AutoVue Integration Software Development
Kit 20.2.2

Technical Guide

ORACLE

September 2013

AutoVue Integration SDK - Technical Guide

Copyright © 1998, 2013, Oracle and/or its affiliates. All rights reserved. The Programs (which include both the
software and documentation) contain proprietary information; they are provided under a license agreement
containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual
and industrial property laws. Reverse engineering, disassembly, or decompilation of the Pro-grams, except to
the extent required to obtain interoperability with other independently created software or as specified by law, is
prohibited. The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not warranted to be error-
free. Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose. If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement,
and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software-
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all
risks associated with the use of such content. If you choose to purchase any products or services from a third
party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of
third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services.
Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third
party. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

AutoVue Integration SDK - Technical Guide

Table of Contents

1.

e N 7
L1 AUGIBNCE e 7
1.2 Related DOCUMENTSuuiiiiiie e e et e e e e e e e e e e eaannn s 7
INTRODUGCTION ...ttt ettt e e e e e e sttt e e e e e e e e s ssaa b et aeeeeeeaeasnnssnnneeaeaaeaaans 8
SYSTEM REQUIREMENTS ..ot e e e e e e e eaan e ee 8
ARCHITECTURE ...ttt e e e e e e e et e e e e e e e e e nnnseareeeaaaeeaaans 8
A1 HOW 1T WOTKS ettt e e e e e e e eeaaa e e e e e e eeeeennnnns 9
4.2 FrAMEWOTK ..ooeiiiiiiiiiiiiieee ettt ettt et et s e e nnenee e 10
4.3 SEQUENCE FIOW .ooiiiiiiii et e e 11
INTEGRATION DESIGN ...coiiiiiieiiiiiiiiiiiie ettt e e e e e e ree e e e e e e e s s snnnasaeeeeeeeeaans 13
5.1 VUELINK ClASS ..ottt ettt e e e e e e et e e e e e e ees 15
5.2 DMSACHONS INTEITACE......coiiiiiiiiie 15
5.3 ActionGetProperties INterface ... 16

5.3.1Single Class (Basic MONOITNIC)..........ccooiiiiiiiiiii e 16

5.3.2Multiple Classes (Recommended)...........oouuuiiiiiiiiiiiiiiiiei e 16
5.4 DOCID INTEITACE .ccooieieiiieeeee e 17
IMPLEMENTING FILE VIEW FUNCTIONALITY IN YOURDMS......cciieiieeeee, 18
6.1 Step 1: Creating Your Main DMS Servlet by Extending the VueLink

L0 =PRSS 18
6.2 Step 2: Defining Your Unique Document Identifier by Implementing

Do o3 10 1] (=] o - Tod =PSRRI 19
6.3 Step 3: Creating a GetProperty action to return User Name........................ 20
6.4 Step 4: Creating a class to implement DMSBackend interface 20
6.5 Step 5: Creating an Open Action class that returns your DoclID................. 20
6.6 Step 6: Creating a Get Property Action to Return Document Name 23
6.7 Step 7: Creating a GetProperty action to return Document Date Last

MOIfied N SIZE ..o 25
6.8 Step 8: Creating a Download action to return Document Content.............. 26
6.9 Step 9: Implementing Remaining Actions and Registering in web.xml...... 27

AutoVue Integration SDK - Technical Guide

7. IMPLEMENTING ADVANCED INTEGRATION FUNCTIONALITY IN YOUR

DI S s 29
7.1 Handling Document AttrbDULESoee i e e 29
7.2 Returning External References (XRefS)......ccooviiiiiiiiiiiiiiiiieeeeee e 31
7.3 HaNAliNg MarKUPS....uu it e e e e e e e e e e e e e eeeees 34
7.3.LGUI RESPONSE ..ottt ettt e e et e e e e e e e e e e eaa s 34
7.3.2Markup RESPONSE. .. .uuiiiieeiiieeiiiiii e e e e e e e ettt e e e e e e e e e et e e e e e e e e e eeaneanna s 36
7.4 Handling ReNAITIONS ... 38
7.5 Returning the List of All Properties of the DMS Document 40
7.6 Implementing File BrOWSEuuuiiiiiiii e 43
T.6.1GUI REQUESLottt e et e e e e e e e e e e e eenanns 43
7.6.2Request for BrowSe RESUILSuiiiiiiiciiei e 44
7.7 Implementing File SEarch ..o 46
7.7 LISt REQUEST ..ottt e e e e eeeeseeeeeeees 46
7.7.2Request for Search ReSUIS.........coiii i i 49
7.8 HaNAIING VEISIONS ..ouuiiiiiiiieeieee et e e e e e e e 50
7.9 Implementing handler for Default Property.......ccccovvviiiiiiie e 52
7.10 Implementing File Save ACTIONcooi i 53
7.11 Implementing File Delete ACLIONccovvieeiiiiiie e 57
7.12 Creating YOUT CONTEXT.....ccoiiiiiiiiiiiee ettt e e e e e e e e e e 58
7.13 Overriding GetProp<CSI Property> ClasSesS........ccvvvvviiiiiiieeeeeeeeiceee e 60
7.14 Implementing Read-Only MarkupsSooouuiiiiiiiiiiieiii e 62
7.15 IMpPlementing STAMPS ...coocoeiieee e 65
7.16 Implementing Markup POLICYuoiiiiiiiii e 69
7.17 ONliNe/OffliNe SUPPOIT ... e e e e e e 71
7.18 Implementing Redir€CLIONuuueiii e 71
7.19 Implementing Real-Time Collaboration and Meeting Management............. 76
7.19.1 Launching AutoVue in RTC MOEcoooiiiiiiiiiiae 76
7.19.2 HOSES INitiate RTC 76
7.19.3 GUESIS JOIN RTC .., 77
7.19.4 ISDK APIS fOr RTC ..eiiiiiiiiiiiiiiiiiiiiieeiteiteteeeeeeeeeeeeeseseeeesaeseeeeseeeeeeees 77
7.19.5 SUMIMATY ..t e e e e e e e e e e e e e e e nnn e e eeenes 82
7.20 Implementing Oracle Enterprise Visual Framework Supportccoeeeeeeee. 84
7.20.1 Most Common Use Cases for OEVFcoiiiiiiiiiiiiiiiie e 84
7.20.2 OEVF Launching URL and Parameters..........ccccoeeevvviiieeeiiiiineeennn, 85

AutoVue Integration SDK - Technical Guide

10.

7.20.3 OEVF Customization Page............ccccoecviiiiiiiiiiiiiniiic i, 86
7.20.4 ISDK APIS fOr OEVFoeiiiiiiii et 88
7.20.5 DOCID ...ttt e e e e a e e e e e e annnees 91
7.21 Implementing Ul CUStOMIZAtIONcooiiiiiiiiiiiiee e 91
7.21.1 Embedded vs. POP-UP WINAOW.......ccooeiiiiiiiiiiiiie e 91
7.21.2 POP-UP BIOCKET ... 93
7.21.3 Prompt {0 SAVEo 94
7.22 Returning DMS NaAMIE ... oot e e e e e e e e e e eea e e e e aeeees 95
7.23 Leveraging AutoVue WED SEIVICES.......oouuuiiiiiiiiieieeeeeiiii e 96
7.23.1 Configuring AutoVue Web Services to Communicate with
INEEQration SDKccoiiiiiii e e e e e e e e e e e e e aeeanannn 96
7.23.2 Utilizing AutoVue Web Services at Front End............cccccceeeeeeee, 97
APPENDIX A — INTEGRATION SDK SKELETONcoiiiiiiiiece e 100
8.1 Integration SDK Skeleton Packagescceeeiiiieiiiiiieiiiiiiee e 100
8.2 Integration Steps for Implementing File View Functionality...................... 101
8.3 Integration Steps for Implementing Advanced Functionality 102
APPENDIX B — SAMPLE INTEGRATION FOR FILESYS ..., 104
9.1 DMSACLIONS ..o 106
0.2 BaACKENA AP 109
9.3 Filesys DMS Backend system StruCtureccoooeeevvvveeiiiiiiie e 111
9.4 Sample Integration for Filesys DMS Use CaSescoccevvvvivieeviiiiieeeeiiinnn, 114
O.4.1C0IE USE CABSES ...uuiiiiiiieeeeeite e e et e et e e et e e e et e aeaeean e e e eenanaaaaeenes 114
9.4.2BaCKENT USE CASES. .. iiiiiiiiiiiiiiiiie e ee ettt e e e e e e e eaaan s 118
9.5 KNOWN LiMItatiONS..cccciiiiiiiiiiieeecee e 123
APPENDIX C — ISDK WEB SERVICE CLIENTciiiiiiiiiceieee e 124
L10.1 INErOAUCTION .o, 124
10.2 ATrCRITECTUIE ..o e et e e e e e e e eaan s 124
L10.3 HOW 1T WOTKS .o, 126
10.4 Web Service Client PACKage.........uuiiiiiiiiiiiiiiiiiieee e 127
0SS =To [1T oY o] < PP PPPRPPIN 128
10.6 CONFIGUIALION ... e e et e e e e e e eaaan s 129
10.7 WSDL LOCALION .o, 129
L10.8 WS-SBCUIILY ittt e e e e e e ettt e e e e e e e e e e e naan s 129

AutoVue Integration SDK - Technical Guide

10.8.1 HTTPS-BasiC Profile........ccoooiii
10.8.2 HTTPS-UserName Token Profile (Metro)ccccvvvvvvvvcineeeeennne.
10.8.3 HTTPS-UserName Token Profile (WebL0giC)cccvvveiieeeennnne.
10.8.4 Other WS-Security ProfileS.........ccoovvviiiiiiieciee e
10.9 BIUEPTINT WSDL ...t e e e e
10.9.1 Web Services Methods..........cooouuiiiiiiiii e
10.9.2 BLUEPRINT XSD ..ottt e e
10.10 Steps for Implementing BASIC Integration Based on Web
T=] QT of L TR

10.11 Steps for Implementing Advanced Integration Based on Web
T=] VT of L TR TTRPPP

10.12 Sample Approaches to Generate Web Services Provider
o = Vo3 PP SUPPPPPURRTRPN

10.12.1 How to generate Java web services code from ISDK WS
W SDL il ettt e e e e e e e e e e nnnees

10.12.2 How to generate .Net web services code from ISDK WS
LTS B 11 PP PPPPPPPP

10.13 BIUEPIIiNt WSDL @nNd XSD ..o
11. APPENDIX D — ISDK WEB SERVICES SAMPLE SERVERccooviiiiiiiiiieen,

12. APPENDIX E - UPGRADING EXISTING INTEGRATION.......ccvvviiiiiiiiiiiiiiiiiiieeeeee
12.1 Upgrading from the 20.1 RelaSEe......cccoeiiiiiiiiiiiiee e
12.2 Upgrading from a pre-20.1 Rel€aSe.......ccovvveeiiiiiiieieeieeeeeiee e

13, FEEDBACK ..t

AutoVue Integration SDK - Technical Guide

1. PREFACE

The AutoVue Integration Software Development Kit Technical Guide describes the technical
details of the AutoVue Integration SDK and how to implement your own integration based
on the SDK Framework.

For the most up-to-date version of this document, go to the AutoVue Documentation Web
site on the Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/documentation/autovue-091442.html.

1.1 Audience

This document is intended for Oracle partners and third-party developers (such as
integrators) who want to implement their own integration with AutoVue based on Web
Service technology. If the target system has no Java™ interface (e.g. a .NET or PHP) then
using Web Service is one the reliable ways to communicate with this SDK.

Note: If the target system has any Java API to access the documents, it is recommended to
use the ISDK Skeleton and integrate it directly to the repository’s Java API. The Sample
Integration for FileSys package is an example of Java to Java integration of AutoVVue SDK.
For more information, refer to Appendix B — Sample integration for filesys.

1.2 Related Documents

For more information, see the following documents in the AutoVue Integration SDK library:
Overview

Design Guide

Installation and Configuration Guide

User Guide

Acknowledgments

Javadocs

Security Guide

Oracle AutoVue Integration Guide

AutoVue Integration SDK - Technical Guide

2. INTRODUCTION

Note: Prior to reading this document, it is strongly recommended that you first familiarize
yourself with the AutoVue Integration Software Development Kit by reading through the
Overview, Design Guide, Installation and Configuration Guide, Security Guide, and User
Guide. These manuals are located in the /docs directory and can be accessed from Quick
Start.html located in the root folder where you installed the AutoVVue Integration SDK.

The AutoVue Integration Software Development Kit (ISDK) is an interface between Oracle
AutoVue and Document Management Systems (DMS). It enables users to add powerful
viewing and markup capabilities to the DMS by interfacing AutoVVue with a particular DMS.
This interface, or integration process, is composed of several activities: requirements
specification, analysis, design, implementation, testing and maintenance. The ISDK provides
a framework on top of which you can build your own integration with AutoVue.

The objectives of this document are to help you to understand and familiarize yourself with
the ISDK framework, as well as to help you build your own integration of AutoVue. To
assist you with the integration, an ISDK skeleton package, Web Services client package and
two sample projects (Sample Integration for FileSys and Web Services Sample Server) are
included in this ISDK.

3. SYSTEM REQUIREMENTS

For a complete list of system requirements specific to your platform, refer the Installation
and Configuration Guide.

4. ARCHITECTURE

The following block diagram shows a typical integration between AutoVVue and a DMS. The
following sections describe how this configuration works.

1 For the remainder of this document, a DMS/EDM/PDM system is referred to as DMS.

AutoVue Integration SDK - Technical Guide

Firewall

DMS Server

v ¥ | 1
DMS DMS | |=
2 DMS Customization Extension — @ DMS

Customization |

6. DMS Extension

~
VueServiet DMS Servlet

(VueLink) Application
Server

Firewall

1. Web Browsar

S

2. Java Applet

4. Servlet Tunneling for
HTTR/HTTPS connection
5. DMS Servet

=« ORACLE
l AutoVue
Server

Figure 4-1: Typical configuration for AutoVue Integration with DMS server

4.1 How it Works

As seen in Figure 4-1, the DMS Servlet allows AutoVue server to communicate with a
DMS using standard HTTP/HTTPS protocol.

The following is a description of how the DMS Servlet works. Note that the numbered
steps refer to the numbers in Figure 4-1.

1. Log into the DMS through a Web browser.

2. With DMS customization in place, you are presented with a link labeled View next
to each file stored inside DMS. This link allows you to view files in the AutoVue
Applet viewer.

3. Click View.
The AutoVue applet launches inside the Web browser window.

4. The AutoVue applet communicates with the AutoVue Server through servlet
tunneling for HTTP/HTTPS connection (VueServlet).

5. The AutoVue server then communicates with the DMS servlet using a standard
HTTP/HTTPS connection.

AutoVue Integration SDK - Technical Guide

6. With the DMS extension installed on the server machine, the DMS Servlet is able to

talk to the DMS Server to handle any request made by the AutoVue server, such as

file fetching.

4.2 Framework

If you try to view a composite file (that is, a file having XRefs or font resource files),
the DMS Servlet retrieves those files and makes them available to the AutoVue server.

Once the file and all its related XRefs and/or resources are fetched out of the DMS,
they are processed by the AutoVue server, which renders the file(s) and streams the file
to the AutoVue applet for display.

Once the file displays in the AutoVue applet, you can redline it, create new markups,
save Markups into the DMS, and open Markups from the DMS.

The following block diagram shows the internal structure of a typical integration with a
DMS. The framework included in the ISDK provides you with the foundation you need to
build your own integration. This framework handles all the plumbing for parsing XML
requests received from the AutoVue Server, as well as constructing XML responses sent
back to the AutoVue server. This framework is provided so that you do not have to
implement your integration from scratch.

Servlet container

Your DMS

Your Integration

(Custom code)

Framework (core)
Vuelink
authentication util context backend property

query XML io session defs propsaction

AutoVue Server

Figure 4-2. Internal Structure of the DMS Servlet

Third-Party

Libraries

10

AutoVue Integration SDK - Technical Guide

The AutoVue Integration SDK bundles some third-party Java libraries needed by the
framework. These libraries are also available for you to call from your own code.

Your integration is responsible for interacting with your DMS. Depending on what type of
SDK your DMS provides, such interaction can be as easy as calling your DMS Java libraries.

4.3 Sequence Flow

When a user selects a document to view, the AutoVue server makes several requests to the
DMS servlet. The DMS servlet provides a response for each request. The scenario of the
exchanges established between the AutoVue server and the DMS servlet are outlined in
Figure 4-3 and can be summarized as follows:

The AutoVue server asks for the PK. This request is handled by VueLink core.

The AutoVue server asks for the user name (CSI_UserName).

The AutoVue server asks for the document ID (DoclD) of the selected document.
This is done through the Open action, which obtains the DocID from the DMS.

The AutoVue server asks for some properties of the document, such as document
name, document size and date of the last modification. The reason is that the
AutoVue server maintains a cache of the document and needs to know if it already
has the exact save version of the document in its cache. In which case, AutoVVue uses
the cached copy rather than downloading the document again.

AutoVue fetches the document through the Download action.

11

AutoVue Integration SDK - Technical Guide

1.14.1.1: DoclD Property Response

sd Interaction]
Autobiue AutotueServer our Your
Client Integration DMS
1: Miiew document action -
1.1: Action Open request -
.1|1: Open File & GetProperty C5I_DoclD

1.14.1: C5I_DoclD Propert:

T
i 2 Actionzet Property Request -
2.1: GetProperty CSI_Dochame »
- 2.1.1: CSI_DocMame Propert:
2.1.4.1: Docurment Marme Property Respon:

: Ackion GetProperty request -

3.1.1.1: Last Modification Date Property Respon:

3.1: GetProperty CSI_DocDatelastModified

. 3.1.1: ¢5I_DocDatelasModified Propert

4; Action Download Request -

4.1.1.1: Download File Responseg

4.1: Download File & Checkout File

4.1.1: File Instance OF The document

A

Figure 4-3. Sequence diagram for file view

12

AutoVue Integration SDK - Technical Guide

5. INTEGRATION DESIGN

Integration is generally composed of two components: the framework and your specific
integration implementation.

The framework is a set of classes that can be used by your integration implementation. It
provides you with all the needed functionalities to communicate with the AutoVue server and
defines the key concepts to implement your new integration. Understanding these concepts is
important for building accurate integrations. The following is a list of the most important
classes and packages to consider for your integration design:
e VuelLink servlet: Base class for your DMS servlet (this is your main class).
e DMSAction interface: Represents an execution thread that handles a particular
action (such as open, delete, download, save, and so on).
e DMSGetPropAction interface: Represents an execution that handles the request for
a specific property.
e DoclD interface: Represents a DMS doclD.

All these concepts are explained later in this section. For detailed information on these
classes and packages, refer to API Javadocs located in the <AutoVue Installation
Directory>/docs/javadocs folder.

The second component is your specific integration, which is the code you add on the top of
the framework in order to have a working integration. This is the main subject of this
documentation.

Your integration must create a DMS servlet that extends the VueLink class and implements
some actions and property actions.

Figure 5-1 shows the minimum components you need to add to your integration.
e Your DMS Servlet class (extended from VueLink class)

Your DoclID class (implements DoclD interface)

Your ActionOpen class (implements DMSAction interface)

Your ActionDownload class (implements DMSAction interface)

Your ActionGetProperties class (implements DMSAction interface)

13

AutoVue Integration SDK - Technical Guide

8

\ Your DMS J

PN

Servlet container

Framework (core)

. |

—

‘AutoVue Server I.

Figure 5-1. Your Integration

14

AutoVue Integration SDK - Technical Guide

5.1 VuelLink Class

The framework provides the com.cimmetry.vuelink.Vuelink class which is an
HttpServilet and is configured through the servlet initialization file. The following lists
important functionalities that establish the dialog between AutoVVue and your integration.
Note: Your DMS servlet must extend this class.

It sets up the log manager for enabling logging at runtime without modifying the
application binary (log4j API).

It registers the DMS Context action and DMS actions classes provided by your
integration. Refer to Javadocs for more on the context package and the propsactions
package.

It parses the HTTP request using the HttpRequestPart class.

It uses the DMSXmIRequest class, to parse the XML document that contains the
actual request. Refer to Javadocs for more on the xml package.

It builds a query object (for example, DMSQuery object) containing all the document
information and Properties that your integration needs. Refer to Javadocs for more on
the query package.

It also constructs some additional DMSArguments from an HTTP part or from some
special data inside the XML document, such as the file content of a Save request for
example. Refer to Javadocs for more on the arguments package.

When DMSQuery is built, it calls the execute () method of the appropriate
DMSAction, and gets the result back or catches a Vue l inkException when an
error occurs. Refer to Javadocs for more information on the defs package.

Finally, it uses the DMSXmIResponse class to construct the XML part of the HTTP
response before sending it back. Refer to Javadocs for more on the xml package.

5.2 DMSActions Interface

AutoVue sends requests to your integration and expects responses from it through the
framework interface. The framework implements a mechanism that routes requests to your
DMS servlet and constructs responses back to AutoVue. The framework provides the
com.cimmetry.vuelink._propsaction.DMSAction interface, which represents an
execution thread that handles a DMS query. Your integration must define one DMSAction
for each of the following DMS action types:

Open

Save

Delete
Download
GetProperties
SetProperties

15

AutoVue Integration SDK - Technical Guide

5.3 ActionGetProperties Interface

5.3.1 Single Class (Basic Monolithic)

This implementation handles GetProperties request using a single class called
ActionGetProperties that has one monolithic execute() method to handle all the
properties.

This class implements a DMSAction interface and is usually put in the actions package. You
must register this class in the web.xml descriptor file.

This implementation has at least two limitations:

e Understandability problem: Too much code in one class, which makes it difficult to
understand and to maintain.

e Extendibility problem: Since the class performs many functions, it is difficult to
extend it with new behavior.

5.3.2 Multiple Classes (Recommended)

One of the main objectives of the AutoVue Integration SDK is that your integration must
handle is GetProperties. This request covers a wide range of items.

One of the main objectives of the AutoVue Integration SDK is to make the framework open
and easy to extend. Accordingly, instead of having a single class that takes care of the
GetProperties() request, individual classes are provided that handle individual
properties. Each individual class has its own execute() method. When a GetProperties
request is received, the framework goes through the list of properties. For each property, the
framework checks if there is an appropriate action to handle it. If such a class is found, its
execute() method is called and its return property is saved. Any properties that do not have
a specific handler class is passed to a default class.

The framework provides a class for retrieving the individual classes that handle the
properties contained in the GetProperties request. This class is called
com.cimmetry.vuelink.propsaction.ActionGetProperties which implements
the DMSAction interface. First, this class retrieves the class handler of the requested
property, then it calls its execute() method, and finally it returns an array of properties
containing the response.

16

AutoVue Integration SDK - Technical Guide

Each individual class you provide to handle a specific property must realize the
DMSGetPropAction interface, then implement the execute() method. The

execute () method must make the request to the DMS, get the response, and then return it as

an array of properties.

The GetPropAction retrieves each property action using the init-parameters mechanism. |
the class is not registered, the framework looks for a property action defined with a default
name GetProp<prop name> in the DMS servlet location. If no class is found, the
GetPropDefault class is called. In this framework, the GetPropDefault class is treated
as any other property action. If GetPropDefault is not found, an exception is thrown.
Also, if the requested property is not handled in the GetPropDefaul t class, an exception
must be thrown.

5.4 DoclD Interface

The DoclD in this framework always refers uniquely to a specific document or file in your
DMS. You must be able to ask for the contents of the file by its DoclD, and get a uniquely-
identified result. In a typical DMS, this can be a combination of the object ID of the
document that contains the file along with library name where this document is stored.

Chapter 6 describes the minimum set of steps you need to follow in order to implement the
viewing functionality of files stored in your DMS using AutoVue.

f

17

AutoVue Integration SDK - Technical Guide

6. IMPLEMENTING FILE VIEW FUNCTIONALITY IN YOUR
DMS

This chapter describes the minimum steps required to add file viewing capabilities using
AutoVue with your DMS. Once you have completed these steps, proceed to Chapter 7 for
information on adding functionality such as searching the DMS, browsing the DMS, creating
markups, performing conversions, and so on.

As mentioned in the Overview document, the AutoVVue Integration SDK bundles a sample
integration called Sample Integration for Filesys DMS. The purpose of this sample is to guide
you in understanding the integration framework. This sample also acts as a good starting
point for building your own integration between AutoVue and your DMS.

To learn more about the sample integration, refer to the appendix in this document.

The following sections describe the steps you need to follow in order to implement basic file
viewing functionality using AutoVue and your DMS. Each step includes an excerpt of code
to show how the Sample Integration for Filesys DMS is implemented. It helps you to
understand the sample integration. But for your own implementation of the Integration SDK,
it is highly recommended to follow the coding style in the Integration SDK Skeleton.

6.1 Step 1: Creating Your Main DMS Servlet by Extending the
VueLink Class

As discussed in Chapter 5, Integration Design, the framework provides the VueL ink base
class which is a servlet implemented in the com.cimmetry.vuelink package of the
SDK. The VueL ink base class provides all the needed services to handle the requests and
responses from the DMS and AutoVue Server. In most cases when implementing your DMS
servlet, just deriving a new class from VueL ink class is sufficient.

The following excerpt of code shows the implementation of the Fi lesysVuel ink servlet in
the com.cimmetry.vuelink.filesys package.

package com.cimmetry.vuelink.filesys;

import com.cimmetry.vuelink.*;

public class FilesysVuelink extends Vuelink {

18

AutoVue Integration SDK - Technical Guide

For example, you can override the servlet’s init() method to perform additional
initialization or override the doGet() method to return your own HTML code.

6.2 Step 2: Defining Your Unique Document Identifier by
Implementing DoclID Interface

AutoVue and DMS exchange several types of files, such as the base document, XRefs,
markups, renditions, and so on. To keep the correct mapping between the files and their
original copies in the DMS backend system, an identification mechanism is needed. For this
purpose, the framework provides us with the DocID interface. You must implement your
own class based on the Doc 1D interface and it should be convertible to a string.

Take note of the different concepts of the unique document identifier in DMS backend
system and the unique document identifier (DoclID) in the Integration SDK. Usually, DoclD
encapsulates the unique document identifier in DMS backend system and adds more
attributes.

package com.cimmetry.vuelink.defs;

/** */
public abstract class DoclD implements
jJava.io.Serializable {

}

In the Sample Integration for Filesys DMS, the Fi lesysDMSDoc D class is coded in the
backend package (com.cimmetry.vuelink.filesys._backend). The
FilesysDMSDoc ID class extends the Doc ID abstract class and builds a unique identifier for
each file.

Note: It is helpful to think of the backend class as a wrapper around your DMS API.
Implementing the DMSBackend interface is optional. To learn more about the backend
package, refer to the Appendix B - Sample Integration for Filesys.

Inside the Filesys DMS backend system, the relative path for each file to the repository root
folder is unique and can be used as a document identifier. When constructing a
FilesysDMSDoc ID object, the m_id member is set to the relative path of a file, for
example, /2D/AutoCAD.dwg/AutoCAD.dwg(1)/AutoCAD.dwg which is relative to the
RootDir defined in web.xml.

package com.cimmetry.vuelink.Ffilesys._backend;

/** */
public class FilesysDMSDoclD extends DoclD implements DMSDefs{

19

AutoVue Integration SDK - Technical Guide

Note: It is recommended that the DoclD size should be less than 2KB and should
not contain a variable component.

6.3 Step 3: Creating a GetProperty action to return User Name

The AutoVue server sends a GetProperties request asking for CS1_UserName. The
implementation of the class is responsible for returning it. It is similar to the implementation
of CS1_DocName described in 6.6Step 6: Creating a Get Property Action to Return
Document Name.

6.4 Step 4: Creating a class to implement DMSBackend interface

There is a DMSBackend interface provided by the VueLink core that has a connect() API
that must be implemented. This implementation class is needed in order to avoid a
deployment warning being thrown by the GenericContext class. At the beginning stage of
your integration development, you can provide an empty implementation for the connect()
method in your implementation class and register your DMSBackend implementation class in
the web.xml file.

During the development phase, you can also include methods that handle communication
with the backend DMS in your DMSBackend implementation class.

After your create your own context class as described in 7.12 Creating Your Context you
must overwrite the getBackendAP1 () method of the GenericContext class in order to
retrieve your own DMSBackend implementation class. You must also overwrite the
getBackendSession() method of the GenericContext class in order to use the
connect() method of your DMSBackend implementation class. Overwriting this method
allows AutoVue to re-use existing sessions with your backend DMS system. For information
on how to implement these classes, refer to the following ISDK Skeleton implementation
classes:

com.mycompany .autovueconnector .backend.DMSBackend Imp
com.mycompany .autovueconnector.session.DMSBackendSessionlImp

6.5 Step 5: Creating an Open Action class that returns your DoclID

When you select a document to view, the first request the AutoVue server sends is an open
request asking for the DoclD of this document. You must create the ActionOpen class in
your integration by implementing the DMSAction interface to handle the open request. The
framework automatically finds your class that handles this request and executes it. You must
also implement the execute () method which returns the unique DoclD for the document
being viewed.

20

AutoVue Integration SDK - Technical Guide

Usually the unique document identifier for the DMS backend system can be retrieved
from the Original URL of the open request sent by the AutoVue server. However, your
Integration SDK might also need to call DMS backend system’s API to get the unique
document identifier or other document attributes in order to construct your Integration
SDK’s DoclID. The original URL can be any of the following formats:

e Standard URLs (example: stating by ftp://, http://, https://, ...).
e Server protocol (example: server://@1/folder/file).
e Local file (example: upload://C:\folder\file).

In the Sample Integration for Filesys DMS, as shown in the following excerpt of code, the
ActionOpen class realizes the DMSAction interface and implements the execute()
method. The execute () method returns the DocID obtained from openFile() method of
the DMSBackend class that retrieves and constructs Fi lesysDMSDoc ID using relative file
path and other attributes. Although implementing the DMSBackend interface is optional, the
Sample Integration for Filesys implements this interface as an example to show how you can
use it in your own integration.

package com.cimmetry.vuelink.filesys.actions;
ﬁublic class ActionOpen implements DMSAction<FilesysContext>, DMSDefs{

public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {

;/ open action returns the DoclD
DoclD doclID = context.getBackendAPI().openFile

If you do not place your DMSAction classes in the same package as your DMS Servlet, the
framework retrieves the ActionOpen class from the web.xml descriptor file. In this case,
each action class should be registered in this file as an init-parameter. The ActionOpen
class has dms.action.Open as a parameter name and its value should be a fully qualified
class name. In the case of the Sample Integration for Filesys DMS, this is
com.cimmetry.vuelink.filesys.actions.ActionOpen as the parameter value. The
FilesysVulinkServlet uses this init parameter to locate, register, and instantiate the
ActionOpen class.

<init-param>
<param-name>dms.action.Open</param-name>
<param-

value>com.cimmetrv.vuelink.filesvs.actions.Action

For more information on the behavior of ActionOpen class, we advise you to (1) closely
examine the source code and (2) run the Filesys project in IDE in debug mode, set breakpoint

21

AutoVue Integration SDK - Technical Guide

as shown in the following figure, and then follow the execution step by step. This will give
you more insight into the behavior of this class.

[
53 A The action name in the cquery mwust be "open”
E£>54 if [(!'Mopen'.equalslghnoreCase (query.getictionMame ()] |
5L throw new VuelinkException(DMS ERROR CODE UNKENOWN ERROR,
56 "Inwvalid action nawe within guery:
57 query.gethotionName () 7

In the Sample Integration for Filesys DMS, the ActionOpen class relies on the openFile
method of the Fi lesysDMSBackend Imp class to obtain the DoclD of a file. This method
has two parameters:
e The session information to connect to the backend.
e The information needed to open the file (for example, Filesys DMS backend system
and name of the file)

public DoclD openFile(DMSBackendSession session, Hashtable<String, String>
_params)throws VuelinkException {

This method returns the DoclD of the file for Filesys. If it fails, it throws a Vuelink
exception.

The openFi le method parses the original URL available from the open request to get the
unique document identifier (the relative file path), version and other parameters necessary to
construct the DoclD for Filesys DMS. Then it builds the Fi lesysDMSDoc ID to return back
to the ActionOpen class. There is additional code in openFi le method to construct data
members that supports OEVF, versioning and rendition. The concept of OEVF, versioning,
and rendition are discussed later.

