for Likelihood Of
Acceptance, varying around 0.3 for all offers except Life Insurance, which has
higher values because of the bias introduced.

8. It is important to note that the model-predicted Likelihood Of Acceptance values
for a given offer will differ for different customer profiles. For example, suppose
we have two customers John and Tom, who only differ in the number of children
they have. If we printed the Likelihood Of Acceptance values for the Life
Insurance offer for these two customers (at a snapshot in time), we will see a
higher value for Tom, as shown in Table 5–3. This is because Tom has three
children, and is therefore more likely to accept the Life Insurance offer, if it is
presented to him.

Since we determine which offer to present to the customer based on the
combination of Cost and Maximize Revenue scores, and because Maximize
Revenue depends on the model's predicted Likelihood Of Acceptance value for
each offer, the Life Insurance offer will have a high Maximize Revenue value for
customers with two or more children, and therefore for such customers, Life
Insurance will be presented (and then accepted) far more frequently than other
offers!

Table 5–3 Likelihood of Acceptance for Life insurance Offer

Customer Number of Children Likelihood of Acceptance for Life Insurance Offer

John Doe 0 .32

Tom Smith 3 .89

Using the Predictive Power of Models

Closing the Feedback Loop 5-19

5.2.9 Studying the Results
To view the results of the Load Generator run, log in to Decision Center. Click the
Cross Selling Offer Choice Group in the left navigation box. This will show the results
of the Offer Acceptance Predictor model. Click the Performance tab and then the
Counts subtab. You should see a table similar to the one shown in Figure 5–8.

Figure 5–8 Performance Counts for Cross Selling Offer Choice Group

The Decision Center table shows the distribution of the offers - how many were
presented and how many were accepted for each offer. Except for Life Insurance, all of
the other offers had acceptance rate of about 30%, as shown in Figure 5–8. This is
expected because of how we set up the Load Generator script (see Section 5.1.7,
"Updating the Load Generator Script"). The acceptance rate for Life Insurance is higher
than 30% because of the artificial bias we introduced in Section 5.2.7, "Introducing
Offer Acceptance Bias for Selected Customers." The bias dictated that in addition to
30% of the customers accepting any offer, customers who had two or more children
and were offered Life Insurance will always accept the offer.

Given the artificial bias, the model results should show that for the Life Insurance
offer, the NumberOfChildren attribute will be an excellent predictor for whether or not
the offer will be accepted. This is exactly what we see in the Decision Center reports:
click the Cross Selling Offer Choice Group and click on the Analysis tab, then the
Drivers subtab. In the Report Settings section, change the Minimum Predictiveness
value to 0 and then click Go. You will see a list of attributes, ordered by the maximum
predictiveness value. The highest value for Max Predictiveness should be for the
NumberOfChildren attribute, since it is the only artificial bias we added. The
corresponding offer should be Life Insurance, similar to the image shown in
Figure 5–9.

Using the Predictive Power of Models

5-20 Oracle Real-Time Decisions Platform Developer's Guide

Figure 5–9 Cross Selling Offer Analysis Drivers

We can further analyze the importance of the NumberOfChildren attribute for the Life
Insurance offer by viewing reports specific to this offer. In the navigation box in
Decision Center, expand the Cross Selling Offer Choice Group and click the choice
Life Insurance, then click the Analysis tab and finally the Drivers tab. This report
shows the important drivers for acceptance of this particular offer (Life Insurance).

In the Report Settings section, change the Minimum Predictiveness value to 0 and
then click Go. You will see a list of attributes, ordered by the Predictiveness value. The
NumberOfChildren attribute should have the highest predictiveness value. Click the
attribute name to display more detailed reports, one of which should look similar to
Figure 5–10.

Figure 5–10 Life Insurance Offer Analysis Drivers

The graph shown in Figure 5–10 shows that for NumberOfChildren values of 2 and
above, there is a strong positive correlation for offer acceptance. This means that the
number of acceptances of this offer for these attribute values (2 or more) is much

Using the Predictive Power of Models

Closing the Feedback Loop 5-21

higher than expected. Similarly, for values of 0 or 1, the correlation is also very strong,
but is negative, meaning that customers with 0 children or 1 child did not accept Life
Insurance as much as expected.

Using the Predictive Power of Models

5-22 Oracle Real-Time Decisions Platform Developer's Guide

Part II
Part II Integration with Oracle RTD

The chapters in Part II explain how to use the Java Smart Client, Java Smart Client JSP
tags, and the .NET Smart Client to integrate with Oracle RTD. They also explain how
to use the Oracle RTD Web services.

Part II contains the following chapters:

■ Chapter 6, "About Integrating with Oracle RTD"

■ Chapter 7, "Using the Java Smart Client"

■ Chapter 8, "Using Java Smart Client JSP Tags"

■ Chapter 9, "Using the .NET Smart Client"

■ Chapter 10, "Web Service Client Example"

■ Chapter 11, "Using the Oracle RTD PHP Client"

6

About Integrating with Oracle RTD 6-1

6About Integrating with Oracle RTD

This chapter introduces the components - Smart Clients, PHP client, and web services -
by which Oracle RTD can integrate with enterprise operation systems. It also
highlights the elements in the CrossSell Inline Service that are used to demonstrate the
various means of integration in the more component-specific chapters.

Oracle RTD features several robust and easy-to-use ways to integrate with enterprise
operational systems:

■ Smart Clients: For Java and .NET environments, these components manage
communication to Integration Points on Real-Time Decision Server.

■ Zero Clients: Access to Integration Points is available through Web services as a
zero client approach.

This chapter, and the following chapters in Part II, outline how to use these ways to
integrate with deployed Inline Services running on Oracle RTD.

See Part I, "Getting Started" for information about using Decision Studio to deploy
Inline Services. For information about the integration APIs, see the Decision Studio
online help.

This chapter contains the following topics:

■ Section 6.1, "Choosing the Best Means of Integration"

■ Section 6.2, "About the CrossSell Inline Service"

6.1 Choosing the Best Means of Integration
Oracle Real-Time Decisions offers multiple means of integration. To choose the best
means for your environment you should consider the platform you are working on,

Note: The following terms are referenced throughout the Oracle RTD
documentation:

■ RTD_HOME: This is the directory into which Oracle RTD is
installed. For example, C:\OracleBI\RTD.

■ RTD_RUNTIME_HOME: This is the application server specific
directory in which the application server runs Oracle RTD.

For more information, see the section "About the Oracle RTD
Run-Time Environment" in Oracle Real-Time Decisions Installation and
Administration Guide.

Choosing the Best Means of Integration

6-2 Oracle Real-Time Decisions Platform Developer's Guide

performance needs and the additional functionality offered by RTD Smart Client over
other methods of integration.

This section contains the following topics:

■ Section 6.1.1, "About the Java Smart Client"

■ Section 6.1.2, "About the .NET Smart Client"

■ Section 6.1.3, "About the JSP Smart Client"

■ Section 6.1.4, "About Web Services"

6.1.1 About the Java Smart Client
The Oracle RTD Smart Client for Java is a component that allows easy, managed
integration to deployed Inline Services for operational systems. If you are working in a
Java environment, the Java Smart Client is the preferred means of integration. The Java
Smart Client offers two important features above and beyond the other methods of
integration: session key mapping (to facilitate HTTP session affinity management by
an external load balancer) and default response handling.

The factory methods of the Java Smart Client interface take parameters representing
the minimal information required to establish contact with a cluster of servers. After
connecting, the component's full configuration is downloaded from the server. This
way only a small set of parameters must be managed in the client application, while
most of the component's configuration is centrally managed by the server's
administration console.

The configuration information returned by the server to the client is shared by all the
instances of the Smart Client created in the same Java virtual machine. There is a
client-side class called a client-side dispatcher that manages this shared configuration
and also manages session-affinity information used to dispatch requests to the correct
server, based on session keys in the request.

The Java Smart Client is thread-safe, but for optimal performance a separate Java
Smart Client should be created for each thread. Separate instances of the Java Smart
Client share information and connections, so there is practically no penalty to having
multiple instances.

Several factory methods are available to create a Java Smart Client. Most either directly
or indirectly reference a properties file in the file system or on a Web server. The
properties file supplies addresses for connecting to one or more servers in a single
cluster as well as other properties that configure the connection to the server. Factory
methods are also available to directly supply an HTTP URL and port or use a default
address.

After the client's constructor communicates with one server and receives more
complete configuration information, the detailed configuration is saved in a local file
called the client configuration cache, where it can be accessed should the client restart
when the server is unavailable. The configuration cache contains information such as
the client's set of default responses for all integration points in all Inline Services. The
client's configuration cache is updated automatically by the client whenever it changes
in the server.

Part of the configuration information downloaded to a client from the server includes
a set of default responses to use if the client loses contact with the server or the server
fails to respond to an integration point request in a timely fashion. This maintains the
Service Level Agreement (SLA) between Real-Time Decision Server and client
application regardless of individual transactional availability.

About the CrossSell Inline Service

About Integrating with Oracle RTD 6-3

These default responses are configured at the granularity of the individual integration
points; each integration point relies on its own specialized default response. When any
default responses are reconfigured on the server, the changes are propagated
automatically to the client's out-of-band data, bundled together with normal
integration point responses.

The Java Smart Client automatically keeps track of any HTTP cookies that are returned
by the Web Container of Real-Time Decision Server. The next time the same Inline
Service key is used in a request, its cookies are included in the HTTP request so that
the external load balancer can route the request to the server instance that is already
handling that Inline Service key.

To achieve clustering using other methods of integration, the application must track
the Inline Service keys itself.

6.1.2 About the .NET Smart Client
For the .NET environment, a .NET Smart Client component is available. This
component offers a way to call the same interfaces provided by the Java Smart Client.
However, it does not offer the added functionality of maintained session affinity or
default values.

6.1.3 About the JSP Smart Client
JSP client integration tags are provided for developers to integrate Web applications
with deployed Inline Services. These JSP tags deliver client interfaces that are
equivalent to the APIs provided by the Java Smart Client.

6.1.4 About Web Services
Any client can access Real-Time Decision Server through Web services. The benefit to
this means of integration is the lack of code needed on the client. Web service
operations are defined in a WSDL file and definitions are contained in a schema file.

6.2 About the CrossSell Inline Service
Example Inline Services are included with Decision Studio. One of these is a cross
selling example.

The CrossSell Inline Service simulates a simple implementation for a credit card
contact center. As calls come into the center, information about the customer and the
channel of the contact is captured.

Based on what we know of this customer, a cross selling offer is selected that is
extended to the customer. The success or failure of that offer is tracked and sent back
to the server so that the underlying decision model has the feedback that helps to
refine its ability to make a better cross selling recommendation.

The CrossSell Inline Service is used to demonstrate the various means of integration in
this guide.

Several Integration Points are included in the CrossSell example. Use the following
instructions to familiarize yourself with these Integration Points.

Informants execute on the server when supplied with the proper parameters. Advisors
execute and also return data. In order to supply the correct parameters for calls to
Integration Points, we must first identify the Object IDs.

This section contains the following topics:

About the CrossSell Inline Service

6-4 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 6.2.1, "Using Decision Studio to Identify Object IDs"

■ Section 6.2.2, "Determining the Response of an Advisor"

■ Section 6.2.3, "Knowing How to Respond to the Server"

■ Section 6.2.4, "Identifying Session Keys and Arguments"

6.2.1 Using Decision Studio to Identify Object IDs
To identify Object IDs:

1. Open Decision Studio by running RTD_HOME\eclipse\eclipse.exe.

2. Select File > Import to open the CrossSell Inline Service. Import appears.

3. Select Existing Project into Workspace and click Next. Browse for the CrossSell
project at the location RTD_HOME\examples\CrossSell. Select OK and click
Finish, opening the project.

4. Using the Inline Service Explorer, expand Integration Points. Then, expand the
Informants and Advisors folders to view the Integration Points, as shown in
Figure 6–1.

Figure 6–1 Informants and Advisors in the Inline Service Explorer

5. Use the Object ID Toggle icon to show the Object ID in the Inline Service Explorer:

When the Toggle icon is highlighted, the Object IDs show in the Inline Service
Explorer; when the Toggle icon is not highlighted, the display label is shown.

6.2.2 Determining the Response of an Advisor
Integration Points that deliver responses are called Advisors. An Advisor's Response
tab in Decision Studio determines the response, by identifying a parameterized
Decision object that gets implicitly invoked by the Advisor. The Decision object's
responsibility is to select the best Choices from its assigned Choice Group. The choice
attributes that are returned are determined by the configuration set on the definition of
the Choice Group.

In our example, the OfferRequest integration point is an Advisor. It returns a single
cross sell offer when it is invoked.

To determine the response of an advisor:

1. In Decision Studio, select the OfferRequest Integration Point to view the editor.

Note: The Object ID of the Integration Point may or may not be the
same as the label. Object IDs are used to reference Integration Points
in method calls.

About the CrossSell Inline Service

About Integrating with Oracle RTD 6-5

2. On the Response tab, under Decision, look up the Decision that OfferRequest uses
to return a response. It should be OfferDecision.

3. Double-click OfferDecision under Decisions to view its detail pane.

4. On the Selection Criteria tab, under Number of Choices to Select, find the
number of responses that OfferRequest provides.

5. On the Selection Criteria tab, under Choice Group, find the Choice Group that
OfferRequest uses. It should be Offers.

6. Under Choices, double-click Offers to see the choice attributes associated with
this Choice Group. These attributes will be returned when a call to the Advisor is
made.

6.2.3 Knowing How to Respond to the Server
Inline Services are most powerful when the success or failure of a Choice is tracked
and the model is self learning based on that information. To know what feedback the
server needs to be self learning, you must examine the Choice Event Model, as follows:

1. In Decision Studio, double-click the Offer Acceptance Choice Event Model. The
editor appears on the right.

2. On the Choice tab, under Positive Outcome Events, you can see the Events that
the server is interested in for learning. These are:

■ Interested

■ Purchased

These outcomes are to be reported to the server from your Inline Service to give
the proper feedback to the model.

3. The OfferResponse Integration Point is responsible for reporting this information.

6.2.4 Identifying Session Keys and Arguments
To invoke an Integration Point, we must supply values for the session keys and
arguments expected by the Integration Point. In the request, we must use the Object
IDs defined by Decision Studio for the Integration Point's session keys and arguments.
The key name must match one of the session key names defined in Decision Studio for
the Integration Point.

To identify session keys and arguments.

1. Select the CallStart Integration Point. On the Request tab of the editor of the
Integration Point, under the Session Keys list, a path to the session key is shown
starting with session; the last name in the path is the Object ID of the session
key.

Tip: In Decision Studio, use the Test view to call the Advisor and see
what is returned. That way, you can see the offer returned and the
attributes that come with it. To access the Test view, click the Test tab
next to the Problems tab. Click the Send icon to send the request to
the server:

About the CrossSell Inline Service

6-6 Oracle Real-Time Decisions Platform Developer's Guide

2. To identify the arguments of the Integration Point, use the detail pane of to view
the Incoming Attribute column of the Request tab. The CallStart incoming
argument is channel.

Note: If the session key is not displayed in object format, use the
Object ID Toggle icon to change the display settings:

Only the final object ID is necessary for the session key. For example,
in the case shown above, only the final string, customerId, is used.

7

Using the Java Smart Client 7-1

7Using the Java Smart Client

This chapter explains how to integrate an Inline Service with the Java Smart Client,
using the CrossSell Inline Service as an example.

For full information about the Java Smart Client API, see the Decision Studio online
help.

This chapter contains the following topics:

■ Section 7.1, "Before you Begin"

■ Section 7.2, "Integrating with an Inline Service Using the Java Smart Client"

7.1 Before you Begin
You must perform the following tasks first before you can work with the Java Smart
Client example:

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable
set to its location. To obtain a JDK, go to the Oracle Java Web site at:

http://www.oracle.com/technetwork/java/index.html

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See
Oracle Real-Time Decisions Installation and Administration Guide for full information.

3. The Java Smart Client example works with the sample CrossSell Inline Service.
Because of this, you must first populate the Oracle RTD Database with the
CrossSell example data, then deploy the CrossSell Inline Service using Decision
Studio.

See Oracle Real-Time Decisions Installation and Administration Guide for information
about populating the Oracle RTD Database with the CrossSell example data. See
Part III, "Decision Studio Reference" for information about deploying Inline
Services.

4. Start Real-Time Decision Server. For more information, see Oracle Real-Time
Decisions Installation and Administration Guide.

7.2 Integrating with an Inline Service Using the Java Smart Client
In general, integration using the Java Smart Client includes the following steps:

1. Prepare a properties file.

2. Create a connection to the Inline Service.

Integrating with an Inline Service Using the Java Smart Client

7-2 Oracle Real-Time Decisions Platform Developer's Guide

3. Create a request that identifies the Integration Point to connect to and the
parameters to identify the session and any other information the Integration Point
needs to determine an outcome.

4. Invoke the request.

5. Gather and parse any response information from Advisors.

6. Close the connection.

This section contains the following topics:

■ Section 7.2.1, "Preparing the Java Smart Client Example"

■ Section 7.2.2, "Creating the Java Smart Client Properties File"

■ Section 7.2.3, "Creating the Java Smart Client"

■ Section 7.2.4, "Creating the Request"

■ Section 7.2.5, "Examining the Response"

■ Section 7.2.6, "Closing the Loop"

■ Section 7.2.7, "Closing the Client"

7.2.1 Preparing the Java Smart Client Example
For this example, the CrossSell Inline Service has been integrated to a simple
command-line application to demonstrate how to use the Java Smart Client for
integration.

To prepare the Smart Client example:

1. Locate the file RTD_HOME\client\Client Examples\Java Client
Example\lib\sdbootstrap.properties and open it for editing. Comment
out all properties except for client=true, as follows:

client=true
#StudioStaticFilesLocation=shared_ui/studio
#WebServerLocation=http://localhost:8080
#WorkbenchServlet=/ui/workbench

Then, save and close the file.

2. Open Decision Studio and choose File > Import, then select Existing Projects into
Workspace and click Next.

3. For Select root directory, browse to RTD_HOME\client\Client
Examples\Java Client Example and click OK. Then, click Finish.

4. From the menu bar, select Window > Open Perspective > Java. If the Console
view is not visible, select Window > Show View > Console.

5. From the menu bar, select Run > Run.

6. In the Create, manage, and run configurations screen, select Java Application and
click New.

7. Click Browse next to the Project field, then select JavaSmartClientExample and
click OK.

8. Click Search next to the Main class field, then select Example and click OK.

9. Click Apply, then click Run. In the Console view, the following text appears:

Ring! Ring! New telephone call!

Integrating with an Inline Service Using the Java Smart Client

Using the Java Smart Client 7-3

Enter a customer ID between 1 and 1000:

10. Place the cursor after the colon, then enter a customer ID (such as 5) and press
Enter. The response appears similar to the following:

Here are the deals we've got for you:
1: ElectronicPayments
Electronic payments eliminate the complications of handling checks.

Enter the line number of the offer that catches your interest, or zero if none
do:

11. Place the cursor after the final colon, then enter 1 to select the offer. The server
responds with a final message.

12. The process repeats. Enter a customer ID greater than 1000 to stop the program.

You can find the source code for this example in the following file:

RTD_HOME\client\Client Examples\Java Client Example\src\com\sigmadynamics\
client\example\Example.java

The example is explained in the following sections.

7.2.2 Creating the Java Smart Client Properties File
When a client application creates a Java Smart Client, it passes a set of properties to a
Java Smart Client factory that represents the component's endpoint configuration. This
file contains just enough information to allow the client to connect to a server
endpoint. There are additional factory methods that use default configuration values;
however it is best to explicitly specify the properties. The default properties file is
shown in the following procedure.

The factory method uses the properties to connect to the server. When the factory
connects to the server, it downloads the more complete configuration information to
the client, such as the set of default responses that the client should use if it ever needs
to run when the server is unavailable. The detailed client configuration is saved in a
local file, the Java Smart Client configuration cache, and is updated automatically
whenever the server's configuration changes.

To create the properties file:

1. Locate the file RTD_HOME\client\Client Examples\Java Client
Example\lib\sdclient.properties and open it for editing. The file should
appear as follows:

UseEndpointsInOrder = HTTP1
appsCacheDirectory = ${rootDir}/etc
timeout = 0
HTTP1.type = http
HTTP1.url = http://localhost:8080/

2. Modify the contents to match your server configuration. Explanations of the
elements of this file are listed in Table 7–1. In particular, make sure that you have a
valid cache directory and the endpoint URL is the URL and port of your local
Real-Time Decision Server. By default, this is http://localhost:8080.

Integrating with an Inline Service Using the Java Smart Client

7-4 Oracle Real-Time Decisions Platform Developer's Guide

7.2.3 Creating the Java Smart Client
To create the Java Smart Client, open the source file for the Example application at the
following location:

RTD_HOME\client\Client Examples\Java Client Example\src\com\sigmadynamics\
client\example\Example.java

The following imports are used to support Oracle RTD integration:

import com.sigmadynamics.client.IntegrationPointRequestInterface;
import com.sigmadynamics.client.IntegrationPointResponseInterface;
import com.sigmadynamics.client.SDClientException;
import com.sigmadynamics.client.SDClientFactory;
import com.sigmadynamics.client.SDClientInterface;

In the main method, the Example application demonstrates several techniques for
using SDClientFactory to create an implementation of SDClientInterface,
based on the arguments supplied to the Example application.

These arguments are passed to getClient, where the proper factory method is
identified.

SDClientInterface client = getClient(args);

There are several factory methods used to create a Java Smart Client. By examining
getClient, we see the various methods:

private static SDClientInterface getClient(String[] args){

Table 7–1 Elements of sdclient.properties File

Element Description

UseEndpointsInOrder A comma-separated list of endpoint names, indicating the order
in which the endpoints should be tried when establishing an
initial connection to the server cluster during the Smart Client's
initialization. After initialization, this list of endpoints is
irrelevant because the server will supply an updated list of
endpoints.

The endpoint names in this list refer to definitions within this
properties file; the names are not used elsewhere.

appsCacheDirectory A file URL identifying a writable directory into which the client
component may save the configuration information that it gets
from the server. The cache provides insurance against the
possibility that Real-Time Decision Server might be unavailable
to the client application when the application initializes its client
components. If sdclient.properties specifies a cache
directory, it must already exist, otherwise, the client will use the
Java virtual machine's temp directory

timeout The timeout, in milliseconds, used by the original attempt to
contact the server during the client component's initialization.
After connecting to the server, the client uses the server's
timeout, configured through the JMX MBean property
IntegrationPointRequestTimeout.

endpoint_name.type The named endpoint type. Only HTTP is supported at this time.

endpointName.url A URL specifying the HTTP host and port of the server's HTTP
endpoint. The default endpoint is http://localhost:8080.

Tip: This example source code can be used as a template for your
Java Smart Client implementation.

Integrating with an Inline Service Using the Java Smart Client

Using the Java Smart Client 7-5

try{
if (args.length == 0)
return getClientWithDefaultPropertiesFile();

This creates a Java Smart Client with the default properties file using
create(java.lang.String). The default properties file is referenced.

if ("-h".equals(args[0])){
if (args.length < 2)
return getClientWithDefaultHttpAddress();

This creates a Java Smart Client with the default HTTP address of
http://localhost:8080. This is the default installation URL and port of
Real-Time Decision Server. Uses createHttp(java.lang.String, int,
boolean).

return getClientWithHttpAddress(args[1]);
}

This creates a Java Smart Client with a supplied HTTP address. This is the address and
port of your Real-Time Decision Server, if it is not at the default address. Uses
createHttp(String).

if ("-u".equals(args[0])){
if (args.length < 2)
{
System.out.println("Missing properties file URL argument");
System.exit(-1);

}
return getClientWithPropertiesFileURL(args[1]);

}

This creates a Java Smart Client with the information supplied in the properties file at
the address specified. Uses createFromProperties.

if ("-f".equals(args[0])){
if (args.length < 2)
{
System.out.println("Missing properties filename argument");
System.exit(-1);

}
return getClientWithPropertiesFileName(args[1]);

}

This creates a Java Smart Client with the information supplied in the properties file.
Uses createFromPropertiesURL.

System.out.println("Unrecognized argument");
}catch (SDClientException e){
e.printStackTrace();

}
System.exit(-1);
return null;

}

These methods are summarized in the Java Smart Client API section of the Decision
Studio online help.

Integrating with an Inline Service Using the Java Smart Client

7-6 Oracle Real-Time Decisions Platform Developer's Guide

7.2.4 Creating the Request
After populating the request, the client application calls the invoke method of
SDClientInterface to send the request to the server and receives an
IntegrationPointResponseInterface representing an array of choices
calculated by the server.

IntegrationPointResponseInterface invoke(IntegrationPointRequestInterface
request);

In the example application, this call is made:

client.invoke(request);

After the request to the CallStart Integration Point is invoked, a new request is
prepared and invoked for CallInfo.

// Supply some additional information about the telephone call.
// Apparently the CrossSell service expects very little here --
// just the channel again, which it already knows. Hence this message
// could be left out with no consequences.
request = client.createRequest(INLINE_SERVICE_NAME, "CallInfo");
request.setSessionKey(SESSION_KEY, sCustID);
request.setArg("channel", "Call");
client.invoke(request);

7.2.5 Examining the Response
When an Advisor is invoked, a number response items, also known as Choices, will be
returned. Your application must be prepared to handle this number of response items.
See Section 6.2.2, "Determining the Response of an Advisor" for more information.

In the client application, the selected Choices are accessible through the
IntegrationPointResponseInterface returned by the invoke method. The
IntegrationPointResponseInterface provides access to an array of response
item objects, ResponseItemInterface, where each response item corresponds to a
Choice object selected by the Advisor's Decision.

The package com.sigmadynamics.client surfaces a Choice as a collection of value
strings, keyed by name string.

In our example, when invoking a request on an Advisor Integration Point, be prepared
to receive a response.

// Based on what the server knows about this customer, ask for some
// product recommendations.
request = client.createRequest(INLINE_SERVICE_NAME, "OfferRequest");
IntegrationPointResponseInterface response = client.invoke(request);
request.setSessionKey(SESSION_KEY, sCustID);

Note: If the client application wants to send a request for which it
does not expect a response, and for which message delivery sequence
is not critical, it can use the invokeAsync method instead of invoke.

Requests sent through invokeAsync are not guaranteed to arrive at
the server before requests sent through subsequent invokeAsync or
invoke calls. When message delivery sequence is important, the
invoke method should be used instead of invokeAsync, even when
no response is expected.

Integrating with an Inline Service Using the Java Smart Client

Using the Java Smart Client 7-7

Knowing the number of responses expected allows you handle them accurately. The
responses are read from the array and displayed to the customer.

if (response.size() > 0){
// Since I know that CrossSell's OfferDecision returns only
// one Choice, I could get that choice from the response with
// response.get(0); Instead, I'll pretend that
// multiple offers could be returned instead of just one.

System.out.println();
System.out.println("Here are the deals we've got for you:");
ResponseItemInterface[] items = response.getResponseItems();
for (int i = 0; i < items.length; i++){
System.out.println(" " + (i+1) + ": " + items[i].getId());
String message = items[i].getValue("message");
if (message != null)
System.out.println(" " + message);

}
System.out.println();
System.out.println("Enter the line number of the offer that catches your
interest, or zero if none do: ");

7.2.6 Closing the Loop
Many Inline Services are designed to be self learning. In the CrossSell Inline Service,
the OfferResponse Informant reports interest in a cross sell offer back to a Choice
Event model.

// Tell the server the good news.
request = client.createRequest(INLINE_SERVICE_NAME, "OfferResponse");
request.setSessionKey(SESSION_KEY, sCustID);
request.setArg("choiceName", prodName);

// "Interested" is one of the Choice Events defined for the choice group, Offers.

To identify the Choice Event model and Choices, see Section 6.2.3, "Knowing How to
Respond to the Server."

request.setArg("choiceOutcome", "Interested");
client.invoke(request);

Finally, the session is closed by invoking the CallResolution Informant in the server,
which in the CrossSell example has been designed to terminate the session.

// Close the server's session.
request = client.createRequest(INLINE_SERVICE_NAME, "CallResolution");
request.setSessionKey(SESSION_KEY, sCustID);
client.invoke(request);

7.2.7 Closing the Client
When the client application is finished using its SDClientInterface, and doesn't
intend to use it again, it calls the component's close method, to release any
instance-specific information.

client.close();

Integrating with an Inline Service Using the Java Smart Client

7-8 Oracle Real-Time Decisions Platform Developer's Guide

8

Using Java Smart Client JSP Tags 8-1

8Using Java Smart Client JSP Tags

This chapter explains how to integrate an Inline Service with the Java Smart Client JSP
tags, using the CrossSell Inline Service as an example.

A convenient way to integrate a Web application with a deployed Inline Service is to
use the JSP client integration tags. JSP allows you to generate interactive Web pages
that use embedded Java. The JSP tags provided are based on the Java Smart Client
discussed in the previous chapter.

There is negligible overhead when using the JSP tags. In addition, the tags incorporate
automatic reuse of Smart Clients for same session to enhance performance. When a
Java Smart Client is created using the JSP tag, a check is performed to see if a client
already exists with the same name and properties and has not been closed. If it does, it
automatically reuses that client; if not it will create a new one.

For full information about the JSP Smart Client tags, see the Decision Studio online
help.

This chapter contains the following topics:

■ Section 8.1, "Before You Begin"

■ Section 8.2, "Integrating with an Inline Service Using Java Smart Client JSP Tags"

■ Section 8.3, "Deploying the JSP Smart Client Example"

8.1 Before You Begin
You must perform the following tasks first before you can work with the JSP client
integration tags:

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable
set to its location. To obtain a JDK, go to the Oracle Java Web site at
http://www.oracle.com/technetwork/java/index.html.

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See
Oracle Real-Time Decisions Installation and Administration Guide for full information.

3. The Java Smart Client example works with the sample CrossSell Inline Service.
Because of this, you must first populate the Oracle RTD Database with the
CrossSell example data, then deploy the CrossSell Inline Service using Decision
Studio.

See Oracle Real-Time Decisions Installation and Administration Guide for information
about populating the Oracle RTD Database with the CrossSell example data. See
Part III, "Decision Studio Reference" for information about deploying Inline
Services.

Integrating with an Inline Service Using Java Smart Client JSP Tags

8-2 Oracle Real-Time Decisions Platform Developer's Guide

4. Start Real-Time Decision Server. For more information, see Oracle Real-Time
Decisions Installation and Administration Guide.

8.2 Integrating with an Inline Service Using Java Smart Client JSP Tags
In general, integration using the Java Smart Client includes the following steps:

1. Prepare a properties file.

2. Use an Invoke or AsyncInvoke tag to create a request to the server.

3. Gather and parse any response information from Advisors.

4. Close the connection.

A working example of using the Smart Client JSP tags for integration can be found at
RTD_HOME\client\Client Examples\JSP Client Example\example.jsp.

8.3 Deploying the JSP Smart Client Example

For this example, the CrossSell Inline Service has been integrated to a simple
command-line application to demonstrate how to use the Smart Client for integration.
You need to deploy the JSP Smart Client example to your application server, as
described in the following sections.

This section contains the following topics:

■ Section 8.3.1, "Deploying the JSP Smart Client Example to WebSphere"

■ Section 8.3.2, "Deploying the JSP Smart Client Example to WebLogic"

8.3.1 Deploying the JSP Smart Client Example to WebSphere
To deploy the JSP Smart Client example to WebSphere:

1. Access the Integrated Solutions Console at the URL http://websphere_
host:port/ibm/console. At the login prompt, enter the administrator user
name and password. On Windows, you can also access the Integrated Solutions
Console through Start > Programs.

2. In the tree on the left, expand Applications, then choose Enterprise Applications.

3. Click Install.

Note: If your Real-Time Decision Server port is not 8080, you must
edit the client properties information before deploying the JSP Smart
Client example, as follows:

1. Open RTD_HOME\client\Client Examples\JSP Client
Example\sdclient-test.war with WinZip or WinRAR.

2. In sdclient-test.war, open client\sdclient.properties.

3. Search for the entry:

HTTP1.url = http://localhost:8080

4. Change the URL localhost:8080 to match the host and port of the
Real-Time Decision Server that you are using.

5. Save the file back into sdclient-test.war.

Deploying the JSP Smart Client Example

Using Java Smart Client JSP Tags 8-3

4. In the Path to the new application section, enter or browse to the path RTD_
HOME/client/Client Examples/JSP Client
Example/sdclient-test.war.

5. For Context root, enter sdclient-test.

6. Click Next, then click Next again, then click Next again.

7. Click Finish, then click Save.

8. On the Enterprise Applications page, select the sdclient-test application and click
Start.

9. To access the application, open a Web browser and go to:

http://websphere_host:port/sdclient-test/example.jsp

A Web page appears that simulates a service call, as shown in Figure 8–1.

Figure 8–1 JSP Smart Client Example: Enter Customer ID

10. Enter a customer ID (such as 5) and click OK. A response page appears,
displaying an offer and an option to end the call, as shown in Figure 8–2

Figure 8–2 JSP Smart Client Example: Displayed Offer

11. Click the offer link, or click End this call.

8.3.2 Deploying the JSP Smart Client Example to WebLogic
To deploy the JSP Smart Client example to WebLogic:

1. Access the WebLogic Server Administration Console for your Oracle RTD domain
at the URL http://weblogic_host:port/console. At the login prompt,
enter the administrator user name and password. On Windows, you can also
access the WebLogic Server Administration Console through Start > Programs >
Oracle WebLogic > User Projects > domain_name > Admin Server Console.

2. In the tree on the left, click Deployments.

3. Click Install. You may need to click Lock & Edit first to enable the Install button.

4. Go to RTD_HOME/client/Client Examples and select JSP Client Example,
then click Next.

5. Select Install this deployment as an application, then click Next.

Deploying the JSP Smart Client Example

8-4 Oracle Real-Time Decisions Platform Developer's Guide

6. On the Optional Settings page, enter JSPClientExample for Name. Then, click
Next.

7. Review your settings and click Finish.

8. Click Save, then click Activate Changes.

9. Start the application by selecting JSPClientExample application in the
Deployments table, then clicking Start > Servicing all Requests. When prompted,
click Yes. The application is now running.

10. To access the application, open a Web browser and go to:

http://weblogic_host:port/sdclient-test/example.jsp

A Web page appears that simulates a service call, as shown in Figure 8–3.

Figure 8–3 JSP Smart Client Example: Enter Customer ID

11. Enter a customer ID (such as 5) and click OK. A response page appears,
displaying an offer and an option to end the call, as shown in Figure 8–4.

Figure 8–4 JSP Smart Client Example: Displayed Offer

12. Click the offer link, or click End this call.

9

Using the .NET Smart Client 9-1

9Using the .NET Smart Client

This chapter explains how to integrate an Inline Service with the .NET Smart Client,
using the .NET Integration as an example.

The .NET Smart Client provides a very similar client to the Java API to make calls from
your application. With the current implementation, the .NET Smart Client does not
have some of the advanced features of the Java Smart Client, including session affinity
management and default response handling.

For full information about the .NET Smart Client API, see the Decision Studio online
help.

This chapter contains the following topics:

■ Section 9.1, "Before You Begin"

■ Section 9.2, "Integrating with an Inline Service Using the .NET Smart Client"

■ Section 9.3, ".NET Integration Example"

9.1 Before You Begin
You must perform the following tasks first before you can work with the .Net Smart
Client:

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable
set to its location. To obtain a JDK, go to the Oracle Java Web site at
http://www.oracle.com/technetwork/java/index.html.

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See
Oracle Real-Time Decisions Installation and Administration Guide for full information.

3. The .NET Smart Client example works with the sample CrossSell Inline Service.
Because of this, you must first populate the Oracle RTD Database with the
CrossSell example data, then deploy the CrossSell Inline Service using Decision
Studio.

See Oracle Real-Time Decisions Installation and Administration Guide for information
about populating the Oracle RTD Database with the CrossSell example data. See
Part III, "Decision Studio Reference" for information about deploying Inline
Services.

4. Start Real-Time Decision Server. For more information, see Oracle Real-Time
Decisions Installation and Administration Guide.

Integrating with an Inline Service Using the .NET Smart Client

9-2 Oracle Real-Time Decisions Platform Developer's Guide

9.2 Integrating with an Inline Service Using the .NET Smart Client
In general, the following are the steps for integration:

1. Create the Oracle RTD Smart Client within your application code.

2. Create a request directed at an Inline Service and an Integration Point.

3. Populate the request with arguments and session keys.

4. Invoke the request using the Smart Client.

5. If the request is invoked on an Advisor, examine the response.

6. Close the Smart Client when finished.

The .NET Smart Client is located at RTD_HOME\client\Client Examples\Dot
Net Client Example\sdclient.dll. This file should be co-located with your
application in order to be accessible.

9.3 .NET Integration Example
You can find an example of a .NET integration client in RTD_HOME\client\Client
Examples\Dot Net Client Example\DotNetSmartClientExample.sln. You
can open this example in Microsoft Visual C# 2008 Express Edition, then run or debug
the example.

In this example, Informant and Advisor Integration Points are invoked on the
CrossSell Inline Service. See Section 6.2, "About the CrossSell Inline Service" to
familiarize yourself with this Inline Service. In the example, the Integration Points are
invoked and the return values from the Advisor are written to the console.

Follow these steps to run the example in Microsoft Visual Studio:

1. Start Microsoft Visual C# 2008 Express Edition.

2. From the menu bar, select File > Open > Project.

3. For File Name, select RTD_HOME\client\Client Examples\Dot NET
Client Example\DotNetSmartClientExample.sln and click Open.

4. If either the host or the port that Real-Time Decision Server is running on is
different from the default localhost:8080, perform the following:

■ In the right-hand Solution Explorer window, double-click
DotNetSmartClientExample.cs.

■ Locate the following line:

SDClient client = new SDClient("http://localhost:8080");

■ Change localhost:8080 to match the host and port where Real-Time
Decision Server is running.

■ Save and close the file.

5. From the menu bar, select Debug > Start. In the Console window, the following
text appears:

Ring! Ring! New telephone call!
Enter a customer ID between 1 and 1000:

6. Place the cursor after the colon, then enter a customer ID (such as 5) and press
Enter. The response appears similar to the following:

Here are the deals we've got for you:

.NET Integration Example

Using the .NET Smart Client 9-3

1: ElectronicPayments
Electronic payments eliminate the complications of handling checks.

Enter the line number of the offer that catches your interest, or zero if none
do:

7. Place the cursor after the final colon, then enter 1 to select the offer. The server
responds with a final message.

8. The process repeats. Press Enter at the Customer ID prompt, without entering a
number, to stop the program.

.NET Integration Example

9-4 Oracle Real-Time Decisions Platform Developer's Guide

10

Web Service Client Example 10-1

10Web Service Client Example

This chapter explains how to integrate Oracle RTD web services with enterprise
operation systems, using NetBeans IDE and the Oracle RTD DecisionService.wsdl as
an example.

Real-Time Decision Server Integration Points are available through a Zero Client
approach. Integration Points on a deployed Inline Service are exposed through a Web
services definition.

The ability to invoke and asynchronously invoke a deployed Integration Point is
exposed as a Web service by Real-Time Decision Server. The definition of these
operations are available in a WSDL file, located at:

RTD_HOME\deploy\DecisionService\DecisionService.wsdl

The WSDL file defines all complex types and operations available.

Some slight structural changes were introduced in Oracle RTD Version 2.2 to bring the
Decision Service up to the WS-I Basic level of compliance. The previous version of the
WSDL file is named:

RTD_HOME\deploy\DecisionService\DecisionServiceLegacy.wsdl

Although implementors should develop new clients using the new WSDL, the server
still understands the protocol defined by DecisionServiceLegacy.wsdl, and
existing clients should experience no loss of functionality.

The instructions in this chapter detail how to use Oracle's NetBeans IDE to create a
Java WSDL Web service client using the RTD DecisionService WSDL file. The code
content for the Web service project main class is also provided.

This chapter contains the following topics:

■ Section 10.1, "Before You Begin"

■ Section 10.2, "Creating a New NetBeans Java Application Project"

■ Section 10.3, "Installing the JAX-RPC Web Services Plug-in"

■ Section 10.4, "Creating an Oracle RTD Web Service Client"

■ Section 10.5, "Adding the Provided Java Code and Testing the Client"

10.1 Before You Begin
You must perform the following tasks first before you can work with the Web Service
Client:

1. Download the NetBeans IDE (Java Bundle) from
http://www.netbeans.org/downloads/index.html.

Creating a New NetBeans Java Application Project

10-2 Oracle Real-Time Decisions Platform Developer's Guide

2. Install and start the NetBeans IDE.

3. Locate the Oracle RTD DecisionService.wsdl file and Java project main
content file. These files can be located in an Oracle RTD installation at the
following location:

■ RTD_HOME\OracleBI\RTD\client\Client Examples\Web Service
Client Example\DecisionService.wsdl

■ RTD_HOME\OracleBI\RTD\client\Client Examples\Web Service
Client Example\main-content.txt

RTD_HOME\deploy\DecisionService\DecisionService.wsdl

The WSDL file defines all complex types and operations available.

Some slight structural changes were introduced in Oracle RTD Version 2.2 to bring the
Decision Service up to the WS-I Basic level of compliance. The previous version of the
WSDL file is named:

RTD_HOME\deploy\DecisionService\DecisionServiceLegacy.wsdl

Although implementors should develop new clients using the new WSDL, the server
still understands the protocol defined by DecisionServiceLegacy.wsdl, and
existing clients should experience no loss of functionality.

10.2 Creating a New NetBeans Java Application Project
To create a new NetBeans Java application project, perform the following steps:

1. In the top menu, select File > New Project.

2. In the New Project dialog under Categories, select Java.

3. Under the Projects section of the dialog, select Java Application.

4. Click Next.

5. Name the Project, and click Finish.

10.3 Installing the JAX-RPC Web Services Plug-in
To install the JAX-RPC Web services plug-in, perform the following steps:

1. In the top menu, select Tools > Plugins > Available Plugins.

2. In the Plugins dialog, click the Available Plugins tab.

3. Check the JAX-RPC Web Services plug-in check-box and click Install. Install the
plug-in.

10.4 Creating an Oracle RTD Web Service Client
To create an Oracle RTD Web Service Client, perform the following steps:

1. In the Projects explorer, right-click your project and select New > Web Services
Client...

2. In the New Web Service Client dialog, select the Local File radio button.

3. Click the Browse... button next to Local File:

4. Locate the file DecisionService.wsdl in the RTD installation.

Adding the Provided Java Code and Testing the Client

Web Service Client Example 10-3

Example: C:\OracleBI\RTD\client\Client Examples\Web Service
Client Example\DecisionService.wsdl

5. For Client Style, select JAX-RPC Style.

6. For Package, select your project package.

7. Click Finish.

10.5 Adding the Provided Java Code and Testing the Client
To add the provided Java code and to test the client, perform the following steps:

1. In the Projects explorer, locate the generated Main.java file and open it.

It should be under PROJECT_NAME > Source Packages > PROJECT_NAME >
Main.java.

2. In the main() method, add the code content in the file main-content.txt and
save Main.java.

3. Select Run > Run Main Project from the top menu.

4. View the output in the Output tab at the bottom of the IDE.

Note: Additional exceptions handling code may be required for the
project to compile and run properly.

Adding the Provided Java Code and Testing the Client

10-4 Oracle Real-Time Decisions Platform Developer's Guide

11

Using the Oracle RTD PHP Client 11-1

11Using the Oracle RTD PHP Client

This chapter explains how to integrate an Inline Service with the Oracle RTD PHP
Client, using the CrossSell Inline Service as an example.

A convenient way to integrate a Web application with a deployed Inline Service is to
use the PHP client integration classes. PHP allows you to generate interactive Web
pages. The PHP classes provided offer functionality similar to the Java Smart Client
discussed in Oracle Real-Time Decisions Platform Developer's Guide.

This chapter contains the following topics:

■ Section 11.1, "Before You Begin"

■ Section 11.2, "Integrating with an Inline Service Using the Oracle RTD PHP Client"

■ Section 11.3, "Deploying the PHP Client Examples"

11.1 Before You Begin
You must perform the following tasks first before you can work with the PHP Client
example:

1. Install a Java Development Kit (JDK), with the JAVA_HOME environment variable
set to its location. To obtain a JDK, go to the site:

http://developers.sun.com/downloads

2. Install the Oracle RTD files and deploy Oracle RTD to an application server. See
Oracle Real-Time Decisions Installation and Administration Guide for full information.

3. The PHP Client example works with the sample CrossSell Inline Service. Because
of this, you must first populate the Oracle RTD Database with the CrossSell
example data, then deploy the CrossSell Inline Service using Decision Studio.

See Oracle Real-Time Decisions Installation and Administration Guide for information
about populating the Oracle RTD Database with the CrossSell example data. See
Part III, "Decision Studio Reference" in Oracle Real-Time Decisions Platform
Developer's Guide for information about deploying Inline Services.

4. Start Real-Time Decision Server. For more information, see Oracle Real-Time
Decisions Installation and Administration Guide.

5. Install and configure an environment suitable for evaluating PHP 5.2 scripts, such
as Apache with mod_php.

6. Install either the PHP Soap library from the PHP Installer (version 5.2 or later), or
the NuSoap library (release 0.7.3 or later) from SourceForge.

Integrating with an Inline Service Using the Oracle RTD PHP Client

11-2 Oracle Real-Time Decisions Platform Developer's Guide

11.2 Integrating with an Inline Service Using the Oracle RTD PHP Client
In general, integration using the Oracle RTD PHP Client includes the following steps:

1. Prepare an Oracle RTD PHP Client .ini file.

2. Prepare Client objects.

3. Create a request that identifies the following:

■ The Integration Point to connect to

■ The parameters to identify the session

■ Any other information the Integration Point needs to determine an outcome

4. Use Oracle RTD PHP method syntax to create requests for Informants.

5. Use Oracle RTD PHP method syntax to parse responses from Advisors.

6. Close the connection.

Two working examples of using the PHP Client may be found at RTD_
HOME\client\Client Examples\PHP Client Example:

■ example_nusoap.php demonstrates the use of the Oracle RTD PHP Client with
NuSoap

■ example.php implements the same functionality but uses PHP Soap

11.3 Deploying the PHP Client Examples
This section consists of the following topics:

■ Section 11.3.1, "Installing PHP Client Library and Example Files"

■ Section 11.3.2, "Editing the NuSoap Path Library Location"

■ Section 11.3.3, "Preparing the Oracle RTD PHP Client .ini File"

■ Section 11.3.4, "Creating the Oracle RTD PHP Client"

■ Section 11.3.5, "Creating the Request"

■ Section 11.3.6, "Examining the Response"

■ Section 11.3.7, "Closing the Loop"

■ Section 11.3.8, "Testing the PHP Client Example"

11.3.1 Installing PHP Client Library and Example Files
For this example, the CrossSell Inline Service is exercised by a simple PHP page to
demonstrate how to use the PHP Client.

You need to deploy the PHP Client example to your Web server, as described in the
following section.

To deploy the PHP Client example to Apache:

1. Place the Oracle RTD PHP Client library:

Note: The Oracle RTD PHP Client API reference may be found in
RTD_HOME\client\Client Examples\PHP Client
Example\docs.

Deploying the PHP Client Examples

Using the Oracle RTD PHP Client 11-3

■ RTD_HOME\client\Client Examples\PHP Client Example\rtd

into a location on your PHP include path.

This rtd folder should contain the following files:

■ DecisionService.wsdl

■ rtd.client.base.php

■ rtd.client.nusoap.php

■ rtd.client.phpsoap.php

■ rtd_client_conf.ini

■ rtd_client_nusoap_conf.ini

2. Place the appropriate Oracle RTD PHP Client example - example.php for PHP
Soap or example_nusoap.php for NuSoap - into a path from which your
Apache server is configured to serve PHP scripts, for example,
/home/www/example.php.

11.3.2 Editing the NuSoap Path Library Location
The Oracle RTD client library assumes that nusoap.php is located in a directory
structure of the form <php_includes>/nusoap/nusoap.php, where <php_
includes> is among the PHP installation's include directories.

However, NuSoap files download into the directories lib and sample.

Users must do one of the following:

■ Copy the contents of the lib directory to <php_includes>/nusoap.

■ In rtd.client.nusoap.php, edit the following entry:

include_once "nusoap/nusoap.php"

to reflect the actual NuSoap library location.

11.3.3 Preparing the Oracle RTD PHP Client .ini File
The .ini files provided by Oracle RTD are the following:

■ rtd_client_conf.ini (for PHP Soap)

■ rtd_client_nusoap_conf.ini (for NuSoap)

The PHP client properties in these files are as follows:

■ wsdl - wsdl file location. Use with PHP Soap.

■ clientClass - Client class name

■ appsCacheClass - Cache class name

■ appsCacheFile - temp file for default response

■ clientTimeout - Oracle RTD integration point invoke timeout in seconds. This is
optional.

■ endpointUrl - url for the decision service

Example of rtd_client_conf.ini
The following is an example of rtd_client_conf.ini:

RTD integration service wsdl file path

Deploying the PHP Client Examples

11-4 Oracle Real-Time Decisions Platform Developer's Guide

wsdl=rtd/DecisionService.wsdl

clientClass=Oracle_Rtd_Client_Impl
appsCacheClass=Oracle_Rtd_Client_File_Cache

temp file for default response
appsCacheFile=c:/temp/rtd_default.dat

RTD integration point invoke timeout in seconds
clientTimeout=2

RTD service url
endpointUrl=http://localhost:8080/

Example of rtd_client_nusoap_conf.ini
The following is an example of rtd_client_nusoap_conf.ini:

client class name
clientClass=Oracle_Rtd_Client_Nu

cache class name
appsCacheClass=Oracle_Rtd_Client_File_Cache

temp file for default response
appsCacheFile=c:/temp/rtd_default_nusoap.dat

RTD integration point invoke timeout in seconds
clientTimeout=2

RTD service url
endpointUrl=http://localhost:8080/

Editing the .ini files
Oracle RTD provides Client example initialization files as a basis for your
configuration. You must ensure that the settings in the files match your system. If
necessary, edit the files so that they are correct for your configuration setup.

For example, if your Real-Time Decision Server server is not running on localhost or its
listening port is not 8080, you must edit the appropriate .ini file before deploying the
Oracle PHP Client example, as follows:

1. In RTD_HOME\client\Client Examples\PHP Client Example\rtd, open
the appropriate file, rtd_client_conf.ini or rtd_client_nusoap_
conf.ini,with a text editor.

2. Search for the entry:

endPointUrl = http://localhost:8080

3. Change the URL localhost:8080 to match the host and port of the Real-Time
Decision Server that you are using.

4. Save the file.

How the Client Properties are Used
When a client application creates an Oracle RTD PHP Client, it passes a set of
properties to an Oracle RTD PHP Client factory that represents the component's
endpoint configuration.

Deploying the PHP Client Examples

Using the Oracle RTD PHP Client 11-5

If no argument is given, the Client factory derives its settings by applying parse_
ini_file to rtd_client_conf.ini.

