

Oracle® Retail Batch Script Architecture
Implementation Guide

Release 14.1

December 2014

Oracle Retail Batch Script Architecture Implementation Guide, Release 14.1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Primary Author: Melissa Artley

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Licensing Note: This media pack includes a Restricted Use license for Oracle Retail Predictive Application
Server (RPAS) - Enterprise Engine to support Oracle® Retail Batch Script Architecture only.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and proA12345-01visions only apply to the programs referred to in this section
and licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(ii) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory Management.

(iii) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(iv) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR Applications.

Oracle will not deliver source code to the VAR Applications to you. Notwithstanding any other term or
condition of the agreement and this ordering document, you shall not cause or permit alteration of any VAR
Applications. For purposes of this section, “alteration” refers to all alterations, translations, upgrades,
enhancements, customizations or modifications of all or any portion of the VAR Applications including all
reconfigurations, reassembly or reverse assembly, re-engineering or reverse engineering and recompilations
or reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or confidential
information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle's licensors and Customer shall not attempt,
cause, or permit the alteration, decompilation, reverse engineering, disassembly or other reduction of the
VAR Applications to a human perceivable form. Oracle reserves the right to replace, with functional
equivalent software, any of the VAR Applications in future releases of the applicable program.

v

Contents

Send Us Your Comments ... ix

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Customer Support .. xii
Review Patch Documentation .. xii
Improved Process for Oracle Retail Documentation Corrections ... xii
Oracle Retail Documentation on the Oracle Technology Network ... xiii
Conventions ... xiii

1 Introduction

Contents of This Guide ... 1-2

2 Getting Started

Deploying the Batch Script Architecture... 2-1
Preparation and BSA Installation .. 2-1

3 Batch Architecture Functionality

Logger Functionality Overview... 3-1
Automatic Functions ... 3-1
Logger Public API .. 3-3

Verification of Successful Completion .. 3-4
Verify the Public API ... 3-4

Overview of the Parallelization Functionality ... 3-5
Para API.. 3-6
Tar Command Customization.. 3-6
SQL Query Wrapping.. 3-6
BSA Setup .. 3-7

vi

vii

List of Tables

3–1 Logger Private API Scripts ... 3-3
3–2 Logger Public API Scripts and Environment Variables ... 3-3
3–3 Verify Script Descriptions... 3-4
3–4 Para API Functions .. 3-6
3–5 BSA Variables ... 3-7

viii

ix

Send Us Your Comments

Oracle Retail Batch Script Architecture Implementation Guide, Release 14.1.

Oracle welcomes customers' comments and suggestions on the quality and usefulness
of this document.

Your feedback is important, and helps us to best meet your needs as a user of our
products. For example:

■ Are the implementation steps correct and complete?

■ Did you understand the context of the procedures?

■ Did you find any errors in the information?

■ Does the structure of the information help you with your tasks?

■ Do you need different information or graphics? If so, where, and in what format?

■ Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell
us your name, the name of the company who has licensed our products, the title and
part number of the documentation and the chapter, section, and page number (if
available).

Note: Before sending us your comments, you might like to check
that you have the latest version of the document and if any concerns
are already addressed. To do this, access the Online Documentation
available on the Oracle Technology Network Web site. It contains the
most current Documentation Library plus all documents revised or
released recently.

Send your comments to us using the electronic mail address:
 retail-doc_us@oracle.com.

Please give your name, address, electronic mail address, and telephone number
(optional).

If you need assistance with Oracle software, then please contact your support
representative or Oracle Support Services.

If you require training or instruction in using Oracle software, then please contact your
Oracle local office and inquire about our Oracle University offerings. A list of Oracle
offices is available on our Web site at www.oracle.com.

x

xi

Preface

The Oracle Retail Batch Script Architecture Implementation Guide is intended for
integrators and implementation staff, as well as the retailer's IT personnel.