Note: When the number of the version is not provided, the Filesys DMS system returns the
latest version of this document.

22

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._backend;

public DoclD openFile(DMSBackendSession session, Hashtable<String, String>
_params) throws VuelinkException { // get parameters

Hashtable<String, String> params = _params;

FilesysDMSDoclID doclID = null;

String oevf = "oevf://";
String origURL = params.get(*origURL");
String version = params.get('Version™);

étring relPath = null; // relative file path
String alD DMSUtil .getAssetID(origURL); // alD and wiID are for OEVF
String wiD DMSUti Il .getWorkflowlD(origURL);

iT(origURL.startsWith(oevf)) {

Jelse{
relPath = origURL;
¥

For more information, examine the code and use the debugger to learn more about the actual
behavior of this class.

6.6 Step 6: Creating a Get Property Action to Return Document
Name

AutoVue sends several GetProperties requests to know if it already has the most recent
copy of the document in its cache. The first request sent is for the name of the file identified
by a DoclID. This is done through the CSI_DocName property.

Note: The string value returned for CSI_DocName should include a file extension.

To handle get property requests, you have two options: you can either define a single class
called ActionGetProperties that implements DMSAction or you can have separate
classes that implement the DMSGetPropAction interface. The second approach is
recommended because it reduces code complexity in a single class and improves readability,
but each class needs to be registered in web.xml descriptor file if it is not named as
“GetProp<prop name>" and located in the same package as your DMS servlet class.

Notice that we need to pass in a type parameter (any context that implements the
DMSContext interface or extends the GenericContext class) when using DMSAction and
DMSGetPropAction interface, before your Integration SDK implements your own Context
class as described in 7.12 Creating Your Context, you can use Gener icContext instead.

If you choose the first approach, use the following excerpt of code to define your own
ActionGetProperties class. You can retrieve the list of properties from the query object
passed as a parameter to the execute () method. You can then loop through the properties
list and retrieve its value from your DMS. For more information refer to 5.3:
ActionGetProperties Interface.

23

AutoVue Integration SDK - Technical Guide

Usually, the ActionGetProperties class is put in the same actions package as other

action classes. Note that you must register this class in the web.xml descriptor file as long as

it is not located in the same package as your DMS servlet class.

package com.myisdk.actions;
/** */
public class ActionGetProperties implements DMSAction<GenericContext>, DMSDefs{

public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {

Property[] props = query.getProperties();
String propName = props[i].getName();

// GetProperty action returns attribute values
IT (propName.equals(DMSProperty.CS1_DocName) {
.. // return doc name
} else if(propName.equals(DMSProperty.CSI1_IsMultiContent) {
.. // return is multi content
} else if(propName.equals(DMSProperty.CSI1_DocDatelLastModified) {
.. // return is date last modified
} else if(propName.equals(DMSProperty.CSI_DocSize) {
.. // return is doc size
¥

For the second approach, as demonstrated in the Sample Integration for Filesys DMS,
separate classes are used to implement the DMSGetPropAction interface and they are

located in propactions package. Additionally, a GetPropDefault class is implemented

to process properties that are not handled by separate classes.

The following excerpt of code illustrates the implementation of the GetPropCS1_DocName

class in the Sample Integration for Filesys DMS. It gets the document name from the
GetFilesysProperty class, and then returns it to the AutoVue server.

24

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;

/** */
public class GetPropCSI_DocName extends GetFilesysProperty
implements DMSGetPropAction<FilesysContext> {

public DMSProperty execute(FilesysContext context, DMSSession session,
DMSQuery query, DMSArgument[] args, Property property)
throws VuelinkException {
final FilesysDMSDoclD doclD = new FilesysDMSDoclID().String2DoclD(query.getDoclD());

DMSProperty attrs = getAttrs(context.getBackendAPI1(),
context.getBackendSession(session, query),query, doclD);

DMSProperty retProp = new DMSProperty(Property.CSI_DocName,
attrs.getFirstChildWithName(*'DocName™) .getValue());

m_logger.info("'Got doc name: " + (String)attrs.getFirstChildValue(''DocName'™));
return retProp;

As explained in Chapter 5.3 ActionGetProperties Interface, each individual property class
realizes the framework interface DMSGetPropAction by implementing the execute()
method. Given a DoclD, the getAttrs method returns a Hashtable of attributes of the
corresponding document. One of these attributes is the document name, which is returned as
a DMSProperty object. Refer to the Appendix B for information on implementing the
GetFilesysProperty class.

To allow the framework to locate the register and instantiate the GetPropCS1_DocName, we
must register class in the web.xml file. As illustrated in the following code, this class is
registered with the parameter name dms.getprops.CSI_DocName and the parameter value
com.cimmetry.vuelink.filesys.propactions.GetPropCSI_DocName.

<init-param>
<param-name>dms.getprops.CSI_DocName</param-name>
<param-value>com.cimmetry.vuelink.Ffilesys._propactions.GetPropCSl_DocName</param-
value>
</init-param>

Note:

For the GetPropCSI_DocName property class, we have chosen a different name from the
one suggested by the framework. The default name has the format GetProp<property
name>. Note that in this case we decided to name the class GetPropCS1_DocName.

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

6.7 Step 7: Creating a GetProperty action to return Document Date
Last Modified and Size

Note: This is an important step and should not be skipped.

25

AutoVue Integration SDK - Technical Guide

The AutoVue server sends a second GetProperties request asking for the date of the last
modification and the size of the document (for example, CSI_DocDatelLastModified and
CSI_DocSize properties). The returned data is formatted by default as dow mon dd hh:mm:ss
zzz yyyy (http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.htmI#toString%28%29).
The document size is returned in bytes
(http://docs.oracle.com/javase/6/docs/api/java/io/File.html#length%28%29). The
implementation of the class responsible for returning these properties is very similar to the
CSI_DocName presented in section 6.3. Create an Open Action class that returns your
DocliD.

Refer to section 6.4. Create a Get Property action to return Document Name for information
on how to define your own ActionGetProperties class.

6.8 Step 8: Creating a Download action to return Document
Content

The AutoVue server checks its cache to see whether it has a more recent copy of the
document by comparing its time stamp against the properties retrieved in the previous steps.
If the copy in the cache is older than the copy in the DMS, the AutoVue server tries to fetch
the document from the DMS backend system by calling the Download Action.

You must create the ActionDownload class in your integration by implementing
DMSAction interface. You must also implement the execute() method which returns
FilelnputStream object. The framework automatically streams the file content back to
the AutoVue server.

The following excerpt of code from the Sample Integration for Filesys DMS presents the
implementation of the ActionDownload class. Note that like any action class, this class
realizes the DMSAction class and implements the execute () method. Using the DoclD of
the document, the execute () method calls the checkout () method, downloads the file as
FilelnputStream object, and then returns the stream. The rest is done by the Vuelink
class before passing it back to the AutoVue Server. If the download operation fails, a

Vuel inkException is thrown.

26

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Date.html%23toString%28%29
http://docs.oracle.com/javase/6/docs/api/java/io/File.html%23length%28%29

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.filesys.actions;

/** */
public class ActionDownload implements DMSAction<FilesysContext>, DMSDefs{

public Object execute(final FilesysContext context,
final DMSSession session,
Ffinal DMSQuery query,
Ffinal DMSArgument[] args
) throws VuelinkException {

%inal DoclID doclID = new FilesysDMSDoclID() -String2DoclD(query.getDoclD());
// checkout the instance file of the document
final FilelnputStream doc =

The action download is registered in the web.xml file, as shown in the following excerpt of

code.

<init-param>
<param-name>dms_.action.Download</param-name>
<param-

value>com.cimmetry.vuelink.filesys.actions.ActionDownload</
param-value>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

This checkout () method gets a copy of a file from the DMS backend system by invoking

the Filesys DMS getFile() method. It has two parameters:
e The session information to connect to the DMS
e The DoclD of the file to be downloaded

package com.cimmetry.vuelink.Ffilesys._backend;

6ublic FilelnputStream checkout(DMSBackendSession session, DoclD doclID) {
DocInfo fsDoclD = buildDoclnfo(session,doclD);
FilelnputStream fis = null;

try {

fis = new FilelnputStream(m_filesysinfo.getFile(fsDoclD));
} catch (FileNotFoundException e) {

System.out.printin("File not found" + fsDoclD.getName());
}catch(Exception e){

m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
H

return fis;

6.9 Step 9: Implementing Remaining Actions and Registering in

web.xml

Implement the DMSAction interface to create a skeleton for the following action classes in

your integration:

27

AutoVue Integration SDK - Technical Guide

e ActionSave
e ActionSetProperties

For each action, you must implement the execute () method. At this point, you can leave

the execute() method empty as it does not serve a function at the moment. Implementing

these actions is optional and is explained in more detail in the next chapter. For example, if
you plan to add delete functionality to your integration, you can refer to section 7.11

Implementing File Delete Action.

Review the following code excerpt:

public class ActionDelete
implements DMSAction<FilesysContext>, DMSDefs {

public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {
// TODO..

As with ActionOpen and ActionDelete, if you place ActionSave/

ActionSetProperties inthe same package as your DMS Servlet, the framework

automatically finds them. Otherwise, you need to register them in web.xml. In the case of the
sample integration for Filesys, these actions are under the actions package and therefore has

to be registered in web.xml.

<init-param>

<param-name>dms.action._Delete</param-name>

<param-
value>com.cimmetry.vuelink_filesys.actions.ActionDelete
</param-value>
</init-param>

28

AutoVue Integration SDK - Technical Guide

7. IMPLEMENTING ADVANCED INTEGRATION
FUNCTIONALITY IN YOUR DMS

This section describes optional functionality that you can choose to add to your integration.
Each step includes an excerpt of code to show how the Sample Integration for Filesys DMS
is implemented. It is helpful to understand the sample integration. However, for your own
implementation of Integration SDK, it is highly recommended to follow the coding style in
the Integration SDK Skeleton. For example, the Integration SDK Skeleton makes it a
standard that all property retrieving methods in the DMSBackendImp class return
DMSProperty object instead of the different object types returned by the
FilesysDMSBackendImp class. So that, in most cases, the property action classes in Skeleton
do not need to reprocess the returned objects from methods in DMSBackendImp class again.

Note: The following sections assume that you have already implemented file view
functionality in your DMS as outlined in previous chapter.

7.1 Handling Document Attributes

One single GetProperties request from AutoVue server can ask for multiple properties of
a document. As a result, it is recommended to get the whole set of attributes from DMS the
first time they are needed, and then save it to be reused for getting other properties in that
request.

In the Integration SDK Skeleton, this functionality is included inside the GetPropDefault
class. The listAllProperties() method of the backend implement class is responsible
for retrieving the properties for the first time and then saving it to the query object for one
request.

package com.mycompany .autovueconnector.propactions;
public class GetPropDefault implements DMSGetPropAction<DMSContextImp>, DMSDefs {
Bublic DMSProperty execute(..) throws VuelinkException{

BMSProperty attrs = (DMSProperty)query.getQueryData(‘'attrs™);
1SDKDocID doclID = new 1SDKDoclID().String2DoclID(query.getDoclID());

if (attrs == null){
attrs = be.listAllProperties(beSession, doclD); //retrieve for the first time
if(attrs = null){
query.setQueryData(*'attrs™, attrs); //save to be reused
}

}

29

AutoVue Integration SDK - Technical Guide

package com.mycompany .autovueconnector.backend;

public DMSProperty listAllProperties(
DMSBackendSessionlmp beSession,
DoclID doclID
) throws Exception {

Vector<DMSProperty> props = new Vector<DMSProperty>();

// Retrieve all properties®s name and value pair;

// Construct DMSProperty object for each property like

// new DMSProperty(name, value);

// For example,

// new DMSProperty(DMSProperty.CSI_DocName, docName);
// Add these DMSProperty objects to the vector ‘props"

if(props == null || props.iseEmpty())
return null;

// Need to pass an array (of DMSProperty) for the second parameter when

// constructing the return DMSProperty

DMSProperty [] aPL = new DMSProperty[1];

return new DMSProperty(DMSProperty.CSI_ListAllProperties, props.toArray(aPL));

In the Sample Integration for Filesys, a separate GetFi lesysProperty class is
implemented to fulfill the same task.

package com.cimmetry.vuelink.filesys.propactions;

/** */
public class GetFilesysProperty implements DMSDefs {

6rotected DMSProperty getAttrs(final FilesysDMSBackend be,DMSBackendSession beSession,
final DMSQuery query, DoclD doclD) throws VuelinkException {

DMSProperty attrs = (DMSProperty) query.getQueryData('attrs™);

if (attrs == null) {
attrs = be.getAttributes(beSession, doclD);
m_logger.info('got document attributes " + attrs);
query.setQueryData('attrs™, attrs);

3

return attrs;

Note that this class is not a property class and does not realize the DMSProperty interface or
implement the execute () method. As a result, we do not need to register it in the web.xml
file. This class supports all the property classes that use the document attributes. This class
gets the attributes from the DMS backend system by means of the getAttributes()
method of the Filesys DMS backend class (for example, Fi lesysDMS class). One
GetProperties request from AutoVue server can ask for multiple properties, thus
GetFilesysProperty class saves the retrieved attributes from the DMS to be reused for
getting multiple properties in one request.

The getAttributes() method of the Filesys DMS backend class first asks the Filesys
DMS system to give it a Hashtable<String, String> that stores the name and value pairs of a
list of attributes. As shown in the following code, this is done by calling the
m_FfilesyslInfo.getAttributes() method by passing the DocID of the document.

30

AutoVue Integration SDK - Technical Guide

The list of attributes retrieved by m_filesysInfo.getAttributes() method includes:

DocName: The name of the file. The value is a String.

DatelLastModified: The date the file was last modified. The value is as a
Java.util _Date object.

DocSize: The size of the file.

DocFormat: Document format (for example, "document” or "folder") . The value is
an Integer.

Version: The version number of a document. The value is a String.
VersionsNumber: The number of versions of a document. The value is a String.
path: The absolute path for the file in Filesys DMS. The value is a String.

Then it builds a DMSProperty class for each attribute and puts them into a
Vector<DMSProperty> object.

Finally, it converts the vector to an array and wrap it as a DMSProperty object to return.

package com.cimmetry.vuelink.Ffilesys._backend;

ﬁublic DMSProperty getAttributes(DMSBackendSession session, DoclD doclID) {

DocInfo fsDoclD = buildDoclnfo(session,doclD);
Vector<DMSProperty> result = new Vector<DMSProperty>();
try{
Hashtable<String,String> attrs =
m_Ffilesysinfo.getAttributes(fsDoclD);
Enumeration<String> keys = attrs._keys();
while (keys.hasMoreElements()) {
String key = keys.nextElement();
String value = attrs.get(key);
if (value = null && value._split(';").length > 1) {
// multi value
result.add(new DMSProperty(key,value_split(*';')));
Yelse {
result.add(new DMSProperty(key,value)); //single value
3

}

}catch(Exception e){
m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);

}
DMSProperty[] answer = new DMSProperty[0];
answer = result.toArray(answer);
return new DMSProperty(DMSProperty.CSI1_ListAllProperties,answer);

7.2 Returning External References (XRefs)

Chapter 6 discussed the case of viewing a simple document composed of a single file.
Documents, however, are often compound and may have many associated files or External
Reference files (XRefs). In this case, the AutoVue server asks for XRefs by passing
CS1_XREFS within the GetProperties request. The response to this request is provided by
GetCSI_XREFS, the XRefs property class.

31

AutoVue Integration SDK - Technical Guide

In the Sample Integration for Filesys DMS, since GetCSI_XREFS is a property class it
realizes the DMSGetPropAction and implements the execute () method. The following
code shows all the imported classes from the AutoVue Integration SDK framework. All these
classes are referenced in the execute() method parameters. Refer to the Appendix B for

more information on these parameters.
package com.cimmetry.vuelink.Ffilesys._propactions;

import com.cimmetry.vuelink.defs.DoclD;

import com.cimmetry.vuelink.defs._VuelinkException;

import com.cimmetry.vuelink.filesys._FilesysContext;

import com.cimmetry.vuelink.filesys.backend.FilesysDMSBackend;
import com.cimmetry.vuelink.filesys.backend.FilesysDMSDoclD;
import com.cimmetry.vuelink.property.Property;

import com.cimmetry.vuelink.propsaction.DMSGetPropAction;
import com.cimmetry.vuelink.propsaction.DMSProperty;

import com.cimmetry.vuelink.propsaction.arguments.DMSArgument;
import com.cimmetry.vuelink.query.DMSQuery;

import com.cimmetry.vuelink.session.DMSBackendSession;

import com.cimmetry.vuelink.session.DMSSession;

public class GetPropCSI_XREFS implements DMSGetPropAction {

The following excerpt of code shows how the execute () method builds a CS1_XREFS
DMSProperty from the list of XRef files returned by calling the dmsL i stXRefs method of
the FilesysDMS backend class. The CS1_XREFS DMSProperty is returned to the VueLink
servlet which provides the response to the AutoVue server.

public DMSProperty execute(FilesysContext context, DMSSession session,
DMSQuery query, DMSArgument[] args, Property property)
throws VuelinkException {

final DoclD doclID = new FilesysDMSDoclID().String2DoclID(query.getDoclID());
DMSProperty retProp = new DMSProperty(Property.CSI_XREFS,

bui IdXREFSProperty(((FilesysDMSBackend)context.getBackendAP1()),
context.getBackendSession(session, query), doclD));
m_logger.debug(’'got the xrefs property: " + retProp);
return retProp;

The dmsListXRefs() method of the Filesys DMS backend class talks to the Filesys DMS
backend system and gets the list of the XRef file as vector. For each element of the vector, it
builds a DMSProperty as specified in the CORE API specification.

The difference between the Integration SDK skeleton and the Sample Integration for Filesys
DMS is that he dmsListXRefs() method of the Skeleton DMS backend class returns the
final DMSProperty object directly instead of returning a list of DocID and construct in the
GetCSI1_XREFS class.

32

AutoVue Integration SDK - Technical Guide

private Property[] buildXREFSProperty(FilesysDMSBackend be, DMSBackendSession beSession,
DoclID doclD) {

// Gets list of xrefs from DMS
Vector<DoclD> xrefsDoclds = be.dmsListXRefs(beSession, doclD);
DMSProperty[] xrefs = new DMSProperty[xrefsDoclds.size()];

for (int i1 = 0; 1 < xrefsDoclds.size(); i++) {
DMSProperty xrefProp[] = new DMSProperty[2];
xrefProp[0] = new DMSProperty(Property.CSI_DoclD,
((FilesysDMSDoclID)xrefsDoclds.get(i)).DoclD2String());

xrefProp[1] = new DMSProperty(DMSProperty.PROP_NAME,
((FilesysDMSDocID) (xrefsDoclds.get(i))).getName());
xrefs[i] = new DMSProperty(Property.PROP_XREF,xrefProp);
}
m_logger .debug(*'got the list of xrefs : " + xrefs);
return xrefs;

The GetPropCSI_XREFS is registered in the web.xml file as shown in the following code
excerpt.

<init-param>
<param-name>dms.getprops.CSI_XREFS</param-name>
<param-
value>com.cimmetry.vuelink. filesys.propactions.GetPropCSl_XREFS
</param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

This method asks the Filesys DMS for the list of XRefs associated with a given document by
providing its Doc1D. After it receives the vector of XRef files, it builds a DoclID for each
XRef. Finally, it returns the list of DoclDs as a vector.

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

public Vector<DoclD> dmsListXRefs(DMSBackendSession session, DoclD doclD)
{
FilesysDMSDoclD fsDoclD = (FilesysDMSDoclID) doclD;
Qrefslnfos = m_filesysiInfo.listXRefs(fsDoclD);
xrefs = new Vector<DoclD>();
for (int i = 0 ; i < xrefsInfos.size() ; ++i) {
xrefs.add(new
FilesysDMSDocID((Doclnfo)xrefsinfos.get(i)));
¥

return xrefs;

33

AutoVue Integration SDK - Technical Guide

7.3 Handling Markups

When users view a markup, the AutoVue server asks the DMS for the list of markups
associated with the document. The server does so by sending a GetProperties request for
the CS1_Markups property. The GetPropCS1_Markups class handles the response for the
request. The response consists of two parts: a GUI response and a Markup response.

7.3.1 GUI Response

When you develop an integration based on ISDK you can control some aspects of the
AutoVue Ul; specifically, the Markup Open and Save dialogs. AutoVue constructs Ul
elements in these dialogs based on your response to the Markup GUI.

The GUI part is composed of three sections: Display Options, Edit, and Display.

The Display Options specifies whether or not users are allowed to perform particular
operations on markups. In the Sample Integration for Filesys, the following excerpt of code
builds several properties and sets their value to true or false. Each of these properties is
dedicated to a particular operation. For instance, in the property Al lowDe lete (which
allows users to delete markups), Markups is set to true. The last line of the code shows how
all the properties are grouped in a single property labeled DisplayOptions.

package com.cimmetry.vuelink.Ffilesys._propactions;

public class GetPropCSl_Markups extends GetFilesysProperty implements
DMSGetPropAction<FilesysContext> {

6rivate DMSProperty[] buildMarkupGui (FilesysDMSBackend be,
DMSBackendSession beSession, DoclD doclID) {

DMSProperty guiProps[] = new DMSProperty[3];
DMSProperty DispOptArr[] = new DMSProperty[7];

DispOptArr[0] = new DMSProperty("*‘AllowDelete™, " true™);
DispOptArr[1] = new DMSProperty(*'ShowPreviousVersions", " true');
DispOptArr[2] = new DMSProperty("*AllowNew","true'™);
DispOptArr[3] = new DMSProperty(*Allowlmport™”,"false™);
DispOptArr[4] = new DMSProperty(*'AllowExport","false");
DispOptArr[5] = new DMSProperty(*'AllowNewLayers","false™);
DispOptArr[6] = new DMSProperty("AllowModifyLayers","false");

guiProps[0] = new DMSProperty(*'DisplayOptions', DispOptArr);

The Edit section specifies the GUI elements we want to use to populate the Save Markup
dialog. The Save Markup dialog contains two GUI elements: an edit box and a drop-down
list.

For example, if you want AutoVue to display the Save Markup File As dialog as shown in
Figure 7-1, you must define the input box and list Ul elements.

The label of the edit box is Name and its control ID is CS1_DocName.
The label of the drop-down list is Markup Type and its control ID is CS1_MarkupType.
The drop-down list contains three selections: normal, master and consolidated, with the

34

AutoVue Integration SDK - Technical Guide

default value set to normal. AutoVue sets the default value to the one specified in
GUIElIementCombo class.

The label of the second drop-down list is Read-Only and its control ID is
CS1_Doc_ReadOnly. The drop-down list contains two options: false (default value) and

true.
(7 N
\%| Save Markup File As
normal
read on
S master
ronsolidated

Figure 7-1. Save Markup dialog

In the Sample Integration for Filesys, the following excerpt of code builds the
GUIElementCombo property, which specifies a drop-down list that contains three selections:
normal, master and consolidated. The default selection is set to normal. This is done by
passing normal as the third parameter when constructing GUIElementCombo class. Note
that the last line of code attaches the GUIElementCombo property in a DMSProperty
labeled DMSProperty.PROP_GUI_EDIT.

The code for building the GUIElementCombo property for Ready-Only is similar and is
described in detail in Implementing Read-Only Markups.

String comboVals[] = new String[3];

comboVals[0] = DMSProperty.CSI_MarkupType_Normal ;
comboVals[1] = DMSProperty.CSI_MarkupType_Master;
comboVals[2] = DMSProperty.CSI1_MarkupType_Consolidated;

EditArr[1] = new GUIElementCombo(DMSProperty.CSI_MarkupType, “Markup Type",
DMSProperty.CSI_MarkupType_Normal, comboVals, false);

éuiProps[Z] = new DMSProperty(DMSProperty.PROP_GUI_EDIT,EditArr);

The Display section specifies properties to be displayed in tabular format inside the Markup
Files dialog when the Open Markups action is selected from the AutoVVue GUI.

35

AutoVue Integration SDK - Technical Guide

|£] Markup Files
Select Markup File(s)
. Mame Markup type Size Version Read-Only
[] |dsfdf normal 1241 1 false
[] [Intelistamp normal 199067 1 false Import
[] [Intelistamp markup normal 199063 1 false
[] [Markupi master 696 1 true
[] All revisions

Figure 7-2. Markup files dialog

In the Sample Integration for Filesys, the following code defines five GUI elements that
compose the Markup Files dialog: document name, markup type, document size, the version
of the document, and whether the markup is read-only or can be modified. Each of these
elements is encapsulated as a DMSProperty labeled, CS1_DocName, CSI_MarkupType,
CSI_DocSize, CSI_Version, and Read-Only. Finally all these properties are attached to
a DMSProperty .PROP_GUI_DISPLAY object.

DMSProperty DispArr[] = new DMSProperty[5];

DispArr[0] = new DMSProperty(Property.CSI_DocName,'20");
DispArr[1] = new DMSProperty(Property.CSI1_MarkupType,'15");
DispArr[2] = new DMSProperty(Property.CSIl_DocSize,"10");
DispArr[3] = new DMSProperty(Property.CSl_Version,"10");
DispArr[4] = new DMSProperty(‘'Read-Only',"6");

guiProps[1] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAY, DispArr);

Note: All GUI properties (for example, DisplayOptions, Display and Edit) must be
attached to a DMSProperty object with PROP_GUI identification.

7.3.2 Markup Response

The Markup response specifies the list of markups associated with the current document.
Each element of the list must be encapsulated in a Markup DMSProperty. For more
information, refer to GetPropCS1_Markups.java class found inside Filesys package for the
actual format of the Markup response. The list of markups is returned by the
dmsListMarkups method of the Fi lesysDMSBackend Imp class.

In the Sample Integration for Filesys, the following code excerpt of the Markup response
shows all the required information for each markup. This information includes the DoclID,
the name, the type and the size of the markup, the version of its base document and whether
it is read-only or not. Each piece of information is built into its own DMSProperty object,
respectively labeled CS1_DoclID, CS1_DocName, CSI_MarkupType, CS1_DocSize,
CS1_Version and CS1_DocReadOnly. An additional DMSProperty object is needed for

36

AutoVue Integration SDK - Technical Guide

the Read-Only attribute. Note that a single DMSProperty property labeled PROP_MARKUP is
stored for each markup.

private Property[] buildMarkupProperty(FilesysDMSBackend be, DMSBackendSession beSession,
DMSQuery query) throws VuelinkException{
final DoclD doclID = new FilesysDMSDoclID() -String2DoclID(query.getDoclID());
DMSProperty guiProps[] = buildMarkupGui(be, beSession, doclD);
//Gets the list of markups from the DMS
Vector mrkDoclds = be.dmsListMarkups(beSession, doclD);
DMSProperty markup[] = new DMSProperty[mrkDoclds.size()+1];
markup[0] = new DMSProperty(Property.PROP_GUI ,guiProps);

for (int i = 0; i < mrkDoclds.size(); i++)
{
DMSProperty mrkProp[] = new DMSProperty[7];
DMSProperty mrkProp[] = new DMSProperty[7];
mrkProp[0] = new DMSProperty(*'CSI_DoclID",
be.buildDoclD(beSession,mrkDoclds.get(i)).DoclD2String());
mrkProp[1] = new DMSProperty(**CSI_DocName', mrkDoclds.get(i).getName());

%rkProp[Z] = new DMSProperty(Property.CSI_MarkupType, mrkType);
mrkProp[3] = new DMSProperty(Property.CSI_DocSize,
mrkDoclds.get(i).getFile().length(Q+""");

DMSProperty attrs = getAttrs(be, beSession,query, doclD);
mrkProp[4] = new DMSProperty(Property.CSI_Version,
attrs.getFirstChildvalue(''Version™));

mrkProp[5] = new DMSProperty(Property.CSI_DocReadOnly,

new Boolean(bReadOnly).toString()); // This is needed for AutoVue Server
mrkProp[6] = new DMSProperty(‘‘Read-Only",

new Boolean(bReadOnly) .toString());

markup[i+1] = new DMSProperty(DMSProperty.PROP_MARKUP,mrkProp);
}

return markup;

7.3.2.1 Bundling PROP_GUI and PROP_MARKUP

Finally, the execute() method bundles the PROP_GUI and PROP_MARKUP properties in a
CS1_Markups property and returns it to the VueLink servlet.

The registration of the GetPropCS1_Markups class is done as indicated below.

<init-param>
<param-name>dms.getprops.CSI_Markups</param-name>
<param-value>
com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Markups
</param-value>

For more information, examine the code and use a debugger to learn more about the behavior
of this method.

Note: For saving and deleting Markups, refer to sections Action Save and Action Delete,
respectively.

37

AutoVue Integration SDK - Technical Guide

7.3.2.2 dmsListMarkup method

The dmsListMarkups() method in FilesysDMSBackendImp class asks the Filesys DMS
backend system for the list of the Markups associated with a given document by providing its
DoclID.

package com.cimmetry.vuelink.filesys._backend;

public Vector<Doclnfo> dmsListMarkups(DMSBackendSession session, DoclD doclID) {
try{
DoclInfo fsDoclD = buildDoclnfo(session, doclD);
return m_filesysiInfo. listMarkups(session,fsDoclD);
}catch(Exception e){
m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
return null;

7.4 Handling Renditions

The AutoVue server allows you to view hundreds of file formats. The viewed files are often
large and time-consuming. To enhance performance, AutoVue generates files in a
lightweight format called streaming files. Streaming files contain display information for the
native file and are quickly accessed by AutoVue. AutoVVue can also generate renditions such as
TIFF, PDF and BMP format.

When a user wants to view a file, the AutoVue server sends several requests to the DMS
through the integration interface. One of these requests is related to streaming files. The
AutoVue server sends a GetProperties request with the CS1_Renditions property in it.
This request asks the DMS if it already has a streaming file associated with the base
document. The response to this question is provided by the GetPropCSI1_Renditions. A
description of how this response is built is provided later in this section. If the response is
yes, the AutoVue server sends requests to download the original file and the streaming file.
Next, it verifies if the streaming files is a true replica, in which case AutoVVue displays the
streaming file instead the original one.

If the DMS does not have a streaming file, or the streaming file it has out of date, the client
(for example, the applet) makes a request to the AutoVue server to generate a streaming file
of the original file. When the user decides to close the viewed file, AutoVue sends a request
to the DMS to save the generated streaming file. Refer to the Action Save section for
information on how to build the response for this case.

In the Sample Integration for Filesys, the following excerpt of code shows how the
GetPropCS1_Renditions class how the class encapsulates the DoclID returned by the
getMetaRendition() method of the Filesys DMS backend class in the CS1_DoclID
DMSProperty object.

38

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;
/** */
public class GetPropCSI_Renditions implements DMSGetPropAction {

private DMSProperty[] buildRenditionProperty(FilesysDMSBackend be,
DMSBackendSession beSession, DoclD doclD) throws VuelinkException{

FilesysDMSDoclID rendDoclds = (FilesysDMSDoclID)be.getMetaRendition(beSession, doclD);
if (rendDoclds == null) return null;

DMSProperty[] metaRend = new DMSProperty[1];

metaRend[0] = new DMSProperty(DMSProperty.CSI_DoclD, rendDoclds);

m_logger.debug(*'got the doclD: " + metaRend);
return metaRend;

As illustrated in the following code, the execute () method builds a CS1_Renditions
DMSProperty and attaches to it an array DMSProperties with the first element to be a
property labeled CS1_Doc 1D for the streaming file rendition. The method then returns
DMSProperty to the VueLink servlet which provides the AutoVue server with the response.
The method also retrieves a list of supported rendition formats by the DMS backend system
which is defined in web.xml. Note that this list of rendition formats is a subset of the
rendition formats supported by the AutoVue server.

public DMSProperty execute(FilesysC .. {

final FilesysDMSDoclD doclD = new FilesysDMSDoclD().String2DoclD(query.getDoclD());
String sValidateMeta = context.getlnitParameter(*'ValidateStreamingFile™);

String sRendition = context.getlnitParameter(*'RenditionFormats™);
String[] aRenditionList = sRendition.split(*';");

DMSProperty[] rendition = null;

ifT (sValidateMeta = null && sValidateMeta.equalslgnoreCase("false™)) {
//no streaming file validation
m_logger.debug("'No StreamingFile Validation: ValidateStreamingFile option is
set to false in vuelink properties™™);
} else {
rendition = buildRenditionProperty(context.getBackendAP1(),
context.getBackendSession(session, query), doclD);

}

return new DMSProperty(DMSProperty.CSl_Renditions, aRenditionList , rendition);

The GetPropCSI1_Renditions is registered in the web.xml file as indicated in the
following code.

