ORACLE’
PEOPLESOFT ENTERPRISE

Enterprise PeopleTools 8.51
PeopleBook: PeopleCode
Developer's Guide

October 2011

ORACLE

Enterprise PeopleTools 8.51 PeopleBook: PeopleCode Devel oper's Guide
SKU pt8.51tpcd-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhihit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

Theinformation contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software” or “commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in avariety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create arisk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
PeopleCode DevelOper'S GUIAE PIEfACEccoiiiiiiiieisiriesie et XV
Overview of PeopleCode DeVEIOPEr'S GUIAEcccouiiiiiieie ettt sttt b sre e sre e XV
PeopleCode TypographiCal CONVENTIONS cciiiiiiiieriresie ettt bbb sn e b e XV
PeopleBooks and the Peopl€Soft ONliNe LIDIary ..o XVi
Chapter 1
Getting Started With PEOPIECOUEcc.eoiiiiceee ettt tesbesneenee e nes 1
PEOPIECOAE OVEIVIEIW ...ttt ettt e s be e te et e st e s beeae e tesbesaeeseeeesbeeaeestesteaneensestestesnnenteneens 1
Creating PeopleCo0e PrOQIaIMIS oiiiiieirierierieiei ettt sttt sttt st b bt b et e b e e e st et ne e 2
Chapter 2
Understanding the PeopleCode LanQUAagEccccceieiieieiiesieeeese et te sttt enaesaesresreennenre s 5
PeopleCode LangUage SITUCLUINE ooiiieeeeenieses ettt b e s e e e nr e nnenn e 5
D= = R <= OSSPSR 5
ConVENTioNal DA TYPES ...veiuiieeeeieie sttt sttt b et b bbb sttt et et st e bt e e s e e nne e 6
(@ o L= ot DT = I8/ === S 7
(001001001 01K TSRS TP PR PRPR 9
Rtz 1= 11 1RSSR 10
RS 72 = 0] £ TP RPROURPPTO 11
ASSIGNMENT SALEIMENTS ...t e st e b e e ae e tesbesbeese e tesaesaeensestesneenseseenrennes 11
LaNGUBJE CONSIIUCES eitiiieierie sttt sttt sttt st se e b s e e e e s bt e e e b e sb e e s e e e e besre e e e e e sreeneeneneas 11
BranChing SEALEMENLS oooiiiii e e e st r e b et e et e e s aeesbeesae e beesteesreesreesaeenrnennnas 12
(@0 0T [} rTo gL I oo o1 15
0o 1o OSSP 15
T 0] 1] =0 U o S 16
FUNCEION DEFINITIONS ..ttt sttt ettt b et et eb e st et e e e e enenre s 16
(0Ll o gl = o == 1 o R 17
00T o I SRR 17
FUNCLION REIUM VAIUES ...ttt ettt et ae et et s reesa e tesneeseenaestesneeneeneas 18
Function Naming CONFIICES coiiiieeei e 18
(o= o] 1RSSR 19
EXPression FUNAAMENLAIS coiiieiiieiiere ettt sn e nne s 19

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

CONSLANES ..ottt ettt bt e bt e bt e b e e s be e ehe e e he e R e e R e e R e e eRe e aheeeReeeRe e ReeaReenbeenheenReenreenrean 19
FUNCLIONS 8S EXPrESSIONS ...ttt st bbbt e ettt e e 21
SYSIEM VATADIES ... et n e e et b e e s e e e st r e nn e 21
= = T oS 21
RECOIrd FIEld REFEIENCES ...ttt sre e te s aesne e e e tesneeneenaenees 22
Definition NamMe REFEIENCES oieeeee ettt sttt s e et e e e stesneeeeseeseeeneenseseeneeas 23
PeopleCode RESEIVEA WOIAS ooiiee et st b e et e e e be s ae e e e e beeneeneenras 24
V= = o] 1= 26
SUPPOIEd VariallE TYPES ..t re e te st e e te e e e ee e ae et e et e et e et e e ste e beebeenbeente e teereenes 26
USer-DefiNed VariahlES ..ottt bttt 27
User-Defined Variable Declaration and SCOPE cccoveeririirieieeiresie et 27
VariaDl@ DECIAIEIION ...ttt e s te s ae et e teseesne e e e stesneeneeseeseeenneneens 28
User-Defined Variable INItIaliZation cccoeiiiiiiieeissee s st 29
RestrictionS ON VariaDl@ USE ..ottt st sae s teeneeaeneenneas 29
SCOPE Of LOCAl VANADIES ...ttt st st sttt e et e e e e e eneeenee s 30
Duration of LOCAl VaiaDIES oeeieieeseees ettt 30
VariableS and FUNCLIONS ooeie ettt sttt et e s tesreeneentestesneeneenneas 31
RECUISIVE FUNCLIONS ...ttt sttt sttt bbb e e et e e bens et et enennenes 32
State of Shared Objects Using PeopleSoft Pure Internet ArchiteCturecccoocvveecevie e 32
(O 0= = (o= PO PRTPR 33
V= g @] o < = (o (= RS 33
Operations 0N DaES @Nd TIMES ooviiiiiiii ettt b et e st b e b e e benbe b e e e e b 34
SUNG CONCAENGLION ...ttt e et b e e st s e bt e e s e e e b e nb e e s e nn e e eseenese e s enneneas 34
(@@ o= - (] SRS 35
COMPATSON OPEIBLIOIS eveeeueeueetertestese ettt sttt et ese st st e s e e e st sse b e s e e e e st e seebesbe s e e eseeb e s b e ne e s eseebeneenbe s eneens 35
Yool 0[O o1 g (] £ SRSR 36
Chapter 3
Understanding Objects and Classesin PeopleCOUEcccviveierereiieie et 39
(O Sy= ToTo [o)1= £ TSSO 39
ClASSES o.uiitiiteieeete ettt et e st et ettt et et et e seeae e te s e e st e st e Re e Re R et e Rt e Rt eR e A et e Rt e Rt e ReeRe e et eReeReeteete e eneereetenreneenen 39
L@ o= ox =S 40
(@ o 1= ot B F 1S = 1 (= (oo USSP 40
Creating and USING ODJECESoviieieiiriisieieei ettt bttt sttt nb b e e s 40
TS = LU= (T 00] o] = £ 41
(@1 7= 10 o TH Lol 0] 0= (1= 41
INVOKING MEINOOS ...ttt bt b et e et et nb b e 42
L0007/ 7o T @ o] ="t £ 43
F NS T 1T 0o L o=t £ PR 43
PESSING ODJECES ...ttt b et b bt b e bt b s e s e e e h e bt nE R et e e Rt R e e e r e r e r e 44

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 4
Referencing Data in the Component BUFEN ..o e 47
Understanding Component Buffer Structure and CONtENESccooviieieie e 47
Component BUFTEr CONTENTS oouiiiiiiiieiisie ettt bttt nb b e ens 47
ROWSELS GNA SCIOI ATEES ...ttt ettt e e seeeae e e e s beseeeneetesaesreeneeseesneeneeneas 49
Record Fields and the Component BUFFEr ccuo it st 50
Specifying Datawith Contextual REFEIENCES ooveiriiiieieee s 51
Understanding CUrrent CONTEXTE o.uiieeiieeeee ettt eeseeseeeneeaesneeneeneeseesneeneeseas 51
Using Contextual ROW REFEIENCES ocviiiiiecece ettt st st st pe e enas 53
Using Contextual Buffer Field REFEFENCES c.ooviiiiiireec e 54
Specifying Data with References Using Scroll Path Syntax and Dot NOtationccocceveveeerenencene e 56
Understanding SCroll PatNS ocueeiiii ettt sttt sttt re s e e e r e reennenas 56
Structuring Scroll Path Syntax in PEOPIETO0IS 7.5 ocuiiiieieeeeeee e 56
Referencing Scroll Levels, Rows, and Buffer FIEldS ..o 59
Chapter 5
ACCESSING the DAta BUFTEr ...t r e 67
Understanding Data BUFfEr ACCESSocviiiiiiiiticieie sttt st sttt st ae et te et e st e ere e e e tesne e e e seesreens 67
Dz ez Y T oo S 67
o0y O =TS 67
Data Buffer Model and Data ACCESS CIASSES uevviieuirieriirierieiee sttt st 68
Understanding Data Buffer ClasseS EXAMPIESccoeiiiiiiieenese e 68
Employee Checklist Page SITUCIUIE ocveeece ettt ettt et e enneens 69
Object Creation EXAMPIES oiieeee ettt st e e e s re e e s te s re e e st e sreeneentesresreeneenes 72
Data Buffer Hierarchy EXaMPIES cooiiiiieieiestee st 78
0TS = Sz 4] o] 1= TR 82
Hidden WOrk SCroll EXAMPIEoouiiiieieieireee sttt 84
Understanding CUrrent COMEEXE c.oeeirrirreeeieiesies e se e e s e se s n e e s e ene s nenn s 85
Accessing Secondary Component BUFFEr Data ccccovveeieeiiniciece ettt 87
Instantiating Rowsets Using Non-Component BUFfer Dataccooeveieirenineneecses e 87
Chapter 6
PeopleCode and the COMPONENE PrOCESSON cccciiiiiiiie e steeeese et e sttt se e aesresre e e e e e 89
Understanding the COMPONENT PrOCESSON c.ciiiiirieieeiriisieseese sttt sn e sne e sneneneas 89
Events Outside the Component ProCeSSOr FIOW coicuiiieie ettt 89
Peopl€CO0E Program TIIOOEIS .ocooeeeirierieieieie sttt sttt e ettt e s et e bt st e b e e e st b b e e e 20
Understanding PeopleCode Program TIQOE'Scoiiieeereieeeeese e see e sseeee e snesneeneas 90

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Contents

Accessing PeopleCOUE PrOQraMS ccciuiiuiiieiieiieeecite e te e s e s te s e et stesreeeesbesbe e e e stestesseensessesreeneessesneens 91
Associating Execution Order of Events and PeopleCodecccoveiininicnineseeesese s 93
Component ProCeSSOr BENAVION coueiiiriiiiieeee ettt b e sn e b sn e n e enennen 96
Component Processor Behavior from Page Start to Page Display cceeceeve e 97
Component Behavior Following User Actionsin the COmponent coeveieienineneneeienese e 98
PrOCESSING SEUENCES ...eieeeiiieieie ettt ste sttt et e st et e e e st e e ae e eeseeeseemeeeeseeeseeneesaeemeeneeseesnesnsenseseeeneensensens 100
FIOW CREITS ..ottt et b bttt b b st et et e bt nb e b e st et e nenbenaenbenees 101
DEFQUIT PrOCESSING ..ottt sttt bbb e e e et bt e e e e e e e b e b e nn e e 102
Search Processing in Update MOUES oo it 104
Search Processing in AAd MOOES ouiieie et st s e e re e 108
Component Build Processing in Update MOUES ..o 111
ROW SEIECE PrOCESSING .eiieeiieiieiieiieseeseesesstestesaeesseesseessessasesatesssesseesseessessneesnsesnsessesssessnessnsesnsesnsens 112
Component Build Processing in Add MOUES c.ocueeiiiieiieece ettt s 115
[T o 1Y/ oo [1o 4 o] o I 116
ROW INSEIT PrOCESSING .eeeiveeieeiieiteesteesteesieeseeseessesstesssesssesssesssesssesssesssesssessaesssesssesssesssesssesssssssssnesssnnss 119
R0 A BT Fc (= o 0101 s o P 121
BULLIONS ...ttt ettt e sttt e e ae e e s st e s abe e e Re e e e se e e e Re e e Re e e saEe e e Re e e Re e e Re e e aRee e snreesareeeneeeanes 123
0] 0105 PSSR 123
POP-UP MENU DISPIAY .ottt ettt 124
SElECLEA [TEIM PrOCESSING ..oveueeieeieriisteieee ettt b s et s e s e e b e b nn e e et e b e sn e ren e e s 124
S VL 01015 T o RS 125
PeopleSoft Pure Internet Architecture Processing CONSIAErationS cccccevererieneeienenenieseeese e 127
Deferred ProCESSING MOOE ovieiiiiiiteit ettt e et s b nn e e e enenn e r e 127
S0 01 oo L=l Y= o] (RSP 130
F o A= (= Y | S 131
LTS o @ gtz T Lo Y = o | S 131
FIelODEfBUIT EVENT ...ttt sttt e et s bt et 132
L= o | o Y= o | SRS 132
L= o Lo 01U = = o P 133
ITEMSEIECIEI EVENT ..ottt bbbt bttt b e bbb e s nns 133
[0S U] o I | S 134
(= =01 Lol Y | USSR 134
(= 0] 01 Y = o | S 134
ROWDEIELE EVENL ...ttt et et s se et e te s seeneeseesteeseensensesreeneensesneeneenennees 135
ROWINIT BEVENT ettt bttt b e s b st e e e sbe b e et e s besbesse et e sbesneeneeeenne 135
ROWINSEIMT EVENT et ettt bttt b e a e b e s b e s bt e ae e b sb e e ae et e b e s ae e e e neennis 136
ROWSEIECE EVENL ..ot sttt e e te e e e e steseeeseeteseesneeneensesneeneeseeseeenen 138
SAVEEAIT EVENT ..ottt ae st bt R e et e e ne e 138
SAVEPOSICNENGE EVENT ...ttt 139
SAVEPTECHANGE EVENT ...t r e n e 139
ST LT Y o | OSSR 140
S o S Y Y| S 141
LAY o L TV Y = o | PR 142
PeopleCode Execution in Pages with Multiple SCroll Ar€ascccccveveeecce i 142

Vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 7
PeopleCode and PeopleSoft Pure Internet ArChite€CtUreocoovoiviieiieinisiseseees e 145
Considerations Using PeopleCode in PeopleSoft Pure Internet Architecturecccccooeveeceiececeecienn, 145
Using PeopleCode with PeopleSoft Pure Internet ArchiteCturecooeoeinineneneieneseseeeee e 146
USING INEEIMEL SCIHIPLS .ottt s et r e e n e e s nnenn e 146
Using the Field ObJect SEYIE€ PropEItY ocveceeeee ettt s ne e sne e 146
USING TNE HTIML ATBA ..ottt bbbttt e et b bt 147
Using HTML Definitions and the GEtHTMLTEXt FUNCLION oveoeieiie e 148
Using HTML Definitions and the GetJavaScriptURL Method ..., 149
Using PeopleCode to Populate Key Fieldsin Search Didlog BOXES cccevvvvveeienc e 150
Calling DLL Functions on the APPliCation SEIVEr cociiiiieeereeeee et se e eeas 150
Sample Cross-Platform External TeSt FUNCLIONooeeiiiiiiceeese e 151
Updating the Installation and PSOPTIONS TaDIES ccviiiiieeiisieee et 153
Chapter 8
Using Methods and Built-1N FUNCLIONSc.coiiiiiiiieeeeeesi et 155
Understanding Restrictions on Method and FUNCLION USEoocieiiecicce et 155
THINK-TIME FUNCLIONS ...t b ettt bbbttt b e b 156
WinMessage and MessageBOoX FUNCHIONS coiiiiiieirierieseeeese et 157
Program Execution with Fields Not in the Data BUFfer —........ccooveiieiiecieecece e 159
0 ESY= 10 I VAT g T 0TSSP 159
(1035 Y= o £ o TSNP 160
Record Class Datahase MEthOOS ooiiiiieieeeee ettt st ee e 160
SQL Class Methods and FUNCLIONS c.cccvieiiiiiiieie ettt et st s sre s nesaresabesabesaresaneeanesanesnnesane 160
Component Interface Restricted FUNCLIONS cocooiiiieiieie e 161
Searchinit PeopleCode FUNCtION RESLIICHIONS oouiiiiceeece e 161
CallAPPENGINE FUNCIION ...ttt bbb e 162
REUNTOSEIVEr FUNCHION ...ttt st e ee et e tesae e e e s e sbeeneeneeseennis 162
€Tz o LN W 0t (o) o SRR 162
GetGrid and GetANaYtiCGIid FUNCLIONS ccuoiiiiiiiiiieieeeese e 163
[0S 1Y/ = € To o SR 163
Y0 S0 U 1= =1 o SO PR 163
IMmplementing Modal TraNSFEISc.oiiiieeec ettt bt n e e 163
Understanding Modal TranSferS ouooeeeeieeere et sttt ee e seeens 163
Implementing Modal TraNSFErS ...cc.ecciii e e ae s resreenaenbenre s 165
Implementing the MUlti-ROW INSEI FEAIUNE oooiiiiicieeeee e 166
Using the IMageREferenCe FIEIT ..o e st e e e 167
Inserting ROWS USING PEOPIECOUE ocueeieciecectese ettt sttt st s saesteenaesenre s 168
USING OLE FUNCLIONS ..ottt sttt s ettt bt n e b e s s e 169

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

Understanding OLE FUNCLIONS cooioiiiiiiccsie ettt sttt st s e ettt sne e e e e sreens 169
USING the ODJECE DA TYPE ..oveieiiiieieiesiese ettt sttt sttt bt ne e 169
Sharing aSiNgIe ODJECE INSLANCE c.ooiiiiiiirieeeeeer e 170
Using the Exec and WINEXEC FUNCLIONS ccoiuiiiiiieiiisieceesie sttt sttt eae st aaesaesresreennennens 170
Using the Select and SEleCtNEW MELNOGS ..o 171
Understanding the Select and SelectNew Methods ooeoii e 171
USING the SEIECt MEINOU ..o st sttt s ae e e tesreens 172
USING SEANAAIONE ROWSELS ...ttt b et eb et b et s bt e e e e b nns 174
Understanding Standalong ROWSELS oeciieiiiiie ettt ettt et et 174
USING thE Fill MEINOO ...ttt st st sre e ae et e s resae e e e re e 174
USING the COPYTO MEINOU ooeeiiieeeees st b e et besn e 175
Adding Child ROWSELS ...ttt e e sre e s ae e s b e e s re e sre e saeesaeesneesneesreesneesneesneesnees 175
Using Standalone ROWSELS tO WIHIE @ FIl€ oceeeeiieceee et s 176
Using Standalone ROWSELS IO ReBT A 1€ cvoiiiiiiee e 178
USING Errors and WaININGS ..c.ecceeieeiee e seeseesieeseesteesteesteesteeste e teesteesaeesseenseenseesesssesssensessessessesssesnsenns 180
Using Error and Warning SYNEBX ...cc.ccceieeeeiienieieeeeseesieseesaestesresaessesresseessessessessssssessessssssessessesssensens 180
Using Errorsand Warnings in EQit EVENES ..o 180
Using Errors and Warnings in ROWSEIECt EVENES ceoiiiieiece ettt sttt st 181
Using Errors and Warnings in ROWDE ete EVENES ccooiiiiirinieicereseeeees e 182
Using Errorsand Warnings in Other EVENES ... 182
UsSIiNG the REMOLECEll FEAIUMEccviiviieeeeece ettt sttt et st sae e e e s resbeeaaesaesresreenaentens 182
Understanding RemoteCall COMPONENLS c.oiveiiiriiriiieieese st 183
Deciding Between RemoteCall and PeopleSoft Process Scheduler ... 185
Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall ..., 185
Chapter 9
Using HTML Treesand the GenerateTree FUNCLIONcccccoiiiieiineiieere e 187
Using the GenerateTree FUNCLIONcccciiiiieii ettt st e s aesreese e tesaesreenaennesneens 187
UNderstanding HTIML TEEES ..ottt ettt et eseeene e e sbesreeneenesaesneeneenes 187
BUIIAING HTML TrEE PAgES ...ocveitiieeieieirieste ettt sttt sttt sttt nn s 188
Using HTML Tree ROWSEL RECOIAS ...ocviiiiieieieiiesieeiesie sttt e sae st sne e aesne e e saesnesneenenneas 189
Using HTML Tree ACtIONS (BVENLS) ooiiieeeeeee ettt st ee 192
INITTAIIZING HTIML TIEES oottt sttt b e sttt e nbe s 193
Processing Events Passed from a Treeto an APPliCatioN cccevevieeenini e 196
Adding Mouse-Over ADility t0 HTIML TIEES ...oveiieie et 201
Adding Visua Selection NOAe INQICAIOIS cceeeirieriiieinisiesie e 202
o Lc ol A T @Y= g o Lo = S S 202
Chapter 10
Working With File ATtaChMENTSc.ooeee et e e nre s 203

Viii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Understanding the File Attachment FUNCLIONScoi oottt 203
PeopleCode Built-in File Attachment FUNCLIONS ..o 203
Understanding the File Attachment ArchiteCture ..o 207
Understanding File Attachment Storage LOCALIONScceeviiiiieieie et 209
Understanding Storage LOCation URLSooiiiiiiiieiiieeeeeese et 210

Developing Applications that Use File Attachment FUNCLIONSoocoiiiiiieiereeeeere e 211
Application Development ProCeSS OVEIVIEBWccvcieieiieiiecie ettt sttt sre e e 211
Delivered ReCOrd DEfINITIONScoicviieiiiiiiee ettt s ae st e seesaesneeneeneenees 212
Managing Entriesin File REFErenCe TablESccooeiiie e 214
Using the PeopleToolS Test ULIITIES PAgEccvcveeeeee ettt 215

Application Development CONSIAEIaHIONScoviririirierieirese et e s s b e e 216
File Name CONSIAEIALIONSccoiiieeeiere ettt sttt e eeeste e e e e seeseeeneeeeseesreeneesesneeneeneenes 216
Restrictions on Invoking Functions in Certain PeopleCode EVENtSccococvvvceeieve e 217
Converting File Names for Files Uploaded by PULATEAChMENTccooviiiiieicerereeeeese e 217
Considerations When Using COpYAHaChMENTSc.ooiiiiiii et 218

Application Deployment and System Configuration CONSIAErationSccceceveiieieereseneese e seeeesie e 218
File Attachment Functions in an Environment with Multiple Application Server Domains 218
Configuring the Web Server to Support Additional MIME TYPEScceeveeiieceeece e 219
SEtting UP ViIFUS SCANNING ...voviieiieieitisiesie sttt s et eb st ne e e ese b e nae e 220
Considerations When Attaching TEXE FIlES ... 222
File AttaChment ChUNK SIZEcooiiiiee et 223
Using the Copy File AttaChmMEeNntS Page ..ot e 223

Debugging File Attachment ProbIEMSoii e 223
Enabling Tracing on the Web Server or AppliCation SEIVErcccovceeeeve i 224
Problems with Transfersto and from FTP SITESccvvveeiiiicere e 225
Attachments with NON-ASCI FIIE NGIMES ..ot 226
Problems Uploading FIlESoci ittt st s b e s re e et s reeneenne s 226
Problems DOWNIOadiNG FIIES ..o 226
Passing Error Messagesto the ENA USEYNoceiii sttt s s e 227

Chapter 11

Accessing PeopleCode anNd EVENTScccoiiiiiiieeeiresiesiee st nesn e nne s 229

Understanding PeopleCode Programs and EVENES ccooviiieeieie et s 229

Understanding Automatic Backup of PEOPIECOUEccoiiiriirieiiirise e 230

Accessing PeopleCode in Application DESINEN cocveiieiic e se e e e reesre e e e re e sre e sreesre e re e reenaeens 230

Accessing Record Field PEOPIECOUEc.ooui ettt sttt sre e e 232
Understanding Record Field PeOPIECOUE ocvoiiiiiriieieeeeie e 232
Accessing Record Field PeopleCode from a Record Definition occovvvviv e 233
Accessing Record Field PeopleCode from aPage Definition ... v eeecici e 234

Accessing Component Record Field PEOPIECOUEccooiiiiriiieeeesiereeeeees e 236
Understanding Component Record Field PeopleCodeccccceeieeiec e neeens 236
Accessing Component Record Field PeOpIeCOTE ..o s 236

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

Contents

Accessing Component ReCOrd PEOPIECOUEccouiiiiiiiieiiiieseeie ettt ettt s eesresbe e e saesresreeneenne s 237
Understanding Component Record PEOPIECOTE ccooeiiriiriiieireseseees e 237
Accessing Component Record PEOPIECOOR cccoiiiiiiiiieerre e 238

Accessing Component PEOPIECOMEcoeiieie ettt st s r e e r e st e e ne et e srenreenes 238
Understanding Component PEOPIECOOE ooueiiiiiiiieeees e e 239
Accessing Component PEOPIECOME cc.oiuiieeieiieeere ettt r e e seesne e e e 239

ACCESSING Page PEOPIECOTEo.eeeiiieceeee ettt et st e s be st e e e e be s beereeneenbesreeneenrens 239
Understanding Page PEOPIECOTER oeoieiiirieee ettt 239
AccessiNg Page PEOPIECOUE ocieeieie ettt ettt et et e e ne e e ene e e neesneennnas 240

Accessing Menu [tem PeoplECOOEcocoieiieie ettt st s re e e st e sne e e renreenes 240
Understanding Menu 1tem PEOPIECOTE ooiveieiriiiiieeeee e 240
Defining PeopleCode POP-UP MENU ITEMS ooiiii et s 241
Accessing Menu [tem PeoPIECOOE ccviviiieiece ettt s ne e 241

Copying PeopleCode with aParent DEfINITION cccoiiiiiiiicenereee e 241

Upgrading PeopleCode PrOgramS coeiiieiieiie e s e s e s e stee s e s ste s ste e e e sae e s e e st e sre e sreesneesneesseesseeseeeses 242

Chapter 12

UsiNg the PeOPIECOOE EQITOr c.ooieeee ettt sttt ae e e e e e ae e e s eeseeeneeneens 243

Navigating Between PeopleCode PrOgraMS ccecieiiieeiie et se e ste sttt sse e saesresreens 243
Understanding the PeopleCode Editor WINCOW —cooiiieiiiiniseeeeese e 243
Navigating Between Programs Associated With a Definition and Its Childrenccccveevvvieenee, 245
Navigating Between Programs Associated With EVENS ..o 245

USiNG the PeoPI@COUE EQITONcceiieiiiieiieieieie sttt r e r e nennenn e 246
Understanding the PeopleCode EItOr ..ottt s 247
Writing and Editing PEOPIECOOE ocuoiiieieeiceee e 247
Find and REPIACE DIAI0OGS ecuveueiiiiiiiieeeeeeeie et n e nn e 248
(€70 TN I J B IT- oo [249
Validate SYNAX ULHTITY oottt b 249
Formatting Code AULOMALICAIIY o oot s eee s 250
Using Drag-and-Drop EItING ooeeieiiiieese ettt st st srens 250
Accessing PeopleCode EXternal FUNCLIONS cc.ooiiiiiiiiieceecseese et 251
Accessing PeopleCode Application Packages and Application Classescccocvveeveveveecenene e 251
Accessing Definitions and Associated PeopleCode cocvviiiiciece e 253
ACCESSING HEIP ettt bbbt s bbb e et b e e ens 254
S U110 U0 1 o [T o 254
Changing Colorsin the PeopleCode EQITOrcccoiiiieeiesiieeese s 255
Selecting a Font for the PeopleCode EITOr ... 255
Changing Word Wrap in the PeopleCode EQItOr ccceeiieiiciieesee e eseeseesee e sre e sae e neeens 255
Using the PeopleCode EVENt PrOPErTIEScccceiiiiiiciece sttt st s 257

Generating PeopleCode Using Drag-and-Drop ..ot 257
Generating Definition REFEMENCES ocei i snnas 257
Generating PeopleCode for a Business INTErTiNK ..o 258

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Generating PeopleCode for a Component INtErface ..o e 258
Generating PeopleCode for @@ LayOUL coooeiiiiiriieeenese s 259
Chapter 13
0L gTo R aT= TS @ T I o 1) (o] S 261
Understanding the SQL EditOr WINCOWcooiiiiieieinisese e 261
Accessing SQL Definition PrOPEIIES ocuiiuieeiiie ettt st ae st ennenaesre s 262
ACCESSING the SQL ETITOr ..ottt b e e e e nre s 263
Creating SQL DEfINITIONS ooiiieieee ettt st s e et tesaeene et e eesneeneeseeneas 263
Creating Dynamic View or SQL VIiew RECOIAS cccoiiiiiiicie ettt st 264
Accessing the SQL Editor from Application ENgine Programsc.cceierieninenenesesese e 265
L0 S T 0Tt TSI I o] (o] S 266
Chapter 14
Creating Application Packages and CIASSESccoieiririrenieieesiesesre e 269
Understanding Application PACKAQESc.ocieieiiie ettt st st ene 269
Creating APPliCation PACKBOEScoiiiieiiiiiieeee et 270
Understanding Package NaMEScc.eoiieiie e s e s et e s sre e e e s e s re e s re e sressreesreesneesneenreens 270
Creating Application Package DEfiNItiONSccovviiiieie i 271
Using the Application Package EitOr ..o 272
Editing Application PaCkage ClaSSES uiiiiiii e see e see et e e e s e sre e e e s e e s ae e s te e ste e sreesreesneesseesseesrenss 273
Chapter 15
(DT o 1800 o [T To I do 1N 1 g AN o] o] 1T o= § o] o NS 275
Understanding the Peopl@Code DEDUGUES cviiiiiirirerierieieesie sttt s nnas 275
Accessing the PeopleCode DEDUGOEr o.ooeieee et see e ens 275
Using PeopleCode DeDUGOEr FEAIUINESccoiiiiieie ettt st e st nee e 278
Visible Current Ling Of EXECULTON ocuoiiiiiiirieieceiesie ettt sttt 278
ViSIDIE BreakPOINTS ..ottt bbb b e e bt e n s 278
L 01 110 ot R 279
ST ale L= B o U o o = OSSP PT PSPPSR 279
VaTADIES PANES ..ottt st e e te s te e st et e s beese et e eeeereeneenteereene e tenrenrens 280
Call SEBCK PANE ...ttt sttt bt et e be s s et et e st e Re et e st et et e neeneeeeneenenneas 283
Setting Values for Variables and PrOpertieS ... e 285
General DEDUGUING TIPS .veveeruirieriereeieess st s s s e s s s et e b e sr e s e e e e ese s b e ss e s e e eseenenrenneneneas 286
Using PeopleCode Debugger OPLiONS cceciiiiiiceesiese sttt sttt st re s reenaenne e ens 288
Setting Up the Debugging ENVIFONMENT ocuiiiiiiiiieeeese ettt 291
Compiling All PeopleCode Programs @t ONCE cceereerireeierieseseeesee e seeeeesee st eeeeesee e eseeseesneeeeseesees 292

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. Xi

Contents

Xii

Setting PeopleCode Debugger LOg OPLiONS cc.eciiiiiicce ettt st st s sn e s 293
Interpreting the PeopleCode Debugger LOG FIlE ... 295
LOG FIlE CONLENES ...ttt b b e st b e b e e n et nn e nenn e 296
Other HEMSINTRELOG FIE ... r et b s re e e e ne e 296
USING APPIICALION LOGUING eouveueeiirtirtiteieieesestestesee ettt be s s e s st st e e se bt b e b e s e e ese st e b e nn e s ene s 297
Setting the Application Log Fence in the Configuration File ..o 298
Using the Log Fence with PeopleSoft Analytic Calculation Engingcccoooveeevevvcecceve e 298
USING ThE FING TN FEBIUMNE ...ttt bbbt b b n e 299
1S o Yo I o @ I T =" o (o o 302
UsSiNG Cross-REFErENCE REPOMS ccveiviiieie ettt sttt st s b e e e e tesbesre et e sbesaeennesrenras 302
Chapter 16
IMProving YOUr PEOPIECOUE cvieicecee ettt st ettt st st b e s re et s be e e nesreens 305
ReEAUCING THIPSTO T8 SEIVEN .ottt b bbb b b e 305
(o011 1o TS = VL= I T 0 306
USING DEFEITEO MOUE ...ttt ettt st st a e e re e e e te s aeeaeeeestesaeensesrenrennes 306
Hiding and Disabling FIEIAS cuoiiiicee bbb 307
USING the REFFESN BUITON ooii ettt s ae e s ae e sre e saeesneesneesneenneas 307
Updating TotalS and BAl@NCES ccuiieeiiiecieciee ettt sttt s et e tesne e e e seenreens 307
USING WarNiNG MESSAES ooviieuieiieiiriesteieeeste st st et sb st s ettt s e e e b st e s e e e seese b e ne e s e e enennenne e 308
Using the Fastest AIQOrtm ... e et e enee e s 308
Using Better Coding Techniques for Improved PerformanCe ... 308
RUNNING @ SQL TTACE ...ttt b s et s bt b s e b b s e e ene e 309
OPtMIZING SQOL oot e e e st e s tesbe et e sbesaeeseentesbeereesestesaeenseseesteeneentans 309
Using the GetNextNumberWithGaps FUNCLION ... 309
Consolidating PeopleCode PrOgramS cccoeiiriirieieeinesiesiee st 309
Moving PeopleCode to a Component or Page Definitioncccccvveeieiiii e 309
Sending Messages in the SavePoStChange EVENT cceoviiiiiieeesese e 310
Using Metadata and the ROWSEICACNE ClaSS ooieiiiieeeeees e e 310
Setting MaXCaChEMEIMOIY ooiiecce ettt b e e e et s be e e e s resresaaetesresreennenrens 310
Writing MOre EffiCIENT COUE ...ttt nne 310
Writing More Efficient Code EXamPIES ..o 315
Searching PeopleCode for SQL TNJECLION c.eoiiiececece e st 320
Preventing SQL TNJECTION ..ottt bbbt s e nnenn e 321
Appendix A
PeopleCode EdItor SNOMt CUL KEBYS ..ottt 323
Short Cut Keysin the PeopleCode EQITOroccoiiiiiieere et 323

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. Xiii

PeopleCode Developer's Guide Preface

This preface provides an overview of the PeopleCode Devel oper's Guide and lists typographical conventions

used in PeopleCode.