Audience
This Implementation Guide is intended for the Batch Script Architecture application
integrators and implementation staff, as well as the retailer’s IT personnel. This guide
is also intended for business analysts who are looking for information about processes
and interfaces to validate the support for business scenarios within Batch Script
Architecture and other systems across the enterprise.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Retail Batch Script
Architecture Release 14.1 documentation set:

■ Oracle Retail Batch Script Architecture Implementation Guide

■ Oracle Retail Batch Script Architecture Release Notes

Also see the following application’s document sets that include information about
BSA:

■ Oracle Retail Advanced Inventory Planning

■ Oracle Retail Analytic Parameter Calculator for Regular Price Optimization

■ Oracle Retail Assortment Planning

■ Oracle Retail Category Management

■ Oracle Retail Demand Forecasting

xii

■ Oracle Retail Item Planning

■ Oracle Retail Item Planning Configured for COE

■ Oracle Retail Merchandise Financial Planning

■ Oracle Retail Regular Price Optimization

■ Oracle Retail Replenishment Optimization

■ Oracle Retail Size Profile Optimization

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https://support.oracle.com/

When contacting Customer Support, please provide the following:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to recreate

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
When you install the application for the first time, you install either a base release (for
example, 14.1) or a later patch release (for example, 14.1.1). If you are installing the
base release, additional patch, and bundled hot fix releases, read the documentation
for all releases that have occurred since the base release before you begin installation.
Documentation for patch and bundled hot fix releases can contain critical information
related to the base release, as well as information about code changes since the base
release.

Improved Process for Oracle Retail Documentation Corrections
To more quickly address critical corrections to Oracle Retail documentation content,
Oracle Retail documentation may be republished whenever a critical correction is
needed. For critical corrections, the republication of an Oracle Retail document may at
times not be attached to a numbered software release; instead, the Oracle Retail
document will simply be replaced on the Oracle Technology Network Web site, or, in
the case of Data Models, to the applicable My Oracle Support Documentation
container where they reside.

This process will prevent delays in making critical corrections available to customers.
For the customer, it means that before you begin installation, you must verify that you
have the most recent version of the Oracle Retail documentation set. Oracle Retail
documentation is available on the Oracle Technology Network at the following URL:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

An updated version of the applicable Oracle Retail document is indicated by Oracle
part number, as well as print date (month and year). An updated version uses the
same part number, with a higher-numbered suffix. For example, part number
E123456-02 is an updated version of a document with part number E123456-01.

xiii

If a more recent version of a document is available, that version supersedes all
previous versions.

Oracle Retail Documentation on the Oracle Technology Network
Documentation is packaged with each Oracle Retail product release. Oracle Retail
product documentation is also available on the following Web site:

http://www.oracle.com/technetwork/documentation/oracle-retail-100266.html

(Data Model documents are not available through Oracle Technology Network. These
documents are packaged with released code, or you can obtain them through My
Oracle Support.)

Documentation should be available on this Web site within a month after a product
release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

1

Introduction 1-1

1 Introduction

The Batch Script Architecture (BSA) is designed to provide a robust, enterprise-ready
architecture for parallel process control, restart control, log consolidation, and
dependency checks. Applications that take advantage of the architecture include:

■ Oracle Retail Advanced Inventory Planning

■ Oracle Retail Analytic Parameter Calculator for Regular Price Optimization

■ Oracle Retail Assortment Planning

■ Oracle Retail Category Management

■ Oracle Retail Demand Forecasting

■ Oracle Retail Item Planning

■ Oracle Retail Item Planning Configured for COE

■ Oracle Retail Merchandise Financial Planning

■ Oracle Retail Regular Price Optimization

■ Oracle Retail Replenishment Optimization

■ Oracle Retail Size Profile Optimization

Functionally, the batch operability is enhanced by making it easier to diagnose and
correct problems. Errors and exceptions are isolated (contained) within the
applications' domains in which they occur. Processing is designed to easily restart and
proceed with execution.

Parallel tasks are managed, logged, and checked for errors, to the same standard as
non-parallel tasks.

BSA provides the following features:

■ Error handling and logging architecture and their implementation

■ Script parallel process management (logging, error control, and waiting)
framework

The BSA is a common component architecture that is used by many of the Oracle
Retail application batch scripts for the reusing of code. The BSA has a structured
approach of execution.

In addition to modularization and complete separation of the generic functionality,
additional functionality has been added, including the management of access
credentials for database connections, and SQL query, move and copy-with
confirmation, and HTML- and XML-based logging.