The factory method uses the settings to connect to the server. When the Oracle RTD
PHP Client has connected to the server, it downloads a more complete set of
configuration information, such as the request timeout duration. It will also maintain
locally the set of default responses that the client should use if it ever needs to run
when the server is unavailable.

The detailed client configuration is saved in a local file, the Oracle RTD PHP Client
configuration cache, and is updated automatically whenever the server's configuration
changes.

11.3.4 Creating the Oracle RTD PHP Client
To create the Oracle RTD PHP Client, open the source file for the Example PHP script
appropriate for your environment (example.php for users of PHP Soap and
example_nusoap.php for NuSoap users).

The following include is used to support Oracle RTD integration with NuSoap:

include_once "rtd/rtd.client.nusoap.php";

The following include is used to support Oracle RTD integration with PHP Soap:

include_once "rtd/rtd.client.phpsoap.php";

example.php and example_nusoap.php demonstrate different ways of obtaining
an instance of the Oracle RTD PHP Client.

A client may be obtained with settings given explicitly inline, as is shown by
example.php:

$client = Oracle_Rtd_Client_Factory::createClient(array(
"wsdl"=>"g:/php/includes/rtd/DecisionService.wsdl",
"clientClass"=>"Oracle_Rtd_Client_Impl",
"appsCacheClass"=>"Oracle_Rtd_Client_File_Cache",
"appsCacheFile"=>"c:/temp/rtd_default.dat",
"clientTimeout"=>2,
"endpointUrl"=>"http://192.168.0.196:8081/"

));

In example_nusoap.php, the settings are parsed from a .ini file that has been
placed in the same directory as the example PHP script, and may be found in RTD_
HOME\client\Client Examples\PHP Client Example\rtd\rtd_client_
nusoap_conf.ini:

$config = parse_ini_file("rtd_client_nusoap_conf.ini");
$client = Oracle_Rtd_Client_Factory::createClient($config);

11.3.5 Creating the Request
This line of code creates a Request object:

$request = $client->createRequest();

A request must be configured with the destination Inline Service:

$request->setServiceName("CrossSell");

Deploying the PHP Client Examples

11-6 Oracle Real-Time Decisions Platform Developer's Guide

The selection of an Inline Service may be further specialized with a Deployment State.
If omitted then the Inline Service deployed in the highest State receives the Request
(Production is higher than QA, which is higher than Development):

$request->setDeploymentState("Development");

The details of a Request are specific to each Inline Service. In this example, the
CallStart Informant requires a Session Key named customerId and an additional
parameter named channel:

$request->setIntegrationPointName("CallStart");
$request->setSessionKey("customerId", 3);
$request->setArg("channel", "Call");

After populating the request, the client application calls the invoke method of the
Client, sending the Request to the RTD Server:

$client->invoke($request);

11.3.6 Examining the Response
When an Advisor is invoked, a number of response items, also known as Choices, will
be returned. Your application must be prepared to handle these items. See Section
6.2.2, "Determining the Response of an Advisor" in Oracle Real-Time Decisions Platform
Developer's Guide for more information.

In the client PHP script, the selected Choices are accessible through the Response
interface returned by the Client's invoke method. This object provides access to an
array of ResponseItem objects, each one corresponding to a Choice object selected by
the Advisor's Decision.

The Choice's name may be accessed with the getId() method, and the Choice's
attributes are available through getAttributes():

$request->setIntegrationPointName("OfferRequest");
$response = $client->invoke($request);

In the PHP example scripts, the response items are each printed to the Web page in the
order given by the RTD server:

$items = $response->getResponseItems();
foreach ($items as $item) {

echo "<h1>" . $item->getId() . "</h1>";
foreach ($item->getAttributes() as $key => $value) {

echo $key . ': '.$value."
";
}

}

For an example of the Web page output, see Section 11.3.8, "Testing the PHP Client
Example."

11.3.7 Closing the Loop
Many Inline Services are designed to be self learning. In the CrossSell Inline Service,
the OfferResponse Informant reports interest in a cross sell offer back to a Choice
Event Model. For simplicity, this example registers an "Interested" Choice Event for the
highest ranked Choice among the response items.

if ($response->size() > 0) {
$request->setIntegrationPointName("OfferResponse");
$request->setArg("choiceName", $response->get(0)->getId());

Deploying the PHP Client Examples

Using the Oracle RTD PHP Client 11-7

$request->setArg("choiceOutcome", "Interested");
$client->invoke($request);

}

For more information about Choice Event models and Choices, see Section 6.2.3,
"Knowing How to Respond to the Server" in Oracle Real-Time Decisions Platform
Developer's Guide.

Finally, the session is closed by invoking the CallResolution Informant, which in the
CrossSell example has been designed to terminate the session, freeing resources and
triggering tasks to run that wait for the end of a session.

$request->setIntegrationPointName("CallResolution");
$client->invoke($request);

11.3.8 Testing the PHP Client Example
To access the application, open a web browser and enter one of the following URLs (or
as specified in Section 11.3.1, "Installing PHP Client Library and Example Files," step
2):

http://apache_host:port/example.php (for PHP)

or

http://apache_host:port/example_nusoap.php (for NuSoap)

This displays the choice response from the Advisor call in the Inline Service, together
with the choice attributes, such as shown in the following sample output:

Deploying the PHP Client Examples

11-8 Oracle Real-Time Decisions Platform Developer's Guide

Part III
Part III Decision Studio Reference

The chapters in Part III provide an in-depth look at the concepts, components, and
APIs needed to use Decision Studio to develop Inline Services.

Part III contains the following chapters:

■ Chapter 12, "About Decision Studio"

■ Chapter 13, "About Decision Studio Elements and APIs"

■ Chapter 14, "Deploying, Testing, and Debugging Inline Services"

12

About Decision Studio 12-1

12About Decision Studio

Decision Studio is a tool used to define and manage Inline Services. All aspects of
Inline Services are exposed in Decision Studio. The target user of Decision Studio is an
IT professional with a basic knowledge of Java and a general understanding of
application development and lifecycle issues. This chapter introduces the two broad
categories of Inline Service - Observer and Advisor - and describes how the various
aspects and components of an Inline Service appear in Decision Studio and associated
external file directories

Decision Studio is a rich-client application that follows an integrated development
environment (IDE) paradigm. Decision Studio makes use of an Inline Service Explorer
view on the left, and an editor view on the right. The navigator view displays a
predefined Inline Service folder structure. Items within each folder are Inline Service
metadata elements. Using Decision Studio, metadata elements may be added, edited,
and deleted. When a metadata element is double-clicked, the details of the element are
shown in the object editor. Each metadata element type has its own editor. The
elements are first represented as XML metadata, and then later, Java classes are
generated from which the running Inline Service is compiled.

Decision Studio is based on the Eclipse IDE. It combines features that are specific to
managing Inline Services with the features of the Eclipse IDE, which include general
purpose Java development tools, integration with Software Configuration
Management (SCM) systems, and so on.

This chapter contains the following topics:

■ Section 12.1, "About Inline Services"

■ Section 12.2, "Decision Studio and Eclipse"

■ Section 12.3, "About Decision Studio Projects"

■ Section 12.4, "Inline Service Directory Structure"

Note: The following terms are referenced throughout the Oracle RTD
documentation:

■ RTD_HOME: This is the directory into which Oracle RTD is
installed. For example, C:\OracleBI\RTD.

■ RTD_RUNTIME_HOME: This is the application server specific
directory in which the application server runs Oracle RTD.

For more information, see the section "About the Oracle RTD
Run-Time Environment" in Oracle Real-Time Decisions Installation and
Administration Guide.

About Inline Services

12-2 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 12.5, "Configuring Inline Services"

12.1 About Inline Services
An Inline Service is a deployable application that monitors and advises business
processes at key points across the enterprise on a real-time and continuous basis. Inline
Services do not follow business processes from end-to-end, but rather focus on specific
and identified points within the process. Inline Services are configured and deployed
using Decision Studio and analyzed and tuned using Decision Center. Inline Services
run on Real-Time Decision Server. Together these components comprise Oracle RTD.

12.2 Decision Studio and Eclipse
Decision Studio is based on Eclipse, an open source Java IDE produced by the Eclipse
Foundation. Decision Studio exists as a standard plug-in to the Eclipse environment. If
you are using Eclipse, you have the advantage of using the environment for additional
development and advanced features. If you are not familiar with Eclipse, it is
completely transparent to using Decision Studio.

This section contains the following topics:

■ Section 12.2.1, "Selecting the Decision Studio Workspace"

■ Section 12.2.2, "Setting the Java Compiler Compliance Level"

■ Section 12.2.3, "About the Inline Service Explorer"

■ Section 12.2.4, "Code Generation"

■ Section 12.2.5, "About Decision Studio Perspectives and Views"

■ Section 12.2.6, "Arranging Views and Resizing Editors"

■ Section 12.2.7, "About Element Logic"

■ Section 12.2.8, "Overriding Generated Code"

12.2.1 Selecting the Decision Studio Workspace
When you log into Decision Studio, you can select the workspace for the session. The
default workspace is C:\Users\username\Oracle RTD Studio. You can
optionally set the workspace location to be the default from then on.

You can also change the workspace during any session through the menu path File >
Switch Workspace.

12.2.2 Setting the Java Compiler Compliance Level
Inline Services must be compiled with Java compiler compliance level 5.

To set this as a preference for all Inline Services, perform the following steps:

1. Log in to Decision Studio.

2. Navigate the menu path Windows > Preferences.

3. In the Preferences window, select Java, then Compiler, in the left panel.

4. In the JDK Compliance area, select 5.0 for Compiler compliance level.

5. Click OK, and confirm that you want the full rebuild to proceed.

Decision Studio and Eclipse

About Decision Studio 12-3

Inline Services created in previous versions of Oracle RTD may need to have their Java
compiler compliance level manually changed to 5.0.

To change the Java compiler compliance level at the individual Inline Service level,
right-click the Inline Service name, select Properties > Java Compiler, then select 5.0 for
the Compiler compliance level.

12.2.3 About the Inline Service Explorer
The Inline Service Explorer gives you access to all aspects of your Inline Service
projects. A typical Inline Service project is shown in Figure 12–1.

Figure 12–1 Inline Service Explorer

The contents of the Inline Service folder are described in Table 12–1.

Table 12–1 Contents of Inline Service Folder

Folder Name Description

Service Metadata The metadata that forms the Inline Service. The default editor
for this type of file is the editor specific to each element.
Although you can also edit metadata in a text editor, this is not
recommended.

.settings Contains settings specific to the Eclipse editor.

classes The classes generated by the compile process.

etc This directory contains various scripts and files which are used
for system administration. If a Load Generator script is built, it
is kept in this folder by convention.

gensrc The generated source code files for the Inline Service.

src Custom Java code, which may include arbitrary user-provided
Java classes. Some of these classes can be used to override the
default behavior of the generated Inline Service Java classes.

Decision Studio and Eclipse

12-4 Oracle Real-Time Decisions Platform Developer's Guide

12.2.4 Code Generation
In general, as elements are configured for an Inline Service, four files are produced:

■ An .sda file that stores the configuration as metadata.

■ A .java file that is generated from the metadata and is compiled into a class file.

■ A .java file that extends the original generated file and can be used in unusual
circumstances to override the actions of the generated file.

■ The class file that is first compiled from the generated file and subsequently
compiled from any overrides.

The files are named in the following manner:

■ Metadata: Object_ID.sda

■ Generated: GENObject_ID.java

■ Override: Object_ID.java

■ Class: Object_ID.class

■ Generated Class: GENObject_ID.class

For instance, consider an element named Customer account. An Object ID is formed,
CustomerAccount, that conforms to Java naming standards.

The files created are:

■ Metadata: CustomerAccount.sda

■ Generated: GENCustomerAccount.java

■ Override: CustomerAccount.java

■ Class: CustomerAccount.class

■ Generated Class: GENCustomerAccount.class

lib Optionally, a lib folder is created by the user when using
outside classes. For instance, assume you want to access a class
called THashMap in some function, logic, or initialization block.
This class exists in the tcollections.jar file. To use the
class, create the lib folder under the project directory in the
project workspace, and then put the tcollections.jar file in
the folder. To use a class from this jar, import using the
Advanced button next to description and then use the class in
your code.

.classpath The file containing the Java classpath for the project. There is no
need to edit this file.

.project The Eclipse project file.

Tip: The Object ID is created as you name the object. Object IDs are
shown in the text box below the name of the object for which they are
created. The Object ID may be different from the label to conform to
Java standards. To look up an Object ID, toggle between showing
labels and showing Object IDs using the Toggle icon:

Table 12–1 (Cont.) Contents of Inline Service Folder

Folder Name Description

Decision Studio and Eclipse

About Decision Studio 12-5

12.2.5 About Decision Studio Perspectives and Views
Decision Studio lets you work with an Inline Service from several perspectives. A
perspective defines the initial set and layout of views and editors for the perspective.
Each perspective provides a set of functionality aimed at accomplishing a specific type
of task, or works with specific types of resources. Perspectives control what appears in
certain menus and toolbars.

The default Inline Service perspective contains four views:

■ Inline Service Explorer view: Shows the project and elements in tree form; by
default, it is located on the left-hand side of the screen.

■ Problems view: Shows errors and exceptions with your project; by default, it is
located at the bottom of the screen as a tabbed selection, along with Test view.

The Problems view identifies compilation errors and validation errors as the Inline
service is built. Double-click a compilation error to display the Java perspective
with the error highlighted.

Double-click a validation error to display the Inline Service perspective with the
element editor for the element that has validation errors.

■ Test view: Provides an area for testing your Inline Service; by default, it is located
at the bottom of the screen as a tabbed selection, along with Problems view.

■ Cheat Sheets view: Provides step-by-step instructions for common tasks; by
default, it is located on the right-hand side of the screen.

The center area of the Inline Service perspective is the editor area, and shows an editor
that is specific to the node on the project tree you have selected. To change to a new
editor, double-click the element you want to edit.

To edit a Java file, change to the Java perspective and double-click the Java file you
want to edit.

The Inline Service perspective is the default perspective, and is the main work area for
configuring and deploying Inline Services. Oracle RTD has a number of features for
working with Inline Service metadata. These are documented in the following
sections. If there is a feature you do not see here, it is part of the core Eclipse platform.
For information about these features, see the Eclipse online help document Workbench
User Guide.

Table 12–2 describes the menu and toolbar items for the Inline Service perspective.

Table 12–2 Menu and Toolbar Items for Inline Service Perspective

Menu or Toolbar Item Name Description

File > New Inline Service Project Creates a new Inline Service project in the workspace
you choose.

Project > Download Downloads an already deployed Inline Service from
Real-Time Decision Server to make changes.

Project > Deploy Deploys an Inline Service to Real-Time Decision Server.

Window > Open Perspective >
Inline Service Perspective

Opens an Inline Service perspective.

Window > Show View > Inline
Service Explorer View

Shows the current Inline Service View.

Window > Display Object IDs Toggles between showing labels and Object IDs.

Help > About Displays version information about Decision Studio.

Decision Studio and Eclipse

12-6 Oracle Real-Time Decisions Platform Developer's Guide

The Inline Service Explorer View also has toolbar items. These items are described in
Table 12–3.

The Java perspective combines views that you would commonly use while editing
Java source files, while the Debug perspective contains the views that you would use
while debugging Java programs.

To work directly with the generated Java code, use the Java perspective. To debug an
Inline Service at the Java code level, use the Debug perspective.

12.2.6 Arranging Views and Resizing Editors
Tabs in the editor area indicate the names of resources that are currently open for
editing. An asterisk (*) indicates that an editor has unsaved changes. Tabs on views
indicate the name of the view, and have a toolbar that provides functionality specific to
that view.

You may drag and drop the views and editors of a perspective to any space on the
screen. Views and editors will resize themselves to fit the area in which they are
placed. Occasionally portions of an editor (where you do your main work) or view
will become covered by other views, or resized to an area that is not convenient to use.
To resize the editor or view, either close some other open views and the remaining will
automatically resize, or maximize the editor or view.

Both editors and views can be toggled between Maximize and Minimize by
double-clicking the tab, or by using the right-click menu item. For more information

Deploy icon: Deploys an Inline Service to Real-Time Decision Server.

Download icon: Downloads an already deployed Inline Service from
Real-Time Decision Server to make changes.

Toggle icon: Toggles between showing labels and Object IDs.

Table 12–3 Toolbar Items for Inline Service Explorer View

Toolbar Item Name Description

Metadata icon: Toggles between showing the entire project tree, or just Inline
Service metadata.

Collapse All icon: Collapses the project tree.

Link with Editor icon: Finds the proper editor for the selected element type and links
so that when you select an element, the editor adjusts
accordingly.

Menu icon: Provides access to Link with Editor, View Metadata Only, and
Always Show Object IDs. This last option shows both the
Object ID and label of elements in the Inline Service Explorer
and the editors.

Table 12–2 (Cont.) Menu and Toolbar Items for Inline Service Perspective

Menu or Toolbar Item Name Description

Decision Studio and Eclipse

About Decision Studio 12-7

on perspectives, editors, and views, see the online documentation provided in the
Workbench User Guide, contained in the Eclipse online help.

12.2.7 About Element Logic
Java code is added to the logic panels of elements within Decision Studio. This code is
then inserted into the proper methods of the GENObject_ID.java file. To add logic
to an element, or to update it, select the element, and use the editor to change the code
in the logic panel.

Sometimes it is more convenient to insert larger code fragments directly within the
generated code. You may edit these files directly through the Java perspective of
Decision Studio. It is very important to note that the generated code can only be
manually edited in specific places. Also, note that when you choose Project > Clean,
Decision Studio regenerates the generated code, overwriting any code changes made
directly to the generated Java code.

Any method that can be edited through the Java perspective in Decision Studio is
clearly marked with a Start and End marker. For instance, the Application object has a
method to initialize the Inline Service, init().

Code for this method can be added through the Decision Studio interface, using the
Initialization Logic panel on the Logic tab of the Application element.

If you choose, instead, to add your initialization code directly into the Application
class using Eclipse, add it only to the method marked as such:

public void init() {
// SDCUSTOMCODESTART.Application.InitBody.java.0
// SDCUSTOMCODEEND.Application.InitBody.java.0

}

Your code must fall between the start and end comments of the method. Any code that
falls outside of the commented areas risks being overwritten. The code added directly
to a generated Java file will be lost when the file is regenerated. To preserve the code, it
has to be copied back to the corresponding metadata element.

12.2.8 Overriding Generated Code
The generated class Object_ID.java extends the class GENObject_ID.java. If for
any reason you need to override the code contained in GENObject_ID.java, add
your overriding code to the file Object_ID.java. This file should be moved from
the gensrc directory to the src directory.

12.2.9 Performing Inline Service Searches
You can perform searches for objects and strings in an Inline Service., as follows:

1. Start the procedure through the menu path Search > Search.

2. Click the Inline Service Search tab.

3. Enter your Search string, then refine your search criteria as required:

■ You can search for a combination of Object IDs and all other strings.

■ By default Inline Service searches are case insensitive. You can check one or
more of the following Search Options as required:

– Case sensitive - the entered expression is searched with the capitalization
as entered

About Decision Studio Projects

12-8 Oracle Real-Time Decisions Platform Developer's Guide

– Match whole words only - the expression is searched where it appears on
its own, and not as part of a longer word

– Regular expression - use a Java regular expression for the search string

4. Click Search.

The results appear in the Search view.

12.3 About Decision Studio Projects
Inline Services are built as projects within Decision Studio.

This section contains the following topics:

■ Section 12.3.1, "Starting a New Project"

■ Section 12.3.2, "Importing a Project"

■ Section 12.3.3, "Creating a User-Defined Template"

■ Section 12.3.4, "Downloading a Deployed Inline Service"

■ Section 12.3.5, "About Deployment States"

■ Section 12.3.6, "Example Projects"

■ Section 12.3.7, "Opening Decision Studio Version 1.2 Files"

12.3.1 Starting a New Project
To start a new Inline Service, select File > New Inline Service Project to start your
project. Choose a template from the list, name your project, and click Finish to create a
project.

The list of templates contains templates supplied by the Oracle RTD installation, as
well as any user-defined templates.

12.3.2 Importing a Project
If you are opening an existing project, select File > Import to import the project. If the
metadata needs to be updated from a previous version, you will be prompted to
upgrade.

12.3.3 Creating a User-Defined Template
To create a template from an Inline Service, select File > Export to export the project to
a template. Choose the export type Inline Service Template. Templates are stored in
the location defined by Inline Services Preferences. To access preferences, select
Window > Preferences and choose Inline Services. The directory entered is where
your templates are stored on the file system.

12.3.4 Downloading a Deployed Inline Service
To download a deployed Inline Service, select Project > Download. You can also
download it from Real-Time Decision Server using the Download icon on the toolbar.

If you are going to make changes to a deployed Inline Service, it is important to follow
these practices in order to preserve both your changes and the potential changes that
have been made by business users. Use the following method:

1. Make sure that no business users are editing the deployed Inline Service.

About Decision Studio Projects

About Decision Studio 12-9

2. You should always lock an Inline Service when you download, so that additional
changes cannot be made by business users while you are enhancing it.

3. Make enhancements in Decision Studio.

4. Redeploy the Inline Service, releasing the locks.

During the period that you have the Inline Service locked, business users will be able
to view, but not edit, the deployed Inline Service.

12.3.5 About Deployment States

When an Inline Service is deployed from Decision Studio, you chose a deployment
state from the deploy dialog. Three deployment states are packaged with Decision
Studio: Development, QA, and Deployment. Your system administrator may add
additional deployment states through JConsole.

When you test your Inline Service through the Test View, the last deployment state is
tested.

12.3.6 Example Projects
A sample project is available to import in the RTD_HOME\examples directory. This
directory includes the Cross Sell Inline Service.

The Cross Sell Inline Service simulates a simple implementation for a credit card
contact center. As calls come into the center, information about the customer and the
channel of the contact is captured.

Based on what we know of this customer, a cross selling offer is presented to the
customer. The success or failure of that offer is tracked and sent back to the server, so
that the underlying decision model has the feedback that helps to refine its ability to
make a better cross-selling recommendation.

The Cross Sell Inline Service highlights many features of Oracle RTD, including:

■ Driving the decisioning process through Key Performance Indicators (KPIs)

■ Optimizing competing KPIs, such as reducing cost and increasing revenue

■ Using graphical rules-based scoring for making the right decision

■ Using analytical self-learning models to predict the best decision

It should be noted that some features displayed in the Cross Sell Project are for
simulation purposes only. These are clearly marked in the example and should not be
used for production Inline Services.

The Cross Sell example can be viewed by importing the project. The project is located
at RTD_HOME\examples\CrossSell. After importing the project, you can view the
features described in Table 12–4 by double clicking each of the elements and viewing
the editor for that element.

Note: Deployment states will be deprecated in a future release. Until
then, do not use any deployment state other than Development.

About Decision Studio Projects

12-10 Oracle Real-Time Decisions Platform Developer's Guide

Table 12–4 Features of the Cross Sell Example Inline Service

Feature Element Name Description

Multiple KPIs Performance Goals The Cross Sell Inline Service is
designed to optimize both the
maximization of revenue and the
reduction of costs of the
organization.

Dynamic customer
data

Data Source/CustomerData
SourceEntity/Customer

The combination of a Data Source
and an Entity give access to customer
data that will assist us in making a
decision of the type of offer to
present to the customer.

An Entity is an object that provides a
means to map one or more Data
Sources together into an object that
represents a significant unit in the
Inline Service.

The data accessed through the Entity
is session specific.

Cross Selling and
Customer Retention
Offers

Choices The offers that are available to be
extended are organized under
Choices. Some of these offers are
designed as cross selling offers, while
others are designed to boost
customer retention rates. By viewing
the Score tab of each offer, you can
see that offers are assigned a score for
evaluation. A Score is provided for
each performance goal, Revenue and
Retention. Some offers (for instance
all Credit Cards) inherit their scoring
from the parent Choice Group. This
indicates that all offers in this group
are scored in the same manner. In
this case, the score is calculated by
the formula 'Profit Margin multiplied
by Likelihood of Acceptance.'

Other offers (such as Reduced
Interest Rate) calculate the score
using a rule. Note that the Revenue
Goal on Reduced Interest rate is
actually scored negatively, as it
represents a loss of revenue to the
organization.

Scoring Rules Scoring Rules/Reduced Interest
Rate

Scoring Rules are a way to use
session data, such as information
about the customer, to dynamically
score the offer.

Population segment Filtering Rules/Segment to
Retain

The population can be segmented by
using Filtering Rules. The outcome of
this rule is two groups: a group that
is eligible for customer retention
offers and the remaining group to
which we will cross sell. If a
customer has abandoned six or more
calls and has been a customer for
over two years, they are filtered into
a group for retention offers.

About Decision Studio Projects

About Decision Studio 12-11

The Cross Sell Inline Service is ready to be deployed and loaded with data. After you
deploy the Inline Service, open Load Generator by running RTD_
HOME\scripts\loadgen.cmd. Then, choose Open an existing Load Generator
script and browse to RTD_HOME\examples\CrossSell\etc\LoadGen.xml.
Finally, run the script.

This script takes simulated customer data and runs the Inline Service. The data and
correlations found can then be viewed in Decision Center.

12.3.7 Opening Decision Studio Version 1.2 Files
If you are opening an Inline Service from a previous version of Decision Studio, it was
not created as a project. To open it as a project, start a new Inline Service project and
then select Create project at external location to locate the files on your file system.

This will convert the previous version Inline Service to a Decision Studio 2.2 project.

Weighting decisions
by population
segment

Decisions/OfferDecision The Decision element allows you to
weight the decision process across
the competing performance metrics.
In this case, we give priority to the
offers that score high on Customer
Retention a heavier weight for the
population segment that fits the
customer retention profile.

Integration to
organizational
processes

Integration Points Integration Points are the sites that
touch outside systems and processes,
either by gathering information (such
as CallStart, which gathers
information from the IVR about the
customer) or provides information to
an outside system (such as
OfferRequest, which provides the
CRM system with the highest scored
offer for the customer).

It should be noted that the
OfferResponse Integration Point has
code in the else branch for
simulation purposes. In a production
situation, this would be feedback
from the service center operator on
whether the offer was accepted or
not.

Caution: In order to simulate the passage of time when the Inline
Service load generation script is run, the method
currentTimeMillis has been overridden in Application.java.
If you plan on using CrossSell as a basis for a production Inline
Service, you need to remove the following override file:

RTD_HOME\examples\CrossSell\src\com\sigmadynamics\sdo\
Application.java

See Section 12.2.8, "Overriding Generated Code" for more information.

Table 12–4 (Cont.) Features of the Cross Sell Example Inline Service

Feature Element Name Description

Inline Service Directory Structure

12-12 Oracle Real-Time Decisions Platform Developer's Guide

12.4 Inline Service Directory Structure
When you create your Inline Service, you can create your project anywhere on your
file system. It is recommended that you keep all of your projects in one directory for
ease of use. The default workspace is C:\Users\user_name\Oracle RTD
Studio.

When saving an Inline Service, the directory name is the same as your Inline Service
name. The following directory structure is created for your Inline Service.

12.5 Configuring Inline Services
Inline Services are configured and deployed using Decision Studio. Elements are
added to a project and Java scriptlets with functional logic are added to certain
elements. When the Inline Service is saved, XML metadata is created and Java code is
generated and deployed to Real-Time Decision Server, where the Inline Services runs.

This section contains the following topics:

■ Section 12.5.1, "Observer Inline Services"

■ Section 12.5.2, "Advisor Inline Services"

12.5.1 Observer Inline Services
In monitoring, Inline Services focus on collection points: points where data about the
business can be gathered. Insights and discoveries of trends and correlations in this
data are made by a self-learning model that predicts future behavior and anticipates
the consequences of change. This type of Inline Service is known as an Observer.

Table 12–5 Inline Service Directory Structure

Directory Name Description

Inline_Service_name\classes The compiled classes of your Inline Service.

Inline_Service_name\dc A folder for custom JSPs for Decision Center.

The custom JSPs can be accessed though a URL of the
form http://<host_name_or_
ip>:<port>/ui/custom/<ILS-name>/<custom
page file name>.

For example:

http://localhost:8081/ui/custom/CrossSe
ll/mypage.jsp.

Inline_Service_name\etc Optional directory for miscellaneous files related to
the Inline Service. For example:

■ Loadgen scripts

■ Readme files

■ Inline Service description files

■ Inline Service setup instruction files

This directory is not pushed to the Real-Time Decision
Server when the Inline Service is deployed.

Inline_Service_name\gensrc Location of the generated source code for your Inline
Service.

Inline_Service_name\meta The metadata of your Inline Service.

Inline_Service_name\src The source code for overriding the generated code of
your Inline Service.

Configuring Inline Services

About Decision Studio 12-13

These discoveries are published to a thin client, Decision Center, where business users
use these insights to make decisions. Business users also manage and optimize the
Inline Service through Decision Center.

12.5.2 Advisor Inline Services
In advising a business process, Inline Services connect at key decision points as well as
collection points. Decision points are places in the overall business process where key
business decisions are made, such as product recommendations or retention offers.
Data is first gathered at collection points, discoveries are made through the
self-learning model, and then choices are scored according to performance metrics the
organization wants to achieve. The highest scored choice is presented by the Inline
Service at the decision point in the business process. As the success level of these
choices is returned to the Inline Service through feedback, the model increases its
capability of providing better and better choices. Inline Services of this type are called
Advisors.

Configuring Inline Services

12-14 Oracle Real-Time Decisions Platform Developer's Guide

13

About Decision Studio Elements and APIs 13-1

13About Decision Studio Elements and APIs

Decision Studio elements are configured within Decision Studio, and the logic is
added in the form of Java scriptlets. This chapter describes the properties of each
element, and the Java scriptlets contained by the element (if any), with examples.

This chapter contains the following topics:

■ Section 13.1, "The Oracle RTD Decisioning Process"

■ Section 13.2, "About Element Display Labels and Object IDs"

■ Section 13.3, "About the Application Element"

■ Section 13.4, "Accessing Data"

■ Section 13.5, "Forming Entities"

■ Section 13.6, "Performance Goals"

■ Section 13.7, "Choice Groups and Choices"

■ Section 13.8, "Filtering Rules"

■ Section 13.9, "Scoring Rules"

■ Section 13.10, "Using Rule Editors"

■ Section 13.11, "About Decisions"

■ Section 13.12, "About Selection Functions"

■ Section 13.13, "About Models"

■ Section 13.14, "About Integration Points"

■ Section 13.15, "About External Systems"

■ Section 13.16, "About the Categories Object"

■ Section 13.17, "About Functions"

■ Section 13.18, "About Type Restrictions"

■ Section 13.19, "About Statistic Collectors"

■ Section 13.20, "About Decision Center Perspectives"

13.1 The Oracle RTD Decisioning Process
The Oracle RTD decisioning process is based on a framework that takes into account
the overall performance goals with which an organization is concerned, the
performance metrics that measure those goals, the action required to score each of the
available choices, and a weighting of that score based on segments of the population.

About Element Display Labels and Object IDs

13-2 Oracle Real-Time Decisions Platform Developer's Guide

The following elements are part of this framework:

■ Performance Goals

■ Decisions

■ Choice Groups and Choices

■ Filtering Rules

■ Scoring Rules

■ Predictive Models

The following shows an overview of how the elements feed into the general Oracle
RTD decisioning process, and form the basis for an Inline Service:

To see how extensions of these inputs can enable external applications together with
Oracle RTD to provide a composite decision service for their end users, see Chapter 17,
"Externalized Objects Management."

13.2 About Element Display Labels and Object IDs
As you create elements, you enter a Display Label for the element. An Object ID is
automatically generated as you type the Display Label.

Object IDs are automatically made to conform to Java naming conventions: variables
are mixed case with a lowercase first letter; classes are mixed case with an uppercase
first letter. If you have spaces in your label name, they will be removed when forming
the Object ID. If you choose to manually enter an Object ID, you can overwrite the
Object ID that was created for you.

You can use the Toggle icon on the Inline Service Explorer task bar to toggle between
the Display Label of the object and its Object ID:

Note: When creating a new object, if the object name is already used
by an existing one, Decision Studio will automatically append a
number to the Object ID (such as 1, 2, and so on) to avoid conflicts.

About the Application Element

About Decision Studio Elements and APIs 13-3

13.3 About the Application Element
When a new project is started in Decision Studio, an Application object is created
under the Service Metadata folder. Properties of the Application object are defined
with the following characteristics:

■ Application Parameters

■ Control Group

■ Model Defaults

■ Logic

■ Permissions

All of these values are defined through the Decision Studio interface.

This section contains the following topics:

■ Section 13.3.1, "Application Parameters"

■ Section 13.3.2, "Application APIs"

■ Section 13.3.3, "Configuring the Control Group"

■ Section 13.3.4, "Setting Model Defaults"

■ Section 13.3.5, "Writing Application Logic"

■ Section 13.3.6, "Setting Inline Service Permissions"

13.3.1 Application Parameters
This section describes Application parameters. This section contains the following
topics:

■ Section 13.3.1.1, "Using Debugging Options"

■ Section 13.3.1.2, "Adding Application Parameters"

13.3.1.1 Using Debugging Options
If you are testing a deployed Inline Service against a production database, and you do
not want to contaminate the model data, you can use the debugging options to keep
data from being written. Debugging options are:

■ Disable learning: This option maintains the model's current state so that testing
does not introduce additional learnings.

■ Disable database writes: This option keeps data from being written to the
database.

 Parameters have a name, data type, default value, and can be made an array.

13.3.1.2 Adding Application Parameters
Application parameters are global-level parameters that can be defined and stored
across all sessions.

Click Add on the Application Parameters tab to add a parameter. When adding
parameters, you supply the Name, Type, Array, and Default Value.

If you want to use an application parameter in a rule, you can select a Type Restriction
for the parameter. This is not a mandatory requirement, but it will help you in
formulating the rule. For more information about creating and using type restrictions,

About the Application Element

13-4 Oracle Real-Time Decisions Platform Developer's Guide

see Section 13.18, "About Type Restrictions."

 Click Remove to remove parameters.

13.3.2 Application APIs
The following returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

When global parameters are set, getters and setters are generated in the code. To access
the application parameter, for instance myApplicationParameter of type string,
use the following:

String param = Application.getApp().getMyApplicationParameter();

Conversely, to set an application parameter:

Application.getApp().setMyApplicationParameter("my parameter");

13.3.3 Configuring the Control Group
The control group acts as a baseline so that business users can compare the Oracle RTD
decisioning process against either a preexisting ranking process or a random selection.
It is important to define the control group decision correctly to truly reflect the
decision as it would have been made if Oracle RTD was not installed.

For example, in a cross-selling Inline Service for a call center, if cross-selling was being
done randomly before Oracle RTD was introduced, the Control Group Decision
should also reflect a random decision.

Table 13–1 Control Group Options

Option Name Description

No Control Group If selected, control group will not be used, the Selection Value
will be set to 0, and Use value literally will be selected and
disabled. Deselect No Control Group to turn on control group
and to change the settings.

Selection Value A reference to an attribute value. This value is used to seed the
Random selection of requests for the control group.

Use value literally If Use value literally is deselected, then the selection value for
the control group should refer to a session key or an attribute
uniquely identifying a customer. Control group participation is
determined using a pseudo-random hash of the selection value.
The result of the calculation is deterministic, and depends only
on the selection value and the specified size of the control
group. The actual size of the control group may differ slightly
from the specified size.

If Use value literally is selected, then the selection value
directly determines the control group participation. The
selection value in this case can be either Boolean (participation
in control group is indicated by the true value) or integer
(participation in control group is indicated by a non-zero value).

For example, select Use value literally when assignment of
customers to control group is done outside of Oracle RTD. The
attribute used as the control group selection value has to
indicate this assignment.

About the Application Element

About Decision Studio Elements and APIs 13-5

13.3.4 Setting Model Defaults
Model defaults control which model is used and how the model is set up. Most model
defaults should not be changed unless you are advised to do so by Oracle Support
Services.

Percent of Population This option is only active if Use value literally is set to False. In
this case, the user decides what percentage of the total number
of sessions should be assigned to the control group.

Use for analysis Controls whether the control group participation should be
tracked by analytic models or not.

Name for Analysis Name that the analytic models should use for tracking the
control group participation.

Table 13–2 Model Defaults

Option Name Description

Study name The name of the study used by the Inline Service. Typically, each
Inline Service has its own separate study. This can be achieved
by keeping the name of the study the same as the name of the
Inline Service. However, an existing study may be used when
testing an Inline Service. In that case, learning should be
disabled to preserve production data.

Persistence Interval The interval at which model data is saved to a database. This
feature should not be adjusted without assistance from Oracle
Support Services.

Time Window Duration The default value is Quarter.

First Day of Week The default value is locale dependent. In the United States, the
default value is Sunday.

First Month of Year The default value is January.

Build when data changes
by

The percentage of new records to prompt the building of a new
prediction model. The default value is 20%.

For example, if set to 10% and the last time the prediction
models were built was with 13400 records, then the next time
they will be built will be after 1340 records.

Significance threshold The default value is 25. This feature should not be adjusted
without assistance from Oracle Support Services.

Correlation threshold The default value is 0. This feature should not be adjusted
without assistance from Oracle Support Services.

Max Input Cardinality The maximum number of values that will be tracked in discrete
attributes. The default value is 500. This feature should not be
adjusted without assistance from Oracle Support Services.

Note that this value, which is a total value across all attributes,
can be overridden at the attribute level. For more information,
see Section 13.7.3, "Choice Attribute Characteristics."

Table 13–1 (Cont.) Control Group Options

Option Name Description

About the Application Element

13-6 Oracle Real-Time Decisions Platform Developer's Guide

13.3.5 Writing Application Logic
Scriptlets to initialize and clean up an Inline Service are added through Decision
Studio, using the Initialization Logic and Cleanup Logic panels on the Logic tab of
the Application element.

These scriptlets are inserted into the init and cleanUp methods of the Application
class. The init method is called when the Inline Service is being loaded. The method
cleanUp is called when the Inline Service is unloaded. If the application is
redeployed, init will be called again.

13.3.5.1 Adding Imported Java Classes
If the init or cleanUp method refers to user-provided Java classes, these classes may
have to be imported. To add additional import statements, click Advanced next to the
description.

13.3.6 Setting Inline Service Permissions
Inline Service permissions are set for roles that allow users to work with the Inline
Service during its lifecycle. The permissions listed in Table 13–3 are available for each
Inline Service, and are appropriate for Inline Service developers and Decision Center
business users.

Inline Service permissions work with server-side Cluster Permissions to secure the
Inline Service from being changed or redeployed by an unauthorized user. See Oracle
Real-Time Decisions Installation and Administration Guide for more information on setting

Max Input Buckets The maximum number of input buckets for numeric attributes.
The default value is 200. A value of 100 may also be sufficient.
This feature should not be adjusted without assistance from
Oracle Support Services.

Note that this value, which is a total value across all attributes,
can be overridden at the attribute level. For more information,
see Section 13.7.3, "Choice Attribute Characteristics."

Table 13–3 Inline Service Permissions

Permission Name Description

Open Service for Reading Allows Decision Center to open the Inline Service in a read-only
mode. This mode is appropriate for a business user who will
use Decision Center to view reports.

Open Service Allows a Decision Center user to edit and redeploy an Inline
Service to Real-Time Decision Server.

Deploy Service from Studio Allows a Decision Studio user to deploy the Inline Service. To
redeploy an existing Inline Service, the user has to be assigned a
role with Deploy permission for both the existing and the new
service. This mode is appropriate for the Inline Service
developer who will use Decision Studio to deploy Inline
Services.

Download Service Allows a Decision Studio user to download an existing,
deployed Inline Service from a server. This mode is appropriate
for the Inline Service developer who will use Decision Studio to
deploy Inline Services.

Table 13–2 (Cont.) Model Defaults

Option Name Description

Accessing Data

About Decision Studio Elements and APIs 13-7

Cluster Permissions. In addition, you can set permissions on Decision Center
perspectives. See Section 13.20, "About Decision Center Perspectives" for more
information.

Use the Permissions tab of the Application element to set Inline Service permissions.
Click Add to add roles to the Inline Service. To retrieve roles from the server, click Get
Names.

You can choose a role from the list, or you can enter a name in the Role field. After you
have added roles, select the permissions you would like to apply under the Granted
field in the Permissions list.

To remove roles from the Inline Service, select the role and click Remove.

13.4 Accessing Data
To access data within your Inline Service, use the entity, data source, and session
elements.

Entities provide an abstract way to bring together data from multiple sources to form
an object that is of use to the overall Inline Service. Entities are comprised of a number
of attributes that describe the contents of the Entity. Entities also provide methods to
access their attributes.

An Entity, such as a Customer, may combine incoming data from different sources,
such as an account number entered through an IVR and customer history retrieved
from a corporate database. One of the Entity's attributes may be a key, or unique
identifier. The incoming data would then be mapped to a desired attribute of the
Entity. Alternatively, entity attributes can be populated through the life of the session
via additional logic coded in the inline service

Data sources act as suppliers of data. They provide a way to manage the connection to
relational database tables and stored procedures. Data sources identify columns in a
database table, or result sets from stored procedures as attributes. These attributes are
mapped to Entity attributes.

The session object is a specialized Entity that identifies which attributes are available
in memory to the Inline Service. Those attributes can be comprised of a Entity, such as
Customer described previously, as well as attributes that are set by some other source,
such as calculation. A session object is used to store information for a user session.
Attributes stored in session are available throughout the Inline Service, and are
destroyed when the session is closed. Attributes associated to the session will by
default be used as inputs for Oracle RTD learning models unless explicitly excluded
from the specific model or excluded for analysis altogether.

To access data, you typically follow these steps:

1. Create a data source, based on a SQL table or stored procedure.

2. Create an Entity with attributes from one or more data sources.

3. Add a key value to the Entity.

4. Add the Entity to the session as an attribute, and assign a session key.

5. Map the Entity attributes to data source columns or output values.

Note: When Windows Authentication is enabled, you cannot retrieve
a list of roles by clicking Get Names. Instead, you must enter the
name of the role to which you want to assign permission in the Role
field.

Accessing Data

13-8 Oracle Real-Time Decisions Platform Developer's Guide

6. Map the Entity key to a session key or function.

This section contains the following topics:

■ Section 13.4.1, "About Data Sources"

■ Section 13.4.2, "Creating SQL Data Sources"

■ Section 13.4.3, "Creating Stored Procedure Data Sources"

■ Section 13.4.4, "Accessing Oracle's Siebel Analytics Data"

13.4.1 About Data Sources
Data is accessed within Inline Services using the elements data source and entity. A
data source is an abstract provider of data. Data sources act as suppliers of data to the
Inline Service.

Data sources are configured entirely within Decision Studio. There are two types of
data sources: SQL data sources, and Stored Procedure data sources.

13.4.2 Creating SQL Data Sources
This section describes how to create a SQL data source. This section contains the
following topics:

■ Section 13.4.2.1, "SQL Data Source Characteristics"

■ Section 13.4.2.2, "Adding Columns to the Data Source"

■ Section 13.4.2.3, "Importing Database Column Names"

■ Section 13.4.2.4, "Setting the Input Column"

13.4.2.1 SQL Data Source Characteristics
Table 13–4 lists the properties of a SQL data source.

Table 13–4 Properties of a SQL Data Source

Data Source Property Name Description

Description Description of the data source.

JDBC Data Source The JNDI name of a JDBC data source. See Oracle Real-Time
Decisions Installation and Administration Guide for information
about how to create a new data source.

Table Name The name of the table. This name is always case insensitive,
even when the database itself is case sensitive.

Output Column Name The columns to select from the data source.

Output Type Data type of the output column.

Input Column Name The columns used in the WHERE clause of the query to the
data source. This is the column or columns you will match on
in order to select data from the data source.

Input Type Data type of the input column.

Allow multiple rows Allows multiple rows to be returned. If this option is not
selected and multiple rows are returned, only the first one is
used.

Accessing Data

About Decision Studio Elements and APIs 13-9

13.4.2.2 Adding Columns to the Data Source
Click Add or Remove to add or remove columns from the data source. If you expect
more than one row, select Allow Multiple Rows. If you do not select this option and
multiple rows are returned, only the first will be used.

13.4.2.3 Importing Database Column Names
Click Import to connect directly to the data source. All of the database tables for the
specified data source will be shown. If no data source is specified, the default data
source SDDS is used.

Select Include objects from all schemas to display tables not defined in the data
source schema. Tables from all accessible schemas will be shown, with the table
schema displayed in a separate column.

Choose the table you want to import, and the column names and data types of those
columns are imported. If there are columns you do not need, click Remove to remove
them.

13.4.2.4 Setting the Input Column
The Input column is the column you will match on the database table to retrieve the
rows needed for the session. Most likely, this will be a value of the primary key or a
unique index column to return a single record. Otherwise, if you need larger result
sets, it may be a non-unique indexed column. Choose the attribute on which you want
to match by clicking Add.

13.4.3 Creating Stored Procedure Data Sources
This section describes how to create a stored procedure data source. This section
contains the following topics:

■ Section 13.4.3.1, "Stored Procedure Data Source Characteristics"

■ Section 13.4.3.2, "Importing Stored Procedure Parameters"

■ Section 13.4.3.3, "Adding Attributes to the Data Source"

■ Section 13.4.3.4, "Adding Result Sets to the Data Source"

13.4.3.1 Stored Procedure Data Source Characteristics
Table 13–5 lists the properties of a stored procedure data source.

Advanced The Advanced button lets you choose to show the element in
Decision Center and change the label of the element.
Changing the label of the element does not change the Object
ID.

Table 13–5 Properties of a Stored Procedure Data Source

Data Source Property Name Description

Description Description of the data source.

JDBC Data Source The JNDI name of a JDBC data source

Procedure Name The name of the stored procedure. This name is always case
insensitive, even when the database itself is case sensitive.

Table 13–4 (Cont.) Properties of a SQL Data Source

Data Source Property Name Description

Accessing Data

13-10 Oracle Real-Time Decisions Platform Developer's Guide

13.4.3.2 Importing Stored Procedure Parameters
Click Import to connect directly to the data source. All of the stored procedures for the
specified data source will be shown. If no data source is specified, the default data
source SDDS is used.

Select Include objects from all schemas to display stored procedures in all the data
source schemas.

Choose the stored procedure that you want to import, and the parameter names and
data types of those parameters are imported, to become attributes of the data source,
then click Finish. If there are parameters that you do not need, click Remove to
remove them.

13.4.3.3 Adding Attributes to the Data Source
Click Add or Remove to add or remove attributes from the data source. Choose
whether the attribute is an Input, Output, or Input/Output.

Attributes must be ordered. Use Up or Down to order the attributes.

13.4.3.4 Adding Result Sets to the Data Source
If the stored procedure has one or more result sets, perform the following steps for
each result set:

1. Click the Result Sets Add button to add a result set to the data source.

2. Use the Result Set Details Add button to add the column names and types of the
result set.

You must manually enter the column names and data types to match the columns
in the stored procedure result set, as follows:

■ The column names in the data source must be exactly the same as the column
names in the result set

■ The data types in the data source must be valid for the corresponding data
types in the result set

For example, for VARCHAR or VARCHAR2 result set columns, enter String
for the corresponding data source column data types. For FLOAT columns
from SQL Server or Oracle stored procedures, and REAL columns from DB2
stored procedures, enter Double for the corresponding data source column
data types.

Inputs and Outputs Input and output parameters for the stored procedure. Each
Input and Output has a Name, a Type, and a Direction.

Result Sets The result sets from the stored procedure.

Allow multiple rows Allows multiple rows to be returned. If this option is not
selected, and multiple rows are returned, only the first is
used.

Result Set Details The column names and type of the results expected.

Advanced The Advanced button lets you choose to show the element in
Decision Center and to change the label of the element.
Changing the label of the element does not change the Object
ID.

Table 13–5 (Cont.) Properties of a Stored Procedure Data Source

Data Source Property Name Description

Forming Entities

About Decision Studio Elements and APIs 13-11

13.4.3.5 Examples of Setting Up Data Sources from Stored Procedures
Appendix A, "Examples of Data Sources from Stored Procedures" shows examples of
setting up data sources from Oracle, SQL Server, and DB2 databases, and creating
entities that derive their attributes from these data sources.

13.4.4 Accessing Oracle's Siebel Analytics Data
Oracle's Siebel Analytics Server exposes an ODBC client interface for accessing data
stored in OLTP and OLAP databases. The RTD Decision Service uses the JDBC-ODBC
bridge included in Java Runtime Environment (JRE) to connect to the ODBC driver
provided by Siebel Analytics Server.

From the RTD Decision Service point of view, Siebel Analytics Server is a SQL data
source similar to a regular database. Subject areas in Siebel Analytics Server are treated
as database tables by the Inline Service. Column names are compound, combining two
levels of the presentation object hierarchy.

See Oracle Real-Time Decisions Installation and Administration Guide for information
about how to add a JDBC data source that can be accessed by a Decision Studio data
source.

13.5 Forming Entities
An Entity is a set of named attributes and methods to access those attributes. One
attribute is usually designated as the Entity's key. For example, a simple customer
Entity might look as follows:

Customer

customerId: string, key
name: string
age: integer
accounts: collection of Account entities

In this Entity, the customerId is the key of the Entity, name and age are simple attributes,
and accounts is a collection of Account entities that has been associated under the
Customer header.

This section contains the following topics:

■ Section 13.5.1, "About the Session Entity"

■ Section 13.5.2, "Creating Entities"

■ Section 13.5.3, "Adding Attributes and Keys to the Entity"

■ Section 13.5.4, "Importing Attributes From a Data Source"

■ Section 13.5.5, "Using Attributes for Analysis"

■ Section 13.5.6, "Decision Center Display"

■ Section 13.5.7, "Adding a Session Key"

■ Section 13.5.8, "Adding Attributes to the Session"

■ Section 13.5.9, "Mapping Attributes to Data Sources"

■ Section 13.5.10, "One-to-Many Relationships"

■ Section 13.5.11, "Adding Imported Java Classes"

■ Section 13.5.12, "Session Logic"

Forming Entities

13-12 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 13.5.13, "Session APIs"

■ Section 13.5.14, "Entity APIs"

■ Section 13.5.15, "About Entity Classes"

■ Section 13.5.16, "Referencing Entities in Oracle RTD Logic"

■ Section 13.5.17, "Adding Entity Keys"

■ Section 13.5.18, "Accessing Entity Attributes"

■ Section 13.5.19, "Resetting and Filling an Entity"

■ Section 13.5.20, "About Cached Entities"

■ Section 13.5.21, "Enhanced Entity Attribute Logging"

13.5.1 About the Session Entity
The Session entity is a specialized Entity that is automatically created for every Inline
Service.

The Session entity identifies which attributes are available in memory to the Inline
Service. Those attributes can be comprised of a Entity, such as Customer, as well as
attributes that are set by some other source, such as calculation. A Session object is
used to store information for a user session. Attributes stored in a session are available
throughout the Inline Service, and are destroyed when the session is closed.