<init-param>
<param-name>dms.getprops.CSI_Renditions</param-name>
<param-value>
com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Renditions
</param-value>
</init-param>

39

AutoVue Integration SDK - Technical Guide

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

The getMetaRendition method asks the FilesysDMS backend system for the streaming
file associated with the base document identified by its DoclD. After it receives the
streaming file, it builds and returns the DoclD.

public DoclD getMetaRendition(DMSBackendSession session, DoclD doclID) {
DoclInfo fsDoclD = buildDoclnfo(session,doclD);
DocInfo metafile = null;
try{
metafile = m_filesysInfo.getMetalnstance(fsDoclD);
return buildDoclD(session,metafile);

¥
catch(Exception e){

m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);
return null;

7.5 Returning the List of All Properties of the DMS Document

When users select Properties from the File menu and then click the DMS tab (see Figure 7-
3), the AutoVue server asks for some attributes of the current document by passing the
CS1_ListAllProperties property within the GetProperties request. The response to
this request is done through a property class called GetPropCSI1_AllProperties.

40

AutoVue Integration SDK - Technical Guide

Properties

File Properties | Resource Information

5 Mative Properties

') DMS properties

----- # Extension = DWG

----- # Version =1

----- # Type =file

----- # DocdFormat = document

+-{J) RelatedInfo

----- # Comment = This is a comment for AutoCAD.dwg

----- # Author = null

----- # ReadOnly = false

----- # DatelastModified = Mon Jul 09 13:42:08 EDT 2007
+-{J) Status = rejected

----- # DocSize = 443264

----- # DocMame = AutoCAD.dwg

----- # VersionsMumber = 1

----- # path = E:\SDK\filesysRepository\2DVAutoCAD. dwg\AutoCAD . dwa(1)\AutoCAD. dwg

oK] ’ Cancel

Figure 7-3. Properties dialog

In the Integration SDK Skeleton, GetPropCSI_ListAllProperties class calls the
listAllProperties() method in the DMSBackend Imp class to retrieve all the requested
attributes and wraps them as a DMSProperty object to return.

In the case of the Filesys DMS, GetPropCSI_AllProperties class is derived from the
GetFilesysProperty class and calls the getAttrs() method of the latter class which in
turn calls the getAttributes() method of the FilesysDMSBackendImp class to retrieve
the document attributes and build DMSProperty object to return. This is shown in the
following excerpt of code. After getting the attributes, the getAttributes() method of the
FilesysDMSBackendImp class builds a DMSProperty object for each attribute. For
instance, it builds a DMSProperty named CS1_Version for the number of document
versions. Finally, from this set of properties, a DMSProperty is built with the value set to
CS1_ListAllProperties and is returned.

41

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;

public class GetPropCSI_ListAllProperties extends GetFilesysProperty
implements DMSGetPropAction {

ﬁfivate DMSProperty buildListProperties(..) throws VuelinkException {

DMSProperty attrs = getAttrs(context.getBackendAPI(), beSession, query,
doclD);

return attrs;

package com.cimmetry.vuelink.Ffilesys._backend;

public DMSProperty getAttributes(DMSBackendSession session, DoclD doclID) {
DoclInfo fsDoclD = buildDoclnfo(session,doclD);

Vector<DMSProperty> result = new Vector<DMSProperty>();
try{

Enumeration<String> keys = attrs._keys();
while (keys.hasMoreElements()) {
String key = keys.nextElement();
String value = attrs.get(key);
if (value !'= null && value._split(';").length > 1) {

result.add(new DMSProperty(key,value_split(*';')));
//multi value

Yelse {
3

}catch(Exception e){
m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);

DMSProperty[] answer = new DMSProperty[0];
answer = result.toArray(answer);

return new DMSProperty(DMSProperty.CSI1_ListAllProperties,answer);
b

Hashtable<String,String> attrs=m_filesysInfo.getAttributes(fsDoclD);

result.add(new DMSProperty(key,value));//single value

This GetPropCS1_AllProperties class is registered in the web.xml file, as indicated in

the following code excerpt.

<init-param>
<param-name>dms.getprops.CSI_ListAllProperties</param-name>

</param-value>
</init-param>

<param-value>com.cimmetry.vuelink.filesys.propactions.GetPropCSI_ListAllProperties

For more information, examine the code and use the debugger to learn more about the

behavior of this class.

42

AutoVue Integration SDK - Technical Guide

7.6 Implementing File Browse

Users may want to browse the DMS backend system to select documents for viewing or
comparison. In this case, the AutoVue Server sends two GetProperties requests. The
first request is for the GUIs that will support the definition of the browse operation. The
second request is for the result of the browse action performed by the user.

7.6.1 GUI Request

In the first request, AutoVue asks for the Browse dialog structure by passing the GUI
property with a value set to Browse within the request. The response to this first request is
done through a property class called GetPropGUI. The GUI section defines the columns
displayed in the Browse dialog.

/73 DMS: File Open

Browse
Mairne Type Yer... Size
=30 CatiaS_FrontDrivedssembly . CATProdut 20148822
+-3DCatiaS_FrontDrivedssembly . CATPr 20148822
= Component. SLDASM 24442164
+-Component, SLDASM(L) 22114862
+-Component . SLDASM(Z) 2327302

Figure 1. DMS Browse dialog

The following excerpt of code shows how to construct the Browse dialog shown in Figure 7-
4. Note that this is the same dialog used in the Sample Integration for Filesys. Each column is
identified with a unique ID and constructed as DMSProperty object.

e Document name CS1_DocName

e Document type folder or file SP_TYPE

e Document version SP_FileVersion

e Document size CS1_DocSize
You can specify the size for each column. Note that the Name column is a GUI tree where
row values can be either a file or a folder; the folders are nodes that can be expanded by the
user. All these properties are returned as single property labeled PROP_GUI_DISPLAY.

43

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;

private DMSProperty[] buildBrowseGUI() {

final String SP_Type = "Type";
final String SP_FileVersion = "Version";

DMSProperty[] guiValue = new DMSProperty[4];

guiValue[0] = new DMSProperty(DMSProperty.CSI_DocName,"35");
guiValue[1l] = new DMSProperty(SP_Type,"10");

guiValue[2] = new DMSProperty(SP_FileVersion,'6");
guiValue[3] = new DMSProperty(DMSProperty.CSI_DocSize,"14");

DMSProperty[] gui = {new
DMSProperty(DMSProperty.PROP_GUI_DISPLAY,guiValue)};
m_logger.info("building GUlI for browsing: " + guiValue);
return gui;

7.6.2 Request for Browse Results

The second request sent by the AutoVue server is for the list of browse results. These results
appear as children nodes in the Name tree in figure 7-4. This request is done by calling
GetProperties and passing the CS1_Browse property as a parameter. The response to this
request is handled by GetProp_Listltems class. This class returns the data that populates

the Browse dialog.

In the Sample Integration for Filesys, all this information is obtained by calling the
dmsListltemsForBrowse method of the FilesysDMS backend class. This method returns
a vector of DoclDs of the expanded document’s direct children nodes.

The following excerpt shows how GetProp_Browse builds properties for returning a list of
documents in the Sample Integration for Filesys. For each document we build a
DMSProperty for each of the following information and wrap them together in a single
DMSProperty labeled CS1_DoclID.

Type of document folder or file CS1_1temType
Document name CS1_DocName

Date of last modification CS1_DocDatelLastModified
Document size CS1_DocSize

Version of the document Version

Finally, the execute() method gathers the built properties for all listed documents in a
single property labeled CS1_Listltems and returns it to the VueLink servlet.

44

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;
public class GetPropCSl_Listltems implements DMSGetPropAction {

Brivate DMSProperty[] buildListltems(FilesysDMSBackend be, DMSBackendSession beSession,
DoclID _rootID){

DoclID rootID = _rootlD;
// Gets the of items from the DMS
Vector<DoclD> listltemsinfos = be.dmsListltemsForBrowse(beSession, rootiD);

ifT (listltemsinfos = null) {
DMSProperty listltems[] = new DMSProperty[listltemsinfos.size()];

for (int 1 = 0 ; 1 < listltemsInfos.size() ; ++i) {
DoclID instld = listltemsInfos.get(i);
DMSProperty docAttrs = be.getAttributes(beSession, instid);
DMSProperty props[] = new DMSProperty[5];

props[1] = new DMSProperty(DMSProperty.CSI_DocName,
docAttrs.getFirstChildvalue(‘'DocName'));

if (ldocAttrs._getFirstChildvalue(''DocFormat').equals('folder™)) {
// a file
props[0] = new DMSProperty(DMSProperty.CSI1_ltemType,
DMSProperty.CSI_Document) ;
props[2] = new DMSProperty(''Type",
docAttrs.getFirstChildvValue("Extension™));
props[3] = new DMSProperty(*'Version",
docAttrs.getFirstChildvalue(*'Version™));
props[4] = new DMSProperty(DMSProperty.CSI_DocSize,
docAttrs.getFirstChildvValue(''DocSize™));
Yelse{ 7/ a folder
props[0] = new DMSProperty(DMSProperty.CSI1_ltemType,
DMSProperty.CSI_Folder);

%istltems[i]: new DMSProperty(DMSProperty.CSI1_DoclD,
instld.DoclD2String(),props);
}
return listltems;
Yelse{
return null;
3

public DMSProperty execute(.) throws VuelinkException {

final DoclD doclID = new FilesysDMSDoclID().String2DoclD(query.getDoclID());
DMSProperty retProp = new DMSProperty(DMSProperty.CSI_Listltems,
buildListltems(((FilesysDMSBackend)context.getBackendAPI()),
context.getBackendSession(session, query), doclD));

return retProp;

The classes GetPropGUI and GetPropCS1_Listltems are registered in the web.xml as
indicated below.

<init-param>

<param-name>dms.getprops.CSI_GUI</param-name>

<param-
value>com.cimmetry.vuelink._filesys.propactions.GetPropCSI_GUl</param
-value>
</init-param>

45

AutoVue Integration SDK - Technical Guide

<init-param>

<param-name>dms.getprops.CSI_Listltems</param-name>

<param-
value>com.cimmetry.vuelink._filesys.propactions.GetPropCSI_Listltems<
/param-value>

For more information, examine the code and use the debugger to learn more about the real
behavior of these classes.

The dmsListltemsForBrowse method asks the Filesys DMS backend system for the list
of direct children of a node given by its DoclID. After it receives the vector of the direct
children of the document, it builds a DoclD for each child. Finally, it returns the list of the
DoclIDs as a vector.

package com.cimmetry.vuelink.filesys.backend;
public Vector<DoclD> dmsListltemsForBrowse(DMSBackendSession session, DoclD doclD) {
DocInfo fsDoclD = buildDoclnfo(session,doclD);
Vector<DoclInfo> browseltemsIDs = null;
try{
browseltemsIDs = m_filesysinfo.listltemsForBrowse(fsDoclD);
}catch(Exception e){
m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR, e);
if (browseltemsIDs == null) {

return null;
¥

Vector<DoclD> doclDs = new Vector<DoclD>();
for (int 1 = 0 ; 1 < browseltemsIDs.size() ; ++i) {
doclIDs.add(buildDoclD(session,browseltemsIDs.get(i)));

return doclDs;

7.7 Implementing File Search

You may want to search for documents in the DMS backend system for viewing or
comparison. In this case, the AutoVue server sends two GetProperties requests: one is
for the GUI components that support the definition of the search operation and the other is
for the result of the search operation that displays on the GUI.

7.7.1 First Request

There are two dialogs to define. In the first one we define the search criteria elements. In the
second dialog we define the structure where the returned information elements are displayed.
In the first request AutoVue asks for the structures of the two dialogs by passing the GUI
property with a value of Search within the request. The response to this first request is

46

AutoVue Integration SDK - Technical Guide

handled by a property class called GetPropGUI (this class is presented in the Request for

Browse Results).
The response is specified by two parts: EDIT and DISPLAY. The ED

IT response specifies

the GUI elements of the search dialog to use when entering the search criteria. This
dialog includes two GUI Elements: Criteria drop-down list and Value field. The

control ID for the Criteria listis CS1_Criteriaand it contai

Name and Type. The default value is Name. The Value field’s
CSI1_Entry.
Search
Criteria | Mame W

Yalue [Type

ns two selections:
control ID is

%]

Figure 7-5. Search dialog

The following excerpt of code prepares information for building the fi

rst part of the response

in the Sample Integration for Filesys. It builds a GUIElementCombo property for specifying
the drop down list and a GUIElementEdit property for specifying the edit box. The two

properties are returned in a single property labeled PROP_GUI_EDIT.

package com.cimmetry.vuelink.filesys.propactions;

E)Irivate DMSProperty addeEditForSearch() throws VuelinkException{
DMSProperty props = null;

String [] values = {"By name","By type"};
"Search criteria”, null, values, true);

GUIElementEdit editForName = new GUIElementEdit("'CSI_Entry",
“"Search for"™, null, false);

Property [1 p = new Property[2];
comboForType;
editForName;

props = new DMSProperty(Property.PROP_GUI_EDIT, p);
return props;

GUIElementCombo comboForType = new GUIElementCombo(*'CSI1_Criteria",

In the second part of the response, DISPLAY specifies columns to be displayed inside the

Search dialog as shown in Figure 7-6.

a7

AutoVue Integration SDK - Technical Guide

Search E|

Criteria | Name v
Yalue bike.dan

Search Results

Mame Size Modification date Yersion
bike.dgn 37552 Thu Mov 23 12:27:31 EST 2... 1
bikﬂ.dg‘u Q0624 Thu Now 23 12:41:35EST 2... 2

Figure 7-6. Search results

The following excerpt of the code shows how this box is defined in the Sample Integration
for Filesys. It builds properties for the following information:
e Document name CS1_DocName

e Document size CS1_DocSize
e Date of last modification CS1_DocDatelLastModified
e Version of the document CS1_Version
All these properties are returned in a single property labeled PROP_GUI1_DISPLAY.

private DMSProperty addDisplayForSearch() throws VuelinkException{

DMSProperty[] props = new DMSProperty[4];

props[0] = new DMSProperty(DMSProperty.CSI_DocName, *18");
props[1] = new DMSProperty(DMSProperty.CSl_DocSize, "18");
props[2] = new DMSProperty(DMSProperty.CSI_DocDateLastModified, "18");
props[3] = new DMSProperty(DMSProperty.CSI_Version, "4");

return new DMSProperty(Property.PROP_GUI_DISPLAY, props);

The two parts are then combined and returned as a single property labeled as Prop_GUI.
package com.cimmetry.vuelink.filesys.propactions;

5ublic DMSProperty buildSearchGUl(..) throws VuelinkException{
m_logger .debug(*****inside getSearchGuiProperty() ");

// get the GUI property value

DMSProperty[] props = new DMSProperty[2];

props[0] = addEditForSearch();

props[1] = addDisplayForSearch();

return new DMSProperty(DMSProperty_PROP_GUIl, *Search®, props);

48

AutoVue Integration SDK - Technical Guide

7.7.2 Request for Search Results

The second request sent by the AutoVue server is for the list of items that match the search
criteria. This is done through a GetProperties request containing the CS1_Search

property. The response to this request is handled by the GetProp_Search class. This class

must return the data that populates the Search dialog.

In the Sample Integration for Filesys, the search results are obtained from the

dmsListltemsForSearch method of the FilesysDMS backend class. The following
excerpt of code shows how the GetProp_Search class builds properties for the returned

document. For each document, we build a DMSProperty for each of the following
information and wrap them together in a single DMSProperty labeled CS1_DoclID.
e Type of document folder or a file CS1_1temType
e Document name CS1_DocName
e Date of last modification CS1_DocDatelLastModified
e Document size CS1_DocSize
e Version of the document CS1_Version

package com.cimmetry.vuelink.Ffilesys._propactions;

public class GetPropCSl_Search extends GetFilesysProperty implements
DMSGetPropAction<FilesysContext> {

private Property[] listltems(.) throws VuelinkException{

Vector items = be.dmsListltemsForSearch(doclID, rootDir, criteria, type);
DMSProperty[] sltems = new DMSProperty[items.size()]:

for (int 1 = 0; 1 < items.size(); i++) {
DMSProperty sProp[] = new DMSProperty[5];
doclID = items.get(i);

DMSProperty attrs = (DMSProperty) query.getQueryData("attrs™);

iT (attrs.getFirstChildvalue('DocFormat™).equals(‘folder™)) {
sProp[0] = new DMSProperty(DMSProperty.CSI_ltemType, \
DMSProperty.CSI_Folder);
Yelse{

sProp[0] = new DMSProperty(DMSProperty.CSI_ltemType,
DMSProperty.CSI_Document);

}
sProp[1] = new DMSProperty(Property.CSl_DocName,
attrs.getFirstChildvalue(*'DocName'™));

sProp[2] = new DMSProperty(Property.CSl_DocSize,
attrs.getFirstChildvalue(*'DocSize™));

sProp[3] = new DMSProperty(Property.CSl_DocDatelLastModified,
attrs.getFirstChildvalue(‘'DateLastModified));

sProp[4] = new DMSProperty(*'CS1_Version",
attrs.getFirstChildvalue(*'Version™));

}

return sltems;

m_logger.info(*'Get the list of items that match the search creteria :" + sltems);

sltems[i] = new DMSProperty(Property.CSI_DoclD, doclID.DoclD2String(), sProp);

Finally, the execute() method gathers all the built properties in a single property labeled

CSI_Search and returns it to the VueLink servlet.

49

AutoVue Integration SDK - Technical Guide

The GetPropCSI1_Search class is registered in the web.xml file as indicated in the
following code excerpt.

<init-param>
<param-name>dms.getprops.CSI_Search</param-name>
<param-value>
com.cimmetry.vuelink.Ffilesys._propactions.GetPropCSl_ Search
</param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this class.

As shown in the following, the dmsListltemsForSearch method asks the Filesys DMS
backend system for the list of documents that match the search criteria. To perform the
search, the backend system provides the criteria type, criteria value, and the backend system
root.

public Vector<DoclD> dmsListltemsForSearch(DoclD doclD, String root,
String creteria, String type) {
DoclInfo fsDoclD = buildDoclnfo(session,doclD);
// comments
Vector searchltemsIDs = null;

searchltemsIDs = m_filesysinfo.listltemsForSearch(fsDoclD,root,
criteria, type);
Vector<Doch> doclIDs = new Vector<DoclID>();
for (int 1 = 0 ; 1 < searchltemsIDs.size() ; ++i) {
docIDs.add(new FilesysDMSDoclID((Doclnfo)searchltemsIDs.get(i)));

return doclDs;

When the dmsListltemsForSearch method receives the vector of the files from the DMS
backend system, it builds a DoclD for each file and then returns the list of the DocIDs as a
vector.

7.8 Handling Versions

To compare the viewed document with another version of the document, from AutoVue, you
must select Analysis and then Compare to launch File Open dialog. At this moment, the
AutoVue server sends a GetProperties request asking the DMS backend system for all
versions of the current document by passing CS1_Versions property within it. The
response to the request is handled through a property class called GetPropCSI_Versions.

50

AutoVue Integration SDK - Technical Guide

File Open X
v
File Name:
ok] [Cancel] [Browse] [DIMS Browse] [DM Search

Figure 7-7. File Open dialog with Document versions for compare

In the Sample Integration for Filesys, to build the response, the GetPropCS1_Versions
class first receives from dmsListVersions() method a vector of DoclDs of all the
version of the document. It then loops through each version and builds CS1_Version

property.

The following excerpt of code shows how we build the content of the CSI1_Versions
property. For each version of a document we create a PROP_VERSION property and we attach
to it the DoclID CS1_Doc 1D, the name CS1_DocName and the version number
CSI_Version properties. Finally, the list of PROP_VERSION properties are attached to
CSI_Versions property and returned to the VueLink servlet.

private DMSProperty[] buildListProperties(FilesysDMSBackend be, DMSBackendSession
beSession, DoclD doclID){

Vector<DoclID> versionsDoclDs = be.dmsListVersions(beSession, doclD);
DMSProperty[] versions = new DMSProperty[versionsDoclDs.size()];

for (int 1 = 0; 1 < versionsDoclDs.size(); i++) {
DMSProperty[] aVersion = new DMSProperty[3];
FilesysDMSDoclD doc = (FilesysDMSDoclD)(versionsDoclDs.get(i)) ;

aVersion[0] = new DMSProperty(DMSProperty.CSI_DoclD, doc.DoclD2String());
aVersion[1] = new DMSProperty(DMSProperty.CSI_DocName,
((FilesysDMSDoclD)doc) .getName());
aVersion[2] = new DMSProperty(DMSProperty.CSl_Version, doc.getVersion());
versions[i] = new DMSProperty(DMSProperty.PROP_VERSION, aVersion);

}

m_logger.info("'Get the list of versions of a document :" + versions);
return versions;

The GetPropCSI_Versions class is registered in the web.xml file as indicated above.

<init-param>
<param-name>dms.getprops.CSI_Versions</param-name>
<param-value>
com.cimmetry.vuelink.filesys.propactions.GetPropCSI_Versions
</param-value>
</init-param>

51

AutoVue Integration SDK - Technical Guide

For more information, examine the code and use the debugger to learn more about the real
behavior of this class.

The dmsListVersion method asks the Filesys DMS backend system for the list of
document versions by providing the DoclID of the current document.

public Vector<DoclD> getVersions(DMSBackendSession session, DoclD doclID) {

Vector<DoclID> versions = null;

Vector<Doclnfo> versionsinfos = null;

try{
DoclInfo fsDoclD = buildDoclnfo(session,doclD);
versionsinfos = m_filesysinfo.listVersions(fsDoclD);

} catch(Exception e){
m_logger.error(DMSDefs.DMS_ERROR_CODE_ERROR , e);

b

versions = new Vector<DoclID>();

for (int i1 = 0; 1 < versionsinfos.size() ; ++i) {
versions.add(buildDoclD(session,versionsinfos.get(i)));

¥

return versions;

After it receives the vector of the document versions, it builds a DoclD for each element.
Finally, it returns the list of the DoclDs as a vector.

7.9 Implementing handler for Default Property

When the AutoVue server sends a GetProperties request with a property that does not
have a class for handling it, the framework runs the GetPropDefault class. The
GetPropDefault class is not dedicated to a particular property and there is no property
called Default, so when you register the web.xml file you must use
dms.getprops.Default as the parameter name. Of course, you can give the class a
different name from the default one. However, if you choose not to register the class, then

you must name it GetPropDefault.
<init-param>
<param-name>dms.getprops.Default</param-name>

<param-value>com.cimmetry.vuelink.filesys.propactions.GetPropDefaul t</param-value>
</init-param>

Later we will discuss when to use individual classes for handling properties and when to use
GetPropDefault class. Also we will discuss how you can avoid implementing the
GetPropDefault by implementing a class for each request property.

For more information, refer to the source code of this class and run this class in debug mode
for more information on its behavior.

The following figure shows code of the execute () method of the GetPropDefault class
of the Integration SDK Skeleton.

52

AutoVue Integration SDK - Technical Guide

package com.mycompany.autovueconnector.propactions;
6ublic class GetPropDefault implements DMSGetPropAction<DMSContextlimp>, DMSDefs {

public DMSProperty execute(
DMSContextlmp context,
DMSSession session,
DMSQuery query,
DMSArgument[] args,
Property property
) throws VuelinkException {

final String propName = property.getName();

if ("VueLinkID".equals(property.getName())) {
return new DMSProperty(‘*VueLinkID", ***);
3

iT (""CSI_MIMETypes".equals(propName)) {
return new DMSProperty(*'CSI_MIMETypes", MIME_TYPES);
b

DMSProperty prop = null;
try {
DMSBackendImp be = (DMSBackendlmp)context.getBackendAP1();
DMSBackendSessionlmp beSession =
(DMSBackendSessionlmp)context.getBackendSession(session,query);

iT (DMSProperty.CS1_AllowBrowse.equals(propName)) {
return new DMSProperty(DMSProperty.CSI_AllowBrowse,
be. isAllowBrowse(beSession));

}

iT (DMSProperty.CS1_AllowSearch.equals(propName)) {
return new DMSProperty(DMSProperty.CSI_AllowBrowse,
be.isAllowSearch(beSession));

DMSProperty attrs = (DMSProperty)query.getQueryData('attrs™);
1SDKDocID doclID = new I1SDKDoclID() -String2DoclD(query.getDoclD());

if(attrs == null){
attrs = be.listAllProperties(beSession, doclD);
if(attrs 1= null){
query.setQueryData(‘'attrs', attrs);
}

¥
prop = (DMSProperty)attrs.getFirstChildWithName(propName);

} catch (Exception e) { .. }

ifT (prop == null) {
m_logger.error(*'Unsupported property: " + propName);
throw new VuelinkException(DMSDefs.ERROR_CODE_DMS_GETPROPERTIES,

"Unsupported property: " + propName);
¥

return prop;

}

7.10 Implementing File Save Action

You can create and modify markups and convert documents to other formats as TIFF and

PDF. When these documents are saved in the DMS backend system by selecting the Save or

53

AutoVue Integration SDK - Technical Guide

Save As actions from AutoVue’s File menu, the AutoVue server sends an Action Save
request. The response of this request is done through the ActionSave class.

In saving Markups, there are two cases to handle. The first case is when trying to save a new
Markup file. In this case, and as shown in the following excerpt of code, the Save action must
return a valid DoclD of the newly created Markup. The second case is when trying to save an
existing Markup file. In this case the Markup file keeps its old DocID. For saving Markups,
the ActionSave class relies on the service of the saveMarkup() method of the Filesys
DMS backend class.

When performing conversion of a document by selecting the Convert action from the File
menu, AutoVue exhibits the same behavior as for saving Markups. But this time the
ActionSave invokes the saveRendition() method of the Filesys DMS backend class.

When an AutoVue Real-Time Collaboration is closed, the chat transcript during the
collaboration session might need to be saved. In this case, ActionSave invokes the
saveChat() method of the Filesys DMS backend class to save the chat content.

In the Sample Integration for Filesys, the getDMSArgsProperties API is very useful. This
API provides properties about the DoclID of the base document, the DocID of the Rendition
or the Markup document if it exists, the Markup and Rendition types, and the Markups and
Renditions files name. This information lets the Filesys DMS backend system locate where
the documents are saved, and is therefore very important.

54

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys.propactions;
public class ActionSave implements DMSAction<FilesysContext>, DMSDefs{

public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {

%inal Property[] props = query.getDMSArgsProperties();

// Get file name

final DMSArgument fileArg = args[O];
String type = fileArg.getType(Q; ..
String sUploadFile = fileArg.getName(Q); ..

boolean bSaveChat = false; // “True™ if saving chat content for a meeting
boolean bReadOnly = false; /* true if it is a read-only markup */
String rendType = null;

DoclID baselD = null; /* if non-null, we"re doing a Save-As */

DoclID savelD = null; /* if non-null, we"re doing a Save */

String docName = null; /* the value of "name® for Save, or "CSI_DocName*®
for Save-As */

String markType = null ; /* not null if the mark type is specified */

ifT (props !'= null) {
.. // assign values for the above variables
¥

/** Upload the fTile */
DoclID newDoclID = null;
try {
InputStream fIln = null;
.. // put uploading content in fln
if (bSaveChat) { // save collaboration chat transcript

return be.saveChat(beSession, docName, flIn);
}
else
if(rendType != null) { // save rendtion (new or existing)

newDoclD = be.saveRendition(beSession,baselD, savelD, docName,
rendType, fIn);
} else {// save markup (new or existing)
newDoclD = be.saveMarkup(beSession,baselD, savelD, docName,
markType, bReadOnly, fIn);

Jeatch () {.} :

return newDoclD;

In the Sample Integration for Filesys, the saveMarkup method uploads the Markup file as
an InputStream object and invokes the saveMarkup method from the FilesysDMS
backend to save the file in the backend system. The parameters are: DoclID of the base
document (docID), DoclD of the markup (mrkID) which is null for new markup, the markup
file name, the markup type, the markup read-only attribute and the markup file content as
InputStream.

55

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._backend;

6ublic DoclD saveMarkup(DMSBackendSession session, DoclD doclD, DoclD mrklID,
String filename, String markupType, boolean bReadOnly, InputStream fIn
throws FileNotFoundException, 10Exception, VuelinkException {

DocInfo fsDoclID = null;
it (nrkID == null) { // save new Markup

fsDoclID = buildDoclInfo(session,doclD);
} else { // save existing Markup

TsDoclID = buildDoclnfo(session,mrkID);

}

return buildDoclD(session,
m_FilesyslInfo.saveMarkup(fsDoclD, markupType, bReadOnly, filename, flIn));

It returns the DoclD of the saved Markups if it fails it throws an exception.

In the Sample Integration for Filesys, the saveRendition methods upload the Rendition
file as an InputStream object and invokes the saveRendition method from the
FilesysDMS backend to save the file in the backend system. The parameters are: DocID of
the base document, DoclD of the rendition (renlD) which is null for new rendition, the
rendition file name, the rendition type, and the rendition file content as InputStream.

package com.cimmetry.vuelink.filesys._backend;

Bublic DoclD saveRendition(DMSBackendSession session, DoclD doclD, DoclD renlD,
String filename, String rendType, InputStream fIn)
throws FileNotFoundException, 10Exception, VuelinkException {

Doclnfo fsDoclD = null;
if (renlD == null) { //new rendition

fsDoclID = buildDoclInfo(session,doclD);
} else { // existing rendtion

fsDoclID = buildDoclnfo(session,renlD);

return buildDoclD(session,
m_filesyslInfo.saveRendition(fsDoclD, rendType, Ffilename, fIn));
}

It returns the DoclD of the saved rendition. If it fails, it throws an exception.

For saving Collaboration chat transcript, refer to section Implementing RTC and Meeting
Management for a detailed description.

The SaveAction class is registered in the web.xml file as indicated in the following code
excerpt.

<init-param>
<param-name>dms.action.Save</param-name>

<param-value>com.cimmetry.vuelink.filesys.actions.ActionSave</param-value>
</init-param>

56

AutoVue Integration SDK - Technical Guide

Refer to the source code of this class for more information. You can also run this class in
debug, as shown in the following figure to help you learn more about the dynamic behavior
of this class.

% Zanity checks #/

if (!"save".equalslgnoreCase query.getictionName())] |
throw new VuelinkException (DMS ERROE CODE UNENOWN ERROR,
"Inwvalid action namwe within query: ™ +

query.getictionMName ()]

7.11 Implementing File Delete Action

You have the option of deleting Markups from within the AutoVVue applet. When deleting
existing markups, the AutoVue server sends a Delete Action request. The response to this
request is handled by the ActionDelete class. The document to be deleted is indicated by
the DoclD parameter.

In the Sample Integration for Filesys, to be deleted effectively from DMS backend system
this class sends its request through the de leteMarkup() method of FilesysDMS backend
class.

package com.cimmetry.vuelink.Ffilesys._propactions;

public class ActionDelete implements DMSAction<FilesysContext>, DMSDefs{

public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {

final DoclID doclID = new FilesysDMSDoclID().String2DoclD(query.getDoclID());

// delete markup document

iT (! context.getBackendAPI1() .deleteMarkup(
context.getBackendSession(session,query), doclD)) {

Ehrow new VuelinkException(DMS_ERROR_CODE_ERROR,
DMS_ERROR_MSG_DELETE);

return null;

In the Sample Integration for Filesys, the deleteMarkup method sends a request to the
DMS backend system to delete the markups identified by a DocID passed in the parameter. If
the document is deleted, it returns TRUE. Otherwise it returns FALSE.

57

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._backend;

6ublic boolean deleteMarkup(DMSBackendSession session, DoclD doclD)
throws VuelinkException{

DocInfo fsDoclD = buildDoclnfo(session,doclD);
Boolean deletedDoc = false;

try{
deletedDoc = m_filesysInfo.deleteDocument(fsDoclD);
}catch(Exception e){ .. }

return deletedDoc;

The ActionDelete class is registered in the web.xml file as shown in the following excerpt
of code.