Overview of PeopleCode Developer's Guide

This PeopleBook covers the concepts of PeopleCode, the programming language used in the development of

Oracle's PeopleSoft applications. Its chapters describe techniques for adding PeopleCode to applications, tips
for using PeopleCode, the interaction of PeopleCode and the Component Processor, and a number of other
specialized topics, such as the use of the PeopleCode debugger and referencing data in the component buffer.

The accompanying books, the PeopleCode API Reference and the PeopleCode Language Reference, contain
the reference material for the PeopleCode language. The chapters in these books describe the syntax and

fundamental elements of the PeopleCode language.

PeopleBooks and the Online PeopleSoft Library contains general product line information, such as related
documentation, common page elements, and typographical conventions.

PeopleCode Typographical Conventions

Throughout this book, we use typographical conventions to distinguish between different elements of the
PeopleCode language, such as bold to indicate function names, italics for arguments, and so on.

This table describes the typographical conventions used in PeopleCode:

Font Type

Description

nonospace font

Indicates a PeopleCode program or other example.

Keyword In PeopleCode syntax, keyword entries indicate
function names, method names, language constructs,
and PeopleCode reserved words that must be included
literally in the function call.

Variable In PeopleCode syntax, itemsin variable font are

placeholders for arguments that your program must
supply.

In PeopleCode syntax, ellipses indicate that the
preceding item or series can be repeated any number of
times.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

XV

Preface

Font Type Description

{ Option1|Option2} In PeopleCode syntax, when multiple options are
available, they are enclosed in curly braces and
separated by a pipe.

[1 In PeopleCode syntax, optional items are enclosed in
square brackets.

& Parameter In PeopleCode syntax, an ampersand before a parameter
indicates that the parameter is an already instantiated
object.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

» Understanding the PeopleSoft online library and related documentation.
» How to send PeopleSoft documentation comments and suggestions to Oracle.

» How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

» Understanding PeopleBook structure.

» Typographical conventions and visual cues used in PeopleBooks.

» 1SO country codes and currency codes.

» PeopleBooks that are common across multiple applications.

« Common elements used in PeopleBooks.

» Navigating the PeopleBooks interface and searching the PeopleSoft online library.

« Displaying and printing screen shots and graphicsin PeopleBooks.

« How to manage the locally installed PeopleSoft online library, including web site folders.

« Understanding documentation integration and how to integrate customized documentation into the library.
» Application abbreviations found in application fields.

Y ou can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Xvi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with PeopleCode

PeopleCode is the proprietary language used by PeopleSoft applications. This chapter provides an overview
of PeopleCode and discusses how to create PeopleCode programs.

This chapter providesinformation to consider before you begin to use PeopleCode. In addition to the
considerations presented in this section, you should take advantage of all PeopleSoft sources of information,
including the installation guides, release notes, and PeopleBooks.

PeopleCode Overview

This section provides an overview of the conceptual information available about the PeopleCode language.
The reference material, that is, the actual descriptions of the functions, methods and properties can be found
in the following:

» PeopleTools 8.51 PeopleBook: PeopleCode Language Reference

This book contains information about PeopleCode built-in functions, meta-SQL, system variables, and
metacHTML.

» PeopleTools 8.51 PeopleBook: PeopleCode API Reference

This book contains information about all the classes delivered with Oracle's PeopleTools, aswell as
specifics about each class's methods and properties.

PeopleCode resembles other programming languages. However, many aspects are unique to the language and
the PeopleTools environment. To learn more about the language, see Understanding the PeopleCode
Language.

See Chapter 2, "Understanding the PeopleCode Language,” page 5.

PeopleCode is an object-oriented language. To learn about objects and how they're used in PeopleCode, see
Understanding Objects and Classes in PeopleCode.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer isthe areain memory that stores data for the currently active component. Which fields
are loaded into the component buffer, as well as how to access them, is covered in Referencing Datain the
Component Buffer.

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

The system uses a data buffer as well as the component buffer. The data buffer is used to store data added
from sources other than the component, such as from a Application Engine program, an application message,
and so on. For information about this buffer, see Accessing the Data Buffer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Getting Started with PeopleCode Chapter 1

See Chapter 5, "Accessing the Data Buffer," page 67.

All PeopleCode is associated with a definition and an event. The events run in aparticular order from the
Component Processor. To learn more about the Component Processor and the standard event set, see
PeopleCode and the Component Processor.

See Chapter 6, "PeopleCode and the Component Processor," page 89.

Y ou should take into account certain considerations when creating applications to be used in the PeopleSoft
Pure Internet Architecture. These include how to make your code more efficient when running on the internet,
aswell as considerations when using specific definitions.

See Chapter 7, " PeopleCode and PeopleSoft Pure Internet Architecture,” page 145.

There are restrictions on using some of the functions and methods in the PeopleCode language, as well as
considerations for others, like using standal one rowsets and the OLE functions. These are covered in the
Using Methods and Built-in Functions chapter.

See Chapter 8, "Using Methods and Built-In Functions," page 155.

PeopleCode has a tremendous amount of specialized functionality, such as:
» Using the GenerateTree function to create atree in your application.
« Viewing, adding, and deleting files.

See Chapter 9, "Using HTML Trees and the GenerateTree Function,” Using the GenerateTree Function, page
187.

See Chapter 10, "Working With File Attachments," page 203.

Creating PeopleCode Programs

All PeopleCode programs are associated with a definition as well as an event. To learn more about where you
can place your PeopleCode, and have it executed as part of the Component Processor event flow, see
Accessing PeopleCode and Events.

See Chapter 11, "Accessing PeopleCode and Events," page 229.

Use the PeopleCode editor to create your PeopleCode programs. All the functionality of the PeopleCode
editor is described in Using the PeopleCode Editor.

See Chapter 12, "Using the PeopleCode Editor," page 243.

Every PeopleCode program is associated with a definition. The following definitions have additional
functionality associated with the PeopleCode editor:

* SQL definitions
« Application Package definitions
See Chapter 13, "Using the SQL Editor," page 261.

See Chapter 14, "Creating Application Packages and Classes," page 269.

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1 Getting Started with PeopleCode

After you have created your program, you must run it. Often, that involves fixing any errors that you find.
The PeopleCode debugger is an integrated part of PeopleSoft Application Designer, and it has many useful
tools for determining where code errors are occurring. All the functionality is described in Debugging your
Application.

See Chapter 15, "Debugging Y our Application,” page 275.

After your PeopleCode program is running, you may want to either improve its performance or the user
experience. Techniques for doing this are discussed in Improving Y our PeopleCode.

See Chapter 16, "Improving Y our PeopleCode," page 305.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 2

Understanding the PeopleCode Language

This chapter discusses:

« PeopleCode language structure.
« Datatypes.

+ Comments

+ Statements.

« Functions.

* Expressions.

« Variables

» Operators.

PeopleCode Language Structure

This chapter assumes that you are familiar with a programming language, such as C, Visual Basic, or Java.

Inits fundamental's, PeopleCode syntax resembles other programming languages. Some aspects of the
PeopleCode language, however, are specificaly related to the PeopleT ools environment. Definition name
references, for example, enable you to refer to PeopleTools definitions, such as record definitions or pages,
without using hard-coded string literals. Other language features, such as PeopleCode data types and
metastrings, reflect the close interaction of PeopleTools and SQL. Dot notation, classes, and methodsin
PeopleCode are similar to other object-oriented languages, like Java.

Data Types

Conventional data types include number, date, string. Use them for basic computing. Object data types
instantiate objects from PeopleT ools classes. The appropriate use of each data type is demonstrated where the
documentation discusses PeopleCode that uses that data type.

Declare variables before you use them.

This section discusses:

« Conventional datatypes.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding the PeopleCode Language Chapter 2

» Object datatypes.
See Also

Chapter 2, "Understanding the PeopleCode Language,” Variables, page 26

Conventional Data Types
PeopleCode includes these conventional data types:
« Any

When variables and function return values are declared as Any, the data type is indeterminate, enabling
PeopleTools to determine the appropriate type of value based on context. Undeclared local variables are

Any by default.
+ Boolean
+ Date
« DateTime
* Float
* Integer

Note. The Float and Integer data types should be used instead of Number only when a performance
analysisindicates that the increased speed is useful and an application analysis indicates that the different
representations will not affect the results of the computations.

e Number
+ Object

« String

« Time

Considerations for Float, Integer, and Number Types

The Integer type is a number represented as a 32-bit signed twos complement number, so it has arange of -
2,147,483,648 to 2,147,483,647.

The Float type is a number represented using the machine floating binary point (double precision)
representation. This floating binary point representation is not appropriate for exact calculations involving
decimal fractions; in particular, calculationsinvolving money. For example, because atenth (1/10 or .1)
cannot be exactly represented in floating binary point, a floating binary point sum of .10 + .10 is not be equal
to .20.

The Number type has asize limit of 34 digits, not including the decimal point, with a maximum of 32 digits

to the right of the decimal point. Since the Number typeis afloating decimal point representation, it isthe
appropriate data type for calculations involving money.

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

Operations (other than division) are done using integer arithmetic if the operands are both integers and the
destination is an integer, even if the variable is declared as the Number type. The destination is considered to
be an integer if one of the following is True:

The destination is an assignment to an integer variable or parameter.
The destination is an array subscript.
The destination is the right-hand operand of a comparison and the left-hand operand is an integer.

The destination is awhen-expression part of an evaluate statement, and the expression evaluated at the
start of the evaluate statement is an integer.

The destination is afor-loop initial, limit, or step expression and the control variable of the for-loop isan
integer.

Division (the/ operator) is never performed using integer arithmetic. It is always performed using the
floating-decimal-point arithmetic, even if the result variable is declared as an Integer type.

Follow these recommendations for assigning types to numbers:

Use Number for most application data values.
Use Integer when you are counting items, such as rowsin arowset.
Use Float only when you are tuning the code for performance (after it is already working).

In addition, you should only use the Float type when you are certain that the resulting loss of precision
will not affect the application and that the increase in the speed of the computation makes a differenceto
the transaction. In general, few applications should use the Float type.

Object Data Types

For most classesin PeopleTools, you need a corresponding data type to instantiate objects from that class.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

PeopleCode includes these data buffer access types:

Field
Record
Row

Rowset

PeopleCode includes these display datatypes:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

AnalyticGrid
Chart

Gantt

Grid

Understanding the PeopleCode Language Chapter 2

« GridColumn

» OrgChart

.+ Page

« RatingBoxChart

PeopleCode includes these internet script data types:

« Cookie
* Request
* Response

PeopleCode includes these miscellaneous data types.

« AESection

« Analyticlnstance

« Array

« Crypt

» Exception
- File

e Interlink

- BIDocs

Note. BIDocs and Interlink objects used in PeopleCode programs run on the application server can only
be declared as type Local. Y ou can declare Interlinks as Global only in an Application Engine program.

See Chapter 2, "Understanding the PeopleCode Language,”" User-Defined Variable Declaration and
Scope, page 27.

« JavaObject

Note. JavaObject objects can only be declared as type Local.

+ Message

« MCFIMInfo
» OptEngine

» PostReport

« ProcessRequest
» RowsetCache

« SoapDoc

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

+ SQL
» SyncServer

« TransformData

Note. TransformData objects can only be declared astype Local.

« XmlDoc

« XmiNode

Note. XmINode objects can only be declared as type Local.

API Object Types

Use this data type for any ApiObject, such as a session object, a tree object, a component interface, a portal
registry, and so on.

The following A piObject data type objects can be declared as type Glaobal:
e Session

« PSMessages collection

PSMessages

All tree classes (trees, tree structures, nodes, levels, and so on)

All query classes

All other ApiObject data type objects (such as al the Portal Registry classes) must be declared as Local.

Com

Copyright

ments

Use comments to explain, preferably in language comprehensible to anyone reading your program, what your
code does. Comments also enable you to differentiate between PeopleCode delivered with the product and
PeopleCode that you add or change. This differentiation helpsin your analysis for debugging and upgrades.

Note. Use comments to place a unique identifier marking any changes or enhancements that you have made
to a PeopleSoft application. This marker makes it possible for you to search for al the changes you have
made, which is particularly helpful when you are upgrading a database.

Y ou insert comments into PeopleCode in these ways:
« You can surround comments with /* at the beginning and */ at the end.
» You can use aREM (remark) statement for commenting.

Put a semicolon at the end of aREM comment. If you do not, everything up to the end of the next
statement is treated as part of the comment.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

Understanding the PeopleCode Language Chapter 2

« You can surround commented text with <* at the start and *> at the end.

Use this type of comment to enclose one set of comments within another set. Y ou generally use this when
you are testing code and want to comment out a section that already contains comments.

Warning! In application classes, you will see the use of /+ +/ style comments. Do not use these in your
PeopleCode. These annotations are generated by the compiler. If you use them, they are removed by the
system the next time you validate, compile, or save your PeopleCode. They are used to provide signature
information on application class methods and properties, and they are regenerated each time the compiler
compiles your application class PeopleCode. Instead, use the standard commenting mechanisms listed above.

Note. Commented text cannot exceed a maximum of 16383 characters.

The following code sample shows comment formatting:

<* this programis no |longer valid comenting out
entire thing

REM This is an exanpl e of comrenti ng Peopl eCode;
[* - Logi ¢ for Conpensation Change ----- */
/* Recal cul ate conpensati on change for next row
Next row is based on prior value of EFFDT. */
cal c_next _conpchg(&0OLDDT, EFFSEQ 0);

/* Recal cul ate conpensation change for current row and next row.
Next row is based on new val ue of EFFDT. */

cal c_conp_change(EFFDT, EFFSEQ COVP_FREQUENCY, COVPRATE,
CHANGE_AMTI, CHANGE_PCT) ;

cal c_next _conpchg(EFFDT, EFFSEQ O0);

*>

Note. All text between the <* and *> comment markersis scanned. If you have mismatched quotation marks,
invalid assignments, and so on, you may receive an error when using this type of comment.

Statements

10

A statement can be a declaration, an assignment, a program construct (such as a Break statement or a
conditional loop), or a subroutine call.

This section discusses:

» Separators.

« Assignment statements.
» Language constructs.

» Branching statements.

« Conditional loops.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Separators

PeopleCode statements are generally terminated with a semicolon. The PeopleCode |language accepts
semicolons even if they are not required, such as after the last statement completed within an If statement.
This functionality enables you to consistently add semicolons after each statement.

Extra spaces are ignored. They are removed by the PeopleCode Editor when you save the code.

Assignment Statements

The assignment statement is the most basic type of statement in PeopleCode. It consists of an equal sign with
avariable name on the left and an expression on the right:

vari abl eNanme = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left. Depending
on the data typesinvolved, the assignment is passed either by value or by reference.

Assignment by Value

In most types of assignments, the result of the right-hand expression is assigned to the variable as a newly
created value, in the variable's own allocated memory area. Subsequent changes to the value of that variable
have no effect on any other data.

Assignment by Reference

When both sides of an assignment statement are object variables, the result of the assignment is not to create a
copy of the object in aunique memory location and assign it to the variable. Instead, the variable points to the
object's memory location. Additional variables can point to the same object location.

For example, both & AN and & AN2 are arrays of type Number. Assigning & AN2 to & AN does not assign a
copy of &AN2 to &AN. Both array objects point to the same information in memory.

Local array of nunmber &AN, &ANZ;
Local number &NUM

&AN = CreateArray(100, 200, 300);
&AN2 = &AN;
&NUM = &AN[1] ;

In the code example, & AN2 and & AN point to the same object: an array of three numbers. If you were to
change the value of & AN[2] to 500 and then reference the value of & AN2[2], you would get 500, not 300.
On the other hand, assigning &NUM to the first element in & AN (100) is not an object assignment. Itisan
assignment by value. If you changed & AN[1] to 500, then & NUM remains 200.

Note. In PeopleCode, the equal sign can function as either an assignment operator or a comparison operator,
depending on context.

Language Constructs

PeopleCode language constructs include:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Understanding the PeopleCode Language Chapter 2

Branching structures: If and Evaluate.

» Loops and conditional loops. For, Repeat, and While.

« Break, Continue, and Exit statements |oop control and terminating programs.
» The Return statement for returning from functions.

« Variable and function declaration statements: Global, Local, and Component for variables, and Declare
Function for functions.

« The Function statement for defining functions.
« Class definition statements.

e Try, Catch, and Throw statements for error handling.

Functions as Subroutines

PeopleCode, like C, does not have subroutines as we generally refer to them. PeopleCode subroutines are the
subset of PeopleCode functions only that are defined to return no value or to return avalue optionally. Calling
a subroutine is the same as calling a function with no return value:

function_nane([paramlist]);
See Also

Chapter 2, "Understanding the PeopleCode Language,”" Branching Statements, page 12

Chapter 2, "Understanding the PeopleCode Language,” Functions, page 15

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCade Built-in Functions,” Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” Declare
Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CreateException

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” Try

Branching Statements

Branching statements control program flow based on evaluation of conditional expressions.

If, Then, and Else statements

The syntax of If, Then, and Else statementsis:

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

If condition Then
[statement _|ist_1]
[El se
[statement _|ist_2]]
End-if;

This statement eval uates the Boolean expression condition. If condition is True, then the If statement executes
the statementsin statement_list_1. If condition is False, then the program executes the statements in the Else
clause; if there is no Else clause, the program continues to the next statement.

Evaluate Statement
Use the Evaluate statement to check multiple conditions. Its syntax is:

Eval uate left _term
VWen [relop_1] right_term1
[statement _|ist]

VWhen [relop_n] right_termn
[statenment |ist]
[When- ot her
[statement |ist]]
End- eval uat e

The Evaluate statement takes an expression, left_term, and comparesit to compatible expressions
(right_term) using the relational operators (relop) in a sequence of When clauses. If relop is omitted, then the
equal sign isassumed. If the result of the comparison is True, the program executes the statementsin the
When clause, and then moves on to evaluate the comparison in the following When clause. The program
executes the statements in all of the When clauses for which the comparison evaluates to True. If none of the
When comparisons evaluates to True, the program executes the statement in the When-other clause, if oneis
provided. For example, the following Evaluate statement executes only the first When clause.
&USE_FREQUENCY in the following example can only have one of three string values:

eval uat e &USE_FREQUENCY

when = "never"
PROD USE FREQ = 0;
when = "soneti mes"

PROD USE FREQ = 1;
when = "frequently"

PROD_USE_FREQ = 2;
when- ot her

Error "Unexpected val ue assigned to &USE FREQUENCY."
end- eval uat e

To end the Evaluate statement after the execution of a When clause, you can add a Break statement at the end
of the clause, as in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

Understanding the PeopleCode Language Chapter 2

eval uat e &USE FREQUENCY
when = "never"
PROD USE FREQ = O0;
Br eak;
when = "soneti mes"
PROD USE FREQ = 1;
Br eak
when = "frequently"
PROD USE FREQ = 2;
Br eak;
when- ot her
Error "Unexpected val ue assigned to &USE FREQUENCY."
end- eval uat e

In rare cases, you may want to make it possible for more than one When clause to execute, as shown in the
following example:

eval uat e &PURCHASE_AMI
when >= 100000
BASE DI SCOUNT = "Y";
when >= 250000
SPECI AL_SERVI CES = "Y"
when >= 1000000
MJUST_GROVEL = "Y"
end- eval uat e;

For Statement

The For statement repeats a sequence of statements a specified number of times. Its syntax is:

For count = expressionl to expression2

[Step i];
statement |i st
End-for;

The For statement initializes the value of count to expressionl, and then increments count by i each time after
it executes the statementsin statement_list. The program continuesin thisloop until count is equal to
expression2. If the Step clause is omitted, then i equals one. To count backwards from a higher valueto a
lower value, use a negative value for i. Y ou can exit a For loop using a Break statement.

The following example demonstrates the For statement:

&VAX = 10;
for &COUNT = 1 to &MAX;
W nMessage(" Executing statement list, count =" | &COUNT);
end-for;
See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” If
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Evaluate

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

14 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Conditional Loops

Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional expression
each time through the loop. The loop terminates when the condition evaluates to True. Y ou can exit from a
conditional loop using a Break statement. If the Break statement isin aloop embedded in another loop, the
break applies only to the inside loop.

Repeat Statement

The syntax of the Repeat statement is:

Repeat
statenment |i st
Until | ogical _expression;

The Repeat statement executes the statements in statement_list once, and then evaluates logical _expression.
If logical_expression is False, the sequence of statementsis repeated until logical_expression is True.
While Statement

The syntax of the While statement is:

Wi | e | ogi cal _expression
statement |i st
End- whi | e;

The While statement evaluates logical _expression before executing the statements in statement_list. It
continues to repeat the sequence of statements until logical_expression evaluatesto False.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Repeat

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” While

Functions

This section discusses:

» Supported functions.

« Function definitions.

« Function declarations.
e Function calls.

« Function return values.

« Function naming conflicts.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Understanding the PeopleCode Language Chapter 2

See Also

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions®
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCade Built-in Functions," Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare
Function

Supported Functions

PeopleCode supports the following types of functions:

« Built-in: The standard set of PeopleCode functions. These can be called without being declared.

» Internal: Functionsthat are defined (using the Function statement) within the PeopleCode program in
which they are called.

» External PeopleCode: PeopleCode functions defined outside the calling program. These are generally
contained in record definitions that serve as function libraries.

« External non-PeopleCode: Functions stored in external (C-callable) libraries.

Note. PeopleSoft Analytic Calculation Engine provides its own set of built-in functions.

See Enterprise PeopleTools 8.51 PeopleBook: Analytic Calculation Engine, "Using Built-in Functionsin
Analytic Models."

In addition, PeopleCode supports methods. The main differences between a built-in function and a method
are:

» A built-in function, in your code, ison aline by itself, and it does not (generally) have any dependencies.
Y ou do not have to instantiate an object before you can use the function.
« A method can only be executed by an object (using dot notation).

Y ou must instantiate the object first.

Function Definitions

16

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at the
top of the program, along with any variable and external function declarations. The syntax for a PeopleCode
function definition is asfollows:

Function name[(paramist)] [Returns data_type]
[statenment s]
End- functi on

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB_, and they are
always attached to the FieldFormula event.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Note. Application classes can provide an alternative, and sometimes cleaner, mechanism for separating
functionality than the functions stored in function libraries.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCade Built-in Functions,” Function
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes'

Function Declarations

If you call an external function from a PeopleCode program, you must declare the function at the top of the
program. The syntax of the function declaration varies, depending on whether the external function iswritten
in PeopleCode or compiled in adynamic link library.

Thefollowing is an example of afunction declaration of afunction that isin another FUNCLIB record
definition:

Decl are Function Updat ePSLOCK Peopl eCode FUNCLI B_NODES. MSGNODENAME Fi el dFor nul a;

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCade Built-in Functions," Declare
Function

Function Calls
Functions are called with this syntax:
function_nane([paramlist])

The optional parameter list (param list) isalist of expressions, separated by commas, that the function
expects you to supply. If aparameter islisted in the function definition, then it is required when the function
iscalled.

Y ou can check the values of parameters that get passed to functions at runtime in the Parameter window of
the PeopleCode debugger.

If the return value is required, then the function must be called as an expression, for example:
&RESULT = Product (&RAI SE_PERCENT, .01, EMPL_SALARY);

If the function has an optional return value, it can be called as a subroutine. If the function has no return
value, it must be called as a subroutine:

W nMessage(64, "I can't do that, " | &OPER NI CKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the function is
supposed to change the data the caller passes, you must also passin avariable.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

Understanding the PeopleCode Language Chapter 2
Built-in function parameters can be passed by reference or by value, depending on the function. External C
function parameters can be passed by value or by reference, depending on the declaration and type.

See Also

Chapter 15, "Debugging Y our Application," page 275

Chapter 2, "Understanding the PeopleCode Language,” Variables and Functions, page 31

Function Return Values
Functions can return values of any supported data type; some functions do not return any value.

Optional return values occur only in built-in functions. Y ou cannot define afunction that optionally returns a
value. Optional return values are typical in functions that return a Boolean value indicating whether execution
was successful. For example, the following call to DeleteRow ignores the Boolean return value and deletes a
row:

Del et eRowm(RECORD. BUS EXPENSE PER, &L.1 ROW RECORD. BUS EXPENSE DTL, &L2 ROW;
The following example checks the return value and returns a message saying whether it succeeded:

i f Del et eRowm RECORD. BUS_EXPENSE_PER, &L1_ROW RECORD. BUS_EXPENSE_DTL, &L2_ROW then
W nMessage(" Row del eted.");

el se
W nMessage("Sorry -- couldn't delete that row ");

end-if;

Function Naming Conflicts

If you define afunction with the same name as a built-in function, the function that you defined takes
precedence over the built-in function.

Anytime you compile the PeopleCode in the PeopleCode Editor, a warning message appearsin the Vaidate
tab, indicating that a user-defined function has the same name as an existing built-in function.

In addition, if you select Compile All PeopleCode, an error message is generated in the log file for every
user-defined function that has the same name as a built-in function.

The following is an example error message: User-defined function IsNumber is overriding the built-in
function of the same name. (2,98)

If you notice that you named a function the same as a built-in function, and that the built-in function does
what you're trying to achieve, replace your function with areference to the built-in function. The built-in
function is probably more efficient. In addition, using the built-in function reduces confusion for people who
maintain your code, because if they miss the warning message in the Validate tab, they might assume the
built-in function is being called when it is not.

18 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Expressions

This section discusses:

» Expression fundamentals.

+ Constants.

» Functions as expressions.

« System variables.

* Metastrings.

» Record field references.

« Definition name references.

» Reserved word summary table.

See Also

Chapter 2, "Understanding the PeopleCode Lanquage," Variables, page 26

Expression Fundamentals

Expressions evaluate to values of PeopleCode data types. A simple PeopleCode expression can consist of a
constant, atemporary variable, a system variable, arecord field reference, or afunction call. Simple
expressions can be modified by unary operators (such as anegative sign or logical NOT), or combined into
compound expressions using binary operators (such aplussign or logical AND).

Definition name references eval uate to strings equal to the name of a PeopleTools definition, such as arecord
or page. They enable you to refer to definitions without using string literals, which are difficult to maintain.

Metastrings (also called meta-SQL) are specia expressions used within SQL string literals. At runtime, the
metastrings expand into the appropriate SQL for the current database platform.

Constants

PeopleCode supports numeric, string, and Boolean constants, as well as user-defined constants. It also
supports the constant Null, which indicates an object reference that does not refer to avalid object.

Note. Y ou can express Date, DateTime, and Time values by converting from String and Number constants
using the Date, Date3, DateTime6, DateTimeV alue, DateValue, Time3, TimePart, and the TimeValue
functions. Y ou can aso format a DateTime value as text using FormatDateTime.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Understanding the PeopleCode Language Chapter 2

20

Numeric Constants

Numeric constants can be any decimal number. Some examples are:

. 7
. 08725
. -172.0036

String Constants

String constants can be delimited by using either single (') or double (") quotation marks. If a quotation mark
occurs as part of astring, the string can be surrounded by the other delimiter type. As an alternative, you can
include the delimiter twice. Some examples are:

« "Thisisastring constant."

« 'Soisthis!

» 'Shesaid, "Thisisastring constant.""
» "Shesad, ""Thisisastring constant."""

Use the following code to include aliteral quotation mark as part of your string:
&cDbl Quote = '"'; [/* singlequote doubl equote singl equote */
The following also produces a string with two double quotation marksin it:

&cDbl Quote = """"; [* dquote dquote dquote dquote */

Y ou can aso directly embed the doubled double quotation mark in strings, such as:
&l mage = Char(10) | '<IMs SRC="% MAGE(' | &plnmageNarme | ')"';

Strings must be contained on a single line. If you need to create a multi-line string, you must use
concatenation to connect the linesto be a single sting. For example, one method to do thisis:

&tring = "Line 1" | Char(10) | "Line 2" | Char(10);

Boolean Constants

Boolean constants represent a truth value. The two possible values are True and False.

Null Constant

Null constants represent an object reference value that does not refer to avalid object. This meansthat calling
amethod on the object or trying to get or set a property of it fails. The Null constant is just the keyword Null.
User-Defined Constants

Y ou can define constants at the start of a PeopleCode program. Then you can use the declared constant
anywhere that the corresponding value would be allowed. Constants can be defined as numbers, strings, or
Boolean values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

User-defined constants can only be declared as Local.
The following is an example of user-defined constant declarations:

Constant &Start_New I nstance = True;
Const ant &Di spl ay_Mode = O;

Const ant &AddMode = "A":

Local Field &Start_ Date;

ivyi:uhcti on(&Start_New | nstance, &Display_ Mde, &Add_Mode);
See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions'

Functions as Expressions

Y ou can use any function that returns avalue as an expression. The function can be used on the right side of
an assignment statement, passed as a parameter to another function, or combined with other expressions to
form a compound expression.

See Also

Chapter 2, "Understanding the PeopleCode Language,” Functions, page 15

System Variables

System variables are preceded by a percent (%) symbol whenever they appear in a program. Use these
variables to get the current date and time, or to get information about the user, the current language, the
current record, page, or component, and more.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " System Variables'

Metastrings

Metastrings are special SQL expressions. The metastrings, also called meta-SQL, are preceded with a percent
(%) symbol, and can be included directly in string literals. They expand at runtime into an appropriate
substring for the current database platform. Metastrings are used in or with:

* SQLExec.
» Scroll buffer functions (Scroll Select and its rel atives).
» PeopleSoft Application Designer to construct dynamic views.

» Some rowset object methods (Select, SelectNew, Fill, and so on).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

Understanding the PeopleCode Language Chapter 2

» SQL objects.

« Application Engine.

« Somerecord class methods (Insert, Update, and so on).
- COBOL.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
SQLExec

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
ScrollSelect

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "Meta-SQL Elements'

Record Field References

22

Use record field references to retrieve the value stored in arecord field or to assign avalue to arecord field.

Record Field Reference Syntax
References to record fields have the following form:
[recordname.]fiel dnane

Y ou must supply the recordname only if the record field and your PeopleCode program are in different
record definitions.

For example, suppose that in a database for veterinarians you have two records, PET_OWNER and PET. A
program in the record definition PET_OWNER must refer to the PET_BREED record field in the PET record
definition as PET.PET_BREED.

However, aprogram in the PET record definition can refer to this same record field more directly as
PET_BREED.

If the program isin the PET_BREED record field itself, it can refer to thisrecord field using the caret (?)
symbol.

The PeopleCode Editor replaces the caret symbol with the actual record field name.

Y ou can also use object dot notation to refer to record fields, for example:
&FI ELD = Get Recor d(RECORD. PET_OWNER) . Get Fi el d(FI ELD. PET_BREED) ;

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

Legal Record Field Names

A record field name consists of two parts, the record name and the field name, separated by a period.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

The field names used in PeopleCode are consistent with the field names allowed in the field definition. Case
isignored, although the PeopleCode Editor for the sake of convention, automatically formats field namesin
uppercase. A field name can be 1 to 18 characters, consisting of alphanumeric characters determined by your
current language setting in Microsoft Windows, and characters#, @, $, and _.

A record name can be 1 to 15 characters, consisting of aphanumeric letters determined by your current
language setting in Microsoft Windows, and characters#, @, $, and _.

Definition Name References

Definition name references are special expressions that reference the name of a PeopleTools definition, such
as arecord, page, component, business interlink, and so on. Syntactically, a definition name reference
consists of areserved word indicating the type of definition, followed by a period, then the name of the
PeopleTools definition. For example, the definition name reference RECORD.BUS EXPENSE _PER refers
to the definition name BUS EXPENSE PER.

Generally, definition name references are passed as parameters to functions. If you attempt to pass a string
literal instead of a definition name reference to such afunction, you receive a syntax error.

Y ou also use definition name references outside function parameter lists, for example, in comparisons:
I f (%age = PAGE. SOMEPAGE) Then

/* do stuff specific to SOVEPAGE */
End- 1 f;

In these cases, the definition name reference evaluates to a string literal. Using the definition name reference
instead of a string literal enables PeopleT ools to maintain the code if the definition name changes.

If you use the definition name reference, and the name of the definition changes, the change automatically
ripples through the code, so you do not have to change it or maintain it.

In the PeopleCode Editor, if you place your cursor over any definition name reference and right-click, you
can select View Definition to open the definition.

In addition, for most definitions, if you specify a definition that was not created in PeopleSoft Application
Designer, you receive an error message when you try to save your program.
Legal and lllegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of alphanumeric letters
determined by your current language setting in Microsoft Windows, and the characters#, @, $, and _.

In some cases, however, the definition supports the use of other characters. Y ou can, for example, have a
menu item named A& M stored in the menu definition even though & isanillegal character in the definition
name reference. Theillegal character resultsin an error when you validate the syntax or attempt to save the
PeopleCode.

Y ou can avoid this problem in two ways:

» Rename the definition so that it uses only legal characters.

» Enclose the name of the definition in quotation marks in the reference, for example:
ITEMNAME."A&M"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

Understanding the PeopleCode Language Chapter 2

The second solution is a commonly used workaround in cases where the definition name containsillegal
characters. If you use this notation, the definition name reference is not treated as a string literal: PeopleTools
maintains the reference the same way as it does other definition name references.

Note. If your definition name begins with a number, you must enclose the name in quotation marks when you
useit in adefinition name reference. For example, Complintfc."1_DISCPLIN_ACTN".

PeopleCode Reserved Words

The following table summarizes the reserved words used in definition name references:

Reserved Word Common Usage

ANALYTICMODEL

BARNAME Used with transfers and modal transfers.

BUSACTIVITY Used with TriggerBusinessEvent.

BUSEVENT Used with TriggerBusinessEvent.

BUSPROCESS Used with TriggerBusinessEvent.

COMPINTFC Used with Component Interface Classes.