Sessions are closed either explicitly by an Integration Point, or when the session times
out.

13.5.1.1 About Session Keys
A session key is a field passed in the request that identifies an instance of a Real-Time
Decision Server server-resident Session object that will be available to the Integration
Points.

As an example of using sessions, consider a client Web application, where each request
supplies the CustomerId of the Web application as the session key. When the first
request arrives with a new CustomerId, Real-Time Decision Server notices that this
session key is new, and consequently creates a new Session object and makes it
available to the Integration Point as it executes the request. Any subsequent requests
using the original CustomerId will access the original Session object.

The processing of the Integration Points may implicitly or explicitly save information
in the session, so that it will be available to subsequently invoked Integration Points.

13.5.2 Creating Entities
Entities are defined using Decision Studio. Entity names must begin with an uppercase
letter. Entities are defined with the following characteristics:

■ Description: Description of the entity as entered in Decision Studio.

■ Key: A unique ID for the entity. Click Add Key to add a key to an entity.

There are also properties for entity attributes. These attribute properties are listed in
Table 13–6.

Forming Entities

About Decision Studio Elements and APIs 13-13

13.5.3 Adding Attributes and Keys to the Entity
Click Add Attribute or Add Key to add attributes to the Entity. If the attribute is a
collection, select the Array column.

13.5.4 Importing Attributes From a Data Source
To automatically add all of the output columns of a data source as Entity attributes,
click Import, then choose a data source from which to import. If you would like to
import from more than one data source, repeat the procedure. Click Remove to
remove any unwanted attributes.

When using Import, select Build data mappings for selected data source to
automatically map the attributes to the data source. If the entity is nested (for example,
in a one-to-many relationship) and the attributes are mapped indirectly, deselect this
option.

Table 13–6 Entity Attribute Properties

Entity Attribute Property Name Description

Description Description of the attribute as entered in Decision
Studio.

Type Attribute types are either primitive types, Java classes,
Entity types, Choices, or Choice Groups.

Array Whether single-valued, or a collection.

Type Restriction If you want to use an entity attribute in a rule, you can
select a Type Restriction for the attribute. This is not a
mandatory requirement, but it will help you in
formulating the rule. For more information about
creating and using type restrictions, see Section 13.7.3,
"Choice Attribute Characteristics."

Default Value The default value, which can be a constant, a function,
or a reference to an attribute.

Transient attribute (For session entity only) Attribute used to store
potentially many values of an associated choice attribute
during a session. All these values are available to
learning records and associated models.

For more information, see Section 13.7.3, "Choice
Attribute Characteristics" and Section 13.7.4, "Using
Choice Attributes for Learning."

Use for analysis Select this option to use this attribute for analysis within
the predictive model.

Category The category of the attribute. Categories help organize
the display of attributes in Decision Center.

Analysis options Additional analysis options are available for Date
attributes. To use Dates for analysis, specify the pattern
you are interested in analyzing. The effect of month, day
of month, day of week, and time of day can be analyzed
separately, or in any combination.

Caution: When adding a Key attribute, the data type will
automatically be String. If the data type of your data source column or
output parameter is a type other than String, use a transformation
function when you set the input on the data source.

Forming Entities

13-14 Oracle Real-Time Decisions Platform Developer's Guide

13.5.5 Using Attributes for Analysis
Select Use for Analysis to have the attribute added to the analytical model.

By default, the Use for Analysis option for each entity attribute will be set to true, and
will be used as an input to Oracle RTD's models. If this is not desired, users may
explicitly uncheck this option. Right click the desired attribute and select Properties to
access this setting.

13.5.6 Decision Center Display
The option Show in Decision Center is selected by default. Deselect this option if you
want the attribute to be hidden from Decision Center users. If desired, choose a
Category to control the display of the attribute in Decision Center. Right click the
desired attribute and select Properties to access these settings.

13.5.7 Adding a Session Key
If the session key value that you choose to use is an attribute of an entity, first add the
entity to the session. To do this, click Add attribute in the session entity, and add the
entity as a new attribute of that entity type to that session.

For instance, assume you want to make the session key the customerId attribute
from the Customer entity. Click Add Attribute, then add an attribute to the session
called customer. The type of this attribute is an entity type, namely Customer.

To access the entity types, use the dropdown list on the Type column and choose
Others. The Type window appears. Choose the Entity Type for this attribute.

To add the session key, click Select from Session Keys from Dependent Entities. All
key values from entities that are attributes of the session are available to be chosen as a
key value for the session. Choose the key on which you want to base the session, in
this instance customerId.

13.5.8 Adding Attributes to the Session
Click Add Attribute to add an attribute that you want to make available for the entire
session. Session attributes have getters and setters generated for them, as do other
entity attributes.

13.5.9 Mapping Attributes to Data Sources
After creating an entity using Decision Studio, map the attributes of the entity to
values that are either constant, calculated, a reference to an attribute of a data source,
or to the session key.

Mapping to configured data sources is done through the Mapping tab of the entity
object. To map the attributes of an entity to a data source, use the Source column to

Note: While the Build data mappings for selected data source
functionality maps the entity attributes to the data columns, users
may still assign input values under the Data Source input values
section of the Entity editor.

Note: The keys of cached entities cannot be used as session keys.

Forming Entities

About Decision Studio Elements and APIs 13-15

choose the path to the data source column or output parameter that will supply the
attribute with data.

To map the key value, click Input Value from Data Source Input Values. Your key
value will appear here when you map the attributes to data source values. You can
map the key to a session key attribute, to another entity key value, or to a function.
The input type must be of type String. If it is not, use a function to transform the
non-string value.

13.5.10 One-to-Many Relationships
To access data in an Entity in a one-to-many foreign key relationship, make the related
Entity an attribute of the first Entity. For example, say that the Customers table has a
key, CustomerID. Customers have many Orders, which are identified by OrderID and
a foreign key CustomerID.

Figure 13–1 Entity Mapping Example

To access data in an Entity in a one-to-many foreign key relationship, using Customers
and Orders as an example, perform the following steps:

1. In Decision Studio, define a data source for each of these tables.

2. Create an entity for Customers and Orders.

3. Add Customer to the session, as that is the key to retrieving the next level of data.

4. Choose CustomerID as the session key.

5. To associate the one-to-many relationship between Orders and Customers, add an
attribute to Customer called Orders, of entity type Orders. Since there are many
Orders for one Customer, make it an array.

6. You can map all of the attribute values through the Customer entity mapping tab.

13.5.11 Adding Imported Java Classes
To add imported Java classes to your Inline Service, click Advanced next to the
description.

Note: In this example, it is assumed that there is a CustomerID
foreign key on the order table. This CustomerID serves as the input
column to the Orders data source. The Orders data sources would also
have its Allow Multiple Rows setting set to true.

Forming Entities

13-16 Oracle Real-Time Decisions Platform Developer's Guide

13.5.12 Session Logic
The session element can accept scriptlets that are executed on initialization and exit of
the session. The cleanup scriptlet is executed when the session is closed.

13.5.13 Session APIs
The following code returns the Object label and ID, respectively:

public String getSDOLabel();
public String getSDOId();

You can use session() to access the other entities of the Inline Service. For example:

session().getCustomer().getCustomerId();

where Customer is an entity and customerId is an attribute of that entity.

Use session() to access the instance of the application session. Session has the
following APIs available:

public boolean isTemporary();

If no session keys have been passed in, the session is considered temporary.

The following code is used to access an Integration Point request outside of the
Integration Point and returns the current request:

public IntegrationPointRequestInterface getRequest();

The following code returns whether the current instance of the session has been
closed:

boolean isClosed();

The following code returns any known session keys. This may or may not be the
complete set, depending on where it is called.

Set getKeys();

The following code closes the current session instance:

public void close();

The following code gets the application object of the current session:

public ApplicationInterface getApp();

13.5.14 Entity APIs
The following code returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

13.5.15 About Entity Classes
In addition to the normal classes generated, an array class is also generated for each
Entity. The generated classes have a property, getter, and setter for each attribute.
Hence, the definition of entities such as Customer, Account, and Call will result in
classes with these names, as well as another class, representing a collection of that
class.

Forming Entities

About Decision Studio Elements and APIs 13-17

For instance, for the Account entity, the following two classes are generated:

Account
SDAccountArray

The second class represents a collection of Accounts. So, when our Customer entity
has an attribute named accounts of type Account (with multiplicity set to multiple),
then the following gets generated for Customer:

Customer {
SDAccountArray getAccounts() {
}

void setAccounts(SDAccountArray accounts) {
}

void addToAccounts(Account account) {
}

}

13.5.16 Referencing Entities in Oracle RTD Logic
Because a class is generated for each Entity type, you create an Entity with the new
operator as you would any Java object. For example:

Customer cust = new Customer();

Optionally, if the Entity is the child of another Entity, pass in the name of the parent
Entity. Session can be a parent Entity of any other Entity.

Customer cust = new Customer(entityParent);

13.5.17 Adding Entity Keys
Most Entities are not very useful unless they have a value for the key attribute. The
key attribute, as with any attribute, is set using a generated setter:

Customer cust = new Customer();
String newKey = '12345';
cust.setCustomerId(newKey);

13.5.18 Accessing Entity Attributes
As mentioned previously, getters are generated for each attribute. The form of the
getter depends on whether the attribute has one value or more than one value. The
sample Customer entity would have the following getters:

String id = cust.getCustomerId();
String name = cust.getName();
double age = cust.getAge();
Collection accounts = cust.getAccounts();

Corresponding setters are also generated. We have already seen the setter for
customerId, but here are the others for our Customer example:

cust.setName("Fred Johnson");
cust.setAge(42);
cust.setAccounts(newCollection);

And, because Accounts is an attribute that has multiple values, you can also add to the
collection:

cust.addToAccounts(anotherAccountObject);

Forming Entities

13-18 Oracle Real-Time Decisions Platform Developer's Guide

An array can be added using:

cust.addAllAccounts(anotherAccountArray);

13.5.19 Resetting and Filling an Entity
Three special methods are provided to reset and to fill an Entity.

cust.reset();

Resets all keys except session keys and all attributes.

cust.resetAttributes();

Resets all attributes, but does not reset keys.

cust.fill();

Fill recursively fills the values of the attributes according to the Entity mapping,
forcing it to refresh the data through the data source, calculated or constant value. Any
attributes of Entity type are also filled.

Reset and fill should not be called on cached entities.

13.5.20 About Cached Entities
Entities can be cached on the server so that they are easily accessible. To cache entities,
click the Cache tab of the entity.

Entities can have the following caching options:

■ Enable caching for this entity type: Select this option to enable caching. Cached
entities are treated exactly like non-cached entities and have the same API, except
that cached entity keys may not be used as session keys.

■ Max number of items to cache: The maximum number of items to cache. Items are
flushed in a first in/first out manner.

In addition, entities can have the following caching strategy options:

■ Use fixed lifetime: Number of seconds each object stays in cache before being
refreshed.

■ Use fixed period: Number of seconds before the entire cache is refreshed.

■ Never refresh cache: Cached items stay in cache until the maximum number is
reached.

If an entity is marked for caching, use the following code to set the attributes. Once
you create the entity, set the key values and then get the attribute values from the
cache. Cached entity attributes (other than the key) do not have setters. This keeps the
entity in sync with the cached version.

Customer cust = new Customer();
String newKey = '12345';
cust.setCustomerId(newKey);
cust.getCustomerId();
cust.getName();
cust.getAge();
cust.getAccounts();

Forming Entities

About Decision Studio Elements and APIs 13-19

13.5.21 Enhanced Entity Attribute Logging

Problem
For debugging and logging requirements, developers must write a series of log
statements, for example, using logDebug or logInfo, in order to examine the current
values for the Oracle RTD entities they are setting. Typically, a minimum of one line of
code is required for each entity attribute whose value should be output to the Oracle
RTD log. This results in a large number of lines of code simply to log output.

Solution
A predefined API in the Oracle RTD platform that allows a user to output to the
Oracle RTD log the value of all session entity attributes or of a specified entity and its
attributes. The output is at all the log levels: Info, Debug, Error, Warning, and Trace.

General Form of the API

To log all the attributes of a session:

■ logInfo(session());

To log all the attributes of an entity, which must be a session attribute:

■ logInfo (session().getEntity_id());

The output of the API displays the Entity Name, Attribute Name, and Value in the
following format:

Entity > ExternalName: <label> ; InternalName: <id> ; Attribute
<n> Name: <attribute_name>; Type: <attribute_type>; Value:
<value> or [<list_of_array_values>];

Example
An Inline Service session entity has two attributes:

■ customer (Customer)

■ customer id (Integer)

The customer is an entity which has three attributes:

■ assets (String array)

■ productId (String array)

■ unfilled (String)

The following line:

logInfo(session());

generates output similar to the following in the Test > Log tab of the Inline Service:

Notes:

1. In this section, only the logInfo command is specified. All the
enhanced logging options apply also to the commands logDebug,
logError, LogWarning, and logTrace.

2. For simplicity, for each logging option, only the essential "active"
parameter is shown. You can concatenate extra textual information into
each parameter for more informative logging messages.

Performance Goals

13-20 Oracle Real-Time Decisions Platform Developer's Guide

Entity > ExternalName: ; InternalName: ApplicationSession;
Attribute 1> Name: customer; Type: Customer; Value:

Entity > ExternalName: Customer; InternalName: Customer;
Attribute 1> Name: assets; Type: SDStringArray; Value: [1, 7, 8,
9, 9, null];

Entity > ExternalName: Customer; InternalName: Customer;
Attribute 2> Name: productId; Type: SDStringArray; Value: [1, 7,
8, 9, 1];

Entity > ExternalName: Customer; InternalName: Customer;
Attribute 3> Name: unfilled; Type: String; Value: <unfilled>;

Entity > ExternalName: ; InternalName: ApplicationSession;
Attribute 2> Name: customerId; Type: int; Value: 2;

13.6 Performance Goals
In designing a decision process for an organization, first consider the specific metrics
that the organization wants to improve by way of implementing Oracle RTD decisions.
Some common performance metrics are:

■ Revenue per customer visit on a Web site

■ Servicing costs per customer call in a contact center

The performance metrics are configured with an optimization direction (maximize or
minimize) and a normalization factor.

Performance goals have the following characteristics:

■ Performance metric: Metrics with which the organization has chosen to measure
the success of Decisions.

■ Optimization: A value, Minimize or Maximize, that indicates the direction in
which to optimize the performance metric.

■ Required: Check if scoring for the performance metric is required. If a metric is
not marked required, and a score is not available through lack of data, Oracle RTD
can provide a score by examining other scores. If it is marked required, a general
score will not be provided and the metric is marked not available and dropped
from the scoring process.

■ Normalization factor: The relative value to the organization of this performance
metric.

This section contains the following topics:

■ Section 13.6.1, "Adding a Performance Metric"

■ Section 13.6.2, "Calculating a Normalization Factor"

13.6.1 Adding a Performance Metric
Click Add to add performance metrics. Add a metric (for example, revenue), an
optimization direction (maximize), and whether the metric is required to have scores
available for a decision to be made.

After you have added all of your metrics, you must decide on the normalization factor.

Performance Goals

About Decision Studio Elements and APIs 13-21

13.6.2 Calculating a Normalization Factor
In order to let Inline Service developers and business users express scoring functions
for their Performance Goals that have different natural measuring scales, Oracle RTD
requires Inline Service developers to normalize Performance Goals by way of
Normalization Factors.

In the definition of Performance Goals, one Normalization Factor is applied to each
Performance Goal. Subsequently, these Performance Goals are selected to be used in
one or more Decisions. As a result of score normalization, business users can change
the relative weights applied to the Performance Goals for their Decisions. Note that the
weights themselves are expressed as percentages between 0 and 100.

In general, a higher number is better, so choose to Maximize scores with respect to
each goal. For goals where lower scores are better, such as Risk or Expense, then
choose Minimize.

Considerations for Normalization
In some business areas, it may be possible to have one common single metric across
Performance Goals. In general, where different Performance Goals have different units
of measure and magnitude, then, without some degree of normalization across
Performance Goals, one Performance Goal could unexpectedly affect the outcome of
scoring and the outcome of Decisions.

The Oracle RTD approach is to let business users express scores using semantics that
are specific to each Performance Goal.

Normalization Example
The following example with two Performance Goals illustrates why normalizing
scores is important. Assume the following:

■ The Performance Goals are Revenue and Likelihood.

■ The measurement units for Revenue are monetary amounts between $0 and $1000,
and for Likelihoods, numbers between 0 and 100.

■ The average Revenue per sale is $500.

■ The business wants to balance the relative importance of presenting offers that are
Revenue generating with offers that are of high interest to the customer.

For example, business users may be ready to linearly trade 100% of likelihood for
every incremental $500 in revenue. In other words, they would consider
presenting an offer which is 10% less likely to be accepted than one that would
bring $50 more in Revenue.

To achieve this balance without using normalization factors, the following weights
would need to be applied in the Decision:

■ Weight for Revenue = 1/500 = 0.002

■ Weight for Likelihood = 1 – (1/500) = 0.998

Applying such weights would be quite difficult to manage as small increments in
weight would drastically change the outcome of Decisions. The key factors in this
design are the following:

■ Revenue and Likelihood use different natural measuring scale units

■ Business users want to express how those two units need to be compared at the
point of Decision

Choice Groups and Choices

13-22 Oracle Real-Time Decisions Platform Developer's Guide

Therefore, in this case, a Normalization Factor should be applied.

To achieve equal importance for Likelihood and Revenue scores, define a linear
normalization factor of 500 for Revenue, and 1 for Likelihood. For Decisions, set the
weights for both Revenue and Likelihood to 0.5.

General Design Factors
It is important for Inline Service developers to understand that they should perform
the normalization of their Performance Goals. This normalization can be implemented
in two ways:

■ A linear normalization is applied when setting Normalization Factors for each
Performance Goal

■ For some scoring functions a linear scale factor may not be sufficient. For example,
if Revenue fell between $1500 and $1650, then it might be appropriate to define a
custom scoring function to use in place of the normalization factor.

The Required flag for a Performance Goal indicates whether an actual value is
required for Decisions to proceed:

■ If this flag is set to True, a score for this Performance Goal is required for each
eligible choice.

When no such value can be found for a Choice, that is, the score is NaN, a random
score will be generated.

■ If this flag is set to False, a score for this Performance Goal is not required for each
eligible choice.

When no such value can be found for a Choice Score, that is, the score is NaN, this
Performance Goal for the Choice is ignored and the weights of the other
Performance Goals participating in the Decisions are adjusted by equally
distributing the weight of the Performance Goal marked as not required.

13.7 Choice Groups and Choices
Choices are the objects evaluated during the decision process. The decision process
selects the best "choices" from a list of candidates Choices. Examples of Choices are:

■ List of marketing offers from which to select

■ List of products to recommend

■ List of resources for a task

Choices can be organized into Choices Groups. Choice Groups and Choices are
organized into a hierarchical tree like representation, where one parent Choice Group
can have multiple child Choice Groups. The selection of Choices from a list of
candidate Choices, that is, the decision process, is a step by step operation following
this logic:

1. Eligibility: A set of rules that determines whether or not a Choice should be
considered for a given Decision. Eligibility rules can be defined at each level of the
Choice Group and Choice hierarchy.

Note: In the context of Externalized Performance Goals and their
weighting, it is the responsibility of Inline Service developers to
normalize the weights themselves.

Choice Groups and Choices

About Decision Studio Elements and APIs 13-23

2. Scoring: The computation of scores along each Performance Goal defined for the
Decision.

3. Normalization: Brings the scores along the different performance metrics to a
common scale that enables the comparison of scores.

4. Totaling: Produces a single number for each Choice. This number is a weighted
sum of the normalized scores for each Performance Goal for the Segment to which
the Decision applies.

5. Selection: Selects a set number of "best" Choices based on Choice total score.

Choices can either be Static or Dynamic.

With Static Choices, the Choices to present to the requesting application or
self-learning model are completely defined within Oracle RTD. Static Choices are
useful in cases where the Choices are known in advance, and are constant over a
period of time.

Dynamic Choices are Choices that are built dynamically at run time. These Choices
typically reside in external data sources. This allows for the management of Choices to
be done at the source system, such as Choices based on offers defined in an offer
management system.

This section describes the general features and processes applicable to Choice Groups
and to both Static and Dynamic Choices. For information specific to Dynamic Choices,
see Section 17.1, "Dynamic Choices."

This section contains the following topics:

■ Section 13.7.1, "About Choice Groups and Choices"

■ Section 13.7.2, "About Choice Group and Choice Attributes"

■ Section 13.7.3, "Choice Attribute Characteristics"

■ Section 13.7.4, "Using Choice Attributes for Learning"

■ Section 13.7.5, "About Choice Scoring"

■ Section 13.7.6, "About Eligibility Rules"

■ Section 13.7.7, "Evaluating Choice Group Rules and Choice Eligibility Rules"

■ Section 13.7.8, "Determining Eligibility"

■ Section 13.7.9, "Choice Group APIs"

■ Section 13.7.10, "Choice APIs"

13.7.1 About Choice Groups and Choices
Choice Groups and Choices have the following characteristics:

■ Attribute values: The attributes that make up the choice. These can be inherited
from the parent Choice Group, or assigned at the Choice level.

■ Scores: Each choice will be scored according to the definition in the Scores tab.
Choices are scored against all of the performance metrics that are defined for a
given Decision.

Note: Choice Groups are always Static, that is, defined in an Oracle
RTD Inline Service.

Choice Groups and Choices

13-24 Oracle Real-Time Decisions Platform Developer's Guide

■ Choice Events: Choice events are only described at the Group level. These events
identify important events in a Choice lifecycle. For instance, a Cross Selling Offer
made may have events such as Offered, Accepted, and Product First Used.

■ Rules: Two types of Rule can be applied to Choices, both of which can be created
and modified by Decision Center users:

– Eligibility rules govern the conditions under which Choices are considered for
a Decision. Eligibility rules can be defined at any level of the Choice Group
hierarchy. Choices inherit all the Eligibility conditions defined at a higher level
of the hierarchy.

– Scoring rules can be used to associate numeric scores to Choices. Those scores
can be used as part of the Performance Goal scoring logic or as attributes of
Choices.

■ Advanced: The Advanced button lets you choose to show the element in Decision
Center, and to change the label of the element. Changing the label of the element
does not change the Object ID.

13.7.2 About Choice Group and Choice Attributes
Choice Group attributes are used to define attributes at the group level. Group
attributes apply only at the Choice Group level, and so are not assignable for
individual Choices.

Choice attributes are defined at the Choice Group level to ensure that each Choice in a
Group has the same set of attributes. Choice attribute values are individually defined
at the Choice level. Choice attributes may have default values that can be set and
overridden at lower levels.

Choice Groups and Choices are defined hierarchically. The hierarchy should follow the
logical taxonomy of the Choices. At the top level, it is necessary to consider the
definition of Choice attributes that make sense for a whole subtree. At lower levels, the
shape of the hierarchy is typically determined by organizational considerations.

Choice attributes are typically defined at the higher levels of the hierarchy. Some
attributes have a default value that may be marked as non-overrideable, which means
that the value provided by default is the value that will be used. This is typically done
when computations are involved. This is useful when you do not want a business user
to update the attribute after deployment.

Choice attribute values can be one of the following:

■ A constant

■ An attribute or variable

■ A function or rule call

■ A model prediction

Figure 13–2 shows an example of a choice group.

Choice Groups and Choices

About Decision Studio Elements and APIs 13-25

Figure 13–2 Example Choice Group

The Choice attributes set at the Offers level for this example are shown in Table 13–7.

Each Choice overrides the Profit Margin and Message values with a value that is
indicative of that Choice. However, the default value will be available at run time in
case the server cannot respond in an effective time period.

No Choices override the ShouldRespondPositively attribute, as they all use the same
function to determine that value. The likelihood is calculated by the model for each
Choice at run time.

There is another attribute at the Group level. It is a Group Attribute called
averageLikelihood, of type Predictive/Double. This attribute is used by the model as
an average of likelihoods across all choices. It is used as a likelihood if a likelihood for
a given Choice is not available. There is no default value, as this is calculated at run
time.

13.7.3 Choice Attribute Characteristics
Choice attributes have the following characteristics:

■ Name: The name of the attribute.

■ Category: The category to which the attribute belongs. Categories are defined by
the Category element.

■ Type: Data type of the attribute.

■ Array: Whether the attribute is a collection.

■ Type Restriction: If you want to use a choice attribute or a choice group attribute
in a rule, you can select a Type Restriction for the attribute. This is not a

Table 13–7 Choice Attributes Set at the Offers Level for Offers Choice Group Example

Attribute Type Value

Message String No default value. Values assigned at Choice
level for each Choice.

ShouldRespondPositively Boolean The function ShouldRespondPositively()
that returns a Boolean value about whether a
customer will respond positively to a given
Choice. This specific function is used in the
context of the loadgen simulator.

likelihood Predictive/
Double

A placeholder attribute that is assigned by the
choice model or choice event model where this
choice group is registered. Used for likelihood
that the choice will be accepted. There is no
default value as this is calculated at run time.

Profit Margin Double An indicator of the profitability of the offer
represented as a percentage. Default value of 0.5.
Values assigned at Choice level for each Choice.

Choice Groups and Choices

13-26 Oracle Real-Time Decisions Platform Developer's Guide

mandatory requirement, but it will help you in formulating the rule. For more
information about creating and using type restrictions, see Section 13.18, "About
Type Restrictions."

■ Inherited Value: The value, if any, that the Choice Group or Choice attribute has
inherited from its parent.

■ Value: The value of the attribute. This value always overrides an inherited value.

■ Show in Decision Center: Select this option to make the attribute visible to
business users in Decision Center. Deselect for internally used attributes.

■ Use for learning: Select this option to associate this choice attribute with a
transient session attribute. This option is used to enable multiple values of this
attribute that occur in a session (when the choice occurs or the choice event is
raised) to be available to learning records and associated models.

For more information, see Section 13.7.4, "Using Choice Attributes for Learning."

■ Session Entity Storage Attribute (enabled only if Use for learning is selected): The
name of the associated transient session attribute that automatically stores the
different choice attribute values that occur in a session.

■ Override default max input cardinality: Select this option to override, for this
attribute, the global default value Max Input Cardinality as described in
Section 13.3.4, "Setting Model Defaults." When you select this option, specify also
the Max Input Cardinality for this attribute.

■ Override default max input buckets: Select this option to override, for this
attribute, the global default value Max Input Buckets as described in
Section 13.3.4, "Setting Model Defaults." When you select this option, specify also
the Max Input Buckets for this attribute.

■ Use for indexing: Select this option if you want to be able to look up the Choice by
the attribute specified. For example, assume you have a choice attribute called
namefor this attribute.

■ Send to client: Select this option if the attribute will be sent to the outside client
calling the Inline Service that returns this choice.

To add or remove Choice attributes, click Add or Remove. To edit a Choice attribute,
right-click the attribute and choose Properties. You can only edit Choice attributes at
the highest level that they are defined.

13.7.4 Using Choice Attributes for Learning
The learning process starts when learning records are generated. This occurs either at
the end of a session or on the execution of an integration point. Normally, learning
records contain the values of session attributes as they exist at learning record
generation time. Choice occurrences (for choice models) or choice events (for choice
event models) defined in the learning record are learned against this single set of
values.

If an attribute value changes over time and learning is required against each of the
different values, you can define two elements:

■ A session attribute that is marked as a transient attribute

■ A choice attribute that is marked as "Use for learning" and is associated with the
transient session attribute

When the choice or choice event occurs, the choice attribute value at that point in time
is automatically copied into and added to the transient session attribute, which can

Choice Groups and Choices

About Decision Studio Elements and APIs 13-27

then subsequently be written out to learning records with all of its copied-in choice
attribute values.

13.7.5 About Choice Scoring
Choices inherit scoring functions from their parents. In scoring a Choice, you identify
the performance metrics that apply to that Choice and then apply a scoring method to
it. Scoring methods can be a scoring rule, function, constant, or the likelihood of an
event occurring on a Choice Event Model.

For instance, assuming the Choice Group structure shown in Figure 13–2, some of the
Choices may have scoring similar to the following:

■ Mileage Plus Card

– Performance Metric: Increase Revenue

– Score: A function that uses the likelihood of the customer to accept the offer
and the expected profit margin of the card to calculate the revenue potential of
the offer. The likelihood is computed by a model.

■ Gold Card

– Performance Metric: Increase Revenue

– Score: An inherited constant from the choice group level.

■ Credit Analysis

– Performance Metric: Increase Customer Retention

– Score: A scoring rule that uses customer data to assign a score.

13.7.6 About Eligibility Rules
Eligibility rules are available at the Choice Group level and at the Choice level as
follows:

■ Choice Groups may have Choice Eligibility rules and Group Eligibility rules,
located respectively on the Choice Eligibility and Group Eligibility tabs of the
Choice Group editor.

The Group Eligibility rules for Choice Groups are eligibility rules that apply to
attributes defined at the Choice Group level.

The Choice Eligibility rules for Choice Groups generically apply to attributes of
choices defined in this Choice Group.

■ Choices may have Choice Eligibility rules, located on the Eligibility Rule tab of
the Choice editor.

These rules for Choices and Choice Groups determine their eligibility to participate in
the decision. Eligibility rules determine whether the Choice is eligible to participate in
the selection function or rule of the Decision or logic that makes the Choice selection.

Eligibility rules determine whether the subtree headed by a Choice Group or a Choice
is eligible for a decision. Note that even if Choices themselves are eligible, they will not
be eligible unless all their ancestors are eligible.

See Section 13.10, "Using Rule Editors" for information about how to use the editors
for these rules.

Choice Groups and Choices

13-28 Oracle Real-Time Decisions Platform Developer's Guide

13.7.7 Evaluating Choice Group Rules and Choice Eligibility Rules
Choice Group rules and Choice rules are inherited and additive. That is, if there are
rules at the Choice Group (Group and Choice rule) and rules at the Choice level, it is as
if there is a logical AND extending the rules. The inherited rules are shown in an
expandable section at the top of the rule labeled Inherited eligibility conditions. Use
the Move Rule icons to expand and collapse the sections:

The following example illustrates the interaction between Choice Group rules and
Choice rules:

Group1 has rules GroupRule1 and ChoiceRule1
Group2 is a child of Group1 and has rules GroupRule2 and ChoiceRule2
Group2 has a Choice, Choice1, and it has a rule, Rule1

In evaluating the rules for Choice1, the rules will be invoked in the following order:

GroupRule1 AND GroupRule2 AND ChoiceRule1 AND ChoiceRule2 AND Rule1

13.7.8 Determining Eligibility
When determining eligibility for a Choice, parent eligibility is tested first, to avoid the
unnecessary evaluation of eligibility rules on Choices.

13.7.9 Choice Group APIs
The following code returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

The following code returns a Choice object from the Choice Group:

public Choice getChoice(String internalNameOfChoice);

When a Choice attribute is marked for indexing, the following method is used to
return the Choice as referenced by the indexed attribute:

public Choice getChoiceWithAttributeID(AttributeType val);

13.7.10 Choice APIs
The following code returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

To get the Choice Group in which the Choice is contained, use the following code:

public ChoiceGroup getGroup();

Choice event tracking API consists of two methods defined on choices, as follows:

void recordEvent(String eventName);
void recordEvent(String eventName, String channel);

Typical code for an Integration Point recording a choice event is as follows:

Scoring Rules

About Decision Studio Elements and APIs 13-29

String choiceName = request.getChoiceName();
String choiceOutcome = request.getChoiceOutcome();
ChoiceGroup.getChoice(choiceName).recordEvent(choiceOutcome);

Tracking of extended and accepted offers is required by many Inline Services for
eligibility rules that depend on previous offers extended to, or accepted by, the same
customer in the past.

Two kinds of questions, both related to a particular customer, can be answered by the
Choice event history:

■ How long ago was an offer extended or accepted?

■ How many times was an offer extended or accepted during a given recent time
period?

The answers to these questions are provided by API methods defined on Choices and
Choice Groups:

int daysSinceLastEvent(String eventName);
int daysSinceLastEvent(String eventName, String channel);
int numberOfEventsDuringLastNDays(String eventName, int numberOfDays);
int numberOfEventsDuringLastNDays(String eventName, int numberOfDays, String
channel);

13.8 Filtering Rules
As standalone rules, filtering rules can be used to segment population or be used as
components of other rules. Standalone rules are reusable by many different elements.

A typical rule used to identify a segment of the population is shown in Figure 13–3.

Figure 13–3 Filtering Rule

The rule shown in Figure 13–3 targets customers over the age of 18 with a credit line
amount over $8000.

 See Section 13.10, "Using Rule Editors" for information on editing rules.

13.9 Scoring Rules
As opposed to eligibility rules that return Boolean values, scoring rules return numeric
values. These values can be used throughout the Oracle RTD Decision logic. Typical
use cases are:

■ Setting the score of a choice for a given performance goal

■ Setting the value for a choice attribute

Scoring rules have a default value if none of the rule segments evaluate to true.

To add a value, click under Then or The value is in the Value column. Then, click the
ellipsis and edit the value as you would any other rule value.

For instance, the scoring rule shown in Figure 13–4 assigns scores based on the credit
line amount of a customer. If they do not fit into any of the credit line range categories,
the score defaults to 3.25.

Using Rule Editors

13-30 Oracle Real-Time Decisions Platform Developer's Guide

Figure 13–4 Example of Scoring Rules

Scoring rules also have the following options:

■ Description: Scoring Rules can be adjusted by Decision Center users, so it is very
important to describe your scoring rule adequately. It is suggested that you
include the range that the score is to work over.

■ Advanced: The Advanced button lets you choose to show the element in Decision
Center, and to change the label of the element. Changing the label of the element
does not change the Object ID.

 See Section 13.10, "Using Rule Editors" for information on editing rules.

13.10 Using Rule Editors
Rules are used for several purposes within Decision Studio and Decision Center,
namely:

■ For determining the eligibility of Choice Groups and Choices to take part in a
Decision

■ As standalone, for creating filtering rules to be used to create population segments
for decisioning

■ As standalone, for creating scoring rules to be used for the scoring of choices

The Rule Editor toolbar provides access to features used to edit rules. Inside each rule
editor, the editor toolbar provides users with the functionality required to create their
rules. These functions become active based on the context of the rule creation and
editing done by the user.

Figure 13–5 Rule Editor Toolbar

From left to right, the toolbar functions are as follows:

■ Edit rule properties

■ Add conditional value

Using Rule Editors

About Decision Studio Elements and APIs 13-31

■ Add Rule

■ Add Rule Set

■ Delete

■ Invert

■ Move up

■ Move down

■ Copy

■ Cut

■ Paste

The editors that are used to create rules are very similar. The following sections
describe how to create rules using these editors.

This section contains the following topics:

■ Section 13.10.1, "Oracle RTD Rule Terms and Statements"

■ Section 13.10.2, "Adding Statements to Rules"

■ Section 13.10.3, "Selecting an Operator"

■ Section 13.10.4, "Editing Boolean Statements"

■ Section 13.10.5, "Editing Rule Properties"

■ Section 13.10.6, "Inverting Rule Elements"

13.10.1 Oracle RTD Rule Terms and Statements
Oracle RTD has three types of rules:

■ Filtering rules

■ Scoring rules

■ Eligibility rules

An Oracle RTD rule consists of one of more rule conditions, with logical operators
governing how the conditions are combined. These conditions are expressed in the
form of rule statements, as described in the section.

The following is an example of a simple filtering rule, used to illustrate rule statements
in this section:

Select List Rule is true when
All of the following
1. session / customer / Age > 21
2. session / customer / MaritalStatus = "MARRIED"

Table 13–8 shows a more formal representation of the Oracle RTD rule grammar, using
BNF (Backus-Naur Form)-type conventions, which describes the terms used in Oracle
RTD rule statements.

Note: This section describes rules that have conditions, that is, they
are not always true.

Using Rule Editors

13-32 Oracle Real-Time Decisions Platform Developer's Guide

The Select List Rule example can be categorized as follows:

■ Select List Rule is true when = <header line>

■ All of the following = <logical operator>

The remainder of the rule consists of a <rule entry> made up of the following two
statements:

■ session / customer / Age > 21 = <boolean statement>

■ session / customer / MaritalStatus = "MARRIED" = <boolean statement>

Rule Sets and Boolean Statements
A rule set (as denoted by <rule set> in Table 13–8) is a composite statement, that
consists of one or more numbered rule entries, each of which is either a boolean
statement or another rule set.

A boolean statement (as denoted by <boolean statement> in Table 13–8) contains a
condition that evaluates to true or false when the rule is processed. The boolean
statement is the lowest-level element of a rule set - it cannot be decomposed further.

You can optionally name the rule sets defined within higher-level rule sets.

Table 13–8 Oracle RTD Rule Grammar

Term Term Component Notes

<rtd rule> <header line> <logical operator> <rule entry>+ |

<header line> <array operator> <logical operator>
<rule entry>+

None.

<header
line>

<rule name> is true when Provides the name for the rule.

After the rule is created, the header
line is not editable.

<logical
operator>

All of the following | Any of the following |

None of the following | Not all of the following

The logical operator controls the
<rule entry> immediately
following. The logical operator All of
the following is the default logical
operator when you initially create a
rule.

<rule entry> <boolean statement> | <rule set> Rule entries are always numbered.
They may contain boolean statements
or other rule entries.

<rule set> <logical operator> <rule entry>+ |

<array operator> <logical operator> <rule entry>+

The second <rule set> component
option is known as an array-processing
rule set.

<boolean
statement>

<boolean> |

<boolean function> |

<left operand> <relational operator> <right
operand>

The <boolean statement> is the
lowest level of a rule set - it cannot be
decomposed further.

<array
operator>

<quantifier> <array variable> in <array name> , Used only for array-processing rule
sets. For details, see Quantifiers and
Array-Processing Rules.

<quantifier> For all | There exists None.

Note: Each Oracle RTD rule has an implicit, unnamed, top-level rule
set.

Using Rule Editors

About Decision Studio Elements and APIs 13-33

Each rule set is qualified by a logical operator, which controls the processing of the
rule set statements. For more information, see Logical Operators.

The following Exclusion Rule example shows a rule set within a rule set.

In the example:

■ The top-level unnamed rule set contains the logical operator All of the following
and two rule entries. The first rule entry is a boolean statement, the second rule
entry is a rule set.

■ The rule set inside the top-level rule set contains the logical operator None of the
following and three rule entries, each of which is a boolean statement.

Logical Operators
The Oracle RTD logical operators are as follows:

■ All of the following (logical and). The rule set evaluates to true when all of its
boolean statements and lower-level rule sets are satisfied.

■ Any of the following (logical or). The rule set evaluates to true when any one of
its boolean statements or lower-level rule sets is true.

■ None of the following (logical not and). The rule set evaluates to true when all of
its boolean statements and lower-level rule sets are false.

■ Not all of the following (logical not or). The rule set evaluates to true when any
one of its boolean statements or lower-level rule sets is false.

Quantifiers and Array-Processing Rules
Rule sets may depend on values that occur in arrays, as follows:

■ Rule sets can evaluate elements of an array

■ An expression within a rule set can reference elements of an array

These types of rules are referred to as array-processing rules.

For these cases, there are rule sets where a "quantifier" expression - also referred to as a
quantifier - qualifies the logical operator of the rule set. Either the statements of the rule
set must be fulfilled for all array elements, or they must be fulfilled for at least one
array element.

Note: Oracle RTD also supports rule sets that depend on values in an
array. For more details, see Quantifiers and Array-Processing Rules.

Using Rule Editors

13-34 Oracle Real-Time Decisions Platform Developer's Guide

In the following example, a rule has been created which examines all of the agents
contained in an array attribute, session/agents. In this example, the rule evaluates to
true when all the agents are at least 30 years old and have a status of "Qualified."

Agent Rule is true when
For all people in session/agents, All of the following
1. people / Age >= 30
2. people / Status = "Qualified"

Full details of the syntax of array-processing rules appear in the section following. In
the preceding example, the term people is an arbitrary term that is defined by the
user and is used to identify individual array elements in the rule set.

Array-Processing Rule Qualification
The general formula for an array-processing rule qualification is:

<quantifier> <array_variable> in <array_name>, <logical_
operator>

where:

quantifier is one of the following: For all, There exists

■ For all. This quantifier, together with the rule set logical operator, specifies that
each array element must be examined, and for each array element, all the boolean
statements and lower-level rule sets in the qualified rule set must be fulfilled.

Rule evaluation will stop processing the array as soon as one array element is
found where all the boolean statements and lower-level rule sets in the qualified
rule set are not fulfilled. The rest of the elements in the array will be skipped.

■ There exists. This quantifier, together with the rule set logical operator, specifies
that all the boolean statements and lower-level rule sets in the qualified rule set
must be fulfilled for at least one array element.

Rule evaluation will stop processing the array as soon as one array element is
found where all the boolean statements and lower-level rule sets in the qualified
rule set are fulfilled. The rest of the elements in the array will be skipped.

array_variable is an arbitrary name to identify individual array elements of the
array array_name in the boolean statements and lower-level rule sets in the qualified
rule set

array_name is the array to be examined

logical_operator is one of the following: All of the following, Any of the
following, None of the following, Not all of the following

As an example of an array-processing rule set, consider the two entities session and
customer.

The session entity contains the following attributes:

■ The Integer attribute AgentDept

Notes: 1. The array_variable can still be referenced in the boolean
statements of lower-level rule sets that have their own specific array
variables.

2. The array_variable must be unique within the scope of the rule, that
is, you cannot use the same array_variable name as the array variable
for a lower-level array-processing rule.

Using Rule Editors

About Decision Studio Elements and APIs 13-35

■ The array attribute CustInfo of type customer

The customer entity contains the following attributes:

■ The Integer attribute CompSize

■ The String attribute Region

You require a filtering rule to satisfy both of the following conditions:

■ The value of AgentDept must be 42.

■ For at least one customer in the CustInfo array, the CompSize must be > 100, and
the Region must be "West."

The filtering rule could then be defined as follows (the array qualification expression is
highlighted):

Cust Rule is true when
All of the following
1. session / AgentDept = 42
2. There exists some_customer in session / CustInfo, All of the following
 1. some_customer / CompSize > 100
 2. some_customer / Region = "West"

13.10.2 Adding Statements to Rules

Add Rule Set
To add a rule set, click the Add Rule Set icon:

If this is the first element to be created in the rule, the following statements appear in
the rule:

■ The default logical operator All of the following

■ A rule set entry as the numbered first line in the rule, which itself contains the
default logical operator All of the following

■ An empty two-operand boolean statement within the newly-defined rule set

Otherwise, a new rule set entry is added as the next entry in the current rule set,
containing an empty two-operand boolean statement. For example, when you add a
rule set to an existing rule set that already contains one boolean statement, the added
rule set entry appears beside the line number 2, as in the following:

You can name the rule set, by clicking the top right corner. When a rule set is named,
you can collapse or expand the rule set, by clicking the appropriate chevron icon in the
top right corner of the rule set box.

Using Rule Editors

13-36 Oracle Real-Time Decisions Platform Developer's Guide

Add (Boolean Statement to) Rule
To add a boolean statement, click the Add Rule icon:

If this is the first element to be created in the rule, the default logical operator All of
the following appears, followed by an empty two-operand boolean statement, as in
the following:

Otherwise, an empty two-operand boolean statement is added to the current rule set,
as in the following example, where one boolean statement already exists:

By default, boolean statements have two operands, with an intervening operator.

To switch between single and double operands in boolean statements, click the line
number of the boolean statement, then click the arrowhead icon in the lower-right
corner of the boolean statement box, as in the following example:

Single operands always evaluate to a Boolean.

13.10.3 Selecting an Operator
Click the operator, then click the lower-right corner to select an operator:

Table 13–9 lists the available operators.

Table 13–9 Rule Operators

Operator Description

none A simple expression that has only one operand

= Left is equal to Right

<> Left is not equal to Right

< Left is less than Right

<= Left is less than or equal to Right

> Left is greater than Right

>= Left is greater than or equal to Right

in Left value is contained in a List on the Right side

Using Rule Editors

About Decision Studio Elements and APIs 13-37

13.10.4 Editing Boolean Statements
To edit the boolean statements of a rule, click the left side, then click the ellipsis. You
can choose from a constant, attribute, or function call. Select Array at the top of the
page to specify an array value.

■ If you choose Constant, provide the Data type and a Value for the item. If you
selected Array, add as many items to the array as needed. Then, for each item,
choose a Data Type and provide a Value.

■ If you choose Attribute, provide one of the following:

– Group attribute: Attributes that are part of the Choice Group or its Choices
that is selected in the Properties of the rule.

– Session attribute: Attributes that are part of the Session entity.

– Application attribute: Attributes that are a member of the Application
element.

– Array variable: Names used to identify individual array elements for rule sets
within a quantified logical operator expression. For more information, see
Quantifiers and Array-Processing Rules.

Optionally, select Apply filter type and choose a Data type to filter the attributes
by type. If you have selected Array, add as many items to the array as needed,
then assign an attribute value for each.

■ If you choose Function call, provide one of the following:

– Filtering rules: Standalone filtering rules defined for the Inline Service.

– Scoring rules: Standalone scoring rules defined for the Inline Service.

– Function calls: Standalone functions defined for the Inline Service.

Optionally, select Apply filter type and choose a Data type to filter the attributes
by type. If you have selected Array, add as many items to the array as needed,
then assign a function or rule for each.

13.10.4.1 Using Type-Restricted Objects in Rules
When you select a type-restricted object for an operand or part of an operand, you
may view values from a dropdown list of values for the other operand. You may select
a value from this dropdown list, but you do not have to.

For more information about type restrictions and type-restricted objects, see
Section 13.18, "About Type Restrictions."

not in Left value is not contained in a List on the Right side

includes all of Left list includes all the values of the Right list

excludes all of Left list contains none of the values of the Right list

includes any of Left list includes any one of the values of the Right list

does not include all of Left list does not include all of the values of the list on the Right

Table 13–9 (Cont.) Rule Operators

Operator Description

About Decisions

13-38 Oracle Real-Time Decisions Platform Developer's Guide

13.10.5 Editing Rule Properties
Both Filtering and Scoring rules have rule properties that can be set. To edit rule
properties, click the Rule properties icon:

Edit rule properties appears.

Rule properties include call templates and negative call templates. Call templates
provide a user-friendly way to describe how to call a rule from another rule.

To define a call template, add the number of parameters for the rule by clicking the
Add button under Parameters. Using {0}, {1}, and so on as arguments, and phrasing to
describe the rule, define the template for call. It is important to use good phrasing, as
this is what will be shown when using the rule.

For instance, a rule that checks if there were at least x calls from the user in the last y
days could be phrased as follows:

There were at least {0} calls in the last {1} days

The negative call template is used when a rule is inverted, and should express the
opposite. For example:

There were less than {0} calls in the last {1} days

Rule properties also let you assign which Choice Group to use with the rule. By
selecting Use with choice group, you can specify which Choice Group or its Choices
will provide the Choice attributes for use by parameters. These attributes will be
available when you edit the value of an operand.

13.10.6 Inverting Rule Elements
Use the Invert icon to invert different elements of a rule. By selecting the number of a
boolean statement, you can invert the operator of the boolean statement. For instance,
if the operand was =, it will be inverted to <>.

Logical operators for a rule set can also be inverted. To do this, select the logical
operator and click Invert. For instance, All of the following becomes Not all of the
following.

The final use for Invert is to invert a Boolean, or single operand, rule. When this type
of rule is inverted, it is transformed to the negative call template of the function that
defines the rule.

13.11 About Decisions
A Decision is used to select one or more Choices out of a group of eligible Choices. The
most common use of a decision is within an Advisor. In an Advisor, two separate
decisions can be called, one for regular processing, and another if control group
functionality is being used in the Inline Service.

The setup of a Decision must include at least one Choice Group from which Choices
are selected, and generally some numeric selection criteria so that Choices can be
ordered.

Choices can be selected either at random, or with a custom selection function, or based
on some user defined scoring logic configured at the choice group level for each
associated Performance Goal.

About Decisions

About Decision Studio Elements and APIs 13-39

Multiple scores can be defined for each choice using a variety of scoring techniques
such as static scores or function driven values, rule based or predictive scores.

At run time, the Decision first identifies all the eligible choices in the subtree of its
associated Choice Groups. Then all the eligible choices are scored (with one or
multiple scores) and ordered.

Examples of scoring techniques for Choices include:

■ Likelihood of interest in the Choice (as computed by an Oracle RTD self-learning
predictive model)

■ Business value of the Choice (as computed by a user defined rule or function)

Alternatively, a custom selection function can be written to select the choice.

Selection criteria include:

■ Select Choice from: Used to assign the Choice Group or Groups that will be
considered by the Decision.

■ Number of Choices to Select: Indicates the maximum number of Choices that will
be selected by the decision. The actual number of Choices returned at run time
may be smaller or equal to this number, based on eligibility rules.

This number can be overridden at the Advisor level, in the event where one
decision is called by multiple touchpoints and each requires a different number of
choices to be returned.

The default and most commonly used number is 1.

■ Radio buttons for Type of Selection: The radio button that you select controls
whether you want to select a random Choice or if you want to use weighted
Performance Goals as part of the Choice selection procedure:

1. The Select with Fixed Goal Weights option enables you to specify population
segments and set Performance Goal weights for each of the segments. The
screen areas that appear when you select this option are:

* Target Segments: Segment of the population that have been segmented
using filtering rules. The default segment is everyone.

* Priorities: Used to set Performance Goal weights for a given segment. The
Performance Goals to use for scoring are selected in the Decision.
Consequently, each specified goal must have a matching scoring method
for each choice group selected for the Decision.

2. The Select with Custom Goal Weights option allows you to have custom
Performance Goal weights, typically by executing a function that returns
Performance Goal weights at run time.

If you select the Select with Custom Goal Weights option, and click the
ellipsis button beside the Select with Custom Goal Weights box, you must
select one of the following in the Value window:

* Function or rule call, then a function that returns a data type of
com.sigmadynamics.sdo.GoalValues

* Attribute or variable, then an application parameter or session attribute of
type com.sigmadynamics.sdo.GoalValues

3. The Select at Random option assigns random selection of a Choice from the
Choice Groups. This is often used for a Control Group Decision.

About Decisions

13-40 Oracle Real-Time Decisions Platform Developer's Guide

For more information on the Select with Fixed Goal Weights and Select with
Custom Goal Weights options, see Section 13.11.1, "Segmenting Population and
Weighting Goals."

To add a Choice Group, click Select, then select the Choice Group or Groups to use.

To select Performance Goals for the Decision, click Goals, then select the desired goals.

This section contains the following topics:

■ Section 13.11.1, "Segmenting Population and Weighting Goals"

■ Section 13.11.2, "Using a Custom Selection Function"

■ Section 13.11.3, "Pre/Post-Selection Logic"

■ Section 13.11.4, "Selection Function APIs for Custom Goal Weights"

■ Section 13.11.5, "Adding Imported Java Classes and Changing the Decision Center
Display"

13.11.1 Segmenting Population and Weighting Goals
Decisions can target segments of the population and weight the performance metrics
attached to that Decision for each segment.