<init-param>
<param-name>dms.action.Delete</param-name>
<param-value>com.cimmetry.vuelink.Ffilesys.actions.ActionDelete</param-value>
</init-param>

For more information, examine the code and use the debugger to learn more about the
behavior of this method.

7.12 Creating Your Context

Each VueLink has a context that holds various environment settings that remain constant
throughout the VueLink servlet lifetime. This context is initialized during the VueLink
servlet initialization and is passed to actions every time the VueLink handles a request.

The framework publishes the com.cimmetry.vuelink.context.DMSContext interface
which describes a set behavior that a context handler must exhibit, which includes:
o Initializing this DMSContext by fetching the appropriate information within the
DMS servlet initialization parameters.
e Finding, registering, and locating the appropriate backend API class for the current
DMS servlet.
e Finding the backend session object corresponding to the DMSSession.
e Creating a new backend session if an existing session cannot be found.

The framework provides the com.cimmetry.vuelink.context.GenericContext class
which is a default implementation of the DMSContext interface. You must provide your own
implementation of the DMSContext interface only if the GenericContext does not satisfy
your needs. It is recommended that you extend your context from GenericContext class.

For each DMS servlet, the context action is registered during the initialization of the DMS
servlet and loaded by the framework in the following sequence:

58

AutoVue Integration SDK - Technical Guide

4.

5.

It fetches the initialization parameters looking for whether a custom action context
(with param-name as “dms.context™) is provided.

It looks for ActionContext class in the same location as the Integration SDK’s
DMS VueLink servlet.

It looks for ActionContext class in the same location as the framework DMS
VueLink servlet.

It looks for GenericContext in the same location as the framework DMS VueLink
servlet.

It throws an exception if it does not succeed in finding a class to handle the context.

In the Filesys DMS application, a new class Fi lesysContext is extended from the
GenericContext class to provide a custom context.

package com.cimmetry.vuelink.filesys;
public class FilesysContext extends GenericContext {

Bublic FilesysDMSBackendImp getBackendAP1() throws VuelinkException {

}

public DMSBackendSession getBackendSession(DMSSession session, DMSQuery query)

if (n_backend == null) {
throw new VuelinkException(DMS_ERROR_CODE_ERROR,
""Backend APl not registered);

return (FilesysDMSBackendImp)m_backend;

throws AuthorizationException {

// Get BackendSession from DMSSession if it has been put there before
iT (session.getAttribute(backendSession'™) 1= null) {

}

// No backend session exists yet. Establish new connection to DMS and
// create new backend session.

Hashtable<5tring,0bject> connectinfo = new Hashtable<String,Object>();

FilesysBackendSession backendSession =
(FilesysBackendSession)m_backend.connect(connectinfo);

return backendSession;

The FilesysContext class is registered in web.xml. If your context is not in the same
location as your DMS VueL.ink servlet, you have to register it.

<init-param>
<param-name>dms.actions.Context</param-name>
<param-value>com.cimmetry.vuelink.filesys.FilesysContext</param-value>
</init-param>

59

AutoVue Integration SDK - Technical Guide

7.13 Overriding GetProp<CSlI Property> classes

You may want to extend the response provided by a property class. For instance, you may

add the number of all existing versions of a document to the ListAl IProperties
response. There are several ways to implement a mechanism that lets you extend the

behavior of property classes. One mechanism you may consider is inheritance. A second one
may be similar to the mechanism already implemented in the framework, such as simply
implementing a new class that implements the DMSGetPropAction interface and registers it

in the web.xml file

The inheritance has two limitations. The first limitation is that the new behaviors are added
statically (for example, at compilation time). The second is that for each new behavior, we
must derive a new class and we know that the multiplication of the number of classes can be
a maintenance nightmare. The second mechanism consists of replacing the old class by a new
one which implements the new behaviors. A better solution is to add new behaviors to
existing ones since it is not necessary to rewrite existing code that has been tested and proven

to be bug-free.

GetFilesysProperty
Lt GetPropGUI

4 buildGUI_Browse

% execute

% getSearchauiProperty
% addEditForSearch

—_

«inketfaces
& DMSGetPropAction

& execule

GetFilesysProperty
Lo Getfroplsl Listitems

GetFilesysProperty
L@ GetPropCSI_Markups

& m_logger

% buidListItems_Browse
% execute

GetFilesysProperty
L@ GetPropCSI_Versions

GetFilesysProperty
[GetPropCSI_XREFS

% execute
4 buildListProperties

& m_logger

4 build¥REFSProperty
4 execute

4 buildMarkupGui
4 build¥arkupPraperty
4 execute

L GetPropertyActionWrapper

InkDM3GetPropAction

“Creates
< GetPropertyAction'Wrapper

GetFilesysProperty
L& GetPropCSI_ListAllProperties

4 buildListProperties
4 execute

Figure 7-8. Structure of the DMSGetPropAction interface

An advanced integration mechanism has been designed that allows integrators and

% execute

D Dafs
g AllPropsPlusYersionshumber

Defs
_& AllPropsPlusauthor

 m_logger

< m_logger

“creakes
% AlPropsPlusyersionsHumber
“creake
% AlPropsPlusyersionsiumber
4 execute

«creakes
% AllPropsPlusAuthar
“creake
% AllPropsPlusAuthar
4 execute

professional services to extend the handling of specific CORE API messages without
recompiling or rebuilding the entire integrations by just adding the overriding code. As
illustrated in the previous figure, and in the excerpt of the following code, a class called

60

AutoVue Integration SDK - Technical Guide

com.cimmetry.vuelink.propsaction.GerPropertyActionWrapper has been
designed. The class implements the

com.cimmetry.vuelink.propsaction.DMSGetPropAction interface and has a

variable that references any object that implements this interface. Note that the wrapper class

implements the same interface as the classes it is going to wrap.

package com.cimmetry.vuelink.propsaction;
/** */

public abstract class GetPropertyActionWrapper implements DMSGetPropAction<DMSContext>
{

*x

/* {@link com.cimmetry.vuelink.core.DMSGetPropAction} object instance
*

prgtected DMSGetPropAction propertyAction ;
/**

* Constructs a decorator from the object to extend

*

% propAction object to extend

*/

public GetPropertyActionWrapper(DMSGetPropAction propAction){
this.propertyAction = propAction;
}

s

To add a new behavior you just have to add a new class derived from the wrapper class. This

mechanism allows third-party integrators to easily upgrade their solutions.

For example, in the Sample Integration for Filesys, to add the number of versions of a
document to the ListAllProperties class we can create a new
AllPropsPlusVersionsNumber class that wraps the

GetPropCSl_ListAllProperties and adds to it the number of versions of a document.

public class AllPropsPlusVersionsNumber extends GetPropertyActionWrapper
implements DMSDefs {
/**
* Wrap the existing object
*/
public AllPropsPlusVersionsNumber(){
super(new GetPropCSI_ListAllProperties());

public DMSProperty execute(DMSContext context, DMSSession session,
DMSQuery query, DMSArgument[] args, Property property)
throws VuelinkException {
// add the new behavior

Finally, you must register this class as indicated in the following excerpt of code. Note that

the wrapper is still using the services of the object it wraps.

<init-param>
<param-name>dms.getprops.CSI_ListAllProperties</param-name>
<param-value>
com.cimmetry.vuelink.filesys.propactions.GetPropCSIl_AllIPropsPlusVersionsNumber
</param-value>
</init-param>

61

AutoVue Integration SDK - Technical Guide

The major advantage of this mechanism is its capability to dynamically compose wrapper
classes. For example, you may add a new behavior to the same class by adding the document
author property you just have to follow the same steps above. But in this case, wrap a
wrapper class as shown in the following excerpt of code.

public class AllPropsPlusAuthor extends GetPropertyActionWrapper implements
DMSDefs {

public AllPropsPlusAuthor(){ super(new AllPropsPlusVersionsNumber(new
_ListAllProperties()));
3

You can also decide that a document has two authors. In this case, you need to compose the
new behavior as indicated in the following line of code without adding any line of code.

new AllPropsPlusAuthor(new AllPropsPlusAuthor(new AllPropsPlusVersionsNumber(new
CSI1__GetListAllProperties())))

7.14 Implementing Read-Only Markups

In combination with the AutoVue markup type (normal, master and consolidate), a markup
can be created as read-only that cannot be updated after being created. To support read-only
markups, the integration interface should enhance CS1_Markups and Save requests sent by
the AutoVue server described in section Handling Markups.

The response to the CS1_Markups request is to specify the markup GUI for the Open and
Save requests. The GUI is enhanced to allow users to choose to save a markup as read-only
and when listing existing markups to display markups with the read-only attribute.

The response to the Save request sets the markup file as read-only if requested by the user. It
can be either a physical read-only file as with the sample integration for FileSys, or the
ready-only attribute is set in the meta-data.

-

| £ Save Markup File As
Name markup2
Markup Type |normal w
E L
Read-Only true v
false
true

Figure 7-2 Save Markup File as with Read-Only selection

62

AutoVue Integration SDK - Technical Guide

-

(£ Markup Files

Select Markup File(s)

Mame Markup type Size Version Read-Only Cancel
[] markup2 normal 701 2 true —
[] markupi master 701 2 false

[] all revisions

(P
m

Figure 7-3 Markup Files dialog with Read-Only attribute

In the Sample Integration for FileSys, the Open and Save requests are handled by the
GetPropCS1_Markups class and ActionSave class. In the GetPropCSI_Markups class,
bui ldMarkupGui () method generates the heading for the Markup Files dialog and displays
the GUI for the Save Markup File As dialog. The bui ldMarkupProperty() method loops
through each markup and includes the Read-Only attribute.

The following is a code excerpts are of the bui ldMarkupGui () and
bui ldMarkupProperty() methods, respectively:

private DMSProperty[] buildMarkupGui (FilesysDMSBackend be, .) {

//For “Markup Files” dialog
DMSProperty DispArr[] = new DMSProperty[5];

5ispArr[4] = new DMSProperty(‘'‘Read-Only","6");
guiProps[1] = new DMSProperty(DMSProperty_PROP_GUI_DISPLAY, DispArr);

7/ For "Save Markup File As"™ dialog
Property EditArr[] = new Property[3];

'étring [1 opts = {"false", "true"};
EditArr[2] = new GUIElementCombo(DMSProperty.CSl_DocReadOnly, "Read-Only",
opts, true);

guiProps[2] = new DMSProperty(DMSProperty.PROP_GUI_EDIT, EditArr);

“false",

63

AutoVue Integration SDK - Technical Guide

private Property[] buildMarkupProperty(FilesysDMSBackend be, ..) throws VuelinkException{

DMSProperty guiProps[] = buildMarkupGui(be, beSession, doclD);
Vector<Doclnfo> mrkDoclds = be.dmsListMarkups(beSession, doclD);
DMSProperty markup[] = new DMSProperty[mrkDoclds.size()+1];
markup[0] = new DMSProperty(DMSProperty.PROP_GUI ,guiProps);
for (int i = 0; i < mrkDoclds.size(); i++) {

DMSProperty mrkProp[] = new DMSProperty[7];

Boolean bReadOnly = false;

)7 Special treatment for OEVF markups
if (leditable) { // default asset markup in non-editable mode
bReadOnly = true;

else { // non-oevf markup
File file = mrkDoclds.get(i).getFile();
if (File.canWrite() == false) {
m_logger.info(file.getAbsolutePath() + " is not writable.");
bReadOnly = true;
}
¥

%rkProp[S] = new DMSProperty(Property.CSI_DocReadOnly, new

Boolean(bReadOnly) .toString()); // This is needed for AutoVue Server
mrkProp[6] = new DMSProperty(‘'‘Read-Only*, new Boolean(bReadOnly).toString());
markup[i+1] = new DMSProperty(DMSProperty.PROP_MARKUP,mrkProp);

m_logger.debug(*'got the list of markups: " + markup);
return markup;

In the ActionSave class, the execute() method retrieves the Read-Only attribute and
passes it to the backend saveMarkup() method, as show in the follow code excerpt.

public Object execute(final FilesysContext context, .) throws VuelinkException {
boolean bReadOnly = false; /* true if it is a read-only markup */
if (Property.PROP_DOC_READONLY.equals(name)) {
soe bReadOnly = prop.getValue().equalslgnoreCase(''true');

} catch (Exception ex) {
bReadOnly = false;
3

}

// saving markup (new or existing)
newDoclD = be.saveMarkup(beSession,baselD, savelD, docName, markType, bReadOnly,
fin);

64

AutoVue Integration SDK - Technical Guide

7.15 Implementing Stamps

The Stamp markup entity allows you to create a stamp that includes document and user
information (metadata) pulled directly from the DMS backend system.

Stamps are created with the Design Stamp tool that is included with the AutoVue installation.
Refer to the Oracle AutoVue User’s Manual for information on how to create an Stamp.

An includes a Stamp definition file (dmstamps. ini) and one or more background image
files. The Stamp definition file contains information about its background images. The
default location for dmstamps. ini is located under <AutoVue Installation
Directory>\bin folder.

After a Stamp is created, the Stamp definition file (dmstamps. ini), along with the
background images, are stored in a location accessible by your integration application. They
may be accessed through files that have absolute path or relative path to your integration
application or from documents that have been checked into your backend DMS system. In
either case, your integration application should know how to find the Stamp definition file
and its background images. You should define the location of dmstamps.ini in web.xml file
using CS1_IntellistampDefLocation parameter name as in Oracle AutoVue’s demo
application. If the locations of underlay images are different from those at the designing
phase, make sure to modify the paths inside the Stamp definition file (dmstamps.ini).

When adding a Stamp markup entity, the AutoVue server sends a GetProperties request
by passing the CS1_Intel 1 iStamp property in it. The response data that your integration
sends back includes the following:

1. The definition file for a Stamp
e This is basically the content of dmstamps.ini file which is generated by
stampdlg.exe tool shipped with AutoVue.

2. The background images for the Stamp
e This is basically the name and DoclD of each of the background images for each
Stamp.

The AutoVue server downloads each of the underlying images by invoking the normal file
download request and passing the DoclID of the stamp image.

The AutoVue server also sends a GetProperties request to retrieve DMS attributes
defined inside Stamps. These attributes may have values that can be selected from a Pick
List. As illustrated in the following image, the Status attribute can be selected from a Pick
List that has several values. There are four attributes in the Pick List: Single Valued and
Constrained, Single Valued and Non-Constrained, Multi Valued and Constrained, and
Multi Valued and Non-Constrained. Constrained means that the valid value is restricted to
the Pick List and Multi valued means multiple values can be assigned to an attribute.

65

AutoVue Integration SDK - Technical Guide

.- 4
=/ DMS Attributes
To edit the value double didk on it.
MName Value Value from DMS
DocMame bike.dgn bike.dgn
RelatedInfo nfo2 nfo2 [Resat]
Comment
Status in proaress| n progress | Commit Changes |
started
in progress
rejected
finished
[Ok] [Cancel]

Figure 7-11 Stamp DMS Attributes dialog

After modifying the values of Stamp, the AutoVue server sends a SetProperties request
to synchronize metadata in the DMS system through the integration interface.

In the sample Integration for FileSys, GetPropCS1_IntelliStamp class handles the
GetProperties request for CSI_Intel liStamp, GetPropDefault class handles the
request for attributes inside Stamps, and FilesysDMSBackendImp class has methods to be
called from GetPropDefault class for the list property.

As illustrated in the following code, the getImagesDoc() method of
GetPropCSl_IntelliStamp class attaches CS1_DocName and CSI_DoclD
DMSProperty to CS1_IntelliStamplmage DMSProperty for each background image file.

private DMSProperty[] getlmagesDoc(Vector<String> imageFiles){
if(imageFiles.isEmpty()) return null;

int numOflmage = imageFiles.size();
DMSProperty [] images = new DMSProperty[numOflmage];
for(int i = 0; i1 < numOflmage; i++){

5MSProperty [1 imagePro= new DMSProperty[2];

imagePro[0] = new DMSProperty(Property.CSI_DocName,
(String)imageFiles.elementAt(i));

imagePro[1] = new DMSProperty(Property.CSI_DoclD,
new FilesysDMSDoclID (stamplmage.getAbsolutePath()) -DoclD2String());
images[i] = new DMSProperty(DMSProperty.CSI_IntelliStamplmage, imagePro);

}

return images;

}

Lastly, the execute() method of GetPropCS1_IntelliStamp class attaches
CSI_IntelliStampDefinition and CS1_Intellistamp_Images DMSProperty in a
CS1_IntelliStamp DMSProperty and returns it to the VueLink servlet.

66

AutoVue Integration SDK - Technical Guide

Yelse{

}

package com.cimmetry.vuelink.Ffilesys._propactions;

public class GetPropCSIl_IntelliStamp extends GetFilesysProperty

implements DMSGetPropAction<FilesysContext> {

// Retrieve the content of the Intellistamp Definition file
String content = getintelliStampDefinition();

if(content = null && content.length(QQ!= 0){

// Construct response CSI_Intellstamp_definition
DMSProperty ini = new
DMSProperty(DMSProperty.CSI_IntelliStampDefinition,content);

// Retrieve the list of underlying images for the Intellistamp
Vector<String> imageFiles = getlmageFiles(content);

DMSProperty[] imagesinfo = getlmagesDoc(imageFiles);
DMSProperty image = null;
if(imagesinfo != null && imagesinfo.length !'= 0) {
//Construct response CSI_Intellistamp_Images
image = new DMSProperty(DMSProperty.CSIl_IntelliStamplmages,
imagesinfo);

if(image '= null){

// Intellistamp Definition file and the underlying images

// are all available

DMSProperty[] pro = new DMSProperty[2];

pro[0] = ini; // response CSI_Intellstamp_definition

pro[1] = image; // response CSIl_Intellistamp_Images

retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, pro);
Yelse{

// Image files are not available

retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, ini);

// Intellistamp Definition file does not exist or is empty
retProps= new DMSProperty(DMSProperty.CSI_IntelliStamp, "");

return retProps;

The GetPropCSI_IntelliStamp class is registered in web.xml as indicated in the
following code:

<init-param>

value>

</init-param>

<param-name>dms.getprops.CSI_Intel liStamp</param-name>
<param-value>com.cimmetry.vuelink.filesys._propactions.GetPropCSl_IntelliStamp</param-

When the GetProperties request handled by GetPropDefault class gets DMS attributes
for Stamps, at the last stage, it is handled by calling the
replaceWithPickListIfApplies() method of the Fi lesysDMSBackend Imp class.

67

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys.propactions;
éﬂblic class GetPropDefault implements DMSGetPropAction<FilesysContext>, DMSDefs {
Bublic DMSProperty execute(..) throws VuelinkException {
5MSProperty retProp=null;

retProp = context.getBackendAPI().replaceWithPickListlfApplies(
context.getBackendSession(session, query),retProp);
return retProp;

The replaceWithPickListlfApplies() method checks to see if the DMS attribute is a
Pick List. If it is, the makePickList() method is called first and then a different

DMSProperty labeled with the property name is returned based on whether the Pick List is
single-valued or multi-valued.

package com.cimmetry.vuelink.filesys.backend;

bublic DMSProperty replaceWithPickListlfApplies(..){
try {
.. // Check whether is a PickList
if (list = null) { /7 is Pick List

iT (prop.isSinglevValue()) { //Single valued
return new DMSProperty(prop.getName(), prop.getvValue(),
makePickList(options, constrained, multi));
} else { /7 Multi valued

Feturn new DMSProperty(prop.getName(), prop.getObjectValues(),null,
makePickList(options, constrained, multi),multiValue);

}
} else { // no pick list
return prop;

¥
} catch (Exception e) {

return prop;

The makePickList() method builds an array of DMSProperty labeled PickVvalue for
each available option value in the Pick List and attaches this array and additional info about

whether the Pick List is multi-valued and constrained to a DMSProperty labeled PickList
to return.

68

AutoVue Integration SDK - Technical Guide

/**
* create a pick list DMSProperty
% options a Vector<String> of available option list
S constrained if true means options are restricted to the options list
* multiValue if true means multiple items from options list can be selected
*
7/

public DMSProperty[] makePickList(Vector<String> options, boolean constrained, boolean
multivalue) {
iT (options == null || options.size() == 0) {
return null;

e
DMSProperty[] pickValue = new DMSProperty[options.size()];
for(int k = 0; k < pickvalue.length; k++){
pickValue[k] = new DMSProperty(*'PickValue", options.get(k));

Hashtable<String, Boolean> attrs = new Hashtable<String, Boolean>();
attrs.put(DMSProperty.ATTRIB_CONSTRAINED, constrained);
attrs.put(DMSProperty . ATTRIB_MULTI_VALUE, multiValue);

DMSProperty pickList = new DMSProperty("'PickList",null, null,pickValue, attrs);
DMSProperty[] aPL = new DMSProperty [1];

aPL[0] = pickList;

return aPL;

For more information, examine the code and use the debugger to learn more about the real
behavior of this class.

7.16 Implementing Markup Policy

Markup policy defines a set of rules to determine certain restrictions and privileges for users
of the using AutoVue offline. If no markup policy is defined, a default set of values are used
by the AutoVue server.

Usually the definition of markup policy is defined in an xml file (for example,
MarkupPolicy.xml). It might be stored as a physical file that has absolute path or relative
path to the integration application, or be checked as a document into your backend
DMS/ERP/PLM/UCM system. In whichever case, your integration should be able to retrieve
the content of the defined markup policy. You can define the location of Markup Policy file
in your web.xml using CS1_MarkupPol icyDefLocation parameter name as in Oracle
AutoVue’s demo application.

When user uses AutoVue offline, the AutoVue server sends a GetProperties request
asking for the definition of markup policy by passing CS1_MarkupPol icy property within
the request. In the sample integration for FileSys, the response to this request is done
through PropCS1_MarkupPolicy class. The getMarkupPol icy() method reads the
content of the MarkupPolicy.xml file into a string, then the execute () method builds a
CS1_MarkupPolicy DMSProperty with the content of MarkupPolicy.xml file. The

69

AutoVue Integration SDK - Technical Guide

way of getting the content of Markup Policy depends on your integration implementation.
The following is a code snippet of construct CS1_MarkupPol icy DMSProperty:

DMSProperty policyProp = null;

String policy = getMarkupPolicy();
it (policy != null) {
policyProp = new DMSProperty(DMSProperty.CSI_MarkupPolicy ,
(String[Inull, new Object[]{new CData(policy)}, null);
¥

return policyProp;

The following is a sample Markup Policy used by the sample integration for FileSys. Refer to
the Oracle AutoVue User’s Manual for information on customizing your own markup policy.

<?xml version="1.0" encoding="utf-8"?>
<MarkupPolicy>

<Action name='SaveNewMarkup" default="true">
</Action>

<I-- Only allow owner to modify master markup -->
<Action name="SaveExistingMarkup' default="true'>
<ExConditions>
<AndOperator>
<MarkupFileCondition name="CSIl_MarkupType" value="master"'/>
<NotOperator>
<MarkupFileCondition name="CSI_DocAuthor" value="$CURRENT_USER"/>
</NotOperator>
</AndOperator>
</ExConditions>
</Action>

<Action name="EditMarkup" default="true'">
</Action>

<I-- Only allow owner to delete master markups -->
<Action name="DeleteMarkup" default="true">
<ExConditions>
<AndOperator>
<MarkupFileCondition name="CSl_MarkupType" value="master"'/>
<NotOperator>
<MarkupFileCondition name="CSI_DocAuthor" value="$CURRENT_USER"/>
</NotOperator>
</AndOperator>
</ExConditions>
</Action>

<I-- Only open master markups automatically -->
<Action name="AutoOpenMarkup" default="false">
<ExConditions>
<OrOperator>
<MarkupFileCondition name="CSl_MarkupType" value="master"'/>
</OrOperator>
</ExConditions>
</Action>

</MarkupPolicv>

70

AutoVue Integration SDK - Technical Guide

7.17 Online/Offline Support

AutoVue provides the ability to view and add markups to files in a disconnected
environment. Whether you are travelling or need to share files with an external partner, you
can still view files and markups, and add new markups. Additionally, when connected, you
can update your backend DMS/PLM/ERP/UCM system with edits you make offline.

7.18 Implementing Redirection

In a distributed environment where several remote content servers are used for storing files,
ISDK-based integration deployed at a master location (Primary) may redirect the download /
upload requests to another ISDK-based integration deployed at remote location (Secondary)
where files actually reside. This greatly improves performance since the AutoVue server is
installed in the same location as the remote content server.

To deal with this use case, ISDK-based integration adds redirection support when handling
Download and Save requests sent by the AutoVue server.

Handling Redirection for Download

When users view a file, the AutoVue server sends a Download request to the primary
integration. The primary integration checks whether the file should be picked up from a
remote location (that is, a redirection is needed). The way to check this is based on the
specific implementation of the backend system that it is integrated for. If redirection is
needed, the primary integration sends back a redirection response with a ticket authorizing
the AutoVue server to download the file directly from the remote location specified in the
response.

In the Demo Integration of Filesys, the Download request is handled by ActionDownload
class. In the method execute(), it checks whether a redirection is needed based on whether
a redirectURL is present in the web.xml and whether a ticket is available in the
Authorization block of the Download request. If redirection is needed, it constructs the ticket
that includes username and password for remote login and calls the
constructRedirectURL()method in the DMSUti I class to generate the redirect response.
Usually the ticket is generated by the backend system mechanism as shown in the following
code snippet.

71

AutoVue Integration SDK - Technical Guide

public Object execute(final FilesysContext context,..) throws VuelinkException {

//REDIRECT SUPPORT start based on whether web.xml defines Redirect_VL_URL or not
String ticket = query.getAuthorization().getTicket();
if (ticket == null) { //try to get from session
ticket = (String)session.getAttribute("Ticket");
¥

ifT (ticket == null) {
try {
String redirectURL = FilesysContext.getStaticParameter(
FilesysContext.PARAM_CSI_REMOTE_VUELINK) ;

//Redirect download if URL is provided

if (IDMSUtil._isNullOrBlank(redirectURL)) {
String username = (String)session.getAttribute('username');
String password = (String)session.getAttribute('password™);

iT (username != null && username.length() > 0 && password != null) {
ticket = username.trimQ+ "&" + password.trimQ);
m_logger.debug(*'Ticket: " + ticket);
3
return DMSUtil.constructRedirectURL(query, redirectURL, ticket);
}
}catch (Exception e) {
m_logger.error(*“'redirecting download faild " + e.toString(Q));
}

}
//REDIRECT SUPPORT finish

As shown in the following , in the constructRedirectURL()method of the DMSUti l
class, the redirect response encapsulates five properties in a single Redirect property:
HTTP URL as redirection type, ticket authorizing download from remote file cache server,
URL to DMS server component located at remote file cache server, the original FILENAME
and the Document ID.

public static DMSProperty constructRedirectURL(final DMSQuery query, String redirectURL,
String ticket){

DMSProperty [] redirect = new DMSProperty[5];

redirect[0]
redirect[1]

new DMSProperty(DMSProperty.TYPE, DMSProperty.URL);

new DMSProperty(DMSProperty.TICKET, ticket);

redirect[2] new DMSProperty(DMSProperty.SERVER, redirectURL);

redirect[3] new DMSProperty(DMSProperty.ORIGINALURL, query.getOriginalURL());
String doclD = query.getDoclID();

/* if no doclD is returned to AV Server, AV server won"t send

* redirect request to VL at the remote content server.

* so return one faked doclD to AV Server when saving a new markup.
**/

if(docID == null || doclID.length() == 0){

doclID = "doclID";

3
redirect[4] = new DMSProperty(DMSProperty.CSIl_DoclD, doclD);

return new DMSProperty(DMSProperty.REDIRECT, redirect);

72

AutoVue Integration SDK - Technical Guide

After the AutoVue server receives this redirection response, it issues another Download
request with the ticket information directly to the secondary integration deployed at the
remote location. The secondary integration uses the ticket to log-in to the remote backend
system and download the file as usual.

Handling Redirection for Save

When users want to save a file, prior to the Save request, the AutoVue server sends a
GetProperties request with CS1_Redirected property to the primary integration asking
whether redirection is supported. If supported, the primary integration responds TRUE for
this CS1_Redirected property.

If TRUE is returned, the AutoVue server sends a Save request to the primary integration
without file content. If the primary integration checks that redirection is needed, it sends a
REDIRECT DMSProperty response similar to that for the Download request above with a
ticket authorizing the AutoVue server to upload the file directly to another location specified
in the redirection response.

Upon receiving the ticket, the AutoVue server then sends a second Save request to the
secondary integration located at the remote location by adding the ticket to the Authorization
block of the request and attaches the file to be saved.

Once the uploaded file is checked in successfully, the secondary integration returns a
confirmation in the form of a receipt in place of the returned DocID.

The AutoVue server then issues a third Save request forwarding this receipt to the primary
integration again. Primary integration then returns the DoclD of the uploaded file to finalize
the Save process.

The following are code snippets from the Demo Integration of Filesys.

package com.cimmetry.vuelink.filesys.propactions;
5ublic class GetPropDefault .. {
Bublic DMSProperty execute(final FilesysContext context,.) throws VuelinkException {
%inal String propName = property.getName();

ifT (DMSProperty.CSI_Redirected.equals(propName)) {
String redirectURL = FilesysContext.getStaticParameter(
FilesysContext.PARAM_CSI_REMOTE_VUELINK);
boolean redirected = false;
if(redirectURL != null && redirectURL.length() > 0){
redirected = true;
b

return new DMSProperty(DMSProperty.CSI_Redirected,
new Boolean(redirected));

73

AutoVue Integration SDK - Technical Guide

Note that the GetPropDefault class handles responses to GetProperties requests for
CS1_Redirected DMSProperty. Filesys decides that redirection is supported if
PARAM_CSI_REMOTE_VUELINK is defined in the web.xml file. In your integration, it should
be decided based on communication with the backend system.

ActionSave class handles the response to Save request from the AutoVue server. The
execute() method checks whether redirection is involved.

e If redirection is involved, it checks whether it has Receipt property in the request.

o If not, it means that this is the first Save request and it generates a ticket for
remote login and responses back with a Redirect property similar to that for
handling Download request.

o If yes, it means that this is the third Save request and it responds with a
CSI1_Doc 1D DMSProperty.

e If no redirection is involved, this can be the second Save request at the secondary site
or a normal Save request at the primary site. In either case, it should check in the file.
If the check-in happens at the secondary location, a receipt for the saved file is
returned; if the check-in happens at the primary location, a valid DoclD for the saved
file is returned.

74

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.filesys.actions;

6ublic class ActionSave .. {

public Object execute(final FilesysContext context,.) throws VuelinkException {

// REDIRECT SUPPORT start based on whether web.xml defines Redirect VL _URL or not
String ticket = (String)session.getAttribute("Ticket™);
if (ticket == null && args == null) {

try {
String redirectURL = FilesysContext.getStaticParameter(

FilesysContext.PARAM_CSI_REMOTE_VUELINK) ;

it (IDMSUtil.isNullOrBlank(redirectURL)) {
// Redirect is involved
String receipt = getReceipt(props);
ifT (receipt = null && receipt.length()!= 0) {
// There is Receipt in the Save request
return new DMSProperty(Property.CSI_DoclD, receipt);

.. //Generate ticket using username and password

m_logger.debug(''Ticket: " + ticket);

return DMSUtil.constructRedirectURL(query, redirectURL,
ticket);

3
}catch (Exception e) {

m_logger.error(‘'redirecting save failed " + e.toString());
H

// The following is psuedo code

iT checkin file at the redirected site {
String receipt = secondaryCheckIn(); // Save file
return receipt;

else {
String doclID = primaryCheckIn(); // Save file

return doclD;

}
}

75

AutoVue Integration SDK - Technical Guide

7.19 Implementing Real-Time Collaboration and Meeting
Management

Oracle AutoVue provides real-time collaboration functionality that enables multiple users to
review files interactively and simultaneously. ISDK-based integration can integrate AutoVue
Real-Time Collaboration (RTC) functionality with third-party meeting management systems.

The steps for RTC and meeting management integrations include:
e Customizing Ul to provide links for launching AutoVue in RTC mode by hosts and
guests
e Implementing ISDK APIs for handling backend communication

7.19.1 Launching AutoVue in RTC Mode

When creating a third-party AutoVVue RTC meeting, the meeting creators (hosts) can invite a
list of attendees (guests) to attend the meeting and add list of documents to review during the
meeting. From the third-party meeting management GUI, hosts can click to start the meeting
that launches AutoVue, displays a meeting document, enters RTC mode, and presents a
default collaboration markup. Guests can click to join a meeting which then launches
AutoVue into RTC mode and are presented in the same AutoVVue GUI as that on the host
side.