Contents of This Guide

1-2 Oracle Retail Batch Script Architecture Implementation Guide

Contents of This Guide
This implementation guide addresses the following topics:

■ Chapter 1, "Introduction"— Overview of BSA and the applications that use BSA
architecture.

■ Chapter 2, "Getting Started"— Explanation of BSA deployment.

■ Chapter 3, "Batch Architecture Functionality"— Information on BSA functionality
that includes containment and management of shell environment settings,
logging, error handling, and parallel control.

2

Getting Started 2-1

2 Getting Started

Specialized application environment setup is best done by setting up a common script
that is sourced by all the specialized application environment scripts. The common
script should initialize the specialized environment settings, and then source bsa_
common.sh to complete the environment setup. Each specialized environment script
should normally cache any input parameters (preferably saved to a local,
descriptively-named script variable), and then source the common application script.

Deploying the Batch Script Architecture
This section describes deployment of the BSA.

Preparation and BSA Installation
Get the file bsa.zip from the BSA package. Oracle recommends installing under
$RPAS_HOME. The instructions below refer to this folder as {install-folder} and
assumes that the file bsa.zip is placed in folder/tmp.

Install as follows:

cd {install-folder}

unzip -q "/tmp/bsa.zip" ## Creates subfolder {install-folder}/bsa.

chmod 755 bsa/*

In the user's.profile (or similar setup script) add the "{install-folder}/bsa" to PATH.
For example, if the {install folder} location used above were /u00/rpas13x, then you
could add this line to your.profile:

PATH="/u00/rpas13x/bsa:$PATH"

Deploying the Batch Script Architecture

2-2 Oracle Retail Batch Script Architecture Implementation Guide

3

Batch Architecture Functionality 3-1

3 Batch Architecture Functionality

The BSA provides structure and helper functionality for containment and management
of shell environment settings, logging, error handling, and parallel control. The
following scripts are included:

Script Description

bsa_common.sh A convenience script that sources bsa_env.sh, bsa_logger.sh, bsa_
verify.sh, and bsa_para.sh for simplified packaging.

bsa_env.sh Environment settings (paths, and so forth) are optional redefinitions
that can be preset in the environment or in a local environment script
to specialize for each installation. Also includes routines to
programmatically create, verify, and adjust the environment settings.

bsa_logger.sh Functionality to perform automatic and manual information and error
logging.

bsa_para.sh Functionality to perform parallel process control, error containment,
and logging.

bsa_verify.sh Utility functions to perform verifications of scripts and binary
executions.

bsa_cred.sh Utility functions to manage access credentials (Connect string for
Oracle database).

bsa_sql.sh Utility functions to fetch values from, and runs stored
procedures/functions on, the Oracle database.

Logger Functionality Overview
The bsa_logger.sh script contains utility API functions to perform basic information
and error logging. At its core are the _log_message and _call APIs that perform
explicit information and error logging, and the wrapping of the standard out and
standard error streams to the log. The script also enables simultaneous logging to the
terminal.

Automatic Functions
In addition to explicit functionality, the logger.sh header script performs the following
automatic functions:

Log path setup: A log directory, ${BSA_LOG_HOME}/<date>, is created. Logs are
created in subdirectories and in a folder hierarchy that exactly parallels the script call
stack. Log files are named <script base name>.log. Later, a summary log may be
implemented. Each log directory name is constructed as follows:

<base script name>.<timestamp>.<sequence number>

Logger Functionality Overview

3-2 Oracle Retail Batch Script Architecture Implementation Guide

The sequence number is important, as some scripts are called repeatedly in a sequence
or in parallel by other scripts. Each distinct call gets its own log. For example, if, on
December 27, 2010, the main.sh script calls utility_1.sh once and utility_2.sh
three times, the following log directories and files result:

Figure 3–1 Log Path Setup Example

Script Entry Logging
The _log_message API is automatically called to log the script entry point to the
script's log. Refer to the sections, Logger Private API and Logger Public API for
additional information.

Script Exit Logging
Upon exit, the _log_message API is called to log the script exit to the script's log. Both
normal and Ctrl+C and other hard exit-induced exits are logged and distinguished,
and a descriptive error code number is included in the log message.

Read from the application's environment shell script (for example, aip_env_rpas.sh,
environment.sh), and create, if absent, the environment variable, BSA_LOG_LEVEL.
This is the minimum level for which log content is generated.