There are two ways that you can set up your Decision, depending on what kind of
weights you want for your Performance Goals:

■ Pre-defined weights, whose values are specified in the Inline Service

■ Custom weights, whose values can be calculated or changed at run time

For pre-defined weights, start the decision setup process by selecting Select with Fixed
Goal Weights in the Selection Criteria for your Decision.

Then, add one or more target segments, which are defined by a rule or a function, as
follows:

■ To add or remove a Segment, click Add and Remove.

Finally, specify a fixed percentage weight for each Performance Goal that you select for
each segment, by performing the following steps for each segment:

Note: Business users can modify Decision priorities (the weights
applied to a Decision for a given segment) in Decision Center at any
point throughout the lifecycle of the Decision. They can change the
priorities in a Decision Center window similar to the following, which
derives from the Cross Sell application released with Oracle RTD:

About Decisions

About Decision Studio Elements and APIs 13-41

■ Click the segment.

■ Click Goals to select Performance Goals to use for this Decision.

The selected Performance Goals are shown in the Priorities area.

■ Specify a Weight for each Performance Goal in the Priorities area.

For instance, consider a Decision, Select Best Offer, for an Inline Service where two
Performance Goals have been defined, Customer Retention and Revenue. We have
also defined a segment of the population People to retain through filtering rules. The
default remainder is the segment to which we will cross sell.

The weighting is for each Performance Goal and for each segment:

■ People to retain

– Customer Retention: 90%

– Revenue: 10%

■ Default

– Customer Retention: 20%

– Revenue: 80%

For custom weights, start the decision setup process by selecting Select with Custom
Goal Weights in the Selection Criteria for your Decision. The key feature is a function
that you must write to retrieve or calculate Performance Goal weights at run time. This
function must return a data type of com.sigmadynamics.sdo.GoalValues.

Typically, the function would have parameters that can influence the values of the goal
weights, but that is not mandatory.

Within the custom goal weights function, you do not explicitly create segments.
Instead, you can include one or more conditions, each of which returns Performance
Goal weights for a separate subdivision of your population.

When you set up the Decision, you can either select the custom goal weights function
explicitly as the driving parameter of the process, or you can select an application
parameter or entity attribute that receives the goals from the custom goal weights
function or other sources.

For example, assume you have defined a condition, IsMarried, which effectively
segments your target population. You have two Performance Goals Max Rev and Min
Costs.

You create a function Get GoalValues, that returns a data type of
com.sigmadynamics.sdo.GoalValues, and which calculates and returns the
Performance Goals weights.

The key statements of the custom goal weights function Get GoalValues could be:

Terminology: In this section, this function is referred to as the custom
goal weights function.

Note: To illustrate the principle, the following example uses specific
numbers for Performance Goals. These can be replaced by variables
whose values are evaluated elsewhere in the function.

About Decisions

13-42 Oracle Real-Time Decisions Platform Developer's Guide

if (IsMarried)
{return new GoalValues().buildValueForMaxRev(100).buildValueForMinCosts(50);}
else
{return new GoalValues().buildValueForMaxRev(80).buildValueForMinCosts(120);}

With both pre-defined and custom weights, when the Decision is invoked, the
performance metric scoring (whether function, scoring rule, function, and so on) is
applied to all of the eligible Choices. Scores are leveled using the normalization factor
of the performance metrics. Scores are then weighted according to performance metric
weighting contained in the decision. A total score is achieved, and the Choice with the
highest score is selected.

13.11.2 Using a Custom Selection Function
If, instead of using the standard scoring decision process, you would like to use a
custom selection function, select the Custom selection option on the Custom Selection
tab. Choose the selection function from the list, and add any parameters that the
function requires.

13.11.3 Pre/Post-Selection Logic
Scriptlets in the Pre and Post Selection tab are executed before or after the scoring is
done and the decision is made.

Pre-selection logic is executed after collecting all the eligible Choices, but before the
selection happens. Post-selection logic is executed after the selection, but before the
selected Choices are returned. Post-selection logic is more common. For example, this
section can be used to record which choice Oracle RTD has recommended.

The logic here can use the variables defined for the computation of the choices. For
example, the name of the Choice array, which contains eligible Choices before and
selected Choices after the selection, is set in the Pre/Post Selection tab (by default,
choices).

Decision returns a choiceArray. To access the individual elements, use an index into
the array. The following example reads the choiceArray, and records the base event
Delivered to the Choice Event Model. The method choice.recordEvent calls the
model recordEvent, passing in the Choice to be recorded.

for (int i = 0; i < outputChoiceArray.size(); i++) {
Choice choice = outputChoiceArray.get(i);
choice.recordEvent("Delivered");
}
session().addAllToPresentedOffers(outputChoiceArray); /* Store presented offers
for future reference */

13.11.4 Selection Function APIs for Custom Goal Weights
The type of weights parameter is GoalValues. The GoalValues class has a getValue
method for each of the goals defined in the Decision. For example, given the goals
CustomerRetention and Revenue, it has the following methods:

public double getValueForCustomerRetention();
public double getValueForRevenue();

13.11.5 Adding Imported Java Classes and Changing the Decision Center Display
To add imported Java classes to your Inline Service, click Advanced, next to the
description. You can also change the display label for Decision Center, and choose

About Selection Functions

About Decision Studio Elements and APIs 13-43

whether the element is displayed in the Decision Center Navigator. Changing the
display label does not affect the Object ID.

13.12 About Selection Functions
As an alternative to the standard scoring decision process, a selection function can be
used by a Decision. Selection functions are completely user defined. However,
selection functions have a well-defined signature. They take a Choice array as input,
and return a Choice array as output.

Selection functions have a description, as well as the following parameters:

■ Input Choice Array: The input parameter to the selection function. The data type
of this variable is SDChoiceArray.

■ Output Choice Array: The return variable, which specifies the name of the
variable that contains the selected choices and should be returned to the caller of
this selection function. The return variable can be the Input Choices Array that is
passed in to this selection function, or it can be another variable defined locally
within the Logic panel. The data type of this variable is SDChoiceArray.

■ Number of Choices Parameter: The name of the function argument that
represents the number of choices that the selection function should return. The
default name of the parameter is numChoices. The data type of this argument is
int.

■ Weights: If goals are defined for the Decision that uses this selection function,
those goals are passed to the Selection function under the parameter named in
Weights. The type is a GoalValue. For more about GoalValue, see the section on
Decisions.

■ Extra Parameters: Any extra parameters the selection function needs.

This section contains the following topics:

■ Section 13.12.1, "Selection Function Scriptlets"

■ Section 13.12.2, "Adding Imported Java Classes and Changing the Decision Center
Display"

13.12.1 Selection Function Scriptlets
Selection functions are used as a custom function for selection criteria. Many standard
priority functions are available through templates. Priorities or selection functions are
defined in Java. A set of these are predefined in the template, and usually either fill in
the need, or provide an advanced prototype to modify.

Java code that does the actual selection of Choices from the list passed in as an Input
Choices Array is entered in the Logic pane. Often, the Java code in the Logic section
will want to refer to other classes. For the Java code and the function to compile
correctly, the classes need to be imported into the function.

The execute method invokes the selection function.

A simple example of a selection function is shown in the following code sample:

double maxL = -1.0;
Choice ch = null;
for (int i = 0; i < eligibleChoices.size(); i++) {
Cross_Selling_OfferChoice cso = (Cross_SellingOfferChoice)eligibleChoices.

get(i);
double likelihood = cso.getLikelihood();

About Models

13-44 Oracle Real-Time Decisions Platform Developer's Guide

if (ch == null || (!Double.isNaN(likelihood) && likelihood > maxL)) {
maxL = likelihood;
ch = cso;

}
}
SDChoiceArray selectedChoices = new SDChoiceArray(1);
if (ch != null)
selectedChoices.add(ch);

13.12.2 Adding Imported Java Classes and Changing the Decision Center Display
To add imported Java classes to your Inline Service, click Advanced next to the
description. You can also change the display label for Decision Center, and choose
whether the element is displayed in the Decision Center Navigator. Changing the
display label does not affect the Object ID.

13.13 About Models
Models serve two primary purposes: prediction and reporting. Models should be
defined to:

■ Predict the likelihood that certain events associated with Choices will occur

■ Analyze data correlated with those events

Oracle RTD models automate many of the tasks that need to be addressed when
designing and integrating predictive models for the purpose of improving decisions in
a business process. These automated tasks include:

■ Applying data transformation to input data prior to applying predictive models

■ Validating the quality of the models

■ Rebuilding / recalibrating models when new target attributes occur

■ Validating the accuracy of models with new data and / or new outcomes

■ Introducing some degree of randomization in the decision making process to
enable "exploration"

The rest of this section highlights how the Oracle RTD model features address these
different situations.

Models are associated at design time with a Choice Group. This defines the list of
Choices to which prediction and reports apply. The nature of the Choices to which
Oracle RTD models apply is very flexible as demonstrated by the following example:

■ A model can be associated with a Marketing Offers choice group that contains a
list of offers that have been presented and purchased by customers over time. This
model can then be used to:

– Predict: Compute the likelihood that a given customer will purchase a given
offer in the list

Note: Data accumulated in Oracle RTD predictive models can also
be exported to external database tables, and subsequently analyzed
using standard reporting and business intelligence products and
techniques. For more information, see the chapter "Setting Up and
Using Model Snapshots" in Oracle Real-Time Decisions Installation and
Administration Guide.

About Models

About Decision Studio Elements and APIs 13-45

– Analyze: Explore reports highlighting customer characteristics correlated with
purchase events

■ A model can be associated with a Call Transfer choice group that contains two
choices: Call was transferred and Call was not transferred. This model can be
used to:

– Predict: Compute the likelihood that a given customer call will be transferred
or not transferred

– Analyze: Explore reports highlighting call, agent and customer characteristics
correlated with transfer events

Using Oracle RTD terminology (and by contrast with other approaches), one single
Oracle RTD model applies to a list of target attributes rather than to a single target
attribute. An Oracle RTD model therefore defines a series of shared parameters that
apply to all the Choices to which this model applies. Because Oracle RTD models are
in essence defining shared metadata, Oracle RTD models can then apply to a set of
Choices that evolves over time. For example:

■ New Offers can be added to the Marketing Offer choice group and Oracle RTD
will automatically apply the shared model parameters to those new occurrences

For more technical information about Oracle RTD models, see:

http://www.oracle.com/technetwork/middleware/real-time-decisions
/overview/index.html

This section contains the following topics:

■ Section 13.13.1, "Model Types"

■ Section 13.13.2, "Model Common Parameters"

■ Section 13.13.3, "Model Attributes"

■ Section 13.13.4, "Model APIs"

13.13.1 Model Types
When defining models with Oracle RTD, you can select from three types of model:
Choice Event Model, Choice Model, and Model.

Each type of model corresponds to predefined usage patterns. While they share most
of their characteristics, they differ by the degree of automation they provide for using
prediction for the purpose of improving business decisions. All types of model can be
used for prediction and reporting purposes.

■ Choice Models and Choice Event Models: These models are associated with a
target attribute of type Choice Group.

A Choice Event Model is used to predict and analyze the conditional probability
of events occurring, given a base event. Choice Event Models are defined with one
base event and a list of positive events. The model can be used to predict the
conditional probability that a positive event will happen given the base event
happening. The model interprets the list of positive events as a sequence.

Note: Changes to Oracle RTD models parameters can be made
incrementally at any point in the lifecycle of a Model and will apply in
a forward manner to all model operations.

About Models

13-46 Oracle Real-Time Decisions Platform Developer's Guide

It is possible (and quite common) to define more than one Choice Event Model to
track the same group of events in a given Choice Group. The differences between
the models are typically related to time windows, base events or partitioning
attributes.

A Choice Model is used to predict and analyze the probability of occurrences of
Choices in general. Choice models do not define any events associated with their
Choices. The model predicts whether the Choice is present or not.

This is useful for situations where the Choices represent items that can be present
in a business process. Example include: the reason for a call, a product that is
being purchased, a Web page that is visited.

■ Models: These models are associated with a target attribute of type session
attribute. Plain Models or Models are typically not used but represent general
purpose predictive models that would not have inherent knowledge of
abstractions such as Choices, Choice Groups and Events.

13.13.2 Model Common Parameters
Several of the model parameters are common to the three types of model:

■ Algorithm

The Algorithm dropdown list defines the type of predictive algorithm the model
will use.

There are two types of algorithm supported by Oracle RTD:

– Bayesian algorithm

– Regression algorithm

Selecting an option will determine how correlations between input attributes and
target attributes are handled to produce likelihood scores. Oracle recommends that
you consult the mathematical literature to better understand the differences
between these algorithms. In general terms, Bayesian algorithms are well suited
when the proportion of positive outcomes is low, and Regression algorithms are
well suited when the proportion of positive outcomes is high (typically above
15%).

■ Time Window

The Default time window check box and the Time Window dropdown list define
the time lifecycle of models. The default time window is defined at the application
level and is used for the model by default, expect when you uncheck Default time
window and select from the Time Window dropdown list.

Model time windows can be set to:

– Week, Half-Month, Month, Two Months, Quarter, Half-Year, or Year

Based on the defined model time window, Oracle RTD will create new model
instances as time passes to ensure that old data does not have the same influence
over predictions as new data. The purpose of the time-windowing strategy
applied by Oracle RTD is to automatically create overlapping instances of models
at each time window. Oracle RTD implements an overlapping time window
approach with two models always present:

– A primary model that continuously learns and predicts

About Models

About Decision Studio Elements and APIs 13-47

– A secondary model that starts half-way through the lifecycle of the primary
model, and is only used for learning purposes until it becomes the primary
model itself

■ Use for prediction and Randomize Likelihood

All types of model can be used for prediction and reporting purposes. Models that
are to be used for prediction purposes must have the Use for prediction option
selected. When selecting this option, you can also decide whether or not to use the
Randomize Likelihood option.

Models used for prediction are available to compute a mathematical likelihood for
each eligible choice at runtime in the Decision Server.

The Randomize Likelihood option will apply some randomization formula on
those scores to avoid a local minimum or maximum situation. This frequent
situation occurs when new Choices are introduced during the life cycle of a model
and when Models associated with those new Choices are "competing" with models
on established Choices.

In the context of new Choices, it is sometimes useful to introduce some degree of
randomization so that those new Choices get a chance to be presented, and as a
result to accumulate learning. By selecting the Randomize Likelihood option, you
let Oracle RTD decide the degree to which model scores will be randomized. The
randomization factor applied by Oracle RTD when using this option is
proportional to the observed error of predictions for that given model.

■ Premise Noise Reduction

One known data pattern that needs to be addressed when using predictive models
for decision purposes is the case of self-fulfilling predictions. This situation
typically occurs when an input data attribute is always associated with the model
target attribute. If you expect this situation to occur, select the Premise Noise
Reduction option.

This option automatically identifies input variable values that are highly
correlated with the model output and ignores those values for prediction
purposes.

For example:

– Assume that a Model is built to predict products that will be added to a
shopping cart

– Assume that the array of products already in the shopping cart is used as
input to the Model

Using the Premise Noise Reduction option ignores the self-fulfilling correlation
observed between a product and itself. Oracle RTD will also ignore products that
are always associated with the input product, for example, as part of a bundle.

Though ignored for prediction purposes, input attribute values that are identified
as "noise" are still visible in Decision Center and displayed in graphs with gray
bars.

■ Advanced: The Advanced button lets you choose to show the element in Decision
Center, and to change the label of the element. Changing the label of the element
does not change the Object ID.

About Models

13-48 Oracle Real-Time Decisions Platform Developer's Guide

13.13.3 Model Attributes

Choice Tab for Choice Events and Choice Models
For Choice Event and Choice Models, the Choice Tab has the following common
options:

■ Choice Group

■ Label for Choice - the label for the Choice Group shown in Decision Center

For Choice Event Models, the Choice Tab has the following specific options:

■ Base Event: The event is the event associated with Choices that represent the
baseline of the conditional probabilities computed by the Choice Event Model.
Events can be selected from a list of Events defined at the Choice Group level.

■ Base Event Label

■ Positive Outcome Events: This is the list of events for which the Model will
compute conditional probabilities.

For example, assume a Model linked to a Product Choice Group has a baseline
event Delivered and two positive events, Interested and Purchased. When
computing the likelihood of purchase of a given product:

– The Model will first compute the likelihood of the Purchased event based
upon knowing the Delivered event, and use this number if available.

– If not enough data is available to make such prediction (in other words, the
Model returns NA), the Model likelihood function will then compute the
likelihood of the Interested event based upon knowing the Delivered event,
and return this number if available.

– If not enough data is available to make such a prediction, the Model likelihood
function will return NA.

In that regard, the list of positive outcomes represents an ordered sequence of
positive events that you attempt to predict. The Model likelihood function allows
you to select the "most positive" event from an ordered list of events.

For Choice Models, the Choice Tab has the following specific option

■ Mutually exclusive choices: This option is available for Choice Models and
indicates that the Choices representing the target of the Model are mutually
exclusive.

Attributes Tab for Choice Events and Choice Models
For Choice Event and Choice Models, the Attributes tab has the following common
options:

■ Partitioning Attributes

Partitioning a Model by adding a Partitioning Attribute is equivalent to creating a
separate Model for each value of the Partitioning Attributes.

For example, when building a Model to predict likelihood of acceptance for offers,
you might want to create a Partitioning Attribute indicating the interaction
channel in which this offer was delivered and accepted. Having a Model for Web
offer acceptance and Contact Center offer acceptance will result in better
predictive Models as it is known that customers with the same characteristics have
very different likelihoods of accepting an offer depending on the channel through
which the offer is made.

About Models

About Decision Studio Elements and APIs 13-49

The decision to partition a model need to be made very carefully for the following
reasons:

– Creating attributes will reduce the number of observations for each choice and
attribute value combination, and therefore slow down the Model conversation
process.

– Model size is very sensitive to the cardinality of partitioning attributes.

– Excluded attributes. By default, all session and entity attributes are used as
inputs to Models. To remove a specific attribute from the list of Model inputs,
add them to the list of Excluded Attributes.

For Choice Models, the Attributes tab has the following specific option:

■ Aggregate by: By choosing one of the partitioning attributes, you can create
additional sub-models for learning on the attribute. As with partitioning, a
decision to aggregate on an attribute has to be based on a radical difference in
predicted likelihood depending on the value of the attribute in question.

Learn Location Tab for Choice Events and Choice Models
For Choice Event and Choice Models, the Learn Location tab has the following
common options:

■ (Learn) On session close or On Integration Point

By default, all model learning operations occur when the session closes.
Alternatively you can select a specific integration point (Informant or Advisor) at
which point model learning operations need to be triggered.

Temporary Data Storage Tab for Choice Events and Choice Models
For Choice Event and Choice Models, the Temporary Data Storage tab has the
following common options:

■ Use temporary data storage

A common data pattern is that events related to Choices might not all occur
during the lifetime of the Oracle RTD session. To make sure the original input
values use for predictions are also used to update the Model when such delayed
positive outcomes occur, select the Use temporary data storage option.

■ Days to Keep: Specifies the number of days to keep temporary data stored on the
server.

■ Keys: The data stored in temporary data storage is available for retrieval by
having any one of the keys defined in the Temporary Data Storage tab.

13.13.4 Model APIs
The following code returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

This section contains the following topics:

■ Section 13.13.4.1, "Querying the Model"

■ Section 13.13.4.2, "Recording the Choice with the Model"

■ Section 13.13.4.3, "Obtaining Model Object by String Name"

■ Section 13.13.4.4, "Recording Choice Events for Choice Event Models"

About Models

13-50 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 13.13.4.5, "Recording Choices for Choice Models"

■ Section 13.13.4.6, "Obtaining Model Choice Likelihood"

13.13.4.1 Querying the Model
The model can be queried using any of the getChoiceEventLikelihood methods shown
in the following code sample. This will return the likelihood of a Choice being chosen
by the model.

public static double getChoiceEventLikelihoods(GENOffersChoice choice, String
eventName);
public static double getChoiceEventLikelihoods(GENOffers choiceGroup, String
eventName);

13.13.4.2 Recording the Choice with the Model
For the Choice Event model, the model method recordEvent is executed when a call
to the Choice method recordEvent is made. Therefore, it is not necessary to directly
invoke this method on the model. This method is usually called from within the
Integration Point where the Choice was extended to the calling application.

For instance, in an Advisor Integration Point:

if (choices.size() > 0) {
Choice ch = choices.get(0);
ch.recordEvent("Presented");
session().setOfferExtended(ch.getSDOId());

}

For the Choice model, the following APIs are available:

public static SDStringArray getChoice()
public static void setChoice(SDStringArray _v)
public static void addToChoice(String _a)
public static void addAllToChoice(SDStringArray _c)

The Informant usually records a Choice with the model. For instance, in a case where
we are recording the Choice of a call reason code with the Model Reason Analysis:

if (code == 17)
ReasonAnalysis.addToChoice("BalanceInquiry");

else if (code == 18)
ReasonAnalysis.addToChoice("MakePayment");

else if (code == 19)
ReasonAnalysis.addToChoice("RateInquiry");

else
ReasonAnalysis.addToChoice("Other");

If the Choices were not marked mutually exclusive, this call must include a call to
getModelData() before recording the Choice:

if (code == 17)
ReasonAnalysis.getModelData().addToChoice("BalanceInquiry");

else if (code == 18)
ReasonAnalysis.getModelData().addToChoice("MakePayment");

else if (code == 19)
ReasonAnalysis.getModelData().addToChoice("RateInquiry");

else
ReasonAnalysis.getModelData().addToChoice("Other");

About Models

About Decision Studio Elements and APIs 13-51

If you are working with a Choice Array, you should send an empty string to the model
first:

ReasonAnalysis.getModelData().addToChoice("");

13.13.4.3 Obtaining Model Object by String Name
These APIs allow users to obtain a model object by its string name. There is one API
for choice models, and another for choice event models.

General Form of the APIs
ChoiceModel <cm_model_instance_name> =
Application.getApp().getChoiceModel(<model_name>);

ChoiceEventModel <cem_model_instance_name> =
Application.getApp().getChoiceEventModel(<model_name>);

where:

<model_name> must be a type String model name

Example
For an example of the getChoiceEventModel API, see Example of Choice Event Model
APIs.

For an example of the getChoiceModel API, see Example of Choice Model APIs.

13.13.4.4 Recording Choice Events for Choice Event Models
This API allows users to send in a choice id and event and automatically update the
associated choice event model. Developers can write "record event" logic once. The
code can then be reused, without additional editing, for additional choices and choice
groups added subsequently to the Inline Service.

General Form of the API
<cem_model_instance_name>.recordEvent(<choiceId>,<eventId>);

where:

<cem_model_instance_name> must be of type ChoiceEventModel, previously
retrieved by the getChoiceEventModel API

<choiceId> must be a type String choice identifier

<eventId> must be a type String event identifier

Example of Choice Event Model APIs
The following shows an example of the getChoiceEventModel and recordEvent APIs:

// Select the choice for the given classification
int classification = session().getDnaRecord().getClassification();

String modelName = "DnaClassesAPITest";
ChoiceEventModel model = Application.getApp().getChoiceEventModel(modelName);
// Definitions
SDChoiceArray choices = new SDChoiceArray();
ChoiceGroupInterface group = ClassificationsTestApi.getPrototype().cloneGroup();
// Get the group of choices to simulate
//group = ClassificationsTestApi.getPrototype().cloneGroup();
// Get all eligible choices
group.getEligibleChoices(choices);

About Models

13-52 Oracle Real-Time Decisions Platform Developer's Guide

int sz = choices.size();
// Iterate through all eligible choices in the group
for (int i = 0; i < sz; i++) {
ClassificationsTestApiChoice ch = (ClassificationsTestApiChoice) choices.get(i);
 String choiceId = ch.getSDOId();
 String eventId = "record";
 model.recordEvent(choiceId, eventId);

if (ch.getClassification() == classification) {
String cnm = ch.getSDOId();
eventId = "identified";
model.recordEvent(choiceId, eventId);
logInfo("ID " + session().getDnaRecord().getId()
+ " Classification: " + classification + " choice: "
+ ch.getSDOId() + " size was: " + sz);
}
}

13.13.4.5 Recording Choices for Choice Models
This API allows users to send in a choice id to automatically update the associated
choice model.

General Form of the API
<cm_model_instance_name>.recordChoice(<choiceId>);

where:

<cm_model_instance_name> must be of type ChoiceModel, previously retrieved
by the getChoiceModel API

<choiceId> must be a type String choice identifier

General Form of the API
<cm_model_instance_name>.recordChoice(<choiceId>);

where:

<cm_model_instance_name> must be of type ChoiceModel, previously retrieved
by the getChoiceModel API

<choiceId> must be a type String choice identifier

Example of Choice Model APIs
The following shows an example of the getChoiceModel and recordChoice APIs:

double amount = targetNumber;
double spacing = Application.getApp().getSpacing();
double max = Application.getApp().getMaxOutput();
double min = Application.getApp().getMinOutput();
//Application.logInfo("amount is: "+amount);
int nDigits = (int)Math.log10(max);
nDigits = nDigits + 3;
//Application.logInfo("nDigits in Dynamic Choices: "+nDigits);
String targetChoiceGroupName = Application.getApp().getTargetChoiceGroupName();
String targetChoiceBaseName = Application.getApp().getTargetChoiceBaseName();
double t_max = max-spacing;
double t_min = min-spacing;
ChoiceModel model = Application.getApp().getChoiceModel(modelName);
for (double t= t_max; t>t_min; t = t-spacing) {
 String id;

About Integration Points

About Decision Studio Elements and APIs 13-53

 if (amount > t) {
 id = String.format(targetChoiceGroupName+"$"+targetChoiceBaseName+"%0
"+nDigits+".1fAbove", t);
 model.recordChoice(id);
 for (double it = t-spacing; it>t_min; it= it-spacing) {
 id = String.format(targetChoiceGroupName+"$"+targetChoiceBaseName+"%0
"+nDigits+".1fAbove", it);
 model.recordChoice(id);
 }
 break;
 }
}

13.13.4.6 Obtaining Model Choice Likelihood
These APIs allow users to obtain a likelihood score for either a choice or choice event
model for the "All" version of the model or a specific partition of the model should a
partition exist.

General Form of the APIs
<cm_model_instance_name>.getChoiceLikelihood(<choiceId>);

<cem_model_instance_
name>.getChoiceEventLikelihood(<choiceId>,<eventId>);

where:

<cm_model_instance_name> must be of type ChoiceModel, previously retrieved
by the getChoiceModel API

<cem_model_instance_name> must be of type ChoiceEventModel, previously
retrieved by the getChoiceEventModel API

<choiceId> must be a type String choice identifier

<eventId> must be a type String event identifier

Example
The following shows an example of the getChoiceEventLikelihood API:

ChoiceEventModel model = Application.getApp().getChoiceEventModel(modelName);
return model.getChoiceEventLikelihood(choiceId, eventId);

13.14 About Integration Points
There are two types of Integration Point in Oracle RTD, Informants and Advisors.
These represent the integration points between external systems and Oracle RTD.

An external system and an order number are also defined for each Integration Point.
These are used to generate the process map presented in Decision Center. The system
determines the swim-lane and the order the position, from left to right. The order can
be any number, not just integers, allowing for the introduction of new Integration
Points without modifying existing ones.

This section contains the following topics:

■ Section 13.14.1, "About Informants"

■ Section 13.14.2, "Adding Imported Java Classes and Changing the Decision Center
Display"

■ Section 13.14.3, "Informant APIs"

About Integration Points

13-54 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 13.14.4, "Informant Logic"

■ Section 13.14.5, "About Advisors"

■ Section 13.14.6, "About the Advisor Decisioning Process"

■ Section 13.14.7, "Adding Imported Java Classes and Changing the Decision Center
Display"

■ Section 13.14.8, "Adding a Session Key"

■ Section 13.14.9, "Identifying the External System and Order"

■ Section 13.14.10, "Adding Request Data"

■ Section 13.14.11, "Adding Response Data"

■ Section 13.14.12, "Logic in Advisors"

■ Section 13.14.13, "Accessing Request Data from the Advisor"

13.14.1 About Informants
Informants represent asynchronous integration points between external systems and
Oracle RTD.

Informants are typically triggered to pass contextual information to Oracle RTD to
support the decision process, as follows:

■ Informants pass closed loop information to Oracle RTD to update its predictive
models

■ Informants pass session identifiers for Oracle RTD to fetch relevant information
from external data sources

To add an Informant to the Inline Service, perform the following:

1. Create an external system to identify which system accesses the Integration Point.

2. Create a Choice Group to represent the targets for your analysis. For instance, a
Choice Group may represent the reasons for calls to the service center.

3. Create an Informant that receives the session key information and gathers and
processes data based on the session.

4. Create an analytical model that is the repository for the data and analyzes it.

Informants have a Description, as well as the following Request characteristics:

■ Session Keys: One or more session keys used to uniquely identify a session. Any
of the session keys within the message are sufficient for identifying a session, and
therefore cause the message to be dispatched to an existing session, if any, already
containing information related to this message.

■ External System: Identifies the external system that will be sending the Informant
a request. Associating the Informant with an external system allows the Informant
to be displayed among other Informants and Advisors in Decision Center's
process map.

■ Order: This number identifies the position of the Informant in the sequence of
Integration Points displayed in Decision Center's process map. An Integration
Point with an order less than another Integration Point's order will be displayed
before the other Integration Point. The order can be a decimal number; for
example, 2.1 will be displayed before 2.2.

About Integration Points

About Decision Studio Elements and APIs 13-55

■ Force Session Close: When selected, causes the Inline Service to automatically
terminate the session of the Informant after all of the Informant's asynchronous
logic has executed. The same effect can be achieved by placing the following Java
statement anywhere in a subtab of the Informant's Logic tab:
session().close();

This section contains the following topics:

■ Section 13.14.1.1, "Adding a Session Key"

■ Section 13.14.1.2, "Identifying the External System and Order"

■ Section 13.14.1.3, "Adding Request Data"

13.14.1.1 Adding a Session Key
On the Request tab, click Select to select a session key for the Integration Point. This is
one of the values that the operational system will supply to the Integration Point.

13.14.1.2 Identifying the External System and Order
On the Request tab, use the dropdown list to choose the external system that accesses
the Integration Point. This menu is populated by creating external system identifiers
using the external system element.

The order in which the Integration Points are accessed is represented by Order. This
number and the External System determine how the end-to-end process is displayed
in Decision Center.

13.14.1.3 Adding Request Data
On the Request tab, click Add to add request data. Assignments are the values that the
operational system will supply to the Integration Point. Assignments have the
following characteristics:

■ Incoming Parameter: The name of the field in the request sent to the Informant
whose value will be copied from the request to the session attribute. This name
does not have to be the same as the session attribute; however, it generally is
named the same.

After the session key is created, incoming parameters are assigned to the session
key attributes.

■ Type: This is the data type of the session attribute into which the incoming
argument will be copied. The valid types are: integer, string, date, or double.

■ Array: Marked if the type is a collection.

■ Session Attribute: The attribute of the session to which the incoming parameter of
a request will be mapped.

13.14.2 Adding Imported Java Classes and Changing the Decision Center Display
To add imported Java classes to your Inline Service, click Advanced next to the
description. You can also change the display label for Decision Center, and choose
whether the element is displayed in the Decision Center Navigator. Changing the
display label does not affect the Object ID.

Note: If the type of the request field and the session key attribute do
not match, you should use a transform method.

About Integration Points

13-56 Oracle Real-Time Decisions Platform Developer's Guide

13.14.3 Informant APIs
The following code returns the Object label and Id, respectively:

public String getSDOLabel();
public String getSDOId();

13.14.4 Informant Logic
There are two tabs for Informant logic: the Logic tab and the Asynchronous Logic tab.
You can access request data for an Informant in either of the tabs.

This section contains the following topics:

■ Section 13.14.4.1, "Logic"

■ Section 13.14.4.2, "Asynchronous Logic"

■ Section 13.14.4.3, "Accessing Request Data From the Informant"

13.14.4.1 Logic
This script runs after any Request Data declared in Request Data are executed. If the
primary purpose of the Informant is to transfer data from the operational system
request fields to the session key and Request Data, logic may be unnecessary, as this
happens automatically according to declarations in the Request Data tab.

Logic in Informants is typically used for tracing message reception in the log file, or for
pre-populating entities whose keys are supplied by the Informant's message, in order
to avoid having to do this later in an Advisor, where response time might be more
important. Logic is executed directly following the Request Data.

Logic in the Informant can also be used to record Choices with a Choice Model. See the
Choice Model APIs for methods to call.

13.14.4.2 Asynchronous Logic
This script runs after the script defined in the Logic tab, described in the previous
section. Any additional processing that needs to be done can be placed in this area.
The order of execution of Asynchronous Logic is not guaranteed.

13.14.4.3 Accessing Request Data From the Informant
Request data from an Informant is accessed one of several ways. If the incoming
parameter is mapped to a session attribute, there is a get method for the parameter.

request.get$()

where $ is the parameter name with the first letter capitalized.

If the attribute is not mapped, there are methods to achieve the same results using the
field name of the parameter.

String request.getStringValue(fieldName)
SDStringArray request.getStringArrayValue(fieldName)
boolean request.isArgPresent(fieldName)

13.14.5 About Advisors
Advisors represent synchronous integration points between external systems and
Oracle RTD. Advisors are typically triggered to initiate an Oracle RTD Decision.

About Integration Points

About Decision Studio Elements and APIs 13-57

Each Advisor can make use of two Decisions, the Optimized Decision and the Control
Group Decision. This enables users to compare the respective performance of the two
options.

Generally, the two Decisions are set up as follows:

■ The Optimized Decision implements some decision logic that takes advantage of
the advanced features of the Oracle RTD Decision Framework.

■ The Control Group Decision is as close to the existing business process as possible,
so that the Optimized Decision has a basis for comparison.

Default Choices can be defined for the Advisor. These Choices are used when the
computation in the server can not be completed in time, or if the client loses
communication with the server.

13.14.6 About the Advisor Decisioning Process
Advisors have a Description, as well as the following Request characteristics:

■ Session Keys: One or more session keys used to uniquely identify a session. Any
of the session keys within the message are sufficient for identifying a session, and
hence cause the message to be dispatched to an existing session, if any, already
containing information related to this message.

When the Advisor is called, the session key creation is the first thing executed.

■ External System: Identifies the external system that will be triggering the Advisor
request. Associating the Advisor with an external system allows the Advisor to be
displayed among other Informants and Advisors in Decision Center's process
map.

■ Order: This number identifies the position of the Advisor in the sequence of
Integration Points displayed in Decision Center's process map. An Integration
Point with an order less than another Integration Point's order will be displayed
before the other Integration Point. The order can be a decimal number; for
example, 2.1 will be displayed before 2.2.

■ Force Session Close: When selected, this option causes the Inline Service to
automatically terminate the Advisor's session after all of the Advisor's
asynchronous logic has executed. The same effect can be achieved by placing the
following Java statement anywhere in any subtab of the Advisor's Logic tab:
session().close();

13.14.7 Adding Imported Java Classes and Changing the Decision Center Display
To add imported Java classes to your Inline Service, click Advanced next to the
description. You can also change the display label for Decision Center, and choose
whether the element is displayed in the Decision Center Navigator. Changing the
display label does not affect the Object ID.

13.14.8 Adding a Session Key
On the Request tab, click Select to select a session key for the Integration Point. This is
one of the values that the operational system will supply to the Integration Point.

About Integration Points

13-58 Oracle Real-Time Decisions Platform Developer's Guide

13.14.9 Identifying the External System and Order
On the Request tab, use the dropdown list to choose the external system that accesses
the Integration Point. This list is populated by creating external system identifiers
using the external system element.

The order in which the Integration Points are accessed is represented by Order. This
number and the External System determine how the end-to-end process is displayed
in Decision Center.

13.14.10 Adding Request Data
On the Request tab, click Add to add request data. Request data is the values that the
operational system will supply to the Integration Point. Request data has the following
characteristics:

■ Incoming Parameter: The name of the field in the request sent to the Advisor
whose value will be copied from the request to the session attribute. This name
does not have to be the same as the Session attribute; however it generally is
named the same.

After the session key is created, the assignment of incoming parameters to session
attributes is made.

■ Type: This is the data type of the session attribute into which the incoming
argument will be copied. The valid types are: integer, string, date or double.

■ Array: Select this option if the type is a collection.

■ Session Attribute: The attribute of the session to which the incoming parameter of
a request is mapped.

13.14.11 Adding Response Data
On the Response tab, click Add to add response data. Response data is the values that
the operational system will send back to the Integration Point after a request is
invoked. Response data has the following characteristics:

■ Response: The response contains an array of selected Choice objects, with each
Choice containing a collection of named attribute values. The Choice selection
process is governed by one of two Decision objects referenced by the Advisor. One
Decision is given to the calling application.

■ Decision to Use: The name of the Decision object to use for normal sessions, as
opposed to control-group sessions. This Decision becomes the Advisor's response
to the calling system.

■ Control Group Decision to Use: Control Group Decision is used for only a small
percentage of sessions as a way to assess the effectiveness of the other Decisions
by providing a baseline. The percentage of sessions that use the control-group
decision is specified in the Application element of the Inline Service. The Control
Group Decision should be designed to select choices using "business-as-usual"
logic, meaning whatever rules the enterprise previously used before introducing
the Inline Service. Reports are available through the Decision Center console that

Note: If the type of the request field and the session attribute do not
match, you should use a transform method.

About Integration Points

About Decision Studio Elements and APIs 13-59

compare the business effectiveness of the Advisor's normal Decision object with its
Control Group Decision.

■ Parameters: Input parameter defined by the decision. The Name and Type
columns are descriptive only, surfaced here from the Decision object.

■ Default number of choices returned: Default number of choices returned by the
decision. This is the number of choices defined by the Decision.

■ Override default with: The Advisor can override or accept the number specified
by the referenced Decision. This area specifies the maximum number of qualified
choices to be included in the Advisor's response.

■ Default Choices: A list of Choices that are returned to the calling client application
whenever it tries to invoke this Advisor, and the Advisor is not able to deliver its
response within the server's guaranteed response time.

Note that default Choices do not have to be specified for each Advisor. The Inline
Service may also declare default Choices, which are used for Advisors that don't
declare their own. Also note that the default Choice configuration is propagated to
the client application and stored in the local file system by the Smart Client
component. Hence, it is subsequently available to client applications that cannot
connect to the server.

13.14.12 Logic in Advisors
There are two tabs for Advisor logic: the Logic tab and the Asynchronous Logic tab.

This section contains the following topics:

■ Section 13.14.12.1, "Logic"

■ Section 13.14.12.2, "Asynchronous Logic"

13.14.12.1 Logic
This script runs after any request data declared in the request data tab is executed, and
before the response is sent back to the client.

Advisor logic is generally not needed. You may want to use it for preprocessing data
coming in with the request, or for debugging purposes.

13.14.12.2 Asynchronous Logic
This script runs after the response has been handed off to the server-side mechanism
that sends it back to the client. Depending on the type of endpoint used by the client,
the client may be able to start processing the result before this script finishes, thus
improving the effective response time by increasing parallelism.

13.14.13 Accessing Request Data from the Advisor
Request data from an Advisor is accessed in one of several ways. If the incoming
parameter is mapped to a session attribute, there is a get method for the parameter.

request.get$()

where $ is the parameter name with the first letter capitalized.

If the attribute is not mapped, there are several methods to achieve the same results.

String request.getStringValue(fieldName)
SDStringArray request.getStringArrayValue(fieldName)
boolean request.isArgPresent(fieldName)

About External Systems

13-60 Oracle Real-Time Decisions Platform Developer's Guide

13.15 About External Systems
External systems are only identified within Decision Studio. The external system
represents the operational systems within the enterprise that integrate to the Inline
Service. The external system is not accessible through the API. The external system is
used by an Integration Point to identify which external system will access that
Integration Point. External systems are used for display on the Integration Map in
Decision Center.

External systems have a Description, and a Display Label. Changing the Display Label
does not affect the Object ID.

13.16 About the Categories Object
Categories are used to organize Choices. All Choices of the same category appear
together in Decision Center. No classes are generated for categories. They are only
used by Decision Center for grouping and organizing Choices.

Categories have the following characteristics:

■ Name: Name of the category, as entered in Decision Studio.

■ Description: Description of the category, as entered in Decision Studio.

■ Display Label: Lets you change the Display Label. This does not affect the Object
ID.

13.17 About Functions
Functions can be used for calculation or for other processing that you want to make
reusable. Functions are defined using Decision Studio. Functions are defined with the
following characteristics:

■ Description: Description of the function.

■ Return value: Specifies whether the function returns a value.

■ Data Type: Type of the returned value.

■ Array: Select this option if the return type is an array.

■ Call Template: The definition of how the function will be called. Using {0}, {1},
and so on as arguments, and phrasing to describe the function, define the template
for call. It is important to use good phrasing, as this is what will be shown when
using the function. For instance, a call template for multiply is {0} multiplied
by {1}.

■ Parameters: Named parameters that will be used in the logic of the function. This
number must match the number of arguments in the call template. For instance,
Multiply has the following parameters: a, type Double; b, type Double

If you want to use a function parameter in a rule, you can select a Type Restriction
for the parameter. This is not a mandatory requirement, but it will help you in
formulating the rule. For more information about creating and using type
restrictions, see Section 13.18, "About Type Restrictions."

■ Logic: Java code for the function. The code for multiply is:

return a * b;

This section includes the following topics:

About Functions

About Decision Studio Elements and APIs 13-61

■ Section 13.17.1, "Functions to Use with Choice Event History Table"

■ Section 13.17.2, "About Maintenance Operations"

■ Section 13.17.3, "Adding Imported Java Classes and Changing the Decision Center
Display"

13.17.1 Functions to Use with Choice Event History Table
As part of configuring an Inline Service, predefined functions are available to access
any data that is stored in Oracle RTD's Choice Event History table. These functions are
accessible when creating or editing choice eligibility rules, and can also be called
through custom Java logic as well.

To access these functions in a choice eligibility rule statement, select Function Call,
and expand the Functions folder. The following functions appear in the list of available
functions:

13.17.2 About Maintenance Operations
Maintenance Operations are special functions, that enable administrators to perform
specific Inline Service related tasks in JConsole, such as the following:

■ Clearing an entity cache across a cluster

■ Clearing the external rule cache

■ Broadcasting messages within a cluster

■ Performing blocking operations

The Maintenance Operations written for an Inline Service are exposed by Oracle RTD
as JMX Operations.

A Maintenance Operation may be invoked on an individual cluster member, or across
a cluster as a whole. Maintenance Operations are non-blocking.

Each Maintenance Operation will appear twice in the MBeans tree for each Loadable
Inline Service:

Function Name Parameters Description

Days Since Last
Event

Event Name For a given choice and a specified event name, returns
the number of days since that last recorded event.

Days Since Last
Event on Channel

Event Name

Channel

For a given choice, specified event name, and
specified channel name, returns the number of days
since that last recorded event.

Number of Recent
Events

Event Name

Number Of Days

For a given choice, specified event name, and
specified number of days, returns the total count of
times that event has been recorded.

Number of Recent
Events on Channel

Event Name

Channel

Number Of Days

For a given choice, specified event name, specified
channel, and specified number of days, returns the
total count of times that event has been recorded.

Note: You may invoke a Maintenance Operation on an individual
cluster member directly, in a blocking fashion. If you broadcast the
request to invoke the Maintenance Operation across a cluster, you will
block only as long as it takes to deliver the message.

About Type Restrictions

13-62 Oracle Real-Time Decisions Platform Developer's Guide

1. To allow for the Maintenance Operation invocation on a local server only.

2. To allow for the Maintenance Operation invocation across every node of a cluster.

Different versions of a particular Inline Service may have different Maintenance
Operations. For example, it is possible to have more than one version of an Inline
Service deployed - they may be in different deployment states. Only Inline Services in
the "Loadable" state expose any Maintenance Operations.

There are certain design-time considerations for Maintenance Operations:

■ Maintenance Operations may have 0 or more primitive type arguments (String,
int, double, date, or boolean), and may return String, int, double, date, boolean, or
void.

Returned values (and Exception) are logged.

■ Maintenance Operation operate within the global Inline Service context. Session
attributes are null. If the session is accessed, an IllegalStateException is thrown.

Maintenance Operations for External Rule Caching
Oracle RTD provides specific maintenance operations for external rules caching. For
details, see Section 17.2.3.2, "External Rule Caching."

13.17.3 Adding Imported Java Classes and Changing the Decision Center Display
To add imported Java classes to your Inline Service, click Advanced next to the
description. You can also change the display label for Decision Center, and choose
whether the element is displayed in the Decision Center Navigator. Changing the
display label does not affect the Object ID.

Functions are called from other elements using the call template. For instance, if you
wanted to use the multiply function described in the previous section, you would
choose the function from the Edit Value dialog. The call template {0} multiplied
by {1} provides the editor with the position and number of arguments.

13.18 About Type Restrictions
Type restrictions define constraints that can be attached to session and entity
attributes, choice and choice group attributes, and function and application
parameters, so long as their type is Integer, Double, Date, or String.

Type restrictions are typically used in the Rule Editor to simplify user inputs, When
you define a rule in the Rule Editor that uses one or more type-restricted elements, you
can view and select from lists of values that obey the constraints defined in the
associated type restrictions. A type restriction acts as an aid to the Inline Service
designer. It does not get evaluated at run time.

There are three kinds of type restriction:

■ List of Values

■ List of Entities

■ Other Restrictions

List of Values type restrictions appear in a list with one or more values.

List of Entities type restrictions consist of entity attribute values that are returned
from a function. List of Entities type restrictions can be used to generate dynamic lists
of values from database tables and views.

About Type Restrictions

About Decision Studio Elements and APIs 13-63

Other Restrictions consist of either a range of values (for Date, Double, or Integer data
types), or a JavaScript Regular Expression pattern.

JavaScript Regular Expression patterns are generally used for data such as post codes
and telephone numbers, where each character of the data may be subject to a different
real-world constraint, depending on its position in the code. For example, US
telephone numbers, such as (650) 506 7000, and British postal codes, such as KT2 6JX.

13.18.1 Managing Type Restrictions
You create and edit type restrictions as individual Service Metadata objects. You can
then associate type restrictions with the following Inline Service objects in the
corresponding object editor:

■ Session and entity attributes

■ Choice group attributes

■ Choice attributes

■ Function parameters

■ Application parameters

If you include a type-restricted object as an operand in a rule in the Rule Editor, you
can get the following assistance as you create or edit the rule:

■ For objects with List of Values or List of Entities type restrictions, you can view
and select values for the object from dropdown lists that obey the type restriction
constraints

■ For objects whose type restrictions are Other Restrictions, you can move the
mouse (cursor) over the object to see the range constraint or the JavaScript Regular
Expression of the type restriction

This rest of this section consists of the following topics:

■ Section 13.18.1.1, "Creating and Editing "List of Values" Type Restrictions"

■ Section 13.18.1.2, "Creating and Editing "List of Entities" Type Restrictions"

■ Section 13.18.1.3, "Creating and Editing Other Restrictions"

■ Section 13.18.1.4, "Associating Type Restrictions with Inline Service Objects"

■ Section 13.18.1.5, "Using Type Restrictions in Rules"

■ Section 13.18.1.6, "Examples of Type Restrictions"

13.18.1.1 Creating and Editing "List of Values" Type Restrictions
For a List of Values type restriction, you must select a data type, then provide one or
more values for individual elements.

You can define List of Values type restrictions for String, Integer, Double, or Date data.

13.18.1.2 Creating and Editing "List of Entities" Type Restrictions
In order to define a List of Entities type restriction, you must first fulfill certain
prerequisites:

■ You must have defined a function that returns data of a certain entity type

■ The referenced entity type must contain at least two columns, that will serve as the
"label" and "value" of the type restriction.

About Type Restrictions

13-64 Oracle Real-Time Decisions Platform Developer's Guide

The "label" and "value" columns are used in the Rule Editor when you edit a rule
statement, and you select an attribute or parameter to which you have attached a
type restriction.

The "label" column holds the dropdown list data. When you select from the
dropdown list, the corresponding data in the "value" column is placed in the rule.

For example, a type restriction on US state codes may enable a rule creator to
select a state name from a dropdown list of US state names - such as Alabama, or
California, and so on. The "state name" column is the "label" column.

After the rule creator selects a state name from the dropdown list, Oracle RTD
places the corresponding state code - such as AL, or CA - into the rule. The "state
code" column is the "value" column.

List of Entities type restrictions are defined with the following characteristics:

■ Entity: The entity for which you want to define a type restriction.

■ Function: The function that returns restricted data. The Return value for this
function must specify the type restriction entity as its Data Type.

■ Label: The attribute of the type restriction entity that holds the dropdown list
values when rules are created that reference objects with this type restriction.

■ Value: The attribute of the type restriction entity that holds the values
returned into rules when users select dropdown Label list values in the Rule
Editor.

You can define List of Entities type restrictions for String, Integer, Double, or Date
data.

13.18.1.3 Creating and Editing Other Restrictions
With Other Restrictions, you can define range constraints or JavaScript Regular
Expression patterns or a combination of both.

You can define range constraints on data whose type is Integer, Double, or Date. You
can specify lower and upper limits, and whether the limit value is included or not. For
example, a "greater than" condition does not include the minimum value, whereas a
"greater than or equal" condition does.

A JavaScript Regular Expression pattern uses standard Regular Expression pattern
characters, such as {,}, [,], $,?,\, and so on, to define a data format or pattern. You can
specify JavaScript Regular Expression patterns for String, Integer, Double, or Date
data.

As an example, consider Canadian post codes, such as L5J 2V4 or V6Z 1M5. The
JavaScript Regular Expression pattern that constrains these data values to the desired
format is [A-Z]\d[A-Z] \d[A-Z]\d.

For Integer, Double, or Date data, you can define both a range constraint and a
JavaScript Regular Expression pattern. When the type restriction is used, the two
conditions are combined using the logical AND operation.

Note: After you have created or edited a List of Entities type
restriction, you must deploy the Inline Service. This is to enable
correct values to appear in dropdown lists when you create rules
involving the type-restricted attribute or parameter.

About Type Restrictions

About Decision Studio Elements and APIs 13-65

13.18.1.4 Associating Type Restrictions with Inline Service Objects
After you have created a Type Restriction, you can associate it with one or more of the
following Inline Service objects in the corresponding object editor:

■ Session and entity attributes

■ Choice group attributes

■ Choice attributes

■ Function parameters

■ Application parameters

For more information about using the appropriate object editors, see the
corresponding object-related sections in this documentation.

13.18.1.5 Using Type Restrictions in Rules
Associating a Type Restriction with an object helps business users formulate rules for
that object in the Rule Editor.

When you create or edit a rule, you have the following options:

■ If you select a List of Values or List of Entities type-restricted object as an operand,
a dropdown list of values becomes available for the other rule operand. You may
select a value from this dropdown list, but you do not have to.