7.19.2 Hosts Initiate RTC

The following information is needed for hosts to launch AutoVue to initiate a RTC.
e DMS is the URL for the DMS servlet (main class) of your ISDK-based integration
e MEETINGID is a number identifying the RTC meeting and holds the same value as
CSI_ClbSessionlID mentioned below.
e CSI_ClbSessionData can hold more information in addition to the
CS1_ClbSessionlD (MEETINGID), but your integration should know how to parse
the CS1_ClbSessionData to retrieve the CS1_ClbSessionlD.

e CLBUSERS are comma separated strings that represent the list of attendees who have
been invited to the RTC by AutoVue.
Note: This value is not supported by the current AutoVue server.

e FILENAME is a file among the list of documents intended to be reviewed during the

RTC meeting.
var session = "CSI_CIbDMS=" + DMS + ";" +
"CSI_ClbSessionData=" + MEETINGID + ";" +

"CSI:CIbSessionSubject:DemoRealTimeColIaboration;" +
"CSI_ClbSessionType=public;" +
"CSI_ClbUsers=" + CLBUSERS + ";"

When creating an AutoVue applet to initiate a RTC for the first time, the following
parameters should be provided:

76

AutoVue Integration SDK - Technical Guide

<PARAM NAME=""FILENAME"™ VALUE="" + FILENAME +"'>
<PARAM NAME="'COLLABORATION" VALUE="INIT:" + session + ">

When reusing an AutoVue applet for RTC, the following needs to be set using AutoVue
applet APIs. The FILENAME is the new file to collaborate on.

Japplet.setFileThreaded(FILENAME) ;
Japplet.collaborationlnit(session);

7.19.3 Guests Join RTC

The following information is needed for guests to launch AutoVue to join a RTC. Note that
only CS1_CIbDMS and CSI_ClbSessionData are needed.

var session = "CSI_CIbDMS=" + DMS + ";" +
"CSI_ClbSessionData=" + MEETINGID + ;"

When creating an AutoVue applet for joining a RTC for the first time, the COLLABORATION
parameter should be provided. There is no need for FILENAME parameter.

| <PARAM NAME="'COLLABORATION" VALUE="INIT:" + session + ">

Refer to RTCDemo. jsp, RTCDemo_init. jsp and RTCDemo_join. jsp inthe RTC
Sample for detailed implementation.

7.19.4 ISDK APIs for RTC

To support RTC, ISDK-based integration needs to support a series of requests sent by
AutoVue Server.

When the host initiates a RTC meeting or guests join a RTC, the first request sent by the
AutoVue server is CSI_ClIbSessionlID. In response, the integration retrieves the session ID
by passing CS1_ClbSessionData sent in the request. In the Sample Integration for
Filesys, this request is handled by GetPropCSI1_ClbSessionlD class. In Filesys,
ClbSessionData simply comprises CIbSessionID. Here is the sample code.

public class GetPropCSI_ClbSessionlID .. {
public DMSProperty execute(.) throws VuelinkException {

String sClbSessionData = query.getClbSessionData();

m_logger .debug(*'ClbSessionData : " + sClbSessionData);
String sClbSessionlD = sClbSessionData;
m_logger .debug('ClbSessionID : " + sClbSessionlID);

return new DMSProperty(DMSProperty.CSI_ClbSessionlD, sClbSessionlD);

i

AutoVue Integration SDK - Technical Guide

One important request sent by the AutoVue server for Real-Time Collaboration is the
GetProperties request for CSI_Col laboration property. When users select an
AutoVue Collaboration action Invite, Session Information, or Close
Collaboration Session, the AutoVue server sends this request to retrieve information.
ISDK integration responds with a single CS1_Col laboration DMSProperty that includes
the following DMSProperties:

e PROP_GUI : DMSProperty with an array of children:

o

o

PROP_GUI_DISPLAYOPTS: DMSProperty having multiple child
DMSProperties for enabling/disabling GUI items in the Invitation dialog.
PROP_GUI_DISPLAY : DMSProperty having multiple child DMSProperties
listing attributes to be displayed in the Session selection dialog along with the
width (number of characters) to reserve for the attributes display.
CS1_ClblInvitation: DMSProperty wrapping a List identified as
CS1_ClbUsers: These users are displayed in the left side of AutoVue
Collaboration’s Invitation dialog. Users on this list can be invited to attend a
RTC by AutoVue.

Note: This value is not supported by the current AutoVue server.
CS1_ClbUsers: DMSProperty listing users that have already been invited to
a RTC. The list of users will be shown in the User section of the AutoVue
Collaboration Session Information dialog.

Note: This value is not supported by the current the AutoVue Server.
CS1_ClbSession: DMSProperty having multiple child DMSProperties that
show session information such as session title, id, type, subject, duration, start
time, and so on. It includes also a CS1_ClbSaveChat indicates whether the
backend system component supports saving chat transcript. By default,
CSI_ClbSaveChat is set to FALSE.

In the Sample Integration for Filesys, CS1_Col laboration is handled by
GetPropCSl1_Collaboration class. The bui ldProperty() method in this class is
responsible for generating the CS1_Col laboration DMSProperty to return.

78

AutoVue Integration SDK - Technical Guide

private DMSProperty buildProperty(.) throws VuelinkException {
DMSProperty clbProps[] = new DMSProperty[3];

/* GUI section */
DMSProperty guiProps[] = new DMSProperty[3];

/* DisplayOptions sub-section */

// For enabling/disabling GUI items in Invitation dialog
DMSProperty dispOptArr[] = new DMSProperty[4];
dispOptArr[0] = new DMSProperty(“'AllowAdd","true'™);

dispOptArr[1] = new DMSProperty(*'AllowAddNew", " true™);
dispOptArr[2] = new DMSProperty(**AllowRemove™, " true™);
dispOptArr[3] = new DMSProperty(*"AllowLayerColor™, "true™);

guiProps[0] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAYOPTS, dispOptArr);

// Lists the attributes to be displayed in the Session selection dialog

// along with the width to reserve for the attributes display.

// The property names match those defined in the following "'Session™ Section.
// For example, dispArr[i] = new DMSProperty(attr_name, attr_width);
DMSProperty[] dispArr = new DMSProperty[2];

dispArr[0] = new DMSProperty(*'Originator™, *14");

dispArr[1] = new DMSProperty(‘'Meeting Duration®, *14");

guiProps[1] = new DMSProperty(DMSProperty.PROP_GUI_DISPLAY, dispArr);

/* Invitation sub-section */

// Lists users who can be invited to the collaboration session

Property[] invitationArr = new Property[1];

String defaultUser = null;

String[] users = null;

boolean readOnly = false;

users = be.clbUsers(beSession, sCIbSessionlD);

invitationArr[0] = new GUIElementList(DMSProperty.CS1_ClbUsers, "user",
defaultUser, users, readOnly);

guiProps[2] = new DMSProperty(DMSProperty.CSI_Clblnvitation, invitationArr);

clbProps[0] = new DMSProperty(DMSProperty_PROP_GUIl, guiProps);
/* End of GUI section */

/* ClbUser Section */
String[] invitedUsers = be.clblnvitedUsers(beSession, sClbSessionlD);
clbProps[1] = new DMSProperty(DMSProperty.CSI_ClbUsers, invitedUsers);

/* Session Section */

// The current collaboration session information:

Vector<DMSProperty> sessionAttr = new Vector<DMSProperty>();

sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSessionlD, sClbSessionlID));

String sClbSessionType = "public'; // It can be private

sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSessionType, sClbSessionType));

String sClbSaveChat = ""true';

sessionAttr.add(new DMSProperty(DMSProperty.CSI_ClbSaveChat, sClbSaveChat));

// Here are sample meeting attributes for RTC demo. In real implementation,

// they might be retrieved from the backend system.

sessionAttr.add(new DMSProperty(*'Originator", "rtc'"));

sessionAttr.add(new DMSProperty(‘'Meeting Duration', "60 minutes'));

DMSProperty[] arr = new DMSProperty[sessionAttr.size()];

clbProps[2] = new DMSProperty(DMSProperty.CS1_ClbSession,
sessionAttr.toArray(arr));

/* End of all sections */
m_logger.debug(''Got the Collaboration GUI elements: " + clbProps);

return new DMSProperty(DMSProperty.CSI_Collaboration, clbProps);

Based on the above implementation, during a RTC meeting, the collaboration’s Session
Information dialog is similar to the following figure.

AutoVue Integration SDK - Technical Guide

Session Information

Session Subject

DemoRealTimeCollaboration

Session Information

Session ID 90546

rtc Red es Host Contro...
demo_93061 Blue Mo

Username E\aerc... In Ses... | Status

Users

Mame Value
Meeting Duration B0 minutes
Originator rtc

DMS properties

Close

Figure 6-12 Session Information dialog

If CS1_ClbSaveChat is set to true in your integration’s CS1_Col laboration response,

and when the RTC is closed by selecting Collaboration from the Close Collaboration
Session menu of the AutoVVue GUI, the AutoVue server sends a Save request with
CS1_ClbDocType property set to value chat and attaches the chat content during the
RTC session for saving. In this case, ISDK integration communicates with the backend

system to save the chat transcript at a desired location. In the Sample Integration for Filesys,

ActionSave class handles the saving of the chat transcript.

public class ActionSave .. { ..
public Object execute(.) throws VuelinkException { ..
final Property[] props = query.getDMSArgsProperties(); ..
boolean bSaveChat = false; ..
ifT (props = null) {
for (int i = 0; i1 < props.length; i++) { ..
it (Property.CSl_ClbDocType.equals(name)) {
iT (prop.getvalue() !'= null && prop.getValue().equalslgnoreCase(‘'chat™)) {
bSaveChat = true;
3

} .

InputStream fIn = null;
.. // Put chat Ffile content in a fin

ifT (bSaveChat) {
String clbData = query.getClbSessionData();
String clbSessionlD = clbData;
docName = context.getlnitParameter(’'RootDir') + File.separator + ‘‘chat " +
clbSessionlD + "_txt";
m_logger .debug(’" for session " + clbSessionlD + " to: " + docName);
return be.saveChat(beSession, docName, fIn);

80

AutoVue Integration SDK - Technical Guide

During a RTC session, the AutoVue server sends notifications as a part of SetProperties
request to notify that certain actions have been completed by AutoVue. For example, a
notification is send if a RTC is initialized or closed, users join or leave a session, or when a

new file is opened in which to collaborate. These actions correspond to
CSI_ClbInitSession, CSI_ClbCloseSession, CSI_UserJoined,

CS1_UserLeft and CSI_DocumentSet property.

In the Sample Integration for Filesys, these notifications are handled by the
ActionSetProperties class that mainly generates debug information when receiving
these notifications. In the case of a CS1_DocumentSet notification is sent when
collaboration users switch documents to collaborate on in the middle of a RTC meeting,
Filesys adds newly viewed document information to a text file, meetingfiles.txt, that holds
all the meeting documents information by clbDocumentSet() method in
FilesysDMSBackendImp class.

public class ActionSetProperties .. { ..
public Object execute(.) throws VuelinkException { ..
Property[] props = query.getProperties(); ..
for (int 1 = 0; 1 < props.length; i++) {
String value = props[i].-getvalue(Q); ..
it (props[i]-getName().equalslgnoreCase(Property.CSI_ClbCloseSession)) {
m_logger.debug(*'CS1_ClbCloseSession : " + sClbSessionlD);
continue;

bs

iT (props[i]-getName().equalslgnoreCase(Property.CSI_ClblnitSession)) {
m_logger .debug(*'CS1_ClblInitSession : ' + value);
continue;

b

iT (props[i]-getName().equalslgnoreCase(Property.CSI_UserJoined)) {
m_logger .debug(*'User Joined : " + value);
continue;

3

it (props[i]-getName().equalslgnoreCase(Property.CSI_UserLeft)) {
m_logger.debug(*'User Left : " + value);
continue;

}
it (props[i]-getName().equalslgnoreCase(Property.CSI_DocumentSet)) {
m_logger .debug(*'Document Set = " + value);
context.getBackendAPI () .clbDocumentSet(
context.getBackendSession(session, query), value);
continue;

During a RTC meeting, the document to be reviewed can be changed by using DMS Browse
or DMS Search. From the AutoVVue menu bar, select File, Open URL, and then DMS
Browse. The File Open dialog appears. The AutoVue server sends CSI1_Listltems request
to retrieve the DMS Browse result. As a part of handing this request, ISDK-based integration
should allow users to browse the list of documents to be reviewed during the meeting by
communicating with the backend system to retrieve the list. In Filesys-based RTC demo, a
text file meetingfiles.txt holds the list of meeting documents; GetPropCSI_Listltems
class handles the response for CSI1_Listltems request and it finally calls the
getlnstancelDs()method in Browse class to retrieve this list. In the sample dialog from
Filesys shown below, three meeting documents are listed under the Meeting folder. Meeting

81

AutoVue Integration SDK - Technical Guide

users can select documents listed under Meeting to review. Additionally, they can open
documents under other folders to review. When a new document is opened, a
CS1_DocumentSet notification is sent by AutoVue Server. By handling this notification,
ISDK-based integration can add the new document information to the existing meeting
document list by communicating with the backend system.

L/ DMS: File Open

Browse

Mame Type |'«'ersicn |Size
DGN 2 27136
SLDASM 1 254464

3DCatia5_FrontDriveAssembly, CATPreCATPRODUCT 1 74530
+-Officedac
<] L

Figure 6-13 DMS: File Open dialog

package com.cimmetry.vuelink.filesys.dms.domain;

class Browse{ ..
public Vector<Doclnfo> getlnstancelDs() throws Exception{
Vector<Doclnfo> v = new Vector<DoclInfo>();
File browseFile = (File)m_doclID.getFile();

.. //1list meeting files from "Meeting/meetingfile.txt"
.. //list elements from other folders

public class FilesysDMSBackendImp .. { ..
public void clbDocumentSet(DMSBackendSession session, String sDoclID) .. { ..
ifT (sDoclD == null) return;
.. // Add document name to the meetingfiles.txt if this is a new document

}

7.19.5 Summary

In order to support RTC and meeting management, ISDK-based integration should be able to
gather information and launch the AutoVVue applet to enter Real-Time Collaboration mode
when the host starts a meeting and when guests join meeting from a third-party meeting
management system. The integration should implement responses to
CSI_CollaborationlD, CS1_Collaboration, SetProperties with different
notifications, CS1_Listltems and Save requests sent by the AutoVue server to handle
RTC-specific tasks. To accomplish the above response, it needs to communicate with the
backend system to perform the following:

82

AutoVue Integration SDK - Technical Guide

e Retrieve a list of users who have been added to the meeting’s attendees when hosts
create a meeting from the third-party meeting management system.

e Retrieve a list of documents to collaborate on when hosts create a meeting from the
third-party meeting management system.

e Save chat content during RTC when hosts close a collaboration session.

e Perform additional processes for notification messages. For example, user joined and
left, document change, collaboration session initialized and closed.

83

AutoVue Integration SDK - Technical Guide

7.20 Implementing Oracle Enterprise Visual Framework Support

Oracle Enterprise Visual Framework (OEVF) is designed to add Enterprise Visualization
capabilities to enterprise applications and to provide a generic structure for accessing
documents stored in the backend system through the concepts of Asset ID and Workflow ID.
Both concepts are defined in enterprise application systems rather than the document ID of
the document in the backend system. Asset ID and Workflow ID are unique identifiers
associated to an asset and an enterprise workflow (such as a service request or work order),
respectively, in the backend system.

Using internal mapping, a document in the backend system can be connected to multiple
assets and/or multiple workflows in an enterprise application system so that the document
can be retrieved using the Asset/Workflow 1Ds. Usually the mapping is stored as part of the
document's record inside the backend system. As a result, some custom attributes should be
added to the backend system. For example, the document’s record can have an OEVF
AssetlD attribute that holds a set of AssetIDs and an OEVF WorkflowID attribute that holds
a set of WorkflowIDs. In the Sample Integration for Filesys, this relationship is represented
in an XML file.

In OEVF, each AssetlD/WorkflowID can be associated with its own set of asset/workflow
markups and each has a default asset/workflow markup. The markups viewable in AutoVVue
should be in the context of the certain asset and/or workflow.

7.20.1 Most Common Use Cases for OEVF

1 Administrator logs into Enterprise Application:
o Administrator navigates to Asset info page and chooses to Edit asset using AutoVue.
o0 AutoVue applet opens the associated file either as popup or embedded.
0 AutoVue automatically opens the asset markup if already exists or creates a new one
if does not exist:
= Administrator is able to modify and save the asset markup.
= Administrator is not able to rename asset markup.
= Administrator is not able to open or save any markups other than asset
markup.
= Only one asset markup is allowed per asset.

2 End user logs into Enterprise Application:
0 User navigates to Asset info page and selects to View asset using AutoVue.
0 AutoVue applet opens the associated file either as popup or embedded.
o AutoVue will automatically open the asset markup if exists:
= User will not be able to modify or save the asset markup.
= User will not be able to create/open/delete any markups.

3 End user logs into Enterprise Application:

84

AutoVue Integration SDK - Technical Guide

0 User navigates to workflow info page and selects to View the related asset in
AutoVue.

0 AutoVue applet opens the asset file and asset markup if exists (read only) and default
workflow markup (edit mode).

0 When user tries to list the markups, only markups related to given asset and workflow
are listed.

o0 User can open, edit and save any workflow related markup.

e Inall use cases if file has any XRefs they are loaded.
e User can view and/or include UCM Properties of document in print output.

7.20.2 OEVF Launching URL and Parameters

The OEVF launching URL is dynamically constructed and invoked from the enterprise
application system to launch AutoVue within the context of an asset or a workflow. This
URL passes OEVF parameters to a customized page (as with frmApplet.jsp in the
following OEVF launching URL sample) that is part of your ISDK customization component
on the enterprise application side.

The following parameters can be passed in an OEVF launching URL.:

Asset ID: ID that uniquely identifies an Asset in the enterprise application system that has
been mapped to a document in the backend system through the OEVF Asset ID
attribute.

Workflow ID: ID that uniquely identifies a Workflow in the enterprise application system that
has been mapped to a document in the backend system through the OEVF Workflow ID
attribute. When launching OEVF with Workflow ID, if the default workflow markup
does not exist, it is created automatically and markup entities can be added to it. Besides
the default workflow markup, any number of workflow markups can be created for the
workflow represented by the Workflow ID. The default workflow markup cannot be
deleted. However, other workflow markups can be deleted. If Workflow 1D parameter is
present, then the EditMode parameter is ignored.

e Embedded (optional): This parameter decides if the AutoVue applet should be
launched in the same window (Embedded =1) or a new window (Embedded is not
equal to 1 or not presented).

e GuiFile (optional): This parameter decides if the default GUI should be overwritten. If
not present, the default GUI is use. Otherwise the value indicated by this parameter (the
name of the GUI file) is used by AutoVue for the applet interface. The actual GUI file is
located in the AutoVue server’s work directory.

Document ID (optional): This is the document ID that is mapped to Assets or Workflows.
This option is needed only when a particular revision of a document is required (for
example, if a workflow is mapped to earlier version of an Asset). If the document ID is
not provided, then the Asset ID is used to locate the latest revision of the mapped
document.

EditMode: If EditMode=1, AutoVVue applet is launched in Asset Editing mode and a
customized assetEdit.gui should be in use. This overrides the GuiFi le parameter.

85

AutoVue Integration SDK - Technical Guide

In this mode, the asset markup can be edited, modified and saved to the backend system.
The New Markup and Save As options should be disabled in this mode. If the asset
markup exists, it loads automatically. If no asset markup exists, it is created
automatically and markup entities can be added to it. Asset markup is unigque per asset
and cannot be deleted.

If EditMode=0 or not presented, assetView.gui will be in use. The asset markup, if
it exists, loads automatically in read-only mode and no activity related to markup can be
performed except viewing it.

The assetEdit.gui and assetView.gui files should be put in the
<jVue_home>/bin/Profiles directory.

Edit Mode parameter control only the behavior of Asset markup.

The following are some OEVF launching URL samples assuming that the backend system is
deployed on a Web server with appserver :port and if frmApplet.jsp is the
customized page responsible for constructing and launching AutoVVue applet.

http://appserver:port/jsp/frmApplet.jsp?alD=<Asset ID>&EditMode=<Mode>&embedded=<Option>
http://appserver:port/jsp/frmApplet.jsp?wID=<Workflow ID>&guiFile=<CustomizedGuiFilename>
http://appserver:port/jsp/frmApplet.jsp?wID=<Workflow ID>&alD=<Asset|D>
http://appserver:port/jsp/frmApplet.jsp?dID=<Document ID>&alD=<AssetID>
http://appserver:port/jsp/frmApplet.jsp?dID=<Document ID>&wID=<WorkflowID>

7.20.3 OEVF Customization Page

As mentioned above, a customized page residing on the enterprise application side is
responsible for constructing and launching the AutoVVue applet in the context of an OEVF
object. The frmApplet.jsp file in the Demo Integration for Filesys is serves this purpose. The
code excerpt from frmApplet.jsp that is related to OEVF is shown in the following figure.
Note: The special case of Filesys, the variable DoclID in frmApplet.jsp is used only for
constructing OEVF document ID to open a file in AutoVue and the file to be opened for non-
OEVF is passed in by calling setFile()of frmApplet.jsp in ListDirServlet class when
users browse the filesys file tree structure. Generally, your ISDK implementation might need
to handle both cases in the same jsp file using the document ID passed in the URL parameter.
Refer to CreateReusableApplet() function of frmApplet. jsp for code sample to set
the GUI file and OEVF document ID in order to reuse the pop up AutoVue applet.

86

AutoVue Integration SDK - Technical Guide

<%@ page .. %>

<% &
String doclD = request.getParameter(‘'doclID");
String assetlD = request.getParameter(*alD™);
String workflowlD = request.getParameter('wilD");

String sEmbedded = request.getParameter(“'embedded™);
boolean embedded = true; // By default, launch AutoVue applet in embedded mode
iT (sEmbedded != null && sEmbedded.length() > 0 &&
sEmbedded.equalslgnoreCase('0")) {
embedded = false; // Launch AutoVue applet in pop up window

}

String guiFile = request.getParameter(‘'guiFile™);
String DoclID = null; // OEVF DoclD
if((assetlD != null && assetlD.length() > 0)|]|(workflowlD I= null &&
workflowlD.length() > 0)){
DoclID = *"oevf://dID=" + doclD+ "&alD="" + assetlD + "&wID="" + workflowlD;
3

String EditMode = request.getParameter(“'EditMode™);
if ((assetlD != null && assetlD.length()>0)
&& (workflowlD == null || workflowlD.length()<1)) {
ifT ("1".equalslgnoreCase(EditMode)) {
guiFile="assetEdit.gui";
} else {

guiFile="assetView.gui';
¥

}

if(EditMode = null && EditMode.length() > 0){
DoclID +="&EditMode=" + EditMode;
3

%>

<html> <head> ..
<script> <Il--

var DOCUMENT_ID = "<%=DoclID%>"; // OEVF Document ID
var GUIFILE = "<Y%=guiFile%>";
var EMBEDDED = "<%=embedded’%>";

// -->

</script></head>

<body>

<script language="JavaScript'>
<1--

§ar Jvapp = "<HTML>.." + .. +
"\n<PARAM NAME="EMBEDDED" VALUE="TRUE">" + ..;

it (DOCUMENT_ID != "null®) {
Jvapp += "\n<PARAM NAME="FILENAME"™ VALUE="" + DOCUMENT_ID + "''>";

¥
if (GUIFILE = “null®) {

Jvapp += "\n<PARAM NAME=\"GUIFILE\"™ VALUE=\""" + GUIFILE + *"\"'>";
} else .

if (EMBEDDED == "true”) {
CreateApplet(); // Create embedded AutoVue applet

} else {
if (validatePopups() == true) {
CreateReusableApplet(); // Create pop up AutoVue applet
344

}

// end script hiding from old browsers -->
</script>
</body></html>

87

AutoVue Integration SDK - Technical Guide

7.20.4 ISDK APIs for OEVF

To support OEVF, ISDK needs to enhance its implementation corresponding to the AutoVVue
server’s Open, Save, Delete requests and GetProperties request for CS1_Markups.
These requests are handled by classes ActionOpen, ActionSave, ActionDelete and
GetPropCS1_Markups in the Sample Integration for Filesys.

7.20.4.1 ActionOpen

When opening a document, ISDK needs to distinguish between the OEVF cases, regular
cases, and constructs to return a unique DoclID for the document to open.

In the case of OEVF involvement, if the OEVF launching URL only has an AssetID and/or
Workflow ID without Document ID, then ISDK communicates with the backend system to
find out the Document ID to which the Asset ID and/or Workflow ID is connected to and
check the consistency, if necessary. If there is a Document ID passed in addition to AssetlD
and/or Workflow ID, then IDSK needs to verify the consistency.

In the Sample Integration for Filesys, ActionOpen class calls openFile() method of
FilesysDMSBackendImp class to get the Document ID and the openFile() calls
findByOEVF() method of Fi lesysDMSFacade class to parse the mapping of Document
IDs between Asset IDs and Workflow IDs. Your ISDK should communicate with your
backend system to find the Document ID.

public DoclD openFile(.).{

FilesysDMSDoclID doclID = null;
String origURL = params.get(*'origURL");
String alD = DMSUtil.getAssetID(origURL); // Get Asset ID parameter
String wiD = DMSUtil.getWorkflowlD(origURL); // Get Workflow ID parameter
String dID = DMSUtil.getUrlValue(origURL, "dID"™); // Get Document ID parameter
String relPath = null; ..
if (IDMSUtil.isNullOrBlank(alD)) { 7/ If Asset ID parameter presents
// Find OEVF document using Asset ID
String filePath = m_filesysiInfo.findByOEVF(dID, alD, ASSETID);
.. // Find out OEVF file real path or return error message if not found
} else if(IDMSUtil.isNullOrBlank(wID)){ 7/ If Workflow ID parameter presents
// Find OEVF document using Workflow ID
String filePath = m_filesysiInfo.findByOEVF(dID, wlD, WORKFLOWID);
.. // Find out OEVF file real path or return error message if not found

}

// Construct Filesys DoclD to return
doclID = new FilesysDMSDoclID(relPath, null, version,alD, wiD);
return doclD;

public String findByOEVF(String dID, String oevflD, String oevfField){
try{
return OevfParser.parseOevfXml(dID, oevfID,oevfField);
}catch(Exception e){
m_logger.error(“'Failed to parse OEVF info xml . " + e.getMessage());
¥

return null;

88

AutoVue Integration SDK - Technical Guide

7.20.4.2 GetPropCSI_Markups

The GetPropCSI_Markups implementation to handle GetProperties request for
CSI_Markups will be enhanced to add the following functionalities.

e It handles Asset Edit mode by loading asset markups as a master and editable markup if
in Asset Edit mode, or as master and read-only markup in other cases.
o0 In Asset Edit mode, it generates an empty asset markup if such a markup does not
exist for the given Asset ID before returning markup list. It loads the default asset
markup as a master markup.

e It will generate an empty default workflow markup if such a markup does not exist for
the given Workflow ID before returning markup list. It loads the default workflow
markup and all existing workflow markups as a master and editable markup all the time.

e Itonly list markups related to the given Asset and Workflow IDs. No other markup can
be listed. If both Asset and Workflow IDs are given, the default Workflow markup
opens after the Asset markup is opened (make the former the active one).

The following code is extracted from the GetPropCS1_Markups class of the Sample
Integration of Filesys. It treats asset and workflow markups as master markups and checks
whether they should be read-only. The getlnstancelDs()method in Markup class is
responsible for retrieving the markup list that includes only OEVF markups in the context
and, if needed, creates default asset and workflow markups. The default markup is created by
copying an existing empty markup BlankMarkup .mrk distributed with the Sample
Integration of Filesys. Your ISDK integration can make use of it also.

public class GetPropCSI_Markups .. { ..
private Property[] buildMarkupProperty(FilesysDMSBackend be,.) .. { ..
//Gets the list of markups from the DMS
Vector<Doclnfo> mrkDoclds = be.dmsListMarkups(beSession, doclD);

for (int 1 = 0; 1 < mrkDoclds.size(); i++) {
// Treat asset markup as master and read-only if not in Asset Edit mode
// Treat workflow markup as master markup and editable all the time
boolean bReadOnly = false;
boolean editable = true;
if (..) {7/ If markup is Asset or Workflow markup
mrkType = "master";
String oevfType = .. ; // Get OEFV markup type
iT (oevfType.equalslgnoreCase(Markup.ASSETS)){ 7/ IT asset markup
iT (! (Boolean)beSession.getAttribute("'EditMode™) // Not Asset EditMode
11 ((Boolean)beSession.getAttribute("EditMode'™) &&
IDMSUti L. isNullOrBlank(doclID.getWorkflowlD()))

editable = false;

}
}

3
if (leditable) { // default asset markup in non-editable mode
bReadOnly = true;
b
3.
} .

89

AutoVue Integration SDK - Technical Guide

public class Markup{ ..
public Vector<Doclnfo> getlnstancelDs(DMSSession session) .. { ..
String alD = m_doclID.getAssetID();
String wiD = m_doclD.getWorkflowlD();
Vector<Doclnfo> vector = new Vector<Doclnfo>();
iT(OMSUti . isNullOrBlank(alD) && DMSUtil.isNullOrBlank(wiD)){
.. // Non OEFV handling
} else{
it ('DMSUtil.isNullOrBlank(alD)){
File assetMarkup[] = ..; // Retrieve asset markup
if (assetMarkup != null && assetMarkup.length > 0){ // Asset markup exists
.. // There should only be one asset markup for a given asset ID.
.. // Add the asset markup to the return vector
} else // Asset markup does not exist
if ((Boolean)session.getAttribute("EditMode') &&
DMSUtil.isNullOrBlank(wlID)){ // If in Asset EditMode and no
Workflow ID presents in the OEVF launching URL
.. // create and add default asset markup to the return vector

}
¥
if (IDMSUtil.isNullOrBlank(wiID)){
File workflowMarkups [] = ..; 7/ Retrieve workflow markups
if(workflowMarkups = null){ 7/ Workflow markups exist
.. // Add the workflow markups to the return vector
Yelse{ 7/ No workflow markup related to the Workflow ID exist yet
.. // create and add default workflow markup to the return vector
¥
}

return vector;

7.20.4.3 ActionSave

If your ISDK implementation has special naming convention for automatically generated

OEVF default asset markups or default workflow markups during the ActionOpen process,

then ActionSave implementation should prevent new saving markups from overwriting
these default OEVF markups. An alert should notify users to use an alternative name. For

example, in the Sample Integration of Filesys, it uses the name of the Asset ID or Workflow

ID as the default asset or workflow markup name.

If your ISDK wants to save OEVF markups to a special location or do any extra work, they

all should be added to your implementation of ActionSave. For example, the Sample

Integration of Filesys saves asset markups to assets folder and saves workflow markups to

workflows folder inside the related document’s markups folder. This is done by
savelnstance() method of Markup class.

7.20.4.4 ActionDelete

ActionDelete implementation should prevent users from deleting default asset markup and

default workflow markup. An alert should notify users when they try to do so.

90

AutoVue Integration SDK - Technical Guide

7.20.5 DOCID

To support OEVF, the DocID in your ISDK will be replaced with a new structure that
includes Asset ID and Workflow ID in addition to your existing DoclD structure.

7.21 Implementing Ul Customization

When designing DMS Extension to launch the AutoVue applet, the following functionalities
can be supported by using JavaScript code at Ul level for your integration:

0 Embedded vs. Pop-up Window for displaying AutoVVue applet
0 Pop-up Blocker detecting
0 Prompt to save markups when exiting AutoVue by closing Web browser window

7.21.1 Embedded vs. Pop-up Window

This controls the window used for hosting the AutoVue applet. It focuses on two options:
e Displaying AutoVue applet in a pop-up window which could then be re-used for
subsequent file view.
e Displaying AutoVue applet embedded inside the caller’s browser window (could be a
specific size / frame, and so on).