Valid values for this environment variable (BSA_LOG_LEVEL) are:

■ PROFILE

■ DEBUG

■ INFORMATION

■ WARNING

■ ERROR

■ NONE

If this variable is not already set by the environment, logger.sh defaults the value to
INFORMATION.

Read from the application's environment shell script and create, if absent, the
environment variable, BSA_SCREEN_LEVEL. This is the minimum level for which log
content is copied to the terminal.

Valid values for this environment variable (BSA_SCREEN_LEVEL) are:

■ PROFILE

■ DEBUG

■ INFORMATION

■ WARNING

Logger Functionality Overview

Batch Architecture Functionality 3-3

■ ERROR

■ NONE

If this variable is not already set by the environment, logger.sh defaults the value to
NONE.

Logger Private API
Automatic functionality is implemented by using the private API, as well as the public
API. Table 3–1 describes the Logger Private API Scripts.

Table 3–1 Logger Private API Scripts

Script Description

__internal_log_message Logs the message, complete with the caller's line number

__internal_log_entry Calls __internal_log_message to log the entry to the script's log

__internal_log_normal_exit Called implicitly by the firing of the shell EXIT trap; calls __
internal_log_message to log the exit code and message to the
script's log

__internal_log_forced_exit Called implicitly by the firing of the shell INT and CLOSE
traps; calls __internal_log_message to log the exit code and
message to the script's log

Logger Public API
Automatic functionality is implemented by using the private API, as well as the public
API. Table 3–2 describes the Logger Public API Scripts and Environment Variables:

Table 3–2 Logger Public API Scripts and Environment Variables

Script Description

BSA_LOG_LEVEL environment
variable

The BSA_LOG_LEVEL environment variable, found in the application's
environment script (for example, environment.ksh), can be set to the
desired level of logging to the log files. Valid values are PROFILE,
DEBUG, INFORMATION, WARNING, ERROR and NONE. If this
variable is not already set by the environment, logger.sh defaults the
value to INFORMATION.

BSA_SCREEN_LEVEL environment
variable

The BSA_SCREEN_LEVEL environment variable, found in the
application's environment script (for example, environment.ksh), can be
set to the desired level of logging to the terminal. Valid values are
PROFILE, DEBUG, INFORMATION, WARNING, ERROR and NONE. If
this variable is not already set by the environment, logger.sh defaults the
value to NONE.

_log_message <level> <message> Implemented as an alias that captures the script line number and calls __
internal_log_message. The level can be PROFILE, DEBUG,
INFORMATION, WARNING, ERROR or NONE. It writes the time
stamp, level, script name, line number, and message to the script's log
and/or terminal, depending on the level as compared with the BSA_
LOG_LEVEL and BSA_SCREEN_LEVEL. This renders obsolete most
uses of echo and print to the log file.

_call <script or binary call with
params>

Wraps any script or binary call so that the standard error and standard
out are redirected to the script's log file. This renders obsolete most uses
of > and >>.

Send Log to Screen
BSA allows for logging of output to the screen, simultaneous with logging to log files.
This is controlled by the environment variable BSA_SCREEN_LEVEL.

Verification of Successful Completion

3-4 Oracle Retail Batch Script Architecture Implementation Guide

Valid values for this environment variable (BSA_SCREEN_LEVEL) are:

■ PROFILE

■ DEBUG

■ INFORMATION

■ WARNING

■ ERROR

■ NONE

If this variable is not already set by the environment, logger.sh defaults the value to
INFORMATION. Logging to file is still controlled by the existing variable BSA_LOG_
LEVEL. The two levels for LOG and SCREEN are independent.

Verification of Successful Completion
The verify functions provide single-line error handling after calling any script or
binary. These three API functions ensure the success or report the failure and exit the
batch, based on the run of a script, binary, or the identification of an error string in the
script's log:

■ _verify_script

■ _verify_binary

■ _verify_log

Verify the Public API

Note: In order for _verify_script to work correctly, all the scripts
should exit only with predefined exit codes. Under no circumstances
should exit be called without a code, nor should any return be called.