■ If you select an Other Restrictions type-restricted object as an operand, and mouse
hover over the operand, the range constraint or the JavaScript Regular Expression
for the type restriction appears in the hover help.

In general:

■ List of Values type restrictions present constant lists

■ List of Entities type restrictions present dynamic run time lists

■ Other Restrictions enable design type validation other than checking against list
entries

Any violation of a type restriction constraint is treated as a warning rather than an
error, as follows:

■ The violating operand is underlined with a red wiggly line

■ When you mouse hover over the offending operand, you get detailed information
about the violation

The rule can still be compiled and deployed with warnings.

13.18.1.6 Examples of Type Restrictions
This section shows examples of how to create and use various type restrictions.

1. "List of Values" Type Restriction

Note: Type Restrictions are an aid, not a strict requirement, for
creating or editing rules. For example, you may enter values in rules
for type-restricted elements other than those that appear in the
dropdown lists. At run time, rules are evaluated and acted upon, not
Type Restrictions.

About Type Restrictions

13-66 Oracle Real-Time Decisions Platform Developer's Guide

Create a type restriction called Product_Size, with values "Large", "Medium", and
"Small."

Attach the Product_Size type restriction to the attribute session/Product.

In the Rule Editor, create the filtering rule Large_Product as follows:

■ session/Product = "Large"

2. "List of Entities" Type Restriction

Create an entity New_Province, with String attributes Code and Fullname.

Create a function Fn_New_Provinces, which returns a value of data type New_
Province, with the following Logic:

SDProvinceArray provinces = new SDProvinceArray();
Province nb = new Province();
nb.setCode("NB");
nb.setFullname("New Brunswick");
provinces.add(nb);

Province nf = new Province();
nf.setCode("NF");
nf.setFullname("Newfoundland");
provinces.add(nf);

return provinces;

Create a String type restriction, Province_Restriction, with the following
characteristics:

■ Entity= New_Province

■ Function=Fn_New_Provinces

■ Label=Fullname

■ Value=Code

Deploy the Inline Service. This is to enable correct values to appear in a
subsequent dropdown list of values of the Rule Editor.

Attach Province_Restriction as a type restriction for the entity attribute
session/Address/Province.

In the Rule Editor, create the filtering rule NF as follows:

■ session/Address/Province = "NF"

The dropdown list for Province values shows Fullname values. The selected value,
which is placed in the rule, is a Code.

3. "List of Entities" Type Restriction Showing Dynamic Values

This example enables you to view and select values from a database table when
you use a type-restricted object in a rule.

Create an entity Look Up, with String attributes Statecode and Statename.

Create a data source States DS based on a table States, with columns Abbr and
Fullname.

Create an entity US States Look Up, with the following characteristics:

■ An array attribute lookUp, of type Look Up

■ The attribute lookUp/Statecode mapped to States DS/Abbr

About Statistic Collectors

About Decision Studio Elements and APIs 13-67

■ The attribute lookUp/Statename mapped to States DS/AbbrFullname

Create a function Look Up States, which returns a value of data type Look Up,
with the following Logic:

return new UsStatesLookUp().getLookUp();

Create a String type restriction, States Input, with the following characteristics:

■ Entity= Look Up

■ Function=Look Up States

■ Label=Statename

■ Value=Statecode

Deploy the Inline Service. This is to enable correct values to appear in a
subsequent dropdown list of values of the Rule Editor.

Attach States Input as a type restriction for the entity attribute
session/Address/State.

In the Rule Editor, create the filtering rule ND as follows:

■ session/Address/State = "ND"

The dropdown list for State values shows Statename values. When you select
"North Dakota", the corresponding Statecode value "ND" is placed in the rule.

4. Other Type Restriction Using a Range

Create a Date type restriction called From_Now_On, with a minimum inclusive
lower value of the current date.

Attach the From_Now_On type restriction to the attribute session/Acct/Pay_By.

In the Rule Editor, create the filtering rule PayUp as follows:

■ session/Acct/Pay_By = <current_date> + 45 days

5. Other Type Restriction Using a JavaScript Regular Expression Pattern

Create a Date type restriction called Morning Rush Hour, that restricts values to
times from 8:00 AM to 9:59 AM, with the following JavaScript RegEx pattern:

^(?=\d)(?:(?:(?:(?:(?:0?[13578]|1[02])(\/|-|\.)31)\1|(?:(?:0?[1,3-9]|1[0-2])(\/
|-|\.)(?:29|30)\2))(?:(?:1[6-9]|[2-9]\d)?\d{2})|(?:0?2(\/|-|\.)29\3(?:(?:(?:1[6
-9]|[2-9]\d)?(?:0[48]|[2468][048]|[13579][26])|(?:(?:16|[2468][048]|[3579][26])
00))))|(?:(?:0?[1-9])|(?:1[0-2]))(\/|-|\.)(?:0?[1-9]|1\d|2[0-8])\4(?:(?:1[6-9]|
[2-9]\d)?\d{2}))($|\ (?=\d)))?(((0?[8-9])(:[0-5]\d){0,2}(\
AM))|(0?[8-9])(:[0-5]\d){1,2})?$

Attach the Morning Rush Hour type restriction to the attribute
session/Traffic/Morning Rush Hour.

In the Rule Editor, create the filtering rule Mid_MRH as follows:

■ session/Traffic/Morning Rush Hour = <current_date> 9:00 AM

13.19 About Statistic Collectors
Statistic collectors manage the collection and lifecycle of ad hoc Inline Service statistics.
A Choice Event Statistics Collector is created by default for each Inline Service. Choice
Event Statistics Collectors automatically collect statistics for the events defined by your
Inline Service. Statistics collectors have the following properties:

About Decision Center Perspectives

13-68 Oracle Real-Time Decisions Platform Developer's Guide

■ Description: The description of the statistics collector.

■ Collect Statistics On: Statistics can be collected either for each object, such as
Choice or Choice Group, individually, or aggregated for all objects of the same
type.

■ Aggregation: Either record individual events, or record aggregated data. Care
should be used in recording individual events, as high transactional systems may
suffer from performance issues.

■ Aggregation Interval: Amount of time in seconds to aggregate data before
recording it through the Statistic Collector.

■ Expiration: Choose either Keep forever or Purge old statistics. Care should be
used in choosing Keep forever, as data size can be an issue.

■ Keep in database for: Amount of time in days that data is kept before purging.

All parameters are configurable through the Decision Studio editor. Choice Event
Statistics are displayed as a report in Decision Center.

13.19.1 Creating a Custom Statistics Collector
Using Decision Studio, you can create a custom Statistics Collector to record additional
statistics about objects or classes. For instance, you can create a statistics collector to
record statistics about Choices. Configure the parameters as described in the previous
section.

In code in your Inline Service (for instance, in an Informant or through a Function
Call), create a Statistics Collector Factory, passing in the Statistics Collector Name
(String) or the statistic type (String):

StatisticCollectorFactory factory = Application.getCollectorFactory(<stat
collector name | statistic type>);

Using the factory, create a collector, passing in the event name on which you want to
collect statistics (String) or the statistic name (String):

StatCollectorInterface collector = factory.getCollector(<event name | statistic
name>);

The event name or statistic name is an arbitrary string that represents what you want
to collect.

Then, finally, using the collector, record the event passing in the object_type (String),
object_id (String), event value (double), and extra data (string) to record:

Collector.recordEvent(<object_type>, <object_id>, event value, extra data);

The object_type must be a valid Object type, such as Choice, Choice Group, Entity, and
so on. The object_id is the internal name of the object.

13.20 About Decision Center Perspectives
Like Decision Studio, Decision Center lets you work with an Inline Service from
several perspectives. A perspective defines the initial layout in Decision Center. Each
perspective provides a set of functionality aimed at accomplishing a specific type of
task, and works with specific types of resources. Perspectives control what appears in
certain menus and toolbars.

About Decision Center Perspectives

About Decision Studio Elements and APIs 13-69

Decision Center has three default perspectives: Explore, Design, and At a Glance. The
Inline Service Navigator changes according to the perspective you are using. Your
system administrator may have added additional perspectives.

You can control access to Decision Center perspectives by assigning permissions to
roles. See Oracle Real-Time Decisions Installation and Administration Guide for
information about managing roles.

To assign permissions for perspectives, go to the Inline Service Navigator in Decision
Studio and right-click the perspective for which you want to set access. Choose
Properties, then click Add. Select the role to which you want to assign permissions,
then select Use perspective under Permissions. Click OK to finish.

About Decision Center Perspectives

13-70 Oracle Real-Time Decisions Platform Developer's Guide

14

Deploying, Testing, and Debugging Inline Services 14-1

14Deploying, Testing, and Debugging Inline
Services

This chapter describes how to deploy, test, and debug Inline Services.

This chapter contains the following topics:

■ Section 14.1, "Deploying Inline Services"

■ Section 14.2, "Connecting to Real-Time Decision Server"

■ Section 14.3, "Redeploying Inline Services"

■ Section 14.4, "Testing and Debugging Inline Services"

14.1 Deploying Inline Services
After you have configured your Inline Service, you deploy it locally or to a test
environment for testing. You can deploy an Inline Service in three different states:
Development, QA, and Production.

You can deploy in the QA state during your testing cycle, and then, after testing, into
Production state. When you deploy to Production state, select Release Inline Service
locks. After the Inline Service is deployed to business users, they can also update and
redeploy the Inline Service.

Deploy the Inline Service using the Project > Deploy menu item, or click the Deploy
icon on the task bar:

The Deploy dialog box appears. The options in the Deploy dialog box are shown in
Figure 14–1.

Note: Inline Services can be deployed both through Decision Studio
and through a command line deployment tool.

This section describes deployment from Decision Studio. For
information about command line deployment, see the chapter
"Command Line Deployment of Inline Services" in Oracle Real-Time
Decisions Installation and Administration Guide

Deploying Inline Services

14-2 Oracle Real-Time Decisions Platform Developer's Guide

Figure 14–1 Deploy Dialog Box

Table 14–1 describes the options shown in the Deploy dialog box.

Note: You must have the proper permissions on the server cluster to
deploy an Inline Service. See Oracle Real-Time Decisions Installation and
Administration Guide for more information about cluster permissions.

Table 14–1 Options in the Deploy Dialog Box

Option Name Description

Project Choose the project that you will deploy to Real-Time Decision
Server.

Inline Service The Inline Service contained in this project.

Study Name Enter a study name for this Inline Service. Each Inline Service's
learnings are associated with a study name. If you want to
redeploy an Inline service and restart its learnings, deploy it
with a new study name. Different study names can be used for
Development, QA, and Production.

Deployment State The default deployment states of Inline Services are
Development, QA, or Production. Deployment state marks an
Inline Service that is in development, testing, or production so
that others are aware of its state.

Your system administrator may have created custom
deployment states.

Server Click this option to enter the server and port to which you want
to deploy. In the Server dialog box, provide a valid username
and password that has deployment authorization on the server
cluster to which you are deploying. Cluster authorization is
granted through JConsole by your administrator.

Release Inline Service lock A deployed Inline Service is automatically locked, and only the
user who deployed it is able to redeploy the Inline Service. Once
you have completed development and testing and are
deploying the Inline Service for production, select Release
Inline Service lock to allow Decision Center users to make
changes and redeploy the Inline Service.

Connecting to Real-Time Decision Server

Deploying, Testing, and Debugging Inline Services 14-3

14.2 Connecting to Real-Time Decision Server
When deploying or downloading Inline Services or importing data sources, you
connect to Real-Time Decision Server. To connect, use the username and password you
created on installation, or consult your Administrator for your username and
password. To connect in a secure manner using https, select Secure connection.

Figure 14–2 shows the Connect to a Server dialog box.

Figure 14–2 Connect to a Server Dialog Box

Terminate Active Sessions If the Inline Service you are deploying is in production, there
may be active sessions. If a new version of the Inline service is
deployed while there are active sessions, the older version will
be maintained to service those sessions. Select Terminate Active
Sessions to terminate the active sessions if you are in testing.
For a production Inline Service, keep this option deselected so
that any active sessions will continue to run on the production
version of the Inline Service. New sessions will be routed to the
new version, and the old version will terminate when all active
sessions have completed.

Do not activate after
deployment

Use this option to deploy the Inline Service to the server, but not
start the process. If you would like to activate the Inline Service
at a later date, use JConsole. For more information about
JConsole, see Oracle Real-Time Decisions Installation and
Administration Guide.

Note: After an Inline Service with custom pages is deployed to a
certain deployment state, for example Development, the list of custom
pages for this state will override the list of custom pages for the same
Inline Service previously deployed to any deployment state.

Table 14–1 (Cont.) Options in the Deploy Dialog Box

Option Name Description

Redeploying Inline Services

14-4 Oracle Real-Time Decisions Platform Developer's Guide

14.3 Redeploying Inline Services
If you are going to make changes to a deployed Inline Service, it is important to follow
these practices in order to preserve both your changes and the potential changes that
have been made by the business user. If you are making changes to a deployed Inline
Service, you can download it from Real-Time Decision Server using the Download
icon on the toolbar. Use the following method:

1. Make sure that no business users are editing the deployed Inline Service.

2. Always lock an Inline Service when you download it, so that additional changes
cannot be made by business users while you are enhancing it.

3. Make enhancements in Decision Studio.

4. Redeploy the Inline Service, releasing the locks.

During the period that you have the Inline Service locked, business users will be able
to view, but not edit, the deployed Inline Service.

14.4 Testing and Debugging Inline Services
To enable you to test and debug Inline Services, Oracle RTD provides the following
facilities and features:

■ Problems and Test Views in Decision Studio

■ System Logs

■ Load Generator

This section contains the following topics:

■ Section 14.4.1, "About the Problems View"

■ Section 14.4.2, "Using the Test View"

■ Section 14.4.3, "Using System Logs for Testing and Debugging Inline Services"

Load Generator is a tool used for debugging and benchmarking Inline Services by
simulating users. Load Generator is used both for testing the Inline Service, and for
performance characterization.

For more information about Load Generator, see Chapter 15, "About the Load
Generator."

14.4.1 About the Problems View
The Problems view identifies compilation errors and validation errors as the Inline
service is built. Double-click a compilation error to display the Java perspective with
the error highlighted.

Double-click a validation error to display the Inline Service perspective with the
element editor for the element that has validation errors.

Note: While you must use Decision Studio for Inline Service
enhancement, you can redeploy the Inline Service either in Decision
Studio or by using a command line deployment tool. For more
information, see the chapter "Command Line Deployment of Inline
Services" in Oracle Real-Time Decisions Installation and Administration
Guide

Testing and Debugging Inline Services

Deploying, Testing, and Debugging Inline Services 14-5

14.4.2 Using the Test View
Decision Studio includes a Test view where you can test individual Integration Points.
The Test view allows you to simulate the operational systems that will call the
Integration Points. The Test view has a drop-down list of all Integration Points in the
Inline Service. To test the Integration Point, insert values for the session key and
request data and click the run icon to run. Three subtabs provide information about
the Integration Point: Results, Trace, and Log.

The Results tab shows the results of calling an Advisor Integration Point. Only
Advisors return results. For testing Informants and for debugging both kinds of
Integration Points, use logInfo().

You can use the statement logInfo() at various points in your code as a debugging
device. This statement is helpful to use in elements such as Advisors or Informants,
Decisions, functions, and so on. Insert the statement into the logic pane of the element
and use it as a device to display in the log data at different stages.

This section contains the following topics:

■ Section 14.4.2.1, "Using logInfo()"

■ Section 14.4.2.2, "Testing for Incoming Request Data"

14.4.2.1 Using logInfo()
The Log tab gives a view of all logInfo() statements.

The logInfo method is part of the logging API described in the Decision Studio
online help. The class com.sigmadynamics.supportClass SDOBase contains
methods for logging messages at the informational, debug, warning, and error levels.
These logging methods generally accept a string and another argument as parameters.

Two examples of using logInfo are as follows:

logInfo("Installation date = " + DateUtil.toString(session().getCustomer().
getInstallationDate());

logInfo("Customer age = " + session().getCustomer().getAge());

14.4.2.2 Testing for Incoming Request Data
When testing an Integration Point, you can check for the incoming request data using
the following methods. If the incoming parameter is mapped to a session attribute,
there is a get method for the parameter:

request.get$()

where $ is the parameter name with the first letter capitalized.

If the attribute is not mapped, there are methods to achieve the same results using the
field name of the parameter:

String request.getStringValue(fieldName)
SDStringArray request.getStringArrayValue(fieldName)
boolean request.isArgPresent(fieldName)

Outgoing response data is always stored in a SDChoiceArray:

Note: For information on how to output to the Oracle RTD log the
value of all session entity attributes or of a specified entity and its
attributes, see Section 13.5.21, "Enhanced Entity Attribute Logging."

Testing and Debugging Inline Services

14-6 Oracle Real-Time Decisions Platform Developer's Guide

SDChoiceArray choices = null;

The Decision is executed by the Integration Point, and the Choice is stored:

if (session().isControlGroup()) {
choices = RandomChoice.execute();

} else {
choices = SelectOffer.execute();

}

To find out what the Choice is, you can get them from the array and use getSDOId or
getSDOLabel.

if (choices.size() > 0) {
Choice ch = choices.get(0);
ch.getSDOId();

}

The best place to do this is in the Post Selection Logic of the Decision. After the
Decision executes, the post selection logic will run.

14.4.3 Using System Logs for Testing and Debugging Inline Services
You can use system logs to help you test and debug Inline Services, and also for
performance monitoring and tuning.

The main Oracle RTD system log file is at the following location:

■ RTD_RUNTIME_HOME\log\rtd_server.log

For more information, see Appendix A, "System Log and Configuration Files" in Oracle
Real-Time Decisions Installation and Administration Guide.

15

About the Load Generator 15-1

15About the Load Generator

This chapter describes Load Generator, which is a tool used for debugging and
benchmarking Inline Services by simulating decision requests. Load Generator is used
both for testing Inline Services, and for performance characterization.

You can access Load Generator by opening RTD_HOME\scripts\loadgen.cmd. For
a sample Load Generator script, see the etc directory of the Cross Sell example.

Load Generator has four tabs:

■ Run: Runs a load generator session and provides feedback on the performance
through measurement and graphs.

■ General: Sets the general settings for Load Generator's operation, including the
rate at which data is sent to the server and the location of the client configuration
file.

■ Variables: Used to create script, message, and access variables.

■ Edit Script: Used to set up the script that specifies the Integration Point requests to
be sent to the server.

This section contains the following topics:

■ Section 15.1, "Using Load Generator for Testing"

■ Section 15.2, "Using Load Generator for Performance Characterization"

■ Section 15.3, "Running a Load Generator Session"

■ Section 15.4, "Viewing Performance Graphs"

■ Section 15.5, "About the General Tab"

■ Section 15.6, "About Variables"

■ Section 15.7, "About Actions"

■ Section 15.8, "Load Generator CSV Log File Contents"

■ Section 15.9, "XLS File Contents"

15.1 Using Load Generator for Testing
Load Generator is used to generate load on the server to test it for performance and
scalability. Intelligently random messages are sent to the Inline Service, allowing the
models to learn. The capability of your models can be gauged after running Load
Generator for a sufficient period of time.

Using Load Generator for Performance Characterization

15-2 Oracle Real-Time Decisions Platform Developer's Guide

15.2 Using Load Generator for Performance Characterization
Once an Inline Service is configured, Load Generator is used to evaluate how the
service performs under load in order to assess how many servers are needed for
specific loads. When you want to stress the server, typically one instance of Load
Generator running on one client machine is sufficient, because Load Generator can
engage many threads of execution to run multiple scripts concurrently. If additional
load is desired and Microsoft Task Manager shows that Load Generator is already
consuming the majority of the client's processing power, then several instances of Load
Generator can be started on several client computers and pointed to one server. They
send messages with some intelligently random generated messages in the context of
sessions. The clients measure performance statistics, as well as the server.

15.3 Running a Load Generator Session
To start a session, first create a new script, or load an existing one. Then, select the Run
option from the Run menu, or click the Run icon on the toolbar. You can alter the
delay between data samples on the General tab.

15.3.1 Measuring the Server Load
The Run tab displays real-time information about the session running. Table 15–1
describes the options on the Run tab.

15.4 Viewing Performance Graphs
By default, the Requests per Second graph is visible. You can hide and show graphs
by selecting View > Graphs. To clear the data in the graphs, select View > Clear
Graphs, or click the Clear Graphs icon on the toolbar:

Table 15–1 Options on the Load Generator Run Tab

Option Name Description

New Requests The number of requests that have been closed since the previous
data sample was taken.

New Errors The number of errors, either client or server side, that have
occurred since the previous data sample was recorded.

New Default Responses The number of errors since the last data sample, that occurred
for Advisor Integration Point requests (as opposed to Informant
Integration Point requests) and a default response was defined
by the Inline Service for the Advisor.

Active Scripts Number of simulated users currently connected to the server
from this load generator.

Peak Response Time The length of time it took to close the oldest request during the
current data sample.

Total Requests The total number of requests that have been closed.

Total Errors The total number of errors.

Total Default Responses The total number of default responses.

Total Finished Scripts The total number of simulated users.

Average Script Duration The length in milliseconds of an average script's execution, from
start to finish.

About the General Tab

About the Load Generator 15-3

If you stop a script and restart it, all recorded data will be cleared. However, if you
pause a session and then start it again, the data will not be cleared. The following
graphs are available:

■ Average Response Time: A histogram depicting the 40 most recent average
response times.

■ Errors: A line graph depicting the number of errors that occurred within the most
recent 12,000 data samples.

■ Peak Response Time: A line graph depicting the peak response time, in
milliseconds, that occurred within each of the most recent 12,000 data samples.

■ Requests Per Second: A line graph depicting the average number of requests per
second that occurred within each of the most recent 12,000 data samples.

■ Requests Per Second distribution: A histogram depicting the 40 most recent
readings for requests per second.

15.5 About the General Tab
The General tab contains variables about Load Generator's configuration, timing, and
which Inline Service is being specified. The General tab has five sections: Load
Generator, Details, Think Time, Scripts, and Logging.

This section contains the following topics:

■ Section 15.5.1, "Load Generator Section"

■ Section 15.5.2, "Details Section"

■ Section 15.5.3, "Think Time Section"

■ Section 15.5.4, "Scripts Section"

■ Section 15.5.5, "Logging Section"

15.5.1 Load Generator Section
The Load Generator section of the General tab contains the following options:

■ Client Configuration: Describes which endpoints Load Generator should use to
contact the server.

■ Graphs Refresh Interval in Seconds: Sets the delay between graph and counter
updates. Click Apply for settings to take effect while a script is already running.

15.5.2 Details Section
The Details section of the General tab contains the following options:

■ Inline Service: The name of the Inline Service to which this script will send
requests.

■ Random Number Generator Seed: If your script has any random elements in it,
this gives you the ability to reproduce, to some extent, the random behavior.
Repeatable randomness is not possible when running more than one concurrent
script (see Number of Concurrent Scripts to Run in Section 15.5.4, "Scripts
Section").

About Variables

15-4 Oracle Real-Time Decisions Platform Developer's Guide

15.5.3 Think Time Section
The Think Time section of the General tab contains the following options:

■ Fixed Global Think Time: The number of seconds that all simulated users will
wait between requests.

■ Ranged Global Think Time: A variable time that simulated users wait between
requests. The think time changes by either a random number, or a sequentially
increasing number from a set number range.

■ Minimum: A nonzero number of seconds to wait at a minimum.

■ Maximum: A nonzero number of seconds to wait at a maximum (must be greater
than minimum).

■ Access Type Sequential: At each access, increase the think time by one until you
reach the maximum, when it will reset to the minimum.

■ Access Type Random: At each access, choose a value between minimum and
maximum, inclusive of each.

15.5.4 Scripts Section
The Scripts section of the General tab contains the following options:

■ Number of Concurrent Scripts to Run: The number of simultaneous users to
simulate.

■ Maximum Number of Scripts to Run: A positive number in this field causes Load
Generator to stop running after that number of sessions have completed. Zero
means unlimited.

15.5.5 Logging Section
The Logging section of the General tab contains the following options:

■ Enable Logging: When this option is selected, Load Generator statistics data is
periodically written to a file.

■ Append to Existing File: When this option is selected, and logging is enabled,
Load Generator will append new statistics data onto the end of an existing log file,
if any, or else it will create a new file.

■ Log File: The full path to the log file, a tab-separated file whose contents are
described in Section 15.8, "Load Generator CSV Log File Contents."

■ Logging Interval in Seconds: The number of seconds to wait after appending
values onto the log file before writing the next set of values.

15.6 About Variables
Variables allow a load simulation to draw its input from many different sources.
Session variables are generated once per session. Subsequent accesses to a session
variable use the same value. Message variables are held constant for a single request.
Access variables may vary every time they are read. Variables are used in Message
Actions.

This section contains the following topics:

■ Section 15.6.1, "Using Variables"

■ Section 15.6.2, "Variable Types"

About Actions

About the Load Generator 15-5

15.6.1 Using Variables
To use a variable in a message (in the Edit Script tab) for a value to a message
parameter, select it from the drop-down list in the Variable column. However, to use it
as part of an concatenated string in the Value column, surround the variable name
with braces (for example, C001-{customerNum}).

15.6.2 Variable Types
There are five types of variables:

■ Constant Value: A constant value.

■ Integer Range: Select an integer from a range. For example:

Minimum: 0, Maximum: 50000, Access Type: Random
Minimum: 0, Maximum: 1, Access Type: Sequential

■ String Array: Select a string from the specified array. For example:

List: [A, B, C], Access Type: Random
List: [Male, Female], Access Type: Sequential

■ Weighted String Array: Select from the specified array a string with some
likelihood [0,1]. For example:

List: [[0.3, Interested], [0.3, Accepted], [0.4, Rejected]]
List: [[0.999, Interested], [0.001, Accepted]]

■ Text File: Select a line of text from a file. For example:

c:/data.txt, Access Type: Sequential

This example shows an absolute reference to a file on the C: drive.

inbox/data.txt, Access Type: Random

This example shows a relative reference to a file in the inbox directory, under the
directory containing the script file.

15.7 About Actions
In order to easily simulate multiple clients supplying realistic loads to the server,
messages can be generated from patterns specified in metadata that are interpreted by
Load Generator at run time. These patterns of actions are defined in the Edit Script tab.

The patterns specify message sequences, with fixed or random inter-message delays
(think times), as well as patterns for generating values for message fields. Message
field values can be literal strings, with optional embedded random characters, or they
can be randomly selected from a set of values associated with the field.

Sessions are supported, allowing certain fields to remain constant across messages of
the session, suitable for representing session keys (for example, a customer ID, call ID,
or account number).

The patterns allow some flexibility in the sequencing of messages. For example, in a
typical session, certain messages will come before others, or a predetermined number
of messages of certain kind need to happen, and so on.

Load Generator CSV Log File Contents

15-6 Oracle Real-Time Decisions Platform Developer's Guide

15.7.1 Types of Actions
There are two types of actions: Message and Loop.

Message has the following attributes:

■ Integration Point name: The name of the Integration Point that will be sent the
message.

■ Session Keys and values: The values sent to the Integration Point request. Session
keys have to be separated from other message fields because the server uses them
for routing.

Loop has one attribute, Number of times to execute. This attribute can be a constant
value, or a range value. A range value executes either sequentially, or randomly within
the range.

15.8 Load Generator CSV Log File Contents
Table 15–2 describes the fields of the comma-separated value (CSV) file containing
Load Generator statistics.

Table 15–2 Load Generator CSV File Fields

Field Name Description

Date/Time The time of day at which the current row of counters was
appended to the file. Millisecond precision is available to
facilitate correlations with messages in the server's log file.

Thread Pool Size The number of threads engaged or available to run scripts. This
is an implementation detail of little to interest to most people.

New Requests The number of requests that have been closed since the previous
data sample was taken.

Total Requests The total number of requests that have been closed.

New Errors The number of errors, either client or server side, that have
occurred since the previous data sample was recorded.

Total Errors The total number of errors.

New Default Responses The number of errors since the last data sample, that occurred
for Advisor Integration Point requests (as opposed to Informant
Integration Point requests) and a default response was defined
by the Inline Service for the Advisor.

Total Default Responses The total number of default responses.

Active Scripts Number of simulated users currently connected to the server
from this Load Generator.

Total Scripts The total number of simulated users.

Average Response Time
(ms)

The average length of time it took to close the oldest request
during the current data sample.

Max Response Time (ms) The maximum length of time it took to close the oldest request
during the current data sample.

Average Script Duration
(ms)

The length in milliseconds of an average script's execution, from
start to finish.

Snapshot Period (ms) The number of milliseconds during which the current counter
values were accumulated.

XLS File Contents

About the Load Generator 15-7

15.9 XLS File Contents
This section describes the contents of the Microsoft Excel file, lg_perf.xls, included
in the etc directory of the installation for the purpose of rendering the Load
Generator counters written to log/loadgen.csv.

At the top, cell A1 contains a comment describing how to link lg_perf.xls to the
tab-separated counter file as a datasource, as follows:

"To specify the path to the Load Generator performance log, place cursor the in cell A2
and select "Import External Data" > "Edit Text Import" from the "Data" menu, and
navigate to the path specified in your loadgen configuration, typically {$install_
directory}\log\loadgen.csv. Use default parsing settings when prompted. Data will
then be automatically refreshed every 3 minutes. To change interval and other settings,
select from the "Data" menu the selection "Import External Data" > "Data Range
Properties"."

In row 2 are the headers containing the names of each counter. All of the headers from
the CSV file, described above, appear here, with values below them.

XLS File Contents

15-8 Oracle Real-Time Decisions Platform Developer's Guide

Part IV
Part IV Miscellaneous Application Development

The chapters in Part IV provide an in-depth look at the concepts, components, and
processes involved in Oracle RTD application development that require special
processing, such as batch framework and external editors that enable modification of
Oracle RTD application objects.

Part IV contains the following chapters:

■ Chapter 16, "Oracle RTD Batch Framework"

■ Chapter 17, "Externalized Objects Management"

16

Oracle RTD Batch Framework 16-1

16 Oracle RTD Batch Framework

Oracle RTD Batch Framework is a set of components that can be used to provide batch
facilities in an Inline Service. This enables the Inline Service to be used not just for
processing interactive Integration Point requests, but also for running a batch of
operations of any kind. This chapter describes the batch framework architecture, as
well as how to implement and administer batch jobs.

Typically, a batch will read a set of input rows from a database table, flat file, or
spreadsheet, process each input row in turn, and optionally write one or more rows to
an output table for each input row.

The following examples describe in outline form how you can use Oracle RTD batch
processing facilities in a non-interactive setting:

■ Create a "learning" batch to train models to learn from historical data about the
effectiveness of offers previously presented to customers.

■ Create an "offer selection" batch which starts with a set of customers, and selects
the best product to offer to each customer.

■ Create a "customer selection" batch which starts with a single product, and selects
the best customers to whom to offer the product.

■ Create a batch set of e-mails where Oracle RTD selects the right content for the
e-mails

Within an Inline Service, the Inline Service developer defines one or more Java classes
implementing the BatchJob interface, with one BatchJob for each named batch that
the Inline Service wishes to support. In the Inline Service, each of the BatchJob
implementations is registered with the Oracle RTD Batch framework, making the job
types available to be started by an external batch administration application.

External applications may start, stop, and query the status of registered batch jobs
through a BatchAdminClient class provided by the Batch Framework. The Batch
Console, released with Oracle RTD, is a command-line utility that enables you to
perform these batch-related administrative tasks.

Batch Framework Architecture

16-2 Oracle Real-Time Decisions Platform Developer's Guide

The topics in this section are the following:

■ Section 16.1, "Batch Framework Architecture"

■ Section 16.2, "Implementing Batch Jobs"

■ Section 16.3, "Administering Batch Jobs"

16.1 Batch Framework Architecture
This section presents an overview of the components of the batch framework
architecture and shows how batch facilities can be used across cluster servers.

16.1.1 Batch Framework Components
The following diagram shows the components of the batch framework architecture on
a single Oracle RTD instance.

Note: The following terms are referenced throughout the Oracle RTD
documentation:

■ RTD_HOME: This is the directory into which Oracle RTD is
installed. For example, C:\OracleBI\RTD.

■ RTD_RUNTIME_HOME: This is the application server specific
directory in which the application server runs Oracle RTD.

For more information, see the Section "About the Oracle RTD
Run-Time Environment" in Oracle Real-Time Decisions Installation and
Administration Guide.

Batch Framework Architecture

Oracle RTD Batch Framework 16-3

The main batch framework components and their functions are:

■ Batch Admin Client

The Batch Admin Client provides a set of Java APIs that can be used by Java client
applications to manage batches registered on remote Real-Time Decision Servers.
This includes starting and stopping batches, and obtaining batch status
information.

Customers may create their own batch client application using the APIs provided
in the Batch Admin Client.

The Batch Console is a client side command line utility that manages batches
registered on remote Real-Time Decision Servers. Internally, the Batch Console
uses the APIs provided by the Batch Admin Client.

■ Batch Manager

This is a cluster-wide singleton service, that executes client batch commands from
client code from the Batch Admin Client.

The Batch Manager manages each Batch Agent in the cluster.

The Batch Manager also executes commands from the Batch Console.

■ Batch Agent

The batch agent is the interface between a batch job and the batch framework. It is
a service that registers batches with the Batch Manager when the batch-enabled

Implementing Batch Jobs

16-4 Oracle Real-Time Decisions Platform Developer's Guide

Inline Service is deployed, and executes batch commands on behalf of the Batch
Manager.

In a clustered environment, all the batch framework components appear in each
Oracle RTD instance. However, the Batch Manager is only active in one of the
instances, and that active Batch Manager controls all the Batch Admin Client and
Batch Agent requests in the cluster.

16.1.2 Use of Batch Framework in a Clustered Environment
The following diagram illustrates an example of the use of the batch framework in a
clustered environment.

A batch client application, such as the Batch Console, communicates with the Batch
Manager, by invoking batch management commands, such as to start, stop, or pause a
job.

Developers using Decision Studio can create and deploy Inline Services with batches
to any instance where Oracle RTD is installed, such as that on Cluster server 2.

The diagram shows the Batch Agent on the Cluster server 2 instance registering
batches with the Batch Manager.

The Batch Manager can then run batch jobs on any instance, such as that on Cluster
server 3, so long as they were previously registered.

16.2 Implementing Batch Jobs
This section presents an overview of the runtime object model required to implement
batches.

In order for an Inline Service to be batch-enabled, it must contain one or more batch
job Java classes implementing the BatchJob interface, and register them with the
batch framework.

Note: In a clustered environment, Inline Services are deployed to all
servers running the Decision Service.

Implementing Batch Jobs

Oracle RTD Batch Framework 16-5

This section consists of the following topics:

■ Section 16.1.1, "Batch Framework Components"

■ Section 16.1.2, "Use of Batch Framework in a Clustered Environment"

16.2.1 Implementing the BatchJob Interface
You start the implementation of a batch job in Decision Studio by creating a Java class
that implements the BatchJob interface.

First, you create Java packages and classes under the src branch of the Inline Service.

The following image shows the "batch processing" Java class OfferSelectJob.java
declared in the package crosssell.batch:

The easiest way to create the Java classes is to subclass from BatchJobBase, provided
with the batch framework.

The principal methods of a batch job are called in the following sequence when the job
is started:

1. init()

Called once by the framework before starting the batch's processing loop.

2. getNextInput()

Returns the next input row to be processed by the batch.

3. executeRow()

The BatchJob implements this method to process the input row that was returned
by getNextInput. Generally, this is called in a different thread from
getNextInput.

4. flushOutputs()

Called by the framework to allow the BatchJob to flush its output table buffers.

5. cleanup()

Called by the framework after the batch is finished or is being stopped. Cleans up
any resources allocated by the batch job, such as the result set created by its
init() method.

For full details of the methods of the BatchJob interface, see the following Javadoc
entry:

Note: The examples that appear in this section reference the
CrossSell Inline Service released with Oracle RTD, which contains the
batch job CrossSellSelectOffers.

Implementing Batch Jobs

16-6 Oracle Real-Time Decisions Platform Developer's Guide

RTD_HOME\client\Batch\javadocs\com\sigmadynamics\batch\BatchJob.html

Batch Job Example
An example of a batch job, OfferSelectJob.java, appears in the CrossSell Inline
Service released with Oracle RTD. This batch job selects the best offer for a set of
customers, and saves the offers to a table.

16.2.2 Registering Batch Jobs with the Batch Framework
This section describes how to register the batch jobs with the Oracle RTD batch
framework. You must register the Java classes that contain the batch jobs as imported
Java classes, then you must explicitly register the batch jobs with the batch framework
using the batchAgent.registerBatch method.

This section consists of the following topics:

■ Section 16.2.2.1, "BatchAgent"

■ Section 16.2.2.2, "Registering the Imported Java Classes in the Inline Service"

■ Section 16.2.2.3, "Registering the Batch Jobs in the Inline Service"

16.2.2.1 BatchAgent
In a batch job, the batch agent is the interface between a batch job and the batch
framework. You need to register the batch job with the batch framework.

An inline service can locate its batch agent through a getter in its Application object.
For example, in a context where the Inline Service has access to a session, you can use
the following command to access the BatchAgent:

■ BatchAgent batchAgent = session().getApp().getBatchAgent();

16.2.2.2 Registering the Imported Java Classes in the Inline Service
You must register the Java classes in the Inline Service, as follows:

1. Click the Application object's Advanced button.

2. In the Imported Java Classes pane, enter one line for each batch job class in the
Inline Service, of the form:

<package>.<class>

For example:

crosssell.batch.OfferSelectJob

16.2.2.3 Registering the Batch Jobs in the Inline Service
An inline service must register its BatchJob implementations in the Logic tab of the
Application, in the Initialization Logic pane, using the
batchAgent.registerBatch API.

The Inline Service can locate its batch agent - its interface to the Batch Framework -
through a getter in its Application object. Enter a line such as the following:

BatchAgent batchAgent = getBatchAgent();

followed by an invocation of batchAgent.registerBatch for each batch job in the
Inline Service.

Administering Batch Jobs

Oracle RTD Batch Framework 16-7

For full details of the parameters for batchAgent.registerBatch, see the
following Javadoc entry:

RTD_HOME\client\Batch\javadocs\com\sigmadynamics\batch\BatchAgent.html

In summary form, the parameters for batchAgent.registerBatch are as follows:

■ batchName: A short name used to register the batch class in the cluster. It should
be unique across the cluster.

■ batchJobClass: The fully qualified name of the batch's BatchJob implementation
class.

■ description: If non-null, a string describing the purpose of the batch.

■ parameterDescriptions: An optional set of properties describing the parameters
supported by the batch.

■ parameterDefaults: An optional set of properties providing the default values for
parameters supported by the batch.

For example, to register the following:

■ The batch CrossSellSelectOffers that uses the class
crosssell.batch.OfferSelectJob

enter the following in the Initialization Logic for the Application:

BatchAgent batchAgent = getBatchAgent();
batchAgent.registerBatch("CrossSellSelectOffers",
 "crosssell.batch.OfferSelectJob",
 OfferSelectJob.description,
 OfferSelectJob.paramDescriptions,
 OfferSelectJob.paramDefaults);

16.3 Administering Batch Jobs
The main way to administer batch jobs is though the command-line Batch Console
utility, for example, to start, stop, and query the statuses of batches.

This utility uses the BatchAdminClient Java interface. The BatchAdminClient
Java interface also provides methods for starting and managing batches for use by
external programs.

This section contains the following topics:

■ Section 16.3.1, "Using the BatchClientAdmin Interface"

■ Section 16.3.2, "Using the Batch Console"

16.3.1 Using the BatchClientAdmin Interface
The BatchAdminClient Java interface provides methods for starting and managing
batches for use by external programs.

Table 16–1 lists the methods for the BatchAdminClient interface.

Table 16–1 BatchAdminClient Methods

Return Type Description

int clearBatchStatuses()

Removes batch status information for all batches that have completed.

Administering Batch Jobs

16-8 Oracle Real-Time Decisions Platform Developer's Guide

int clearBatchStatuses(int numToKeep)

Removes batch status information for the oldest batches that have
completed.

int clearBatchStatuses(java.lang.String batchName)

Removes batch status information for all batches that have completed
and have the specified batch name.

int clearBatchStatuses(java.lang.String batchName, int numToKeep)

Removes batch status information for all batches that have completed
and have the specified batch name.

BatchStatusBrief[] getActiveBatches()

Returns an ordered list, possibly empty, of brief status information for
all batch jobs currently running, paused, or waiting to run.

java.lang.String getBatchDescription(java.lang.String batchName)

Returns a string, possibly empty, describing the purpose of the batch.

java.lang.String[] getBatchNames()

Gets a list of batches registered with the batch framework.

java.util.Properties getBatchParameterDefaults(java.lang.String batchName)

Gets properties containing the default values of the startup parameters
supported by the batch.

java.util.Properties getBatchParameterDescriptions(java.lang.String batchName)

Gets properties describing the parameters supported by the batch.

BatchStatusBrief[] getJobHistory()

Returns an ordered list, possibly empty, of brief status information for
all batch jobs whose status information is still retained by the batch
manager -- those descriptions that have not been discarded by
clearBatchStatuses.

BatchStatusBrief[] getJobHistory(int maxToShow)

Returns an ordered list, possibly empty, of brief status information for
all batch jobs whose status information is still retained by the batch
manager -- those descriptions that have not been discarded by
clearBatchStatuses.

BatchStatus getStatus(java.lang.String batchID)

Returns the status of a batch identified by the batchID that was returned
when it was submitted by a call to startBatch().

void pauseBatch(java.lang.String batchID)

Stops a batch and does not clean up its resources, so it can be resumed.

void restartBatch(java.lang.String batchID)

Restarts a stopped batch.

void resumeBatch(java.lang.String batchID)

Continues a paused batch.

java.lang.String startBatch(java.lang.String batchName)

Starts a batch in the default concurrency group with default start
parameters.

Table 16–1 (Cont.) BatchAdminClient Methods

Return Type Description

Administering Batch Jobs

Oracle RTD Batch Framework 16-9

For full details of the BatchAdminClient interface, see the following Javadoc entry:

RTD_
HOME\client\Batch\javadocs\com\sigmadynamics\batch\client\BatchAdminClient.html

16.3.2 Using the Batch Console
The Batch Console is a command-line utility, batch-console.jar. Use the Batch
Console to start, stop, and query the status of batches.

To start the Batch Console, run the following commands:

1. cd BATCH_HOME

Typically, BATCH_HOME is C:\OracleBI\RTD\client\Batch.

2. java [-Djavax.net.ssl.trustStore="<trust_store_location>"]
-jar batch-console.jar -user <batch_user_name> -pw <batch_
user_password> [-url <RTD_server_URL>] [-help]

java.lang.String startBatch(java.lang.String batchName, BatchRequest startParameters)

Starts a batch in the default concurrency group with the supplied start
parameters.

java.lang.String startBatch(java.lang.String batchName, java.lang.String
concurrencyGroup)

Starts a batch in the specified concurrency group using default start
parameters.

java.lang.String startBatch(java.lang.String batchName, java.lang.String
concurrencyGroup, BatchRequest startParameters)

Starts a batch in the specified concurrency group using the supplied
start parameters.

void stopBatch(java.lang.String batchID)

Stops a batch and cleans up its resources by calling BatchJob.cleanup().

void stopBatch(java.lang.String batchID, boolean discardSandboxes)

Stops a batch, cleans up its resources (by calling BatchJob.cleanup()),
and optionally discards any learning data and output table records
generated by the batch since its last checkpoint.

Table 16–1 (Cont.) BatchAdminClient Methods

Return Type Description

Administering Batch Jobs

16-10 Oracle Real-Time Decisions Platform Developer's Guide

To see a list of the interactive commands within Batch Console, enter ? at the command
prompt:

command <requiredParam> -- [alias] Description

? -- Show this usage text
help -- Show this usage text
exit -- Terminate this program
quit -- Terminate this program
batchNames -- [bn] Show all registered Batch
batchDesc <batchName> -- [bd] Show Batch Description
paramDesc <batchName> -- [pd] Show a batch's Parameter Descriptions
paramDef <batchName> -- [pdef] Show a batch's Parameter Default values
addProp <key> <value> -- [ap] Add one Property for next job start
removeProp <key> -- [rp] Remove one startup Property
showAddedProps -- [sap] Show all Added startup Properties
removeAddedProps -- [rap] Remove all Added startup Properties
startJob <batchName> -- [start] Start a batch job, returning a jobID
startInGroup <batchName> <groupName>
 -- [startg] Start a batch job in a Concurrency Group
status <jobID> -- [sts] Show a job's detailed runtime Status
activeJobs -- [jobs] Show brief status of all running,
 paused, waiting jobs
jobHistory -- [hist] Show brief status of all submitted jobs
stopJob <jobID> -- [stop] Stop a job, without abililty to resume
stopJobDiscardSandbox <jobID>
 -- [stopds] Stop a job, without abililty
 to resume, discard learning sandboxes
restartJob <jobID> -- [restart] Restart a batch job
pauseJob <jobID> -- [pause] Pause a job
resumeJob <jobID> -- [resume] Resume a paused job
discardStatusAll -- [dsa] Discard status information
 for all non-active jobs
discardStatusOld <numToKeep>
 -- [dso] Discard Status for oldest non-active jobs
discardStatusName <batchName>
 -- [dsn] Discard Status for non-active
 jobs of named batch

Notes:

1. You must enter batch user name and password information. If you do
not specify values for the -user and -pw parameters, you will be
prompted for them.

2. <RTD_server_URL> (default value http://localhost:8080) is the
address of the Decision Service. In a cluster, it is typically the address of
the load balancer's virtual address representing the Decision Service's
J2EE cluster.

3. Use the -Djavax.net.ssl.trustStore="<trust_store_
location>" parameter only if SSL is used to connect to the Real-Time
Decision Server (that is, where -sslConnection is set to true), where
<trust_store_location> is the full path of the truststore file. For
example,
-Djavax.net.ssl.trustStore="C:\OracleBI\RTD\etc\ssl\sd
trust.store". In this case, <RTD_server_URL> should look like
https://localhost:8443.

4. If you enter -help, with or without other command line parameters, a
usage list appears of all the Batch Console command line parameters,
including -help.

Administering Batch Jobs

Oracle RTD Batch Framework 16-11

discardStatusNameOld <batchName> <numToKeep>
 -- [dsno] Discard Status for oldest
 non-active jobs of named batch

The rest of this section contains the following topics:

■ Section 16.3.2.1, "Notes on Batch Console Commands"

■ Section 16.3.2.2, "Running Jobs Sequentially"

■ Section 16.3.2.3, "Running Jobs Concurrently"

16.3.2.1 Notes on Batch Console Commands
1. To get a list of registered batches, enter bn or batchNames.

2. To get the default parameter values for a batch, enter paramDef <batchName>
or pdef <batchName>.

For example, your batch may have the parameter values:

■ sqlCustomers - to select the customers to process

■ rowsBetweenStatusUpdates - to control how often to update the batch
status

The default values for these parameters could be as follows:

■ sqlCustomers = SELECT Id FROM Customers WHERE Id < 300

■ rowsBetweenStatusUpdates = 1000

3. To supply parameter values for the next batch invocation, use the addProp
command, or its alias, ap.

For example, you can override the sqlCustomers parameter to include all
customers, with the following command:

■ ap sqlCustomers SELECT Id FROM Customers

And if you want to update the batch status after every 1500 customers are
processed, enter the following command:

■ ap rowsBetweenStatusUpdates 1500

You can view all such explicitly added parameters with the showAddedProps
command, or its alias, sap.

For example, if you used the preceding ap commands, the sap output would be:

Property Value
-------- -----
rowsBetweenStatusUpdates 1500
sqlCustomers SELECT Id FROM Customers

4. To start a batch, use the startJob command, or its alias, start.

The output will be similar to the following:

■ batchID=batch-2

The returned batchID, also known as a job-ID, identifies this job instance. You
can use it to query the status of the job.

5. To see the runtime status of the job, pass its batchID value to the status
command, or to its alias, sts.

■ sts batch-2

Administering Batch Jobs

16-12 Oracle Real-Time Decisions Platform Developer's Guide

The out put will be similar to the following:

ID Name State Rows Errors Restarts
-- ---- ----- ---- ------ --------
batch-2 MyBatchJob1 Running 4,500 0 0

 SubmitDateTime WaitTime RunTime Group Server
 -------------- -------- ------ ----- ------
 06/24/08-10:25:37 0m, 0s 0m, 0s Default RTDServer

If you run the status command later, you can see that the job finished without
errors, after processing 50,000 customers in 9 minutes and 44 seconds:

ID Name State Rows Errors Restarts
-- ---- ----- ---- ------ --------
batch-2 MyBatchJob1 Finished 50,000 0 0

 SubmitDateTime WaitTime RunTime Group Server
 -------------- -------- ------ ----- ------
 06/24/08-10:25:37 0m, 0s 9m, 44s Default RTDServer

16.3.2.2 Running Jobs Sequentially
When jobs are submitted to be started they are assigned to a concurrency group. If not
specified, the default concurrency group is assigned, named Default.

Jobs in the same concurrency group run sequentially, one at a time, in the sequence
that they were submitted to be started.

So if you start a second job before the first finishes, the second job will wait to start
until after the first one finishes.

This section shows the starting of the batch MyBatchJob1, and then the starting of
two other batches, MyBatchJob2, and MyBatchJob3.

Before starting MyBatchJob1, use the sap command to verify the console has the
parameter values set for the two parameters, rowsBetweenStatusUpdates, and
sqlCustomers.

After starting MyBatchJob1, clear these parameters using the removeAddedProps
command (rap), so that the next two jobs will use default values for all their
parameters.

The jobs command shows a brief status of all running and waiting jobs. It shows the
first job running, and the other two waiting.

command: batchNames
 MyBatchJob1
 MyBatchJob2
 MyBatchJob3
 MyBatchJob4
 MyBatchJob5
command: showAddedProps
 Property Value
 -------- -----
 rowsBetweenStatusUpdates 1500
 sqlCustomers SELECT Id FROM Customers
command: start MyBatchJob1
 batchID=batch-3
command: removeAddedProps
command: start MyBatchJob2
 batchID=batch-4

Administering Batch Jobs

Oracle RTD Batch Framework 16-13

command: start MyBatchJob3
 batchID=batch-5
command: jobs
 ID Name State Group Server
 -- ---- ----- ----- ------
 batch-3 MyBatchJob1 Running Default RTDServer
 batch-4 MyBatchJob2 Waiting Default none
 batch-5 MyBatchJob3 Waiting Default none

16.3.2.3 Running Jobs Concurrently
The startInGroup command, or its alias, startg, may be used to assign a job to a
specific concurrency group. Starting two jobs in different groups allows them to run at
the same time.

For example:

command: startg MyBatchJob4 myGroup1
 batchID=batch-6
command: startg MyBatchJob5 myGroup2
 batchID=batch-7
command: jobs
 ID Name State Group Server
 -- ---- ----- ----- ------
 batch-6 MyBatchJob4 Running myGroup1 RTDServer
 batch-7 MyBatchJob5 Running myGroup2 RTDServer

Note: Jobs assigned to the same concurrency group may run on
different servers, but the jobs cannot run concurrently. Only jobs in
different groups are allowed to run concurrently.