AutoVue applet can be created in a JSP or a HTML file using JavaScript code. In the Sample
Integration for Filesys, it is created by frmApplet.jsp. The following jvapp string in
frmApplet.jsp contains code that can be used to create the AutoVue applet in either of the
above two options.

var jvapp = "<HTML><HEAD><TITLE>Powered by AutoVue</TITLE>" +
"<META HTTP-EQUIV=""content-type" CONTENT="text/html;charset=UTF-8">" +
“\n<Script® +* language="JavaScript'>" +

“\n</Script” + ">\n</HEAD>"+

"<BODY .>\n" +

“\Nn<APPLET NAME="JVue' CODE="com.cimmetry.jvue.JVue.class"" +
" ARCHIVE="jvue.jar,jogl.jar,gluegen-rt._jar"" +

" CODEBASE="" + CODEBASE + """ +

" HSPACE="0"" VSPACE="0" WIDTH=100% HEIGHT=100% MAYSCRIPT>" +
“\n<PARAM NAME=""JVUESERVER" VALUE=""+ JVUESERVER + *"">% +
“\n<PARAM NAME="DMS' VALUE="" + DMS + "">" +

*\N</APPLET></BODY></HTML>" ;

The function CreateReusableApplet() creates the AutoVue applet in a pop-up window
which can be re-used while CreateApplet()creates the AutoVue applet in embedded
mode. Inside CreateReusableApplet(), if you want the same user to reuse the same
pop-up window, you can name the applet window in a way so that it is specific for one user.
When reusing an existing AutoVue applet, you will need to use the public API of the
AutoVue applet to set the current file in order to view it.

91

AutoVue Integration SDK - Technical Guide

// Create reusable AutoVue applet in a pop-up window
function CreateReusableApplet()

{
var appletWnd = self;

;pplethd = window.open(*""",NAME_OF_THE_POPUP_WINDOW,
"resizable=1,width=770,height=630, location=0,toolbar=0,menubar=0,status=0, left=400, top=
1507);

ifT (appletWnd !'= null) {
appletWnd.focus();
var doc = appletWnd.document;

var japplet = doc.applets["JVue'];
if (Japplet !'= null) { // AutoVue Applet exists already, reuse it

Japplet.setFileThreaded(FILE_TO_VIEW); // set the file to view
} else {
// Fix for Java Plugin on IE only
if (doc.readyState !'= null) {
var i = 0;
while (i1 < 100 && doc.readyState != "complete™) {
appletWnd.setTimeout("dummy() ", 1000);
i++;
}
}

if(lappletWnd.closed) {
doc.open();
doc.writeln(jJvapp); // write to create an AutoVue applet
doc.close();

}
¥
appletWnd.focus();

// Create AutoVue applet embedded in the caller’s browser window
function CreateApplet()

{
var appletWnd = self;
var doc = appletWnd.document;
doc.writeIn(Jvapp);
doc.close();

n

Here is the code to set file in the AutoVue applet.

/*

** Sets a file (URL) in the Applet
*/

function setFile(fileURL)

{

var appletWnd = self; // Use the same window if embedded
if (EMBEDDED != "true®) { // For pop-up window
appletWnd = window.open(****,NAME_OF_THE_POPUP_WINDOW, ****) ;

}

if (appletWnd.jVueLoaded) {
// Load file on a separate thread.
appletWnd.document.applets[''JVue'] .setFileThreaded(fileURL);
appletWnd.focus();

} else {
3ees

92

AutoVue Integration SDK - Technical Guide

By default, the Sample Integration of Filesys embeds the AutoVue applet in the caller’s

browser window unless an embedded request parameter is passed in to the frmApplet.jsp. If

your URL contains frmApplet. jsp?embedded=0, then Filesys creates the AutoVue

applet in a separate pop-up window. In your ISDK implementation, you can set your default

option and choose the way to detect another option.

boolean embedded true;

embedded = false;

+

String sEmbedded = request.getParameter(‘'embedded");

iT (sEmbedded !'= null && sEmbedded.length() > 0 && sEmbedded.equalslgnoreCase('0'")) {

7.21.2 Pop-up Blocker

The implementation of the following Javascript code can determine whether a Web browser

has a pop-up blocker enabled.

In frmApplet.html of the Sample Integration of Filesys, the function val idatePopups()

detects whether a pop-up window can be created.

<htmi>
<head>

<title>AutoVue Web Edition</title>
<script>

<l-- //Hide script from old browsers
function validatePopups()

{

var tinyWindow = null;
try {

height=10, left=2000, top=2000 ");

}
catch (e) {

return false;
3

window.focus();
it (tinyWindow) {
try {
tinyWindow.close();

¥
catch (e){:;}

return true;

return false;
} // end validatePopups()

// >
</script>
</head>

tinyWindow = window.open(*'popup.html*

, "PopupTest'™, "width=10,

Before launching AutoVue in a pop-up window, val idatePopups()is called:

93

AutoVue Integration SDK - Technical Guide

it (validatePopups() == true) {
CreateReusableApplet();

else {
alert(""Please set your pop-up blocker to allow launching AutoVue.™);

7.21.3 Prompt to Save

In order to prompt for saving changes made to markups when exiting AutoVue by closing a
Web browser window, AutoVue applet’s saveModi fiedMarkups() and

waitForLastMethod() methods should be called. For example, when onBeforeUnLoad
event is fired before the hosting windows closes.

Here is code excerpt from frmApplet.html of the Sample Integration of Filesys.

<script language="JavaScript'>
<l-- //hide script from old browsers

Qar Jvapp = "<HTML><HEAD><TITLE>Powered by AutoVue</TITLE>" +

'<n<Script' +" language="JavaScript'>" +
"\n <I-*" + "- hide script from old browsers® +

“\n function SaveMarkups() { " +

“\n window.document._applets['JVue'] .saveModifiedMarkups(); " +
“\n window.document.applets[''JVue'] .waitForLastMethod(); " +
“\n 3o+

“\n //-" + "-> " +

:<BODY marginheight="3" marginwidth="3" leftmargin="0" topmargin="0" scroll="no"
onBeforeUnLoad=""SaveMarkups();''>\n" +

// end script hiding from old browsers -->
</script>

94

AutoVue Integration SDK - Technical Guide

7.22 Returning DMS Name

The latest AutoVVue server allows browsing and searching multiple DMS backend system
through multiple Integration SDKSs. Your Integration SDK should handle GetProperties

request for property GUI with value DMS to return the right name for the DMS backend
system.

Here is a sample of the AutoVVue server’s File Open dialog that displays the DMS name
filesys for the Sample Integration of Filesys.

-~

[£2 File Open
Look in: |r filesys [V] ;] le" El
A i

P |[O=
My Recent _| 3D
Documents __|EDA
] Meeting
T

Desktop

r

filesys

ra

Search filesys

' } File name: Cpen
Web URL ’
= Files of type: | Al Files [v] Cancel

The Integration SDK handles the request in GetPropGUI class. Here is the implementation
provided in the Sample Integration of FileSys. You need to replace filesys with your own
DMS name.

95

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.Ffilesys._propactions;
6ublic class GetPropGUIl implements .. {

public DMSProperty execute(.) throws VuelinkException {
DMSProperty retProp = null;
it (property.getValue().equalslgnoreCase(“DMS™)) {
retProp = new DMSProperty(DMSProperty.PROP_GUI, *"filesys™);
} else if .

7.23 Leveraging AutoVue Web Services

The AutoVVue Web Services package provides a standard interface for developers to take
advantage of AutoVue functionalities such as thumbnail generation, streaming file
generation, print, convert, text extraction, and so on. Refer to AutoVVue Web Services
documentation for detailed description.

Front End =TT -
- -~ ~ R
Thumbnail AV Web Integration V Document
: Services <:> SDK <,\:> in DMS
Print R
rd

7.23.1 Configuring AutoVue Web Services to Communicate with
Integration SDK

In order to enable the AutoVVue Web Services to communicate with the Integration SDK, the

following configurations need to be done on AutoVVue Web Services side.

e Updating vuelinkProtocol in the web.xml file.

Suppose that vue link1SDK is the vuel inkProtocol for your Integration SDK then it

needs to be added to <AutoVue Web_Services_Install _Dir>\
autovue_webservices\AutoVueWS\WEB-INF\web .xml.

<env-entry>
<env-entry-name>vuel inkProtocol</env-entry-name>

<env-entry-value>vuel inklSDK</env-entry-value>
<injection-target>

<injection-target-name>vuel inkProtocol</injection-target-name>
</injection-target>
</env-entry>

96

AutoVue Integration SDK - Technical Guide

You may need to update destinationDIR, initialJVueServer,
vuelinkPropsDir, and so on. Refer to the AutoVVue Web Services Developer Guide
for detailed description.

e Creating a properties file naming with the vuel inkProtocol defined.

If vuel ink1SDK is the vuel inkProtocol for your Integration SDK, then a
vuel inkISDK.properties file should be created and put in the vuel inkPropsDir

folder defined the web.xml (for example,
%AutoVue_Web_Services_Install_Dir%\autovue_webservices\sample_con

fig folder). The following is a sample configuration file for the Sample Integration for
Filesys.

#Integration SDK connection info

DMS=http://FilesysHost:7001/1SDK/serviet/FilesysVuelink
#example: DMS=http://localhost:8080/webtop/com.cimmetry.vuelink.documentum.DMS

#i1T any DMSArgs is needed add like this
#DMSArgs=someArgl;someArg2
#someArgl=some value

#someArg2=some other value

The DMS value, http://FilesysHost:7001/1SDK/serviet/FilesysVuelink
in the above sample, should be accessible in the Web browser. It refers to your
Integration SDK’s main DMS Servlet that extends the VueLink class and is defined in
the web.xml file of your Integration SDK.

7.23.2 Utilizing AutoVue Web Services at Front End

Your front end can consume AutoVue Web Services using Java Client and .Net Client. You
can refer to the “How to use AutoVVue Web Services” section in the AutoVue Web Services
Developer Guide for information on how to generate AutoVVue Web Services client.

The following describes how AutoVVue Web Services APIs should be used in order to
generate thumbnails and streaming files, as well as how to convert documents to TIFF, BMP
and PDF format. For more samples on how to use AutoVVue Web Services API to retrieve
printer information, print document, retrieve document properties, text and external reference
information, refer to the “Appendix A — Sample Client Code in Java” section in the AutoVue
Web Services Developer Guide.

7.23.2.1 Thumbnail Generation

e Provide authorization information using
com.oracle.autovue.services.AuthorizationProxy class

The following is used by the Sample Integration for Filesys.

97

http://filesyshost:7001/ISDK/servlet/FilesysVuelink

AutoVue Integration SDK - Technical Guide

AuthorizationProxy authorizationProxy;

authorizationProxy = new AuthorizationProxy();
authorizationProxy.setUsername(*'demo™);
authorizationProxy.setPassword(*'demo™);

e Define URI

The value for URI starts with the vuelinkProtocol for your Integration SDK, followed by
:// and by the original URL used to address document of your Integration SDK. That is:
vuelinkProtocol ://0riginalURLForYourISDK. This original URL is the same as
what is being used to set FILENAME when creating AutoVue applet to view a file, for
example, inside frmApplet.jsp file of the Sample Integration for Filesys.

The following is a sample URI for the Sample Integration for Filesys.

String URI = "vuelinkISDK:///2D/AutoCAD.dwg/ AutoCAD.dwg(1)/ AutoCAD.dwg";

e Set Convert Options

Set convert options using
com.oracle.autovue.services.options.ConvertOption class. For example,
for thumbnail generation, you can set conversion format to be Format. JPG or
Format.PNG. For more options that can be set, refer to the ConvertOptions class APl in
the JavaDocs.

ConvertOption convertOption = new ConvertOption();
convertOption.setFormat(Format.JPG);

convertOption.setScaleFactor(100);
convertOption.setHeight(640);
convertOption.setWidth(480);
convertOption.setPage(1);

e Do Conversion

Call VueBeanWS’s convert() method to do conversion. The converted thumbnail file
content is returned and can be written to a file. For this to work, your ISDK should have
fulfilled the tasks described in Handling Renditions section.

VueBeanWS_Service service = new VueBeanWS_Service();
VueBeanWS proxy = service.getVueBeanWSPort();

boolean openAllIMarkups = false;
byte[] file = proxy.convert(URI, convertOption, authorizationProxy, openAllMarkups);
FileOutputStream fos = new FileOutputStream(*'C:/temp/AutoCAD.jpg™);

fos.write(file);
fos.close();

98

AutoVue Integration SDK - Technical Guide

Since the AutoVue server does not support JPG or PNG conversion, when the conversion
format is set to Format.JPG or Format.PNG, the VueBeanWs class of AutoVue Web
Services internally passes Format.BMP to the AutoVue server and then converts the
returned BMP file to JPG or PNG format.

If you want the JPG or PNG file to be checked into DMS automatically when AutoVue
Web Service convert() method is called, you need to enhance your Integration SDK’s
rendition handing. If BMP rendition type is detected when handling rendition, you can
add extra code to convert the BMP rendition to a JPG or PNG format with desired
thumbnail size like AutoVVue Web Services does and checked it into DMS so that your
application can display a thumbnail for your document.

7.23.2.2 Streaming File Generation

Whenever a VueBeanWS method that has a URI parameter is called, the streaming file for
the document in DMS addressed by this URI is generated and checked into DMS
automatically.

7.23.2.3 Converting Document to Other Formats

Using AutoVVue Web Services, a document can also be converted to TIFF, BMP and PDF
format. These renditions are checked into DMS automatically if your Integration SDK
implements rendition handling.

The conversion steps are almost the same as steps for Thumbnail Generation, except that you
set the conversionOption format to Format.BMP, Format.TIF or Format.PDF.

99

AutoVue Integration SDK - Technical Guide

8. APPENDIX A — INTEGRATION SDK SKELETON

The Integration SDK skeleton code acts as a guideline to facilitate custom integration of
SDK. It contains all necessary features for an integration (the integration developer must
perform the TODO tasks inside the skeleton code. As a sample implementation, the
Integration SDK Web Services Client is implemented based on the Integration SDK skeleton
code.

8.1 Integration SDK Skeleton Packages

The following packages and classes are included in the ISDK Skeleton:

e VueLink package

o DMS. java
e actions folder

o0 ActionDelete.java

o ActionDownload.java

o ActionOpen.java

0 ActionSave.java

0 ActionSetProperties.java
e propactions package

0 GetPropCSI_ClbSessionlD.java
GetPropCSI_Collaboration.java
GetPropCSI_DocDateLastModified.java
GetPropCSI_DocName.java
GetPropCSI_DocSize.java
GetPropCSI_IntelliStamp.java
GetPropCSI_IsMultiContent.java
GetPropCSI_ListAllProperties.java
GetPropCSI_Listltems.java
GetPropCSI_Markups.java
GetPropCSI_Renditions.java
GetPropCSI_Search.java
GetPropCSI1_UserName.java
GetPropCSI_Versions.java
GetPropCSI_XREFS.java
GetPropDefault.java

0 GetPropGUIl.java
e backend package

o DMSBackendImp.java
e context package

o0 DMSContextlmp.java
e defs package

o ISDKDoclID

OO0OO0OO0OO0O0O0OO0O0O0OO0OO0O0OO0OO0OO

100

AutoVue Integration SDK - Technical Guide

e session package
o DMSBackendSessionlmp

8.2 Integration Steps for Implementing File View Functionality

The first stage of integration is to implement basic view functionality stated in Chapter 6. It
includes the following:

e Fulfill TODO list in DMS class — the Main DMS Servlet class
e Fulfill TODO list in 1SDKDocID class to defining a unique document identifier

e Fulfill TODO list in GetPropCSI_UserName and in related getProperty()
method of DMSBackend Imp class to return user name

e Fulfill TODO list in ActionOpen class to return the DoclD

e Go through GetPropCSI_IsMultiContent method and fulfill TODO list in
related getProperty() method of DMSBackend Imp class to return multi-content
value

o Fulfill TODO list in GetPropCSI1_DocName and in related getProperty()
method of DMSBackend Imp class to return document name

e Go through GetPropCS1_DocDatelLastModified and fulfill TODO list in related
getProperty() method of DMSBackend Imp class to return document date last
modified

e Go through GetPropCSI1_DocSize and fulfill TODO list in related
getProperty() method of DMSBackend Imp class to return document size

e Fulfill TODO list in ActionDownload class to return document content

e Go through DMSContextImp class and fulfill TODO list in connect() method of
DMSBackend Imp class to connect to backend DMS. Connection info such as
username and password can be hard-coded at this stage in order to connect to DMS.

Refer to Chapter 5 and 6 to assist your implementation of the above classes.
Integration SDK includes a sample csiApplet.jsp in the applet folder for launching AutoVue.
To test file viewing after implementing the classes, do the following:
e Provide the FILENAME variable with your unique document identifier
e Open a browser with URL http://host:port/IntegrationSDKSkeleton_context/ to
launch AutoVue and view file

101

http://host:port/IntegrationSDKSkeleton_context/

AutoVue Integration SDK - Technical Guide

8.3 Integration Steps for Implementing Advanced Functionality

The next stage of integration is to implement more advanced functionality such as XRefs,
markups, compare, renditions, DMS Search & browse,and so on stated in Chapter 7. It
includes the following:

e Go though GetPropCS1_GetPropDefault class and fulfill TODO list in related
listAllProperties() method of DMSBackendImp class to handle document
attributes.

e Go though GetProCS1_XREFS class and fulfill TODO list in related listXRefs()
method of DMSBackend Imp class to return external references (XREFS).

o Fulfill TODO list in GetPropCSI_Markups class and in related methods, for
example, listMarkups() method of DMSBackend Imp class to handle Markups.

e Fulfill TODO list in GetPropCSI_Rendition class and in related
listRenditions() method of DMSBackend Imp class to handle renditions.

e Go though GetPropCSI_ListAllProperties class to return the list of all
properties of the DMS document.

e Go though GetPropCSl_Listltems class and fulfill TODO list in related
listltems() method of DMSBackend Imp class and in
bui ldBrowseGUIProperty() method in GetPropGUI class to implement DMS
Browse.

e Fulfill TODO list in GetPropCSI_Search class, related listSearchResults()
method of DMSBackend Imp class and bui IdSearchGUIProperty() method in
GetPropGUI class to implement DMS Search.

e Go though GetPropCSI_Versions class and fulfill TODO list in related
listVersions() method of DMSBackend Imp class to handle document versions.

e Fulfill TODO list in ActionSave class and in related saveChat(),
saveMarkup() and saveRendition() methods of DMSBackend Imp class to
implement file save action

e Go though ActionDelete class and fulfill TODO list in related de leteMarkup()
method of DMSBackend Imp class to implement file delete action

e Go though GetPropCSI_Intellistamp class and fulfill TODO list in related
getintel liStamp() method of DMSBackend Imp class to support Stamp in

102

AutoVue Integration SDK - Technical Guide

Markup. GetPropDefaul t class needs to be enhanced to handle a pick list for
Stamp.

e Go though GetPropCSI1_MarkupPolicy class and fulfill TODO list in related
getintel liStamp() method of DMSBackend Imp class to support Stamp in
Markup.

e Refer to the “Implementing Security and Authentication” section in Chapter 7 to
implement security and authentication. Basically, the jsp to launch AutoVue applet,
getDMSContextImp class and DMSBackend Imp class are involved.

e Refer to the “Implementing RTC and Meeting Management” section in Chapter 7 to
integrate with backend meeting management system.

Refer to Chapter 7 to assist your implementation of the above advanced functionally.

103

AutoVue Integration SDK - Technical Guide

9. APPENDIX B — SAMPLE INTEGRATION FOR FILESYS

The Sample Integration for Filesys DMS included in the AutoVue Integration SDK acts as an
example and for getting familiar with the integration framework. The following figure shows
the use case diagrams of possible actions available from within the AutoVue interface. A
user logs into FilesysDMS through a Web browser and selects a file to view in AutoVue.
Once the file is loaded in AutoVue, the user can perform other actions such as markup,
conversion, compare, search, browse, and so on.

Autovue System (FilesysDMS requirements)

«exkends
Compare docurments = Browse DMS

-
agxtends -
-

- sincludes
F o= — = = = = = ==

I
I
-
I
I

«exkends

| |
| 1wt
T 4 " T = = = = =
| 1
1 i I Y wexbends
— et
‘I‘_L\\‘T\ wExkends
User I T \Qenetgnd»
LI | -~ o > S Comeson 5
«extends
| s
-
|
I
r]

Figure 9-1: Use cases diagram for the FilesysDMS sample

As illustrated in the following figure, we have designed the Vuelink servlet class and three
packages for the FilesysDMS integration, as follows:

1. The first package is called com.cimmetry.vuelink.filesys.actions and
contains all action classes. The common characteristic of these classes is that they all
implement the DMSAction<AnyContext extends DMSContext> interface.

2. The second package is called propactions and contains a set of classes that all
implement the DMSGetPropAction interface.

3. The third package is called backend and has three classes: the FilesysDMSBackend
class that implements the DMSBackend interface, the FilesysDMS class which is the
backend API that talks to FilesysDMS backend system, and the FilesysDoclID class
which implements the DoclID interface and defines the document ID.

104

AutoVue Integration SDK - Technical Guide

Refer to chapters 5 and 6 for more information on the design of the Sample Integration for

Filesys DMS.

e actions
0

O O0O0OoOo

o

ActionDelete.java
ActionDownload
ActionGetProperties
ActionOpen
ActionSave
ActionSetProperties

e backend

0]
0
0]

FilesysDMSBackend
FilesysDMSBackendImp
FilesysDMSDocID

e propactions

0]

OO0O0O0O0O0O0O0O0O0OO0O0OOO0OO0OO0OO0OO

o]

e session
o]

e util
o]
0]
o]

GetFilesysProperty
GetPropCSI_ClbSesssionID
GetPropCSI_Collaboration
GetPropCSI_DocDateLastModified
GetPropCSIl_DocName
GetPropCSI_DocSize
GetPropCSI_IntelliStamp
GetPropCSI_IsMultiContent
GetPropCSI_ListAllProperties
GetPropCSI_Listltems
GetPropCSI_MarkupPolicy
GetPropCSI_Markups
GetPropCSI_Renditions
GetPropCSI_Search
GetPropCSI_UserName
GetPropCSI_Versions
GetPropCSI_XREFS
GetPropDefault

GetPropGUI

FilesysBackendSession
Credentials

ListParser
OevfParser

e vuelink

0]
0

Note: The propactions package does not list all the classes in the package.

FilesysVuelink
FilesysContext

105

AutoVue Integration SDK - Technical Guide

The data used by the sample integration is based on a simple file system that has a simple
data structure to store and retrieve files (the data structure is described in the next section of
this Appendix). The file system includes three packages:

domain

o Version
Browse
Markup
XRef
Doclinfo
FolderObj
Search
IFilesysDMSInfo
DocumentObj
DocInfolmpl
Rendition
FilesysDMSFacade

OO0OO0OO0O0O0OO0O0O0OOO0OOO

util

o

FilesysDataStructureCreator
FilesysDataStructureDefs
FilesysDataStructurelnfos

O O

Gui
o0 ListDirServlet

The first package is called domain and contains all the classes dedicated to managing
the data backend system. When we implemented our actions to retrieve and store files
in the backend system, we did it through the
com.cimmetry.vuelink.filesys.dms.domain. IFilesysDMSInfo

interface. This interface is our plug-in point to the FilesysDMS backend system
manager.

The second package is called uti I and allows us to add new data to the backend
system. The instructions on how to add new data are described in the User Guide.
The last package is called gui and it contains a servlet which allows us to navigate
the sample files through a dynamic HTML page and a servlet to manage user login.

9.1 DMSActions

A DMSAction has only one method to implement: execute(). It takes four parameters:

AnyContext that implements DMSContext: Represents the context of execution of
a DMSAction and holds various environment settings.

DMSSession: Represents the session of execution of a DMSAction for an arbitrary
set of DMS queries.

DMSQuery: Represents a query that a DMSAction must handle and holds
parameters such as the original document URL (FILENAME param passed in the

106

AutoVue Integration SDK - Technical Guide

AutoVue applet page), the document ID, the collaboration session ID, the
collaboration session data, the Authorization and a set of Properties.

e DMSArgument: Represents list of objects used to hold special arguments specific to
a given DMS action type.

The execute() method returns an object instance (the type of the instance depends on the
DMS action but it is generally either null, a DoclD, a File or a Property list). To report
failures, execute can throw a Vuel inkException containing the error code and error
message (defined in the DMSDefs public interface) that the VueLink servlet uses to build the
<ERROR> HTTP response.

One important goal of the AutoVue Integration SDK is to make the integration open to
extensions and modifications. We achieved that by registering the action classes in the

web . xml file in init-parameters. The VueLink servlet checks the init-parameters and
registers the actions. Each action parameter name has the prefix dms.action followed by
the name of the action as dms.action.open (for example, for Open Action). The value
parameter specifies the action name and its location (for example,
com.cimmetry.vuelink.filesys.actions.ActionOpen). This mechanism allows us
to drop any obsolete class and replace it by a new one simply by updating the init-parameter.

DA -fion DA cfon DS cbion
Onfeafs Dnfeafs NS ey
Lg ActionOpen Lg ActionDownload Lg ActionSave
#m_logger & m_logger & TYPE_TERT
& TYPE_STREAM
% execute % execute # m_logger
% execute
DS A cfion Generic”ontext DS cfion
- OMEDefs Lg ActionContexst - DMEDefs
Lg ActionDelete Lg ActionSetProperties
& init - = attributes
#m_logger & m_logger
- =] Operations
% execute % execute

Figure 9-4: Action classes

In the Filesys DMS, we designed the com.cimmetry.Vuelink.filesys.actions
package which implements all the needed actions. In this section we discuss the Open,
Download, Save, and Delete actions. The SetProperties and GetProperties are
discussed in the following sections.

Each individual class must be registered in the web.xml (web descriptor for your J2EE web
application) file init parameters. The name of the parameter has the format
dms.getprops.<property name> (for example, dms.getprops.CSI_Markups). The value of the
parameter contains the full qualification of the class and has the format
“com.<yourCompany>.<package>.<class name>". You can choose the class name you want.

107

AutoVue Integration SDK - Technical Guide

Also, if you prefer, you can choose the default name proposed by framework “GetProp<prop
name>" (for example, GetPropCSI_Markups).

This makes the code easier to maintain and, more importantly, makes customization a lot
easier. If changes to markup handling are required, the GetPropCS1_Markups class can be
re-implemented without affecting the handling of any of the other properties. This will make
the customization easier in the first place, and the customizations will be easier to update
when the framework is updated. This will also allow the easy mix-and-match of
functionality. For example, if a customized markup handler is done for Customer A, and later
Customer B needs similar functionality, the class written for A can be dropped into B’s
install without impacting any other customizations done for B.

For the Filesys DMS, we designed the
com.cimmetry.vuelink.filesys.propactions which contains the following
property action classes:

e GetFilesysProperty: Returns all document attributes and saves to reuse. It serves
as support to some of the following classes.

e GetPropCSl_ClbSessionlD: Handles the CSI_ClbSessionID property and
returns the session ID for a AutoVVue Real-Time Collaboration session.

e GetPropCSl_Collaboration: Handles the CSI_Col laboration property and
returns the GUI for an AutoVVue Real-Time Collaboration session.

e GetPropCSI_DocDatelLastModi fied: Handles the
CS1_DocDatelLastModified property and returns the date of the last modification
of a document.

e GetPropCSl_DocName: Handles the CSI_DocName property and returns the name
of a document.

e GetPropCSl_DocSize: Handles the CSI_DocSize property and returns the size of
a document.

e GetPropCSl_IntelliStamp: Handles the CSI_Intel listamp property and
returns the Stamp definition file and underlying images if available.

e GetPropCSl_IsMultiContent: Handles the CSI_IsMultiContent property.

e GetPropCSl_ListAllProperties: Handles the CSI_ListAllProperties
property and returns an array of DMS properties.

e GetPropCSIl_Listltems: Handles the CSI1_Listltems and returns an array of
items to be displayed in the browse GUI.

e GetPropCSl_MarkupPolicy: Handles the CSI_MarkupPolicy property and
returns the content of MarkupPolicy file if available.

e GetPropCSl_Markups: Handles the CS1_Markups property and returns an array of
properties concerning markups documents.

e GetPropCSI_Renditions: Handles the CSI_Renditions property and returns an
array of properties concerning renditions documents.

e GetPropCSl_Search: Handles the CS1_Search property and returns an array of
properties of documents that match the criteria search.

e GetPropCSl_UserName: Handles the CSI_UserName property and returns the
username.

108

AutoVue Integration SDK - Technical Guide

e GetPropCSl_Versions: Handles the CS1_Versions property and returns an array
of document versions properties.

e GetPropCSI1_XREFS: Handles the CS1_XREFS property and return an array of
properties concerning the XRefs documents.

e GetPropDefault: Handles the properties that do not have dedicated individual
classes.

e GetPropGUI: Handles the GUI property and returns an array of properties for
building the browse GUI or the search GUI or returns a property with proper DMS
name.

9.2 Backend API

Note: DMSBackend interface is optional. It is intended as an entry point to your custom code
for handling communication with your DMS/PLM system. You can think of the Backend
class as a wrapper around your DMS API.

The backend API allows the integration interface to properly talk with the DMS. This API is
intended to gather all the custom code for handling communication with the DMS. Our
backend class that implemented the DMSBackend interface also implemented the connect
method which allows AutoVue to reuse existing user sessions with the DMS.

The framework locates the object that implements the backend API for an integration inside
the com.cimmetry.vuelink.context.DMSContext object. During the initialization of
the VueL.ink servlet, a DMSContext object is created which in turn initializes and registers
the backend object. This allows you to get a reference to the backend API from a
DMSContext object. This is always possible since all the DMSAction objects and
com.cimmetry.vuelink.propsaction.DMSGetPropAction objects hold a
DMSContext object. If custom registration, saving and loading of the backend API object
are needed, you must derive the GenericContext class and implement the new overriding
methods.

109

AutoVue Integration SDK - Technical Guide

: Locliz
Lg FilesysDMS P
DrM5Backend Pacinfo
sinterfaces - %I ; L g FilesysDMSDocID

"¢ FilesysDMSBackend M

% conneck #m_file
® dirronnect % disconnect #mid
% creafelocument % createDocurnent # m_versian
& opendie 4 openFile & m_renditionharme
% chackout % setParameters # m_logger
& gatioot % getRook
% getdtinbufer % getChildren «creates
W gatdffanhimeanti et % gethersions % FilesysDMSDocID
% daleferariiup C:j_ T 7| % dmsListRenditions «Creakes
W acddftachamant % getMetaRendition % FilesysDMSDacID
W goflarsions % saveRendition #rreakes
& gefChidhen % dmsListMarkups % FilesysDM3DocID
& dmzl SR endtions % dmsListxRefs #Creates
% FafMafafandition % getAttribukes % FilesysDMSDocID
% ravefandition % checkout «creates
W oms Farkuns % checkoutFile % FilesysDMSDocID
% ozl mAReT % deleteMarkup % isFolder
N cmal & larnions % dmsListyersions % isDocument
& dnzl FEfemstorGronre % dmsListItermsForBrowse % isRendition
W dinzsl SEfematorSearch % dmsListItemsForSearch % getFile
A Favaiiarkup % saveMarkup % getiersion

% getAktachmentLisk % gethame

% addAttachement % getRenditionilame

% getRendidionFile
% LoString

Figure 9-6 Backend classes

First the framework fetches the init parameters for dms . backend, the name of the init
parameter, and then instantiates the class specified in the value parameter. If it fails, then it
looks for the DMSBackend Imp class as the default name in the current package (That is, in
the same location where your DMS servlet is located).

In the Filesys DMS application, the backend API is registered as shown in the following
excerpt of code.

<init-param>
<param-name>dms . backend</param-name>
<param-value>com.cimmetry.vuelink.filesys.backend.FilesysDMS</param-value>
</init-param>

The following excerpt of the code shows how to get an instance of the plug-in point to
Filesys DMS backend system.