Table 3–3 Verify Script Descriptions

Script Description

_verify_script This is implemented as an alias that captures the script line
number and calls __internal_verify_script. This function must
be called immediately after the script to be verified. It checks the
return value from the script; if nonzero, it posts an error code
specific message to the script's log with level=ERROR, and then
exits from the script with the same code. This, along with _
verify_binary, renders obsolete most processing functions of $?.

_verify_binary <custom
error message>

This is implemented as an alias that captures the script line
number and calls __internal_verify_binary. This function must
be called immediately after the binary to be verified. It checks
the return value from the binary; if nonzero, it posts the passed
custom error message to the script's log with level=ERROR, and
then exits from the script with a standard error code (not the
binary exit code). The standard error code is returned so that the
calling script can automatically report the error by use of _
verify_script. This, along with _verify_script, renders obsolete
most processing functions of $?.

Overview of the Parallelization Functionality

Batch Architecture Functionality 3-5

The codes defined for use as script exits are as follows:

__CODE_SUCCESS
__CODE_NONZERO_EXIT
__CODE_FORCED_EXIT
__CODE_FILE_NOT_FOUND
__CODE_NONEXISTENT_LOG_FILE
__CODE_NONEXISTENT_ERROR_FILE
__CODE_TOO_FEW_ARGS
__CODE_TOO_MANY_ARGS
__CODE_UNSPECIFIED_ERROR
__CODE_GENERAL_SCRIPT_ERROR
__CODE_UNDEFINED_ERROR_LEVEL
__CODE_MACE_ERROR_LEVEL
__CODE_INVALID_PATH
__CODE_INVALID_DOMAIN_PATH
__CODE_PARALLEL_ERROR
__CODE_UNSUPPORTED_FUNCTIONALITY
__CODE_UNSUPPORTED_DATA_SET_KEY
__CODE_FIRST_LOG_ERROR
__CODE_LOGGED_ERROR
__CODE_LOGGED_EXCEPTION
__CODE_LOGGED_FATAL
__CODE_LOGGED_ABORT
__CODE_LAST_LOG_ERROR

Overview of the Parallelization Functionality
A framework for the parallelization of script and binary calls is introduced to replace
the use of the naked and wait commands. The framework has these three components:

_verify_log This is implemented as an alias that captures the script line
number and calls __internal_verify_log. This function performs
grep-based checking of the script's log for an easily configured
list of strings, including error, exception, and failure. If a
configured string is found, a log entry is generated with
level=ERROR, indicating the error found; and then a non-zero
exit is performed to immediately halt the script. This renders
obsolete most functions in the explicit grepping of log files.

Function Description

BSA_MAX_PARALLEL environment variable The BSA_MAX_PARALLEL environment variable, found in the
application's environment script (for example, environment.ksh),
should hold a positive integer value.

This value is interpreted by the para_spawn function as the
maximum number of processes that can be started in parallel,
from any spawning process.

This value is not the maximum total number of running
processes, as spawned processes may further spawn more
processes.

If this variable is not already set by the environment, bsa_env.sh
defaults the value to 4.

Table 3–3 (Cont.) Verify Script Descriptions

Script Description

Para API

3-6 Oracle Retail Batch Script Architecture Implementation Guide

Para API
Table 3–4 describes the Para API functions:

Table 3–4 Para API Functions

Function Description

_para_spawn <script or binary call
with params>

This function wraps the calling of a script or binary, in parallel. This
renders obsolete the use of standard parallel calling "&". Scripts or binaries
called using this function are started only if the number of processes that
have already been spawned from the same calling script and still running
do not exceed the BSA_MAX_PARALLEL environment variable. If the
number of already spawned and still running jobs equals BSA_MAX_
PARALLEL, then, this function waits until at least one of the jobs
completes, before spawning the requested job. _para_spawn must be used
in conjunction with _para_wait. _para_spawn should not be called with the
_call function, although the use of _call within a script spawned by _para_
spawn is acceptable.

_para_wait This function wraps the wait function, and should be used to wait for jobs
spawned using _para_spawn. It returns 0 if all the jobs spawned with _
para_spawn return 0, or nonzero (actually, the resolved value of __CODE_
PARALLEL _ERROR), otherwise.

Tar Command Customization
BSA includes functionality for uncompressing and unpacking a file that has been
packed with UNIX's tar and compress utilities. The tar command used by BSA is
customizable by editing bsa_env.sh and replacing "TAR=tar" with the name or full
path of any alternate version of tar required to circumvent standard UNIX tar file size
limits.