Administering Batch Jobs

16-14 Oracle Real-Time Decisions Platform Developer's Guide

17

Externalized Objects Management 17-1

17Externalized Objects Management

This chapter describes the extensions that are available to basic Oracle RTD elements,
how they are defined and used in the composite decision process, and how they are
integrated with the external applications that they serve.

Oracle RTD produces adaptive enterprise software solutions by a process of
continuously learning in real time from business process transactions as those
transactions are executing. By continuously learning in real time, the adaptive
solutions can optimize the outcome of each transaction and of the associated business
process.

The basic framework of the Oracle RTD decisioning process is as follows:

■ Oracle RTD makes analytic decisions for each interaction.

■ Based on rules and predictive models, Oracle RTD decisions use real-time and
historical data to make optimal recommendations from a variety of choices.

■ In making the best recommendations, Oracle RTD optimizes across potentially
conflicting business goals.

The following image shows the standard elements that form the framework for the
Oracle RTD decision process, together with a significant set of inputs that enable
external applications together with Oracle RTD to provide a composite decision
service for their end users.

Dynamic Choices

17-2 Oracle Real-Time Decisions Platform Developer's Guide

The standard elements of the Oracle RTD decision process - decisions, entities, choices,
rules, models, and performance goals - are defined within Decision Studio. For general
information about these elements, see Chapter 12, "About Decision Studio" and
Chapter 13, "About Decision Studio Elements and APIs."

Oracle RTD can adapt to real-time changes to objects in external data systems, such as
choices maintained in external content management systems.

Applications using Oracle RTD can also enable their users to make significant
on-the-spot modifications to the decision process by creating and modifying the rules
and by altering the performance goals that drive and control the overall decision
process.

This chapter describes how these extensions to basic Oracle RTD elements are defined
and used in the composite decision process, and how they are integrated with the
external applications that they serve.

This chapter contains the following topics:

■ Section 17.1, "Dynamic Choices"

■ Section 17.2, "External Rules"

■ Section 17.3, "Example of End to End Development Using Dynamic Choices and
External Rules"

■ Section 17.4, "Externalized Performance Goal Weighting"

17.1 Dynamic Choices
In Oracle RTD, Choices represent the universe of alternatives, from which Oracle RTD
can select its recommendations, such as the best offer in a cross selling application.

Choices can be either Static or Dynamic.

Dynamic Choices

Externalized Objects Management 17-3

With Static Choices, the Choices to present to the requesting application or
self-learning model are completely defined within Oracle RTD. Static Choices are
useful in cases where the Choices are known in advance, and are constant over a
period of time.

Dynamic Choices are Choices that are built dynamically at runtime. These Choices
typically reside in external data sources. This allows for the management of Choices to
be done at the source system, such as Choices based on offers defined in an offer
management system.

The Dynamic Choices to be presented to an application may vary over time, but
always reflect the up-to-date state of the application data. It is not necessary to
redeploy the Oracle RTD Inline Service when dynamic choice content is updated.

This section contains the following topics:

■ Section 17.1.1, "Simple Example of Dynamic Choices"

■ Section 17.1.2, "Basic Dynamic Choice Design Implications"

■ Section 17.1.3, "Multiple Category Dynamic Choices from a Single Data Source"

■ Section 17.1.4, "Prerequisite External Data Source for Dynamic Choices"

■ Section 17.1.5, "Overview of Setting up Dynamic Choices in Decision Studio"

■ Section 17.1.6, "Creating the Dynamic Choice Data Source"

■ Section 17.1.7, "Creating the Single Dynamic Choice Entity"

■ Section 17.1.8, "Creating the Dynamic Choice Set Entity"

■ Section 17.1.9, "Creating the Dynamic Choice Data Retrieval Function"

■ Section 17.1.10, "Considerations for Choice Group Design"

■ Section 17.1.11, "Creating a Single Category Choice Group"

■ Section 17.1.12, "Creating a Multi-Category Choice Group"

■ Section 17.1.13, "Dynamic Choice Reporting Overview"

17.1.1 Simple Example of Dynamic Choices
As a simple example, take the case of an Insurance_Proposals table, as shown in
Figure 17–1. This table is defined outside of the Oracle RTD environment, and holds
data about the Choices that Oracle RTD will evaluate and prioritize.

The Insurance_Proposals table contains rows for different insurance products, as
identified by the common value InsuranceProducts in the ChoiceGroupId column.

Note: Although the main sources of Dynamic Choices are external
data sources, you can also create Dynamic Choices with customized
Java code.

Note: While this section focuses on Dynamic Choices, a Choice
Group can contain a combination of Static and Dynamic Choices.

A Decision can be associated with one or more Choice Groups, no
matter what type of Choice they contain.

Dynamic Choices

17-4 Oracle Real-Time Decisions Platform Developer's Guide

The column that categorizes or groups the Dynamic Choices is an important required
key identifier for setting up Dynamic Choices.

Each row in the group shows a different type of insurance product being offered, such
as AutoInsurance, and DisabilityInsurance. Each row represents a Dynamic Choice.

One column serves to identify the particular Dynamic Choice within the group. In this
example, the ChoiceID column is the Dynamic Choice identifier column.

Other columns in the table, such as ProfitMargin, can be used by Oracle RTD in the
evaluation process. These columns can also be sent back to the application as part of
the Dynamic Choice recommendation, as a value for a defined Choice attribute.

Figure 17–1 Insurance Products in the Insurance_Proposals Table

In short, the setup process is that, in Oracle RTD, you set up a Choice Group for
Dynamic Choices, and associate this Choice Group with the required external Data
Source or Sources. The Dynamic Choices are then available to be recommended by
Oracle RTD.

After sufficient recommendations have been made and models have been updated for
the corresponding Choice Group, you can analyze the performance of the various
Dynamic Choices through Decision Center, as shown in Figure 17–2.

Figure 17–2 Decision Center Analysis of Dynamically Chosen Insurance Products

17.1.2 Basic Dynamic Choice Design Implications
The basic design process for Dynamic Choices is similar to that for Static Choices. You
must first set up a Choice Group, then define the required elements and parameters
for Dynamic Choices in the Choice Group. For more detailed information on how to
perform the setups, see Section 17.1.5, "Overview of Setting up Dynamic Choices in
Decision Studio."

Using the Insurance_Proposals example, this section acts as an overview of the design
process. It also introduces key terms used in the design process, as follows:

Dynamic Choices

Externalized Objects Management 17-5

■ The set of all the Dynamic Choices is identified as all the rows that have a common
value in a "grouping" or categorizing column. In the Insurance_Proposals
example, the categorizing column (or set identifier) is the ChoiceGroupId column.

■ Each row in the database set represents a single Dynamic Choice. In the Insurance_
Proposals example, the Dynamic Choice itself is identified by the unique value in
the ChoiceId column.

■ When you define the Choice Group for Dynamic Choices in Oracle RTD, you must
link the Group to the set of rows that contain the Dynamic Choices.

■ When you define the Dynamic Choices in the Choice Group in Oracle RTD, you must
link each Dynamic Choice in the Group to the corresponding single Dynamic
Choice row in the Data Source.

17.1.3 Multiple Category Dynamic Choices from a Single Data Source
In the simplest Dynamic Choice case, all the rows of the database table belong to the
same category, that is, have the same value in a categorizing column.

You can provide different Dynamic Choices from either the same database table or a
variety of data sources. The following example, as illustrated in Figure 17–3, shows the
case where the Insurance_Proposals table is extended to provide Choices for both
Insurance Products and Insurance Services.

Figure 17–3 Insurance Products and Insurance Services in the Insurance_Proposals
Table

For this situation, you set up two Choice Groups in Oracle RTD, making both sets of
data available for recommendations in the application.

After sufficient recommendations have been made and models have been updated for
the corresponding Choice Group, you can analyze the performance of either or both of
the Insurance Products and Insurance Services Dynamic Choices.

For example, the Choice Groups could have been set up as two groups in a group
hierarchy, and available for analysis in Decision Center as shown in Figure 17–4.

Figure 17–4 Choice Groups in the Decision Center

Analyzing the Insurance Products provides the same results as shown in Figure 17–2.
Figure 17–5 shows an equivalent analysis report for Insurance Services.

Dynamic Choices

17-6 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–5 Decision Center Analysis of Dynamically Chosen Insurance Services

17.1.3.1 Different Dynamic Choice Categories in the Same Data Source
Choice Groups, unlike Choices, must be pre-defined. In effect, Choice Groups are
static. You can group Dynamic Choices in separate Choice Groups if necessary to
support reporting or decisioning requirements.

The design considerations for and components of each Choice Group are the same as
described in Section 17.1.2, "Basic Dynamic Choice Design Implications."

For general information on how to set up Choice Groups, see Section 17.1.5, "Overview
of Setting up Dynamic Choices in Decision Studio."

For specific information on how to set up different Choice Groups from the same Data
Source, see Section 17.1.12, "Creating a Multi-Category Choice Group."

17.1.4 Prerequisite External Data Source for Dynamic Choices
The data required for Dynamic Choices exists in an external Data Source.

For the sake of simplicity, the following description assumes that the external Data
Source is a database table or view in the calling application.

To be useful for Dynamic Choices, the data must include:

■ One column to be used for categorizing and extracting the data.

For a single Dynamic Choice, the rows to be extracted will all have the same value
in the categorizing column, and this column is used to control the extraction.

For example:

– The database table Special_Events has a column Event_Type.

– There are three distinct values of Event_Type across all the rows, namely
Promotion, Product_Launch, and Mailshot.

In this example, Event_Type is the categorizing column, and for a single Dynamic
Choice, Oracle RTD will extract all the rows of one event type, such as all the
Promotion rows.

■ One column that uniquely identifies the rows extracted for a particular Dynamic
Choice.

Dynamic Choices

Externalized Objects Management 17-7

The column does not need to have unique values across all the rows, just within
the extracted data set.

Any column that provides a unique identifier within the extracted data is
sufficient. Oracle recommends that the column values include some textual
component. These values appear as headers for some Decision Center reports, and
an identifier that is meaningful in the real world sense is more useful than a
strictly numeric identifier.

Figure 17–6 is an example of a database table Web Offers, that could be used as the
external data source for a Dynamic Choice data source.

Figure 17–6 Example of an External Database Table

The table illustrates the following features:

■ The categorizing column is Category, and the common value in all the Category
columns is DynamicOffersCG.

■ You could select either Name or ID as the Dynamic Choice identifier column for
the DynamicOffersCG category.

17.1.5 Overview of Setting up Dynamic Choices in Decision Studio

The process of setting up of Dynamic Choices in Decision Studio consists of the
following topics:

■ Section 17.1.6, "Creating the Dynamic Choice Data Source"

■ Section 17.1.7, "Creating the Single Dynamic Choice Entity"

■ Section 17.1.8, "Creating the Dynamic Choice Set Entity"

■ Section 17.1.9, "Creating the Dynamic Choice Data Retrieval Function"

■ Section 17.1.10, "Considerations for Choice Group Design"

■ Section 17.1.11, "Creating a Single Category Choice Group"

■ Section 17.1.12, "Creating a Multi-Category Choice Group"

Figure 17–7 shows an overview of setting up a simple, single category Choice Group
for Dynamic Choices. The elements in the diagram are referred to in the more detailed
process descriptions that appear later in this chapter.

Note: The diagrams and Decision Studio screen captures illustrating
the setup process, which appear later in these sections on dynamic
choices, are based on the DC_Demo Inline Service that is released with
Oracle RTD.

Dynamic Choices

17-8 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–7 Overview of Setup Process for Single Category Dynamic Choices

17.1.6 Creating the Dynamic Choice Data Source
To create the Dynamic Choice Data Source:

1. Create a new Data Source that maps to the table described in Section 17.1.4,
"Prerequisite External Data Source for Dynamic Choices," using the Import button
to point to the external data source.

2. In the Output column area, check Allow multiple rows, and select all the columns
that you require for a Dynamic Choice.

In the Input column area, select the column that contains the common value that
categorizes and groups the Dynamic Choice rows.

Figure 17–8 shows how the Data Source Web Offers DS is set up from the table
SDDS.WEBOFFERS, with Category as the Input identifier, and a number of other
columns that represent attributes of the Dynamic Choice itself.

Note: You do not have to select the Dynamic Choice identifier
column from among the Output columns at this stage.

Dynamic Choices

Externalized Objects Management 17-9

Figure 17–8 Defining the Web Offers DS Data Source

17.1.7 Creating the Single Dynamic Choice Entity
The Dynamic Choice data exists in the Data Source. You must create a Single Dynamic
Choice Entity in Oracle RTD that consists of all the information associated with a
particular category, but not the category itself.

In terms of the Data Source that you created, the Entity attributes for the Single
Dynamic Choice Entity are the Output attributes of the Data Source.

To create the Single Dynamic Choice Entity:

1. Create an Entity for the Dynamic Choice data, using the Import functionality to
bring in all the Output columns from the Data Source described in Section 17.1.4,
"Prerequisite External Data Source for Dynamic Choices."

2. When selecting the Data Source, be sure to uncheck the Build data mappings for
the selected data source option found in the Select window that appears when
you import.

Figure 17–9 shows the Definition tab for the setup of the Single Dynamic Choice Entity
Web Offers. The attributes are the Output columns of the Data Source Web Offers DS.

Dynamic Choices

17-10 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–9 Defining the Web Offers Entity

17.1.8 Creating the Dynamic Choice Set Entity
In addition to the Single Dynamic Choice Entity, you must create a Dynamic Choice
Set Entity, that includes the following Attributes:

■ A Key Attribute, which is the input, categorizing column of the Data Source that
contains the Dynamic Choice data

■ An array Attribute that stores the Single Dynamic Choice Entity data

This array Attribute must be of the same Entity type as the Entity that you created
in Section 17.1.7, "Creating the Single Dynamic Choice Entity." This array is the
container for all the Attributes of the data to be extracted from the Data Source
required for the Dynamic Choice except for the categorizing Attribute.

To create the Dynamic Choice Set Entity:

1. Create an Entity in Oracle RTD.

2. For the key Attribute, click Add Key, and select the Dynamic Choice categorizing
Attribute from the Data Source.

3. Create an Attribute whose type is the name of the Entity created in Section 17.1.7,
"Creating the Single Dynamic Choice Entity."

4. Mark this entity-type Attribute as an Array.

Figure 17–10 shows the Definition tab for the setup of the Dynamic Choice Set
Entity Web Offers List. The Key Attribute is the Input column Category of the
Data Source Web Offers DS, and the second Attribute is an array Attribute of type
Web Offers.

Dynamic Choices

Externalized Objects Management 17-11

Figure 17–10 Defining the Dynamic Choice Set Entity Web Offers List

5. Click the Mapping tab, and map each Attribute within the entity-type Attribute to
the appropriate column in the original Data Source.

6. In the Data Source Input Values region, for the Input Value of the Data Source,
select the Dynamic Choice categorizing Attribute that you created in step 2.

Figure 17–11 shows the Mapping tab for the setup of the Dynamic Choice Set
Entity Web Offers List. Each of the Attributes within the array Attribute is
mapped to the corresponding column in the Web Offers DS Data Source. In the
Data Source Input Values region, the Attribute selected for the Input Value is the
key Attribute Category.

Dynamic Choices

17-12 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–11 Mapping the Web Offers Attributes in the Web Offers List Entity

7. Click the Cache tab.

8. Select the check box to Enable caching for this entity type.

17.1.9 Creating the Dynamic Choice Data Retrieval Function
To extract the Dynamic Choice data from the database, you must create a Function that
will perform the data retrieval. This function will be called by the Choice Group that
you will create in the steps that follow. The properties of the Function are as follows:

■ The Function returns a value.

■ The return value is of type Array.

■ The Data Type of the array elements is the Single Dynamic Choice entity that you
created previously

■ The Function has a Parameter that is the same as the Data Source Input Value of
the Dynamic Choice Set Entity that you created previously.

■ The logic of the Function instantiates a new occurrence of the Dynamic Choice Set
Entity, and uses the Parameter to retrieve the Dynamic Choice data into the array.

Note: It is important to enable caching on the Dynamic Choice Set
Entity. Enabling caching will keep the Real-Time Decision Server from
repeatedly pulling the Dynamic Choices from the data source with
each new session.

Dynamic Choices

Externalized Objects Management 17-13

To create the Dynamic Choice Data Retrieval Function:

1. Create the Function, and select the Return value check box.

2. Select the Array option, to ensure that the return value is of type Array.

3. For the Data Type, select the name of the entity that you created in Section 17.1.7,
"Creating the Single Dynamic Choice Entity."

4. In the Parameters area, add the Name and Type of the Key attribute that you
created in step 2 of Section 17.1.8, "Creating the Dynamic Choice Set Entity."

5. In the Logic field, enter code similar to the following, adapting it as required for
the names of your entities and attributes:

WebOffersList list = new WebOffersList();
list.setCategory(category);
return list.getWebOffers();

where:

■ WebOffersList is the object name, with internal spaces deleted, for the Entity
created in Section 17.1.8, "Creating the Dynamic Choice Set Entity."

■ list.setCategory references the Entity key that you created in Section 17.1.8,
"Creating the Dynamic Choice Set Entity," step 2.

■ getWebOffers() refers to the Entity created in Section 17.1.7, "Creating the
Single Dynamic Choice Entity," that is mapped inside the Dynamic Choice Set
Entity.

Figure 17–12 shows the definition of the GetWebOffers Function.

Figure 17–12 Defining the GetWebOffers Function

Dynamic Choices

17-14 Oracle Real-Time Decisions Platform Developer's Guide

17.1.10 Considerations for Choice Group Design
Dynamic Choices enable application data administrators to control the choices that
Oracle RTD recommends to the application. Unlike Static Choices, Dynamic Choices
may be added, edited, and deleted in the application tables without requiring any
changes in the interfacing Oracle RTD Inline Service.

If there is a requirement to have both type of Choice in a single Inline Service, Oracle
recommends that Static Choices and Dynamic Choices are clearly separated in the
designing of the Choice Groups. This section concentrates on the design of Choice
Groups for Dynamic Choices.

You can design Dynamic Choices as follows:

■ In a single Choice Group

■ In completely separate Choice Groups - in effect, multiple independent single
Choice Groups

■ In a Choice Group hierarchy

There can be many factors that influence your design, for example:

■ You may have a reporting requirement that a customer must have Choice Group
reports for an explicit set of Dynamic Choices

■ You may have decisioning requirements that some shared eligibility rules must
apply for one set of Dynamic Choices as opposed to another set

This section outlines the high level design steps required for a single Choice Group
and a Choice Group hierarchy.

Single Choice Group
Where all Dynamic Choices are required to be in one Choice Group, then the
recommended design strategy is:

1. Design a single Choice Group.

2. Enter and select the required parameters in each of the following tabs for the
Choice Group: Group Attributes tab, Choice Attributes tab, Dynamic Choices tab.

In Decision Studio, this Choice Group has no subgroups.

Choice Group Hierarchy
Your design factors may lead you to group Dynamic Choices within a Choice Group
hierarchy. The following steps describe in outline form the setup of a two-level
hierarchy:

1. For the top-level Choice Group, enter and select the required parameters in the
Choice Attributes tab, but not the Group Attributes tab, nor the Dynamic Choices
tab.

2. For each separate Dynamic Choice category, specify one lower-level Choice Group.
In each of the lower-level Choice Groups, enter and select the required parameters
in the Group Attributes tab and the Dynamic Choices tab, but not in the Choice
Attributes tab.

In Decision Studio, the lower-level Choice Groups have no subgroups.

Note: You only need to fill in Dynamic Choices tab parameters in the
lowest-level Choice Groups of a multi-level Choice Group hierarchy.

Dynamic Choices

Externalized Objects Management 17-15

17.1.11 Creating a Single Category Choice Group
To use Dynamic Choices, you must create one or more Choice Groups. Where the
Dynamic Choices refer to data that belongs to one type or category, create a single
category Choice Group.

In Decision Studio, the Choice Group is configured to be able to extract the Choices
dynamically at runtime through options that you set up in the following tabs:

■ Group Attributes Tab

■ Choice Attributes Tab

■ Dynamic Choices Tab

These are the main tabs where you configure Dynamic Choices.

Figure 17–13 shows an example of the main elements required to set up a single
category Choice Group, Dynamic Offers.

The Group Attribute setup indicates that all the data to be retrieved for the Dynamic
Choices will be of one category only, and you must specify the exact category here.

The Choice Attribute setup describes the individual attributes that will be retrieved.

The Group and Choice Attributes are then referenced in the Dynamic Choices tab for
this single category Choice Group.

Note: In Decision Studio, when you create a Choice Group for
Dynamic Choices, the individual Dynamic Choices do not appear in
any of the Decision Studio windows.

In Decision Center reports, you can see all the Dynamic Choices which
satisfy the following conditions:

■ They have been returned by Decisions called by the front-end
applications.

■ They have had RTD models updated for those Choices.

Note: You can also use the Choice Eligibility tab, to filter the
Dynamic Choice data as it is extracted from the Data Source.

Eligibility rules created for a Dynamic Choice are shared across all
Choices retrieved for the same Dynamic Choice Group.

Dynamic Choices

17-16 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–13 Defining the Choice Group Dynamic Offers

17.1.11.1 Group Attributes Tab
In the Group Attributes tab, you specify an array Attribute of the same Entity type as
that which you created in Section 17.1.7, "Creating the Single Dynamic Choice Entity."
This Attribute is referred to as the Dynamic Choice Array Entity in Figure 17–7, which
shows an overview of the single category Dynamic Choice setup process.

At this level, you also specify the Function that retrieves the Dynamic Choice data. You
must choose a value for the Function parameter. This enables the function to retrieve
just the Dynamic Choice data relevant for one particular real world type or category.

To create a Choice Group and specify the Group Attributes:

1. Create a Choice Group.

2. Click the Group Attributes tab.

3. Create a new entity-type Group Attribute (the Dynamic Choice Array entity),
whose type is the name of the entity that you created in Section 17.1.7, "Creating
the Single Dynamic Choice Entity."

4. Specify that this Attribute is an Array.

5. Click the right-hand end of the Value box to expose the ellipsis (...) button, then
click the ellipsis button to open the Value window.

6. In the Value window, select the option Value for array as a whole.

7. For Value Source, select Function or rule call, then select the Function that you
created in Section 17.1.9, "Creating the Dynamic Choice Data Retrieval Function."

8. In the Parameters area, choose the Value of the parameter that will retrieve the
corresponding rows in the Data Source whose Input Attribute contains that value.

Dynamic Choices

Externalized Objects Management 17-17

Figure 17–14 shows the Group Attributes tab for the Choice Group Dynamic
Offers. The Function to call is GetWebOffers. The Value in the Parameters area is
the string DynamicOffersCG.

Figure 17–14 Defining the Group Attributes for the Choice Group Dynamic Offers

17.1.11.2 Choice Attributes Tab
In the Choice Attributes tab, you must:

■ Specify an entity-type Attribute of the same type as the Entity that you created in
Section 17.1.7, "Creating the Single Dynamic Choice Entity."

This Attribute is referred to as the Dynamic Choice Row entity in Figure 17–7,
which shows an overview of the single category Dynamic Choice setup process.

■ For each of the component attributes within this Dynamic Choice Row Entity,
create a separate Choice Attribute, which you must then map to the corresponding
attribute within the Dynamic Choice Row entity that you just created.

To specify the Choice Attributes of the Choice Group:

Note: This string Value is the exact value in the database that
categorizes all the Dynamic Choice rows for a Choice Group.

For example, for a Choice Group set up for the Insurance_Proposals
table as described in Section 17.1.1, "Simple Example of Dynamic
Choices," the Value is InsuranceProducts.

Dynamic Choices

17-18 Oracle Real-Time Decisions Platform Developer's Guide

1. Click the Choice Attributes tab.

2. Create a new entity-type Attribute (the Dynamic Choice Row entity), whose type
is the name of the entity that you created in Section 17.1.7, "Creating the Single
Dynamic Choice Entity."

3. Ensure that the Array check box is not selected.

4. For each attribute of the new Dynamic Choice Row entity, create a corresponding
Choice Attribute.

5. For each Choice Attribute created in the previous step, map its Value to the
corresponding attribute within the Dynamic Choice Row entity that you created in
step 2.

Figure 17–15 shows the Choice Attributes tab for the Choice Group Dynamic
Offers. The Choice Attributes are the following:

■ One Dynamic Choice Row Entity Web Offer Entity

■ Several other Attributes, each of whose Values derives from the corresponding
Attribute of the Dynamic Choice Row Entity Web Offer Entity

Figure 17–15 Defining the Choice Attributes for the Choice Group Dynamic Offers

Dynamic Choices

Externalized Objects Management 17-19

17.1.11.3 Dynamic Choices Tab
In the Dynamic Choices tab, you provide the following information:

■ You explicitly select this Choice Group to be for Dynamic Choices.

■ You specify the Group and Choice Attributes that you set up in the corresponding
Group Attributes and Choice Attributes tabs.

■ You select the Attribute that identifies each Dynamic Choice.

■ You describe how you wish the Dynamic Choices to appear in Decision Center
reports. Because the number of Dynamic Choices could be considerable, you can
choose to break up a potentially long list of Dynamic Choices into smaller units or
"folders," and you indicate how you want the data grouped in the folders.

To specify the Dynamic Choice parameters:

1. Click the Dynamic Choices tab.

2. Select the check box option to Use Dynamic Choices for this Choice Group.

3. For the Group attribute containing the list of Entities for choices, select the
Dynamic Choice Array attribute that you created in Section 17.1.11.1, "Group
Attributes Tab."

4. For the Choice attribute to assign the entity data, select the Dynamic Choice Row
attribute that you created in Section 17.1.11.2, "Choice Attributes Tab."

5. For the Entity attribute that contains the choices id, select the Attribute that
serves as the unique identifier for each of the extracted Dynamic Choice rows.

6. For the Distribution mode for choices over choice group folders, select Spill or
Even.

7. Select the Maximum number of choices within one choice group folder on
decision center.

8. The field Function returning the entity for a given choice is optional.

If provided, it must take two String parameters, Choice Group ID and Choice
Group in that order, and return an entity object.

This function is called as part of the <Choice Group>.getChoice() processing.

If you do not specify this function, then getChoice() will perform the following
operations:

a. It will call the function configured against the list of entities on the Group
Attributes tab.

b. It will iterate through all entities to find the matching one.

This iteration may be inefficient when there is a large number of dynamic choices.

If you specify this function, it will be used in preference to a and b, and must
return the entity corresponding to the specified Dynamic Choice ID.

Note: For more information about this parameter, and the parameter
in the following step, see Section 17.1.13.4, "Distribution of Choices
Across Decision Center Folders."

Dynamic Choices

17-20 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–16 Defining the Dynamic Choice Parameters for the Choice Group

17.1.12 Creating a Multi-Category Choice Group
To use Dynamic Choices, you must create one or more Choice Groups. Where you
want to be able to select different groups of data from the same data source, create a
multi-category Choice Group. This section describes the standard way to set up a
multi-category Choice Group.

In Decision Studio, a Choice Group is configured to be able to extract the Choices
dynamically at run time through options that you set up in the following tabs:

■ Group Attributes tab

■ Choice Attributes tab

■ Dynamic Choices tab

These are the main tabs where you configure Dynamic Choices.

Note: An example of this optional function, namely
GetWebOfferForChoice, exists in the DC_Demo Inline Service released
with Oracle RTD.

Note: In Decision Studio, when you create a Choice Group for
Dynamic Choices, the individual Dynamic Choices do not appear.

In Decision Center reports, you can see all the Dynamic Choices which
satisfy the following conditions:

■ They have been returned by Decisions called by the front-end
applications.

■ They have had RTD models updated for those Choices.

Note: You can also use the Choice Eligibility tab, to filter the
Dynamic Choice data as it is extracted from the data source.

Eligibility rules created for a Dynamic Choice are shared across all
Choices retrieved for the same Dynamic Choice Group.

Dynamic Choices

Externalized Objects Management 17-21

To allow for multiple Dynamic Choice categories, you must create a hierarchy of
Choice Groups, and set up the Choice Group elements at different levels.

Figure 17–17 shows an example of the main elements required to set up a two-category
Choice Group, Incentive Choices.

Figure 17–17 Example of Defining a Choice Group Hierarchy

The Choice Group Incentive Choices is the parent Choice Group, with two child
Choice Groups, Discounts and Gifts.

You specify the Choice Attributes at the top level, in the parent Choice Group. These
Choice Attributes are then inherited by the two child Choice Groups.

Each child Choice Group enables a different category set of data to be retrieved,
through the Group Attributes setup. The Group and Choice Attributes are then
referenced in the Dynamic Choices tab for both of the child Choice Groups.

To compare this process with the equivalent single category Choice Group setup, see
Figure 17–7.

Note: In the parent Choice Group, or in any higher level Groups of a
multi-level Choice Group hierarchy, you do not enter or select any
values in the Dynamic Choices tab. Dynamic Choice parameters are
only specified in the lowest level Group of any Choice Group
hierarchy.

Dynamic Choices

17-22 Oracle Real-Time Decisions Platform Developer's Guide

17.1.12.1 Choice Attributes Tab in the Parent Choice Group
In the Choice Attributes tab, you specify an entity-type Choice Attribute of the same
type as that which you created in Section 17.1.7, "Creating the Single Dynamic Choice
Entity."

This Choice Attribute is also known as the Dynamic Choice Row Entity, as in the
equivalent single category Dynamic Choice setup process shown in Figure 17–7.

For each of the attributes within this Dynamic Choice Row entity, create a separate
Choice Attribute, which you must map to the corresponding attribute in the Dynamic
Choice Row entity that you just created.

To create the Parent Choice Group and Choice Attributes:

1. Create the parent Choice Group.

2. Click the Choice Attributes tab.

3. Create a new entity-type Choice Attribute, whose type is the name of the entity
that you created in Section 17.1.7, "Creating the Single Dynamic Choice Entity."

4. Ensure that you do not specify that this is an Array.

5. For each of the attributes of the new entity-type Choice Attribute, create a
corresponding Choice Attribute.

6. For each of the attributes created in the previous step, map its Value to the
corresponding attribute within the Choice Attribute that you created in step 2.

17.1.12.2 Group Attributes Tab in the Child Choice Groups
For each child Choice Group, in the Group Attributes tab, you specify an entity-type
array Attribute of the same type as that which you created in Section 17.1.7, "Creating
the Single Dynamic Choice Entity."

This Group Attribute is also known as the Dynamic Choice Array Entity, as in the
equivalent single category Dynamic Choice setup process shown in Figure 17–7.

At this level, you also specify the function that retrieves the Dynamic Choice data. You
must choose a value for the Function parameter. This enables the Function to retrieve
just the Dynamic Choice data relevant for one particular real world type or category.

First, you need to create the child Choice Groups under the previously created parent
Choice Group, then enter the required elements in the Group Attributes tab.

To create the Child Choice Groups and Group Attributes:

1. Create the first child Choice Group.

2. Create extra child Choice Groups as required, one for each separate Dynamic
Choice category.

Within each child Choice Group, you must now set up the required elements and
parameters in the Group Attributes tab and the Dynamic Choices tab.

The steps following in this section describe the actions required in the Group
Attributes tab for each child Choice Group. Section 17.1.12.3 describes the actions
required in the Dynamic Choices tab for each child Choice Group.

3. Click the Group Attributes tab of the child Choice Group.

4. Create a new entity-type Group Attribute, whose type is the name of the Entity
that you created in Section 17.1.7, "Creating the Single Dynamic Choice Entity."

5. Specify that this Attribute is an Array.

Dynamic Choices

Externalized Objects Management 17-23

6. Click the right-hand end of the Value box to expose the ellipsis (...) button, then
click the ellipsis button to open the Value window.

7. In the Value window, select the option Value for array as a whole.

8. For Value Source, select Function or rule call, then select the Function that you
created in Section 17.1.9, "Creating the Dynamic Choice Data Retrieval Function."

9. In the Parameters area, choose the Value of the parameter that will retrieve the
corresponding rows in the Data Source whose Input attribute contains that value.

17.1.12.3 Dynamic Choices Tab in the Child Choice Groups
For each child Choice Group, in the Dynamic Choices tab, you must provide the
following information:

■ You explicitly select this Choice Group to be a Choice Group for Dynamic Choices.

■ You specify the Group and Choice Attributes that you set up in the corresponding
Group Attributes and Choice Attributes tabs.

■ You select the Attribute that identifies each Dynamic Choice.

■ You describe how you wish the Dynamic Choices to appear in Decision Center
reports. Because the number of Dynamic Choices could be considerable, you can
choose to break up a potentially long list of Dynamic Choices into smaller units or
"folders," and you indicate how you want the data grouped in the folders.

To specify the Dynamic Choice parameters:

1. Click the Dynamic Choices tab.

2. Select the check box option to Use Dynamic Choices for this Choice Group.

3. For the Group attribute containing the list of Entities for choices, select the
attribute that you created in Section 17.1.12.2, "Group Attributes Tab in the Child
Choice Groups."

4. For the Choice attribute to assign the entity data select the attribute that you
created in Section 17.1.12.1, "Choice Attributes Tab in the Parent Choice Group."

5. For the Entity attribute that contains the choices id, select the Attribute that
serves as the unique identifier for each of the extracted Dynamic Choice rows.

6. For the Distribution mode for choices over choice group folders, select Spill or
Even.

7. Select the Maximum number of choices within one choice group folder on
decision center.

17.1.13 Dynamic Choice Reporting Overview
This section consists of the following topics:

■ Section 17.1.13.1, "Applications with Static Choices Only"

■ Section 17.1.13.2, "Dynamic Choice Visibility"

■ Section 17.1.13.3, "System-Created Range Folders"

Note: For more information about this parameter, and the parameter
in the following step, see Section 17.1.13.4, "Distribution of Choices
Across Decision Center Folders."

Dynamic Choices

17-24 Oracle Real-Time Decisions Platform Developer's Guide

■ Section 17.1.13.4, "Distribution of Choices Across Decision Center Folders"

■ Section 17.1.13.5, "Example of a Decision Center Report with Dynamic Choices"

17.1.13.1 Applications with Static Choices Only
If your application has been configured to use only Static Choices, there is no impact
on Decision Center reporting. The Choice Groups, subgroups, and Static Choices that
you defined in Decision Studio will appear in the same hierarchical layout in the
Decision Center Navigator, as shown in the example in Figure 17–18.

Figure 17–18 Example of Definition and Reporting with Static Choices Only

17.1.13.2 Dynamic Choice Visibility
Dynamic Choices, by their very nature, cannot be predefined in Decision Studio. A
Choice Group can be configured to hold dynamically-extracted external data, from
which Dynamic Choices can be recommended. Figure 17–19 shows an example of a
Choice Group set up to display Dynamic Choices for insurance services.

Dynamic Choices

Externalized Objects Management 17-25

Figure 17–19 Example of Dynamic Choice Group Definition

In Decision Center, only those Dynamic Choices that have actually been recommended
and added to model learning data appear in the Decision Center Navigator, and have
Performance and Analysis reports.

The other factor that influences how the Dynamic Choices appear in the Decision
Center is the parameter Maximum number of choices within one choice group folder
on decision center, which you specify when you define the Dynamic Choice Group. If
the number of choices exceeds this maximum, the choices appear under
system-created range folders, otherwise they appear directly under the Choice Group
name.

For more information on range folders, see Section 17.1.13.3, "System-Created Range
Folders."

The example Decision Support Navigator menu in Figure 17–20 shows the following:

■ Five Dynamic Choices were recommended and added to model learning data.

■ The maximum number of choices per choice group is 3.

■ Each Dynamic Choice appears under one of the two system-created folder names.

Dynamic Choices

17-26 Oracle Real-Time Decisions Platform Developer's Guide

Figure 17–20 Example of Dynamic Choice Layout in Decision Center

17.1.13.3 System-Created Range Folders
The name of each system-created folder is made up of the names of the first and last
Choices in the folder, with the string "..." separating the two Choices. System-created
folders are also known as range folders.

If the total number of (Static choices + Dynamic Choices recommended and added to
model learning data) exceeds the maximum defined for the Choice Group folder, the
choices appear in system-created "groups" or subfolders, otherwise they appear
directly under the Choice Group name.

17.1.13.4 Distribution of Choices Across Decision Center Folders
When configuring a Choice Group for Dynamic Choices in Decision Studio, there are
two parameters that affect how choices appear in Decision Center.

Both parameters are in the Dynamic Choices tab, and they are only enabled if the
Choice Group is selected to be used for Dynamic Choices. The parameters are:

■ Distribution mode for choices over choice group folders

■ Maximum number of choices within one choice group folder on decision center

For simplicity, these parameters are referred to as Distribution mode and Maximum
number of choices in this section.

The Maximum number of choices parameter determines how choices appear in the
Decision Center directly under the Choice Group name or under a system-created
range folder. For more information on range folders, see Section 17.1.13.3,

Note: The Choices within a range folder can be a mixture of Static
and Dynamic Choices. Both components of the range folder name can
therefore be either a Static or a Dynamic Choice.

In general, Oracle recommends that applications keep Static and
Dynamic Choices in separate Choice Groups or separate Choice
Group hierarchies.

Dynamic Choices

Externalized Objects Management 17-27

"System-Created Range Folders."

The Maximum number of choices parameter limits the number of Choices, regardless
of whether they are Static or Dynamic, in each range folder.

The Distribution mode parameter specifies how the range folders are populated:

■ In Spill mode, each range folder is filled up to the maximum, and the final range
folder typically has less values than the maximum.

■ In Even mode, the aim is to distribute the Choices evenly across the range folders.

For example, if there is a total of 106 Static or Dynamic Choices to display in the
Decision Center, and the maximum per range folder is 25:

■ In Spill Mode, the distribution across the range folders is 25,25,25,25,6.

■ In Even Mode, the distribution across the range folders is 22,21,21,21,21.

17.1.13.5 Example of a Decision Center Report with Dynamic Choices
Decision Center can be used to view reports for each Dynamic Choice defined in a
content database, which were actually recommended and added to model learning
data. This is done by logging into a Decision Center Inline Service and opening the
Decision Process section in the Decision Center navigator.

From here, any defined Dynamic Choice groups will be listed and will contain all
dynamic offers defined in database tables for each Dynamic Choice group, that were
recommended and added to model learning data. Choices in the database tables that
were not added to model learning data do not appear in Decision Center reports.

The following is an image of a Decision Center report, with the navigator tree showing
the DC_Demo Dynamic Choices:

Note: In Decision Center reports, range folders are not dedicated to
Static or Dynamic Choices, that is, both Static and Dynamic Choices
may appear together in the same range folder.

External Rules

17-28 Oracle Real-Time Decisions Platform Developer's Guide

17.2 External Rules
External rules enable end users running an application integrated with Oracle RTD to
influence the Oracle RTD decision logic itself at run-time without the need to
recompile the Inline Service.

A typical use would be where specific rules, such as choice eligibility rules and choice
group eligibility rules, are attached to dynamic choices, and need to be modified at
run-time without Inline Service recompilation.

External rules can also be attached to static choices.

This section contains the following topics:

■ Section 17.2.1, "Introduction to External Rules"

■ Section 17.2.2, "External Rule Editor"

■ Section 17.2.3, "External Rule Framework"

■ Section 17.2.4, "Setting Up External Rules in Decision Studio"

■ Section 17.2.5, "Setting Up the External Interface and Embedded Rule Editor"

17.2.1 Introduction to External Rules
The main components of the External Rules feature are:

■ External Rules Editor

Oracle RTD provides an embeddable Rule Editor widget that can be plugged in to
customer front-end Web based applications, for example through an HTML
iframe.

■ External Rules Framework

The external rules framework consists of:

– External Rule Functions

Users specify in Decision Studio rule evaluation functions that can be called to
evaluate external rules. There are four functions: one to evaluate choice rules,
one to evaluate choice group rules, one to evaluate filtering rules, and one to
evaluate scoring rules.

– External Rule Caching

External rules caching is provided to improve the performance of external rule
evaluation.

If a newer version of a cached rule is submitted for evaluation, Oracle RTD
does not execute the stale version. To avoid the whole request timing out in
the event of a rule cache miss, Oracle RTD provides the Inline Service
developer a mechanism for specifying a default response to return
immediately.

– External Rule APIs

Oracle RTD provides a set of Java APIs related to external rules, which can be
used in Decision Studio Java functions and logic sections.

Overview of the External Rules Process
Figure 17–21 shows the external rule process flow during editing and rule evaluation.

External Rules

Externalized Objects Management 17-29

Figure 17–21 External Rules Process Flow

The external rules are stored in metadata form in an external content repository, which
can be any external data system, but is typically a database. The content management
server controls read and write access to the rules stored in the external content
repository.

Business users edit rules through an Oracle RTD Rule Editor embedded in a third
party external interface provided by a content management product.

The external interface dynamically sets the context in which the rule needs to be edited
in the embedded Rule Editor. For example a rule can be attached to a specific group's
choice, a choice group or a filtering rule.

In the Rule Editor, the business user creates and edits rules, which can reference any of
the objects defined in the Inline Service, such as any of the dynamic choices, functions,
and session attributes.

After the user has finished editing the rule in the Rule Editor, the rule metadata is
passed to the external interface, which saves the rule metadata to the external content
repository.

At run time, the Inline Service accesses the edited external rule from the external
content repository.

Example of External Interface in DC_Demo Inline Service Helper File
To serve as a starting-point for a third party external interface, Oracle RTD provides an
External Rules Deployment Helper HTML file with the DC_Demo Inline Service.

For more information about how to set up and use this helper, see Section 17.3,
"Example of End to End Development Using Dynamic Choices and External Rules."

External Rules

17-30 Oracle Real-Time Decisions Platform Developer's Guide

17.2.2 External Rule Editor
Oracle RTD provides a browser embeddable user interface for editing external rules.
This Rule Editor widget contains functionality comparable to the rule editors
contained in Decision Studio.

A third party user interface together with an embedded Oracle RTD Rule Editor must
be able to perform the following actions:

■ Load external rule metadata into the embedded Rule Editor

■ Edit loaded external rule metadata in the embedded Rule Editor

■ Export the new rule metadata with a unique ID and timestamp for the rule loaded
into the embedded Rule Editor

■ Dynamically sets the context in which the rule needs to be edited. For example a
rule can be attached to a specific group's choice, a choice group or a filtering rule.

■ Set a user-defined callback Javascript function that will be called after every action
submitted by the embedded Rule Editor

■ Provide Javascript methods to determine whether an edited external rule is valid
or has been modified

17.2.3 External Rule Framework
The external rule framework consists of three rule evaluation functions, external rule
caching, and a set of Java APIs.

This section consists of the following topics:

■ Section 17.2.3.1, "External Rule Evaluation Functions"

■ Section 17.2.3.2, "External Rule Caching"

■ Section 17.2.3.3, "External Rule APIs"

■ Section 17.2.3.4, "External Rule Error Handling and Logging"

17.2.3.1 External Rule Evaluation Functions
Decision Studio provides four rule evaluation functions that can be used to evaluate
external rule metadata. Each function evaluates the passed-in external rule metadata
against either a choice, a choice group, a filtering rule, or a scoring rule

When an external rule evaluates successfully, the associated function returns either a
boolean value (for eligibility and filtering rules) or a double (for scoring rules).

The four functions are:

■ External Rules - Evaluate Choice Eligibility Rule

■ External Rules - Evaluate Choice Group Eligibility Rule

■ External Rules - Evaluate Filtering Rule

■ External Rules - Evaluate Scoring Rule

Table 17–2 shows the parameters for these functions.

Note: For the eligibility rule functions, one of the parameters sets the
context for rule evaluation. For example, the parameter choice in the
function External Rules - Evaluate Choice Eligibility Rule specifies the
particular choice name where the external rule will be evaluated.

External Rules

Externalized Objects Management 17-31

The call templates for both External Rules - Evaluate Choice Eligibility Rule and
External Rules - Evaluate Choice Group Eligibility Rule are released as:

■ Value of rule {0} evaluated in context of Choice {1}, {2} if rule is invalid

The call template for External Rules - Evaluate Filtering Rule is released as:

■ Value of rule {0}, {1} if rule is invalid

The call template for External Rules - Evaluate Scoring Rule is released as:

■ Value of rule {0}, {1} if scoring rule is invalid

Blocking Evaluation Option
Each function allows for the setting of evaluation options.

One of the options controls blocking and non-blocking evaluation. Setting the blocking
evaluation option forces the rule evaluator caller to wait for the Real-Time Decision
Server to return with the evaluation result. Non-blocking evaluation returns a default
value back to the rule evaluation caller.

By default, each of the external rule evaluation functions will evaluate the passed-in
external rule metadata in a non-blocking manner. Decision Studio users can change
this behavior by editing the Java code of the selected function to evaluate rules with
the blocking option set.

Modifying the External Rules Functions
The External Rules functions can be altered to suit individual Inline Services. One
possible change is to alter the blocking behavior of the rule evaluation. Each function
evaluates the passed-in rule metadata in a non-blocking manner by default. The API
that controls blocking behavior, default return value, and whether exceptions are
thrown is as follows:

public class EvaluationOptions {
 public static EvaluationOptions getEvaluationOptions(

Table 17–1 External Rule Function Parameters

Function Parameter Description

External Rules - Evaluate Choice Eligibility
Rule

Rule Metadata Attribute containing metadata
form of the external rule

choice Choice where the external rule
will be evaluated.

return value Status if rule is invalid

External Rules - Evaluate Choice Group
Eligibility Rule

Rule Metadata Attribute containing metadata
form of the external rule

choice group Choice group where the
external rule will be evaluated.

return value Status if rule is invalid

External Rules - Evaluate Filtering Rule Rule Metadata Attribute containing metadata
form of the external rule

return value Status if rule is invalid

External Rules - Evaluate Scoring Rule Scoring Rule
Metadata

Attribute containing metadata
form of the external rule

Default Score Default score if rule is invalid.
Default return value is 0.

External Rules

17-32 Oracle Real-Time Decisions Platform Developer's Guide

 boolean defaultReturnValue,
 boolean blockEvaluationUntilCached,
 boolean propagateExceptions);
 public static EvaluationOptions getEvaluationOptions(
 double defaultReturnValue,
 boolean blockEvaluationUntilCached,
 boolean propagateExceptions);
}
The External Rules functions are similar to one another, in that each function creates a
rule definition, obtains a rule evaluator and rule cache, defines evaluation options, and
then evaluates the rule. The difference between the functions is in their scope and
return value:

■ Scope - the functions evaluate as a scoring or filtering rule or for a choice or choice
group

■ Return value - the eligibility and filtering functions return a boolean value, the
scoring functions return a double value

The following example shows a choice eligibility evaluation function (from the DC_
Demo Inline Service) in more detail.

//compile, cache and evaluate the eligibility rule and return a boolean
if (ruleMetadata == null || ruleMetadata.trim().equals(""))
 return true;
RuleDefinition def = new RuleDefinitionImpl(ruleMetadata);
RuleEvaluator evaluator = Application.getRuleEvaluator();
RuleCache cache = Application.getRuleCache();

Note: In previous versions, the RuleEvaluator interface provided an
evaluate() method with a boolean return value, as follows:

interface RuleEvaluator {
 boolean evaluate(Object context,
 RuleDefinition def,
 RuleCache cache,
 EvaluationOptions opts)
 throws ValidationException, EvaluationException;
}

The following method replaces evaluate(), but evaluate() is retained in
the API to preserve backward compatibility.

interface RuleEvaluator {
 boolean evaluateEligiblityRule(Object context,
 RuleDefinition def,
 RuleCache cache,
 EvaluationOptions opts)
 throws ValidationException, EvaluationException;}

To accommodate scoring rules, the RuleEvaluator interface has been
extended to include an evaluateScoringRule() method that returns a
double.

interface RuleEvaluator {
 boolean evaluateScoringRule(Object context,
 RuleDefinition def,
 RuleCache cache,
 EvaluationOptions opts)
 throws ValidationException, EvaluationException;}

External Rules

Externalized Objects Management 17-33

// public static EvaluationOptions getEvaluationOptions(
// boolean defaultReturnValue,
// boolean blockEvaluationUntilCached,
// boolean propagateExceptions)
// boolean defaultReturnValue: Return this value when rule evaluation fails
// with an exception or while the rule is being compiled
// during non-blocking evaluation
// boolean blockEvaluationUntilCached: Wait for the rule to be compiled before
// returning a value. (May cause integration point timeout)
// boolean propagateExceptions: Set to true if ILS developer decides to
// handle ValidationException and EvalutionException thrown by
// RuleEvaluator.evaluate() instead of returning defaultReturnVal

EvaluationOptions opts = EvaluationOptions.getEvaluationOptions(
 returnValue, false, true);
/*
The evaluate method attempts to retrieve the compiled bytecode for the rule
definition from the cache. If the bytecode for the rule is found in the cache, the
rule is evaluated and the resulting boolean is returned. Otherwise, the rule is
queued for compilation. Until the rule is compiled and cached, evaluate function
behaves as specified by the EvaluationOptions.
*/
return evaluator.evaluateEligibilityRule(choice, def, cache, opts);
// parameters: ruleMetadata, choice
// return: boolean

The following example shows the equivalent active (that is, non-commented) lines of
the scoring evaluation function (from the DC_Demo Inline Service) in more detail.

if (ruleMetadata == null || ruleMetadata.trim().equals(""))
 return defaultValue;
RuleDefinition def = new RuleDefinitionImpl(ruleMetadata);
RuleEvaluator evaluator = Application.getRuleEvaluator();
RuleCache cache = Application.getRuleCache();

EvaluationOptions opts = EvaluationOptions.getEvaluationOptions(
 defaultValue, false, true);

return evaluator.evaluateScoringRule(def, cache, opts);

You can change the blockEvaluationUntilCached and propagateExceptions
parameters on the getEvaluationOptions call in any or all of the External Rules
functions.

17.2.3.2 External Rule Caching
The Real-Time Decision Server includes an external rule cache in order to improve rule
evaluation performance. Each Inline Service application will maintain its own rule
cache and each application rule cache will be replicated on each Real-Time Decision
Server in a cluster. The external rules caching functionality provides the following
additional features:

■ Rule Cache Maintenance Operations

Decision Studio provides maintenance operation functions that can be used to
determine rule cache size and to clear the cache. These functions are:

Note: Each External Rules function change operates at the Inline
Service level.

External Rules

17-34 Oracle Real-Time Decisions Platform Developer's Guide

– External Rules - Clear Cache

– External Rules - Get Cache Size

– External Rules - Remove Inactive Cached Rules

These operations can be triggered externally by an MBean client such as the Oracle
Fusion Middleware Enterprise Manager to clear the cache of an Inline Service
deployed on a Real-Time Decision Server. Each operation uses the external rule
caching Java APIs for clearing an Inline Service rule cache and obtaining the
current size in bytes of the rule cache.