COMPONENT Used with transfers and modal transfers, as well as for
generating URLSs.

FIELD Used with methods and functions to designate afield.

FILELAYOUT Used with the SetFilel ayout File class method.

HTML Used with the GetHTML Text function.

IMAGE Used in with functions and methods to designate an
image.

INTERLINK Used with the Getlnterlink function.

ITEMNAME Used with transfers and modal transfers.

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

Reserved Word

Common Usage

MARKET Used with transfers and URL generation.

MENUNAME Used with transfers and modal transfers.

MESSAGE Used with Messaging functions and methods.

MOBILEPAGE Used to identify a mobile page (used with transfers.)

NODE Used with transfers and modal transfers, aswell as
generating URLS.

OPERATION Used with the CreateM essage function.

PAGE Used with transfers and modal transfers to pass the page
item name (instead of the page name), and with controls
and other functions to pass the page name.

PANEL Used with the deprecated TransferPanel function.
Note. Use the TransferPage function and the PAGE
reserved word instead.

PANELGROUP Used with the deprecated DoM odal Panel Group
function.

Note. Use the DoM odal Component function and the
COMPONENT reserved word instead.

PORTAL Used with transfers and modal transfers, aswell as
generating URLSs.

RECORD Used in functions and methods to designate a record.

ROWSET Used in functions and methods to designate a rowset.

ROWSETCACHE

SCROLL The name of the scroll areain the page. Thisnameis

aways equal to the primary record of the scroll.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

25

Understanding the PeopleCode Language

Chapter 2

Reserved Word Common Usage

SQL Used with SQL definitions.

STYLESHEET Used with style sheets.

URL Used with file attachment functions.
Variables

Supported Variable Types

26

This section discusses.

Supported variable types.
User-defined variables.

User-defined variable declaration and scope.

Variable declaration.

User-defined variable initialization.

Restrictions on variable use.
Scope of local variables.
Duration of local variables.

Variables and functions.

Recursive functions.

State of shared objects using PeopleSoft Pure Internet Architecture.

See Also

Chapter 2, "Understanding the PeopleCode Language,” System Variables, page 21

PeopleCode supports these types of variables:

User-defined variables

These variable names are preceded by an & character wherever they appear
in a program. Variable names can be 1 to 1000 characters, consisting of
letters A through Z and athrough z, digits O through 9, and characters #, @,
$,and _.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

User-

User-

Copyright

Understanding the PeopleCode Language

System variables System variables provide access to system information. System variables
have a prefix of the % character rather than the & character. Use these
variables wherever you can use a constant, passing them as parameters to
functions or assigning their values to fields or to temporary variables.

Defined Variables

A user-defined variable can hold the contents of arecord field for program code clarity. For example, you
may give a variable a more descriptive name than arecord field, based on the context of the program. If the
record field is from another record, you may assign it to atemporary variable rather than always using the
record field reference. This makes it easier to enter the program, and can also make the program easier to
read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to avoid some
processing by calling the function once and placing the result in avariable.

Defined Variable Declaration and Scope
The difference between the variable declarations concerns their life spans:

+ Globa

The variable isvalid for the entire session.
« Component

The variable isvalid while any page in the component in which the variable is defined stays active.
e Loca

The variable isvalid for the duration of the PeopleCode program or function in which the variable is
defined.

Y ou can declare variables using the Global, Local, or Component statements, or you can use local variables
without declaring them. Here are some examples:

Local Nunber &AGE;

d obal String &OPER N CKNAME;
Conmponent Rowset &MWY_ ROWSET,;
Local Any &SOVE_FI ELD;

Local Api Obj ect &WTREE;

Local Bool ean &Conpare = True;

Variable declarations are usually placed above the main body of a PeopleCode program (along with function
declarations and definitions). The exception isthe Local declaration, which you can use within afunction or
the main section of a program. Y ou can declare variables as any of the PeopleCode datatypes. If avariableis
declared as an Any datatype, or if avariableis not declared, PeopleTools uses an appropriate data type based
on context.

Note. Declare avariable as an explicit data type unless the variable will hold a value of an unknown data
type.

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

Understanding the PeopleCode Language Chapter 2

Global variables can be accessed from different components and applications, including an Application
Engine program. A global variable must be declared, however, in each PeopleCode program where it's used.
Use global variables rarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases.

Component variables remain defined and keep their values while any page in the component in which they
are defined remains active. Similar to aglobal variable, acomponent variable must be declared in each
PeopleCode program whereit is used.

Component variables act the same as global variables when an Application Engine program is called from a
page (using Call AppEngine).

Component variables remain defined after a TransferPage, DoModal, or DoM odal Component function.
However, variables declared as Component do not remain defined after using the Transfer function, whether
you are transferring within the same component or not.

Local variables declared at the top of a PeopleCode program (or within the main, that is, non-function, part of
aprogram) remain in scope for the life of that PeopleCode program. Local variables declared within a
function are valid to the end of the function and not beyond.

Y ou can check the values of Local, Global, and Component variables at runtime in the different variable
windows of the PeopleCode debugger. Local variables declared within a function appear in the Function
Parameters window.

Variable Declaration

28

Declare variables before you use them. If you do not declare avariable, it is automatically declared with the
scope Local and the data type Any. Y ou receive awarning message in the Vaidation tab of the PeopleSoft
Application Designer output window for every variable that is not declared when you save the PeopleCode
program, as shown in the following example:

Wariable &MYFIELD auto-declared. [2,67]
“Wariable &l auto-declared. [2.67]

Wariable SFOUND auto-declared. [2,67)
Wariable &K auto-declared. [2,67]

Wariable SCOPYFRMRBOW auto-declared. [2,67)
Wariable SCOPYTROW auto-declared. [2.67]

A b Build A Upgrade 4 Resuttz # Validate /

Validation tab with auto-declared variables

If you declared all the variables, you can use these values to ensure you do not have misspellings. For
example, if you declared avariable as & END_DATE and then accidentally spell it as &EDN_DATE, the
"new variable" appears on the Validate tab when you save the program.

Another reason to declare variablesis for the design-time checking. If you declare avariable of one data type
and then assign to it avalue of a different type, the PeopleCode Editor catches that assignment as a design-
time error when you try to save the program. With an undeclared variable, the assignment error does not
appear until runtime.

The following example produces a design-time error when you try to save the program:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Local Field &DATE;
&DATE = Cet Recor d(RECORD. DERI VED_HR) ;

In addition, if you declare variables, the Find Object Reference feature finds embedded definitions. For
example, suppose you wanted to find all occurrences of the field DEPT_ID. If you have not declared
& MyRecord as arecord, Find Object References does not find the following reference of the field DEPT _ID:

&WRecor d. DEPT_I D. Vi si bl e = Fal se;

User-Defined Variable Initialization
To declare and initialize variables in one step, use the following format:
Local String &WString = "New';
Local Date &WbDate = %bat e;
This method is available only for variables with the scope of Local.

Though you can declare more than one variable on asingle line, you can only initialize one variable on aline.
The following code creates a syntax error when you try to save the program:

Local Nunber &N1, &N\2 = 5;

Y ou cannot declare avariable, then initialize it in a second declaration statement. The following produces a
duplicate declaration error when you try to save the program:

d obal Number &N1;
Local String &\1 = "Str"; /* Duplicate definition. */

If you do not initialize variables, either when you declare them or before you use them, strings are initialized
as Null strings, dates and times as Null, and numbers as zero.

Restrictions on Variable Use
The following data types can only be declared as Local:
» JavaObject

o Interlink

Note. Interlink objects can be declared astype Global in an Application Engine program.

+ TransformData

« XmiNode

The following ApiObject data type objects can be declared as Global:
e Session

» PSMessages collection

« PSMessage

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

Understanding the PeopleCode Language Chapter 2

» All tree classes (trees, tree structures, nodes, levels, and so on)
* Query classes

All other ApiObject data type objects (such as al the Portal Registry classes) must be declared as Local.

Scope of Local Variables

The two types of local variables are: program-local and function-local.
» A program-local variable is declared aslocal in the main part of the program and is local to that program.
« A function-local variableis declared aslocal inside afunction and islocal only to that function.

See Chapter 2, "Understanding the PeopleCode L anguage,” Recursive Functions, page 32.

A program-local variable can be affected by statements anywhere in the program. For example, suppose
RECORD_A.FIELD_A .FieldFormula has two functions, FUNC_1 and FUNC_2, and both modify alocal
variable named & TEMP. They could affect each other, as they both use the same variable name in the same
PeopleCode program.

If, however, FUNC_3isdefined in RECORD_B FIELD B.FieldFormulaand makes referenceto & TEMP, it
isnot the same & TEMP asin RECORD_A.FIELD_A.FieldFormula. This difference becomes important
when FUNC 1 cals FUNC_3. Technically, both functions exist at the same time, one inside the other, but

& TEMP isadifferent variable for each of them. However, if FUNC_1 calls FUNC 2, then & TEMP isthe
same variable for both.

Duration of Local Variables

30

A local variable isvalid for the duration of the PeopleCode program or function in which it is defined. A
PeopleCode program is defined as what the PeopleCode Editor in Application Designer presentsin asingle
window: a chunk of PeopleCode text associated with a single item (arecord field event, a component record
event, and so on.)

When the system evaluates a PeopleCode program and calls afunction in the same PeopleCode program, a
new program evaluation is not started.

However, when afunction from a different PeopleCode program is called (that is, some PeopleCode text
associated with a different item), the current PeopleCode program is suspended, and the Component
Processor starts evaluating the new program. This means that any local variables in the calling program
(called A) are no longer available. Those in the called program (called B) are available.

Evenif the local variablesin the A program have the same name as those in the B program, they are different
variables and are stored separately.

If the called program (B) in turn calls afunction in program A, anew set of program A's variables are
allocated, and the called function in A uses these new variables. Thus, this second use of program A gets
another lifetime, until execution returnsto program B.

The following is an example of pseudocode to show how this might work. (Thisis non-compiled, non-
working code. To use this example, you'd have to enter asimilar program without the external declaration of
the function in the other, not yet compiled, one.)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Varia

Understanding the PeopleCode Language

Program A (Rec. Fi el d. Fi el dChange) :

| ocal nunber &t enp;

decl are functi on Bl Peopl eCode Rec. Field Fiel drFormul a;

/* Uncoment this declaration and coment above to conpile this the first tine.
function Bl
end- functi on;

*/

function Al

W nMessage("Al: &enp is " | &enp);
&enp = &enp + 1;

A2();

B1();

A2(); .

end- f uncti on;

function A2

W nMessage("A2: &enp is " | &enp);
&enmp = &enmp + 1;

end-functi on;

AL();

Program B (Rec. Fi el d. Fi el dFormul a) :

| ocal nunber &t enp;

decl are functi on A2 Peopl eCode Rec. Field Fi el dChange;

function Bl

W nMessage("Bl: &enp is " | &enp);
&emp = &emp + 1,
A2();

end- f uncti on;

When thisis compiled and run, it produces the following output:

Al: &emp is O
A2: &empis 1
Bl: &enp is O
A2: &emp is O
A2: &empis 2

bles and Functions

PeopleCode variables are always passed to functions by reference. This means, among other things, that a
function can change the value of avariable passed to it so that the variable has the new value on return to the
calling routine.

For example, the Amortize built-in function expects you to passit variables into which it places the amount of
aloan payment applied towards interest (& PYMNT_INTRST), the amount of the payment applied towards
principa (&PYMNT_PRIN), and the remaining balance (& BAL). It calcul ates these values based on
information that the calling routine suppliesin other parameters:

& NTRST_RT=12;

&PRSNT_BAL=100;

&PYMNT_AMNT=50;

&PYMNT_NBR=1;

Anortize(& NTRST_RT, &PRSNT_BAL, &PYNMNT_AMNT, &PYMNT_NBR,
&PYMNT_| NTRST, &PYWNT_PRI N, &BAL);

&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" |
String(&PYMNT_PRIN) | " Bal=" | String(&BAL);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Understanding the PeopleCode Language Chapter 2

Recursive Functions

PeopleCode supports True recursive functions. A function can cal itself, and each possibly recursive call of
the function has its own independent copy of the parameters and function-local variables.

When writing recursive functions, be careful about passing variables as parameters, because PeopleCode
implements such calls by reference. This means that if you call afunction such as.

Function Func(&n as Nunber)

&n = 3;

End- Functi on;
| ocal & = 5;
Func(&x);

After the call to Func(&Xx), &x hasthe value 3, not 5. If the call was Func(Vaue(&x)), after the call &x is still
5.

State of Shared Objects Using PeopleSoft Pure Internet Architecture

32

Consider the following scenario:

» Alocal and aglobal variable refer to the same object.
« That object is used in amodal component.
» Instead of completing the modal component, the user clicks the browser Back button.

In general, the global state of the object isrestored. If the object has not been destroyed from the global state,
the global state of the object isused for local references; otherwise, the local stateis used for local references.

Hereis an example:

A obal array of number &G obal _Array;
Local array of number &lLocal _Array:

&4 obal _Array = CreateArray(1, 2, 3);
&L ocal _Array = &G obal _Array

DoMbdal (Page. PAGENAME, "", -1, -1, 1, Record. SHAREDREC, 1);
/* return to here */

&Local _Array[1] = -1;

&4 obal _Array[2] = -2;

W nMessage(&L.ocal _Array is " | &L.ocal Array.Join());

W nMessage(&d obal _Array is " | &d obal _Array.Join());

The following program, program 2, is located on the modal page the user is transferred to:

d obal array of nunmber &G obal Array;
&d obal _Array[3] = -3;

The following program, program 3, is also located on the modal page:

d obal array of nunber &G obal _Array;
&4 obal _Array = CreateArray(1l, 2, -3);

If program 2 isrun, the output is the following:

&Loca Arrayis-1,-2,-3

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

&Global_Array is-1,-2,-3

However, if program 3 is run, thereby destroying the original global state, the output is the following:
&Loca_Arrayis-1,2,3

&Global_Arrayisl, -2, -3

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " System Variables'

Chapter 15, "Debugaging Y our Application,”" page 275

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and Boolean
operators.

This section discusses:

« Math operators.

« Operations on dates and times.
« String concatenation.

* (@ operator.

« Comparison operators.

« Boolean operators.

Math Operators
PeopleCode uses standard mathematical operators:
¢ +

Add

Subtract (or unary negative sign)

Multiply
e/
Divide

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

Understanding the PeopleCode Language Chapter 2

. *%

Exponential

Exponentiation occurs before multiplication and division; multiplication and division occur before addition
and subtraction. Otherwise, math expressions are evaluated from left to right. Y ou can use parentheses to
force the order of operator precedence.

The minus sign can also, of course, be used as a negation operator, asin the following expressions.

-10
- &NUM
- Product (&PERCENT_CUT, .01, SALARY)

Operations on Dates and Times

Y ou can add or subtract two date values or two time values, which provides a Number result. In the case of
dates, the number represents the difference between the two dates in days. In the case of time, the number
represents the difference in seconds. Y ou can also add and subtract numbers to or from atime or date, which
results in another date or time. Again, in the case of days, the number represents days, and in the case of time,
the number represents seconds.

The following table summarizes these operations:

Operation Result Type Result Represents
Time + number of seconds Time Resulting time

Date + number of days Date Resulting date

Date - date Number Differencein days
Time - time Number Difference in seconds
Date + time DateTime Date and time combined

String Concatenation

The string concatenation operator (|) is used to combine strings. For example, assuming
& OPER_NICKNAME is"Dave", the following statement sets & RETORT to "'l can't do that, Dave."

&RETORT = "I can't do that, " | &OPER NI CKNAME |

The concatenation operator automatically converts its operands to strings. This conversion makes it easy to
write statements that display mixed data types. For example:

&DAYS LEFT = &CHRI STMAS - %bat €;
W nMessage("Today is " | Yate | ". Only " | &DAYS LEFT | " shopping days left!");

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

@ Operator

The @ operator converts a string storing a definition reference into the definition. Thisis useful, for example,
if you want to store definition references in the database as strings and retrieve them for use in PeopleCode;
or if you want to obtain a definition reference in the form of a string from the operator using the Prompt
function.

To take asimple example, if therecord field EMPLID is currently equal to 8001, the following expression

evaluates to 8001:

@ EMPLI D'

The following example uses the @ operator to convert strings storing a record reference and arecord field
reference:

&STR1 = " RECORD. BUS_EXPENSE_PER';

&STR2 = "BUS_EXPENSE_DTL. EMPLI D*;

&STR3 = FetchVal ue(@ &STR1), Current RowNunber (1), @&STR2), 1);

W nMessage(&STR3, 64);

Note. String literals that reference definitions are not maintained by PeopleTools. If you store definition
references as strings, then convert them with the @ operator in the code, this creates maintenance problems
whenever definition names change.

The following function takes a rowset and arecord, passed in from another program, and performs some
processing. The GetRecord method does not take a variable for the record, however, you can dereference the
record name using the @ symbol. Because the record name is never hard-coded as a string, if the record name
changes, this code does not have to change.

Functi on Get _My_Row(&PASSED ROWSET, &PASSED RECORD)
For &ROWSET_ROW = 1 To &PASSED_ ROWSET. RowCount
&UNDERLY!I NGREC = "RECORD. " | &PASSED ROWBET. DBRecor dNane;
&ROW RECORD = &PASSED ROWSET. Get Row(&ROWBET ROW . Get Recor d(@UNDERLYI NGREC) ;
/* Do other processing */

End- For ;

End- Functi on;

Comparison Operators

Comparison operators compare two expressions of the same data type. The result of the comparisonisa
Boolean value. The following table summarizes these operators:

Operator Meaning

= Equal

1= Not equal

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

Understanding the PeopleCode Language Chapter 2

Operator Meaning

<> Not equal

< Lessthan

<= Lessthan or equal to

> Greater than

>= Greater than or equal to

Y ou can precede any of the comparison operators with the word Not, for example:

« Not=
+« Not<
« Not>=

Expressions formed with comparison operators form logical terms that can be combined using Boolean
operators.

String comparisons are case-sensitive. Y ou can use the Upper or Lower built-in functionsto do a case-
insensitive comparison.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” Lower
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Upper

Boolean Operators

36

The logical operators AND, OR, and NOT are used to combine Boolean expressions. The following table
shows the results of combining two Boolean expressions with AND and OR operators:

Expression 1 Operator Expression 2 Result
False AND False False
False AND True False
True AND True True

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Expression 1 Operator Expression 2 Result
False OR False False
False OR True True
True OR True True

The NOT operator negates Boolean expressions, changing a True value to False and a False value to True.

In complex logical expressions using the operations AND, OR, and NOT, NOT takes the highest precedence,
AND isnext, and OR islowest. Use parentheses to override precedence. (Generally, it isagood ideato use
parenthesesin logical expressions anyway, because it makes them easier to decipher.) If used on the right side
of an assignment statement, Boolean expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

&FLAG = (Not (&FLAG)); /* toggles a Bool ean */
if ((&HAS_FLEAS or &HAS TI CKS) and
SOAP_QTY <= M N_SOAP_QTY) then
SOAP QTY = SOAP QTY + Order Fl eaSoap(SOAP_ORDER QTY) ;
end-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Chapter 3

Understanding Objects and Classes in
PeopleCode

This chapter discusses:

» Classes and objects

» Creating and using objects.
» Assigning objects.

» Passing objects.

Classes and Objects

PeopleSoft delivers classes of objects that you can manipul ate with PeopleCode. In addition, you can extend
the existing classes or create your own. The delivered classes may or may not have a graphic user interface
equivalent; some are representations of data structures that occur only at runtime. With PeopleCode, you can
manipulate data in the data buffer easily and consistently. These classes enable you to write code that's more
readable, more easily maintained, and more useful.

This section discusses:
e Classes.
» Objects.

» Object instantiation.

Classes

A classisthe formal definition of an object and acts as atemplate from which an instance of an object is
created at runtime. The class defines the properties of the object and the methods used to control the object's
behavior.

PeopleSoft delivers predefined classes, such as Array, File, Field, SQL, and so on. Y ou can create your own
classes using the Application class. Y ou can aso extend the functionality of the existing classes using the
Application class.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Understanding Objects and Classes in PeopleCode Chapter 3

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes'

Objects

An object represents a unique instance of a data structure defined by the template provided by its class. Each
object has its own values for the variables belonging to its class and responds to methods defined by that
class. Thisisthe same for classes provided by PeopleSoft and for classes you create yourself.

After an object has been created (instantiated) from a class, you can change its properties. A property isan
attribute of an object. Properties define:

» Object characterigtics, such as name or value.
« The state of an object, such as deleted or changed.

Some properties are read-only and cannot be set, such as Name or Author. Other properties can be set, such as
Value or Label.

Objects are different from other data structures. They include code (in the form of methods), not just static
data. A method is a procedure or routine, associated with one or more classes, that acts on an object.

An analogy to illustrate the difference between an object and its classis the difference between a car and the
blue Citroen with license plate number TS5800B. A classisagenera category, while the object is a specific
instance of that class. Each car comes with standard characteristics, such as four whedl's, an engine, or brakes,
that define the class and are the template from which the individual car is created. Y ou can change the
properties of an individual car by personalizing it with bumper stickers or racing stripes, which islike
changing the Name or Visible property of an object. The model and date that the car is created are similar to
read-only properties because you cannot alter them. A tune-up acts on the individual car and changesits
behavior, much as a method acts on an object.

Object Instantiation

A classisthe blueprint for something, like abicycle, acar, or adata structure. An object is the actual thing
that is built using that class (or blueprint.) From the blueprint for a bicycle, you can build a specific mountain
bike with 23 gears and tight suspension. From the blueprint of a data structure class, you build a specific
instance of that class. Instantiation is the term for building that copy, or an instance, of a class.

Creating and Using Objects

This section discusses how to:
» Instantiate objects.
» Change object properties.

* Invoke methods.

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

» Copy objects.

Instantiating Objects

Generally you instantiate objects (create them from their classes) using built-in functions or methods of other
objects. Some objects are instantiated from data already existing in the data buffer. Think about this kind of
object instantiation as taking a chunk of datafrom the buffer, encapsulating it in code (methods and
properties), manipulating it, then freeing the references. Some objects can be instantiated from a previously
created definition, such as a page or file layout definition, instead of from data.

The following example creates a field object:
Local field &WField
&WField = GetField();

Get functions, which include functions such as GetField, GetRecord, and so on, generally provide access to
datathat aready exists, whether in the data buffers or from an existing definition.

Create functions, which include functions such as CreateObject, CreateArray, CreateRecord, generally create
defined objects that do not yet exist in the data buffer. Create functions create only a buffer structure. They do
not populate it with data. For example, the following function returns a record object for arecord that already
exists in the component buffer:

&REC = Get Record();

The following example creates a standal one record. However, thereis no datain & REC2. The specified
record definition must be created previously, but the record does not have to exist in either the component or
data buffer:

&REC2 = CreateRecord(EMP_CHKLST_I TM ;

Objects with no built-in functions can only be instantiated from a session object (such as tree classes,
component interfaces, and so on). For most of these classes, when you use a Get function, all you get isan
identifier for the object. To fully instantiate the object, you must use an Open method.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, " Session Class'

Changing Properties

To set or get characteristics of an object, or to determine the state of an object, you must access its properties
through dot notation syntax. Follow the reference to the object with a period, followed by the property, and
assign it avalue. Theformat is generally asfollows:

oj ect. Property = Val ue
The following example hides the field & MY FIELD:

&WFI ELD. Vi si bl e = Fal se

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

Understanding Objects and Classes in PeopleCode Chapter 3

Y ou can return information about an object by returning the value of one of its properties. In the following
example, & X isavariable that is assigned the value found in the field & MY FIELD:

&X = &MWYFI ELD. Val ue
In the following example, a property is used as the test for a condition:

I f &ROWBET. Acti veRowCount <> & Then

Invoking Methods

42

Y ou also use dot notation to execute methods. Follow the reference to the object with a period, then with the
method name and any parameters the method takes. The format is generally:

oj ect . net hod() ;

Y ou can string methods and property values together into one statement. The following example strings
together the GetField method with the Name property:

| f &REC BASE. Get Fi el d(&R) . Nane = &REC_RELLANG. Get Fi el d(&J) . Nane Then

Some methods return a Boolean value: True if the method executes successfully; False if it does not. The
following method compares all like-named fields of the current record object with the specified record. This
method returns as True if all like-named fields have the same value:

| f &MYRECORD. Conpar eFi el ds(&OTHERRECORD) Then

Other methods return areference to an object. The GetCurrEffRow method returns arow object:
&MYROW = &MYROWSET. Get Cur r Ef f Row() ;

Some methods do not return anything. Each method's documentation indicates what it returns.

Many objects have default methods. Instead of entering the name of the method explicitly, you can use that
method's parameters. Objects with default methods are composite objects; that is, they contain additional
objects within them. The default method is generally the method used to get the lower-level object.

A good example of acomposite object is arecord object. Record definitions are composed of field
definitions. The default method for arecord object is GetField.

The following lines of code are equivalent:

&Fl ELD
&Fl ELD

&RECORD. Get Fi el d(FI ELD. EMPLI D) ;
&RECORD. EMPLI D;

Note. If the field you're accessing has the same name as a record property (such as NAME) you cannot use
the shortcut method for accessing the field. Y ou must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows, so the default
method for arowset is GetRow. The two specified lines of code are equivalent: They both get the fifth row of
the rowset:

&ROWSET = Get RowSet () ;
/*the next two lines of code are equival ent */

&ROW = &ROWSET. Get Row(5) ;
&ROW = &ROWSET(5) :

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

The following exampleillustrates the long way of enabling the Name field on a second-level scroll area (the
code is executing on the first-level scroll area):

Get Rowset (SCROLL. EMPLOYEE_CHECKLI ST) . Get Row(1) .
Get Recor d(EMPL_CHKLST | TM . Get Fi el d(FI ELD. NAMVE) . Enabl ed = True;

Using default methods enables you to shorten the previous code to the following:

Get Rowset (SCROLL. EMPLOYEE_CHECKLI ST) (1) . EMPL_CHKLST | TM NAME.
Enabl ed = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a corresponding
object. For example, the code & enp = RECORD. JOB. | sChanged; isevaluated asif it were&t enp =
CGet Recor d(RECORD. JOB) . | sChanged,; .

Furthermore, the code JOB. EMPLI D. Vi si bl e = Fal se; isevauated asif it were
GetFiel d(JOB. EMPLID). Visible = Fal se; .

Copying Objects

Many of the classes delivered with PeopleTools have some sort of copy method, such as the rowset class
CopyTo, the tree class Copy, and so on. Unless specifically identified (such as the message class
CopyRowsetDelta) all copy methods use the current data of the object. This may be different than the original
datavaluesif the object was retrieved from the database and the valuesin it have been changed either by an
end-user or a PeopleCode program.

Assigning Objects

When you assign one object to another, you do not create a copy of the object, but only make a copy of the
reference.

In the following example, & A1l and & A2 refer to the same object. The assignment of & A1 to & A2 does not
alocate any database memory or copy any part of the original object. It makes & A2 refer to the same object
towhich &Al refers.

Local Array of Number &Al, &A2;

&A1
&A2

CreateArray(2, 4, 6, 8, 10);
&A1,

The following diagram shows how both references point to the same object:

&A1

&A2

Representation of two arrays

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

Understanding Objects and Classes in PeopleCode Chapter 3

If the next statement is&A2[5] = 12;, then &A1[5] also equals 12, as shown in the following diagram:

&A1[5] 1
2 4 6 8 12
&A2[5] *

Representation of two arrays with same content

The following exampleis nhot considered an object assignment:

Local nunber &NUM
Local Array of Number &A1;

&A1 = CreateArray(2, 4, 6, 8, 10);
&NUM = &A1[3];

&NUM is of data type Number, which is not an object type. If you later change the value of &NUM in the
program, you will nott change the element in the array.

Passing Objects

44

All PeopleCode abjects can be passed as function parameters. Y ou can pass complex data structures between
PeopleCode functions (as opposed to passing long lists of fields). If afunction is passed an object, the
function works on the actual object, not on a copy of the object.

In the following simple example, areference to the Visible property is passed, not the value of Visible. This
enabl es the MyPeopleCodeFunction either to get or set the value of the Visible property:

MyPeopl eCodeFuncti on(&y Fi el d. Vi si bl e) ;

In the following example, the function Process Rowset loops through every row and record in the rowset
passed to it and executes an Update statement on each record in the rowset. This function can be called from
any PeopleCaode program and can process any rowset that is passed to it.

Local Rowset &RS;
Local Record &REC;

Function Process_RowSet (&ROWNBET as Rowset);

For & = 1 To &ROWSET. Rowcount
For & = 1 To &ROWBET. Recor dcount
&REC = &ROWBET. Get Row(&l) . Get Recor d(&J) ;
&REC. Updat e() ;
End- For ;
End- For ;
End- Functi on;

&RS = Get Level 0();

Process_RowSet (&RS) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

The following function takes a rowset and a record passed in from another program. GetRecord does not take
avariable for the record; however, you can use the @ symbol to dereference the record name.

Function Get M/ _Row(&PASSED ROWSET, &PASSED RECORD)

For &ROANSET_ROW = 1 To &PASSED ROWSET. RowCount
&UNDERLYI NCREC = "RECORD. " | &PASSED ROWSET. DBRecor dNane;
&ROW RECCORD = &PASSED_ROWSET. Get Row(&ROWSET_ROW . Get Recor d(@UNDERLYI NGREC) ;

/* Do other processing */
End- For ;

End- Functi on;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

Chapter 4

Referencing Data in the Component
Buffer

This chapter provides an overview of component buffer structure and contents and discusses how to:

» Specify datawith contextual references.

» Specify data with references using scroll path syntax and dot notation.

Understanding Component Buffer Structure and Contents

This section discusses:

« Component buffer contents.

* Rowsets and scroll areas.

» Record fields in the component buffer.
See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Component Buffer Contents

PeopleCode frequently must refer to data in the component buffer, the areain memory that stores data for the
currently active component.

The two methods for specifying a piece of datain the component buffer from within PeopleCode are:

« Contextual references, which refer to datarelative to the location of the currently executing PeopleCode
program.

» References using scroll path syntax, which provide a complete, or absolute, path through the component
buffer to the referenced component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Referencing Data in the Component Buffer Chapter 4

48

In addition to the built-in functions used to access the component buffer, PeopleCode provides enhanced
access to structured data buffers using the object syntax. Use the object-oriented PeopleCode to resolve
contextual ambiguities when you reference a nonprimary record field that appears on more than one scroll
level in acomponent. Aswith built-in functions, object syntax provides for both relative and absolute
references to component buffer data.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer consists of rows of buffer fields that hold data for the records associated with page
controls, including primary scroll records, related display records, derived/work records, and Trand ate table
records. PeopleCode can reference buffer fields associated with page controls and other buffer fields from the
primary scroll record and related display records.

See Chapter 4, "Referencing Datain the Component Buffer," Record Fields and the Component Buffer, page
50.

Primary scroll records are the principal SQL tables or views associated with page scroll levels. A primary
scroll record uniquely identifies ascroll level in the context of its page: each scroll level can have only one
primary scroll record, and the same primary scroll record cannot occur on more than one scroll area at the
same level of the page. Parent-child relations between primary scroll records determine the dependency
structure of the scroll areas on the page. The primary record on alevel one scroll areamust be a child of the
primary record on level zero, the primary record on alevel two scroll area must be a child of the primary
record on its enclosing level one scroll area, and the primary record on alevel three scroll area must be a child
of the primary record on its enclosing level two scroll area.

Note. Level zero may have multiple records.

The hierarchical relations among scroll areas, controlled by hierarchical relations among primary scroll
records, enable the user and PeopleCode to drill down through the scroll hierarchy to access any buffer field,
including related display, derived/work, and Translate table buffer fields, which occupy space on the same
rows as the primary scroll record buffer fields with which they are associated.

For example, to access a page field on level two of a page, a user must:
1. Select afield onlevel one of the page.
2. Scroll to and select the field on level two of the page.

The following diagram illustrates this scroll path taken by the user:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Level zero row

F1 F2 F3 F4
R1

Selected row on level one

Target row and buffer figld
on level two

FI F2 F3 F4

Rl == = = —= .
»>lR2 — — =
Ra

Scroll path to a buffer field

To access the same field in the component buffer, PeopleCode must:
1. Specify ascroll areaand row on scroll level one: this selects a subset of dependent rows on level two.
2. Specify ascroll areaand row on scroll level two.

3. Specify the recordname.fieldname on the level two row.

PeopleCode component buffer functions use a common scroll path syntax for locating scrolls, rows, and
fields in multiple-scroll pages.

Rowsets and Scroll Areas

Rowsets enable more consistent, more convenient, and less ambiguous manipulation of buffer data than
previous built-in functions could achieve. It's a hierarchical data object that can represent an entire scroll area
and all of its subordinate scroll aress.

A rowset can contain the entire contents of a component buffer, or the contents of any lower-level scroll area
plus all of its subordinate buffer data. The hierarchical structure of component levels—scroll area, row,
record, field—is provided by the new object data types, Rowset, Row, Record, and Field.

Y ou can access any rowset, row, record, or field within the buffer using the dot notation inherent in

PeopleTools 8 object-oriented programming. This enables you to reference fields within a record object,
records within arow object, and rows within arowset object as properties of the parent objects.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Referencing Data in the Component Buffer

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Chapter 4

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class'

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

Record Fields and the Component Buffer

The record fields in the component buffer are a superset of those accessible to the user through page controls.
In most cases, PeopleCode can reference any record field in ascroll areds primary scroll record or in arelated
display record, not just those fields that are associated with page controls. The following table lists record

types and locations:

Type and Location of Record

Presence in Component Buffer

Primary record on scroll levels greater than zero

On scroll levels greater than zero, all record fields from
the primary scroll record are in the component buffer.
PeopleCode can refer to any record field on the primary
scroll record, even if it is not associated with a page
control.