/** Instance of FilesysDMS object (singleton) responsible for communicating and providing
Vuelink with the required information */

private static final IFilesysDMSInfo m_filesysinfo = FilesysDMSFacade.getFilesyslnstance();

110

AutoVue Integration SDK - Technical Guide

9.3 Filesys DMS Backend system Structure

The data used by this sample is based on a file system. This system has a simple structure to
store and retrieve files. This structure consists of folders and document objects. Folder
objects represent directories and document objects represent files. Folder objects can contain
a list of document objects and a list of folder objects (the subfolders).

The access to the root of the FilesysDMS system structure is done through a given specific
path. Inside the FilesysDMS structure we categorize the documents to allow flexible and easy
document management. Each category is simply represented by an access path. Thus, the
FilesysDMS system structure contains all the categories of documents to manage. For
example, in Figure 9-7, filesysDatabase is the root directory which contains two documents
categories: 2DRepository and 3DRepository.

Inside a category one finds several folders (one folder per document). Each folder has the
same name as the base document that it represents, and contains all the versions of this
document. Each version is represented by a folder which has the same name as its base
document concatenated to the number of the version enclosed between parentheses. For
example, in figure 9-7, the category 2DRepository contains three folders which correspond to
the base documents bike.dgn, main.dgn and myacad12.dgn. The folder myacad12.dgn
contains three versions of the base document and myacad12.dgn(3) represents its third
version.

=l I filesysDatabase
= |J) ZDRepositry
=I |2 bike.dgn
[2) bike.dgn{1)
) bike dgn{z)
=1 |2) main.dwg
+ |2) main.dweg(1)
Sl rnyacadl . dwg
*) mvacadiz.dwg(1)
+ I2) rvacad12.dwag(2)
H) myvacadl 2. dwg(3)
=l |Z) 3DRepository
=l |J) 3DCatiaS_FrontDrivesssembly, CATProduck
+ |J) 3DCatiaS_FrontDrivedssembly, CATProduck(1)
= |Z) Component.SLDASM
+ |2 Component. SLDASMIL)
+ |Z) Component. SLDASMIZ)

Figure 9-7: FilesysDMS data structure

Each version folder contains all related information (XRefs, markups, renditions, and so on).
For example, as illustrated in Figure 9-8, under the folder representing version 2 of the
document myacadel2.dgn, there is the base document and the folders which contain the
external references (for example, in the case of a composite document), the markups, and
renditions. The XRefs folder contains all files which constitute external references. The
markups folder contains three subfolders which correspond to the different types of markups
supported by AutoVVue: normal, master and consolidated (see figure 9-9). It might also
contain two additional subfolders if OEVF is supported: assets and workflows. Each of the
normal, master and consolidated subfolders contain all corresponding markups. Each of the
assets and workflows subfolders contain subfolders named by the assetID and workflowID
that contain the corresponding asset and workflow markup. Finally, the renditions folder

111

AutoVue Integration SDK - Technical Guide

contains all conversions supported by AutoVVue and the streaming files. For example, the tiff
in Figure 9-9 folder contains the TIFF rendition. Note that the rendition subfolders have the
same names as the rendition types.

”J matkups ’,{ renditions

myacadlZ.dwg

"/{ wrefs Dtz Filer
— | 35KB

Figure 9-84 : A document version structure

=l |2 myacad12, diwgi2)

=I |.2) markups
|2} consolidated
|2) master
|2 normal

=l) renditions
|2 cmf
|2 tiff

1) xrefs

Figure 9-9: Content of version subfolders

This simple structure represents a good starting point when building your own integration
based on the integration framework. Managing documents in this structure requires creating
folders and copying files.

112

AutoVue Integration SDK - Technical Guide

Document 1 Repository

System Root

Filesys DMS*Repository

filesysRep

acadl2 Repository

acadl2.dwg

b e bbb bbb

Document n Repository

acadl2 version 1

acad12 version 2

acad12.dwg(l

acadl2.dwg(2)

Base document
(acadl2.dwaq)

acadl2 version n

acad12.dwg(n

Markups Repository

markups

Xrefs Repository

Xre

=El

Consolidated Rep Master Rep

Normal Rep

Renditions Repository

renditions

TIFF Rep

Meta Rep

Figure 9-10: Filesys DMS backend system structure

113

AutoVue Integration SDK - Technical Guide

9.4 Sample Integration for Filesys DMS Use Cases

The implementation of the Sample Integration for Filesys DMS involves the implementation
of the following functionalities:

o Implementing DMSAction<AnyContext entends DMSContext> interface for
open/download/save/getproperties, and so on.

o Implementing the backend interface for communicating with the Filesys DMS
system.

The requirements for the DMSAction interface are presented in the “Core Use Cases” section
and those for the backend interface are presented in the “Backend Use Cases” section.

9.4.1 Core Use Cases

The following six classes implement the DMSAction interface:

ActionOpen
ActionDownload
ActionGetProperties
ActionSetProperties
ActionSave
ActionDelete

Gst Document Properties

Figure 9-11 DMSAction interface for FilesysDMS and functionalities provided by the Filesys DMS

114

AutoVue Integration SDK - Technical Guide

9.4.1.1 ActionOpen

The exchanged documents between the sample integration and the AutoVue server
must have unique identifiers. This is why sample integration must build a unique
DoclID for each document sent to the AutoVue server.

Use case: Get unique document identification.
Description: The get unique identification use case builds a unique identification for
each different document (for example, base document and XRefs documents, and so
on) sent to AutoVue server.
Precondition: Sample integration receives an open document request from the
AutoVue server.
Deployment constraints: None
Normal flow of events:
1. Sample integration builds a unique identification for each different document
returned by FilesysDMS and sends it to the AutoVue server.
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

9.4.1.2 ActionDownload

Sample integration processes the download request when FilesysDMS user wants to
view a file from filesysDMS backend system.

Use case: Download document
Description: The download document use case communicates to FilesysDMS the
document to download.
Precondition: Vuelink receives a download document request from AutoVue Server
Deployment constraints: None
Normal flow of events:
1. Sample integration sends a download request to FilesysDMS system specified
by a unique identifier
2. Sample integration returns to AutoVue Server the downloaded document
Exception flow of events:
1. Sample integration receives the message indicating that the document cannot
be downloaded
2. Sample integration sends the message to AutoVue Server
3. Add the exception to a log
Activity diagram: none
Nonfunctional requirements: None
Open issues: None

115

AutoVue Integration SDK - Technical Guide

9.4.1.3 ActionDelete

Sample integration processes the delete request when FilesysDMS user wants to delete
markups. The use case below describes this functionality.

Use case: Delete document
Description: The delete document use case communicates to FilesysDMS the
document to delete.
Precondition: Sample integration receives a delete document request from AutoVue
Server
Deployment constraints: Only markups documents can be deleted.
Normal flow of events:
1. Sample integration send a request to FilesysDMS system to delete the document
specified by a unique identifier
Exception flow of events:
1. Sample integration receives a message indicating that the document cannot be
deleted
2. Sample integration sends the message to AutoVue Server
3. Add the exception to a log
Activity diagram: none
Nonfunctional requirements: None
Open issues: None

9.4.1.4 ActionSave

Sample integration processes the save request when FilesysDMS user wants to save
markups or creates a rendition. When user saves document, AutoVue Server sends a
request to integration servlet which relays this request to FilesysDMS to save the
document. The following use case describes this functionality.

Use case: Save document
Description: The save document use case communicates to FilesysDMS system the
document to save.
Precondition: Sample integration receives a save document request from AutoVue
Server
Deployment constraints: Only markups, renditions (including streaming files) and
chat transcript during a Real-Time Collaboration Session can be saved
Normal flow of events:
1. Sample integration sends a request to FilesysDMS system asking to save a
document specified by a unique identifier
Exception flow of events:
1. Sample integration receives a message indicating that the document cannot be
saved
2. Add the exception to a log

116

AutoVue Integration SDK - Technical Guide

Activity diagram: None
Nonfunctional requirements: None
Open issues: None

9.4.1.5 ActionGetProperties

Sample integration processes the get properties request when FilesysDMS user wants
to view a file. In this case, the AutoVue Server sends several requests to Sample
integration asking for information about markups, XRefs, renditions, document
properties, and so on. The use case below describes these functionalities.

Use Case: Get properties
Description: The get properties use case takes in charge of multiple requests of Sample
Integration. The requests concern a set of predefined properties that Sample integration
must return to AutoVue Server. These requests are about XRefs, markups, renditions,
GUIs and other information concerning the base document (for example, name, size,
and so on.)
Precondition: AutoVue Server sends to Sample integration request about:
1. Base document properties:
a. Unique identifier
b. Last modification date
Size
Name
Author
Type document (for example, folder or file)
Multi content document
2. XRefs properties
a. Documents unique identifiers of the external references in case of a
composite document
3. Markups Properties
a. Documents unique identifiers and types (normal, master, consolidated)
of markups
b. Markups for all revisions
4. Renditions properties
a. Unique document identifier when returning a streaming file
b. A converted document and its type (for example, type rendition)
5. Versions properties
a. Document Identifier, name, size and version number of the document
6. GetAllProperties property action: a set of properties that characterize a base
document (for example, name, size and last modification date, and so on.)
7. GUI properties
a. The properties that composes the browsing GUI and the search GUI
respectively: (1) name, type (folder or file), size and last modification
date and (2) document name and extension type.
b. The property that allow browse functionality

—hD oo

Q@

117

AutoVue Integration SDK - Technical Guide

c. The property that allows search functionality
8. Search result: get documents that match the search criteria
9. Browse result: the content of the root backend system folder and the content of
the expanded folder until reaching the base document
Deployment constraints: None.
Normal flow of events:
The flow depends on the request of AutoVue Server. For each one of the
above property request Sample integration must provide a response.
Exception flow of events:
a. Sample integration is unable to process the request
b. Add the exception to a log
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

9.4.1.6 ActionSetProperties

Sample integration processes the set properties request when FilesysDMS user wants to
print a file. In this case, AutoVue Server sends notification messages when each printed
page and when whole document is done printing.

Use Case: Set properties

Description: The set properties use case sends notification messages to Sample
integration.

Precondition: AutoVue Server sends to Sample integration notifications about printing.
Deployment constraints: None

Normal flow of events:

Exception flow of events:

Activity diagram: None

Nonfunctional requirements: None

Open issues: CSI_Notifications problem in the JvueServer request is not specified
according to the CORE APl XML document.

9.4.2 Backend use cases
To provide responses to the AutoVue Server, the integration servlet interacts with
FilesysDMS which must provide integration servlet with appropriate information.

9.4.2.1 Get Document Instance

To view a document, FilesysDMS must be able to return an instance of
the document to Sample integration. The use case below describes this
functionality.

118

AutoVue Integration SDK - Technical Guide

Use Case: Get document instance
Description: The get document instance use case returns the file
instance of a document.
Precondition: Sample integration sends to FilesysDMS a get document
request
Deployment constraints: None
Normal flow of events:
1. FilesysDMS finds the document.
2. FilesysDMS returns the document to Sample integration
Exception flow of events:
1. FilesysDMS is unable to find the document
2. Add the exception to a log.
Activity diagram: none
Nonfunctional requirements: None
Open issues: None

9.4.2.2 Manage Renditions

FilesysDMS must be able to manage conversion operations done by the
user. It must be able to save a converted documents and streaming
files. This functionality is described by the manage renditions use case.

Use case: Manage Renditions
Description: The manage renditions use case manages all operations
concerning renditions (for example, (1) save conversions and (2) save
and return streaming files).
Precondition: Sample integration sends to FilesysDMS one of the
following renditions requests:
1. Get streaming file instance or
2. Save rendition instance (for example, converted file or
streaming file)
Deployment constraints: None
Normal flow of events:
1. FilesysDMS finds and returns the streaming file document.
Alternate flow of events:
1. FilesysDMS saves the rendition document (streaming file or
converted file).
Exception flow of events:
1. FilesysDMS is unable to find the streaming file document.
2. FilesysDMS is unable to save the rendition document.
3. Add the exceptions to a log.
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

119

AutoVue Integration SDK - Technical Guide

9.4.2.3 Get XRefs List

In the case of composite document, FilesysDMS must provide Sample
integration with the list of its external references. The use case below
describes this functionality.

Use case: Get XRefs list
Description: The get XRefs use case returns a list of external
references of a composite document.
Precondition: Sample integration sends a request to FilesysDMS
asking for XRefs list documents.
Deployment constraints: None
Normal flow of events:
1. FilesysDMS returns the list of XRefs documents.
Exception flow of events:
1. FilesysDMS is unable to find the XRefs.
2. Add the exception to a log.
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

120

AutoVue Integration SDK - Technical Guide

9.4.2.4 Manage Markups

FilesysDMS must be able to provide responses all the requests about
markups (for example, return markups list of a document, return
markups list of all revisions document, save and delete markups). All
these functionalities are described in the following use case.

Use case: Manage markups
Description: The manage markups use case manages all the operations
concerning markups.
Precondition: Sample integration sends to FilesysDMS one of the
following requests:
e Get list of markups
e Get list of markups for all revisions
e Save a markup
e Delete a markup
Deployment constraints: none
Normal flow of events:
1. FilesysDMS returns the list of markups.
Alternate flow of events:
1. FilesysDMS returns the list of markups for all revisions
Alternate flow of events:
1. FilesysDMS saves a markup
Alternate flow of events:
1. FilesysDMS deletes a markup
Exception flow of events:
1. FilesysDMS is unable to build the list of markups.
2. FilesysDMS is unable to build the list of markups of all
revisions.
3. FilesysDMS is unable to save markup.
4. FilesysDMS is unable to delete markup.
5. Add the exceptions to a log.
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

121

AutoVue Integration SDK - Technical Guide

9.4.2.5 Get Versions List

FilesysDMS must be able to return all the versions of a document when
a user needs them to perform a comparison operation. The use case
below describes this functionality.

Use case: Get versions list
Description: The get versions list use case returns the list of different
versions of a document.
Precondition: Sample integration sends a request to FilesysDMS
asking for the list of versions:
Deployment constraints: none
Normal flow of events:
1. FilesysDMS returns a list of items representing the different
versions of the base document.
Exception flow of events:
1. FilesysDMS is unable to return the list of versions.
2. Add the exception to a log.
Activity diagram: None
Nonfunctional requirements: None
Open issues: None

9.4.2.6 Get Children Instances

The user must be able to browse the FilesysDMS data structure by
expanding folders. This is why it must provide Sample Integration by
the children documents of each expanded folder. The use case Get
children instances describes this functionality.

Use case: Get children instances
Description: The get children instances returns a list of items
contained in a folder. The user browses the FilesysDMS database
structure by expanding folders.
Precondition: Sample integration sends a request to FilesysDMS
asking for the list of items contained in the selected folder.
Normal flow of events:

1. Get List of items contained in the specified folder.
Deployment constraints: None
Normal flow of events:

1. FilesysDMS returns the list items contained in a specified

folder.

Exception flow of events:

1. FilesysDMS is unable to return the list of items.

2. Add the exceptions to a log.

122

AutoVue Integration SDK - Technical Guide

Activity diagram: None
Nonfunctional requirements: None
Open issues: None

9.5 Known Limitations
The following are known limitations for the Sample Integration for Filesys DMS:

e Redirect: The main server and remote server should use the same FileSys repository.
The main server configures one directory as the FileSys repository (for example,
c:\temp\Repository). As a result, there should be one drive on the remote server
machine mapping to the directory of the FileSys repository of the main server.

e OEVF: When saving a new workflow markup, the values of Markup Type and Read-
Only in the Markup Save dialog do not take effect.

e For Oracle WebLogic versions 10.3.1.0 and 10.3.2.0, users must re-enter login
credentials in the Authorization dialog even if they already entered the login
credentials in the FileSys DMS home page.

123

AutoVue Integration SDK - Technical Guide

10. APPENDIX C — ISDK WEB SERVICE CLIENT

10.1 Introduction

This appendix focuses on the Blue Print Web Service Definition Language (WSDL), the
Web Service Client package that is built using that WSDL, and the requirements for
deploying and connecting the WSDL to your Web Service implementation of Blue Print
WSDL file. WS-Security extensions/mechanisms (which are already supported by our client
package) and how you can replace them and plug-in other security extensions according to
your WS-Security requirement are discussed.

10.2 Architecture

The ISDK Web Service Client is a package built on top of the ISDK Skeleton. It is designed
to communicate out of the box with any Web Service (WS) provider that is implementing the
BluePrint.wsdl file.

Once the communication between Web Service and the WS Client is established, the rest of
the communication (between WS client and the AutoVue server) is already in place.

124

AutoVue Integration SDK - Technical Guide

Your Repository
(DMS, PLM. etfc.)

| Web ServiceProvider Interface {based on BluePrint wsdl) |

N

SOAH
d | 1SDK Web Service Client (based on BluePrint.wsdl) | ™
ISDK Skeleton
JAVA
EES
Application Framework (Core)
Server

\ _ J
DIVI-
AP L

AutoVue Server

Figure 10-1 Architecture

The benefit of using ISDK Web Service client is that it enables non-Java integration into
AutoVue since Web Service communication is a standard XML based protocol. The internal
implementation of the Web Service provider on the Repository side can be virtually in any
language and on any platform.

Note: If the repository provides any Java API, then it is recommended to use ISDK Skeleton
package to build the integration. However, if you are integrating with platforms such as
NET, then it is recommended to use the Web Service client package.

The communication between ISDK Web Service Client and Web Service is based on SOAP
(Simple Object Access Protocol), which is a standard protocol.

125

AutoVue Integration SDK - Technical Guide

As a Web Service integrator, the only focus should be on the SOAP channel between your
repository and ISDK Web Service client. The blueprint.wsdl and the data model
blueprint.xsd are described later in this chapter.

If the repository has security features in place, then it needs to be implemented both on the
Web Service and the ISDK Web Service Client package.

By default Web Service Client package has built-in support for two WS-Security policies:
HTTPS Basic and HTTPS UserName Token Policy. If your Web Service provider is using
one of these two access mechanisms, then communication can be established by enabling
proper handler inside the Web Service client package.

If the service provider is using other security mechanisms (for example, certificate, SAML,
and so on) then a new handler must be developed and plugged into the Web Service client
package.

Web Service client packages provide a flexible mechanism in order to register a new security
handler and replace the default behavior. Refer to section “WS-Security” for more
information.

10.3 How it Works

As with the Filesys sample, the AutoVVue server communicates with the DMS Servlet when
accessing the repository. However, the difference is that DMS Servlet relies on ISDK Web
Service client to establish communication with the repository using SOAP protocol.

The sequence of activities is similar to what is described in FileSys Technical Guide, except
that in this case customization needs to be implemented on the repository-side. An example
of a simple customization is included in the ISDK Web Service slient package
(wsfrmApplet.jsp) which is fairly similar to one included with Filesys (frmApplet.jsp).

For applet parameters in the JSP file, notice that FileName parameter is empty. This id
because the parameter must be defined based on what is defined in your repository. For
example, it can be an ID number or similar to Filesys they might be a relative path. The
bottom line it the FileName parameter is used to find the document on the repository side and
construct its proper document I1D.

Note: The FileName parameter is empty in the wsfrmApplet.jsp file. This is because the
parameter is set by what is defined in the repository. For example, the parameter may be an
ID number or a relative path to Filesys.

Assuming the customization is in place and FileName parameters are set, the following is a
brief description of how the DMS Servlet works:

1. The client logs into the repository Web Interface and launches AutoVVue applet
through customization inside the Web browser.

126

AutoVue Integration SDK - Technical Guide

e AutoVue Applet communicates with the AutoVue server through Servlet
Tunneling (VueServlet) over an HTTP connection (as defined in the
JVUESERVER parameter)

2. The AutoVue server then communicates to the DMS Servlet using a standard HTTP
connection (as defined in DMS parameter)

3. The DMS Servlet then uses the ISDK Web Service client package to convert requests
to proper Web Service calls. As well, it invokes the Web Service provider on the
repository server to handle any request made by the AutoVVue Server (such as file
fetching).

4. If you try to view a composite file (that is, a file having external references to other
files), then DMS Servlet retrieves those files and makes them available to the
AutoVue server.

5. Once the file and all related XRefs and/or resources are fetched out of the DMS, they
are processed by the AutoVue Sserver which renders the files and streams the
viewable to the AutoVue applet for display.

6. Once the file displays in the AutoVue applet, you can create new Markups, save
Markups into the DMS, and open Markups from the DMS.

10.4 Web Service Client Package

The following diagram shows the internal structure of a Web Service client package. This
package includes the ISDK core, third-party libraries, and a layer on top of the core that
implements the client side for the Blue Print WSDL.

127

AutoVue Integration SDK - Technical Guide

Your DMS

(Custom code)

ISDK Web Service Client
{Consumer Layer)

Java EE §
App server Third-Party

Framework (core)

Libraries

uel nk

authentication utl context backend property

query XML b session defs propsaction

AutoVue Server

Figure 10-2. Internal Structure of the Web Service Client package

As shown in the figure, the package must be deployed on top of a Java EE 5 application
server since the ISDK Web Service client layer depends on the Web Service annotations and
JAX-WS (which are part of Java EE 5). Note that Java Standard 6 (JDK 1.6) supports the
same Web Service annotations and includes JAX-WS. Unlike the Filesys package, the
custom code on the ISDK side is already in place (WS client layer). Additionally, custom
code on the repository side is required in order to implement the provider side of Blue Print
Web service (blueprint.wsdl).

Note: To implement the custom code you must use the Blue Print WSDL that is described
later in this document.

10.5 Sequence

The sequence described here is the same of the section described in Filesys technical
document. When a user selects a document to view, the AutoVue server makes several
requests to the DMS Servlet. The DMS Servlet provides a response for each request. The
scenario of the exchanges established between the AutoVVue server and the ISDK package are
sketched in the following figure and can be summarized as follows:
e The AutoVue server asks for the doclD of the selected document. This is done
through the Action Open, which obtains the docID from the ISDK.
e The AutoVue server asks for some properties of the document, such as document
name, document size and date of the last modification (e.g., sequences 2 and 3 in the

128

AutoVue Integration SDK - Technical Guide

following figure). The reason is that the AutoVue server maintains a cache repository
of the document and needs to know if it already has the most recent copy of the
document. In which case AutoVue uses the most recent copy rather than
downloading the document.

e AutoVue fetches the document through the Download Action.

The following sequence diagram shows the flow of communication between AutoVue and
your integration, for a typical case of viewing a file from your Repository. As you can see
from this diagram, viewing a file triggers many calls to your integration.

Please note the “Your Integration” layer is the combination of Web Service client consumer
layer (already included in the package) plus the Web Service provider layer that needs to be
done on Repository (e.g. DMS) side.

As you can see by using ISDK web service client package, you are half way through of a
SOAP-based integration that has already defined the web service interface, the web methods
and the input/output data model.

The above actions are the basic set requests and Reponses between AutoVue and ISDK.
There are several other requests/responses that are needed to cover functionalities such as
annotation (markups) and collaboration that normally follows the basic set.

10.6 Configuration

Before deploying Web Service Client package (WAR or the open folder) on a JAVA EE5
compliant Application Server you need to update some parameters inside web.xml inside the
package.

Note: If your Application Server is using Java 1.6_14 or higher, then the required runtime
libraries (JAX-WS 2.1.3+) are already provided by JVM and deployment could be possible
on a non EE5 Application Server as long as it is certified to work with Java standard 1.6.

10.7 WSDL Location

You can create a project in Eclipse or JDeveloper by importing the Web Service Client
package. Once the project is prepared, open the web.xml file and locate the entry named
WSDL (that is, <param-name>WSDL</param-name>) then change its associated value (the
value inside the <param-value> tag to the actual URL location of web service provider (for
example: http://...some sever.../BluePrint?wsdl).

By setting this value, the Web service client package knows where to find the Web service
provider.

10.8 WS-Security

Another location to be modified inside web.xml is related to WS-Security. There are several
WS security standards defined by the Organization for the Advancement of Structured
Information Standards (OASIS). ISDK Web service client package provides out of the box

129

AutoVue Integration SDK - Technical Guide

support for two of these standards: HTTPS- Basic Profile and HTTPS-UserName Token
Profile.

While it is easy to enable any of them, none of these two is selected as default in the package
because it has to be defined based on the environment. The default setting assumes web
service provider is available without any security. Since ISDK is development package it is
better test the functionalities first and then enable the security if service provider permits.

10.8.1 HTTPS-Basic Profile

To enable HTTPS- Basic security, first make sure the web service provider is implementing
this policy, then locate <param-name>wsclient.WSHandler</param-name> inside
web.xml and replace its associated value (the value inside its <param-value> tag) to
com.cimmetry.vuelink._wsclient.backend.HTTPBasicHandler

This is the name of the handler class inside the Web Service Client package that will add
authentication information to the header of web service requests. The authentication
information can be obtained in runtime from the applet.

10.8.2 HTTPS-UserName Token Profile (Metro)

To enable HTTPS-UserName Token, after making sure that the Web service provider is
implementing this policy, locate <param-name>wsclient._WSHandler</param-name>
inside web.xml and replace its associated value (the value inside its <param-value> tag) to
com.cimmetry.vuelink.wsclient.backend.UserNameTokenHandler

This is the name of the handler class inside the Web Service Client package that adds
authentication information to the SOAP message requests. The authentication information
can be obtained in runtime from the applet.

10.8.3 HTTPS-UserName Token Profile (WebLogic)

If the Web service client package is being deployed on a WebLogic application server, the
original class for UserName Token Profile may not work properly. WebLogic server
provides some packages that can be used to implement handler for UserName Token Profile.
Web Service Client package comes with a Java class that is designed to use WebLogic API.
The class is called WeblogicUserNameTokenHandler and it is located in the same
package as two above classes. Since the class does not work on other application servers
(because of WebLogic dependency) it is renamed to
WeblogicUserNameTokenHandler . java.excluded by default in order to avoid any
compilation and runtime error on other application servers.

If you choose to deploy your Web service client on Weblogic, and the security profile
between client and Web service provider is UserName Token Profile, then you must rename
this class back to Java (by removing .excluded from the filename) and making sure
Weblogic runtime libraries are available during the compilation. Once there is no compile
error, open the web.xml and locate <param-name>wsclient.WSHandler</param-

130

AutoVue Integration SDK - Technical Guide

name> inside web.xml and replace its associated value (the value inside its <param-value>

tag) to
com.cimmetry.vuelink.wsclient.backend.WeblogicUserNameTokenHandler

By doing so, the WeblogicUserNameTokenHandler is registered as the handler class for
UserName Token profile. Its handling is the same as UserNameTokenHandler but instead
it directly uses Weblogic API.

10.8.4 Other WS-Security Profiles

If any other type of WS-Security profile is being implemented on Web Service provider (for
example, certificate, SAML, and so on) you must write a client side handler and register it
into Web Service Client package. The registration is similar to what described above, by
setting the class name into wsclient.WSHandler parameter. The important note is that any
implementation will require extending WSHand ler class that is provided by Web Service
Client package. This is true for all three classes that are discussed above.

10.8.4.1 Extending WSHandler

WSHandler class is provided in the same package
(com.cimmetry.vuelink.wsclient.backend).

By creating a new class that extends this class, you must replace the implementation of one
of the two methods that are provided in WSHandler (depending on where the authentication
data is supposed to be).

In most cases the authentication data should be included inside the SOAP message. If this is
the case, then the following method should be implemented in your custom handler.
public boolean handleMessage(SOAPMessageContext context)

Since the input parameter is SOAPMessageContext, any part of the SOAP message can be
accessed and modified before it is sent to the server.
The following code snippet shows how this is done in the UserNameTokenHandler class:

131

AutoVue Integration SDK - Technical Guide

public boolean handleMessage(SOAPMessageContext context) {

m_logger .debug(*'UserNameTokenHandler handleMessage() called™);
Boolean outboundProperty =

(Boolean)context.get(MessageContext_ MESSAGE_OUTBOUND_PROPERTY) ;
SOAPMessage message =context.getMessage();

if (outboundProperty.booleanvValue()) {
m_logger .debug(""\n (client protocol handler) Outbound message:');

try {

String user = (String)connectinfo.get(*'username');
if (user != null) {
SOAPEnvelope envelope =
context.getMessage() -getSOAPPart() .getEnvelope();
SOAPHeader header = envelope.getHeader();
it (header == null) {
header = envelope.addHeader();
3

SOAPElement security = header.addChildElement(*"Security’, "‘wsse"

WSSE_NAMESPACE) ;
SOAPElement usernameToken =

security.addChildElement(*'UsernameToken', "wsse'™);
usernameToken.addAttribute(new QName(*'xmIns:wsu'),
WSU_NAMESPACE) ;
SOAPElement username = usernameToken.addChildElement(''Username’,
"'wsse');
username.addTextNode(user);

String pass = (String)connectinfo.get(*password");

if (pass !'= null) {
SOAPElement password =
usernameToken.addChildElement(''Password", "‘wsse');
password.addTextNode(pass) ;

}

ks
} catch (Exception e) {

m_logger.error(*'Failed to add username token profile security", e);
}

} else {

m_logger .debug(*"\n (client protocol handler) Inbound message:");

if (m_logger.isDebugEnabled()) {
try {
//message .writeTo(System.out); // for testing

System.out.printin(*"); // just to add a newline
} catch (Exception e) {

m_logger .warn("'Exception in soap handler: " , e);
¥

return true;

3}

132

AutoVue Integration SDK - Technical Guide

If the authentication data should be added to the header of HTTP request (not be confused
with SOAP header) then implementing following method should be considered in your

custom handler.
public void handleProxyRequest()

This method has no input parameter, but you have access to request objects through the Web
service proxy object. By obtaining access to request objects you can add authentication
information into the request header.

The handlerProxyRequest() method is called inside the connect method of the
backend implementation class right after the handler is set into the chain of handlers.

This should guarantee whatever is defined in this method is executed before the Web service
call is made.

The following code snippet shows how this method is implemented in is done in the
HTTPBasicHandler class:

public void handleProxyRequest() {
m_logger .debug("'HTTPBasicHandler , handleProxyRequest called™);

ifT (connectinfo.get(username'™) == null || connectlnfo.get(password™) == null) {
return;

¥

Map<String, Object> request = ((BindingProvider) proxy).getRequestContext();
if (connectInfo.get(“username™) != null) {

request.put(BindingProvider . USERNAME_PROPERTY,
(String)connectinfo.get('username'™));

if (connectInfo.get(“password™) != null) {
request.put(BindingProvider.PASSWORD_PROPERTY,
(String)connectinfo.get("password™));

// this is to maintain any session initiated by server
request.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

Please note that every time web.xml is modified, the application should be redeployed inside
the application server for the changes to take effect.

10.9 BluePrint WSDL

This section describes BluePrint WSDL. This WSDL is provided in the Web Service Client
package and the client package implementation is based on this WSDL (blueprint.wsdl) and
the XSD file (blueprint.xsd) that accompanies it. These two files should be used for

implementing the Web Service provider that the Web Service package communicates with.

10.9.1 Web Services Methods
This section provides a review of the available Web Services methods inside wsdl file

Note: For information on non-standard data structure refer to section “BluePrint XSD”.
In following Web Services method description, if Parameters and Returns are an array, they
could be List in some implementation.

133

AutoVue Integration SDK -

Technical Guide

Web Services Description

Method

delete Delete a markup document in backend repository
Parameters:
arg0: WsDoclD — A unique identifier of a markup in your
integration.
argl: SessionData — Session information used to connect to
backend repository
Returns:
boolean: Returns TRUE if deletion successfully, otherwise
FALSE.

download Download original file, markup file, supported file (for example,
XRefs), and so on from backend repository.
Parameters:
arg0: WsDoclD — A unique identifier of a downloading document
in your integration.
argl: SessionData — Session information used to connect to
backend repository
Returns:
byte[]: Content of the file.

openFile Get a document ID for a given document.

Parameters:

arg0: String — Information to identify a document in backend
repository.

argl: SessionData — Session information used to connect to
backend repository

Returns:

WsDoclID: A unique document identifier in your integration.

setAttributes

Set a given document or collaboration properties in backend
repository.

Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration.

argl: Attribute[] — An array of Attribute objects. Each element
contains name and value(s) per attribute which will be modified in
backend repository.

arg2: SessionData — Session information used to connect to
backend repository

Returns:

boolean: Returns TRUE if set properties successfully, otherwise
FALSE.

getUserName

Get current user name who connects to backend repository
Parameters:
arg0: SessionData — Session information used to connect to

134

AutoVue Integration SDK - Technical Guide

backend repository
Returns:
String: Current user name.

getAllAttributes

Get all available properties of a given document in backend
repository.

Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration.

argl: SessionData — Session information used to connect to
backend repository

Returns:

A DocAttribute object that contains all the properties of a
document in backend repository.

getDmsConfig

Get all basic settings of backend repository.

Parameters:

Returns:

A DmsConfig object that contains basic settings for backend
repository: the function of Browse repository supported or not, the
function of Search repository supported or not, the function of
Redirect supported or not, and a String value used for customizing
Browse and Search button

getBasicAttributes

Get basic properties of a given document in backend repository.
Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration

argl: SessionData — Session information used to connect to
backend repository

Returns:

A BasicAttribute object that contains basic properties for a
document in backend repository (for example, document ID, name,
size, last modified date, and so on)

getRevisions

Return all other revisions for a given document in backend
repository.

Parameters:

arg0: WsDoclD - A unique identifier of a document in your
integration.

argl: SessionData — Session information used to connect to
backend repository

Returns:

Return an array of RelatedDocument objects. One element
represents a revision for a given document.

getXrefs

Get external reference files for a given document.
Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration.

argl: SessionData — Session information used to connect to

135

AutoVue Integration SDK - Technical Guide

backend repository

Returns:

An array of RelatedDocument objects. One element represents an
external reference file.

getRendition

Get all supported rendition formats and streaming file document
ID if it exists in backend repository.

Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration.

argl: SessionData — Session information used to connect to
backend repository

Returns:

An Rendition object that contains a list supported rendition formats
and document ID of the streaming file

isBrowseEnabled

Return whether backend repository supports browse function or
not.

Parameters:

Returns:

TRUE if backend repository supports browse function, otherwise
FALSE.

isSearchEnabled

Return whether backend repository supports search function or not.
Parameters:

Returns:

TRUE if backend repository supports search function, otherwise
FALSE.

isRedirect

Return whether backend repository is a distributed environment
that can redirect AutoVVue Download/Save requests to another
ISDK-based integration deployed on remote server.

Parameters:

Returns:

TRUE if backend repository supports redirect function, otherwise
false.

listMarkup

Return all markup documents associated with a given document in
backend repository.

Parameters:

arg0: WsDoclD — A unique identifier of a document in your
integration.

argl: Field [] — An array of Field objects. Each element represents
one attribute displayed in Markup Open dialog. Each item in the
return array should include the values for the attributes specified
by this argument.

arg2: SessionData — Session information used to connect to
backend repository

Returns:

An array of MarkupList objects. Each element represents a markup
document.

136

AutoVue Integration SDK - Technical Guide

saveMarkup

Save a markup for a given document to backend repository
Parameters:
arg0: byte [] — Markup file content
argl: WsDoclD — A unique identifier of a base document in your
integration.
arg2: WsDoclD — A unique identifier of a markup document in
your integration.
arg3: String — Name of markup file
arg4: String — Type of markup file (for example, normal, master,
consolidated)
arg5: Field[] — An array of Field objects. One element represents
one property (name/values) of the markup file.

arg6: SessionData — Session information used to connect to
backend repository.
Returns:

The newly saved markup document ID.

saveRendition

Save rendition file for a given document to backend repository
Parameters:

arg0: byte [] — Rendition file content

argl: WsDoclD - Unique identifier of a base document in your
integration.

arg3: String — The type of rendition file (for example, PCRS_TIF)
arg4: SessionData — Session information used to connect to
backend repository

Returns:

The newly saved rendition document ID.

saveChat

Save chat content created during real-time collaboration meeting to
backend repository.

Parameters:

arg0: byte [] — Chat content

argl: String — Real-time collaboration session data

arg2: SessionData — Session information used to connect to
backend repository

Returns:

The newly saved chat document ID.

getIntellistamp

Get Stamp definition file and background image files inside the
definition file

Parameters:

arg0: SessionData — Session information used to connect to
backend repository

Returns:

A Stamp object that contains Stamp definition file and an array of
RelatedDocument objects, each element represents one
background image

getMarkupPolicy

Get markup policy file that controls the markup creation,
modification and deletion.

137

AutoVue Integration SDK - Technical Guide

Parameters:

arg0: SessionData — Session information used to connect to
backend repository

Returns:

A string that contains markup policy file.

getClbSessionlD

Get real-time collaboration meeting session ID from collaboration

data.

Parameters:

arg0: String — Real-time collaboration data

argl: SessionData — Session information used to connect to
backend repository

Returns:

A string that represents real-time collaboration session ID.

clbCloseMeeting

Process information in backend repository when real-time
collaboration meeting is finished.

Parameters:

arg0: String — Real-time collaboration data

argl: String — Value to be processed.

arg2: SessionData — session information used to connect to
backend repository

Returns:

True if successfully, otherwise false.

clbDocumentSet

Process information in backend repository when collaboration
users switch documents to collaborate on in the middle of a RTC
meeting.

Parameters:

arg0: String — Real-time collaboration data

argl: String — S string represents document ID.

arg2: SessionData — Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

clblnitSession

Process information in backend repository when real-time
collaboration meeting is started

Parameters:

arg0: String — Real-time collaboration session data

argl: String — Value to be processed in backend repository.
arg2: SessionData — Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

clbGui

Specify real-time collaboration GUI properties.
Parameters:

arg0: String — real-time collaboration session data

argl: SessionData — session information used to connect to
backend repository

138

AutoVue Integration SDK -

Technical Guide

Returns:

A RtcGui object that contains a RtcDisplayOption object used for
enabling/disabling GUI items in Invitation dialog and an array of
Field objects used for listing attributes to be displayed in Session
Information dialog.

getRtcCollaboration

Get real-time collaboration information (i.e. the users to be invited,
invited user, and collaboration session information)

Parameters:

arg0: String — Real-time collaboration session data

argl: Field [] — An array of Field objects. One element represents
one attribute to be displayed in Session Information dialog. Each
RtcSession in the return should get the values for the attributes
specified by this argument.

arg2: SessionData — Session information used to connect to
backend repository

Returns:

A RtcCollaboration object that contains a list of users to be invited,
a list of already invited users, and an array of collaboration session
information.

clbUserJoined

Process information in backend repository when a user joins the
real-time collaboration meeting.

Parameters:

arg0: String —Real-time collaboration session data

argl: String — Value (name of joined user)

arg2: SessionData — Session information used to connect to
backend repository

Returns:

True if successfully, otherwise false.

clbUserLeft

Process information in backend repository when a user leaves the
real-time collaboration meeting.

Parameters:

arg0: String — Real-time collaboration session data

argl: String — Value (the name of left user)

arg2: SessionData — Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

clbMarkupSaved

Process information in backend repository when host saves
markup for the collaboration session.

Parameters:

arg0: String — Real-time collaboration session data

argl: String — Value (markup name)

arg2: SessionData — Session information used to connect to
backend repository

Returns:

TRUE if successful, otherwise FALSE.

139

AutoVue Integration SDK - Technical Guide

getGUIDMS Get the value used for customizing Browse and Search button.
Parameters:
Returns:
A String.

dmsBrowse Return all the items that are direct children of a node (e.g. folder)

Parameters:

arg0: WsDoclD - A unique identifier of a parent folder in your
integration.

argl: Field [] — An array of Field objects. Each element represents
an attribute displayed in Browse dialog. Each item in the return
array should get the values for the attributes specified by this
argument.

arg2: SessionData — Session information used to connect to
backend repository

Returns:

An array of DocList objects. Each element represents a child node
(for example, a folder or document).

getSearchCriteria

Specify search criteria.

Parameters:

Returns:

An array of Attribute objects. Each element represents one search
criteria (for example, Name and possible values) in Search dialog.

dmsSearch Return all the items that meet search criteria
Parameters:
arg0: WsDoclD — A unique identifier of a document in your
integration.
argl: Field [] — An array of Field objects. Each element represents
an attribute displayed in Search dialog. Each item in the return
array should get the values for the attributes specified by this
argument.
arg2: Attribute [] — An array of Attribute objects. Each element
contains one name and value(s) per search criteria
arg3: SessionData — Session information used to connect to
backend repository
Returns:
An array of DocList objects. Each element represents
a child node (for example, a folder or document).
getSearchGui Specify the attributes that are displayed in Search dialog
Parameters:
arg0: SessionData — Session information used to connect to
backend repository
Returns:
An array of Field objects. Each element holds a property’s name
displayed on Search dialog and display length for the property.
getBrowseGui Specify the attributes that are displayed in Browse dialog

140

AutoVue Integration SDK -

Technical Guide

Parameters:

arg0: SessionData — Session information used to connect to
backend repository

Returns:

An array of Field objects. Each element holds a property’s name
displayed in Browse dialog and display length for the property.

getMarkupGui

Specify the attributes that are displayed in Markup Open dialog
and Markup Save dialog.

Parameters:

arg0: SessionData — Session information used to connect to
backend repository

Returns:

A markup object that contains the information used Markup Open
dialog and Markup Save dialog.

10.9.2 BLUEPRINT XSD

This section provides a review of all classes that represent custom outputs and custom inputs
for different Web Services methods.

Note: In following description for custom data structures, if attribute is an array, they could
be List in some implementation.

Attribute

A property of a document in backend repository.
Attributes:

name: String — Property name

values: String [] — Values for the properties

isMultiValues: boolean — Is multi-value property or not
optionL.ist: OptionList — A object contains predefined values
that user can select.

BasicAttribute

Basic properties about a document in backend repository.

Attributes:

doclID: WsDoclD — A unique identifier of a document in your
integration.

name: String — Document name

size: String — Document size

lastModifiedDate: String — Last modified date of the document

multiContent: String — How many files are contained in the
document.

folder: String — Folder name of the document.

DmsConfig

Basic settings for a backend repository.

141

AutoVue Integration SDK - Technical Guide

Attributes:

isBrowseEnabled : boolean — Backend repository supports
browse function or not;

isSearchEnabled: boolean — Backend repository supports
search function or not;

isRedirect: boolean — Whether backend repository is a
distributed environment that can redirect AutoVVue
Download/Save requests to another ISDK-based integration
deployed on remote server or not.

dmsGui: String — Text used for customizing Search/Browse
button

DocAttribute

It is a subclass of BasicAttribute. It holds all properties of a
document

Attributes:

optionalFields: Attribute [] — An array of Attribute objects.
Each element holds one property other than basic properties(for
example, name, size) of a document.

DocList It contains information about a document in backend repository
and is used as return type of the methods dmsSearch and
dmsBrowse.

Attributes:

doclID: WsDoclD — An identifier of a document in your
integration.

name: String — Document’s name

optionField: Field [] — An array of objects. Each element

represent one property (for example, name/value) of a

document.

Field Represent one property object with name/value.

Attributes:
name: String — Property name
value: String — Property value

Intellistamp

Represents the return type of the method of
getintellistamp()

Attributes:

definition: String — The content of Stamp definition file.
image: RelatedDocument []: An array of RelatedDocument
objects. Each element represents a background image inside
Stamp definition file.

MarkupDisplayOption

It is used by the method getMarkupGui (). It specifies
whether or not users are allowed to perform some operations on
markups in Markup Open dialog.

Attributes:

allowDelete: boolean — Can delete markup or not?
showPreviousVersions: boolean — Can display the markups
from other version of the document or not?

142

AutoVue Integration SDK - Technical Guide

allowNew: boolean — Can create a new markup or not?
allowlmport: boolean — Can import a markup or not?
allowExport: boolean — Can export a markup or not?
allowNewLayers: boolean — Can create a new layer for a
markup or not?

allowModifyLayers: boolean — Can modify a layer of a markup
or not?

MarkupGu i

It is used as return type of the method getMarkupGui (). It
specifies the structure of the GUIs for markup with which the
user will interact. The GUI part itself is composed of three
sections: Display Options, Edit, and Display.

Attributes:

displayOption: MarkupDisplayOption — Specifies whether or
not users are allowed to perform some operations on markups
in Markup Open dialog;

displayLabel: Field [] — An array of Field objects. Each
element holds a property’s name displayed in Markup Open
dialog and display length for the property.

editAttribute Attribute [] — An array of Attribute objects. Each
element represents an attribute whose value user should specify
in Markup Save dialog;

MarkupList

It is a subclass of class DocList and used as return type of the
method 1istMarkup(). It contains the properties about a
markup document.

Attributes:

readOnly: boolean — Is a markup read-only?

baseRevision : String — Version of the base document to which
a markup is attached

markupType: String — Normal/master/consolidated

OptionList

It is used to specify predefined values for a property of a
document in backend repository.

Attributes:

isFixed: boolean — If it is TRUE, cannot add other value to the
predefined list? Otherwise FALSE.

options: String [] — An array of String. Each element
represents a value in predefined list.

RelatedDocument

It is mainly used as return for the methods getRevisions()
and getXrefs().

Attributes:

docName: String — Document name

WsDoclID doclID — A unique identifier of a document in your
integration.

Rendition

It is used as return type of the method getRendition().
Attributes:
supportedRenditions : rendType [] — An array of objects. Each

143

AutoVue Integration SDK - Technical Guide

element represents one rendition format (for example,
CSI_META, PCRS_TIF)

wsDoclID : WsDoclD - the identifier of a streaming file in your
integration.

RtcCollaboration

It is used for the method getRtcCol laboration() and
contains the information about a real-time collaboration
meeting.

Attributes:

userToBelnvited: String [] — List of users to be invited to the
meeting.

userlnvited: String [] — List of users are already in the meeting.
rtcSession: RtcSession [] — An array of objects. Each element
represents the information per real-time collaboration meeting;

RtcDisplayOption It is used for enabling/disabling GUI items in Invitation dialog.
Attributes:
allowAdd: boolean — Can add a user?
allowAddNew: boolean — Can add a new user?
allowRemove: boolean — Can remove a user?
allowLayerColor: boolean — Can modify layer’s color?

RtcGui It is used as return type of the method clbGui).
Attributes:
displayOption: RtcDisplayOption — Enable /disable real-time
collaboration meeting in Invitation dialog;
displayLabel: Field [] — An array of objects. Each element
holds a property’s name displayed in Session Information
dialog and display length for the property.

RtcSession It represents session information such as session title, id, type,
subject, duration, start time, and so on.
Attributes:
clbSessionld: String — real-time collaboration session ID;
clbSessionTypelsPublic: boolean — TRUE if it is public,
otherwise FALSE.
clbSaveChat: boolean — TRUE if the backend system
component supports saving chat transcript.
label: Field[]- An array of Field objects. Each element
represents a property’s name and its value displayed in Session
Information dialog.

SessionData It represents session information needed to connect to backend
repository.
Attributes:
expired: boolean — TRUE if it is invalid.
data: Field[] — An array of Field objects that are needed to
connect to backend repository.

WsDoclD An unique identifier of a document in your integration

Attributes:
id: String — A unique identifier of a document in your backend

144

AutoVue Integration SDK - Technical Guide

repository

version: String — Version number

assetID :String — Asset ID associated with the document
workflowlID: String — Workflow ID associated with the
document

isFolder: boolean — Document is folder?

10.10 Steps for Implementing BASIC Integration Based on Web
Services

This section outlines the minimum Web Services methods which are defined in
BluePrint.wsdl that should be implemented on Web Services provider side in order to add
file view capabilities using Web Service package with AutoVue.

e getDmsConfig()

e openFile()

e getBasicAttributes()

e download()
Other Web Services methods are not necessary to be implemented and you can just provide
null as the return value for them.

Integration SDK Web Service Client project includes a sample backend extension file
(wsfrmApplet.jsp) in the applet folder for launching AutoVue. You should modify it or
create your own backend extension file (for example, a .asp file) and put it in correct location
according to your backend system. The user can click a button in backend system Ul to
launch the file in the AutoVue applet.

In the backend extension file, do the following:
e Provide the FILENAME variable with your unique document identifier.
e Provide the JVUESERVER variable with your VueServlet (for example.
http://hostname:port/serviet/\VueServlet).
e Provide the DMS variable with your Web Services client DMS (for example,
http://hostname:port/serviet/DMS).

10.11 Steps for Implementing Advanced Integration Based on Web
Services

To implement additional functionality such as XRefs, markups, compare, renditions, DMS
Search/Browse, and so on you should implement the rest of the methods listed in section
“Web Services Methods”. It is assumed that you have already implemented the file view
functionality in your backend system as outlined in previous section.

145

AutoVue Integration SDK - Technical Guide

10.12 Sample Approaches to Generate Web Services Provider
Artifacts

10.12.1 How to generate Java web services code from ISDK WS WSDL
file

To generate Java Web services code, call wsimport from the command line with the —
keep option and pass the WSDL’s file: wsimport —keep wsd_file-location

For example: wsimport —keep
L:\temp\WebServiceClient\WSDL\BluePrint.wsdl

10.12.2 How to generate .Net web services code from ISDK WS WSDL
file

Enter the following command line: wsdl .exe /Language:CS /si wsdl_location
xsd_location

Then open the file that you just generated, locate the following line and then change Name
from BluePrintBinding to BluePrint.

[System._Web.Services.WebServiceBindingAttribute(Name="BluePrintBinding",
Namespace="artifact.wsclient.vuelink.cimmetry.com™)]

After you generate the Web services server artifacts using either of the above approaches,
you should create a class to implement each Web services method.

10.13 BluePrint WSDL and XSD

You can access the BluePrint.wsdl and BluePrint.xsl files from the <ISDK install
folder>WebServiceClient\WSDL directory. Refer to the “Installation” section of the
Installation Guide for more information on the location of the files.

11. APPENDIX D - ISDK WEB SERVICES SAMPLE
SERVER

The Web Services Sample Server project is a sample implementation of the Web Services
provider in the C# language and uses the Filesys repository as the backend DMS. For
general information on implementing integrations with the Web Services provider, refer to
section “Steps for Implementing Basic Integration Based on Web Services” and *“Steps for
Implementing Advanced Integration Based on Web Services”.

146

AutoVue Integration SDK - Technical Guide

This sample server implements the Web Services methods defined in the BluePrint WSDL
file. For information .refer to “BluePrint WSDL”.

The ISDK Web Services Sample Server project is located under the
WebServicelntegration/WebSserviceSampleFolder folder. Refer to the ISDK Installation and
Configuration Guide for more information.

Source code for implementing the Web Services sample server, Servicel.asmx.cs, is
provided in the <ISDK Installation
Directory>\WebServiceslIntegration\WebServicesSampleServer\C# directory.

12. APPENDIX E - UPGRADING EXISTING INTEGRATION

This section is intended for anyone who has built an integration based on a pre-20.2 version
AutoVue Integration SDK and is going to upgrade the existing integration to work with
AutoVue release 20.2 and the AutoVue Integration SDK framework of this release
(vuelinkcore.jar).

12.1 Upgrading from the 20.1 Release

1. Replace vuelinkcore.jar in WEB-IN/lib folder with the new one.

2. Replace vueservlet.jar in WEB-IN/lib folder with the vueservlet.jar in AutoVue 20.2
bin folder.

3. Replace jvue.jar, jogl.jar and gluegen-rt.jar in the jvue folder with the files of the
same names in AutoVVue 20.2 bin folder.

4. Run the ISDK 20.2 installer to a different installation folder than your pre 20.2
installation.

5. Copy the esapi-2.0.1.jar file from the <ISDK 20.2 Installation Directory>\
ISDKSkeleton\WebApplication\isdk_skeleton\WEB-INF\lib to your integration’s
WEB-INF\lib directory.

6. Note that file path names are case-sensitive. As a result, you must make sure that the
file paths defined in the web.xml file are correct.

7. Copy and configure the ESAPI property files as described in the ISDK Security
Guide.

12.2 Upgrading from a pre-20.1 Release

1. Replace vuelinkcore.jar in WEB-IN/lib folder with the new one.

2. Replace vueservlet.jar in WEB-IN/lib folder with the vueservlet.jar in AutoVue 20.2
bin folder.

3. Replace jvue.jar, jogl.jar and gluegen-rt.jar in the jvue folder with the files of the
same names in AutoVVue 20.2 bin folder.

147

AutoVue Integration SDK - Technical Guide

4. Update your own DoclD implementation class (for example, FilesysDMSDoclID in
the Sample Integration for Filesys and ISDKDocID in the SDK Skeleton):
e Changing the class declaration from implementing the DoclID interface to
extending the DoclD abstract class.

public class MyDoclD extends DoclD implements DMSDefs { ..}

e Overwrite two new methods:
public String DoclD2String();
public FilesysDMSDoclD String2DoclID(String docid);

For example, the Integration SDK Skeleton has the following implementation in
com.mycompany . autovueconnector .defs . 1SDKDoclID.

public String DoclD2String() {

// Return all fields information as a string with separator
return m_sDoclD;

}

public 1SDKDoclID String2DoclD(String sDoclD) {
ifT (sboclD == null) {
return null;
¥

1SDKDocID doclID = new ISDKDoclD(sDoclD);
return doclD;

5. Replace all method calls to query.getDocID() in your integration to new
MyDocID() .String2DoclD(query.getDoclID()). It is because the
query .getDocID() method returns a String representation of the DoclD instead of
the DoclD object in the DMSQuerylmp class of the new framework. Here MyDoc 1D

is your own DoclD implementation. These replacements are located in actions and
propactions packages.

6. (Optional) In actions and propactions package, replace all class declaration and the

first parameters of the execute () method to eliminate casting of context in your
code.

The com.cimmetry.vuelink._propaction.DMSAction and the
com.cimmetry.vuelink.propaction.DMSGetPropAction interface in the
new framework use generic class declarations and new signature for execute()
method as below. A covariat parameter type AnyContext is used instead of the
original DMSContext parameter in the execute() method.

148

AutoVue Integration SDK - Technical Guide

package com.cimmetry.vuelink.propsaction;

public interface DMSAction<AnyContext extendé DMSContext> {

Bublic Object execute(final AnyContext context, //covariat parameter type
final DMSSession session,
final DMSQuery query,

final DMSArgument[] args
) throws VuelinkException;

package com.cimmetry.vuelink.propsaction;

6ublic interface DMSGetPropAction<AnyContext extends DMSContext> {

public Object execute(final AnyContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args,
final Property property

) throws VuelinkException;

You can change your code to make use of this new functionality. If you do not make
this change, your original code still compiles.

If you change your code, it should be similar to the following code snippet from the
Integration SDK Skeleton and you can use your own context class instead of the
DMSContextimp of the Skeleton.

public class ActionDelete implements DMSAction<DMSContextlmp>, DMSDefs {
private static final Logger m_logger = LogManager.getLogger(ActionDelete.class);

@Override
public Object execute(

final DMSContextlmp context,

final DMSSession session,

final DMSQuery query,

final DMSArgument[] args

) throws VuelinkException {
.. // use of the context variable directly without casting to DMSContextImp

b
public class GetPropCSl_DocName implements DMSGetPropAction<DMSContextlmp>, DMSDefs {

private static final Logger m_logger = LogManager.getLogger(ActionDelete.class);

@Override
public DMSProperty execute(
DMSContextlmp context,
DMSSession session,
DMSQuery query,
DMSArgument[] args,
Property property
) throws VuelinkException {
.. // use of the context variable directly without casting to DMSContextlmp

149

AutoVue Integration SDK - Technical Guide

7. The framework in this release drops support for the vuelink.properties file. You need
to do the following:

e Move all the properties defined in your vuelink.properties to web.xml as init-
param for your servlet.

For example, you can add an initial parameter MyPropertyMoved in web.xml that
is originally defined in vuelink.properties.

<servlet id="csi_servlet _1'">
<servlet-name>DMS</servlet-name>
<servlet-class>com.mycompany.autovueconnector .DMS</servlet-class>

<init-param>
<param-name>MyPropertyMoved</param-name>

<param-value>MyPropertyValue</param-value>
</init-param>

</servilet>

e Any call of getVuel inkPropByName(String name) method in your code

should be replaced with getInitParameter(String paramName) method of
the your context class.

All the initial parameters defined in web.xml for your main servlet are
automatically picked up by the framework and are saved in a hash table of your
context designated to hold all the initial parameters of your context, for example,
in the com.cimmetry.vuelink.context.GenericContext class, it is the
m_initParamters variable. This hash table can be retrieved and set through method
calls of the context class. To save your effort, your context class should extend the
GenericContext class.

Here a sample method call to get the value of the RootDir parameter defined in
web.xml.

package com.cimmetry.vuelink.filesys.actions;

public class ActionOpen implements DMSAction<FilesysContext>, DMSDefs {
public Object execute(final FilesysContext context,
final DMSSession session,
final DMSQuery query,
final DMSArgument[] args
) throws VuelinkException {

String rootDir = context.getlnitParameter(‘'RootDir");

e Any reference to the vuelinkProp variable (defined by the framework Vuelink
servlet previously) should be replaced since this variable is no longer available.

Thus any call of vuel inkProp.setProperty(String name, String
Value) method should be replaced if you had code in your existing integration to
update the vuelinkProp variable after the properties has been retrieved.

150

AutoVue Integration SDK - Technical Guide

0 You can call context.setlnitParameter(String name, String
value) method if your context object is available.

o If you have to modify it during the main servlet initialization stage, you
can realize the same functionality by overwriting the
savelnitParameter(String name, String value) method in
your Context class. For example, if you need to update the value of
MyPropertyMoved parameter previously in the init() method of your

main servlet code, you can do it now in your context class similar to the
follow code:

package com.mycompany .autovueconnector.context;
public class DMSContextlmp extends GenericContext {

public void savelnitParams(ServletConfig config, ServletContext context) {
super.savelnitParams(config, context);

String value = getlnitParameter("’"MyPropertyMoved));
String newvalue = ..; // Process the value
iT (newalue = null) {

setlnitParameter(""MyPropertyMoved ', newvalue);
3

151

AutoVue Integration SDK - Technical Guide

13. FEEDBACK
If you have any questions or require support for AutoVVue please contact your system
administrator. If at any time you have questions or concerns regarding AutoVue, please
contact us.

General AutoVue Information:

Web Site: http://www.oracle.com/us/products/applications/autovue/index.html
Blog: http://blogs.oracle.com/enterprisevisualization/

Oracle Customer Support:
Web Site: http://www.oracle.com/support/index.html

My Oracle Support AutoVue Community:
Web Site: https://communities.oracle.com/portal/server.pt

AutoVue Integrations Forum:
Web Site: https://forums.oracle.com/forums/forum.jspa?forumiD=1190

Sales Inquiries:
E-mail: autovuesales ww@oracle.com

152

http://www.oracle.com/us/products/applications/autovue/index.html
http://blogs.oracle.com/enterprisevisualization/
http://www.oracle.com/support/index.html
https://communities.oracle.com/portal/server.pt
https://forums.oracle.com/forums/forum.jspa?forumID=1190

	1. Preface
	1.1 Audience
	1.2 Related Documents

	2. Introduction
	3. System Requirements
	4. Architecture
	4.1 How it Works
	4.2 Framework
	4.3 Sequence Flow

	5. Integration Design
	5.1 VueLink Class
	5.2 DMSActions Interface
	5.3 ActionGetProperties Interface
	5.3.1 Single Class (Basic Monolithic)
	5.3.2 Multiple Classes (Recommended)

	5.4 DocID Interface

	6. Implementing File View Functionality in your DMS
	6.1 Step 1: Creating Your Main DMS Servlet by Extending the VueLink Class
	6.2 Step 2: Defining Your Unique Document Identifier by Implementing DocID Interface
	6.3 Step 3: Creating a GetProperty action to return User Name
	6.4 Step 4: Creating a class to implement DMSBackend interface
	6.5 Step 5: Creating an Open Action class that returns your DocID
	6.6 Step 6: Creating a Get Property Action to Return Document Name
	6.7 Step 7: Creating a GetProperty action to return Document Date Last Modified and Size
	6.8 Step 8: Creating a Download action to return Document Content
	6.9 Step 9: Implementing Remaining Actions and Registering in web.xml

	7. implementing Advanced integration functionality in your DMS
	7.1 Handling Document Attributes
	7.2 Returning External References (XRefs)
	7.3 Handling Markups
	7.3.1 GUI Response
	7.3.2 Markup Response
	7.3.2.1 Bundling PROP_GUI and PROP_MARKUP
	7.3.2.2 dmsListMarkup method

	7.4 Handling Renditions
	7.5 Returning the List of All Properties of the DMS Document
	7.6 Implementing File Browse
	7.6.1 GUI Request
	7.6.2 Request for Browse Results

	7.7 Implementing File Search
	7.7.1 First Request
	7.7.2 Request for Search Results

	7.8 Handling Versions
	7.9 Implementing handler for Default Property
	7.10 Implementing File Save Action
	7.11 Implementing File Delete Action
	7.12 Creating Your Context
	7.13 Overriding GetProp<CSI Property> classes
	7.14 Implementing Read-Only Markups
	7.15 Implementing Stamps
	7.16 Implementing Markup Policy
	7.17 Online/Offline Support
	7.18 Implementing Redirection
	7.19 Implementing Real-Time Collaboration and Meeting Management
	7.19.1 Launching AutoVue in RTC Mode
	7.19.2 Hosts Initiate RTC
	7.19.3 Guests Join RTC
	7.19.4 ISDK APIs for RTC
	7.19.5 Summary

	7.20 Implementing Oracle Enterprise Visual Framework Support
	7.20.1 Most Common Use Cases for OEVF
	7.20.2 OEVF Launching URL and Parameters
	7.20.3 OEVF Customization Page
	7.20.4 ISDK APIs for OEVF
	7.20.4.1 ActionOpen
	7.20.4.2 GetPropCSI_Markups
	7.20.4.3 ActionSave
	7.20.4.4 ActionDelete

	7.20.5 DOCID

	7.21 Implementing UI Customization
	7.21.1 Embedded vs. Pop-up Window
	7.21.2 Pop-up Blocker
	7.21.3 Prompt to Save

	7.22 Returning DMS Name
	7.23 Leveraging AutoVue Web Services
	7.23.1 Configuring AutoVue Web Services to Communicate with Integration SDK
	7.23.2 Utilizing AutoVue Web Services at Front End
	7.23.2.1 Thumbnail Generation
	7.23.2.2 Streaming File Generation
	7.23.2.3 Converting Document to Other Formats

	8. Appendix A – integration SDK Skeleton
	8.1 Integration SDK Skeleton Packages
	8.2 Integration Steps for Implementing File View Functionality
	8.3 Integration Steps for Implementing Advanced Functionality

	9. Appendix B – Sample integration for filesys
	9.1 DMSActions
	9.2 Backend API
	9.3 Filesys DMS Backend system Structure
	9.4 Sample Integration for Filesys DMS Use Cases
	9.4.1 Core Use Cases
	9.4.1.1 ActionOpen
	9.4.1.2 ActionDownload
	9.4.1.3 ActionDelete
	9.4.1.4 ActionSave
	9.4.1.5 ActionGetProperties
	9.4.1.6 ActionSetProperties

	9.4.2 Backend use cases
	9.4.2.1 Get Document Instance
	9.4.2.2 Manage Renditions
	9.4.2.3 Get XRefs List
	9.4.2.4 Manage Markups
	9.4.2.5 Get Versions List
	9.4.2.6 Get Children Instances

	9.5 Known Limitations

	10. Appendix C – iSDK Web Service Client
	10.1 Introduction
	10.2 Architecture
	10.3 How it Works
	10.4 Web Service Client Package
	10.5 Sequence
	10.6 Configuration
	10.7 WSDL Location
	10.8 WS-Security
	10.8.1 HTTPS-Basic Profile
	10.8.2 HTTPS-UserName Token Profile (Metro)
	10.8.3 HTTPS-UserName Token Profile (WebLogic)
	10.8.4 Other WS-Security Profiles
	10.8.4.1 Extending WSHandler

	10.9 BluePrint WSDL
	10.9.1 Web Services Methods
	10.9.2 BLUEPRINT XSD

	10.10 Steps for Implementing BASIC Integration Based on Web Services
	10.11 Steps for Implementing Advanced Integration Based on Web Services
	10.12 Sample Approaches to Generate Web Services Provider Artifacts
	10.12.1 How to generate Java web services code from ISDK WS WSDL file
	10.12.2 How to generate .Net web services code from ISDK WS WSDL file

	10.13 BluePrint WSDL and XSD

	11. Appendix D – ISDK Web Services sample server
	12. Appendix E - Upgrading Existing Integration
	12.1 Upgrading from the 20.1 Release
	12.2 Upgrading from a pre-20.1 Release

	13. Feedback