■ Non-Blocking Rule Evaluation

This feature guarantees that the evaluation of a rule will be non-blocking if the
rule is not found in the cache. During the very short time that it takes to compile a
single rule, Oracle RTD returns a default true/false value for an uncached
eligibility or filtering rule (or a default score of zero for an uncached scoring rule)
while the rule is being compiled in the background.

Maintenance Operations in Enterprise Manager
External rule caching maintenance operations are accessible as MBean operations in
Enterprise Manager. These maintenance operations are created for each deployed
Inline Service and can be found in the MBean OracleRTD - InlineServiceManager tree
path for the Inline Service. The following image shows the MBean operations for DC_
Demo.Development:

17.2.3.3 External Rule APIs
The external rules framework provides a set of Java APIs introduced with the external
rule caching feature. The APIs are provided by the following Java interfaces and
available for use in Decision Studio Java functions and logic sections:

■ Rule - A rule instance returned.

■ RuleDefinition - A rule definition created by the user and passed in to an
application rule evaluator.

■ RuleCache - A rule cache maintained by a deployed Inline Service and exposed
through the Inline Service application interface.

External Rules

Externalized Objects Management 17-35

■ RuleEvaluator - A rule evaluator maintained by a deployed inline server and
exposed through the Inline Service application interface.

■ EvaluationOptions - A collection of user defined options that can be passed in to a
rule evaluator. These options include the runtime exception policy options and the
evaluator options.

In addition, two new external rules exceptions can be caught while using these API
interfaces:

■ ValidationException - Thrown when a rule fails to compile because of problems in
rule metadata

■ EvaluationException - Thrown when rule execution fails with a
RuntimeException

17.2.3.4 External Rule Error Handling and Logging
The external rule errors and the corresponding Oracle RTD behavior are listed in the
following table. Note that the behavior can be tuned through modifying external rule
evaluation functions.

17.2.4 Setting Up External Rules in Decision Studio
You can set up the following types of external rule:

■ Choice Group Eligibility Rule

■ Choice Eligibility Rule

■ Filtering Rule

Table 17–2 External Rule Errors and Oracle RTD Behavior

Error Event Oracle RTD Action

Rule compilation error

- Unparseable rule metadata

- Rule metadata does not conform
to schema

- Missing/misspelled Inline
Service attribute reference

- Java compilation error

if (RuleCache.get(rule) == null)

 if (propagateExceptions && blockEvaluationUntilCached)

 throw underlying exception wrapped in ValidationException, do not log

 else

 log.ERROR rule metadata, underlying cause and full stack trace

else

 if (propagateExceptions)

 throw generic ValidationException

 else

 log.ERROR one line generic error message

Rule execution error

- Referenced Inline Service
attribute not initialized by
execution time

- Other exception thrown by a
callee of Rule.execute()

if (propagateExceptions)

 throw underlying exception wrapped in EvaluationException, do not log

else

 log.WARN one line underlying cause

Rule uuid error

- Unparseable uuid

- Unparseable timestamp

- Missing uuid and/or timestamp

if (propagateExceptions)

 throw ValidationException with underlying cause, do not log

else

 log.ERROR one line underlying cause

External Rules

17-36 Oracle Real-Time Decisions Platform Developer's Guide

■ Scoring Rule

The eligibility rules are defined as part of a choice or choice group definition. Filtering
and scoring rules are standalone rules, in that they are created independently of any
other Oracle RTD object. After creation, filtering rules can be attached to one or more
decisions, and scoring rules can be attached to choice and choice group attributes.

This section describes the process of setting up external rules.

The examples in this section are based on the DC_Demo Inline Service, which is
released with Oracle RTD.

This section contains the following topics:

■ Section 17.2.4.1, "Prerequisite - Setting Up Objects in an External Content
Repository"

■ Section 17.2.4.2, "Defining the Inline Service Objects for the Rules"

■ Section 17.2.4.3, "Defining External Rules for Inline Service Objects"

17.2.4.1 Prerequisite - Setting Up Objects in an External Content Repository
The metadata version of an external rule is stored in an external data source, typically
in a column in a database table, for example, the column EligibilityRuleMetadata in
table WEBOFFERS.

When a rule is related to a dynamic choice, it is customary to store the associated
dynamic choice as another column in the same external data source. For more details
related to dynamic choices, see Section 17.2.4.1, "Prerequisite - Setting Up Objects in an
External Content Repository."

For example, in the table SDDS.WEBOFFERS, the columns EligibilityRuleMetadata
and ScoringRuleMetadata contain the metadata for external rules, and the columns
Category and Id are used to identify dynamic choices.

17.2.4.2 Defining the Inline Service Objects for the Rules
In the Inline Service, you define the data source that contains the external object or
objects, then define an entity based on the data source.

Choice groups and choices that require external rules must define choice attributes
that are derived from the appropriate entity attributes.

Example
For rule set up, the data source Web Offers DS is based on the table
SDDS.WEBOFFERS, and the entity Web Offers, derived from Web Offers DS,
includes the two attributes Eligibility Rule Metadata and Scoring Rule Metadata.

Note: The definition of the table WEBOFFERS in previous releases
did not include the columns EligibilityRuleMetadata and
ScoringRuleMetadata.

If you have the table WEBOFFERS without these columns, you must
run initAppDB to ensure that you have the correct definition and
data for WEBOFFERS.

For details, see the section "Populating the DC_Demo Example Data"
in Oracle Fusion Middleware Administrator's Guide for Oracle Real-Time
Decisions.

External Rules

Externalized Objects Management 17-37

For dynamic choice setup, the entity Web Offers contains Id, and the entity Web
Offers List (also derived from Web Offers DS) contains the attribute Category.

The choice group Dynamic Offers includes Eligibility Rule Metadata and Scoring
Rule Metadata among its choice attributes, as well as the attributes required for
dynamic choice definition.

For more details, see Section 17.3, "Example of End to End Development Using
Dynamic Choices and External Rules."

17.2.4.3 Defining External Rules for Inline Service Objects
In contrast to rules completely defined and created in Decision Studio, external rules
by their very nature are created outside of Decision Studio. However, you must define
an external rule for an object by launching the appropriate rule editor within Decision
Studio for the object, as follows:

■ For external filtering rules, create or edit the filtering rule. For general information,
see Section 13.8, "Filtering Rules."

■ For external rules for choices and choice groups, select the Choice Eligibility tab or
the Group Eligibility tab. For general information, see Section 13.7.6, "About
Eligibility Rules."

■ For external scoring rules, create or edit the scoring rule. For general information,
see Section 13.9, "Scoring Rules."

In each case, as you edit the Boolean statement of the rule, first select the external rule
evaluation function that you require:

■ External Rules - Evaluate Choice Eligibility Rule

■ External Rules - Evaluate Choice Group Eligibility Rule

■ External Rules - Evaluate Filtering Rule

■ External Rules - Evaluate Scoring Rule

Then select or fill in values for the function parameters.

As a choice eligibility example, in the DC_Demo Inline Service, the external rule for
choice group Dynamic Offers is defined in the Choice Eligibility tab as follows:

DC_Demo Inline Service also contains an example of an external scoring rule, for the
choice group Dynamic Offers.

Note: Externalized filtering and scoring rules, when created or
edited in the external Rule Editor, cannot refer directly to choice
attributes. They can refer to session attributes whose value is obtained
from choice attributes.

External Rules

17-38 Oracle Real-Time Decisions Platform Developer's Guide

In the Choice Attributes tab, the value for the choice attribute Dynamic Score is
derived from the function External Rules - Evaluate Scoring Rule. The parameters for
the function are the choice attributes Scoring Rule Metadata and Default Score.

In the Scores tab, the Score for the performance metric Offer Acceptance is derived
from the choice attribute Dynamic Score.

For more information on External Rules functions and parameters, see Section 17.2.3.1,
"External Rule Evaluation Functions."

17.2.5 Setting Up the External Interface and Embedded Rule Editor
The external third party interface editor is responsible for connecting to Oracle RTD
and passing sufficient information for Oracle RTD to launch the Rule Editor within the
third party interface. For more information, see Section 17.2.2, "External Rule Editor."

The examples used to illustrate the setup of the external interface and embedded Rule
Editor are based on the External Rules Development Helper released with the DC_
Demo Inline Service. The files to generate this helper are located in the DC_Demo
dc/jsp folder.

This section contains the following topics:

■ Section 17.2.5.1, "Defining the Rule Editor Widget"

■ Section 17.2.5.2, "Changing the Rule Editor Context and Scope"

■ Section 17.2.5.3, "Defining the Callback Function"

17.2.5.1 Defining the Rule Editor Widget
The Rule Editor can be embedded in a third party interface by creating an HTML form
inside the third party editor HTML for use with the Rule Editor widget.

The form should set the action to /ui/workbench and create an iframe to house the
embedded editor.

External Rules

Externalized Objects Management 17-39

Table 17–3 shows the parameters for each type of rule. The HTML form must create
form inputs with values for each of the parameters listed in Table 17–3.

Table 17–4 shows the options for the rule-specific parameters.

The form inputs help to create an initial context and scope for the embedded Rule
Editor.

For an example, see Defining the Rule Editor IFrame in the DC_Demo External Rules
Helper.

17.2.5.2 Changing the Rule Editor Context and Scope
The embedded Rule Editor context and scope can also be dynamically changed with
Javascript functions.

Note: For cross-domain actions, Web browsers have security
mechanisms that prevent Javascript from interacting with a frame or
widget whose content is from another domain.

To resolve the cross-domain problem:

■ Disable the browser security that prevents this cross-site-scripting
communication channel

■ Host the external editor and widget on the same server

■ Use a proxy in front of the two servers that rewrites their URLs
such that the browser thinks they came from one server

Table 17–3 Parameters for Embedded Rule Editors

Parameter Description

app Inline Service identifier.

url sdo/editor.jsp

This is the url of the editor jsp file.

DO NOT CHANGE!

object Identifier of the object containing the rule. See Table 17–4 for details.

type Type of the object containing the rule. See Table 17–4 for details.

editingAspect Editing aspect. See Table 17–4 for details.

callback Name of the Javascript callback function. This function is called
whenever editor events are returned.

Table 17–4 Rule-Specific Parameter Options

Rule Type object type editingAspect

Group Eligibility Rule Group identifier choiceGroup rule

Group's Choice Eligibility Rule Group identifier choiceGroup choiceRule

Choice Eligibility Rule Choice identifier choice rule

Filtering Rule <Omit this parameter> "" whole

Scoring Rule <Omit this parameter> valueRule rule

Example of End to End Development Using Dynamic Choices and External Rules

17-40 Oracle Real-Time Decisions Platform Developer's Guide

For an example, see Changing Rule Editor Context and Scope in the DC_Demo
External Rules Helper.

17.2.5.3 Defining the Callback Function
The Javascript callback function must be created to respond to events returned by the
embedded Rule Editor. The embedded Rule Editor will call the callback function with
a single object parameter. This object will always have a type property that specifies
the event type that is occurring. Each event type may use the data property to provide
additional information.

The events that represent the current state of the embedded Rule Editor are the
following:

■ editorReady

After the embedded Rule Editor has completed the required rule processing, it
fires the editorReady event.

There are three functions available as properties of the data object to stow away
for calling in the future:

– isValid(), which returns a boolean value

– isModified(), which returns a boolean value

– getXml(), which returns a string value

■ modified

The modified event is called upon every modification of the rule. It does not make
use of the data property.

For an example, see Defining the Callback Function in the DC_Demo External Rules
Helper.

17.3 Example of End to End Development Using Dynamic Choices and
External Rules

DC_Demo is an Inline Service released with Oracle RTD that demonstrates the setup
and use of dynamic choices and external rules.

The following section provides an overview of how DC_Demo utilizes dynamic
choices external rules in Oracle RTD, and how this fits into the complete application
development process.

As a summary, the main development procedures described in this section are the
following:

■ Using the standard external rule evaluation functions in dynamic choice eligibility
evaluation

■ Embedding the external rules editor in an Inline Service Web page

■ Integrating with a dynamic choice content database

■ Editing an external rule

■ Reviewing dynamic choice reports in Decision Center

This section contains the following topics:

■ Section 17.3.1, "Database Driven Dynamic Choices"

■ Section 17.3.2, "Evaluating External Rules"

Example of End to End Development Using Dynamic Choices and External Rules

Externalized Objects Management 17-41

■ Section 17.3.3, "Embedding an External Rule Editor in a Third Party Interface"

■ Section 17.3.4, "DC_Demo External Rules Deployment Helper"

■ Section 17.3.5, "Pushing External Rules To a Production Environment"

■ Section 17.3.6, "Viewing Reports for Dynamic Choices"

17.3.1 Database Driven Dynamic Choices
Dynamic choices can be managed by a content management server and stored in a
content database.

The Inline Service DC_Demo derives its dynamic choice Web offers from a table called
WEBOFFERS. This table contains the following columns:

■ ELIGIBILITYRULEMETADATA, which stores the external rule metadata used in
choice eligibility evaluation

■ SCORINGRULEMETADATA, which stores the external rule metadata used in
scoring rule evaluation

■ CATEGORY, which specifies the ID of the parent dynamic choice

The database columns are mapped to Oracle RTD entity object attributes through the
data source Web Offers DS, as in the following image:

Dynamic choices are set up by creating two entity objects, as follows:

Note: The definition of the table WEBOFFERS in previous releases
did not include the columns EligibilityRuleMetadata and
ScoringRuleMetadata.

If you have the table WEBOFFERS without these columns, you must
run initAppDB to ensure that you have the correct definition and
data for WEBOFFERS.

For details, see the section "Populating the DC_Demo Example Data"
in Oracle Fusion Middleware Administrator's Guide for Oracle Real-Time
Decisions.

Example of End to End Development Using Dynamic Choices and External Rules

17-42 Oracle Real-Time Decisions Platform Developer's Guide

■ The entity called Web Offers contains the attribute information for one dynamic
choice.

■ The entity Web Offers List contains a set of dynamic offers obtained by the
database and is mapped to a datasource that describes the dynamic choice table
information.

A choice group called Dynamic Offers is created whose dynamic choice configuration
is enabled and set to use the Web Offers entity for assigning choice attribute data.

The following image shows dynamic choice definition for the Dynamic Offers choice
group.

The following image shows dynamic choice attributes mapped to the Web Offers
entity attributes. Note the two choice attributes Eligibility Rule Metadata and Scoring
Rule Metadata, which are used to store the external rule metadata, and will be used to
evaluate choice eligibility and scoring.

For general information about setting up dynamic choices, see Section 17.1.5,
"Overview of Setting up Dynamic Choices in Decision Studio."

17.3.2 Evaluating External Rules
Dynamic choice eligibility evaluation rules can reference external rules stored as rule
metadata in a dynamic choice attribute by using the external rule evaluation functions
provided in Decision Studio. For example, the dynamic choice group Dynamic Offers
uses the external rule function External Rules - Evaluate Choice Eligibility Rule
function as shown in the following image:

Example of End to End Development Using Dynamic Choices and External Rules

Externalized Objects Management 17-43

17.3.3 Embedding an External Rule Editor in a Third Party Interface
The Oracle RTD external Rule Editor provides a graphical user interface that can be
used to create and edit external rules for dynamic choices.

For general information about embedding the Rule Editor in an external interface, see
Section 17.2.5.1, "Defining the Rule Editor Widget."

As a summary, the form that sets up the Rule Editor Iframe must define the following
form inputs:

■ app - the name of the Inline Service, for example, DC_Demo.

■ url - sdo/editor.jsp (the url of the editor jsp file)

■ object - the default parent Inline Service choice type, for example, AllOffersCG.

■ type - the default scope of the editor (values: choiceGroup, choice, "" - for filtering
rules)

■ editingAspect - the default editing aspect (values: choiceRule, rule, whole)

■ callback - the Javascript callback function; function called whenever editor events
are returned

The form inputs help to create the initial context and scope for the embedded rule
editor.

Defining the Rule Editor IFrame in the DC_Demo External Rules Helper
The following is an example of how the embedded rule editor is integrated into the
DC_Demo external Rule Editor helper:

<!--
 form attributes:

 name: form name (i.e. editorViewForm)
 target: form iframe target name (i.e. editorViewIFrame)
 method: post (required)
 action: /ui/workbench (editor servlet url; required)

-->

<form name="editorViewForm" target="editorViewIFrame"
 method="post" action="/ui/workbench">

 <iframe frameborder="0" name="editorViewIFrame"/>

 <!--
 form inputs:

 app: inline service name (for example, DC_Demo)
 url: embedded editor url (a constant)
 object: parent dynamic choice group ID (for example, AllOffersCG)
 type: rule evaluation scope or context (for example, choiceGroup)
 editingAspect: editor aspect view (for example, choiceRule)
 callback: javascript callback function (for example, callbackFunction)
 -->

 <input type=hidden name=app value=DC_Demo>
 <input type=hidden name=url value=sdo/editor.jsp>
 <input type=hidden name=object value=AllOffersCG>
 <input type=hidden name=type value=choiceGroup>
 <input type=hidden name=editingAspect value=choiceRule>

Example of End to End Development Using Dynamic Choices and External Rules

17-44 Oracle Real-Time Decisions Platform Developer's Guide

 <input type=hidden name=callback value=callbackFunction>

</form>

Changing Rule Editor Context and Scope in the DC_Demo External Rules Helper
The embedded Rule Editor context and scope can also be dynamically changed with
Javascript functions.

The following is an example of how DC_Demo dynamically changes the context and
scope of the Rule Editor using defined Javascript functions to change the form input
values:

<!--
 editorViewForm: name of the form containing the rule editor
 editorViewForm.object: ID of the choice or choice group context
 editorViewForm.type: scope or context type (for example, choiceGroup)
 editorViewForm.editingAspect: editor aspect view (for example, choiceRule)
-->

<script>
groupChoiceScope: function() {
 editorViewForm.object.value = "DynamicOfferCG";
 editorViewForm.type.value = "choiceGroup";
 editorViewForn.editingAspect.value = "choiceRule";
 loadRule();
}

</script>

Defining the Callback Function in the DC_Demo External Rules Helper
The Javascript callback function responds to events returned by the embedded Rule
Editor. The events returned include editorReady and modified which represent the
current state of the embedded Rule Editor.

The following is an example of DC_Demo's editor helper Javascript callback function
callbackFunction, which obtains the isValid and isModified booleans and the rule
metadata data from the editor after it fires an editorReady event:

<!--
 event.type: the event type name (for example, editorReady)
 event.data.isValid: the is valid rule return boolean
 event.data.isModified: the is modified rule return boolean
 event.data.getXml: returns the metadata of the rule in the editor
-->
<script>
callbackFunction: function(event) {
 switch(event.type) {
 case "editorReady":
 isValid = event.data.isValid;
 isModified = event.data.isModified;
 getXml = event.data.getXml;
 break;
 case "modified":
 log("is modified");
 break;
 default:
 throw "unexpected callback event type: " + event.type;
 }
}

Example of End to End Development Using Dynamic Choices and External Rules

Externalized Objects Management 17-45

</script>

17.3.4 DC_Demo External Rules Deployment Helper
Oracle RTD supplies an external rules editor helper, in the Inline Service DC_Demo, in
the form of two files, external_rules_deployment_helper.html and
database.jsp, visible in Decision Studio under the folder path dc > jsp.

This editor helper interface is provided as an example of how to integrate the external
rules editor widget into a third party interface. Through this interface, users can edit
external rules for dynamic choices defined in the database table WEBOFFERS.

The DC_Demo editor helper is broken into four sections:

■ The Graphical View contains the actual external rules editor and can be used to
edit the rule.

■ The Metadata View stores the metadata version of the external rule which can be
saved back into a dynamic choice table row.

■ The Tabular View is a database management section which allows user to search
for, edit, and save dynamic choice external rules stored in the database table
WEBOFFERS.

■ The Log section displays actions performed in the editor helper.

The following image shows an example of the helper window, showing a rule that has
been edited in the Graphical View, with the edited rule metadata visible in the
Metadata View.

The Tabular View displays the rows of the database table WEBOFFERS, where the
significant columns are:

Example of End to End Development Using Dynamic Choices and External Rules

17-46 Oracle Real-Time Decisions Platform Developer's Guide

■ CATEGORY, which stores the Id of the dynamic choice group

■ RULEMETADATA, which stores the external rule metadata

After editing the rule in the Graphical View rule editor, a user clicks the generate
metadata link, and the generated metadata then appears in the Metadata View.

17.3.5 Pushing External Rules To a Production Environment
One of the main purposes of the external Rule Editor is to push updated dynamic
choice external rules back into a production environment. Typically, a third party
content database is used to store dynamic choices and their external rules.

In DC_Demo, dynamic choices are stored in a table called WEBOFFERS. This table
contains a column called RULEMETADATA which used to store the external rule
metadata. Another column called CATEGORY is used to store the ID of the parent
dynamic choice group.

The DC_Demo external rule editor helper saves an external rule back to the database
when a user selects a dynamic choice table row and clicks the Save link in the row.

17.3.6 Viewing Reports for Dynamic Choices

Decision Center can be used to view reports for each dynamic choice defined in a
content database, which were actually recommended and added to model learning
data. This is done by logging into a Decision Center Inline Service and opening the
Decision Process section in the Decision Center navigator.

From here, any defined dynamic choice groups will be listed and will contain all
dynamic offers defined in database tables for each dynamic choice group, that were
recommended and added to model learning data. Choices in the database tables that
were not added to model learning data do not appear in Decision Center reports.

The following is an image of a Decision Center report, with the navigator tree showing
the DC_Demo dynamic choices:

Note: Decision Center does not by default display the eligibility rule
of a Dynamic Choice, even when the rule was edited with an external
Rule Editor.

Externalized Performance Goal Weighting

Externalized Objects Management 17-47

17.4 Externalized Performance Goal Weighting
In the Oracle RTD decisioning process, decisions can target segments of the population
and weight the performance metrics attached to that decision for each segment.

You can set up your decision in two ways, depending on what kind of weights you
want for your performance goals:

■ Pre-defined weights, whose values are specified in the Inline Service

■ Custom weights, whose values can be calculated or changed at run time

By selecting custom weights for performance goals in the Inline Service, end users can
influence the decisioning process with on-the-spot decision process modifications,
which effectively segment different population segments at run time.

For details of how to define and use custom performance goal weights in an Inline
Service, see the following topics:

■ Section 13.6, "Performance Goals"

■ Section 13.11, "About Decisions"

■ Section 13.11.1, "Segmenting Population and Weighting Goals"

Externalized Performance Goal Weighting

17-48 Oracle Real-Time Decisions Platform Developer's Guide

18

Transactional Logging and Decision Analytics 18-1

18Transactional Logging and Decision
Analytics

This chapter describes the transactional logging and decision analytics feature. This
feature provides analytics on the decisions and events that are processed by Oracle
RTD, that is, it provides transactional reporting capabilities on Oracle RTD choice
events and decisions. It enables business users to easily see a summary performance of
choices by decision.

Transactional logging and decision analytics uses other business intelligence
technologies such as Oracle Business Intelligence Enterprise Edition (OBIEE).

This chapter contains the following topics:

■ Section 18.1, "High Level Architecture"

■ Section 18.2, "Specifications"

■ Section 18.3, "Installation"

■ Section 18.4, "Customization"

18.1 High Level Architecture
This section introduces the main architecture concepts underlying this feature, namely
logging through APIs, a transformation stored procedure, and the reporting
mechanism based on OBIEE.

This section contains the following topics:

■ Section 18.1.1, "Terminology"

■ Section 18.1.2, "Logging"

■ Section 18.1.3, "Transformation"

■ Section 18.1.4, "Reporting"

18.1.1 Terminology
Decision Analytics - The transactional reports based on OBIEE.

18.1.2 Logging
Inline Services can use Java APIs to log decision and event information in transactional
tables within SDDS.

Specifications

18-2 Oracle Real-Time Decisions Platform Developer's Guide

18.1.3 Transformation
A stored procedure is provided to move the contents of the transactional tables in
SDDS into a star schema. This star schema resides in a different database schema.

The stored procedure is typically run once a day.

18.1.4 Reporting
OBIEE is used to provide dashboards reporting on this star schema.

Sub-components include:

■ An OBIEE RPD which provides the physical and logical mappings

The RPD also provides some measures that are used by the reports. These
measures are specific to the marketing use case.

■ A Web Catalog which provides dashboards for the marketing use case. One
dashboard is generic and can be used with any kind of choices (static or dynamic).

The generic dashboard can be viewed within OBIEE Presentation Services.

18.2 Specifications
Two tables, SDDecisionLog and SDChoiceEventLog, have been added to SDDS. This
section describes these tables and the other components of the transactional logging
and decision analytics feature.

This section contains the following topics:

■ Section 18.2.1, "SDDecisionLog"

■ Section 18.2.2, "SDChoiceEventLog"

■ Section 18.2.3, "Partitioning"

■ Section 18.2.4, "Inline Service APIs"

■ Section 18.2.5, "Report Schema"

■ Section 18.2.6, "OBIEE Integration"

18.2.1 SDDecisionLog

Note: Several other dashboards are specific to the Base Marketing
Decision Manager application, and can be viewed within Decision
Manager.

Column Description

session_key Key of session (customer identification)

app_name_id ID of the application (Inline Service)

version_id Version of the application.

This gets incremented every time the Inline Service is redeployed

choice_parent_id ID of the choice group to which this choice belongs

choice_parent_id_name Name of the choice group to which this choice belongs.

choice_id ID of the choice.

Specifications

Transactional Logging and Decision Analytics 18-3

choice_id_name Name of the choice

channel_id Channel in which this decision was made

happened Timestamp of the decision based on application time (in seconds
since January 1st 1970 UTC)

day_of_month Day of the month of the decision in format day_n or day_nn

decision_instance_id Unique id representing the decision

ip_name Name of the integration point

decision_name Name of the decision

control_group Whether this is a control group decision or not (’Y’ or ’N’)

is_random Whether this is a random decision or not (’Y’ or ’N’)

segment_id ID of the decision segment

segment_name Name of the decision segment

perf_goal_1 Name of the first performance goal

individual_score_1 Score for the first performance goal

individual_weight_1 Weight for the first performance goal

perf_goal_2
individual_score_2
individual_weight_2
........

perf_goal_10
individual_score_10
individual_weight_10

Names, scores, and weights for subsequent performance goals

total_score Total score for all performance goals

score_rank Rank of this choice among other choices in this decision

hierarchy_id_1 ID of the first related choice or choice group in the hierarchy.

hierarchy_id_2,...,

hierarchy_id_10

IDs of subsequent related choices or choice groups in the hierarchy

hierarchy_id_name_1 Name of the first related choice or choice group in the hierarchy.

hierarchy_id_name_2,...,

hierarchy_id_name_10

Names of subsequent related choices or choice groups in the
hierarchy

event_flex_float_1 First float flex field

event_flex_float_2,...,

event_flex_float_10

Subsequent float flex fields

event_flex_int_1 First int flex field

event_flex_int_2,...,

event_flex_int_10

Subsequent int flex fields

event_flex_string_1 First string flex field

event_flex_string_2,...,

event_flex_string_10

Subsequent string flex fields

event_flex_date_1 First date flex field

Column Description

Specifications

18-4 Oracle Real-Time Decisions Platform Developer's Guide

A row is inserted in this table for each choice returned as part of a decision and each
key in the current session.

If the decision returns multiple choices, multiple rows will be inserted, with different
choices (and scores) for each row.

If the session is identified by multiple keys, multiple rows will be inserted, with a
different session key for each row.

Note: if the session has multiple keys, all the counts in the dashboards will be
multiplied by the number of keys.

Oracle RTD logs only the choices that are returned as part of the decision, not the ones
that are eligible but not returned.

More details about some of the SDDecisionLog fields:

is_random: The value is 'Y' in the following cases:

■ The decision was specified to select choices at random

■ Total score could not be calculated for any eligible choice in that decision
(therefore it is truly a random decision as all the choices were randomly selected)

control_group: The value is 'Y' if session().isControlGroup() is true. This attribute is
used to distinguish choices returned by a decision when control group is set to Y
versus N. If control_group is 'Y' then the choices returned by the decision is random. If
control_group is 'Y' then the is_random attribute is always 'Y'.

individual_score_n: This is the score for this performance goal, un-weighed,
un-normalized, that is, not multiplied by the weight and not divided by the
performance goal normalization factor. This is different from the Studio trace that
shows the weighted, normalized score. The score is null if it cannot be computed.

individual_weight_n: This is the weight of this performance goal, as a number
between 0 and 100.

total_score: This is the total score for this choice, computed as the sum of the
weighted, normalized individual score. If a score cannot be determined for a required
performance goal, the total score is null. If a score cannot be determined for a
non-required performance goal, the total weight is normalized so that the other
performance goals cover 100% of the weights.

score_rank: This is the rank of the choice after the selection function has been applied.
Note that a choice for which a total score cannot be computed is assigned a random
score and can therefore be ranked above another choice that has a real total score.

18.2.2 SDChoiceEventLog

event_flex_date_2,...,

event_flex_date_10

Subsequent date flex fields

Column Description

session_key Key of session (customer identification)

app_name_id ID of the application (Inline Service)

Column Description

Specifications

Transactional Logging and Decision Analytics 18-5

A row is inserted in this table for each event and each key in the current session. If the
session is identified by multiple keys, multiple rows will be inserted, with a different
session key for each row.

version_id Version of the application.

This gets incremented every time the Inline Service is redeployed

choice_parent_id ID of the choice group to which this choice belongs

choice_parent_id_name Name of the choice group to which this choice belongs.

choice_id ID of the choice.

choice_id_name Name of the choice

channel_id Channel in which this event was made

choice_event_id ID of the choice event

happened Timestamp of the event based on application time (in seconds
since January 1st 1970 UTC)

day_of_month Day of the month of the event in format day_n or day_nn

decision_instance_id Unique id representing the decision this event belongs to

control_group Whether this event occurred in a control group decision or not ('Y'
or 'N')

segment_id ID of the decision segment this event occurred in

segment_name Name of the decision segment this event occurred in

hierarchy_id_1 ID of the first related choice or choice group in the hierarchy.

hierarchy_id_2,...,

hierarchy_id_10

IDs of subsequent related choices or choice groups in the hierarchy

hierarchy_id_name_1 Name of the first related choice or choice group in the hierarchy.

hierarchy_id_name_2,...,

hierarchy_id_name_10

Names of subsequent related choices or choice groups in the
hierarchy

event_flex_float_1 First float flex field

event_flex_float_2 ,...,

event_flex_float_10

Subsequent float flex fields

event_flex_int_1 First int flex field

event_flex_int_2,...,

event_flex_int_10

Subsequent int flex fields

event_flex_string_1 First string flex field

event_flex_string_2,...,

event_flex_string_10

Subsequent string flex fields

event_flex_date_1 First date flex field

event_flex_date_2,...,

event_flex_date_10

Subsequent date flex fields

Column Description

Specifications

18-6 Oracle Real-Time Decisions Platform Developer's Guide

18.2.3 Partitioning
SDDS can be configured to use partitioning or not. If SDDS uses partitioning, the
following partition tablespaces are created: SDLogging_TS0, SDLogging_TS1 and
SDLogging_TS2.

If partitioning is enabled, the tables SDChoiceEventLog and SDDecisionLog are
partitioned by the day_of_month column to have 10 (or 11) consecutive days in each
partition tablespace.

18.2.4 Inline Service APIs
This section describes the APIs that implement the logging.

The logging occurs in three instances:

■ When a decision is made

■ When a base event occurs

■ When a positive event occurs ("closing the loop")

Typically (in web channels), the base event occurs during the advisor. But sometimes,
the base event occurs in an informant (this is typical in call center channels where the
base event occurs only when the sales or service agent tells the offer to the customer).

To tie base events and positive events to the decision, a unique decision_instance_id is
generated for each decision. When logging the base or positive events, the decision_
instance_id must be provided. Inline Service developers must modify their Inline
Service logic and client code to be able to remember the decision_instance_id. This
would typically be done by sending the decision_instance_id as choice attribute; to
close the loop, the informant must pass the decision_instance_id as request attribute.
The web site or call center client must remember this id between the advisor and
informant calls.

The call to log the decision must be made in the decision post selection logic or the
advisor asynchronous logic.

For the base event, if it occurs at the same time as the decision, the call to log the
choice event must be made in the decision post selection logic or the advisor
asynchronous logic. Note that if you log in decision post selection logic, the number of
offers returned can be overridden later in the advisor.

For the base event, if it occurs in a subsequent informant, the call to log the choice
event must be made in the informant logic or asynchronous logic.

For a positive event, the call to log the choice event must be made in the informant
logic or asynchronous logic.

Note: If you do not modify an existing Inline Service, no transaction
logging will occur.

Specifications

Transactional Logging and Decision Analytics 18-7

18.2.4.1 APIs
SDChoice (the parent class for all choices) has the following new methods:

■ public String getDecisionId();

■ public void setDecisionId(String decisionId);

■ public HashMap<String, Object> getChoiceEventLogValues();

■ public void setChoiceEventLogValue(String key, Object value);

■ public HashMap<String, Object> getDecisionLogValues();

■ public void setDecisionLogValue(String key, Object value);

In addition, the following methods are automatically generated for each choice class
for each choice group:

■ public void recordDecisionLog(String eventName, String channel, String
decisionId, HashMap<String, Object> decisionLogFields);

■ public void recordChoiceEventLog(String eventName, String channel, String
decisionId, HashMap<String, Object> choiceeventLogFields, String
decisionClassName);

In the APIs, decisionId is the name for the element described previously in this section
as decision_instance_id. It is set on the choice when the decision is evaluated so you
do not typically need to call the setter. But you call the getter to get the id so you can
remember it when you close the loop.

The decisionLogFields hashmap contains the key value pairs for most of the columns
logged as part of the decision.

The choiceEventLogFields hashmap contains the key value pairs for most of the
columns logged as part of the choice event.

Decision log logging occurs when recordDecisionLog is called, where:

■ eventName is the name of the base event (required).

■ channel is the name of the channel (optional).

■ decisionLogFields is the decision log values hashmap (required).

Choice event log logging occurs when recordChoiceEventLog is called, where:

■ eventName is the name of the base or positive event (required).

■ channel is the name of the channel (optional).

■ choiceEventLogFields is the decision log values hashmap (required).

■ decisionClassName is the class name of the decision that was used for the base
event of this choice, for instance "OfferDecision" or "RandomDecision"

Note: Oracle RTD provides distinct APIs to log decisions into
SDDecisionLog and events into SDChoiceEventLog. The current
choice performance dashboard and the Oracle RTD Base Marketing
dashboards are based only on the data from SDChoiceEventLog, and
work even if SDDecisionLog is turned off.

The data logged into SDDecisionLog is planned to be used in a future
release, and is available if you want to build your own dashboards.

Specifications

18-8 Oracle Real-Time Decisions Platform Developer's Guide

The following table provides a detailed description of how each of the database
columns are set for the decision log.

Note: In the tables that follow, set values for the italicized names.

For example, for the API method for choice_parent_id, replace
newValue with the value of your choice_parent_id.

Column Default Value API Method

session_key Set automatically None

app_name_id Set automatically None

version_id Set automatically None

choice_parent_id Set automatically choice.setDecisionLogValue("choice_parent_id", newValue)

choice_parent_id_name Set automatically choice.setDecisionLogValue("choice_parent_id_name", newValue)

choice_id Set automatically choice.setDecisionLogValue("choice_id", newValue)

choice_id_name Set automatically choice.setDecisionLogValue("choice_id_name", newValue)

channel_id None choice.recordDecisionLog(event, channel, decision_instance_id, logValues)

happened Set automatically Application.setTime(currentTimeMillis)

[Note: happened stores the time as the number of seconds since January 1st
1970 UTC, but to override the current time, you must call Application.setTime
with the number of milliseconds since January 1st 1970 UTC.]

day_of_month Set automatically None

decision_instance_id Generated
automatically but you
have to pass it as
parameter to method

choice.recordDecisionLog(event, channel, decision_instance_id, logValues)

ip_name None choice.setDecisionLogValue("ip_name", newValue)

decision_name Set automatically choice.setDecisionLogValue("decision_name", newValue)

control_group Set automatically choice.setDecisionLogValue("control_group", newValue)

is_random Set automatically choice.setDecisionLogValue("is_random", newValue)

segment_id Set automatically choice.setDecisionLogValue("segment_id", newValue)

segment_name Set automatically choice.setDecisionLogValue("segment_name", newValue)

perf_goal_1 Set automatically choice.setDecisionLogValue("perf_goal_1", newValue)

individual_score_1 Set automatically choice.setDecisionLogValue("individual_score_1", newValue)

individual_weight_1 Set automatically choice.setDecisionLogValue("individual_weight_1", newValue)

perf_goal_2
individual_score_2
individual_weight_2
........

perf_goal_10
individual_score_10
individual_weight_10

Set automatically <Similar to perf_goal_1, individual_score_1, individual_weight_1>

total_score Set automatically choice.setDecisionLogValue("total_score", newValue)

score_rank Set automatically choice.setDecisionLogValue("score_rank", newValue)

hierarchy_id_1 None choice.setDecisionLogValue("hierarchy_id_1", newValue)

hierarchy_id_2,...,

hierarchy_id_10

None <Similar to hierarchy_id_1>

hierarchy_id_name_1 None choice.setDecisionLogValue("hierarchy_id_name_1", newValue)

Specifications

Transactional Logging and Decision Analytics 18-9

The following table provides a detailed description of how each of the database
columns are set for the choice event log.

hierarchy_id_name_2,...,

hierarchy_id_name_10

None <Similar to hierarchy_id_name_1>

event_flex_float_1 None choice.setDecisionLogValue("event_flex_float_1", newValue)

event_flex_float_2,...,

event_flex_float_10

None <Similar to event_flex_float_1>

event_flex_int_1 None choice.setDecisionLogValue("event_flex_int_1", newValue)

event_flex_int_2,...,

event_flex_int_10

None <Similar to event_flex_int_1>

event_flex_string_1 None choice.setDecisionLogValue("event_flex_string_1", newValue)

event_flex_string_2,...,

event_flex_string_10

None <Similar to event_flex_string_1>

event_flex_date_1 None choice.setDecisionLogValue("event_flex_date_1", newValue)

event_flex_date_2,...,

event_flex_date_10

None <Similar to event_flex_date_1>

Column Default Value API Method

session_key Set automatically None

app_name_id Set automatically None

version_id Set automatically None

choice_parent_id Set automatically None

choice_parent_id_name Set automatically None

choice_id Set automatically None

choice_id_name Set automatically None

channel_id None choice.recordChoiceEventLog(event, channel, decision_instance_id, logValues,
decisionClassName)

choice_event_id None choice.recordChoiceEventLog(event, channel, decision_instance_id, logValues,
decisionClassName)

happened Set automatically Application.setTime(currentTimeMillis)

[Note: happened stores the time as the number of seconds since January 1st
1970 UTC, but to override the current time, you must call Application.setTime
with the number of milliseconds since January 1st 1970 UTC.]

day_of_month Set automatically None

decision_instance_id None choice.recordChoiceEventLog(event, channel, decision_instance_id, logValues,
decisionClassName)

control_group Set automatically choice.setChoiceEventLogValue("control_group", newValue)

segment_id Set automatically choice.setChoiceEventLogValue("segment_id", newValue)

segment_name Set automatically choice.setChoiceEventLogValue("segment_name", newValue)

hierarchy_id_1 None choice.setChoiceEventLogValue("hierarchy_id_1", newValue)

hierarchy_id_2,...,

hierarchy_id_10

None <Similar to hierarchy_id_1>

hierarchy_id_name_1 None choice.setChoiceEventLogValue("hierarchy_id_name_1", newValue)

hierarchy_id_name_2,...,

hierarchy_id_name_10

None <Similar to hierarchy_id_name_1>

Column Default Value API Method

Specifications

18-10 Oracle Real-Time Decisions Platform Developer's Guide

18.2.4.2 Putting it All Together
Here is an example of decision logging, given an event named event, a channel named
channel and an integration point name named integrationPointName, and setting a
flex field:

creative.setDecisionLogValue("ip_name", integrationPointName);

creative.setDecisionLogValue("decision_flex_int_1",
session().getCustomer().getCallsLast6Months());

creative.recordDecisionLog(event, channel, creative.getDecisionId(),
creative.getDecisionLogValues());

event_flex_float_1 None choice.setChoiceEventLogValue("event_flex_float_1", newValue)

event_flex_float_2,...,

event_flex_float_10

None <Similar to event_flex_float_1>

event_flex_int_1 None choice.setChoiceEventLogValue("event_flex_int_1", newValue)

event_flex_int_2,...,

event_flex_int_10

None <Similar to event_flex_int_1>

event_flex_string_1 None choice.setChoiceEventLogValue("event_flex_string_1", newValue)

event_flex_string_2,...,

event_flex_string_10

None <Similar to event_flex_string_1>

event_flex_date_1 None choice.setChoiceEventLogValue("event_flex_date_1", newValue)

event_flex_date_2,...,

event_flex_date_10

None <Similar to event_flex_date_1>

Notes: If you logged the decision for this decision_instance_id
before logging the choice event, the control_group, segment_id, and
segment_name will be the same as the decision's control_group,
segment_id, and segment_name and cannot be overridden.

If you did not log the decision for this decision_instance_id before
logging the choice event, the control_group value will be determined
by the value of session().isControlGroup(), unless you override it by
calling choice.setChoiceEventLogValue("control_group", newValue).

If you did not log the decision for this decision_instance_id before
logging the choice event, the segment_id and segment_name value
will be determined by evaluating the segments of the decision passed
as decisionClassName when you called the recordChoiceEventLog
method, unless you override it by calling both
choice.setChoiceEventLogValue("segment_id", newValue) and
choice.setChoiceEventLogValue("segment_name", newValue).

If you do override the segment_id and segment_name, make sure that
you pass the right decisionClassName, which can be different in the
control group.

Column Default Value API Method

Specifications

Transactional Logging and Decision Analytics 18-11

Here is an example of choice event logging, given an event named event, a channel
named channel and a decision instance id named decision_instance_id, and setting a
flex field:

creative.setChoiceEventLogValue("event_flex_int_1",
session().getCustomer().getCallsLast6Months());

creative.recordChoiceEventLog(event, channel, decision_instance_id,
creative.getChoiceEventLogValues(), "CreativeDecision");

18.2.5 Report Schema
The following is a diagram of the report schema:

18.2.5.1 Description
The report schema is in a different schema than SDDS. It is a traditional star schema
with three tables as facts: SDDECISIONLOGREPORTMASTER,
SDDECISIONLOGREPORT and SDCHOICEEVENTLOGREPORT.

SDDECISIONLOGREPORTMASTER contains data that is different for each choice in a
decision, for instance the performance goal weights and scores.
SDDECISIONLOGREPORT contains data that is common for every choice returned as
part of a decision.

The dimensions correspond to the main columns available in the fact tables.
Additional dimensions can be created if, for instance, you want to slice and dice based
on the flex fields.

The SAMP_TIME_DAY_D, SAMP_TIME_MTH_D and SAMP_TIME_QTR_D tables
are standard BI tables for date representations (as in the SampleApp RPD).

Specifications

18-12 Oracle Real-Time Decisions Platform Developer's Guide

18.2.5.2 Stored Procedures
The following stored procedures are created as part of the schema:

■ GEN_TIME: Generates additional data in the SAMP_TIME_DAY_D, SAMP_
TIME_MTH_D and SAMP_TIME_QTR_D tables. If the time intervals covered by
the initial data in these tables are not enough, call this stored procedure to specify
a new time interval. Use I_START_DATE and I_END_DATE to specify the
interval, for instance, Gen_Time (TO_DATE ('01-JAN-2013','DD-MON-YYYY'),
TO_DATE ('31-DEC-2025','DD-MON-YYYY')).

■ SDDeleteAllData: Deletes all report data (facts and dimensions, but not the
SAMP_TIME_DAY_D, SAMP_TIME_MTH_D and SAMP_TIME_QTR_D tables)

■ SDPopulateReportTables: Populates the report schema from the transactional log
schema. Typically a customer would call this daily for the previous day, passing
the day as argument day_of_month with a value such as 'day_1' or 'day31'. This
stored procedure moves the data from one to the other: the rows in the
transactional log schema that are moved will be deleted; for example:

SDPopulateReportTables('day_1');

18.2.5.3 Functions
The following function is created as part of the schema:

■ NormalizedEventName: The RPD contains measures based on a marketing
scenario where choices go through 3 stages: presented, interested and converted.
This function allows for mapping Inline Service event names to these 3
pre-defined events. By default, "Presented" and "Delivered" are allowed as the
base presented event, "Interested" and "Clicked" are allowed as the positive
interested event and "Converted" and "Purchased" are allowed as the positive
converted event. You can modify this function if your inline service uses different
event names.

18.2.6 OBIEE Integration
You can do your own reporting on top of the report schema, or you can use the OBIEE
integration provided with Oracle RTD.

The OBIEE integration consists of:

■ A RPD that contains physical/model/presentation layer for the report schema.
This RPD also contains marketing specific measures such as acceptance rate and
conversion rate,

■ A web catalog that contains one out of the box dashboard for marketing specific
solutions. It also contains dashboards that provide out of the box integration with
the Base Marketing Oracle RTD Apps reference application.

18.2.6.1 RPD
The RPD contains two entries in the physical layer, one containing the model snapshot
physical schema and one containing the decision analytics report schema.

Note: By default, OBIEE caches information for performance
reasons. In order to see the new data that was populated by
SDPopulateReportTables in the OBIEE reports, you must clear the
OBIEE RPD and presentation layer caches.

Specifications

Transactional Logging and Decision Analytics 18-13

Two variables are used to define the connection to the report schema: RTD_REPORT_
DSN and RTD_REPORT_USERNAME.

18.2.6.2 Web Catalog
The web catalog contains two folders, one for "Decision Analytics" (generic) and one
for "Decision Analytics - Base Marketing".

18.2.6.3 Compute Functions
The Choice Performance Dashboard in OBIEE makes use of a number of compute
functions, as defined in this section.

Presented Count for All
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING "RTD
DM Report Schema"."Choice Events"."Normalized Event" = 'Presented'), 0)

Presented Count for Control
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING ("RTD
DM Report Schema"."Choice Events"."Normalized Event" ='Presented') AND ("RTD
DM Report Schema"."Choice Log"."Control Group" ='Y')), 0)

Presented Count for Test
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING (
("RTD DM Report Schema"."Choice Events"."Normalized Event" ='Presented') AND
("RTD DM Report Schema"."Choice Log"."Control Group" ='N'))), 0)

Interested Count for All
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING "RTD
DM Report Schema"."Choice Events"."Normalized Event" = 'Interested'), 0)

Interested Count for Control
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING (
("RTD DM Report Schema"."Choice Events"."Normalized Event" ='Interested') AND
("RTD DM Report Schema"."Choice Log"."Control Group" ='Y'))), 0)

Interested Count for Test
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING (
("RTD DM Report Schema"."Choice Events"."Normalized Event" ='Interested') AND
("RTD DM Report Schema"."Choice Log"."Control Group" ='N'))), 0)

Converted Count for All
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING "RTD
DM Report Schema"."Choice Events"."Normalized Event" = 'Converted'), 0)

Converted Count for Control
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING (
("RTD DM Report Schema"."Choice Events"."Normalized Event" ='Converted') AND
("RTD DM Report Schema"."Choice Log"."Control Group" ='Y'))), 0)

Installation

18-14 Oracle Real-Time Decisions Platform Developer's Guide

Converted Count for Test
IFNULL(FILTER("RTD DM Report Schema"."Choice Log"."Event Count" USING (
("RTD DM Report Schema"."Choice Events"."Normalized Event" ='Converted') AND
("RTD DM Report Schema"."Choice Log"."Control Group" ='N'))), 0)

Response Rate for All
IFNULL("RTD DM Report Schema"."Choice Log"."Interested Count for All" *100/"RTD
DM Report Schema"."Choice Log"."Presented Count for All", 0)

Response Rate for Control
IFNULL("RTD DM Report Schema"."Choice Log"."Interested Count for Control"
*100/"RTD DM Report Schema"."Choice Log"."Presented Count for Control", 0)

Response Rate for Test
IFNULL("RTD DM Report Schema"."Choice Log"."Interested Count for Test"
k,*100/"RTD DM Report Schema"."Choice Log"."Presented Count for Test", 0)

Converted Rate for All
IFNULL("RTD DM Report Schema"."Choice Log"."Converted Count for All"
*100.00/"RTD DM Report Schema"."Choice Log"."Presented Count for All", 0)

Converted Rate for Control
IFNULL("RTD DM Report Schema"."Choice Log"."Converted Count for Control"
*100.00/"RTD DM Report Schema"."Choice Log"."Presented Count for Control", 0)

Converted Rate for Test
IFNULL("RTD DM Report Schema"."Choice Log"."Converted Count for Test"
*100.00/"RTD DM Report Schema"."Choice Log"."Presented Count for Test", 0)

Response Lift
Response lift is defined by the following function:

IFNULL((("RTD DM Report Schema"."Choice Log"."Response Rate for Test") - ("RTD
DM Report Schema"."Choice Log"."Response Rate for Control")) *100.00 /"RTD DM
Report Schema"."Choice Log"."Response Rate for Control", 0)

Conversion Lift
Conversion lift is defined by the following function:

IFNULL((("RTD DM Report Schema"."Choice Log"."Conversion Rate for Test") - ("RTD
DM Report Schema"."Choice Log"."Conversion Rate for Control")) *100.00 /"RTD DM
Report Schema"."Choice Log"."Conversion Rate for Control", 0)

18.3 Installation
To enable transactional logging and decision analytics, you must perform a number of
additional operations after you have installed Oracle RTD.

This section contains the following topics:

■ Section 18.3.1, "Post Oracle RTD-Installation Steps"

■ Section 18.3.2, "OBIEE Steps"

Installation

Transactional Logging and Decision Analytics 18-15

18.3.1 Post Oracle RTD-Installation Steps
After a regular Oracle RTD installation, you must perform the following operations:

Create the report schema, for instance, by running these commands as SYS to create a
schema called rtd_rep:

■ CREATE USER rtd_rep IDENTIFIED BY welcome1 DEFAULT TABLESPACE users
TEMPORARY TABLESPACE temp QUOTA UNLIMITED ON users;

■ GRANT CREATE VIEW, CONNECT, RESOURCE TO rtd_rep;

Additionally you must grant permissions between your SDDS and report schema.
Assuming the names rtd for your SDDS schema and rtd_rep for your report schema,
run the following commands as SYS:

■ GRANT SELECT ON rtd.SDStrings TO rtd_rep;

■ GRANT SELECT,DELETE ON rtd.SDChoiceEventLog TO rtd_rep;

■ GRANT SELECT,DELETE ON rtd.SDDecisionLog TO rtd_rep;

■ GRANT EXECUTE ON rtd.SDTruncateLogTablesPartition TO rtd_rep;

■ GRANT CREATE materialized view to rtd_rep;

Then you can initialize the report schema using the following command in <install_
dir>\RTD\scripts\sql\Oracle:

 InitReportDB sdroot host port db runtimeReportDBUser rtdUser
[runtimeReportDBPassword]

For example:

 InitReportDB C:\OracleBI\RTD localhost 1521 orcl rtd_rep rtd overture

(Oracle RTD supports this command on both Windows and Linux).