Primary record on scroll level zero

If scroll level zero of apage contains only controls
associated with primary scroll record fields that are
search keys or aternate search keys, then only the
search key and alternate search key fieldsave in the
component buffer, not the entire record. The values for
the fields come from the keylist, and the record cannot
run RowInit PeopleCode. If level zero contains at |east
one record field from the primary scroll record that is
not a search key or alternate search key, then all the
record fields from the primary scroll record are
available in the buffer. (For this reason, you may
sometimes need to add one such record field at level
zero of the page to make sure that all the record fields of
the level-zero primary record can be referenced from
PeopleCode.)

Related display record fields

The buffer contains the related display record field, plus
any record fields from the related display record that are
referenced by PeopleCode programs. Y ou can reference
any record field in arelated display record.

Derived/work record fields

Only derived/work record fields associated with page
controls are in the component buffer. Other record fields
from the derived/work record cannot be referenced from
PeopleCode.

50

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Type and Location of Record Presence in Component Buffer

Tranglate table record fields Only Tranglate table fields associated with page controls
are available in the component buffer. Other fields from
the Tranglate table cannot be referenced from
PeopleCode.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed.

Specifying Data with Contextual References

In acontextual reference, PeopleCode refersto arow or buffer field determined by the context in which a
PeopleCode program is currently executing.

This section includes an overview of current context and discusses how to:
» Usecontextual row references.

o Usecontextua buffer field references.

Understanding Current Context

All PeopleCode programs, with the exception of programs associated with standard menu items, execute in a
current context. The current context determines which buffer fields can be contextually referenced from
PeopleCode, and which row of datais the current row on each scroll level at the time a PeopleCode program
is executing.

The current context comprises a subset of the buffer fields in the component buffer, determined by the row of
datawhere a PeopleCode program is executing. The current context includes:

« All buffer fieldsin the row of datawhere the PeopleCode program is executing.

« All buffer fieldsin rows that are hierarchically superior to the row where the PeopleCode program is
executing.

In the following diagram, all rows enclosed in dotted rectangles are part of the current context:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

Referencing Data in the Component Buffer Chapter 4

52

Level zero row is
always in context

F1 F2 F3 F4

R1

Parent of row where execution
takes place is in context

Fi F2 F3 F4

Row where PeopleCade
executes is in context

Fi F2 F3 F4

v
8

All rows on lower scroll are
out of contaxt

FI F2 F3 F4
R1
R2
R3

Y

Context of PeopleCode executing on a level two scroll area

In the preceding diagram, a PeopleCode program is executing in a buffer field on row R3 on scroll level two.
Therowsin scroll level two are dependent on row R2 on scroll level one. The rowsin scroll level one are
dependent on the single row at scroll level zero. The current context consists of all the buffer fields at level
two row R3, level onerow R2, and level zero row R1. The rows in the current context on levels one and two
are the current rows on their respective scroll areas. The single row on level zero is always current and is
included in any current context. All rows other than the current rows and the level zero row are outside the
current context. No current row can be determined on scroll areas below the one where the PeopleCode is
executing.

With PeopleTools 8, contextua references work within the structure of a rowset object, and can include
referencesto all field objects, record objects, row objects, and rowset objects in the current context.

Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first checking the row where the PeopleCode
program is executing. If PeopleCode does not find an appropriate buffer field, it looksin progressively higher
rowsin the current context. The following diagram indicates this processing order:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Level zero row is
always in context

F1 F2 F3 F4

R1

@ Parent of row where execution
takes place is in context

F1 F2 F3 F4

Row where PeopleCode
exaculas is in context

F1 F2 F3 F4

All rows on lower scroll are
out of context

F1 F2 F3 F4

R
—» R2
R3

Processing order of a contextual reference

In typical pages, this processing order is not significant; however, if the same record occurs on more than one
level of apage, you should understand how the direct reference is resolved.

Using Contextual Row References

A contextual row reference refersto arow in the current context on level one or lower in the page. Because
each scroll area uses a unique primary record, the name of that record uniquely identifies whichever row isin
the current context for that scroll level. A contextual row reference uses a RECORD.recordname component

name reference to specify the scroll level of the intended row, resulting in areference to the current row at the
specified scroll level.

For example, you can use contextual row references with the RecordDel eted, RecordNew, and
RecordChanged functions:

| f RecordDel et ed(RECORD. SOVE_REC) Then. ..

With PeopleTools 8 object-oriented programming, arow can be referenced by specifying parent rows or
rowsets of the current rowset:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Referencing Data in the Component Buffer Chapter 4

I f Get RowSet (). Par ent Rowset . Par ent Row. | sDel et ed Then. ..

In early versions of PeopleTools, you could make contextual row references using arecordname.fieldname
expression:

Hi deRow(SOVE_REC. ANY_FI ELD)
| f RecordDel et ed(SOVME_REC. ANY_FI ELD) Then. ..
This syntax is still supported.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

Using Contextual Buffer Field References

54

A contextual buffer field reference is atype of PeopleCode expression that refers to a buffer field by
specifying arecord field. The row of the buffer field is determined by the current context of the PeopleCode
program where the reference is made. Y ou can use a contextual buffer field reference to retrieve or update the
valuein the buffer field, to pass the buffer field value to afunction, or to reference an instance of a page
control associated with the buffer field. The following statements use contextual buffer field references:

/* Assigns value of variable to buffer field */

SOVE_RECORD. SOVE_FI ELD = &VAL;

/* Assigns value of buffer field to variable */

&VAL = SOVE_RECORD. SOVE_FI ELD;

/* Hides instance of control associated with buffer field */
Hi de(SOVE_RECORD. SOVE_FI ELD) ;

With PeopleTools 8 object-oriented programming, afield object incorporates information about both the
record field on which the buffer field is based and the page control with which the buffer field is associated.
By referring to the field object, you either make a contextual buffer field reference or you change an interface
attribute of the associated page control, depending on the object property you use. The following example has
the same effect as a contextual buffer field reference:

/* Assigns value of a variable to a buffer field */
&MWYFI ELD. Val ue = &SOVEVAL;

Contextual Buffer Field Reference Ambiguity

Nonprimary record fields may appear on more than one scroll level in a page. For example, a page may use a
derived/work field DERIVED_JS.CALC 1 asawork field on level one and level two of the same page. This
creates distinct DERIVED_JS.CALC 1 buffer fields for rows on both levels. Because of the order in which
PeopleCode resolves contextual buffer field references, if the contextual reference &VAL =

DERI VED JS. CALC 1; executesin aPeopleCode program on alevel-two row, the reference aways
retrieves the buffer field value on the current row on level two. PeopleCode on level two is unable to retrieve
the value of the DERIVED_JS.CALC_1 on level one using a contextual reference.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level one, use acomponent buffer function
with a scroll path:

&AL = FetchVal ue(SCROLL. | evel 1_scrol | nane, Current RowNunber (1), DERIVED JS. CALC >
1);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

The CurrentRowNumber function returns the current row on level one, or the parent row of the level two row
where the PeopleCode program is executing.

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only asingle row of data, and the buffer fields in thisrow are dwaysin the
current context. For this reason you can amost always refer to alevel zero buffer field using a contextual
reference. However, referential ambiguity can make it impossible to reference a buffer field on level zero
contextually. For example, a page may use a derived/work field DERIVED_JS.CALC_1 asawork field on
level zero and level one of the same page. This creates distinct DERIVED_JS.CALC_1 buffer fields for rows
on both levels. Because of the order in which PeopleCode resolves contextual field references, if the &VAL =
DERI VED JS. CALC 1; contextual reference executesin a PeopleCode program on alevel-one row, it
always retrieves the buffer field value on the current row on level one.

To explicitly reference the DERIVED_JS.CALC _1 buffer field on level zero, you must use a component
buffer function with this syntax:

Function([recordnane.]fiel dname, rownum

Here rownum, because it ison level zero, is always equal to one. In the previous example of the
DERIVED_JS.CALC_1 field, you would use this statement:

&VAL = FetchVal ue(DERI VED_JS. CALC 1, 1);

Ambiguous References with Objects

With PeopleTools 8 object-oriented programming, even if two field objects that are in different rowsets
contain buffer data that's based on the same underlying record field, references to those objects are inherently
unique, because each is instantiated with respect to a specific point in the hierarchy of the buffer. Any
manipulation of afield object's interface properties affects only the page control with which it's associated.

The following example instantiates afield object using the long form, to emphasi ze the hierarchical form of
the data. It then hides the field's associated page control. Because thisis a unique instance of the field, based
on its hierarchy, hiding this field does not affect the visibility of any other page control associated with the
same record field:

&MYFI ELD = Get Rowset (SCROLL. EMPL_CHECKLI ST) . Get Row &l) .

Get Recor d(RECORD. EMPL_CHECKLI ST) . Get Fi el d(EMPL_CHECKLI ST. EMPLI D) ;
&WFI ELD. Vi si bl e = Fal se;

/* the same code, using the "short" form?*/

&WFI ELD = Get Rowset (SCROLL. EMPL_CHECKLI ST) . Get Row(&l) .
EMPL_CHECKLI ST. EMPLI D;

Note. Any changein afield object's value affects both the underlying record field and the value of any other
field object oriented on the same record field. This behavior is the same as the behavior of contextual buffer
field references that ater the field value.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

Referencing Data in the Component Buffer Chapter 4

Specifying Data with References Using Scroll Path Syntax and Dot
Notation

This section provides an overview of scroll paths and discusses how to:
» Structure scroll path syntax in PeopleTools 7.5.

« Reference scroll levels, rows, and buffer fields.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Understanding Scroll Paths

A scroll path is a construction found in the parameter lists of many component buffer functions, which
specifiesascroll level in the currently active page. Additional parameters are required to locate arow or a
buffer field at the specified scroll level.

PeopleTools 7.5 scroll path syntax enables you to eliminate ambiguous references, which, although rare, do
sometimes occur in complex components.

See Chapter 4, "Referencing Data in the Component Buffer," Using Contextual Buffer Field References, page
54.

Peopl€eTools 8 adds the convenience of object-oriented dot notation and default methods, which produce
inherently non-ambiguous references, to PeopleCode programs. There are examples of dot notation in this
section and examples of the scroll path syntax available in PeopleTools 7.5, which is still valid in
PeopleTools 8.

Structuring Scroll Path Syntax in PeopleTools 7.5

PeopleTools 7.5 offers two constructions for scroll paths: a standard scroll path syntax and an alternative
syntax using a SCROL L .scrollname expression. The latter is more powerful in that it can process some rare
cases where a RECORD.recordname expression results in an ambiguous reference.

Scroll Path Syntax with RECORD.recordname

Here is the standard scroll path syntax:

[RECORD. | evel 1 recnane, |levell row, [RECORD.|evel2 recnane, level2 row,]] RECORD. >
target _recnane

If the target level (the level you want to reference) is one, you must supply only the RECORD.
target_recname parameter. If the target scroll level is greater than one, you must provide scroll name and row
level parameters for all hierarchically superior scroll levels, beginning at level one. The following table
indicates the scroll path syntax for the three possible target scroll levels:

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer
Target Level Scroll Path Syntax
1 RECORD. t ar get _r echane
2 RECORD. | evel 1_recnamne, |evel 1_row,
RECCRD. t ar get _r ecnane
3 RECORD. | evel 1_recnane, levell row, RECORD.|evel 2 =
recnane, |evel2_row, RECORD.target_recnane

If you are referring to arow or abuffer field, additional parameters are required after the scroll path.

The following table describes the standard scroll path syntax parameters:

Syntax Parameters Description

RECORD.levell_recname Specifies the name of arecord associated with scroll level
one, normally the primary scroll record. This parameter is
required if the target scroll level istwo or three.

levell row An integer that selects arow on scroll level one. This
parameter isrequired if the target scroll level istwo or
three.

RECORD.level2_recname Specifies the name of arecord associated with scroll level

two, normally the primary scroll record. This parameter is
required if the target row ison scroll level three.

level2 row An integer that selects arow on scroll level two. This
parameter isrequired if the target row is on scroll level
three.

RECORD.target_recname Specifies arecord associated with the target scroll level,

generally the primary scroll record. The scroll can be on
level one, two, or three of the active page.

Copyright

Scroll Path Syntax with SCROLL.scrollname

As an aternative to RECORD.recordname expressions in scroll path constructions, PeopleTools 7.5 permits
use of a SCROL L .scrollname expression. Scroll paths using SCROL L .scrollname are functionally identical
to those using RECORD.recordname, except that SCROL L .scrollname expressions are more strict: they can
refer only to ascroll level's primary record; whereas RECORD.recordname expressions can refer to any
record in the scroll level, which in some rare cases can result in ambiguous references. (This can occur, for
example, if the RECORD.recordname expression inadvertently references arelated display record in another
page in the component.) Use of RECORD.recordname is still permitted, and there is no requirement to use
the SCROL L .scrollname alternative unless it is needed to avoid an ambiguous reference.

The scrollname is the same as the scroll level's primary record name.

The scroll name cannot be viewed or changed through the PeopleSoft Application Designer interface. Hereis
the complete scroll path syntax using SCROL L .scrollname expressions:

© 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Referencing Data in the Component Buffer Chapter 4

[SCROLL. | evel 1_scroll nane, level1l row, [SCROLL.Ievel2_scrollnane, level2 row,]],
SCROLL. target scrol |l nane

Thetarget scroll level in this construction is the scroll level that you want to specify. If the target level is one,
you need to supply only the SCROL L .target_scrollname parameter. If the target scroll level is greater than
one, you need to provide scroll name and row-level parameters for hierarchically superior scroll levels,
beginning at level one. The following table indicates the scroll path syntax for the three possible target scroll

levels:
Target Level Scroll Path Syntax
1 SCROLL. t arget _scrol | nane
2 SCROLL. | evel 1_scrol |l name, level 1_row, SCROLL.target_=
scrol | nane
3 SCROLL. | evel 1_scrol | name, level 1l row, SCROLL.|evel 2 >
scrol I name, level 2_row, SCROLL.target_scrollnanme

If the component you are referring to isarow or abuffer field, additional parameters are required after the
scroll path.

The following table describes the aternative scroll path syntax parameters:

Parameter Description

SCROLL .levell _scrollname Specifies the name of the page's level-one scroll area. This
is always the same as the name of the scroll level's
primary scroll record. This parameter isrequired if the
target scroll level istwo or three.

levell row An integer that selects arow on scroll level one. This
parameter isrequired if the target scroll level istwo or
three.

SCROLL .level2_scrollname Specifies the name of the page'slevel two scroll area. This

is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target row is on scroll level three.

level2 row An integer that selects arow on scroll level two. This
parameter isrequired if the target row is on scroll level
three.

SCROLL .target_scrollname The scroll name of the target scroll level, which can be

level one, two, or three of the active page.

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

=>

Chapter 4 Referencing Data in the Component Buffer

See Also

Chapter 4, "Referencing Data in the Component Buffer," Referencing Scroll Levels, Rows, and Buffer Fields,
page 59

Referencing Scroll Levels, Rows, and Buffer Fields

Y ou can reference a scroll level using the scrollpath construct only. Functions that reference rows for buffer
fields require additional parameters. The following table summarizes the three types of component buffer
references:

Target Component Reference Syntax Example Function

Scroll level scrol | path Hi deScrol | (scrol | pat h);

Row scrol | path, row_number H deRow(scrol | path, =
row_nunber);

Field scrol | path, row nunber, Fet chval ue(scrol | path, =

[recordnane.] fiel dname row_nunber, fieldnane);

PeopleTools 8 provides an aternative to the scroll level, row, and field componentsin the form of the data
buffer classes Rowset, Row, Record, and Field, which you reference using dot notation with object methods
and properties. The following table demonstrates the syntax for instantiating and manipulating objectsin the
current context from these classes:

Target Object Example Instantiation Example Operation

Rowset &MYROWSET = Get Rowset () ; &MYROWSET. Refresh();

Row &MYROW = Get Row() ; &MYROW Copy To(&SOVEROW ;

Record &MYRECORD = Cet Record(); &MYREC. Conpar eFi el ds(&REC) ;

Field &MYFI ELD = Get Record(). &WYFI ELD. Label = "Last Nane";
fiel dnane;

The following sections provide examples of functions using scroll path syntax, which refer to an example
page from afictitious veterinary clinic database. The page has three scroll levels, shown in the following

table:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

59

Referencing Data in the Component Buffer

60

Chapter 4

Level Scroll Name (Primary Scroll Record Name)
0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object-oriented syntax assumes that the following initializing code was

executed:

Local Rowset &VET_SCROLL, &OMNER SCROLL, &PET_SCROLL, &VISIT_SCROLL;

&VET_SCROLL = GetLevel 0();

&OMER SCROLL = &VET_SCROLL. Get Row(1) . Get RowSet (SCROLL. OANER) ;
&PET_SCROLL = &OWNER_SCROLL. Get Row(2) . Get RowSet (SCROLL. PET) :
&VI SIT_SCROLL = &PET_SCROLL. Get Row(2) . Get RowSet (SCROLL. VI SI T) ;

Referring to Scroll Levels

The HideScroll function provides an example of areferenceto ascroll level. The syntax of the functioniis:

Hi deScrol | (scrol | pat h)
where scrollpath is

[RECORD. | evel 1_recnane, |evel 1 row,
target _recnane

[RECORD. | evel 2_recnane, |evel 2_row,]] RECORD. =

To referencethe level 1 scroll in the example, use this syntax:

H deScr ol | (RECORD. OANNER) ;

This hidesthe OWNER, PET, and VISIT scroll areas on the example page.

In PeopleTools 8, the object-oriented version of thisis:

&OWNNER_SCROLL. Hi deAl | Rows() ;

To hide scroll levelstwo and below, supply the primary record and row in scroll level one, and then the

record identifying the target scroll area:

Hi deScr ol | (RECORD. OMNER, &L1ROW RECORD. PET);

The following diagram shows the scroll path of this statement, assuming that the value of & LIROW is 2:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

FI F2 F3 F4
R1
> R2
R3

Sample scroll path

Similarly, to hide the VISIT scroll area on level three, you specify rows on scroll levels one and two.
H deScr ol | (RECORD. OMNER, &L1ROW RECORD. PET, &L2ROW RECORD. VISIT);

To use the SCROL L .scrollname syntax, the previous example could be written as the following:

H deScrol | (SCROLL. OMNER, &L1ROW SCROLL.PET, &L.2ROW SCROLL.VISIT);

In PeopleTools 8, the object-oriented version of thisis:

&VI SI T_SCROLL. Hi deAl | Rows() ;

Referring to Rows

Referring to rows is the same as referring to scroll areas, except that you need to specify the row you want to
select on the target scroll area. As an example, examine the HideRow function, which hides a specific row in
the level three scroll area of the page. Here is the function syntax:

H deRow(scrol | path, target row)

To hide row number & ROW_NUM on level one:

H deRow(RECORD. OANER, &ROW NUM) :

To do the same using the SCROL L .scrollname syntax:

H deRow(SCROLL. OABNER, &ROW NUM) :

In PeopleTools 8, the object-oriented version of thisfor the OWNER rowset is:
&OWNER_SCROLL(&ROW NUM) . Vi si bl e = Fal se;

On level two:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Referencing Data in the Component Buffer Chapter 4

H deRow(RECORD. OANER, &L1_ROW, RECORD. PET, &ROW NUM ;
In PeopleTools 8, the object-oriented version of thisfor the PET rowset is:
&PET_SCROLL(&ROW NUM . Vi si bl e = Fal se;

The following diagram indicates the scroll path of this statement, assuming that the value of &L1 ROW is2
and that & ROW_NUM isequal to 2:

Level zero: Vet

Fi F2 F3 F4
R1

Level one: Owner

Level two: Pet

Scroll path statement

On level three:

H deRow(RECORD. O\NER, Current RowNunber (1), RECORD. PET,
Current RowNunber (2), RECORD. VISIT, &ROW NUM ;

In PeopleTools 8, the object-oriented version of thisfor the VISIT rowset is:
&VI SI' T_SCROLL(&ROW NUM) . Vi si bl e = Fal se;

Referring to Buffer Fields

Buffer field references require a[recordname.]fieldname parameter to specify arecord field. The combination
of scroll level, row number, and record field name uniquely identifies the buffer field. Here is the syntax:

Fet chVval ue(scrol |l path, target_row, [recordnane.]fi el dnane)

Assume, for example, that record definitions in the veterinary database have the following fields that you
want to reference:

Record Sample Field

OWNER OWNER_NAME

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Record Sample Field
PET PET_BREED
VISIT VISIT_REASON

Y ou could use the following examples to retrieve values on levels one, two, or three from a PeopleCode
program executing on level zero.

To fetch avalue of the OWNER_NAME field on the current row of scroll area one:

&SOMVENAME = Fet chVal ue(RECORD. O\WNER, &L1_ROWN OANER OWNER NAME) ;

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&SOVENAME = &OWNER SCROLL(&L1_ROW . OANER. OWNER NANE;

To fetch PET_BREED on level two:

&SOVEBREED = Fet chVval ue(RECORD. OMNER, &L1 ROW RECORD. PET, &L2 ROW PET. PET_BREED);
In PeopleTools 8, the object-oriented version of thisfor the PET rowset is:

&SOVEBREED = &PET_SCROLL(&L2_ROW . PET. PET_BREED;

The following diagram indicates the scroll path to the target field, assuming that & L1 ROW equals 2,
&L2 _ROW equals 2, and field F3is PET.PET_BREED:

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

F1 F2 F3 F4

Scroll path to target field

To fetch VISIT _REASON on level three:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Referencing Data in the Component Buffer Chapter 4

64

&SOVEREASON = Fet chVal ue(RECORD. O\NER, &L1_ROW RECORD. PET,
&L2_ RON RECORD.VISIT, &3 ROW VI SIT.VISI T_REASON)

To do the same using the SCROL L .scrollname syntax:

&SOVEREASON = Fet chVal ue(SCROLL. O\NER, &L1_ROW SCROLL. PET,
&2 RON SCROLL.VISIT, &3 ROW SCROLL. VI SI T_REASON):

In PeopleTools 8, the object-oriented version of thisis:

&SOVEREASON = &VI SI T_SCROLL(&L3_ROW . VI SI T. VI SI T_REASON,

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context, for a specific
scroll level in the active page. CurrentRowNumber is often used to determine avalue for the level1_row and
level2_row parametersin scroll path constructions. Because current row numbers are determined by the
current context, CurrentRowNumber cannot determine a current row on ascroll level outside the current
context (ascroll level below the level where the PeopleCode program is currently executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level three of the
PET_VISITS page, in a PeopleCode program executing on level two:

&VAL = Fet chVal ue(RECORD. OANER, Current RowNunber (1),
RECORD. PET, Current RowNunber (2), RECORD. VI SIT, &TARGETROW
VI SI T_REASQON) ;

Because the PeopleCode program is executing on level two, CurrentRowNumber can return values for levels
one and two, but not three, because level three is outside of the current context and has no current row
number.

Looping Through Scroll Levels

Component buffer functions are often used in For loops to loop through the rows on scroll levels below the
level where the PeopleCode program is executing. The following loop, for example could be used in
PeopleCode executing on alevel two record field to loop through rows of data on level three:

For & = 1 To Acti veRowCount (RECORD. ONNER,
Cur rent RowNunber (1), RECORD. PET, Current RowNurber (2), RECORD. VI SIT)
&AL = Fet chVal ue(RECORD. OANER, Cur r ent RowNumber (1),

RECORD. PET, Current RowNunber(2), RECORD.VISIT, &, VISIT_REASON)

If &AL = "Fl eas" Then

/* do sonething about fleas */

End- | f;

End- For ;

A similar construct may be used in accessing other level two or level one scroll areas, such as work scroll
areas.

In these constructions, the ActiveRowCount function is often used to determine the upper bounds of the loop.
When ActiveRowCount is used for this purpose, the loop goes through all of the active rowsin the scroll
(rows that have not been specified as deleted). If you use Total RowCount to determine the upper bounds of
the loop, the loop goes through all of the rows in the scroll area: first those that have not been specified as
deleted, then those that have been specified as deleted.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

See Also

Chapter 4, "Referencing Data in the Component Buffer," Structuring Scroll Path Syntax in PeopleTools 7.5,
page 56

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CurrentRowNumber

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

Chapter 5

Accessing the Data Buffer

This chapter provides overviews of data buffer access, data buffer class examples, and current context, and
discusses how to:

» Access secondary component buffer data.

« |Instantiate rowsets using non-component buffer data.

Understanding Data Buffer Access

This section discusses:

« Databuffer access.
o Access classes.

« Databuffer model and data access objects.

Data Buffer Access

In addition to the built-in functions you use to access the component buffer, classes of objects are available
that provide access to structured data buffers using the PeopleCode object syntax.

The data buffers accessed by these classes are typically the component buffers that are loaded when you open
a component. However, these classes may also be used to access data from general data buffers, loaded by an
Application Engine program, a component interface, and so on.

The methods and properties of these classes provide functionality that is similar to what has been available
using built-in functions. However, they also provide improved consistency, flexibility, and new functionality.

Access Classes

The four data buffer classes are: Rowset, Row, Record, and Field. These four classes are the foundation for
accessing component buffer data through the new object syntax.

A field object, which isinstantiated from the Field class, is a single instance of data within arecord. Itis
based on afield definition.

A record object, which isinstantiated from the Record class, isasingle instance of adatawithin arow. Itis
based on arecord definition. A record object consists of oneto n fields.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Accessing the Data Buffer Chapter 5

A row object, which isinstantiated from the Row class, isasingle row of datathat consists of oneto n
records of data. A single row in acomponent scroll areaisarow. A row may have oneto n child rowsets. For
example, arow in alevel two scroll areamay have n level three child rowsets.

A rowset object is adata structure used to describe hierarchical data. It is made up of a collection of rows. A
component scroll areaisarowset. Y ou can also have alevel zero rowset.

Data Buffer Model and Data Access Classes

The data model assumed by the data buffer classesis that of a PeopleTools component, where scroll bars or
grids are used to describe a hierarchical, multiple-occurrence data structure. Y ou can access these classes
using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main points to understand these
relationships are:

« A record contains one or more fields.
« A row contains one or more records and zero or more child rowsets.
« A rowset contains one or more rows.

For component buffers, think of arowset as a scroll area on a page that contains all of the datain that scroll
area. A level zero rowset contains all the data for the entire component. Y ou can use rowsets with application
messages, file layouts, business interlinks, and other definitionsin addition to components. A level zero
rowset from a component buffer only contains one row: the keys that the user specifiesto initiate that
component. A level zero rowset from data that is not a component, such as a message or afile layout, might
contain more than one level zero row.

The following is basic PeopleCode that traverses through a two-level component buffer using dot notation
syntax. Level zero is based on record QA_INVEST_HDR, and level oneis based on record
QA_INVEST_LN.

Local Rowset &HDR ROWSET, &LI NE ROWNBET;
Local Record &HDR REC, &LI NE_REC,
&HDR_ROWBET = Get Level 0();

For & = 1 to &HDR ROWSET. RowCount
&HDR REC = &HDR ROWSET(&l). QA | NVEST HDR;
&EMPLI D = &HDR REC. EMPLI D. Val ue;
&1 NE_ ROMSET = &HDR ROWBET(&l) . Get Rowset (1) ;
For & = 1 to &LI NE_ROASET. RowCount
&LI NE_REC = &I NE_ RONBET(&J) . QA | NVEST_LN;
&LI NE_SUM = &LI NE_SUM + &LI NE_REC. AMOUNT. Val ue;
End- For ;
End- For ;

Each rowset is declared and instantiated. In general, your codeis easier to read and maintain if you follow
this practice.

Understanding Data Buffer Classes Examples

This section discusses;

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

» Employee Checklist page structure.
+ Object creation examples.

« Databuffer hierarchy examples.

* Rowset examples.

« Hidden work scroll area example.

Employee Checklist Page Structure

Most of the examplesin this section use the Employee Checklist page.

Accessing the Data Buffer

Employee Checklist \L

Schumacher,Simon ID: 2001

*Checklist Date: IEIEH“IIEEIEIEI Checklist: IEIEIEIEIEIE ﬂ Fepatriation Checklist
Responsible ID: IEEDE ﬂ FeppenJacgues

Comment: |]
*Chklst *Chklst ltm *Briefing Status *Status Date
Seq

|1EIEI |EIEIEIU15 Q| Briefing with Hurnan IInitiated "I IDEIHIEDDD

Resources

|200 [ooonzs @] Repatriation Discussion [initiated ¥] [oar 172000
|300 [o00028 @) careenPlacementdiscussion [Initiated <] [oar 172000
B Sa\.rejl 1 Return to Searchjl

Employee Checklist page

This page has the following record structure:

Scroll Level Associated Primary Record

Rowset and Variable Name

Level zero PERSONAL_DATA

Level zero rowset: & RSO

Level one scroll area EMPL_CHECKLIST

Level onerowset: & RS1

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

69

Accessing the Data Buffer Chapter 5

Scroll Level Associated Primary Record Rowset and Variable Name
Level one hidden work scroll area CHECKLIST_ITEM Level onerowset: & RS1H
Level two scroll area EMPL_CHKLST _ITM Level two rowset: & RS2

Another way of looking at the structure of a component is to use the Structure view. All the scroll areas are
labeled, and the primary record is associated with each:

2§ EMPLOYEE_CHECKLIST.GEL [Component]

Definition ~ Structure l

EMPLOYEE_CHECELIST [Companent]
PERS_SRCH_GEL [View) - Search Record

SRR C ol - Level O

' FERSOMAL _DATA [T able]

Scroll - Level 1 Primary Record: CHECKLIST_ITEM

Scroll - Level 1 Primary Record; EMPL_CHECKLIST

B= EMPL_CHECKLIST (Tablg)

=3 DERIED_HR [Derived)

=

. E Scroll - Level 2 Primary Record: EMPL_CHELST_ITM

foen|

EMPLOYEE_CHECKLIST structure

In the example, the visible level one scroll area also has only one row. That row is made up of the following
records:

EMPL_CHECKLIST

DERIVED_HR
CHECKLIST_TBL

PERSONAL_DATA

Y ou can see which records are associated with a scroll area by looking at the Order view for a page:

70 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

Page Designer 'Order l

i EMPLOYEE_CHECKLIST_EMG [Page]

IS [=] E3

Lv Label Type Field Record Dizplay Controll Related Field ~

3

2 0 |Frame Frame [[

2 0 |Frame Frame n n

4 0 |Employes Name |Edit Box M E PERSOMAL_DATA B B

5 0 |(ID Edit Box ERMPLID PERSOMAL_DATA [[

E

7 1 |Checklist Sequen | Edit Box CHECKLIST_SEQ|CHECKLIST_ITEM - r

8

g 1 |Checklist Date |Edit Box CHECKLIST_DT |EMPL_CHECKLIST [[

10 1 |derived hreffdt |Edit Box EFFDT DERMED_HR [[

11 1 |Checklizt Edit Box CHECKLIST_CD |EMPL_CHECKLIST v [

12 1 |Checklist Descripti Edit Box DESCH CHECKLIST_TBL [v

13 1 |Responsible 1D |Edit Box RESPOMSIBLE | |[EMPL_CHECKLIST v [

14 1 |Responsible Mam |Edit Box HAME FERSOMAL_DATA, [v

15 1 |Comment Long Edit Box COMMEMTS EMPL_CHECELIST [[

16

17 2 |Chklst Seq Edit Box CHECKLIST_SEQIEMPL_CHELST_ITM ([T [

18 2 |Chklgt ltm Edit Box CHELST_ITEM_CJEMPL_CHELST_ITM || [

19 2 |Briefing Descriptio| Edit Box DESCH CHELST_ITEM_TEL |[T v

20 2 |Briefing Statuz |[Drop Down Ligt |BRIEFING_STAT [EMPL_CHELST_ITM [T [- |

] | | 3 |
EMPLOYEE_CHECKLIST page Order view showing records
The level two rowset has three rows. Each row is made up of two records: the primary record,
EMPL_CHKLST_ITM, and CHKLST_ITM_TBL, the record associated with the related display field
DESCR. The following example shows the rowset:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

Accessing the Data Buffer Chapter 5

Jr Emploves Checklist ‘.I_

| Schurnacher Simaon I: g0

*Checklist Date: [08(11/2000 Checklist: [000003 Q| Repatriation Checkiist
Responsible1D: [6602 Q) Peppen Jacques
Comment: | =
=
LEVEl? ROWSE! e ;:h“m sChklst tm *Briefing Status ‘Status Date
B
[oooois Q) Briefing with Human [nitated =] [08172000
et [00 [000025 Q] Repatiation Discussion [inisted =] [oar 172000
Field 300 [000020 Q| careenPlacement discussion [initated x| [oes1/2000

B save) (CLReturn to Search)

EMPLOYEE_CHECKLIST rowsets and rows

Every record has fields associated with it, such as NAME, EMPLID and CHECKLIST SEQ. Thesefields are
associated with the record definitions; they are not the fields that appear on the page.

Object Creation Examples

72

When declaring variables, use the class with the same name as the data buffer access data type (rowset
objects should be declared as type Rowset, field objects as type Field, and so on). Data buffer access class
objects can be of type Local, Global, or Component.

The following declarations are assumed throughout the examples that follow:
Local Rowset &LEVELO, &ROWNBET;
Local Row &ROW

Local Record &REC,
Local Field &Fl ELD;

Level Zero Access

The following code instantiates a rowset object, from the Rowset class, that references the level zero rowset,
containing al the page data. It stores the object in the & LEVELO variable.

&LEVELO = CetlLevel 0();
The level zero rowset contains all the rows, rowsets, records, and fields underneath it.