SQL Query Wrapping
The API functions, _sqlplus and _sqlplus_fetch, are used to simplify the database
access through batch scripts. Both functions use the BSA credential file to obtain the
schema access. The credential file application can be sent to the functions. Both

_para_spawn function The _para_spawn function is a replacement for invoking a script
or binary with a trailing '&'. _para_spawn <command> starts
command in parallel, as soon as the number of processes
spawned by the spawning process falls below BSA_MAX_
PARALLEL.

Scripts spawned with _para_spawn, log messages just like the
non-parallel-called scripts. _para_spawn must be used only in
conjunction with _para_wait.

For more information, see the section, Para API.

_para_wait function The _para_wait function is a replacement for the wait command,
and it should always be used to wait for processes spawned with
_para_spawn. _para_wait handles the detailed reporting of
spawned process failures and returns; either __CODE_SUCCESS
(0) if all the parallel processes succeed, or __CODE_PARALLEL_
ERROR if any spawned process fails. _para_wait must be used
only in conjunction with _para_spawn.

For more information, see the section, Para API.

Function Description

BSA Setup

Batch Architecture Functionality 3-7

functions use DEFAULT_BSA_SQL_CRED_APP for credential lookup if an application
is not passed.

The _sqlplus function can be sent a string of PL/SQL commands, including calls to
stored procedures and functions. The function propagates connection errors, syntax
errors, unhandled database errors, and handled PL/SQL logic errors. The _sqlplus
function commits automatically.

The _sqlplus_fetch function can be sent a SQL query. It propagates connection errors,
syntax errors, and unhandled database errors.

BSA Setup
Prior to the sourcing of the BSA common architecture scripts, a batch script or its caller
must specialize the BSA environment settings as necessary (for example, to set BSA_
LOG_HOME to a local, writable directory). The BSA architecture is designed to set the
environment settings only if they are not preset by the specialized environment. In
other words, set up the application environment, and then source the BSA architecture
scripts, which fine tune and default any necessary settings that do not already exist.

Specialized application environment setup is best done by setting up a common script
that is sourced by all the specialized application environment scripts. The common
script should initialize the specialized environment settings, and then source bsa_
common.sh to complete the environment setup. Each specialized environment script
should normally cache any input parameters (preferably saved to a local,
descriptively-named script variable), and then source the common application script.

The following variables in Table 3–5 should be customized. Some of these have been
described more extensively in the preceding documentation.

Table 3–5 BSA Variables

BSA Variable Default Value Description

BSA_ARCHIVE_DIR $TMP The directory that will contain the copies of archive files
created with tar and compress command and imported
from data source outside the application.

BSA_CONFIG_DIR $TMP The directory containing configuration files used for
unpacking of data files.

BSA_LOG_HOME $TMP The directory containing the log files generated by the BSA
logging functionality (for example, _call).

BSA_LOG_LEVEL INFORMATION The desired level of message logging. Used by both logging
to screen and to log files. Valid values are PROFILE,
DEBUG, INFORMATION, WARNING, ERROR and NONE.

BSA_LOG_TYPE 1 The desired logging type. 1=Text Only. 2=XML Only.
3=Text & XML.

BSA_MAX_PARALLEL 4 The maximum number of processes that can be started in
parallel, from any spawning process.

BSA_SCREEN_LEVEL NONE The desired level of logging to the terminal. Valid values
are PROFILE, DEBUG, INFORMATION, WARNING,
ERROR, and NONE.

BSA_TEMP_DIR $TMP Directory used to store temporary files, for example: for
sorting temporary space, for one-off files created during
batch processes.

	Contents
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Customer Support
	Review Patch Documentation
	Improved Process for Oracle Retail Documentation Corrections
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Introduction
	Contents of This Guide

	2 Getting Started
	Deploying the Batch Script Architecture
	Preparation and BSA Installation

	3 Batch Architecture Functionality
	Logger Functionality Overview
	Automatic Functions
	Logger Public API

	Verification of Successful Completion
	Verify the Public API

	Overview of the Parallelization Functionality
	Para API
	Tar Command Customization
	SQL Query Wrapping
	BSA Setup