Review the contents of SAMP_TIME_DAY_D, SAMP_TIME_MTH_D and SAMP_
TIME_QTR_D tables and call GEN_TIME if necessary.

The default population of these tables is from Jan-2013 to Dec-2025 (that is, Call Gen_
Time (TO_DATE ('01-JAN-2013','DD-MON-YYYY'), TO_DATE
('31-DEC-2025','DD-MON-YYYY'))

You are now ready to deploy and use an Inline Service that uses this feature. The
CrossSellLogging Inline Service in the examples directory is pre-configured for that.

The CrossSellLogging Inline Service is based on the CrossSell Inline Service with
modifications for performing logging to the newly introduced Decision Analytics
tables SDDecisionLog and SDChoiceEventLog, during the asynchronous logic of the
advisor and in the logic of the loop closing informant.

18.3.2 OBIEE Steps
You must install OBIEE (during this operation, you do not need to install Oracle RTD
and Essbase).

Installation

18-16 Oracle Real-Time Decisions Platform Developer's Guide

18.3.2.1 Update Repository (RPD)
You need to update the repository to ensure that the custom measures and other
components upon which the decision analytics dashboards depend are present. To
achieve this, you must perform the following steps:

1. Login to the OBIEE WebLogic EM console.

2. In the left hand pane, select the coreapplication node under Root_Domain
>Business Intelligence.

3. In the right hand pane, select the tabs Deployment > Repository.

4. Click Lock and Edit Configuration to make the changes.

5. Under the Upload BI Server Repository section, click Browse and provide the path to
the RPD file to be used for Decision Analytics.

6. Provide the repository password (Admin123 for the shipped
DecisionAnalytics.rpd, by default).

7. Click the Apply button.

The Default RPD name changes, for example, from DecisionAnalytics _001 to
DecisionAnalytics_002.

8. Click Activate Changes to effect the change.

Note: The procedures described in this section require that you edit
these files:

■ DecisionAnalytics.rpd, which is located in the Oracle RTD
Platform zip file, in the folder OracleBI\RTD\Analytics.

■ Decision Analytics.catalog, which is located in the Oracle RTD
Platform zip file, in the folder OracleBI\RTD\Analytics.

■ Decision Analytics - Base Marketing.catalog, which available in
the Oracle RTD Applications zip file, in the folder RTD_Apps_
3xxx\software\Oracle Real-Time Decisions Base
Application\Analytics.

Installation

Transactional Logging and Decision Analytics 18-17

After the change is effected, a new link is available indicating Restart to apply recent
changes. Click the link, and in the overview tab restart all the services by clicking the
restart button.

Configure the Connection Pool for the RPD
To configure the connection pool for the RPD, perform the following steps:

1. In WebLogic Console, add a user Administrator and give that user access to the
group BIAdministrators (refer to WebLogic manuals on provisioning a new user,
such as Oracle Fusion Middleware Securing Resources Using Roles and Policies for
Oracle WebLogic Server).

2. If the OBIEE has been installed on Linux/Unix, install the OBIEE Developer Client
Tools 11.1.1.7 on a Windows platform and set up a DSN to the OBIEE server. This
step is not required if OBIEE is installed on the Windows platform. Note that the
BI Administration tool is available only on the Windows platform.

3. Start the BI Administration from the Start Menu > Program Files > Oracle Business
Intelligence.

4. Select File > Open > Online and provide the Repository and Administrator
password.

5. Under the Physical Layer, select the properties for Reporting DB under the node
RTD DM Report Schema.

You can set the password for the Reporting DB here. Also you can see that the
DATASOURCE and USERNAME is being picked up from the variables RTD_
REPORT_DSN and RTD_REPORT_USERNAME respectively.

The variables RTD_REPORT_DSN and RTD_REPORT_USERNAME can be edited
from under Manage-> Variables.

6. Check in all changes via File -> Check In Changes.

7. Save via File -> Save

It may be necessary to restart the BI Server if there were any changes made. Restart the
services from EM or from the command line (opmnctl).

18.3.2.2 Update Web Catalog
To update the catalog to include dashboards and other elements for Decision
Analytics, perform the following steps:

1. Login to OBIEE.

2. Click catalog on the top right hand corner.

3. In the Folders pane on the left hand side, select the Shared Folders.

4. Under the tasks pane on the left hand side, select the unarchive option and select
the archive for Decision Analytics folder (Decision Analytics.catalog) and
Decision Analytics - Base Marketing folder (Decision Analytics - Base
Marketing.catalog).

Customization

18-18 Oracle Real-Time Decisions Platform Developer's Guide

18.4 Customization
Oracle RTD logs data into both the SDDecisionLog and SDChoiceEventLog tables.
Currently, the choice performance dashboard is based on the data from
SDChoiceEventLog.

18.4.1 Adding Flex Fields to the Dashboard
You can customize the dashboard by adding and removing flex fields. There are 40 flex
fields (10 each for flex field of data type int, float, string, and date) in each of the
SDDecisionLog and SDChoiceEventLog tables where data can be logged to from
within an Inline Service by programmatic APIs

For example:

choices.get(i).setChoiceEventLogValue("event_flex_string_
1",session().getCustomer().getMaritalStatus());

This data can subsequently be used to slice and dice from within OBIEE.

The following example shows how to add a flex field.

Assume you have logged the Marital Status to column EVENT_FLEX_STRING_1 in
SDChoiceEventLog.

You can add this flex field in the dashboard (in this case, Choice Performance
Dashboard) by performing the following steps:

1. Click the Edit button of the Choice Performance Dashboard.

2. In Section 1 which defines the dashboard prompts, click the Properties button (XYZ
in the following image) on the top right hand corner and select Edit.

Customization

Transactional Logging and Decision Analytics 18-19

3. Click the button to select adding a column prompt.

4. Select the column to add, in this case Choice Log to Event Flex String 1.

5. Give a relevant label, for example, Marital Status, and select relevant options.

The best practice is to allow users to make multiple selections and to set the
default value as All Column Values.

6. Click OK to finish adding the column prompt.

7. Return to Editing the Choice Performance Dashboard.

8. In Section 2 there are 3 views defined. For each view, click the Properties button on
the top right hand corner and select Edit Analysis.

9. Go to criteria tab of the view and under filters pane, click the button, select more
columns and select the column Choice Log -> Event Flex String 1.

10. In the New Filter dialog, select is prompted as the operator and click OK.

Customization

18-20 Oracle Real-Time Decisions Platform Developer's Guide

11. Repeat the process to add the flex string to the other two views in section 2.

Repeat the process to add the flex string in Section 3 and 4 as well.

Now, the dashboard responds to the column prompt Marital Status in all sections and
views defined in within it.

A

Examples of Data Sources from Stored Procedures A-1

AExamples of Data Sources from Stored
Procedures

This appendix shows examples of how to create data sources from Oracle, SQL Server,
and DB2, and then how to create entities and session attributes from these data
sources.

The examples are based on the CrossSellCustomers table. For details of setting up this
table, see the topic "Populating the CrossSell Example Data" in Oracle Real-Time
Decisions Installation and Administration Guide.

This appendix contains the following topics:

■ Section A.1, "Creating a Data Source from Single Result Stored Procedures"

■ Section A.2, "Creating a Data Source from Stored Procedures with One Result Set"

■ Section A.3, "Creating a Data Source from Stored Procedures with Two Result Sets"

A.1 Creating a Data Source from Single Result Stored Procedures
To create a data source from single result stored procedures:

1. Create the stored procedure Get_Single_CustomerInfo in your Oracle, SQL
Server, or DB2 database, using the appropriate commands:

(A) Oracle

CREATE PROCEDURE GET_SINGLE_CUSTOMERINFO
(
 P_ID IN INTEGER,
 P_AGE OUT INTEGER,
 P_OCCUPATION OUT VARCHAR2,
 P_LASTSTATEMENTBALANCE OUT FLOAT
)
AS
BEGIN
 SELECT AGE, OCCUPATION, LASTSTATEMENTBALANCE INTO P_AGE, P_OCCUPATION,
 P_LASTSTATEMENTBALANCE
 FROM CROSSSELLCUSTOMERS
 WHERE CROSSSELLCUSTOMERS.ID = P_ID;
END;

(B) SQL Server

CREATE PROCEDURE Get_Single_CustomerInfo
 @pId INTEGER,
 @pAge INTEGER OUTPUT,
 @pOccupation VARCHAR(20) OUTPUT,

Creating a Data Source from Stored Procedures with One Result Set

A-2 Oracle Real-Time Decisions Platform Developer's Guide

 @pLastStatementBalance FLOAT OUTPUT
AS
 SELECT @pAge = Age,
 @pOccupation = Occupation,
 @pLastStatementBalance = LastStatementBalance
 FROM CrossSellCustomers
 WHERE Id = @pId;
GO

(C) DB2

CREATE PROCEDURE DB2ADMIN.GET_SINGLE_CUSTOMERINFO
(
 IN P_ID INTEGER,
 OUT P_AGE INTEGER,
 OUT P_OCCUPATION VARCHAR(20),
 OUT P_LASTSTATEMENTBALANCE REAL
)
LANGUAGE SQL
P1: BEGIN
 DECLARE CURSOR_ CURSOR WITH RETURN FOR
 SELECT AGE, OCCUPATION, LASTSTATEMENTBALANCE
 FROM DB2ADMIN.CROSSSELLCUSTOMERS AS CROSSSELLCUSTOMERS
 WHERE CROSSSELLCUSTOMERS.ID = P_ID;
 OPEN CURSOR_;
 FETCH CURSOR_ INTO P_AGE, P_OCCUPATION, P_LASTSTATEMENTBALANCE;
 CLOSE CURSOR_;
END P1

2. Create a JDBC data source for the stored procedure in the application server that
you are using.

For details of how to create data sources in the application servers, see
"Configuring Data Access to Oracle Real-Time Decisions" in Oracle Real-Time
Decisions Installation and Administration Guide.

3. In Decision Studio, create the stored procedure data source DS_Single_Customer,
by importing the Get_Single_CustomerInfo stored procedure from your
database.

For the SQL Server stored procedure, change the direction of the parameters pAge,
pOccupation, and pLastStatementBalance from Input/Output to Output.

4. In Decision Studio, create the entity Ent_Single_Customer, by importing the data
source DS_Single_Customer.

5. Add the attribute Id, of data type Integer.

6. In the Mapping tab, in the Data Source Input Values area, set the Input Value for
the Input Column pId to Id.

7. Open the Session entity, and add a new attribute cust_sp, setting the data type to
Ent_Single_Customer.

A.2 Creating a Data Source from Stored Procedures with One Result Set
To create a data source from stored procedures with one result set:

1. Create the stored procedure Get_OneSet_CustomerInfo in your Oracle, SQL
Server, or DB2 database, using the appropriate commands:

(A) Oracle

Creating a Data Source from Stored Procedures with One Result Set

Examples of Data Sources from Stored Procedures A-3

CREATE PROCEDURE GET_ONESET_CUSTOMERINFO
(
 P_CREDITLINEAMOUNT IN INTEGER,
 CURSOR_ IN OUT TYPES.REF_CURSOR
)
AS
BEGIN
 OPEN CURSOR_ FOR
 SELECT * FROM CROSSSELLCUSTOMERS
 WHERE CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT;
END;

(B) SQL Server

CREATE PROCEDURE Get_OneSet_CustomerInfo
 @pCreditLineAmount INTEGER
AS
 SET NOCOUNT ON;
 SELECT * FROM CrossSellCustomers
 WHERE CreditLineAmount >= @pCreditLineAmount;
GO

(C) DB2

CREATE PROCEDURE DB2ADMIN.GET_ONESET_CUSTOMERINFO
(
 IN P_CREDITLINEAMOUNT INTEGER
)
DYNAMIC RESULT SETS 1
LANGUAGE SQL
P1: BEGIN
 DECLARE CURSOR_ CURSOR WITH RETURN FOR
 SELECT * FROM DB2ADMIN.CROSSSELLCUSTOMERS AS CROSSSELLCUSTOMERS
 WHERE CROSSSELLCUSTOMERS.CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT;
 OPEN CURSOR_;
END P1

2. Create a JDBC data source for the stored procedure in the application server that
you are using.

For details of how to create data sources in the application servers, see
"Configuring Data Access to Oracle Real-Time Decisions" in Oracle Real-Time
Decisions Installation and Administration Guide.

3. In Decision Studio, create the stored procedure data source DS_OneSet_
Customer, by importing the Get_OneSet_CustomerInfo stored procedure from
your database.

4. In the Results Set Details section, add a result set.

5. Check Allow multiple rows.

6. For the SQL Server stored procedure, add the following column names exactly as
shown with the given data types:

■ Age [Integer]

■ Occupation [String]

■ LastStatementBalance [Double]

For the Oracle and DB2 stored procedures, add the following column names
exactly as shown with the given data types:

Creating a Data Source from Stored Procedures with Two Result Sets

A-4 Oracle Real-Time Decisions Platform Developer's Guide

■ AGE [Integer]

■ OCCUPATION [String]

■ LASTSTATEMENTBALANCE [Double]

7. In Decision Studio, create the entity Ent_OneSet_Customer, by importing the data
source DS_OneSet_Customer.

8. Add the attribute CreditLineAmount, of data type Integer, and set its default
value to 50000.

This will limit results to around 30 rows.

9. Check the Array column for the attributes Age, Occupation, and
LastStatementBalance.

10. In the Mapping tab, in the Data Source Input Values area, set the Input Value for
the Input Column pCreditLineAmount to CreditLineAmount.

11. Open the Session entity, and add a new attribute cust_oneset_sp, setting the data
type to Ent_OneSet_Customer.

A.3 Creating a Data Source from Stored Procedures with Two Result Sets
To create a data source from stored procedures with two result sets:

1. Create the stored procedure Get_TwoSets_CustomerInfo in your Oracle, SQL
Server, or DB2 database, using the appropriate commands:

(A) Oracle

CREATE PROCEDURE GET_TWOSETS_CUSTOMERINFO
(
 P_CREDITLINEAMOUNT IN INTEGER,
 CURSOR1_ IN OUT TYPES.REF_CURSOR,
 CURSOR2_ IN OUT TYPES.REF_CURSOR
)
AS
BEGIN
 OPEN CURSOR1_ FOR
 SELECT * FROM CROSSSELLCUSTOMERS
 WHERE CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT;

 OPEN CURSOR2_ FOR
 SELECT * FROM CROSSSELLCUSTOMERS
 WHERE CARDTYPE = 'Platinum' AND CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT;
END;

(B) SQL Server

CREATE PROCEDURE Get_TwoSets_CustomerInfo
 @pCreditLineAmount INTEGER
AS
 SET NOCOUNT ON;
 SELECT * FROM CrossSellCustomers
 WHERE CreditLineAmount >= @pCreditLineAmount;
 SELECT * FROM CrossSellCustomers
 WHERE CreditLineAmount >= @pCreditLineAmount AND CardType = 'Platinum';
GO

(C) DB2

CREATE PROCEDURE DB2ADMIN.GET_TWOSETS_CUSTOMERINFO

Creating a Data Source from Stored Procedures with Two Result Sets

Examples of Data Sources from Stored Procedures A-5

(
 IN P_CREDITLINEAMOUNT INTEGER
)
DYNAMIC RESULT SETS 2
LANGUAGE SQL
P1: BEGIN
 DECLARE CURSOR1_ CURSOR WITH RETURN FOR
 SELECT * FROM DB2ADMIN.CROSSSELLCUSTOMERS AS CROSSSELLCUSTOMERS
 WHERE CROSSSELLCUSTOMERS.CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT;

 DECLARE CURSOR2_ CURSOR WITH RETURN FOR
 SELECT * FROM DB2ADMIN.CROSSSELLCUSTOMERS AS CROSSSELLCUSTOMERS
 WHERE CROSSSELLCUSTOMERS.CREDITLINEAMOUNT >= P_CREDITLINEAMOUNT
 AND CROSSSELLCUSTOMERS.CARDTYPE = 'Platinum';

 OPEN CURSOR1_;
 OPEN CURSOR2_;
END P1

2. Create a JDBC data source for the stored procedure in the application server that
you are using.

For details of how to create data sources in the application servers, see
"Configuring Data Access to Oracle Real-Time Decisions" in Oracle Real-Time
Decisions Installation and Administration Guide.

3. In Decision Studio, create the stored procedure data source DS_TwoSets_
Customer, by importing the Get_TwoSets_CustomerInfo stored procedure from
your database.

4. In the Results Set Details section, add a result set.

5. Check Allow multiple rows.

6. For the SQL Server stored procedure, add the following column names exactly as
shown with the given data types:

■ Age [Integer]

■ Occupation [String]

■ LastStatementBalance [Double]

For the Oracle and DB2 stored procedures, add the following column names
exactly as shown with the given data types:

■ AGE [Integer]

■ OCCUPATION [String]

■ LASTSTATEMENTBALANCE [Double]

7. Repeat steps 4 through 6 for the second result set.

8. In Decision Studio, create the entity Ent_TwoSets_Customer, by importing the
data source DS_TwoSets_Customer.

9. Add the attribute CreditLineAmount, of data type Integer, and set its default
value to 50000.

This will limit results to around 30 rows.

10. Check the Array column for the attributes Age, Occupation, and
LastStatementBalance.

Creating a Data Source from Stored Procedures with Two Result Sets

A-6 Oracle Real-Time Decisions Platform Developer's Guide

11. In the Mapping tab, in the Data Source Input Values area, set the Input Value for
the Input Column pCreditLineAmount to CreditLineAmount.

12. Open the Session entity, and add a new attribute cust_twosets_sp, setting the data
type to Ent_TwoSets_Customer.

B

Using External R Models in Oracle RTD B-1

BUsing External R Models in Oracle RTD

Oracle R Enterprise (ORE) is a component of the Oracle Advanced Analytics Option
that integrates the R programming language with the Oracle Database. This appendix
describes how Oracle RTD can trigger R script execution from within an Inline Service.

R is an open source programming language and software environment for statistical
computing and graphics. It is widely used among statisticians for developing
statistical software and data analysis. Oracle R Enterprise (ORE) integrates the R
programming language with the Oracle Database, R users can develop, refine, and
deploy R scripts that leverage the parallelism and scalability of the database to
automate data analysis.

B.1 Oracle R Enterprise (ORE) and Oracle RTD
ORE integration enables Oracle RTD to trigger R script execution from within an Inline
Service. The following are examples of business problems that can be addressed with
an addition of R integration:

■ Data scientists can define an R computation that defines the segments of
customers with different treatments applied to different segments. The R function
may load and apply a previously built and saved (as an R object) predictive
model. Caution: both R script execution and loading R objects bear certain
performance costs

■ Offline data mining / forecasting models can be scored and saved into the
database for use by Oracle RTD. These R calculations can be triggered by an
Oracle RTD informant.

Oracle RTD itself has statistical capabilities embedded within it. However, the models
natively available within Oracle RTD are specifically optimized for performance and
are designed for continuous learning. This solves narrowly defined problems, such as
choice outcome probability estimation. Integration with ORE significantly enhances
the applicability of statistical data analysis and modeling to automating real-time
decision making.

B.1.1 ORE Integration Architecture
This section describes the overall architecture of an integrated Oracle RTD / ORE
application.

B.1.1.1 Overview of Oracle R Enterprise Architecture
Oracle R Enterprise has three main components:

Oracle R Enterprise (ORE) and Oracle RTD

B-2 Oracle Real-Time Decisions Platform Developer's Guide

1. The Client R Engine is a collection of R packages that allows you to connect to an
Oracle Database and to interact with data in that database.

2. The Server is a collection of PL/SQL procedures and libraries that augment Oracle
Database with the capabilities required to support an Oracle R Enterprise client.
The R engine is also installed on Oracle Database to support embedded execution.
Oracle Database spawns R engines, which can provide data parallelism.

3. R Engines spawned by Oracle Database support database-managed parallelism;
provide lights-out scheduled execution of R scripts, that is scheduling or
triggering R scripts packaged inside PL/SQL or SQL query. As of ORE 1.3, these R
scripts can load R objects from in-database data stores and make use of them.

For more information on ORE architecture, please refer to ORE documentation: Oracle
R Enterprise 1.3 User's Guide.

B.1.1.2 Joint Implementation Architecture for Oracle RTD with ORE
This section describes components of an integrated Oracle RTD / ORE solution.

An Oracle RTD Inline Service using ORE would contain a Java function that uses JDBC
to order a script execution by ORE embedded R engine. Deploying updated versions
of R scripts could be facilitated by a special "Update Script" informant. Statistical
models and other R objects could be built in R Development Environment and
deployed to an Oracle Database using ore.save() API. They can then subsequently be
loaded and used by R scripts that are invoked from Oracle RTD but executed within
Oracle Database.

Oracle R Enterprise (ORE) and Oracle RTD

Using External R Models in Oracle RTD B-3

B.1.2 Setting up ORE for Use by Oracle RTD
In order to use ORE within an Oracle RTD Inline Service, the following prerequisites
must be satisfied:

■ Oracle Database 11.2.0.3

■ Oracle R Enterprise 1.3

■ Oracle R Distribution (R 2.15.1)

B.1.2.1 Obtaining R
The recommended way to obtain R 2.15.1 is by downloading Oracle R Distribution.

B.1.2.2 Users, Roles, and Privileges
As stated in ORE documentation, the Oracle database user deploying R scripts must
have RQADMIN role, and the database user executing R scripts must have RQROLE
role. Further, this user must be given the following system privileges: "CREATE
MINING MODEL", "CREATE TABLE", "CREATE PROCEDURE", and "CREATE
VIEW".

Unless you plan to use a different database instance for hosting R execution, it is not
necessary to create a dedicated Oracle schema for this purpose. The integration
example described in the following section utilizes the same database schema as
Oracle RTD system data source. The database user has been assigned both RQADMIN
and RQROLE roles.

B.1.2.3 Special Considerations for Data Sources
If the database backing up your ORE installation is different from your Oracle RTD
database you will need to apply slight modifications to the steps described in the
Integration Example section.

Follow the instructions in Chapters 3 and 4 of the Oracle Real-Time Decisions Installation
and Administration Guide to set up an additional data source in Oracle RTD. Remember
to replace all the references to the SDDS data source name in the steps described in the
Integration Example section with the JNDI name of the data source connecting to the
database where ORE is installed.

Note: Make sure that the user connecting to the ORE database is given the appropriate
privileges (RQADMIN and RQROLE).

B.1.3 Integration Example
A sample Inline Service, CrossSellR, a slightly modified version of CrossSell Inline
Service, is available with Oracle RTD. It addresses the same use case as CrossSell with
an addition of utilizing R for customer segmentation.

This Inline Service shows how the competency of using R to analyze data and build
statistical models can be separated from competencies of Inline Service development
and database application development: a data scientist using R would have a simple
interface available for deploying R scripts.

Refer to Chapter 2.3 of Oracle Real-Time Decisions Installation and Administration Guide
for instructions on how to initialize the database for use with CrossSellR (same as
CrossSell).

Oracle R Enterprise (ORE) and Oracle RTD

B-4 Oracle Real-Time Decisions Platform Developer's Guide

B.1.3.1 Steps for Making Use of R Scripting in Oracle RTD Inline Services
CrossSellR contains modifications to CrossSell that illustrate the following steps you
will need to take to make use of R in your Inline Service:

■ Create a script launching function, providing the input to, and making use of
output of, an R script (in our example, this function is called SimpleRRegression).
This function calls a SQL statement that executes an embedded R script deployed
using UpdateScript informant, returning the result of the calculation performed in
R.

■ Create a new Customer entity attribute: RiskByR mapped to SimpleRRegression
function. This attribute is inherited by the Session entity (since it includes
Customer entity).

■ Modify the filtering rule "Segment to Retain" to check the value of RiskByR session
entity attribute.

■ Create a new function, DeployR, performing deployment of an updated R script to
the Oracle RTD database.

■ Create a new informant: UpdateScript, enabling deployment of a new R script to
the Oracle RTD database.

B.1.3.2 Creating a Script Launching Function

Here is the full code of the function:

// risk by default:
double riskVal = .1;
StringBuffer rqEvalSB = new StringBuffer();

rqEvalSB.append("select *")

Oracle R Enterprise (ORE) and Oracle RTD

Using External R Models in Oracle RTD B-5

.append(" from table(rqtableeval(cursor (select ? CALLSABANDONED, ?
COMPLAINTSPERYEAR from dual),")
.append(" cursor(select 1 as \"ore.connect\" from dual),")
.append(" 'SELECT 1 PRD FROM DUAL','execLm'))");
java.sql.Connection connection = null;

try {
DatabaseProviderInterface dp = newDatabaseProvider("SDDS");
 connection = dp.getConnection();
 java.sql.PreparedStatement statement =
connection.prepareStatement(rqEvalSB.toString());
 statement.setInt(1, session().getCustomer().getCallsAbandoned());
 statement.setInt(2, session().getCustomer().getComplaintsPerYear());
 java.sql.ResultSet rs = statement.executeQuery();
 if (!rs.next()) {
 logInfo("Error: empty result set");
 return 0.;
 }

riskVal = rs.getDouble(1);
} catch(java.sql.SQLException e) {
 e.printStackTrace();
 logError("exception in GENSimpleRRegression " + e.getLocalizedMessage());
} finally {
 try {
 if (connection != null)
 connection.close();
 } catch(java.sql.SQLException cannotEvenClose) {
 }
}
return riskVal;

B.1.3.3 Mapping an Entity Attribute to the New Function

We created a new attribute, RiskByR, and mapped it to the function
SimpleRRegression().

Oracle R Enterprise (ORE) and Oracle RTD

B-6 Oracle Real-Time Decisions Platform Developer's Guide

B.1.3.4 Using the New Entity Attribute in Decision Logic
In our example we use the new entity attribute in a filtering rule:

B.1.3.5 Creating a Deployment Function

Here is the full code of the function:

logInfo("Deploying the script " + rScriptName + ":\n" + rScriptCode);
java.sql.Connection connection = dp.getConnection();
try {

DatabaseProviderInterface dp = newDatabaseProvider("SDDS");

Oracle R Enterprise (ORE) and Oracle RTD

Using External R Models in Oracle RTD B-7

 java.sql.CallableStatement dropStmt = connection.prepareCall("{call
SYS.rqScriptDrop(?)}");
 dropStmt.setString(1, rScriptName);
 dropStmt.execute();

logInfo(" Dropped script " + rScriptName);

java.sql.CallableStatement statement = connection.prepareCall("{call
SYS.rqScriptCreate(?, ?)}");
 statement.setString(1, rScriptName);
 statement.setString(2, rScriptCode); // the type of this parameter is CLOB; does
setString work?
 boolean res = statement.execute();

logInfo("Creating script " + rScriptName + " returned " + res);
} catch(java.sql.SQLException e) {
 e.printStackTrace();
}

B.1.3.6 Creating a Deployment Informant

On the Logic tab:

Oracle R Enterprise (ORE) and Oracle RTD

B-8 Oracle Real-Time Decisions Platform Developer's Guide

B.1.3.7 Building and Saving a Linear Regression Model in R
CrossSellR Inline Service assumes a linear regression model named "linChurnMod" is
saved in ORE. For the purposes of this sample we will generate random data and train
a model on that data. To build the model, open an R session (using, for example, your
R environment):

ore.connect(user="<db user>", sid="<sid>",host="<db host>", password="<db
password>", port=<db port>, all=TRUE)
customers <- ore.pull(CROSSSELLCUSTOMERS)
customers$CHURNPROB <- 1./(1.+exp(5.-customers$COMPLAINTSPERYEAR)) *
1./(1.+exp(2.-customers$CALLSABANDONED))
uniformRandSeq <- runif(50000)
customers$CHURNEVENT <- (sign(customers$CHURNPROB - uniformRandSeq) + 1.) / 2.
linChurnMod <- lm(CHURNEVENT ~ CALLSABANDONED + COMPLAINTSPERYEAR, customers,
model = FALSE)

summary(linChurnMod)
trimming the model
linChurnMod$residuals <- NULL
linChurnMod$effects <- NULL
linChurnMod$fitted.values <- NULL
linChurnModqrqr <- NULL
ore.save(linChurnMod, name="ds_1", description="linear churn model")

After executing the above script, the model is saved to the Oracle database.

B.1.3.8 Updating the Script
Upon deploying CrossSellR Inline Service, invoke its informant "Update Script" (from
Decision Center or Decision Studio). The parameters to that informant are script name
and script content. Provide the following values:

■ scriptName: execLm

■ scriptCode: function(dat) {;ore.load(name="ds_1",
list="linChurnMod");prd <- predict(linChurnMod,
newdata=dat);res <- data.frame(CHURNRISK=prd);res;}

Oracle R Enterprise (ORE) and Oracle RTD

Using External R Models in Oracle RTD B-9

Note: In R language, carriage return and semi-colon (";") can both be used to separate
statements.

Note: The informant we created facilitates updating the scripts, hiding the somewhat
obscure SQL statements that have to be executed to achieve that. It is, of course,
possible to execute the same SQL manually from SQLPlus or your favorite SQL query
editor.

Note: CrossSellR contains an Advisor, OfferRequest, that returns a likelihood. When
this Inline Service is deployed, the Customer entity is populated. That in turn results
in an attempt to invoke the R script, execLm. If you deploy your Inline Service before
the script is created in the database, you will see an error in your server log that will
look like the following:

ERROR [CrossSellRORE] exception in GENSimpleRRegression ORA-20000: RQuery error
ORA-06512: at "RQSYS.RQTABLEEVALIMPL", line 84
ORA-06512: at "RQSYS.RQTABLEEVALIMPL", line 80

After you run the UpdateScript informant, the script will be created, and the error
should no longer appear on subsequent deployments of the Inline Service.

B.1.3.9 Testing the Inline Service
Now, if you invoke the CallStart informant, providing a valid Customer ID and
channel, you should see a line appear on the Log tab mentioning the risk value, like
this:

B.1.4 Performance and Scalability Considerations
Oracle R Enterprise allows you to leverage the power of parallel execution of the
Oracle database engine to perform R calculations in parallel, thereby achieving
scalability that a standalone R installation is not capable of. However, care must be
taken when using R calculations within decision logic in Oracle RTD Inline Services.

Due to the computational cost of running the R interpreter and the stateless nature of
ORE embedded R engine, the latency and throughput of an Oracle RTD application
can be significantly affected. It is generally not recommended to perform R
calculations at each request or even once per Oracle RTD session in an environment
with stringent latency and high throughput requirements, such as typical end user
web marketing interactions.

ORE is currently more suitable for implementations where a somewhat higher latency
is acceptable.

Oracle R Enterprise (ORE) and Oracle RTD

B-10 Oracle Real-Time Decisions Platform Developer's Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started
	1 About Oracle Real-Time Decisions
	1.1 Terminology
	1.2 About Decision Studio
	1.2.1 Inline Service Explorer View
	1.2.2 Problems View
	1.2.3 Test View
	1.2.4 Cheat Sheets View
	1.2.5 Editor Area
	1.2.6 Arranging Views and Resizing Editors

	1.3 About Decision Center
	1.4 About the Inline Service Lifecycle

	2 Creating an Inline Service
	2.1 About the Inline Service Tutorial
	2.2 About Deployment and Decision Center Security
	2.3 About Naming and Descriptions
	2.4 Accessing Data
	2.4.1 Adding a Data Source
	2.4.1.1 Creating the New Data Source
	2.4.1.2 Importing the Outputs for a Data Source

	2.4.2 Adding an Entity
	2.4.2.1 Creating the New Entity
	2.4.2.2 About Additional Entity Properties
	2.4.2.3 Adding an Entity Key

	2.5 About the Session Entity
	2.5.1 Adding an Attribute to the Session Entity
	2.5.2 Creating a Session Key
	2.5.3 Mapping the Entity to the Data Source

	2.6 Adding an Informant
	2.6.1 Creating an Informant
	2.6.2 Adding Testing Logic to the Informant

	2.7 Testing the Inline Service
	2.8 Adding Functionality
	2.8.1 Creating a Call Entity
	2.8.2 Creating the Call Begin Informant
	2.8.3 Creating the Service Complete Informant
	2.8.4 Creating the Call End Informant
	2.8.5 Testing the Informants

	2.9 Analyze Call Reasons
	2.9.1 About Using Choices for Analysis
	2.9.2 Adding a Choice Group
	2.9.3 Adding an Analytical Model
	2.9.4 Adding Logic for Selecting Choices
	2.9.5 Testing It All Together

	3 Simulating Load for Inline Services
	3.1 Performance Under Load
	3.1.1 Creating the Load Generator Script
	3.1.2 Viewing Analysis Results in Decision Center
	3.1.3 Excluding the Attribute

	3.2 Resetting the Model Learnings
	3.2.1 Summary of the Inline Service

	4 Enhancing the Call Center Inline Service
	4.1 About Using Choice Groups and Scoring to Cross Sell
	4.2 Creating an Offer Inventory Using Choice Groups
	4.3 Configuring Performance Goals
	4.4 Scoring the Choices
	4.5 About Advisors
	4.6 Creating the Decisions
	4.7 Creating the Advisor
	4.8 Viewing the Integration Map
	4.9 Testing the Advisor

	5 Closing the Feedback Loop
	5.1 Using Events to Track Success
	5.1.1 Defining Events in Choice Groups
	5.1.2 Defining a Choice Event Model
	5.1.3 Additional Model Settings
	5.1.3.1 Partitioning Attributes
	5.1.3.2 Excluded Attributes
	5.1.3.3 Learn Location

	5.1.4 Remembering the Extended Offer
	5.1.5 Creating the Feedback Informant
	5.1.6 Testing the Feedback Informant
	5.1.7 Updating the Load Generator Script

	5.2 Using the Predictive Power of Models
	5.2.1 Adding a Base Revenue Choice Attribute
	5.2.2 Adding a Second Performance Goal (Maximize Revenue)
	5.2.3 Calculating Score Value for the Maximize Revenue Performance Goal
	5.2.4 Updating the Select Offer Decision to Include the Second Performance Goal
	5.2.5 Adding a Choice Attribute to View Likelihood of Acceptance
	5.2.6 Checking the Likelihood Value
	5.2.7 Introducing Offer Acceptance Bias for Selected Customers
	5.2.8 Running the Load Generator Script
	5.2.9 Studying the Results

	Part II Integration with Oracle RTD
	6 About Integrating with Oracle RTD
	6.1 Choosing the Best Means of Integration
	6.1.1 About the Java Smart Client
	6.1.2 About the .NET Smart Client
	6.1.3 About the JSP Smart Client
	6.1.4 About Web Services

	6.2 About the CrossSell Inline Service
	6.2.1 Using Decision Studio to Identify Object IDs
	6.2.2 Determining the Response of an Advisor
	6.2.3 Knowing How to Respond to the Server
	6.2.4 Identifying Session Keys and Arguments

	7 Using the Java Smart Client
	7.1 Before you Begin
	7.2 Integrating with an Inline Service Using the Java Smart Client
	7.2.1 Preparing the Java Smart Client Example
	7.2.2 Creating the Java Smart Client Properties File
	7.2.3 Creating the Java Smart Client
	7.2.4 Creating the Request
	7.2.5 Examining the Response
	7.2.6 Closing the Loop
	7.2.7 Closing the Client

	8 Using Java Smart Client JSP Tags
	8.1 Before You Begin
	8.2 Integrating with an Inline Service Using Java Smart Client JSP Tags
	8.3 Deploying the JSP Smart Client Example
	8.3.1 Deploying the JSP Smart Client Example to WebSphere
	8.3.2 Deploying the JSP Smart Client Example to WebLogic

	9 Using the .NET Smart Client
	9.1 Before You Begin
	9.2 Integrating with an Inline Service Using the .NET Smart Client
	9.3 .NET Integration Example

	10 Web Service Client Example
	10.1 Before You Begin
	10.2 Creating a New NetBeans Java Application Project
	10.3 Installing the JAX-RPC Web Services Plug-in
	10.4 Creating an Oracle RTD Web Service Client
	10.5 Adding the Provided Java Code and Testing the Client

	11 Using the Oracle RTD PHP Client
	11.1 Before You Begin
	11.2 Integrating with an Inline Service Using the Oracle RTD PHP Client
	11.3 Deploying the PHP Client Examples
	11.3.1 Installing PHP Client Library and Example Files
	11.3.2 Editing the NuSoap Path Library Location
	11.3.3 Preparing the Oracle RTD PHP Client .ini File
	11.3.4 Creating the Oracle RTD PHP Client
	11.3.5 Creating the Request
	11.3.6 Examining the Response
	11.3.7 Closing the Loop
	11.3.8 Testing the PHP Client Example

	Part III Decision Studio Reference
	12 About Decision Studio
	12.1 About Inline Services
	12.2 Decision Studio and Eclipse
	12.2.1 Selecting the Decision Studio Workspace
	12.2.2 Setting the Java Compiler Compliance Level
	12.2.3 About the Inline Service Explorer
	12.2.4 Code Generation
	12.2.5 About Decision Studio Perspectives and Views
	12.2.6 Arranging Views and Resizing Editors
	12.2.7 About Element Logic
	12.2.8 Overriding Generated Code
	12.2.9 Performing Inline Service Searches

	12.3 About Decision Studio Projects
	12.3.1 Starting a New Project
	12.3.2 Importing a Project
	12.3.3 Creating a User-Defined Template
	12.3.4 Downloading a Deployed Inline Service
	12.3.5 About Deployment States
	12.3.6 Example Projects
	12.3.7 Opening Decision Studio Version 1.2 Files

	12.4 Inline Service Directory Structure
	12.5 Configuring Inline Services
	12.5.1 Observer Inline Services
	12.5.2 Advisor Inline Services

	13 About Decision Studio Elements and APIs
	13.1 The Oracle RTD Decisioning Process
	13.2 About Element Display Labels and Object IDs
	13.3 About the Application Element
	13.3.1 Application Parameters
	13.3.1.1 Using Debugging Options
	13.3.1.2 Adding Application Parameters

	13.3.2 Application APIs
	13.3.3 Configuring the Control Group
	13.3.4 Setting Model Defaults
	13.3.5 Writing Application Logic
	13.3.5.1 Adding Imported Java Classes

	13.3.6 Setting Inline Service Permissions

	13.4 Accessing Data
	13.4.1 About Data Sources
	13.4.2 Creating SQL Data Sources
	13.4.2.1 SQL Data Source Characteristics
	13.4.2.2 Adding Columns to the Data Source
	13.4.2.3 Importing Database Column Names
	13.4.2.4 Setting the Input Column

	13.4.3 Creating Stored Procedure Data Sources
	13.4.3.1 Stored Procedure Data Source Characteristics
	13.4.3.2 Importing Stored Procedure Parameters
	13.4.3.3 Adding Attributes to the Data Source
	13.4.3.4 Adding Result Sets to the Data Source
	13.4.3.5 Examples of Setting Up Data Sources from Stored Procedures

	13.4.4 Accessing Oracle's Siebel Analytics Data

	13.5 Forming Entities
	13.5.1 About the Session Entity
	13.5.1.1 About Session Keys

	13.5.2 Creating Entities
	13.5.3 Adding Attributes and Keys to the Entity
	13.5.4 Importing Attributes From a Data Source
	13.5.5 Using Attributes for Analysis
	13.5.6 Decision Center Display
	13.5.7 Adding a Session Key
	13.5.8 Adding Attributes to the Session
	13.5.9 Mapping Attributes to Data Sources
	13.5.10 One-to-Many Relationships
	13.5.11 Adding Imported Java Classes
	13.5.12 Session Logic
	13.5.13 Session APIs
	13.5.14 Entity APIs
	13.5.15 About Entity Classes
	13.5.16 Referencing Entities in Oracle RTD Logic
	13.5.17 Adding Entity Keys
	13.5.18 Accessing Entity Attributes
	13.5.19 Resetting and Filling an Entity
	13.5.20 About Cached Entities
	13.5.21 Enhanced Entity Attribute Logging

	13.6 Performance Goals
	13.6.1 Adding a Performance Metric
	13.6.2 Calculating a Normalization Factor

	13.7 Choice Groups and Choices
	13.7.1 About Choice Groups and Choices
	13.7.2 About Choice Group and Choice Attributes
	13.7.3 Choice Attribute Characteristics
	13.7.4 Using Choice Attributes for Learning
	13.7.5 About Choice Scoring
	13.7.6 About Eligibility Rules
	13.7.7 Evaluating Choice Group Rules and Choice Eligibility Rules
	13.7.8 Determining Eligibility
	13.7.9 Choice Group APIs
	13.7.10 Choice APIs

	13.8 Filtering Rules
	13.9 Scoring Rules
	13.10 Using Rule Editors
	13.10.1 Oracle RTD Rule Terms and Statements
	13.10.2 Adding Statements to Rules
	13.10.3 Selecting an Operator
	13.10.4 Editing Boolean Statements
	13.10.4.1 Using Type-Restricted Objects in Rules

	13.10.5 Editing Rule Properties
	13.10.6 Inverting Rule Elements

	13.11 About Decisions
	13.11.1 Segmenting Population and Weighting Goals
	13.11.2 Using a Custom Selection Function
	13.11.3 Pre/Post-Selection Logic
	13.11.4 Selection Function APIs for Custom Goal Weights
	13.11.5 Adding Imported Java Classes and Changing the Decision Center Display

	13.12 About Selection Functions
	13.12.1 Selection Function Scriptlets
	13.12.2 Adding Imported Java Classes and Changing the Decision Center Display

	13.13 About Models
	13.13.1 Model Types
	13.13.2 Model Common Parameters
	13.13.3 Model Attributes
	13.13.4 Model APIs
	13.13.4.1 Querying the Model
	13.13.4.2 Recording the Choice with the Model
	13.13.4.3 Obtaining Model Object by String Name
	13.13.4.4 Recording Choice Events for Choice Event Models
	13.13.4.5 Recording Choices for Choice Models
	13.13.4.6 Obtaining Model Choice Likelihood

	13.14 About Integration Points
	13.14.1 About Informants
	13.14.1.1 Adding a Session Key
	13.14.1.2 Identifying the External System and Order
	13.14.1.3 Adding Request Data

	13.14.2 Adding Imported Java Classes and Changing the Decision Center Display
	13.14.3 Informant APIs
	13.14.4 Informant Logic
	13.14.4.1 Logic
	13.14.4.2 Asynchronous Logic
	13.14.4.3 Accessing Request Data From the Informant

	13.14.5 About Advisors
	13.14.6 About the Advisor Decisioning Process
	13.14.7 Adding Imported Java Classes and Changing the Decision Center Display
	13.14.8 Adding a Session Key
	13.14.9 Identifying the External System and Order
	13.14.10 Adding Request Data
	13.14.11 Adding Response Data
	13.14.12 Logic in Advisors
	13.14.12.1 Logic
	13.14.12.2 Asynchronous Logic

	13.14.13 Accessing Request Data from the Advisor

	13.15 About External Systems
	13.16 About the Categories Object
	13.17 About Functions
	13.17.1 Functions to Use with Choice Event History Table
	13.17.2 About Maintenance Operations
	13.17.3 Adding Imported Java Classes and Changing the Decision Center Display

	13.18 About Type Restrictions
	13.18.1 Managing Type Restrictions
	13.18.1.1 Creating and Editing "List of Values" Type Restrictions
	13.18.1.2 Creating and Editing "List of Entities" Type Restrictions
	13.18.1.3 Creating and Editing Other Restrictions
	13.18.1.4 Associating Type Restrictions with Inline Service Objects
	13.18.1.5 Using Type Restrictions in Rules
	13.18.1.6 Examples of Type Restrictions

	13.19 About Statistic Collectors
	13.19.1 Creating a Custom Statistics Collector

	13.20 About Decision Center Perspectives

	14 Deploying, Testing, and Debugging Inline Services
	14.1 Deploying Inline Services
	14.2 Connecting to Real-Time Decision Server
	14.3 Redeploying Inline Services
	14.4 Testing and Debugging Inline Services
	14.4.1 About the Problems View
	14.4.2 Using the Test View
	14.4.2.1 Using logInfo()
	14.4.2.2 Testing for Incoming Request Data

	14.4.3 Using System Logs for Testing and Debugging Inline Services

	15 About the Load Generator
	15.1 Using Load Generator for Testing
	15.2 Using Load Generator for Performance Characterization
	15.3 Running a Load Generator Session
	15.3.1 Measuring the Server Load

	15.4 Viewing Performance Graphs
	15.5 About the General Tab
	15.5.1 Load Generator Section
	15.5.2 Details Section
	15.5.3 Think Time Section
	15.5.4 Scripts Section
	15.5.5 Logging Section

	15.6 About Variables
	15.6.1 Using Variables
	15.6.2 Variable Types

	15.7 About Actions
	15.7.1 Types of Actions

	15.8 Load Generator CSV Log File Contents
	15.9 XLS File Contents

	Part IV Miscellaneous Application Development
	16 Oracle RTD Batch Framework
	16.1 Batch Framework Architecture
	16.1.1 Batch Framework Components
	16.1.2 Use of Batch Framework in a Clustered Environment

	16.2 Implementing Batch Jobs
	16.2.1 Implementing the BatchJob Interface
	16.2.2 Registering Batch Jobs with the Batch Framework
	16.2.2.1 BatchAgent
	16.2.2.2 Registering the Imported Java Classes in the Inline Service
	16.2.2.3 Registering the Batch Jobs in the Inline Service

	16.3 Administering Batch Jobs
	16.3.1 Using the BatchClientAdmin Interface
	16.3.2 Using the Batch Console
	16.3.2.1 Notes on Batch Console Commands
	16.3.2.2 Running Jobs Sequentially
	16.3.2.3 Running Jobs Concurrently

	17 Externalized Objects Management
	17.1 Dynamic Choices
	17.1.1 Simple Example of Dynamic Choices
	17.1.2 Basic Dynamic Choice Design Implications
	17.1.3 Multiple Category Dynamic Choices from a Single Data Source
	17.1.3.1 Different Dynamic Choice Categories in the Same Data Source

	17.1.4 Prerequisite External Data Source for Dynamic Choices
	17.1.5 Overview of Setting up Dynamic Choices in Decision Studio
	17.1.6 Creating the Dynamic Choice Data Source
	17.1.7 Creating the Single Dynamic Choice Entity
	17.1.8 Creating the Dynamic Choice Set Entity
	17.1.9 Creating the Dynamic Choice Data Retrieval Function
	17.1.10 Considerations for Choice Group Design
	17.1.11 Creating a Single Category Choice Group
	17.1.11.1 Group Attributes Tab
	17.1.11.2 Choice Attributes Tab
	17.1.11.3 Dynamic Choices Tab

	17.1.12 Creating a Multi-Category Choice Group
	17.1.12.1 Choice Attributes Tab in the Parent Choice Group
	17.1.12.2 Group Attributes Tab in the Child Choice Groups
	17.1.12.3 Dynamic Choices Tab in the Child Choice Groups

	17.1.13 Dynamic Choice Reporting Overview
	17.1.13.1 Applications with Static Choices Only
	17.1.13.2 Dynamic Choice Visibility
	17.1.13.3 System-Created Range Folders
	17.1.13.4 Distribution of Choices Across Decision Center Folders
	17.1.13.5 Example of a Decision Center Report with Dynamic Choices

	17.2 External Rules
	17.2.1 Introduction to External Rules
	17.2.2 External Rule Editor
	17.2.3 External Rule Framework
	17.2.3.1 External Rule Evaluation Functions
	17.2.3.2 External Rule Caching
	17.2.3.3 External Rule APIs
	17.2.3.4 External Rule Error Handling and Logging

	17.2.4 Setting Up External Rules in Decision Studio
	17.2.4.1 Prerequisite - Setting Up Objects in an External Content Repository
	17.2.4.2 Defining the Inline Service Objects for the Rules
	17.2.4.3 Defining External Rules for Inline Service Objects

	17.2.5 Setting Up the External Interface and Embedded Rule Editor
	17.2.5.1 Defining the Rule Editor Widget
	17.2.5.2 Changing the Rule Editor Context and Scope
	17.2.5.3 Defining the Callback Function

	17.3 Example of End to End Development Using Dynamic Choices and External Rules
	17.3.1 Database Driven Dynamic Choices
	17.3.2 Evaluating External Rules
	17.3.3 Embedding an External Rule Editor in a Third Party Interface
	17.3.4 DC_Demo External Rules Deployment Helper
	17.3.5 Pushing External Rules To a Production Environment
	17.3.6 Viewing Reports for Dynamic Choices

	17.4 Externalized Performance Goal Weighting

	18 Transactional Logging and Decision Analytics
	18.1 High Level Architecture
	18.1.1 Terminology
	18.1.2 Logging
	18.1.3 Transformation
	18.1.4 Reporting

	18.2 Specifications
	18.2.1 SDDecisionLog
	18.2.2 SDChoiceEventLog
	18.2.3 Partitioning
	18.2.4 Inline Service APIs
	18.2.4.1 APIs
	18.2.4.2 Putting it All Together

	18.2.5 Report Schema
	18.2.5.1 Description
	18.2.5.2 Stored Procedures
	18.2.5.3 Functions

	18.2.6 OBIEE Integration
	18.2.6.1 RPD
	18.2.6.2 Web Catalog
	18.2.6.3 Compute Functions

	18.3 Installation
	18.3.1 Post Oracle RTD-Installation Steps
	18.3.2 OBIEE Steps
	18.3.2.1 Update Repository (RPD)
	18.3.2.2 Update Web Catalog

	18.4 Customization
	18.4.1 Adding Flex Fields to the Dashboard

	A Examples of Data Sources from Stored Procedures
	A.1 Creating a Data Source from Single Result Stored Procedures
	A.2 Creating a Data Source from Stored Procedures with One Result Set
	A.3 Creating a Data Source from Stored Procedures with Two Result Sets

	B Using External R Models in Oracle RTD
	B.1 Oracle R Enterprise (ORE) and Oracle RTD
	B.1.1 ORE Integration Architecture
	B.1.1.1 Overview of Oracle R Enterprise Architecture
	B.1.1.2 Joint Implementation Architecture for Oracle RTD with ORE

	B.1.2 Setting up ORE for Use by Oracle RTD
	B.1.2.1 Obtaining R
	B.1.2.2 Users, Roles, and Privileges
	B.1.2.3 Special Considerations for Data Sources

	B.1.3 Integration Example
	B.1.3.1 Steps for Making Use of R Scripting in Oracle RTD Inline Services
	B.1.3.2 Creating a Script Launching Function
	B.1.3.3 Mapping an Entity Attribute to the New Function
	B.1.3.4 Using the New Entity Attribute in Decision Logic
	B.1.3.5 Creating a Deployment Function
	B.1.3.6 Creating a Deployment Informant
	B.1.3.7 Building and Saving a Linear Regression Model in R
	B.1.3.8 Updating the Script
	B.1.3.9 Testing the Inline Service

	B.1.4 Performance and Scalability Considerations