If the level zero rowset is formed from component buffer data, then the level zero rowset has one row of data
and that row contains al the child rowsets, which in turn contain rows of data that contain other child
rowsets.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

If the level zero rowset is formed from buffer data, such as from an application message, then the level zero
rowset may contain more than one row of data. Each row of the level zero rowset contains all the child
rowsets associated with that row, which in turn contain rows of data that contain other child rowsets.

Use alevel zero rowset when you want an absolute path to alower-level object or to do some processing on
the entire data buffer. For example, suppose you load all new data into the component buffers and want to
redraw the page. Y ou could use the following code:

/* Do processing to rel oad Conponent Buffers */
&LEVELO = Cet Level O();
&LEVELO. Refresh();

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the currently running
PeopleCode program:

&RONBET = Get Rowset () ;

Y ou might later use the & ROWSET variable and the ActiveRowCount property to iterate over all the rows of
the rowset, to access a specific row (using the GetRow method), or to hide a child rowset (by setting the
Visible property).

The level onerowset contains al the level two rowsets. However, the level two rowsets can only be accessed
using the different rows of the level one rowset. From the level zero or level one rowset, you can only access
alevel two rowset by using the level one rowset and the appropriate row.

For example, suppose your program is running on some field of row five of alevel two scroll area, which is
on row three of itslevel one scroll area. The resulting rowset contains all the rows of the level two scroll area
that are under the row three of the level one scroll area. The rowset does not contain any data that is under
any other level two scroll areas. The following diagram illustrates these results:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

Accessing the Data Buffer

Chapter 5

@ Level zero

==

@ Level one

@stel two

F1 F2 F3
R1

F4

r___f_'l__EZ__ES___E{,
iR1 |

I-----------------i-

B2 I

Level 2 rowset

R2

R3

@ Level two

L J

F1 F2 F3

F4

R1
R2

R3

R4

RS

Y

@ Leveal two

v

F1 FZ F3

Fa

Level two rowset from level one row

A further illustration uses an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign Loan Departure, Foreign
Loan Arrival, and Foreign Loan Host. The checklist code field (CHECKLIST _CD) on thefirst level of the
page drives the entries on the second level. Each row in the level one rowset produces a different level two

rowset.

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as Briefing with
Human Resources and Apply for Visas'Work permits, as shown in the following example:

74

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

Ermployes Checklist ‘.I_

Resources

cormpany

Schumacher,Simon ID: 3001
*Checklist Date: IEIBH 1r2000 Checklist: IEIIZIEIEIEH ﬂ Foreign Loan Departure Cheklst
Responsible ID: IEE':'2 ﬂ PeppenJacgues
Comment: ;l
=Previous 10of3 EI Iext=
*Chklst *Chklst tm *Briefing Status *Status Date
Seq

[too | [oo0015 @] Briefing with Human [inisted =] [08r1172000
[200 [000030 @) appiyfor visastwork Permits [Initiated =] [oai 112000
|3EIEI |IIIIIIIZIIIIIIIEI Q) Reconfirm Relocation Packagelm M
[400 [000001 @] Select movingtstorage [initiated =] [oai 112000

=] Savej L Return to Searchjl

EMPLOYEE_CHECKLIST Foreign Loan Departure checklist

The Foreign Loan Arrival checklist (0000004) produces a checklist that contains items such as Register at

Consulate and Open New Foreign Bank Accounts, as shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

75

Accessing the Data Buffer

76

Chapter 5

Ermplayee Checklist ‘.I_

Schumacher Siman ID: 200
*Checklist Date: IDEH 112000 Checklist: IDEIEIEIEI# ﬂ Foreign Loan Arrival Choklist
Responsible ID: ITT':'5 ﬂ Holt,Susan
Comment: ;I
CETEvinG 3013 [Ne=
*Chkilst *Chklst tm *Briefing Status *Status Date
Seq
[100 [oooozz Q] Reaister at Consulate [Initiasted =] |o8i11s2000
|200 [oooooz Q) open new fareign bank [Initiated =} |08t 1s2000
accounts -
300 [o00018 Q| Register children in school [Initisted =] [0sr1/2000
|4EIEI |EIEIEIEI1 9 Q| Join Mewcomers Club |Initiated =] |IIIEI11I2EIEID

E Savejl 2 Return to Search)

EMPLOYEE_CHECKLIST Foreign Load Arrival Checklist

Row Object

When you create a page, you put fields from different records onto the page. Y ou can think of this as creating

atype of pseudo-SQL join. The row returned from this pseudo-join is arow object.

For example, thefirst level scroll area of the EMPLOY EE_CHECKLIST page contains the following fields,

associated with these records:

Field Record
CHECKLIST_DT EMPL_CHECKLIST
CHECKLIST_CD EMPL_CHECKLIST
COMMENTS EMPL_CHECKLIST

DESCR CHECKLIST_TBL

NAME PERSONAL_DATA

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Field Record

RESPONSIBLE_ID EMPL_CHECKLIST

The pseudo-SQL join might look like this:

JO N A CHECKLI ST_DT, A. CHECKLI ST_CD, A. COMMENTS, B.DESCR, C.NAME, A. RESPONSI BLE | D
FROM PS_EMPL_CHECKLI ST A, PS_CHECKLI ST_TBL B, PS_PERSONAL_DATA C, WHERE.

What goes into the Where clause is determined by the level zero of the page. For our example, the valueis
WHERE EMPLI D=8001.

When the component is opened, datais loaded into the component buffers. Any row returned by the pseudo-
SQL statement isalevel one row object. The following table shows a returned row:

CHECKLIST_DT | CHECKLIST_CD COMMENTS DESCR NAME RESPONSIBLE_ID
12/03/98 000001 Foreign Loan Peppen, Jacques | 6602

Department

Checklist

Record Object

A record definition is a definition of what your underlying SQL database tables ook like and how they
process data. After you create record definitions, you build the underlying SQL tables that contain the
application data that your users enter online in your production environment.

When you create a record object using the CreateRecord function, you are creating an areain the data buffers
that has the same structure as the record definition, but no data.

When you instantiate a record object from the Record class using some variation of GetRecord, that record
object references asingle row of datain the SQL table.

Note. The datain the record that you retrieve is based on the row, which is analogous to setting keys to return
a unique record.

The following code instantiates a record object for referencing the EMPL_CHECKLIST record of the
specified row:

&REC = &ROW Get Recor d(RECORD. EMPL_CHECKLI ST) ;
Using the short method, the following line of code isidentical to the previous line:

&REC = &ROW EMPL_CHECKLI ST,

Y ou might later use the & REC variable and the CopyFieldsTo property to copy al like-named fields from
one record to another. In the following example, two row objects are created, the copy from row

(COPY FRMROW) and the copy to row (COPY TROW). Using these rows, like-named fields are copied from
CHECKLIST_ITEM to EMPL_CHKLST_ITM.

For & = 1 To &ROWNBET1. Act i veRowCount

©FRMROW = &ROWSET1. Get Row(&l) ;

©TROW = &RS2. Get Row(&l) ;

©FRMROW CHECKLI ST_| TEM CopyFi el dsTo(©TROW EMPL_CHKLST | TM) ;
End- For ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Accessing the Data Buffer Chapter 5

A row may contain more than one record: in addition to the primary database record, you may have arelated
display record or a derived record. Y ou can access these records as well. The level one rowset, & ROWSET1,
is made up of many records. The following accesses two of them: EMPL_CHECKLIST and DERIVED_HR.

&REC1 = &ROW ENMPL_CHECKLI ST;
&REC2 = &ROW DERI VED_HR;
Field Object

The following instantiates a field object, from the Field class, that is used to access a specific field in the
record:

&Fl ELD = &REC. Get Fi el d(FI ELD. CHECKLI ST_CD) ;
Y ou might later use the & FIELD variable as a condition:
I f ALL(&FI ELD) Then

Here is another example:

I f &FI ELD. Val ue = "N' Then

Note. The datain the field that you retrieve is based on the record, which isin turn based on the row.

Y ou can also set the value of afield. Using the GetField function does not create a copy of the data from the
component buffer. Setting the value or a property of the field object sets the actual component buffer field or

property.
See Chapter 3, "Understanding Objects and Classes in PeopleCode," Assigning Objects, page 43.

In the following example, the type of field is verified, and the value is replaced with the tangent of that value
if itisanumber
| f &FIELD. Type <> "NUMBER' Then
/* do error recording */
El se

&Fl ELD. Val ue = Tan(&FI ELD. Val ue) ;
End- | f;

Data Buffer Hierarchy Examples

Suppose you want to access the BRIEFING_STATUSfield at level two of the following page:

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Employee Checklist ‘.I_

Schumacher,Simon ID: 2001

*Checklist Date: IDEH*IIEEIEIEI Checklist: IIIIEIEIEIEIB ﬂ Fepatriation Checklist
Responsible ID: IEEDE ﬂ Feppen,Jacgues

Comment: | =
“Chkist *Chklst ttm *Briefing Status *Status Date

Seq

[100 [oooo1s @] Briefing with Hurnan [initiated 7] [oar 172000

Resources

|2E|E| |E|E|E|E|25 Q| Repatriation Discussion ||ﬂiTiETEd "I IDEIHIEDDD
300 [000028 Q] careenPlacement discussion |Inifiated <] [oa 172000

=] Save) 1 Return to Search)

EMPLOYEE_CHECKLIST repatriation checklist

First, determine where your code is running. For this example, the code is starting at afield on arecord at
level zero. However, you do not always haveto start at level zero.

If you start with level zero, you must traverse the data hierarchy, through the level one rowset to the level two
rowset, before you can access the record that contains the field.

Obtaining the Rowset

You first obtain the level zero rowset, which is the PERSONAL_DATA rowset. Y ou do not need to know the
name of the level zero rowset to accessit:

&LEVELO = CetLevel 0();

Obtaining Rows

The next object to get isarow. Asthe following code is working with data that is loaded from a page, only
onerow isat level zero. However, if you have rowsets that are populated with datathat is not based on
component buffers (for example, an application message), you may have more than one row at level zero.

&LEVELO_ROW = &LEVELO(1);

Obtaining Child Rowsets

To obtain the level two rowsset, traverse through the level one rowset first. Therefore, the next object to get is
the level one rowset, as shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

Accessing the Data Buffer Chapter 5

80

&L EVEL1 = &LEVELO_ROW Get Rowset (SCROLL. EMPL_CHECKLI ST) ;

Obtaining Subsequent Rows

If you are traversing a page, obtain the appropriate row after you get arowset. To process all the rows of the
rowset, set this functionality up in aloop, as shown in the following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);

Endl F'orE

Obtaining Subsequent Rowsets and Rows

Traverse another level in the page structure to access the second level rowset, and then use aloop to access
the rowsin the level two rowset.

Because we are processing al the rows at level one, we are just adding code to the previous For loop. Aswe
process through all the rows at level two, we are adding a second For loop. The new codeisin bold in the
following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset (SCROLL.
EMPL_CHKLST I TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);

End- For ;
End- For ;

Obtaining Records

A row always contains arecord, and it may contain only a child rowset, depending on how your pageis set
up. GetRecord is the default method for arow, so al you have to specify is the record name.

Because we are processing all the rows at level two, we just add code to the For loops of the previous
example. The new codeisin bold:

For & =1 to &L.EVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset (SCROLL. EMPL_CHKLST | TM ;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &L EVEL2 ROW EMPL_CHKLST | TM

End- For ;
End- For ;
Obtaining Fields

Records are made up of fields. GetField is the default method for arecord, so all you have to specify isthe
field name.

Because we are processing all the rows at the level one, we are just adding code to the For loops of the
previous example. The new codeisin bold:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

For & =1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1_ ROW Get Rowset (SCROLL. EMPL_CHKLST | TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &LEVEL2 ROW EMPL_CHKLST | TM
&Fl ELD = &RECORD. BRI EFI NG_STATUS;
/* Do processing */
End- For ;
End- For ;

Using Shortcuts

The previous code is the long way of accessing thisfield. The following example uses shortcuts to access the
field in one line of code. The following code assumes al rows are level one:

Rowset Row Rowset goy R“‘r’si‘-‘ Row Record Field
| | | | | | |

AFIELD=Get Leveld(){1).EMPL_CHECKLIST(1).EMPL_CHKLST ITM{1).EMPL_CHKLST ITM.BRIEFING STATUS:

Rowset example

Here's another method of expressing the code:

Object Type Code

Rows et &LEVELO = Get Level 0();

Row &LEVELO _ROW = &LEVELO(1);

Rowset &LEVEL1 = &l EVELO_ROW Get Rowset (SCROLL. EMPL_CHECKLI ST) ;

For & =1 to &LEVEL1. Acti veRowCount

Row &LEVEL1 ROW = &LEVEL1(&l);

Rowset &LEVEL2 = &LEVEL1_ROW Get Rowset (SCROLL. EMPL_CHKLST_I TM) ;

For & = 1 to &LEVEL2. Acti veRowCount

Row &LEVEL2_ ROW = &LEVEL2(&J);

Record &RECORD = &LEVEL2_ROW EMPL_CHKLST_I TM

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

Accessing the Data Buffer

Rowset Examples

82

Chapter 5

Object Type

Code

Field

&FI ELD = &RECORD. BRI EFI NG_STATUS;

/* Do processing */

End- For ;

End- For ;

The following code example traverses up to four levels of rowsets and could easily be modified to do more.
This example only processes the first record in every rowset. To process every record, set up another For loop
(For &R =110 & LEVELX.RECORDCOUNT, and so on). Notice the use of the ChildCount function (to
process all children rowsets within arowset), ActiveRowCount, |sChanged, and dot notation.

In the following example, ellipses indicate where application-specific code should go.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

&L evel 0_ROANBET = GetLevel 0();
For &0 = 1 To &Level 0 _ROWSET. Act i veRowCount

/***************************/

/* Process Level 1 Records */

I f &Level O_ROABET(&A0) . Chil dCount > 0 Then

For &1 = 1 To &Level 0_ROABET(&A0) . Chi | dCount
&LEVEL1 _ROASET = &Level 0_ROASET(&A0D) . Get Rowset (&B1) ;
For &A1 = 1 To &LEVEL1_ROWBET. Act i veRowCount
I f &LEVEL1 ROWSET(&A1) . Get Record(1).1|sChanged Then

/***************************/

/* Process Level 2 Records */

I f &LEVEL1_ROWSET(&Al). Chi | dCount > 0 Then

For &B2 = 1 To &LEVEL1_ROWBET(&Al). Chi | dCount
&LEVEL2 _ROWSET = &LEVEL1_ROWBET(&Al) . Get Rowset (&B2) ;
For &A2 = 1 To &LEVEL2_ ROWSET. Act i veRowCount
I f &LEVEL2_ROASET(&A2) . Get Record(1) .1 sChanged Then

/***************************/

/* Process Level 3 Records */

I f &LEVEL2_ROWSET(&A2) . Chi | dCount > 0 Then

For &B3 = 1 To &LEVEL1_ROWSET(&A2) . Chi | dCount
&L EVEL3_ROWSET = &LEVEL2_ ROWBET(&A2) . Get Rowset (&B3) ;
For &A3 = 1 To &LEVEL3 ROWSET. Act i veRowCount
I f &LEVEL3_ROASET(&A3) . Get Record(1) .1 sChanged Then

End-1f; /* A3 - I|sChanged */
End- For; /* A3 - Loop */

End- For; /* B3 - Loop */

End-1f; /* A2 - ChildCount > 0 */

/* End of Process Level 3 Records */

/**********************************/

End-1f; /* A2 - |sChanged */

End- For; /* A2 - Loop */

End-For; /* B2 - Loop */

End-1f; /* Al - ChildCount > 0 */

/* End of Process Level 2 Records */
/**********************************/

End-1f; /* Al - I|sChanged */
End-For; /* Al - Loop */
End-For; /* Bl - Loop */
End-1f; /* AO - ChildCount > 0 */

| * o e e e e e e e e o * [
/* End of Process Level 1 Records */

/**********************************/

End- For; /* AO - Loop */

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

Accessing the Data Buffer Chapter 5

Hidden Work Scroll Example

In the FieldChange event for the CHECKLIST _CD field onthe EMPL_CHECKLIST record, a PeopleCode
program does the following:

1. Flushes the rowset and hidden work scroll area.

2. Performs a Select statement on the hidden work scroll area based on the value of the CHECKLIST _CD
field and the effective date.

3. Clearsthelevel two scroll area

4. Copies like-named fields from the hidden work scroll areato the level two scroll area.

The following example shows how to do this using built-in functions.
&CURRENT_ROW L1 = Current RowNunber (1);

&ACTI VE_ROW L2 = Acti veRowCount (RECORD, EMPL_CHECKLI ST,
&CURRENT _ROW L1, RECORD. EMPL_CHKLST | TM:

If Al (CHECKLI ST_CD) Then

Scrol | Fl ush(RECORD. CHECKLI ST_I TEM ;

Scrol | Sel ect (1, RECORD. CHECKLI ST_I TEM RECORD. CHECKLI ST_| TEM
"Where Checklist _Cd = :1 and EffDt = (Select Max(EffDt) From
PS Checklist_Item Were Checklist_Cd = :2)",

CHECKLI ST_CD, CHECKLI ST_CD);

&FOUNDDOC = Fet chVal ue(CHECKLI ST_I TEM CHKLST_I TEM CD, 1);
&SELECT_ROW = Act i veRowCount (RECORD. CHECKLI ST_I TEM) ;

For & = 1 To &ACTI VE_ROW L2
Del et eRow(RECORD. EMPL_CHECKLI ST, &CURRENT ROW L1, RECORD. EMPL_CHKLST |ITM 1);
End- For ;

If Al (&OUNDDOC) Then
For & =1 To &SELECT ROW
CopyFi el ds(1, RECORD. CHECKLI ST_ITEM &, 2,
RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1, RECORD. EMPL_CHKLST ITM &l);
If & <> &SELECT_ROW Then
| nser t Row(RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1,
RECORD. EMPL_CHKLST I TM &l);
End- | f;
End- For ;
End- I f;
End- I f;

The following example performs the same function as the previous code, only it uses the data buffer classes:
1. Flushesthe rowset and hidden work scroll area (& RS1H).

2. Performs a Select statement on & RS1H based on the value of the CHECKLIST_CD field and the
effective date.

3. Clearsthelevel two rowset (& RS2).

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

4. Copieslike-named fields from & RS1H to & RS1.

Local Rowset &RSO, &RS1, &RS2, &RS1H;

&RSO = Get Level 0();
&RS1 = Get Rowset () ;
&RS2 = Get Rowset (SCROLL. EMPL_CHKLST | TM ;

&RS1H = &RS0. Get Row(1) . Get Rowset (SCROLL. CHECKLI ST_| TEM ;
&MWYFI ELD = CHECKLI ST_CD;

If Al (&WFIELD) Then

&RS1H. Fl ush();

&RS1H. Sel ect (RECORD. CHECKLI ST_I TEM "where Checklist_CD = :1
and EffDt = (Select Max(EffDt) from PS_CHECKLI ST | TEM
Where CheckList CD = :2)", CHECKLI ST _CD, CHECKLI ST _CD);

For & = 1 To &RS2. Acti veRowCount
&RS2. Del et eRow(1) ;
End- For ;

&FOUND = &RS1H. Get Curr Ef f Row() . CHECKLI ST_| TEM CHKLST | TEM CD. Val ue;

If Al (&OUND) Then
For & = 1 To &RSI1H. Acti veRowCount
©FRMROW = &RS1H. get row &l) ;
©TROW = &RS2. getrow &l) ;
©FRMROW CHECKLI ST _| TEM CopyFi el dsTo(©TROW EMPL_CHKLST | TV ;
If & <> &RS1H. Acti veRowCount Then
&RS2. I nsert Row &l) ;
End- 1| f;
End- For ;
End- I f;
End- | f;

Understanding Current Context

Most PeopleCode programs run in a current context. The current context determines which buffer fields can
be contextually referenced from PeopleCode, and which row of datais the current row on each scroll level at
the time a PeopleCode program is running.

The current context for the data buffer access classes is similar to the current context for accessing the
component buffer, as shown in the following diagram:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

Accessing the Data Buffer Chapter 5

86

Level zero row is
always in context
Level two

. F1 F2 F3 F4 F1 _F2 F3 Fa
R1
> R2
Row where PeopleCode R3
executes is in context

F1 F2 F3 F4

—®*R2_ —— —— —— T 0
R3
Level two

F1 F2 F3 F4
R1
.| R2
"I R3
Rowset accessible by second R4
row in level 1 rowset is in » R5
context

@ Leveal two

F1 F2 F3 F4

R
R2
—» R3
R4
R5
RE

Current context for rowsets

In this example, a PeopleCode program is running in a buffer field on the second row of the level one rowset.
The following code returns a row object for the second row of the level one rowset, because that is the row
that is the current context.

Local Row &ROW

&ROW = Get Rowm() ;

The following code returns the B2 level two rowset because of the current context:
Local Rowset &RONBET2

&ROWBET2 = &ROW Get Rowset (SCROLL. EMPL_CHKLST_I TM ;

This code does not return either the C2 or the A2 rowsets. It returns only the rowset associated with the
second row of the level one rowset.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an areain the
data buffers that has the same structure as the record definition. It does not contain any data. This record
object does not have a parent rowset and is hot associated with arow. It is afreestanding record object and,
therefore, is not considered part of the current context.

The same concept applies when you instantiate a rowset object using the CreateRowset function. You are
only creating an area in the data buffers that has the same structure as the records or rowset that the new
rowset is based on. The rowset does not contain any data. This type of rowset does not have a parent rowset
Or row.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with Contextual References, page
51

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CreateRecord

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CreateRowset

Accessing Secondary Component Buffer Data

When a secondary page isrun, the datafor its buffersis copied from the parent component to a buffer
structure for the secondary page. That is, two copies of this data are made. The data buffer classes give access
to both of these copies of the data. Direct field references (recname.fieldname) always use the current context
to determine which value to access. So, in general, when using a secondary page, make sure that references
are based on the secondary page.

Instantiating Rowsets Using Non-Component Buffer Data

Both the application message and the file layout technol ogies represent hierarchical data, and both use the
rowset, row, record, and field hierarchy. Though you use different methods to instantiate a rowset object for
this data, you still use the same rowset, row, record, and field methods and properties to manipulate the data.
(Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:

&MBG = Cr eat eMessage(OPERATI ON. EMPLOYEE_DATA) ;
&MWRONSET = &MBG Get Rowset () ;

To instantiate arowset for afile layout:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Accessing the Data Buffer Chapter 5

88

&MYFI LE = Cet Fi | e(&SOVENAME, "R');

I f &WFILE. | sOpen Then
&MWYFI LE. Set Fi | eLayout (FI LELAYOUT. SOVELAYQUT) ;
&WRONSET = &MYFI LE. ReadRowset () ;

End-if;

In an Application Engine program, the default state record is considered the primary record and the main
record in context. Y ou can access the default state record using the following:

&STATERECORD = Get Record();

If you have more than one state record associated with an Application Engine program, you can access them
the same way you would access other, nonprimary data records, by specifying the record name. For example:

&ALTSTATE = Get Recor d(RECORD. AE_STATE_ALT) ;
See Also

Chapter 8, "Using Methods and Built-In Functions," Using Standalone Rowsets, page 174

PeopleTools 8.51 PeopleBook: PeopleSoft I ntegration Broker, "Managing Messages'
Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Using Meta-SQL and PeopleCode"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component
Processor

This chapter provides an overview of the Component Processor and discusses:

Events outside the Component Processor flow.

PeopleCode program triggers.

Component Processor behavior.

Processing sequences.

PeopleSoft Pure Internet Architecture processing considerations.
Deferred processing mode.

PeopleCode events.

PeopleCode execution in pages with multiple scroll areas.

Understanding the Component Processor

The Component Processor is the PeopleTools runtime engine that controls processing of an application from

the time that a user requests a component from an application menu until the database is updated and

processing of the component is compl ete.

Events Outside the Component Processor Flow

An Application Engine program can have a PeopleCode program as an action. Though the right-hand drop-

down list box on the PeopleCode Editor window displays the text OnExecute, the PeopleCode program really
is not an event. Any PeopleCode contained in an Application Engine action is executed only when the action
is executed.

A component interface can have user-defined methods associated with it. These methods are not part of any
processor flow; they are called as needed by the program executing the component interface.

Security has a signon event during signon. Thisis actually PeopleCode programs on arecord field that you

have specified in setting up security.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

89

PeopleCode and the Component Processor Chapter 6

Though application packages have aright-hand drop-down list box on the PeopleCode Editor window that
displays the text OnExecute, thisis not an event. Any PeopleCode contained in the application classis only
executed when called explicitly in a PeopleCode program.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Component Interface Classes'
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes'

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Creating Application Engine Programs;,”
Specifying PeopleCode Actions

PeopleTools 8.51 PeopleBook: Security Administration, "Understanding PeopleSoft Security™

PeopleCode Program Triggers

This section provides an overview of PeopleCode program triggers and discusses how to:

» Access PeopleCode programs.

» Associate execution order of events and PeopleCaode.

Understanding PeopleCode Program Triggers

90

PeopleCode can be associated with a PeopleCode record field, a component record, and many other items.
PeopleCode events areinitiated at particular times, in particular sequences, during the course of the
Component Processor's flow of execution. When an event isinitiated, it triggers PeopleCode programs on
specific objects.

The following items have events that are part of the Component Processor flow:

Items Event Triggers
Menu items Programs associated with the menu item
Component record fields Programs on specific rows of data
Component records Programs on specific rows of data
Components Programs associated with the component
Pages Programs associated with the page

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Items Event Triggers

Record fields Programs on specific rows of data

Suppose a user changes the datain a page field, and then presses Tab to move out of the field. This user
action initiates the FieldEdit PeopleCode event. The FieldEdit event affects only the field and row where the
change took place. If a FieldEdit PeopleCode program is associated with that record field, the program is
executed once.

If you have two FieldEdit PeopleCode programs, one associated with the record field and a second associated
with the component record field, both programs execute, but only on the specific field and row of data. The
FieldEdit PeopleCode program associated with the first record field isinitiated first, and then the Fiel dEdit
PeopleCode program associated with the first component record field isinitiated.

By contrast, suppose a user has opened a component for updating. As part of building the component, the
Component Processor initiates the Rowlnit event. This event triggers Rowlnit PeopleCode programs on every
record field on every row of datain the component. In a scroll areawith multiple rows of data, every Rowlnit
PeopleCode program is executed once for each row.

In addition, if you have RowlInit PeopleCode associated with both the record field and the component record,
both programs are executed against every record field on every row of datain the component. The RowlInit
PeopleCode program associated with the first record field isinitiated first, and then the Rowlnit PeopleCode
program associated with the first component record isinitiated. If you set the value of afield with the record
field Rowlnit PeopleCode, and then reset the field with the component record RowlInit PeopleCode, the
second value appears to the user.

When you devel op with PeopleCode, you must consider when and where your programs are triggered during
execution of the Component Processor flow.

This section discusses how to:

» Access PeopleCode programs.

» Understand the execution order of events and PeopleCode.
See Also

Chapter 6, "PeopleCode and the Component Processor," Associating Execution Order of Events and
PeopleCode, page 93

Accessing PeopleCode Programs

Every PeopleCode program is associated with a PeopleCode event and is often referred to by that name, such
as Rowlnit PeopleCode or FieldChange PeopleCode. These programs are accessible from, and associated
with, different items. The following table lists items and associated events.

Note.

During search processing in update modes or add mode, the Searchlnit and SearchSave events (in the
Component Record column of the table) are available only for the search record associated with a component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

PeopleCode and the Component Processor

Chapter 6

Record Field Component Component Component Page Events Menu Events
Events Record Field Record Events Events
Events
FieldChange FieldChange RowDelete PostBuild Activate ItemSelected
FieldDefault FieldDefault Rowlnit PreBuild
FieldEdit FieldEdit Rowlnsert SavePostChg
FieldFormula PrePopup RowSel ect SavePreChg
PrePopup SaveEdit Workflow
RowDelete SavePostChg
Rowlnit SavePreChg
Rowlnsert Seachlnit
RowsSelect SearchSave
SaveEdit
SavePostChg
SavePreChg
Searchinit
SearchSave
Workflow

The following table lists types of PeopleCode programs and where to access them in PeopleSoft Application

Designer.

PeopleCode Programs

Location in PeopleSoft Application Designer

Record field

Record definitions and page definitions

Component record field, component record, and

Component definitions

component
Menu item Menu definitions
Page field Page definitions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Associating Execution Order of Events and PeopleCode

In PeopleSoft, the component is the representation of a transaction. Therefore, any PeopleCode that is
associated with a transaction should be in events associated with some level of the component. Code that
should be executed every time afield is edited should be at the record field level. If you associate code with
the correct transaction, you do not have to check for the component that isissuing it (such as surrounding
your code with dozensof | f % Conponent = statements). Records are more reusable, and code is more
maintainable.

For example, if you have start and end dates for a course, you would always want to make sure that the end
date was after the start date. Y our program to check the dates would go on the SaveEdit at the record field
level.

All similarly named component events are initiated after the like-named record event. The PeopleCode
program associated with the record field event isinitiated first, and then the PeopleCode program associated
with the like-named component event isinitiated. If you set the value of afield with the record field
PeopleCode, and then reset the field with like-named component PeopleCode, the second value is displayed
to the user.

Events After Field Changes

The following events occur after a user changes afield:
Record.recordA. fielda. FieldEdit -> Conponent.recordA fielda.FieldEdit ->
Record.recordB. fieldb. Fiel dEdit -> Conponent.recordB.fieldb.FieldEdit ->

Record. recordA. fi el da. Fi el dChange -> Conponent.recordA. fiel da. Fi el dChange ->
Record. recordB. fi el db. Fi el dChange -> Conponent.recordB. fiel db. Fi el dChange ->

The following diagram shows the event flow:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

PeopleCode and the Component Processor

94

FieldEdit Event

s

FieldEdit Event

Record A
Field A
PeopleCode

.

Record A
Field A
PeapleCode

Record B
Field B
PeopleCode

Record B
Field B
PeopleCode

Flow of events and PeopleCode programs after a user changes a field

Events After User Saves

The following events occur after a user saves:

Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Record. recordA. fiel da. SaveEdit ->
Record. recordA. fiel db. SaveEdit ->
Record.recordA. fiel dc. SaveEdit ->
Conponent . r ecor dA. SaveEdi t

Record.recordB. fi el da. SaveEdit ->
Record.recordB. fi el db. SaveEdit ->
Record.recordB. fi el dc. SaveEdit ->
Conponent . r ecor dB. SaveEdi t

Record. recordA. fi el da. SavePr eChange
Record. recor dA. fi el db. SavePr eChange
Record. recordA. fi el dc. SavePr eChange
Conponent . r ecor dA. SavePr eChange

Record. recordB. fi el da. SavePr eChange
Record. recordB. fi el db. SavePr eChange
Record. recordB. fi el dc. SavePr eChange
Conponent . r ecor dB. SavePr eChange

Record. recordA. fi el dA. Wor kFl ow - >
Record. recordB. fi el dB. Wr kFl ow - >
Record. reocrdC. fi el dC. Wor kFl ow
Conponent . Wor kf | ow

Record. recor dA. fi el da. SavePost Change
Record. recor dA. fi el db. SavePost Change
Record. recor dA. fi el dc. SavePost Change
Conponent . r ecor dA. SavePost Change

Record. recor dB. fi el da. SavePost Change
Conponent . r ecor dB. SavePost Change
Conponent . SavePost Change

The following diagram shows the event flow:

->
->
->

->

->

->
->
->

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

95

PeopleCode and the Component Processor

SavePostChange

:

Record A
Field A
PeopleCode

.

Record A
Field B
PeopleCode

.

Recard A
Field C
PeopleCode

Component
Recaord A
FeopleCode

Record B
Field B
PeopleCode

Component
Recaord B
FeopleCode

Component
FeopleCode

Chapter 6

Flow of PeopleCode programs after SavePostChange event

Note. SaveEdit does not fire for deleted rows, but SavePreChange, Workflow, and SavePostChange do.

Component Processor Behavior

96

This section discusses:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

» Component Processor behavior from page start to page display.

» Component Processor behavior following user actions in the component.

Note. Components behave differently when run in deferred mode .

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100

Component Processor Behavior from Page Start to Page Display

Before a user selects a component, the system is in reset state, in which no component is displayed. The
Component Processor flow of execution begins when a user selects a component from a PeopleSoft menu.
The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the component.
2. Retrieves from the database server any data needed to build the component.

3. Buildsthe component, creating buffers for the component data.

4. Performsany additional processing for the component or the page.
5

Displays the component and waits for user action.

The following flowchart shows the flow of execution at a high level:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

97

PeopleCode and the Component Processor

Default Processing

Y

PaostBuild

-

Activate

YA YaY>

O

l

Display page,
Wait for user action

Processing up to Page Display

Chapter 6

Component Behavior Following User Actions in the Component

After acomponent is built and displayed, the Component Processor can respond to a number of possible user
actions. The following table lists the user actions and briefly describes the resulting processing:

See Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100.

User Action

Description

Row Insert Processing

When a user requests arow insert, the Component
Processor adds arow of datain the active scroll area,
then displays the page again and waits for another
action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Insert Processing, page 119.

Row Delete Processing

When a user requests a row del ete, the Component
Processor flags the current row as deleted, then displays
the page again and waits for another action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Delete Processing, page 121.

98

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

User Action

Description

Field Modification

If auser edits a page field, then leaves the field, the
Component Processor performs standard edits (such as
checking the data type and checking for values out of
range). If the contents of the field do not pass the
standard system edits, the Component Processor
redisplays the page with an error or warning message
and changes the field's color to the system color for field
edit errors, usualy red. Until the user corrects the error,
the Component Processor does not |et the user save
changes or navigate to another field. If the contents of
the field pass the standard system edits, the system
redisplays the page and waits for further action.

See Chapter 6, "PeopleCode and the Component
Processor," Field Modification, page 116.

Prompts

If auser clicks the prompt icon next to afield, alist of
values for the prompt field appears. If the Allow Search
Events for Prompt Dialogs checkbox is selected in the
record field properties for the search key, the Searchinit
event will trigger before the prompt dialog appears. If
the user clicks the Look Up button the SearchSave event
will trigger.

If the end-user clicks the detail button next to adate
field, a calendar appears.

If the user clicks Return To Search, or presses Alt+2, a
search page appears, enabling the user to enter an
alternate search key or partial value.

See Chapter 6, "PeopleCode and the Component
Processor," Prompts, page 123 and Chapter 6,
"PeopleCode and the Component Processor," Search
Processing in Update M odes, page 104.

Pop-up Menu Display

If auser clicks the pop-up icon next to afield, a pop-up
menu appears. This can be a default pop-up menu or one
that has been defined by the developer. If the user clicks
the pop-up icon at the bottom of the page, the pop-up
menu for the page appears.

See Chapter 6, "PeopleCode and the Component
Processor," Pop-Up Menu Display, page 124.

ItemSelected Processing

A user can select an item from a pop-up menu to
execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Selected Item Processing, page 124.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

99

PeopleCode and the Component Processor

Chapter 6

User Action Description

Push Button A user can click a button to execute a command.
See Chapter 6, "PeopleCode and the Component
Processor," Buttons, page 123.

Save Processing A user can direct the system to save a component by

clicking Save or by pressing Alt+1. If any component
data has been modified, the system also prompts the
user to save a component when the Next or List button
isclicked, or when a new action or component is
selected.

The Component Processor first validates the datain the
component, and then updates the database with the
changed component data. After the update, a SQL
Commit command finalizes the changes.

See Chapter 6, "PeopleCode and the Component
Processor," Save Processing, page 125.

Processing Sequences

100

This section presents an overview of flow charts and discusses:

Default processing.

Search processing in update mode.

Search processing in add mode.
Component build processing in update mode.
Row select processing.

Component build processing in add mode.
Field modification.

Row insert processing.

Row delete processing.

Buttons.

Prompts.

Pop-up menu display.

Selected item processing.

Save processing.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Flow Charts

Actions and PeopleCode events can occur in various sequences within the Component Processor's flow of
execution. Flow charts represent each sequence. In aflow chart, different shapes and colors represent
different concepts.

Blue rectangles represent actions taken by the system.
System Action

Dark rhomboids represent branches (decision points) in the logic.

Decision Point

Dark ellipses represent PeopleCode events.
(PeopleCode Event)

Light ellipses are subprocesses.
(Subsequence)

Most processing sequences correspond to high-level component processor behaviors. However, two
important subsequences occur only in the context of alarger sequence. These subsequences are:

» Default processing, which occursin a number of different contexts.

» Row select processing, which most commonly occurs as a part of component build in any of the update
action modes.

Row select processing also occurs when a Scroll Select or related function is executed to load datainto a
scroll area.

See Chapter 6, "PeopleCode and the Component Processor,”" Component Processor Behavior, page 96;
Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102 and Chapter 6,
"PeopleCode and the Component Processor," Row Select Processing, page 112.

Note. Variations may occur in processing sequences, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if arow of dataisinserted or deleted
programmatically during the component build sequence, arow insert or row delete sequenceisinitiated. Also
note that components that run in deferred mode behave differently.

See Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

PeopleCode and the Component Processor Chapter 6

Default Processing

102

In default processing, any blank fields in the component are set to their default values. Y ou can specify the
default value either in the record field properties or in FieldDefault PeopleCode. If no default valueis
specified, the field isleft blank.

Note. In PeopleSoft Pure Internet Architecture, if auser changes afield, but there is nothing to cause atrip to
the server on that field, default processing and FieldFormula PeopleCode do not run. They only run when
another event causes atrip to the server.

Default processing is relatively complex. The following two sections describe how default processing works
on the level of theindividual field, and how default processing works in the broader context of the
component.

Field-Level Default Processing

During default processing, the Component Processor examines al fieldsin all rows of the component. On
each field, it performs the following:

1. Ifthefieldisset to NULL (blank) for acharacter field, or set to O for a numeric field, the Component
Processor setsthe field to any default value specified in the record field properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component Processor
initiates the FieldDefault event, which triggers any FieldDefault PeopleCode associated with the record
field or the component record field.

3. If an error or warning executes in any FieldDefault PeopleCode, aruntime error occurs.

Important! Avoid using error and warning statements in FieldDefault PeopleCode.

The following flowchart shows thislogic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Field Blank

!

Yes

¥

Record field property
defaults

) Mo
Field Blank

Yes

¥

(FigldDefault)

Errar/Warning Result

Unrecoverable ermor;
cancel page

T

Continue processing

Field-level default sequence flow

Default Processing on Component Level

Under normal circumstances, default processing in a component isrelatively simple: each field on each row
of data undergoes field-level default processing. For typical development tasks, thisisall you need to be
concerned with. However, the compl ete context of default processing is somewhat more complex.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102.

During component-level default processing, the Component Processor performs these tasks:
1. Field-level default processing is performed on al fields on all rows of datain the component.

2. If any fidd is till blank and any other field in the component has changed, field-level default processing
may be repeated, in case a condition changed that causes default processing to now assign avalue to
something that was previously left blank.

3. TheFieldFormulaEvent isinitiated on all fields on all rows of datain the component.

This PeopleCode event is often used for FUNCLIB__ (function library) record definitionsto store shared
functions, so normally no PeopleCode programs execute.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

PeopleCode and the Component Processor

Chapter 6

4. If the FieldFormula Event changed anything, field-level default processing is performed again, in case
FieldFormula PeopleCode changed afield value to blank, or changed something that causes default
processing to now assign avalue to afield that was previously left blank.

Because there should not be any FieldFormula PeopleCode, thisis unlikely to affect the devel opment

process or performance.

5. If any fidld is still blank and any other field in the component has changed, field-level default processing

is repeated.

The following flowchart shows this logic:

C Fieid-level Default \

Processing _/ -

Result |

Else

z
(FieldFormula)

v
(Field-level Default) _

Processing j"“

Result |

Else

v

Continue processing

Any field blank and
anather field changed

Any field blank and
another field changed

Default processing on component level

Search Processing in Update Modes

If auser selects any of the update action modes (Update, Update/Display All, or Correction), the Component
Processor begins update mode search processing, which includes the following steps:

104

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

1. The Searchinit PeopleCode event isinitiated, which triggers any Searchinit PeopleCode associated with

the record field or the component search record, on the keys or alternate search keys in the component
search record.

This enables you to control the search page field values or the search page appearance programmatically,
or to perform other processing prior to the appearance of the search page.

Note. Set the search record for the component in the component properties.

For example, the following program in Searchinit PeopleCode on the component search key record field
EMPLID sets the search key page field to the user's employee I D, makes the page field unavailable for
entry, and enables the user to modify the user's own data in the component:

EMPLI D = %Enpl oyeel d;
&Fi el d CGet Fi el d(EMPLI D) . Enabl ed = Fal se;
Al | onEnpl | dChg(True);

Note. Generally, the system search processing displays the search page. Y ou can use the Searchinit event,
and the SetSearchDialogBehavior function, to set the behavior of the search page beforeit is displayed. If
SetSearchDialogBehavior is set to Force display, the dialog box is displayed even if al required keys
have been provided. Y ou can also set SetSearchDialogBehavior to skip if possible. In addition, you can
force search processing to always occur by selecting Force Search Processing in the component definition
properties in PeopleSoft Application Designer.

. The search page and prompt list appear, in which the user can enter search keys or select an advanced

search to enter aternate search keys.

Note. Normally, the values in the search page are not set to default values. However, if the SearchDefault
function was executed in Searchlnit PeopleCode for any of the search key or alternate search fields, those
fieldsin the dialog box are set to their system default values. No other default processing occurs (that is,
the FieldDefault event is not initiated).

3. Theuser entersavalue or partial value in the search page, and then clicks Search.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

PeopleCode and the Component Processor Chapter 6

106

4. The SearchSave PeopleCode event is initiated, which triggers any SearchSave PeopleCode associated

with the record field or the component search record, on the search keys or alternate search keysin the
search record.

This enables you to validate the user entry in the search page by testing the value in the search record field
in PeopleCode and, if necessary, issuing an error or warning. If an error is executed in SearchSave, the
user is sent back to the search page. If awarning is executed, the user can click OK to continue or click
Cancel to return to the search page and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows, then the prompt
list dialog box isfilled, and the user can select avalue. If key values from the search page are blank, or if
the system cannot select any data based on the user entry in the search page, the system displays a
message and redisplays the search page. If the values entered produce a unique value, the prompt list is
not filled. Instead, the user is taken directly to the page.

Note. Normally, no system edits are applied when the user changes afield in the search page. However, if
the SearchEdit property is executed for specific search page fields in Searchinit PeopleCode, the system
edits are applied to those fields after the user changes afield and either leaves the field or clicks Search.
In addition, the SearchEdit property can also be set in metadata for the record field definition.

If the user entry in the field fails the system edits, the system displays a message, highlightsthe field in
guestion, and returns the user to the dialog box. The FieldEdit and SaveEdit PeopleCode events are not
initiated. The SearchSave event is not initiated after values are selected from the search list. To validate
data entered in the search page, use the Component PreBuild event.

. The Component Processor buffers the search key values.

If the user then opens another component while this component is active, the Component Processor uses
the same search key values and bypasses the search page.

The following flowchart shows this logic. (It does not show the effects of executing the SearchDefault and
SearchEdit Field class properties.)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

(Searchinit)

.

»| Search Dialog Display

User Action

Search button

(SearchSave)

Search and Fill list

Mo values or

rows found

FPartial key value returned

¥

Build Prompt List

Unigue

returned

valug ——p

Select

Buffer search key values

Search processing logic in update mode

PeopleCode and the Component Processor

Note. Y ou can use the IsSearchDialog built-in function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %M ode system variable. This
could be useful in code that is part of alibrary function and that isinvoked in places other than from the
search page. It could also be used in PeopleCode associated with arecord field that appearsin pages and in

the search page.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

107

PeopleCode and the Component Processor Chapter 6

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
SetSearchDialogBehavior

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Field Class," SearchDefault

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " System Variables," %oMode

Search Processing in Add Modes

When a user opens a component in add or data-entry modes, the following actions occur:

1

108

The Component Processor runs default processing on the high-level keysthat appear in the Add or Data
Entry dialog box.

The Component Processor initiates the Rowlnit event, which triggers any Rowlnit PeopleCode associated
with the record field or the component record, on the Add or Data Entry dialog box fields.

The Component Processor initiates the Searchinit event on dialog fields, which triggers any Searchinit
PeopleCode associated with the record field or the component search record.

This enables you to execute PeopleCode programs before the dialog box appears.

The Component Processor displaysthe Add or Data Entry dialog box.

If the user changes adialog box field, and then leaves the field or clicks OK, the following actions occur:
« In add mode only, afield modification processing sequence occurs.

See Chapter 6, "PeopleCode and the Component Processor,” Field M odification, page 116.

» Default processing is run on the Add or Data Entry dialog box fields.
Normally this does not have any effect, because the fields have avalue.

When the user clicks OK in the dialog box, the SaveEdit event isinitiated, which triggers any PeopleCode
associated with the record field or the component record.

The Component Processor initiates the SearchSave event, which triggers any SearchSave PeopleCode
associated with the record field or the component search record.

This enables you to validate user entry in the dialog box. If an error is executed in SearchSave, the user is
sent back to the Add or Data Entry dialog box. If awarning is executed, the user can click OK to continue
or click Cancel to return to the dialog box and enter new values.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

8. The Component Processor buffers the search key values and continues processing.

Note. If you compare the following diagram with search processing in update modes, notice that the add
modes are considerably more complex and involve more PeopleCode events. However, in practice,
PeopleCode development is similar in both cases. PeopleCode that runs before the dialog box appears (for
example, to control dialog box appearance or set valuesin the dialog box fields) generaly is placed in the
Searchinit event; PeopleCode that validates user entry in the dialog box is placed in the SearchSave event.

See Chapter 6, "PeopleCode and the Component Processor,” Search Processing in Update M odes, page
104.

The following flowchart shows thislogic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

PeopleCode and the Component Processor

110

ErrorWarning
Cancel

)

v

(Searchlnit)

v

Fail

Add/Data Entry Dialog [«

Yas

Add Mode Only

(o -

\

C SearchSave)

System Edits

Pass

¥

(FieldEdit)

Accept Warning
¥

(FieldChange)

Buffer search key values

Error

Search processing logic in add and data-entry modes

Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Note. Y ou can use the IsSearchDialog function to create PeopleCode that runs only during search processing.
To create processes that run only in a specific action mode, use the %M ode system variable. This could be
useful in code that is part of alibrary function and that isinvoked in places other than from the search page. It
could also be used in PeopleCode associated with arecord field that appears in pages and in the search page.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
IsSearchDialog

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables," %Mode

Component Build Processing in Update Modes

After the Component Processor has saved the search keys values for the component, it uses the search key
values to select rows of data from the database server using a SQL Select statement. After the rows are
retrieved, the Component Processor performs these actions:

1. Peformsrow select processing, in which rows of datathat have already been selected from the database
server can be filtered before they are added to the component buffer.

See Chapter 6, "PeopleCode and the Component Processor,” Row Select Processing, page 112.

2. Initiates the PreBuild event, which triggers any PreBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used |ater by PeopleCode
located in other events.

The PreBuild event is also used to validate data entered in the search page, after a prompt list is displayed.

Note. If aPreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If thereis no search page, that is, the search record has no keys, a blank component page appears.

3. Performs default processing on all the rows and fields in the component.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102.

4. Initiates the RowlInit event, which triggers any Rowlnit PeopleCode associated with the record field or the
component record.

The Rowlnit event enables you to programmatically initialize the values of non-blank fieldsin the
component.

5. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

6. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmeatically control the display of that page.

7. Displays the component and waits for end-user action.

The following flowchart shows thislogic.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

PeopleCode and the Component Processor Chapter 6

anﬁelect Processing

.

PreBuild

.

Default Processing

.

Rowlnit

.

PostBuild

.

Activate

.

Display Page, and wait
for user action

4

D))
WAV R YA

Component build processing in update modes

Row Select Processing

112

Row select processing enables PeopleCode to filter out rows of data after they have been retrieved from the
database server and before they are copied to the component buffers. Row select processing uses a SQL
Select statement .

Row select processing is a subprocess of component build processing in add modes. It also occurs after a
ScrollSelect or related function is executed.

See Chapter 6, " PeopleCode and the Component Processor," Component Build Processing in Add Modes,
page 115.

Note. Instead of using row select processing, it is more efficient to filter out the rows using a search view, an
effective-dated record, the Select method, or ScrollSelect or arelated function, before the rows are sent to the
browser.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

2. The Component Processor initiates the RowSelect event, which triggers any RowSel ect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions. StopFetching
causes the system to add the current row to the component, and then to stop adding rows to the
component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the rows to
the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both StopFetching
and DiscardRow are called, the current row is not added to the page, and no more rows are added to the

page.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed, because the buffers are in the process of being populated. This means that the data might not
be present.

The following flowchart shows thislogic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

PeopleCode and the Component Processor Chapter 6

More rows to read?

Yes

v

Selected Rows

k J

(RowSelect)

DiscardRow
only

Result

StopFetching anly

Result

Meither
function
called

L 4 Y ¢

Add current row to page Add current row to page Add current row (o page —

T StopFetching and
DiscardRow

RowSelect processing logic

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
StopFetching

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

Component Build Processing in Add Modes

After search processing in add or data-entry modes, the Component Processor:

1
2.

Initiates the PreBuild event.
Runs default processing on all page fields.
This enables you to set default fields programmatically using FieldDefault PeopleCode.

Initiates the Rowlnit event on all fieldsin the component, which triggers any Rowlnit PeopleCode
associated with the record field or component record.

This enables you to initialize the state of page controls, using Rowlnit PeopleCode, before the controls are
displayed. (Rowlnit enables you to set the values of non-blank fields programmatically, whereas default
processing is used to set blank fields to their default values.)

Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmeatically control the display of that page.

Displays a new component, using the search keys obtained from the Add or Data Entry dialog box, with
other fields set to their default values.

The following flowchart shows the logic:

(Default Processing)

s

Rowlnit

.

(PostBuild)

v

(Actvate)

v

Display Page, and wait
for user action

Logic of component build processing in add modes

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

PeopleCode and the Component Processor Chapter 6

Field Modification
The field modification processing sequence occurs after a user does any of the following:

» Changes the contents of afield, and then leaves the field.
» Changes the state of aradio button or check box.
« Clicks acommand button.

In this sequence, the following actions occur:

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

1. The Component Processor performs standard system edits.

To reduce trips to the server, some processing must be done locally on the machine where the browser is
located, while someis performed on the server.

Standard system edits can be done either in the browser, utilizing local JavaScript code, or on the
application server. The following table outlines where these system edits are done.

System Edits Location of Execution
Checking data type Browser

Formatting Application server or browser
Updating current or history record Application server

Effective date Application server

Effective date or sequence Application server

New effective datein range Application server

Duplicate key Application server

Current level is not effective-dated but one of itschild | Application server

scroll areasis

Required field Browser

Date range Browser

Prompt table Application server

Trangdlate table Browser

Yes/no table Depends on the field type. Browser if thefieldisa

check box. Application server if thefield is an edit
box and the valuesare Y or N.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

PeopleCode and the Component Processor Chapter 6

118

Note. Default processing for the field can be done in the browser only if the default value is specified as a
constant in the record field properties. If the field contains a default, these defaults occur only upon
component initialization. Then, if auser replaces a default value with a blank, the field is not initialized
again. The required fields check is not performed on derived work fields when you press Tab to move out
of afield.

If the data fails the system edits, the Component Processor displays an error message and highlights the
field in the system color for errors (usually red).

. If thefield passes the system edits, Component Processor initiates the FieldEdit PeopleCode event, which

triggers any FieldEdit PeopleCode associated with the record field or the component record field.

This enables you to perform additional data validation in PeopleCode. If an Error statement iscalled in
any FieldEdit PeopleCode, the Component Processor treats the error asit does a system edit failure; a
message is displayed, and the field is highlighted. If a Warning statement is executed in any FieldEdit
PeopleCode, a warning message appears, aerting the user to a possible problem, but the system accepts
the change to the field.

. If thefield change is accepted, the Component Processor writes the change to the component buffer, then

initiates the FieldChange event, which triggers any FieldChange PeopleCode associated with the record
field or the component record field.

This event enables you to add processes other than validation initiated by the changed field value, such as
changes to page appearance or recalculation of valuesin other page fields. An Error or Warning statement
in any FieldChange PeopleCode causes a runtime error.

Important! Do not use Error or Warning statements in FieldChange PeopleCode. All data validation
should be performed in FieldEdit PeopleCode.

After FieldChange processing, Component Processor runs default processing on all page fields, then
redisplays the page. If the user has changed the field value to ablank, or if SetDefault or arelated function
is executed, and the changed field has a default value specified in the record field definition or any
FieldDefault PeopleCode, the field isinitialized again to the default value.

The following flowchart shows thislogic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

System Edits

Result Failed >
Fass
\ 4
(FieldEdit)
Result Error: »

AcceptWaming

(FieldChange)

Unrecoverable error;
cancel page

Error/Warning Result
Else
¥
(Default Processing)
- -

Display Error Messages

h J

Display page, and wait
for user action

Highlight field,
redisplay page

Logic of field modification processing

Row Insert Processing

Row insert processing occurs when:

» A user requestsarow insert in ascroll area by pressing Alt+7, by clicking the Insert Row button, or by

clicking the New button.

« A PeopleCode RowlInsert function or a InsertRow method requests a row insert.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

119

PeopleCode and the Component Processor Chapter 6

120

In either case, the Component Processor performs these actions:

1

Inserts a new row of datainto the active scroll area

If the scroll area has a dependent scroll area, the system inserts a single new row into the blank scroll area,
and the system continues until it reaches the lowest-level scroll area.

Initiates the Rowlnsert PeopleCode event, which triggers any Rowlnsert PeopleCode associated with the
record field or the component record.

This event processes fields only on the inserted row and any dependent rows that were inserted on lower-
level scroll areas.

Runs default processing on all component fields.

Normally this affects only the inserted row fields and fields on dependent rows, because other rows
aready have undergone default processing.

Initiates the Rowlnit PeopleCode event, which triggers any RowInit PeopleCode associated with the
record field or the component record.

This event affects fields only on the inserted row and any dependent rows that were inserted.

Redisplays the page and waits for user action.

Important! Do not use Error or Warning statements in Rowlnsert PeopleCode. All data validation should
be performed in FieldEdit or SaveEdit PeopleCode.

The following flowchart showsthislogic:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Insert Mew Row

:

C Rowlnsert)

Errar Accept/Warning
Unrecoverable error: Default Processing
cancel page

h J

=)

h J

(Post Build)

h J

Display page,
waiting for user action

Logic of row insert processing

Note. If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the user), the new row is not inserted into the database when the page is saved.

Row Delete Processing
Row delete processing occurs when:

« A user requests arow deletein a scroll area by pressing Alt+8, by clicking the Delete Row button, or by
clicking the Delete button.

» A PeopleCode RowDel ete function or a DeleteRow method requests arow delete.

In either case, these actions occur:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

PeopleCode and the Component Processor Chapter 6

122

. The Component Processor initiates the RowDel ete PeopleCode event, which triggers RowDelete

PeopleCode associated with the record field or the component record.

This event processes fields on the deleted row and any dependent child scroll areas. RowDel ete
PeopleCode enables you to check for conditions and control whether a user can delete the row. An Error
statement displays a message and prevents the user from deleting the row. A Warning statement displays
amessage alerting the user about possible consequences of the deletion, but permits deletion of the row.

. If the deletion is rejected, the page is redisplayed after the error message.

. If the deletion is accepted, the row, and any child scroll areas dependent on the row, are flagged as

deleted.

The row no longer appearsin the page, but it is not physically deleted from the buffer and can be accessed
by PeopleCode al the way through the SavePostChange event (note, however, that SaveEdit PeopleCode
isnot run on deleted rows).

. The Component Processor runs default processing on al component fields.

. The Component Processor redisplays the page and waits for a user action

Note. PeopleCode programs are triggered on rows flagged as deleted in SavePreChange and
SavePostChange PeopleCode. Use the IsDeleted row class property to test whether arow has been
flagged as deleted. Y ou can also access rows flagged as deleted by looping through the rows of a scroll
area using a For loop delimited by the value returned by the RowCount rowset property.

The following flowchart shows thislogic:

C RowDelete)

Error Accept/Waming

i l

Unrecoverable error:
cancel page Row flagged as deleted

h

(Dafault Processing)

Display page,
waiting for user action

Logic of row delete processing

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

See Also
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Row Class," IsDeleted
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," RowCount

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

Buttons

When a user presses a button, this initiates the same processing as changing afield. Typically, PeopleCode
programs started by button are placed in the FieldChange event.

See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Prompts

If the Allow Search Events for Prompt Dial ogs checkbox is selected for the Record Field properties for a
search key on a prompt table record, the search processing events are enabled for that field. When the user
selects the prompt icon, the Searchinit event for that field executes before the search dialog displays. When
the user selects the Look Up button on a prompt dialog the SearchSave event for the field executes.

Search event processing on prompt dialogs can affect performance. Oracle recommends that you limit the use
of search eventsin prompt dialogs to simple tasks such as showing and hiding fields or character
manipulation. Do not use the search events on prompt dialogs for complex functions such as
AddKeyListltem, ClearKeyList, ClearSearchDefault, ClearSearchEdit, IsSearchDialog, SetSearchDefault,
SetSearchDialogBehavior, or SetSearchEdit, and so on.

By default, Allow Search Events for Prompt Dialogsis off, in which case no PeopleCode event is initiated as
aresult of prompts.

No PeopleCode events are initiated as a result of the user returning to the search page or displaying a
calendar. This processis controlled automatically by the system.

Note. When the value of afield is changed using a prompt, the standard field modification processing occurs.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, " Creating Record
Definitions," Setting Record Field Use Properties

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

PeopleCode and the Component Processor Chapter 6

Pop-Up Menu Display

To display a pop-up menu, auser can click the pop-up button, either next to afield or at the bottom of a page
(if the page has a pop-up menu associated with it.) The user can open a standard pop-up menu on a page field
if no pop-up menu has been defined by an application developer for that page field.

The PrePopup PeopleCode event initiates only if the user opens a pop-up menu defined by an application
developer on a pagefield. It does not initiate for a pop-up menu attached to the page background.

The PrePopup PeopleCode event enables you to disable, check, or hide menu items in the pop-up menu.

PrePopup PeopleCode menu item operations (such as HideM enultem, EnableM enultem, and so on) work
with pop-up menus attached to a grid, not afield in agrid, only if the PrePopup PeopleCode meant to operate
on that pop-up menu resides in the record field that is attached to the first column in the grid. It does not
matter if thefirst field isvisible or hidden.

The following flowchart shows thislogic:

User request
poOpUp Menu

4

(PrePopup)

i

Display Popup menu

Logic of PrePopup even processing

Selected Item Processing

Selected item processing occurs when a user selects amenu item from a pop-up menu. This initiates the
ItemSel ected PeopleCode event, which is a menu PeopleCode event.

The following flowchart shows thislogic:

124 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

User request
poOpUp Menu

!

(PrePopup)

i

Display Popup menu

Logic of selected item processing

Save Processing
A user can direct the system to save a component by clicking Save or by pressing Alt+1.

An application can prompt the user to save a component when the Next or List button is clicked, or when a
new action or component is selected. If the user clicks Save after being prompted, save processing begins.

The following actions occur in save processing:

1. The Component Processor initiates the SaveEdit PeopleCode event, which triggers any SaveEdit
PeopleCode associated with arecord field or a component record.

This enables you to cross-validate page fields before saving, checking consistency among the page field
values. An Error statement in SaveEdit PeopleCode displays a message and then redisplays the page,
stopping the save. A Warning statement enables the user to cancel save processing by clicking Cancel, or
to continue with save processing by clicking OK.

2. The Component Processor initiates the SavePreChange event, which triggers any SavePreChange
PeopleCode associated with arecord field, a component record, or a component.

SavePreChange PeopleCode enables you to process data after validation and before the database is
updated.

3. The Component Processor initiates the Workflow event, which triggers any Workflow PeopleCode
associated with arecord field or a component.

Workflow PeopleCode should be used only for workflow-related processing (TriggerBusinessEvent and
related functions).

4. The Component Processor updates the database with the changed component data, performing any
necessary SQL Insert, Update, and Delete statements.

5. The Component Processor initiates the SavePostChange PeopleCode event, which triggers any
SavePostChange PeopleCade associated with arecord field, a component record, or a component.

Y ou can use SavePostChange PeopleCaode for processing that must occur after the database update, such
as updates to other database tables not in the component buffer.

6. The Component Processor issues a SQL Commit statement to the database server.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

PeopleCode and the Component Processor

7. The Component Processor redisplays the component.

Chapter 6

Important! Never use an Error or Warning statement in any save processing event other than SaveEdit.

Perform all component data validation

in SavekEdit.

The following flow chart shows the logic of this sequence:

(SaveEdit)

Result

AcceptWarning

SavePreChange

.

WorkFlow

-

SQOL, Insert,
Update, Delete

.

(SavePostChange)

New
page requested

Yes

¥

Start New Page

ErrorfWarning
Cancel

Mty

k

Display page, and
wait for user action

Logic of save processing

126

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

PeopleSoft Pure Internet Architecture Processing Considerations

Keep the following pointsin mind concerning the PeopleSoft Pure Internet Architecture:

» |f auser changes afield that field has nothing to cause atrip to the server, then default processing and
FieldFormula PeopleCode do not run.

These processes only run when another event causes atrip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

» In applications that run on the PeopleSoft portal, external, dynamic link information must be placed in
Rowlnit PeopleCode.

If it is placed in FieldChange PeopleCode, it will not work.

Deferred Processing Mode

When a component runs in deferred processing mode, trips to the server are reduced. When deploying some
pages in the browser, you may want the user to be able to input data with minimal interruption or tripsto the
server. Each trip to the server can slow down your application. By specifying a component as deferred
processing mode, you can achieve better performance.

PeopleSoft applications use Asynchronous JavaScript and XML (AJAX) technology to limit server trips and
perform partial page refreshes. With a partial page refresh, the browser refreshes the entire page only when
the user navigates to a new page. Any server trips triggered by PeopleCode functions such as FieldChange
and FieldEdit for related display fields do not redraw the entire page; the refresh updates only the changed
fields. Because of AJAX technology, much of the communication with the server happens in the background.
Y ou continue to work uninterrupted during the process.

Even with AJAX and partia page refresh, Oracle recommends that you leverage deferred processing mode to
limit network traffic. Although server trips are reduced, if you selectively disable deferred processing you
will incur not only additional network traffic to process the request, you will aso add additional processing
on the webserver and appserver to deal with this request.

See PeopleTools 8.51 PeopleBook: PeopleSoft Applications User's Guide, "Using PeopleSoft Application
Pages."

If you specified deferred processing mode for a component, you can then specify whether a page within a
component, or afield on a page, aso performs processing in deferred mode. The default isfor all pages and
components to allow deferred processing. By default, fields do not allow deferred processing.

If you specify that afield or page allows deferred processing but do not set the component to deferred
processing mode, then the deferred processing mode is not initiated. Y ou must set the component first.

The characteristics of this mode are;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

PeopleCode and the Component Processor Chapter 6

128

. Field modification processing is deferred.

No field modification processing is done in the browser. FieldEdit and FieldChange PeopleCode, as well
as other edits, such as required field checks, formats, and so on, do not run until a specific user action
occurs. Several actions cause field modification processing to execute, for example, clicking a button or
link, navigating to another page in the component, and saving the page. The following actions do not
cause field processing:

« Clicking an external link.
» Clicking alist (performing a search).
» Clicking a process button.

Deferred processing mode affects the appearance of pagesin significant ways. For example, related
processing is not done when the user presses Tab to move out of afield. Avoid related fields for
components that use this mode.

. Drop-down list box values are static while the page appears in the browser.

Drop-down list box values are generated on the application server when generating the HTML for the
page.

If trandate values are used to populate the drop-down list box, and the current record contains an effective
date, that date is static while the page is displayed. This means the drop-down list box values may become
out of date.

If prompt table values are used to populate the drop-down list box, the high-order key field values for the
prompt table are static while the pageis displayed. This means the drop-down list box values may become
out of date.

Avoid interdependencies in drop-down lists used on pages executed in deferred mode, because the lists
may quickly become out of date.

. No field modification processing is done during prompt button processing.

When the user clicks a prompt button, atrip is made to the application server (if values were not already
downloaded) to select the search results from the database and to generate the HTML for the prompt
dialog box. During thistrip to the application server, field modification processing for the field being
prompted is not performed, because this may cause an error message for another field on the page, and
this error may confuse the user. When deferred changes are made to other fields, field modification
processing for these fields is done before prompting. The field modification for the prompted field is done
after returning from the prompt page. While the system displays the page, the high-order key field values
for the prompt table should be static or not require field modification processing. Display-only drop-down
list box, radio button, and check box fields do not require field modification processing. Field values that
do not require field modification processing are temporarily written to the component buffer, without any
field modification processing being performed on them, including FieldEdit and FieldChange
PeopleCode. The system restores the original state of the page processor before returning to the browser.

. Field modification processing executesin field layout order.

The entire field modification processing sequence executesin field layout order for each field. If afield
passes the system edits and FieldEdit PeopleCode, the field value is written to the component buffer. If an
error occurs, field modification processing stops, and the system generates new HTML for the page, with
thefield in error highlighted and sent to the browser.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

5. PeopleCode dependencies between fields on the page do not work as expected.

Avoid PeopleCode dependencies between fields on pages displayed in deferred processing mode. Also,
avoid FieldChange PeopleCode that changes the display.

The following are examples of PeopleCode dependencies between fields on the page and the application
server's action. In the following examples, field A comes before field B, which comes before field C.

» Field A has FieldChange PeopleCode that hides field B or it makes unavailable for entry.
Thevaluein field B of the page that was submitted from the browser is discarded.

» Field B has FieldChange PeopleCode that hides field A or makes it unavailable for entry.
The change made by the user for field A, if any, remains in the component buffer.

» Field A has FieldChange PeopleCode that changes the value in the component buffer for field B.

If thevaluein field B of the page that was submitted from the browser passes the system edits and
FieldEdit PeopleCode, it iswritten to the component buffer, overriding the change made by field A's
FieldChange PeopleCode.

» Field B has FieldChange PeopleCode that changes the value in the component buffer for field A.

The change made by field B's FieldChange PeopleCode overrides the change made by the user to field
A, if any.

» Field A has FieldChange PeopleCode that unhides field B or makes it available for entry.

Field B has the value that was aready in the component buffer. If the user requests a different page or
finishes, the user may not have the opportunity to enter avaue into field B, and therefore the value
may not be correct.

« Field B has FieldChange PeopleCode that changes the value in the component buffer for field A, but
field C has FieldChange PeopleCode that hides field B or makesit unavailable for entry.

The change made by field B's FieldChange PeopleCode, afield that is now hidden or unavailable for
entry, overrides the change made by the user to field A, if any.

Avoid such dependencies by moving FieldChange PeopleCode logic from individual fieldsto save
processing for the component or FieldChange PeopleCode on a PeopleCode command button.

. Not al buttons cause field modification processing to execute.

Externa links, list (search), and process buttons do not cause field modification processing to execute.

. You can use a PeopleCode command button to cause field modification processing to execute.

An application can include a button for the sole purpose of causing field modification processing to
execute. Theresult is anew page showing any display changes that resulted from field modification
processing.

In addition, if the user clicks the Refresh button, or presses Alt + 0, deferred processing is executed.

Note. The Refresh button does not refresh the page from the database. It simply causes a server trip so
any deferred PeopleCode changes get processed. If the page has no deferred changes or the deferred
changes do not cause any errors or other changes on the page, it may appear to the user asif nothing
happened.

129

PeopleCode and the Component Processor

Chapter 6

8. A scroll button (link) causes field modification processing to execute.

PeopleCode Events

130

This section discusses;

Activate event.
FieldChange event.
FieldDefault event.

FieldEdit event.

FieldFormula event.

ItemSelected event.
PostBuild event.
PreBuild event.
PrePopup event.
RowDelete event.
RowInit event.
Rowlnsert event.
RowSelect event.

SaveEdit event.

SavePostChange event.
SavePreChange event.

Searchlnit event.
SearchSave event.

Workflow event.

Note. The term PeopleCode typeis till frequently used, but it does not fit into the PeopleT ool s object-based,
event-driven metaphor. The term PeopleCode event should now be used instead. However, it's often
convenient to qualify aclass of PeopleCode programs triggered by a specific event with the event name; for
example, PeopleCode programs associated with the Rowlnit events are collectively referred to as Rowlnit
PeopleCode.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Activate Event

The Activate event is initiated each time that a page is activated, including when a pageisfirst displayed by a
user, or if auser presses Tab between different pages in a component. Each page has its own Activate event.

Activate PeopleCode associated with a popup page execut after the page activate event for the main page.
When fields on the main page change and trigger updates on the popup page the page activate event for the
popup pageis executed.

The Activate event segregates PeopleCode that is related to a specific page from the rest of the application's
PeopleCode. Place PeopleCode related to page display or page processing, such as enabling afield or hiding a
scroll area, in this event. Also, you can use this event for security validation: if an user does not have
clearance to view a page in a component, you would put the code for hiding the page in this event.

Note. PeopleSoft builds a page grid one row at atime. Because the Grid class applies to a complete grid, you
cannot attach PeopleCode that uses the Grid class to events that occur before the grid is built; the earliest
event you can use isthe Activate event. The Activate event is not associated with a specific row and record at
the point of execution. This means you cannot use functions such as GetRecord, GetRow, and so on, which
rely on context, without specifying more context.

Activate PeopleCode can only be associated with pages.

Thisevent isvalid only for pages that are defined as standard or secondary. This event is not supported for
subpages.

Note. If your application uses the MessageBox built-in function in the Activate event with a message from
the message catalog that's defined as type Error, Warning or Cancel, all component processing stops with an
error message to that effect. If the message has a type of Message, processing does not stop.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Update M odes, page
111

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

FieldChange Event

Use FieldChange PeopleCode to recal cul ate page field values, change the appearance of page controls, or
perform other processing that results from afield change other than data validation. To validate the contents
of thefield, use the FieldEdit event.

See Chapter 6, "PeopleCode and the Component Processor,” FieldEdit Event, page 132.

The FieldChange event appliesto the field and row that just changed.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these RowlInit/FieldChange pairs, the
Rowlnit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

PeopleCode and the Component Processor Chapter 6

To take asimple example, suppose you have a derived/work field called PRODUCT, the value of whichis
aways the product of page field A and page field B. When the component is initialized, you would use
RowlInit PeopleCode to initialize PRODUCT equal to A x B when the component starts up or when a new
row isinserted. Y ou could then attach FieldChange PeopleCode programs to both A and B which also set
PRODUCT egual to A x B. Whenever a user changes the value of either A or B, PRODUCT isrecal cul ated.

FieldChange PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldDefault Event

The FieldDefault PeopleCode event enables you to programmatically set fields to default values when they
areinitially displayed. Thisevent isinitiated on all page fields as part of many different processes; however,
it triggers PeopleCode programs only when the following conditions are al True:

» Thepagefieldisstill blank after applying any default value specified in the record field properties.

Thisis Trueif thereis no default specified, if anull value is specified, or if a0 is specified for anumeric
field.

» Thefield has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally sets fields by default when new datais being added to the
component; that is, in Add mode and when anew row isinserted into a scroll area.

If afield value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
set to True. The exception to thisis when a change is done in the FieldDefault or FieldFormula events. If a
valueisset in FieldDefault or FieldFormula, the row is not marked as changed.

At savetime, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Y ou must attach FieldDefault PeopleCode to the field where the default value is being popul ated.

Note. An error or warning issued from FieldDefault PeopleCode causes a runtime error.

FieldDefault PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102

FieldEdit Event
Use FieldEdit PeopleCode to validate the contents of afield, supplementing standard system edits. If the data

does not pass the validation, the PeopleCode program should display a message using the Error statement,
which redisplays the page, displaying an error message and turning the field red.

132 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

To permit the field edit but aert the user to a possible problem, use a Warning statement instead of an Error
statement. A Warning statement displays awarning dialog box with OK and Explain buttons. It permitsfield
contents to be changed and continues processing as usual after the user clicks OK.

If the validation must check for consistency across page fields, then use SaveEdit PeopleCode instead of
FieldEdit.

The FieldEdit event applies to the field and row that just changed.
FieldEdit PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldFormula Event

The FieldFormula event is not currently used. Because FieldFormula PeopleCode initiates in many different
contexts and triggers PeopleCode on every field on every row in the component buffer, it can seriously
degrade application performance. Use Rowlnit and FieldChange events rather than FieldFormula.

If afield valueis changed, whether through PeopleCode or by a user, the IsChanged property for the row is
usually set to True. However, if avaueisset in FieldDefault or FieldFormula, the row is not marked as
changed.

At savetime, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Note. In PeopleSoft Pure Internet Architecture, if auser changes afield but that field has nothing to cause a
trip to the server, then default processing and FieldFormula PeopleCode do not run. They only run when
another event causes atrip to the server.

As amatter of convention, FieldFormulais now often used in FUNCLIB__ (function library) record
definitions to store shared functions. However, you can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

ltemSelected Event

The ItemSelected event isinitiated whenever a user selects a menu item from a pop-up menu. In pop-up
menus, ItemSel ected PeopleCode executes in the context of the page field from where the pop-up menuis
attached, which means that you can freely reference and change page fields, just as you could from a button.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

ItemSel ected PeopleCode is only associated with pop-up menu items.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor," Selected Item Processing, page 124

PostBuild Event

The PostBuild event isinitiated after all the other component build events have been initiated. Thisevent is
often used to hide or unhide pages. It is aso used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event

The PreBuild event isinitiated before the rest of the component build events. This event is often used to hide
or unhide pages. It is also used to set component variables.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search page. If
the search record has no keys, a blank component page appears.

Also use the PreBuild event to validate data entered in a search page after a prompt list is displayed. For
example, after auser selects key values on a search, the PreBuild PeopleCode program runs, catches the error
condition, and issues an error message. The user receives and acknowledges the error message. The
component is canceled (because of the error), and the user is returned to the search page. PreBuild
PeopleCode is only associated with components.

PrePopup Event
The PrePopup event isinitiated just before the display of a pop-up menu.

Y ou can use PrePopup PeopleCode to control the appearance of the pop-up menu.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

PrePopup PeopleCaode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Pop-Up Menu Display, page 124

134 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

RowDelete Event

The RowDelete event is initiated whenever a user attempts to delete a row of data from a page scroll area.
Use RowDel ete PeopleCode to prevent the deletion of arow (using an Error or Warning statement) or to
perform any other processing contingent on row deletion. For example, you could have a page field called
Total on scroll arealevel zero whose value isthe sum of all the Extension page fields on scroll arealevel one.
If the user deleted arow on scroll arealevel one, you could use RowDelete PeopleCode to recalcul ate the
value of the Total field.

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as del eted.

Note. RowDelete does not trigger programs on derived/work records.

RowDelete PeopleCode can be associated with record fields and component records.

Deleting All Rows from a Scroll Area

When the last row of ascroll areais deleted, a new, dummy row is automatically added. As part of the
Rowlnsert event, Rowlnit PeopleCode is run on this dummy row. If afield is changed by RowlInit (even if it's
left blank), the row is no longer new, and therefore is not reused by any of the ScrollSelect functions or the
Select method. In this case, you may want to move your initialization code from the Rowlnit event to
FieldDefault.

See Also

Chapter 6, "PeopleCode and the Component Processor," Row Delete Processing, page 121

Chapter 8, "Using Methods and Built-In Functions," Using Errors and Warnings in RowDel ete Events, page
182

Rowlnit Event

The Rowlnit event isinitiated the first time that the Component Processor encounters arow of data. Useit to
set theinitial state of component controls during component build processing and row insert processing. The
Rowlnit event also occurs after a Select or SelectAll Rowset method, or a ScrollSelect or related function, is
executed.

Note. Generally, if none of the fieldsin the new row are changed after the row is inserted (either by a user
pressing Alt+7 or programmatically) when the page is saved, the new row is not inserted into the database.
However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields anew row in
Rowlnsert or Rowlnit PeopleCode, and the row will not be saved.

Rowlnit is not field-specific. It triggers PeopleCode on all fields and on al rowsin the component buffer.
Do not use Error or Warning statements in Rowlnit PeopleCode. They cause aruntime error.

Rowlnit PeopleCode is often paired with FieldChange PeopleCode. In these Rowlnit/FieldChange pairs, the
Rowlnit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

PeopleCode and the Component Processor Chapter 6

For asimple example, suppose you have a derived/work field called PRODUCT, the value of which is always
the product of page field A and page field B. When the component is initialized, use Rowlnit PeopleCode to
initialize PRODUCT equal to A x B when the component starts up or when a new row isinserted. Y ou could
then attach FieldChange PeopleCode programs to both A and B, which also sets PRODUCT equal to A x B.
Whenever a user changes the value of either A or B, PRODUCT isrecalculated.

RowlInit PeopleCode can be associated with record fields and component records.

RowlInit Exceptions

In certain rare circumstances, the Component Processor does not run RowlInit PeopleCode for some record
fields. The Component Processor runs Rowlnit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

For RowlInit to not run, the following must all be True:

e Therecordisat level zero.
» Every record field that is present in the data buffersis also present in the keys for the component.

The Component Processor determinesif the field is required by the component. In practice, this usually
means that the field is associated with a page field, possibly hidden, for some page of the component. It
could also mean that the field is referenced by some PeopleCode program that is attached to an event on
some other field of the component.

» Every record field that is present in the data buffersis display-only.

Rowlnit not running is not considered to be an error. The purpose of Rowlnit PeopleCode isto complete
initialization of data on the row after it has been read from the database. Because the data in this special
circumstance is coming from the keylist, it was already initialized correctly by whatever processing produced
the keylist. More general initialization of the component should be done in PostBuild PeopleCode, not
RowlInit.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Rowset Class," ChangeOninit

Rowlnsert Event

136

When a user adds arow of data, the Component Processor generates a RowlInsert event. Y ou should use
Rowlnsert PeopleCode for processing specific to the insertion of new rows. Do not put PeopleCode in
Rowlnsert that aready exists in Rowlnit, because a RowInit event always initiates after the Rowlnsert event,
which will cause your code to be run twice.

Note. Generally, if none of the fieldsin the new row are changed after the row has been inserted (either by a
user pressing Alt+7 or programmeatically), when the page is saved, the new row is not inserted into the
database. However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields a
new row in Rowlnsert or Rowlnit PeopleCode, and the row won't be saved.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

The Rowlnsert event triggers PeopleCode on any field on the inserted row of data.
Do not use awarning or error in Rowlnsert.

Y ou can prevent auser from inserting rows into ascroll area by selecting the No Row Insert check box in the
scroll bar's page field properties, as shown in the following illustration. However, you cannot prevent row
insertion conditionally.

Page Field Properties E |

Label Use | General I
— Scroll Attributes

Cecurs Level: |1 DOocurs Count; |1

— Field U=e Options

[Invisible W Drefault width

[T Mo Auto Selec [T Modute Update
] i [T Mo Row Delete

— Scroll Action Buttonz

[T Pievious Page [T Mext Page
™| Eowilieert [Fiow Delete
[T Top [Eottom

[T Show Fow Counter

— Popup Menu

— Field Help Context Murmber:

I < Auto Aazigh |

¥ Allow Deferred Processing

| k. I Cancel

Setting row insert properties in page field properties for a scroll bar

Note. Rowlnsert does not trigger PeopleCode on derived/work fields.

Rowlnsert PeopleCode can be associated with record fields and component records.
See Also

Chapter 6, "PeopleCode and the Component Processor," Row Insert Processing, page 119

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class,” ChangeOnlnit

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

PeopleCode and the Component Processor Chapter 6

RowSelect Event

The RowSelect event isinitiated at the beginning of the component build processin any of the update action
modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter out rows of data as
they are being read into the component buffer. This event also occurs after a ScrollSelect or related function
is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the current row of
data and continue to process other rows. A StopFetching statement causes the Component Processor to accept
the current row of data, and then stop reading additional rows. If both statements are executed, the program
skips the current row of data, and then stops reading additional rows.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data after they've
already been selected. Instead, screen out rows of data using search record views and effective-dated tables,
which filter out the rows before they're selected. Y ou could also use a Scroll Select or related function to
programmatically select rows of datainto the component buffer.

In previous versions of PeopleTools, the Warning and Error statements were used instead of DiscardRow and
StopFetching. Warning and Error statements still work as before in RowSelect, but their use is discouraged.

Note. In RowSelect PeopleCode, you can refer to record fields only on the record that is currently being
processed. This event, and al its associated PeopleCode, does not initiate if run from a component interface.

RowSelect PeopleCode can be associated with record fields and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor,”" Row Select Processing, page 112

SaveEdit Event

138

The SaveEdit event isinitiated whenever a user attempts to save the component. Y ou can use SaveEdit
PeopleCode to validate the consistency of datain component fields. Whenever avalidation involves more
than one component field, you should use SaveEdit PeopleCode. If avalidation involves only one page field,
use Fieldedit PeopleCode.

SaveEdit is not field-specific. It triggers associated PeopleCode on every row of datain the component
buffers except rows flagged as del eted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component without saving
data. A Warning statement enables the user to click OK and save the data, or to click Cancel and return to the
component without saving.

Use the SetCursorPos function to set the cursor position to a specific page field following awarning or error
in SaveEdit, to show the user the field (or at least one of the fields) that is causing the problem. Make sure to
call SetCursorPos before the error or warning, because these may terminate the PeopleCode program.

SaveEdit PeopleCode can be associated with record fields and components.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
SetCursorPos

SavePostChange Event

After the Component Processor updates the database, it initiates the SavePostChange event. Y ou can use
SavePostChange PeopleCaode to update tables not in your component using the SQL Exec built-in function.

An error or warning in SavePostChange PeopleCode causes a runtime error. Avoid errors and warningsin
this event.

The system issues a SQL Commit statement after SavePostChange PeopleCode completes successfully.

If you are executing Workflow PeopleCode, keep in mind that if the Workflow PeopleCode fails,
SavePostChange PeopleCade is not executed. If your component has both Workflow and SavePostChange
PeopleCode, consider moving the SavePostChange PeopleCode to SavePreChange or Workflow.

If you are doing messaging, your Publish PeopleCode should go into this event.

SavePostChange does not execute if there is an error during the save. For example, if there is a data conflict
error because another user updated the same data at the same time, SavePostChange does not execute.

Important! Never issue a SQL Commit or Rollback statement manually from within a SQL Exec function.
L et the Component Processor issue these SQL commands.

SavePostChange PeopleCade can be associated with record fields, components, and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
SQLExec

SavePreChange Event

The SavePreChange event isinitiated after SaveEdit completes without errors. SavePreChange PeopleCode
provides one final opportunity to manipulate data before the system updates the database; for instance, you
could use SavePreChange PeopleCode to set sequential high-level keys. If SavePreChange runs successfully,
aWorkflow event is generated, and then the Component Processor issues appropriate Insert, Update, or
Delete SQL statements.

SavePreChange PeopleCaode is not field-specific: it triggers PeopleCode on all fields and on all rows of data
in the component buffer.

SavePreChange PeopleCaode can be associated with record fields, components, and component records.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Searchlnit Event

140

The Searchinit event is generated just before a search, add, or data-entry dialog box is displayed. Searchlnit
triggers associated PeopleCode in the search key fields of the search record. This enables you to control
processing before a user enters values for search keysin the dialog box. In some cases, you may want to set
the value of the search dialog fields programmatically. For example, the following program in Searchinit
PeopleCode on the component search key record field EMPLID sets the search key page field to the user's
employee 1D, makes the page field unavailable for entry, and enables the user to modify the user's own data
in the component:

EMPLI D = %Enpl oyeel d;
Gray (EWMPLID);
Al | onEnpl | dChg(True);

Y ou can activate system defaults and system edits in the search page by calling SetSeachDefault and
SetSearchEdit in Searchinit PeopleCode. Y ou can also control the behavior of the search page, either forcing
it to appear even if al the required keys have been provided, or by skipping it if possible, with the
SetSeachDialogBehavior function. Y ou can also force search processing to always occur by selecting the
Force Search Processing check box in the component properties in PeopleSoft Application Designer.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

Searchlnit PeopleCode can be associated with record fields on search records and prompt table records and on
component search records and component prompt table records.

Searchlnit with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the Searchinit and SearchSave events on the
search keys of prompt table records. Searchlnit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox was selected for the search key's record field propertiesin Application
Designer. By default Allow Search Events for Prompt Dialogsis off.

Note. Search processing with prompt dial ogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Searchlnit PeopleCode Function Restrictions

Y ou cannot use the following functionsin Searchinit PeopleCode:

+ DoModa

» DoModa Component
e Transfer

« TransferExact

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

« TransferNode
» TransferPage
« TransferPortal
See Also

Chapter 6, "PeopleCode and the Component Processor,” Prompts, page 123

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
SetSearchDefault

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update M odes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

SearchSave Event

SearchSave PeopleCode is executed for all search key fields on a search, add, or data-entry dialog box after a
user clicks Search. This enables you to control processing after search key values are entered, but before the
search based on these keysis executed. A typical use of thisfeatureisto provide cross-field edits for selecting
aminimum set of key information. This event is also used to force a user to enter avaluein at least onefield,
even if it'sapartial value, to help narrow a search for tables with many rows.

Note. SearchSaveis not initiated when values are selected from the search list. To validate data entered in the
search page, use the Component PreBuild event.

Y ou can use Error and Warning statements in SearchSave PeopleCode to send the user back to the search
page if the user entry does not pass validations implemented in the PeopleCode.

Note. This event, and all its associated PeopleCode, is not initiated if run from a component interface.

SearchSave PeopleCode can be associated with record fields and component search records.

Note. Do not use the %M enu system variable in this event. Y ou may get unexpected results.

SearchSave with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the Searchinit and SearchSave events on the
search keys of prompt table records. Searchinit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox is selected for the search key's record field propertiesin Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dial ogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor,” Prompts, page 123

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

Workflow Event

Workflow PeopleCode executes immediately after the SavePreChange event and before the database update
that precedes the SavePostChange event. The Workflow event segregates PeopleCode related to workflow
from the rest of the application's PeopleCode. Only PeopleCode related to workflow (such as
TriggerBusinessEvent) should be in workflow programs. Y our program should deal with the Workflow event
only after any SavePreChange processing is compl ete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of datain the
component buffer.

WorkFlow PeopleCode can be associated with record fields and components.
See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Enterprise PeopleTools 8.51 PeopleBook: Workflow Technology, "Defining Event Triggers,” Writing
Workflow PeopleCode

PeopleCode Execution in Pages with Multiple Scroll Areas

142

Components with multiple levels can have multiple rows of data from multiple primary record definitions.
Y ou must know the order in which the system processes buffers for this data, because it applies PeopleCode
in the same order.

The Component Processor uses a depth-first algorithm to process rows in multiple-scroll-area pages, starting
with arow at level zero, drilling down to dependent rows on lower levels, and then working up the hierarchy
until the system has processed all the dependent rows of the last row on the highest level.

Scroll Level One

When pages have only one scroll bar, the Component Processor processes record definitions at scroll level
zero, and then all rows of data at scroll level one.

Dataisretrieved for all rows with asingle Select statement, and then it is merged with buffer structures.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Scroll Level Two

With scroll bars at multiple scroll levels, the system processes a single row of data at scroll level one, and
then it processes all subordinate rows of data at scroll level two. After processing all subordinate data at scroll
level two, it processes the next row for scroll level one, and al the subordinate data for that row. The system
continues in this fashion until all datais processed.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level three. Datais
retrieved for all rows with asingle Select statement, and then merged with buffer structures. The Component
Processor processes asingle row of data at scroll level two, and it processes all subordinate data at scroll level
three. After processing all subordinate data at scroll level three, it processes the next row for scroll level two
and all the suboridinates data for that row. The system continues in this fashion until all datais processed..

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Component Buffer Structure and
Contents, page 47

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

Chapter 7

PeopleCode and PeopleSoft Pure Internet
Architecture

The chapter discusses how to:

Using PeopleCode in PeopleSoft Pure Internet Architecture.

Using PeopleCode with PeopleSoft Pure Internet Architecture

Call dynamic link library (DLL) functions on the application server.
Update the Installation and PSOPTIONS tables.

Considerations Using PeopleCode in PeopleSoft Pure Internet
Architecture

Consider the following points when writing PeopleCode programs for PeopleSoft Pure Internet Architecture:

To help your application run efficiently, avoid using field-level PeopleCode events (FieldEdit and
FieldChange).

Each field-level PeopleCode program requires atrip to the application server.

The magjority of PeopleCode programs run on the application server as part of the component build and
save process. Do not hesitate to use PeopleCode for building and saving components.

If auser changes afield but nothing on that field will cause atrip to the server, then default processing
and FieldFormula PeopleCode do not run.

This processing occurs only when another event causes atrip to the server.

Other fields that depend on thefirst field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

In applications that run on the PeopleSoft portal, external dynamic link information must be placed in
Rowlnit PeopleCode.

If external dynamic link information is placed in FieldChange PeopleCode, it will not work.
Trips to the server are reduced when a component runs in deferred processing mode.

Each trip to the server results in the page being completely refreshed on the browser, which may cause the
display to flicker. It can also slow down your application. Deferred processing mode results in better
performance.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Using PeopleCode with PeopleSoft Pure Internet Architecture

This section discusses how to:

» Useinternet scripts.

» Usethefield object Style property.

¢ UsetheHTML area

e UseHTML definitions and the GetHTML Text function.

e Use HTML definitions and the GetJavaScriptURL method.

» Use PeopleCode to populate key fieldsin search dialog boxes

Using Internet Scripts

Aninternet script is a specialized PeopleCode function that generates dynamic web content. Internet scripts
interact with web clients (browsers) using a request-response paradigm based on HTTP.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Internet Script Classes (i Script)”

Using the Field Object Style Property

In PeopleSoft Application Designer, on the Use tab of the page definition properties, you can associate a page
with a style sheet component.

The style sheet has several classes of styles defined for it. Y ou can edit each style class to change the font, the
color, the background, and so on. Then, you can dynamically change the style of afield using the Style field
class property. The style sheet does not change, only the style class associated with that field changes.

The following example changes the style class of afield depending on avalue entered by the user. This code
isin the FieldChange event.

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Local Field &field;
&ield = GetField();

I f TESTFIELDL = 1 Then

& ield. Style = "PSHYPERLI NK";
End- I f;
I f TESTFI ELD1 = 2 Then;

& ield. Style = "PSI MAGE"
End- | f;

The following examples show the fields with different styles:

TESTFIELDT i

Field with PSHYPERLINK style

TESTFELD 1 [l

Field with PSIMAGE style

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, " Creating Style Sheet
Definitions'

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Field Class'

Using the HTML Area

Two methods are used to populate an HTML area control. Both require accessing the HTML areain the
PeopleSoft Application Designer. One method is to select Constant on the HTML tab of the HTML page field
properties dialog and enter HTML directly into the page field dialog.

The other method isto select Value on the HTML tab of the HTML page field properties dialog and associate
the control with arecord field. At runtime, populate that field with the text that you want to appear in the
HTML area

If you are using an HTML areato add form controls to a page, you can use GetParameter request class
method in PeopleCode to get the user input from those controls.

Note. When you associate an HTML area control with afield, make sure the field islong enough to contain
the data you want to passto it. For example, if you associate an HTML area control with afield that is only
10 characterslong, only thefirst 10 characters of your text will appear.

The following code populates an HTML areawith asimple bulleted list. This code isin the Rowlnit event of
the record field associated with the HTML control.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

Local Field &HTM.Fi el d;

&HTMLFi el d = GetFiel d();
&HTM_Fi el d. Val ue = "ltemonetemtwo";

The following codeisin the FieldChange event of a button. It populates an HTML area (associated with the
record field CHART_DATA.HTMLAREA) with asimple list.

Local Field &HTM.Fi el d;

&HTM_Fi el d = Get Recor d(Recor d. CHART _DATA) . HTMLAREA;
&HTM_Fi el d. Val ue = "ltemonetemtwo";

The following code populates an HTML area (associated with the record DERIVED HTML and the field
HTMLAREA) with the output of the GenerateTree function:

DERI VED_HTM.. HTMLAREA = Gener at eTr ee(&TREECTL) ;

The following tags are unsupported by the HTML area control:

+ Body

* Frame

* Frameset
 Form

s Head

« HTML

+ Meta

- Title
See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function,” Using the GenerateT ree Function, page 187

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating HTML
Definitions’

Using HTML Definitions and the GetHTMLText Function
If you are using the same HTML text in more than one place or if it isalarge, unwieldy string, you can create
an HTML definition in PeopleSoft Application Designer, and then use the GetHTML Text function to
populate an HTML area control.

The following isthe HTML string to create a simple table:

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

<p>
<TABLE>

<TR bgCol or =#008000>
<TD>
<P><FONT col or =#f 5f 5dc face="Arial, Helvetica, sans-serif"
si ze=2>nmessage 1 </ FONT></ P></ TD></ TR>
<TR bgCol or =#0000cd>
<TD>
<P><FONT col or=#00ffff face="Arial, Helvetica, sans-serif"
si ze=2>message 2</ FONT></ P></ TD></ TR>
</ TABLE></ P>

ThisHTML issaved to an HTML definition called TABLE_HTML.

This code isin the Rowlnit event of the record field associated with the HTML area control:
Local Field &HTMFi el d;

&HTMLField = GetField();

&string = Get HTM.Text (HTM.. TABLE HTM.) ;

&HTMLFi el d. Val ue = &stri ng;

This code produces the following:

HTML definition example

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
GetHTML Text

Using HTML Definitions and the GetJavaScriptURL Method

HTML definitions can contain JavaScript programs in addition to HTML. If you have an HTML definition
that contains JavaScript, use the GetJavaScriptURL Response method to access and execute the script.

This example assumes the existence in the database of aHTML definition called Helloworld_JS that contains
some JavaScript:

Function | Script_TestJavaScript ()

%Response. WitelLine("<script src=" |
%Response. Cet JavaScri pt URL(HTM.. Hel | oWor1 d_JS) | "></script>");

End- Functi on;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Internet Script Classes (i Script),”
GetJavaScriptURL

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating HTML
Definitions'

Using PeopleCode to Populate Key Fields in Search Dialog Boxes

In a PeopleSoft Pure Internet Architecture application, you typically want users to directly access their own
data. To facilitate this, you may want to use Searchinit PeopleCode to populate standard key fieldsin search
page fields and then make the fields unavailable for entry. Y ou might assign the search key field a default
value based on the user ID or alias the user entered when signing in.

Y ou must aso call the AllowEmplldChg function, which enables users to change their own data. This
function takes a single Boolean parameter in which you pass True to alow employees to change their own
data.

Hereis a simple example of such a Searchinit program, using %Employeeld to identify the user:
EMPLI D = %Enpl oyeel d;

Gray (EMPLID);

Al | onEnpl | dChg(True);

Calling DLL Functions on the Application Server

150

To support processes running on an application server, you can declare and call functions compiled in
Microsoft Windows DLLs and in UNIX shared libraries (or shared objects, depending on the specific UNIX
platform). Y ou can do this either with a special PeopleCode declaration, or using the business interlink
framework.

When you call out to aDLL using PeopleCode, on Microsoft Windows NT application servers, the DLL file
has to be on the path. On UNIX application servers, the shared library file must be on the library path (as
defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the following
PeopleCode could be used to declare and call afunction LogMsg in an external library Testdll.dll on a
Microsoft Windows client or a Windows application server, or alibtestdll.so on an UNIX application server.
The UNIX shared library's extension varies by the specific UNIX platform.

Decl are Function LogMsg Library "testdl " (string, string)
Returns i nteger;

& es = LogMsg("\tenmp\test.log", "This is a test");

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Sample Cross-Platform External Test Function

Following is the C source code for a sample cross-platform test file. It is a basic function that opens alog file
and appends alineto it. If you compile the code using a C++ compiler, the functions must be declared using

external C, to ensure C-language linkage.

Thisfile contains an interface function required for non-Microsoft-Windows environments. Thisfunction is
compiled only when compiling for a non-Windows environment (for example, UNIX). The interface function
references a provided header file, pcmext.h. The interface function is passed type codes that can be optionally
used for parameter checking.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

PeopleCode and PeopleSoft Pure Internet Architecture

152

Sinple test function for calling from Peopl eCode.

This is passed two strings, a file name and a nessage.
It creates the specified file and wites the nessage
*toit.

*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

E o S

#i f def _W NDOWS

#def i ne DLLEXPORT __decl spec(dl | export)
#defi ne LI NKAGE _ stdcal

#el se

#def i ne DLLEXPORT

#def i ne LI NKAGE

#endi f

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ);

EE R I I R I R R I I S I S I R I I R I R R I R I I R I R

Peopl eCode External call test function. *
*

Paranmeters are two strings (filenanme and nessage) *
Result is O if error, 1 if K

*
*

/

*

*

*

*

*

*

* To call this function, the foll ow ng Peopl eCode is *
* used *

* *

* Declare Function LogMsg Library "testdll" *
* (string, string) *

*
*
*
*
*

Returns i nteger; *
*

& es = LogMsg("\tenp\test.log", "This is a test"); *

*
***/

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ)

{
FI LE *fp;

fp = fopen(fnane, "a"); /* append */
if (fp == NULL) return O;

fprintf(fp, "%\n", nsQg);

fcl ose(fp);
return 1,

#i f ndef _W NDOW6

/**

* |Interface function. *

* *

* This is not needed for Wndows.... *
* *

**/

#i nclude "pcnext.h"
#i ncl ude "assert.h"

void LogMsg_intf(int nParam void ** ppParans, EXTPARAMDESC * pDesc)

Chapter 7

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

i nt rc;

/* Some error checking */
assert (nParam == 2);

assert (pDesc[0] . eExt Type == EXTTYPE_STRI NG
&& pDesc[1] . eExt Type == EXTTYPE_STRI NG
&& pDesc[2] . eExt Type == EXTTYPE_I NT);

rc = LogMsg((char *)ppParans[0],
(char *)ppParans[1]);
*(int *)ppParans[2] = rc;
}

#endi f

PeopleCode and PeopleSoft Pure Internet Architecture

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call UpdateSysVersion
from the SavePreChange PeopleCode event. This way, updates take effect at the next page load. Otherwise,
the change does not take effect at the client workstation until the user signs out and signs back in.

Important! Only a database administrator or the equivalent should change these tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

153

Chapter 8

Using Methods and Built-In Functions

This chapter provides an overview of restrictions on method and function use and discusses how to:
« Implement modal transfers.

» Implement the multi-row insert feature.

» Usethe ImageReferencefield.

» Insert rows using PeopleCode.

« Useabject linking and embedding (OLE) functions.
» Usethe Select and SelectNew methods.

» Use standalone rowsets.

» Useerrorsand warnings.

+ Usethe RemoteCall feature.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions'

Understanding Restrictions on Method and Function Use

This section discusses:

« Think-time functions.

+ WinMessage and MessageBox functions.

» Program execution with fields not in the data buffer.
» Errorsand warnings.

« DoSave function.

» Record class database methods.

» SQL class methods and functions.

« Component interface restricted functions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155

Using Methods and Built-In Functions Chapter 8

Searchinit PeopleCode function restrictions.
CallAppEngine function.

ReturnToServer function.

GetPage function.

GetGrid function.

Publish method.

SyncRequest method.

Think-Time Functions

156

Think-time functions suspend processing either until the user has taken some action (such as clicking a button
in amessage box) or until an external process has run to completion (for example, aremote process).

Avoid think-time functions in the following PeopleCode events:

SavePreChange.
Workflow.
RowSel ect.
SavePostChange.

Any PeopleCode event that executes as aresult of a ScrollSelect, ScrollSelectNew, RowScroll Select, or
RowsScroll SelectNew function call.

Any PeopleCode event that executes as aresult of a Select or SelectNew rowset method.

Violation of this rule can result in application failure.

The following are think-time functions:

Callsto an external DLL.

DoCancel.

DoModal.

DoM odal Component.

Exec (thisis think-time only when synchronous).

File attachment functions AddAttachment, ViewAttachment, and DetachAttachment.
Insertlmage.

Object functions, such as CreateObject, ObjectDoMethod, ObjectSetProperty, and ObjectGetProperty
(these are think-time only when the object requires user action).

Prompt.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

+ RemoteCall.
» RevalidatePassword.
« WinExec (think-time only when synchronous).

+ WinMessage and MessageBox (depending on the style parameter).

WinMessage and MessageBox Functions

The WinMessage and MessageBox functions sometimes behave as think-time functions, depending on the
value passed in the function's style parameter, which controls, among other things, the number of buttons
displayed in the message dialog box.

Note. The style parameter isignored if the message has any severity other than Message.

Here is the syntax of both functions:
MessageBox(style, title, nessage_set, nessage num default txt [, paranlist])

W nMessage(nessage [, style] [, title])

Note. The WinMessage function is supported for compatibility with previous releases of PeopleTools. New
applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time function and is
subject to the same restrictions as other think-time functions (that is, it should never be used from
SavePreChange through SavePostChange PeopleCode, or in RowSelect).

If the style parameter specifies a single button (that is, the OK button), then the function can be called in any
PeopleCode event.

Note. In the Microsoft Windows client, MessageBox dialog boxes include an Explain button to display more
detailed information stored in the message catalog. The presence of the Explain button has no bearing on
whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If style is omitted, WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid this situation, always pass an
appropriate value in the WinMessage style parameter.

The following table shows the values that can be passed in the style parameter. To calculate the value to pass,
make one selection from each category in the table, then add the selections.

Category Value Constant Meaning

Buttons 0 %MsgStyle OK The message box
contains one button: OK.

Buttons 1 %MsgStyle OK Cancel The message box
contains two buttons: OK
and Cancsel.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157

Using Methods and Built-In Functions Chapter 8
Category Value Constant Meaning
Buttons 2 %MsgStyle AbortRetryl The message box

gnore contains three buttons:
Abort, Retry, and Ignore.
Buttons 3 %MsgStyle YesNoCance | The message box
I contains three buttons:
Yes, No, and Cancel.
Buttons 4 %MsgStyle YesNo The message box
contains two buttons: Yes
and No.
Buttons 5 %MsgStyle RetryCancel The message box
contains two buttons:
Retry and Cancel.

158

Note. The following values for style can only be used in the Microsoft Windows client. They have no affect
in PeopleSoft Pure Internet Architecture.

Category Value Constant Meaning

Default Button 0 %MsgDefault_First Thefirst button is the
default.

Default Button 256 %M sgDefault_Second The second button is the
default.

Default Button 512 %MsgDefault_Third The third button isthe
default.

Icon 0 %Msglcon_None None

Icon 16 %Msglcon_Error A stop-sign icon appears
in the message box.

Icon 32 %Msglcon_Query A question-mark icon
appears in the message
box.

Icon 48 %M sglcon_Warning An exclamation-point

icon appearsin the
message box.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Category Value Constant Meaning

Icon 64 %Msglcon_Info Anicon consisting of a
lowercase letter i ina
circle appearsin the
message box.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
M essageBox

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
WinMessage

Program Execution with Fields Not in the Data Buffer

Under certain conditions, when you access afield that is not in the data buffer, a portion of your PeopleCode
program is skipped. The skip occurs when:

» Thereferenceisin the Import Manager.
« Thereferenceisfrom the FieldDefault or FieldFormula events.

After the call to the invalid field, execution skipsto the next top-level statement. Top-level statements are not
nested inside other statements. The start of a PeopleCode program is atop-level statement. Nesting begins
with the first conditional statement (such as While or If) or the first function call.

For example, if your code is executing in afunction and inside an If ... then ... end-if statement, and it runs
into the skip conditions, the next statement executed is the one after the End-if statement, still inside the
function.

Errors and Warnings

Errors and warnings should not be used in FieldDefault, FieldFormula, RowlInit, FieldChange, Rowlnsert,
SavePreChange, WorkFlow, and SavePostChange PeopleCode events. An error or warning in these events
causes aruntime error that forces cancellation of the component.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in Functions,” Warning
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159

Using Methods and Built-In Functions Chapter 8

DoSave Function

Use DoSave only in FieldEdit, FieldChange, or MenultemSel ected PeopleCode events.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," DoSave

Record Class Database Methods

Y ou use the following record class methods to update the database:

Delete
Insert
Save
Update

Only use these methods in the following events (events that allow database updates):

SavePreChange

WorkFlow

SavePostChange

FieldChange

Application Engine PeopleCode action

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Record Class'

SQL Class Methods and Functions

160

Use the SQL classto update the database. Use these functions and methods only in the following events
(eventsthat allow database updates):

SavePreChange

WorkFlow

SavePostChange

FieldChange

Application Engine PeopleCode action

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Component Interface Restricted Functions

PeopleCode events and functions that relate exclusively to the page interface (the GUI) and online processing
can't be used by Component Interfaces. These include:

» Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the DisableMenultem,
EnableMenultem, and HideM enultem functions aren't supported.

« Transfers between components, including modal transfers.

The DoModal, EndModal, IsMaodal, Transfer, TransferPage, DoM odal Component, TransferNode,
TransferPortal, and |sModal Component functions cannot be used.

« Cursor position.
SetControl Value cannot be used.

« WinMessage cannot be used.

« Savein the middle of atransaction.
DoSave cannot be used.

« The page Activate event cannot be used.

When executed using a component interface, these functions do nothing and return a default value. In
addition, using the Transfer function terminates the current PeopleCode program.

For the unsupported functions, you should put a condition around them, testing whether there's an existing
Component Interface.

I f % Conponent Name Then
/* process is being called froma Conponent Interface */
/* do Cl specific processing */

El se
/* do regul ar processing */

End-if;

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Component I nterfaces, " Programming Component I nterfaces
Using PeopleCode"

Searchlnit PeopleCode Function Restrictions
Y ou cannot use the following functions in Searchlinit PeopleCode:

« DoModa

» DoModa Component

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161

Using Methods and Built-In Functions Chapter 8

e Transfer

» TransferPage

CallAppEngine Function

Use the Call AppEngine function only in events that allow database updates, because, generally, if you are
calling Application Engine, you intend to perform database updates. This category of events includes the
following PeopleCode events:

» SavePreChange (Page)
» SavePostChange (Page)
« Workflow

« FieldChange

CallAppEngine cannot be used in a Application Engine PeopleCode action. If you need to access one
Application Engine program from another Application Engine program, use the Call Section action.

See Also

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Creating Application Engine Programs"

ReturnToServer Function

The ReturnToServer function returns a value from a PeopleCode application messaging program to the
publication or subscription server. You would use thisin either your publication or subscription routing code,
not in one of the standard Component Processor events.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft I ntegration Broker, "Managing Messages'

GetPage Function

162

The GetPage function cannot be used until after the Component Processor has loaded the page. Y ou should
not use this function in an event prior to the PostBuild event.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” GetPage

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

GetGrid and GetAnalyticGrid Functions

PeopleSoft builds a grid one row at atime. Because the grid and AnalyticGrid classes apply to acomplete
grid, you cannot use either the GetGrid or GetAnalyticGrid functionsin an event prior to the Activate event.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” GetGrid
PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Analytic Grid Classes'

Publish Method

If you are using PeopleSoft Integration Broker, your sending PeopleCode should go in the SavePostChange
event, for either the record or the component.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing M essages”

SyncRequest Method

If you are using PeopleSoft Integration Broker, your SyncRequest PeopleCode should go in the
SavePostChange event, for either the record or the component.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages'

Implementing Modal Transfers

This section provides an overview of modal transfers and discusses how to implement modal transfers.

Understanding Modal Transfers
When you use modal transfers to transfer from one component (the originating component) to another

component (the modal component), the user must click the OK or Cancel buttons on the modal component
before returning to the originating component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 163

Using Methods and Built-In Functions Chapter 8

164

Modal transfers provide some control over the order in which the user fillsin pages, which is useful where
datain the originating component can be derived from data entered by the user into the modal component.

Limit use of thisfeature, asit forces users to complete interaction with the modal page before returning to the
main component.

Note. Modal transfers cannot be initiated from Searchinit PeopleCode.

A modal component resembles a Microsoft Windows modal dialog box. It displays three buttons: OK,
Cancel, and Apply. No toolbars or windows are available while the modal component has the focus. The OK
button saves changes to the modal component and returns the user to the originating component. The Apply
button saves changes to the modal component without returning to the originating component. The Cancel
button returns the user to the originating component without saving changes to the modal component.

Modal components are generally smaller than the page from which they are invoked. Remember that OK and
Cancel buttons are added at runtime, thus increasing the size of the pages.

The originating component and the modal component share record fields in a derived/work record called a
shared work record. The derived/work fields of this record provide the two components with an areain
memory where they can share data. Edit boxes in both components are associated with the same derived/work
field, so that changes made to this field in the originating component are reflected in the modal component,
and vice versa. The following diagram illustrates this shared memory:

Derived/\Work
Record Field

v v

Edit Box on Model Edit Box on Originating
Component Component

Edit boxes on the originating and modal components share the same data
Edit boxes associated with the same derived/work fields must be placed at level zero in both the originating
component and the modal component.
Y ou can use the shared fields to:
» Passvalues assigned to the search keys in the modal component search record.
If these fields are missing or invalid, the search page appears, enabling the user to enter search keys.
» Pass other values from the originating component to the modal component.

» Passvalues back from the modal component to the originating component.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Implementing Modal Transfers

Any component accessible through an application menu system can be accessed using a modal transfer.
However, to implement amodal transfer, you must modify pagesin both the originating component and the
modal component. After these modifications are complete, you can implement the modal transfer using the
DoM odal Component function from a page in the originating component.

Before beginning this process, you should answer the following questions:

« Should the originating component provide search key values for the modal component?
If so, what are the search keys? (Check the modal component's search record.)
» Doesthe originating component need to pass any data to the modal component?
If so, what record fields are needed to store this data?
» Doesthe modal component need to pass any data back to the originating component?
If so, what record fields are needed to store this data?
To implement amodal transfer:
1. Create derived/work record fields for sharing data between the originating and modal components.

Create a new derived/work record or open an existing derived/work record. If suitable record fields exist,
you can use them; otherwise create new record fields for any data that needs to be shared between the
components. These can be search keys for the modal component, data to pass to the modal component, or
data to pass back to the originating component.

2. Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the derived/work fields that you need to share between the originating and
modal components to the level-zero area of the page from which the transfer will take place. You
probably want to make the edit boxesinvisible.

3. Add the same derived work fieldsto the level-zero area of the modal component.

Add one edit box for each of the edit boxes that you added in the previous step to the level-zero area of
the page to which you are transferring. Y ou probably want to make the edit boxes invisible.

4. Add PeopleCode to pass values into the derived/work fields in the originating component.

To provide search key values or pass data to the modal page, write PeopleCode that assigns appropriate
values to the derived/work fields before DoModal Component is called.

For example, if the modal component search key is PERSONAL_DATA.EMPLID, you could place the
following assignment statement in the derived/work field's Rowlnit event:

EMPLI D = PERSONAL_DATA. EMPLI D

Y ou also might assign these values in the same program where DoM odal Component is called.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165

Using Methods and Built-In Functions Chapter 8

5. Add PeopleCode to access and change the derived/work fields in the modal component.

No PeopleCode is required to pass search key values during the search. However, if other data has been
passed to the modal component, you may need PeopleCode to access and use the data. Y ou may also need
to assign new valuesto the shared fields so that they can be used by the originating component.

It is possible that the component was accessed through the menu system and not through a modal transfer.
To write PeopleCode that runs only in the component when it is running modally, use the
IsModa Component function:

I f | sMdal Conmponent () Then

/* Peopl eCode for nodal execution only. */
End- | f

6. Add PeopleCode to access changed derived/work fields in the originating component.

If the modal component has altered the data in the shared work fields, you can write PeopleCode to access
and use the data after DoM odal Component has executed.

Note. Y ou can use the EndM odal Component function as a programmatic implementation of the OK and
Cancel buttons.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
DoM odal Component

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," 1sModal

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
EndM odal Component

Implementing the Multi-Row Insert Feature

166

Enabling the multi-row insert feature in grids or scroll areas can reduce response times for transactions that
usually require entering many rows of data. With the multi-row feature, users specify the number of rowsto
add to agrid or scroll area, and empty rows appear for data entry.

This feature cannot be used with effective-dated grids or scroll areas. In addition, the feature may not apply if
the entire row is populated using PeopleCode, especially if the data is copied from prior rows. If the feature
does apply in this case, the default value of the ChangeOnlinit property can be used (the default valueis True,
which means any PeopleCode updates done in the Rowlnit or RowlInsert events set the IsChanged and IsNew
propertiesto True).

To use the multi-row insert feature:
1. Specify deferred mode processing.

The multi-row feature reduces transaction times by eliminating excess server trips. To take full advantage
of this feature, the transaction should be set to execute in deferred mode. Deferred mode should be set for
the component, all pages in the component, and al fields on those pages.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

2.

Using Methods and Built-In Functions

Enable the multi-row feature.

For each grid or scroll area where appropriate, select the Allow Multi-row Insert check box under the Use
tab in the grid or scroll area property sheet.

Add ChangeOnlnit PeopleCode.

Setting the ChangeOninit property for arowset to False enables PeopleCode to modify datain the rowset
during Rowlnit and Rowlnsert events without flagging the rows as changed. This ensures that only user
changes cause the affected row to be saved.

Note. Each rowset that is referenced by agrid or scroll areawith the multi-row feature enabled should
have the ChangeOnlnit property for the rowset set to False. This includes lower-level rowsets. In addition,
this property must be set prior to any Rowlnsert or Rowlnit PeopleCode for the affected row.

Empty rows at save.

After atransaction is saved, any empty rows are discarded before the page is redisplayed to the user. An
empty row means that the user did not access the data because PeopleCode or record defaults may have
been used to initialize the row for the initial display.

Note. PeopleCode save processing (SaveEdit and SavePreChange) PeopleCode executes for all rowsin
the buffer (including the empty ones). Therefore, SaveEdit and SavePreChange PeopleCode should be
coded so that it is executed only if the field contains data, or if the row properties IsNew and 1sChanged
are both True. An alternative method is adding PeopleCode in the first save program in the component, to
explicitly delete any row based on the IsNew and |sChanged properties. If you choose this method, then
rows should be deleted from the bottom of the data buffer to the top (last row first).

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Rowset Class," ChangeOninit

Using the ImageReference Field

To associate an image definition with afield at runtime, the field has to be of type ImageReference. An
example of thisisreferencing ared, yellow, or green light on a page, depending on the context.

To change the image value of an ImageReference field:

1
2.

Create afield of type ImageReference.

Create the images you want to use.

These images must be saved in PeopleSoft Application Designer as image definitions.
Add thefield to arecord that will be accessed by the page.

Add an image control to the page and associate the image control with the ImageReference field.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 167

Using Methods and Built-In Functions

5. Assignthefield value.

Use the keyword | mage to assign a value to the field. For example:

Local Record &WRec;
A obal Nunber &WResult;

&WRec = Get Record();
I f &WResult Then

&WRec. Myl nageFi el d. Val ue
El se

&WRec. Myl nageFi el d. Val ue
End- I f;

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Field

Definitions"

| mage. THUVBSUP;
| mage. THUVBSDOWN;

Chapter 8

Inserting Rows Using PeopleCode

168

When inserting rows using PeopleCode, you can either use the Insert method with arecord object or create a
SQL Insert statement using the SQL object. If you do a single insert, use the Record Insert method. If you are
in aloop and,therefore, calling the insert more than once, use the SQL object. The SQL object uses dedicated

cursors and, if the database you are working with supportsit, bulk insert.

A dedicated cursor means that the SQL gets compiled only once on the database, so PeopleT ools looks for

the meta-SQL only once. This can increase performance.

For bulk insert, inserted rows are buffered and sent to the database server only when the buffer isfull or a
commit occurs. This reduces the number of round-trips to the database. Again, this can increase performance.

Thefollowing is an example of using the Record Insert method:

&REC = Creat eRecord(Record. GREG) ;
&REC. DESCR. Val ue = "Y" | &l;
&REC. EMPLI D. Val ue = &l;

&REC. | nsert();

The following is an example using a SQL object to insert rows:

&SQL Creat eSQ.("% NSERT(: 1)");
&REC = Creat eRecord(Record. GREG) ;
&SQL. Bul kMbde = True;
For & =1 to 10
&REC. DESCR. Val ue = "Y"
&REC. EMPLI D. Val ue = &l ;
&SQL. Execut e(&REC) ;
End- For ;

| &

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Record Class," Insert
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class'

Using OLE Functions

This section provides an overview of OLE functions and discusses how to:

» Usethe Object datatype.
« Shareasingle object instance.

« Usethe Exec and WinExec functions.

Understanding OLE Functions

OLE automation is a Microsoft Windows protocol that enables one application to control another's operation.
The applications communicate by means of an OLE object. One of the applications (called the automation
server) makes available an OLE object that the second application (the client application) can use to send
commands to the server application. The OLE object has methods associated with it, each of which
corresponds to an action that the server application can perform. The client runs the methods, which cause the
server application to perform the specified actions.

PeopleCode includes a set of functions that enable your PeopleCode program to be an OLE client. You can
connect to any application that's registered as an OLE automation server and invoke its methods.

Note. Differencesin Microsoft Windows applications from one release to the next (that is, properties
becoming methods or vice versa) can cause problems with the ObjectGetProperty, ObjectSetProperty and
ObjectDoMethod functions.

See the documentation for the OL E-automated application.
See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions'

Using the Object Data Type

To support OLE, PeopleCode has a special data type, Object, which it uses for OLE objects. The purpose of
the Object data typeisto hold OLE objects during the course of a session so that you can run its methods.
Y ou cannot store Object data for any extended period of time.

Important! Object isavalid data type for variables, but not for record fields. Because OLE objects are by
nature temporary, you cannot store Object datain arecord field, including work record fields.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169

Using Methods and Built-In Functions Chapter 8

Some OL E object methods return data to the client. Y ou can use such methods to get data from the
automation server, if the method returns the data in a PeopleCode-supported data type. If the method returns
data in an spreadsheet, for example, you cannot accept the data, because PeopleCode does not support
spreadsheets.

Sharing a Single Object Instance

When you need the services of an OLE automation server, you create an instance of its OLE object, using the
CreateObject function. After you have the object, you can run its methods as often as you like. Y ou do not
need to create a new instance of the object each time.

In atypical scenario, you have a PeopleSoft component that needs to access Microsoft Excel or Word, or
some other automation server, perhaps one you have created yourself. Various PeopleCode programs
associated with the component must run OL E object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should create one
instance of the OLE object in a PeopleCode program that runs when the component starts (such as Rowlnit)
and assign it to aglobal variable. Then, any PeopleCode program can reference the object and invoke its
methods.

Using the Exec and WinExec Functions

The WinExec and Exec built-in functions provide another way to start another application from PeopleCode.
Unlike the OLE functions, however, Exec and WinExec do not enable you to control what actions the
application takes after you start it. Y ou can start the application, and if you use the synchronous option you
can find out when it closes, but you cannot affect its course or receive any datain return.

WinExec is appropriate in two situations:
» When you want to start an application and continue processing.
» When you have a short, unvarying process that you want to run, such as copying afile.

The Exec function, unlike WinExec and the OLE functions, is not Microsoft Windows-specific. Y ou can run
it on an application server to call an executable on the application server platform, which in PeopleTools
release 7 and later can be either Windows NT or UNIX.

Important! If you use the WinExec function with its synchronous option, the PeopleCode program (and the
PeopleSoft application) remain paused until the called program is complete. If you start a program that waits
for user input, such as Notepad, the application appears to hang until the user closes the called program. The
synchronous option also imposes limits on the PeopleCode.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Exec
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," WinExec

170 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Using the Select and SelectNew Methods

This section provides an overview of the Select method and discusses how to use the Select method.

Understanding the Select and SelectNew Methods

The Select and SelectNew methods, like the Scroll Select functions, enable you to control the process of
selecting data into a page scroll area. The Select method selects rows from atable or view and adds the rows
to either arowset or arow. Let's call the record definition of the table or view that it selected from the select
record. Let's call the primary database record of the top-level rowset object executing the method the default
scroll record.

The select record can be the same as the default scroll record, or it can be a different record definition that has
the same key fields as the default scroll record. If you define a select record that differs from the default scroll
record, you can restrict the number of fields loaded into the buffers by including only the fields you actually
need.

Y ou can use these methods only with arowset. A rowset can be thought of as a page scroll area.

A level zero rowset starts at the top level of the page, level zero, and contains al the data in the component
buffers. A child rowset is contained by an upper-level rowset, also called the parent rowset. For example, a
level one rowset could be considered the child rowset of alevel zero, or parent, rowset. Or alevel two rowset
could be the child rowset of alevel one rowset. The data contained in a child rowset depends on the row of
the parent rowset.

When arowset is selected into, any autoselected child rowsets are also read. The child rowsets are read using
aWhere clause that filters the rows according to the Where clause used for the parent rowset, using a
Subselect.

The Select method automatically places child rowsets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row, an error occurs.

The Select method also accepts an optional SQL string that can contain a Where clause restricting the number
of rows selected into the scroll area. The SQL string can also contain an Order By clause, enabling you to sort
the rows.

The Select and SelectNew methods generate an SQL Select statement at runtime, based on the fieldsin the
select record and the Where clause passed to them in the function call. This gives Select and SelectNew a
significant advantage over the SQL Exec function: they enable you to change the structure of the select record
without affecting the PeopleCode program, unless the field affected is referred to in the Where clause string.
This can make the application easier to maintain.

Also, if you use one of the meta-SQL constructs or shortcuts in the Where clause, such as %K eyEqual or
%List, even if afield has changed, you do not have to change your code.

Unlike the Scroll Select functions, neither Select or SelectNew allow you to operate in turbo mode.

Note. In addition to these methods, the SelectByKey record class method enables you to select into arecord
object. If you're only interested in selecting a single row of data, consider this method instead.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171

Using Methods and Built-In Functions Chapter 8

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Using the Select Method

172

The syntax of the Select method is:

Select([parmist], RECORD.selrecord [, wherestr, bindvars]);
Where paramlist isalist of child rowsets, given in the following form:

SCROLL. scrol I namel [SCRCLL., scroll nanme2]

The first scrollname must be a child rowset of the rowset object executing the method, the second scrollname
must be a child of the first child, and so on.

This syntax does the following:

» Specifies an optional child rowset into which to read the selected rows.
« Specifiesthe select record from which to select rows.

» Passesastring containing a SQL Where clause to restrict the selection of rows or an Order By clause to
sort the rows, or both.

Specifying Child Rowsets

Thefirst part of the Select syntax specifies a child rowset into which rows are selected. This parameter is
optional.

If you do not specify any child rowsets in paramlist, Select selects from a SQL table or view specified by
selrecord into the rowset object executing the method. For example, suppose you've instantiated alevel one
rowset &BUS EXPENSES PER. The following would select into this rowset:

Local Rowset &BUS EXPENSES PER;

&BUS_EXPENSES_PER = Get Rowset (SCROLL. BUS_EXPSNESE_PER) ;
&BUS_EXPENSES_PER. Sel ect (RECORD. BUS_EXPENSE_WW
"WHERE SETID = :1 and CUST_ID = :2", SETID, CUST_ID);

If the rowset executing the method is alevel zero rowset, and you specify the Select method without
specifying any child rowsets with paramlist,, the method reads only a single row, because only one row is
allowed at level zero.

Note. For developers familiar with previous releases of PeopleCode: In this situation, the Select method is
acting like the RowScroll Select function.

If you specify achild rowset in paramlist, the Select method selects from a SQL table or view specified by
selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset executing the
method.

In the following example, rows are selected into a child rowset BUS EXPENSE DTL, matching level-one
keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Local Record &REC EXP;
Local Rowset &BUS EXPENSE PER;

&REC EXP = Get Recor d(RECORD. BUSI NESS_EXPENSE_PER:
&BUS_EXPENSE_PER = Get Rowset (SCROLL. BUS_EXPSNESE._PER) :
&BUS_EXPENSE_PER Sel ect (SCROLL. BUS_EXPENSE DIL,

RECORD. BUS_EXPENSE_DTL, "WHERE %KeyEqual (: 1) AND EXPENSE_AMI
>= 200 ORDER BY EXPENSE_AMI", &REC EXP):

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and identified with
RECORD.selrecord.. The select record can be the same as the primary database record associated with the
rowset executing the method, or it can be a different record definition that has compatible fields.

The select record must be defined in PeopleSoft Application Designer and be a built SQL table or view (using
Build, Project), unless the select record is the same record as the primary database record associated with the
rowset.

The select record can contain fewer fields than the primary record associated with the rowset, although it
must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can restrict the
number of fieldsthat are loaded into the buffers on the client work station by including only the fields you
actually need.

The Where Clause

The Select method accepts a SQL string that can contain a Where clause restricting the number of rows
selected into the object. The SQL string can also contain an Order By clause to sort the rows.

Select and SelectNew generate a SQL Select statement at runtime, based on the fields in the select record and
the Where clause passed to them in the method parameters.

To avoid errors, the Where clause should explicitly select matching key fields on parent and child rows. Y ou
do this using the %K eyEqual meta-SQL.
Select Like RowScrollSelect

If the rowset executing the method is alevel zero rowset, and you specify Select without specifying any child
rowsets with paramlist, the method reads only a single row, because only onerow isalowed at level zero.

Note. For developers familiar with previous rel eases of PeopleCode: In this situation, the Select method is
acting like the RowScroll Select function.

If you qualify the lower-level rowset so that it only returns one row, it acts like the RowScroll Select method.

&RSLVL1 Get Rowset (SCROLL. PHYSI CAL_I NV) ;
&RSLVL2 = &RSLVL1(&PHYSI CAL_ROW . Get Rowset (SCROLL. PO_RECEI VED_I NV) ;
&REC2 = &RSLVL2. PO _RECEI VED_I NV,
If &PO ROW = 0 Then
&RSLVL2. Sel ect (PO_RECEI VED_| NV, "WHERE %KeyEqual (: 1)
and qty_available > 0", &REC2);
End-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173

Using Methods and Built-In Functions Chapter 8

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "Meta-SQL Elements," %KeyEqual

Using Standalone Rowsets

This section provides an overview of standal one rowsets and discusses how to:
» UsetheFill rowset method.

» Usethe CopyTo rowset method.

« Add child rowsets.

» Use standalone rowsets to write afile.

o Usestandalone rowsetsto read afile.

Understanding Standalone Rowsets

Standal one rowsets are not associated with a component or page. Use them to work on data that is not
associated with a component or page buffer.In earlier releases, this was done using derived work records. Y ou
still must build work pages.

Note. Standalone rowsets are not connected to the Component Processor, so there are no database updates
when they are manipulated. Delete and insert actions on these types of rowsets are not automatically applied
at savetime.

Aswith any PeopleTools object, the scope of standalone rowsets can be Local, Global, or Component.
Consider the following code:

Local Rowset &MYRS;
&MWYRS = Cr eat eRowset (RECORD. SOVEREC) ;

This code creates arowset with SOMEREC as the level zero record. The rowset is unpopulated. Functionally,
it isthe same as an array of rows.

Using the Fill Method

The Fill method fills the rowset by reading records from the database, by first flushing out al the contents of
the rowset. A Where clause must be provided to get all the relevant rows.

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Local Rowset &WRS;
Local String &EMPLID;

&WRS = Creat eRowset (RECORD. SOVEREC) ;
&EMPLI D = ' 8001';

&WYRS. Fil |l ("where EMPLID = : 1", &EMPLID);

Use the Fill method with standal one rowsets, created using the CreateRowset function. Do not use Fill with
component buffer rowsets.

Using the CopyTo Method

The CopyTo method copies like-named fields from a source rowset to a destination rowset. To perform the
copy, it uses like-named records for matching, unless specified. It works on any rowset except the
Application Engine state records. The following is an example:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLI D;

&WYRS1
&MYRS2

Cr eat eRowset (RECORD. SOVEREC) ;
Cr eat eRowset (RECORD. SOVEREC) ;

&EMPLID = ' 8001';

&WRSL. Fi | | ("where EMPLID = : 1", &EMPLID);
&MYRSL. Copy To(&MYRS2) ;

After running the previous code segment, & MY RS2 contains that same data as & MY RS1. Both &MY RS1
and & MY RS2 were built using like-named records.

To use the CopyTo method where there are no like-named records, you must specify the source and
destination records. The following code copies only like-named fields:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLI D;

&WRS1 = Creat eRowset (RECORD. SOVERECL) ;
&WRS2 = Creat eRowset (RECORD. SOVEREC?) ;

&EMPLID = ' 8001";

&WRSL. Fil | ("where EMPLID = : 1", &EMPLID);
&MYRS1. CopyTo(&MYRS2, RECORD. SOVEREC1, RECORD. SOVEREC2) ;

Adding Child Rowsets

The first parameter of the CreateRowset method determines the top-level structure. If you pass the name of
the record as the first parameter, the rowset is based on arecord. Y ou can also base the structure on a
different rowset. In the following example, & MY RS2 inherits the structure of & MY RS1.:

Local Rowset &WRS1l, MYRS2;

&WYRS1
&MYRS2

Cr eat eRowset (RECORD. SOVEREC1) ;
Cr eat eRowset (&WYRS1) ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175

Using Methods and Built-In Functions Chapter 8

To add achild rowset, suppose the following records describe a relationship. The structure is made up of
three records:

+ PERSONAL_DATA

 BUS EXPENSE_PER

« BUS EXPENSE_DTL

To build rowsets with child rowsets, use code like the following:
Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
& sBusExpDt | Cr eat eRowset (Recor d. BUS_EXPENSE_DTL) ;

&r sBusExpPer Cr eat eRowset (Recor d. BUS_EXPENSE PER, &r sBusExpDtl);
& sBusExp = Creat eRowset (Recor d. PERSONAL_DATA, &r sBusExpPer);

Another variation is
& sBusExp = Creat eRowset (Recor d. PERSONAL _DATA,

Cr eat eRowset (Recor d. BUS_EXPENSE PER,
Cr eat eRowset (Record. BUS EXPENSE DTL))) ;

Using Standalone Rowsets to Write a File

Thefollowing is an example of using standal one rowsets along with afile layout to write afile:

F-{Z) PERSONAL_DATA
¢ EMPLID
..... & MAME
(=) BUS_EXPENSE_PER
----- @ EMPLID
----- @ EXPENSE_PERIOD_DT
----- @ SUBMIT_FLG
----- @ INTL_FLG
----- @ APPR_STATUS
----- @ APPR_INSTANCE

----- ¢ COMMEMTS

=+E) BUS_EXPEMSE_DTL

----- ¢ EMPLID

----- ¢ ExPEMSE_PERIOD_DT
----- ¢ CHARGE_DT

----- ¢ ExPEMSE_CD

----- ¢ ExPEMSE_AMT

----- ¢ CURREMCY_CD

----- ¢ BUSINESS_PURPOSE
----- ¢ DEPFTID

File layout example

The following example writes afile using afile layout that contains parent-child records:

176 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Local File &MWYFILE;

Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQ.1, &SQ.2, &SQ3;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d(Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d(Recor d. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset (Recor d. BUS_EXPENSE_PER,

Cr eat eRowset (Record. BUS_EXPENSE_DTL))) ;

& sBusExpPer = &r sBusExp. Get Row(1) . Get Rowset (1) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "W, 9%-ilePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS_EXP_OUT) ;

&EMPLI D = "8001";

&sqL1
&SQL2

CreateSQ.("%sel ectal | (: 1) where EMPLID
D

: 2", & BusExp, &EMPLID);
CreateSQ.("%sel ectal | (: 1) where EMPLI : 2",

& BusExpPer, &EMPLID);

VWil e &SQL1. Fet ch(& BusExp)
&r BusExp. CopyFi el dsTo(& sBusExp. Get Row(1) . PERSONAL_DATA) ;
&l = 1;
Wi | e &SQL2. Fet ch(& BusExpPer)
& BusExpPer . CopyFi el dsTo(& sBusExpPer (&). BUS_EXPENSE_PER) ;
&) = 1,
&SQAL3 = CreateSQ("%electall(:1) where EMPLID = :2
and EXPENSE_PERI OD DT = :3", & BusExpDtl, &EMPLID,
&r sBusExpPer (&) . BUS_EXPENSE_PER. EXPENSE_PERI OD_DT. Val ue) ;
& sBusExpDt| = & sBusExpPer. Get Rom &l). Get Rowset (1) ;
Wi | e &SQL3. Fet ch(& BusExpDt 1)
& BusExpDt | . CopyFi el dsTo(& sBusExpDt | (&J) . BUS_EXPENSE_DTL) ;
& sBusExpDt| . | nsert Row &J) ;
&) = &3 + 1;
End- Wi | e;

& sBusExpPer . | nsert Row &l) ;
& =&l + 1;
End- Wi | e;
&WYFI LE. Wit eRowset (& sBusExp) ;
End- Wi | e;
&WYFI LE. d ose();

The previous code generates the following output file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 177

Using Methods and Built-In Functions

AA8001 Schumacher, Si non

BB8001 06/ 11/ 1989YNAO Cust oner CGo-Live Cel ebration

CC8001 06/ 11/ 1989

06/ 01/ 198908226. 83 USDEntertain Clients =

10100

BB8001 08/ 31/ 1989YNAO Cust omer Focus G oup Meeting

CC8001 08/ 31/ 198908/ 11/ 1989012401. 58 USDCust oner Vi si t
10100

CC8001 08/ 31/ 198908/ 12/ 198904250. 48 USDCust onrer Vi si t
10100

CCs8001 08/ 31/ 198908/ 12/ 198902498. 34 USDCust oner Vi sit
10100

BB8001 03/ 01/ 1998YYPO Attend Asi a/ Paci fic Conference

CC8001 03/ 01/ 199802/ 15/ 1998011200 USDConf er ence

00001

CC8001 03/ 01/ 199802/ 16/ 19980220000 JPYConf er ence

00001

BB8001 05/ 29/ 1998NNPO Annual Subscription

CC8001 05/ 29/ 199805/ 29/ 199814125. 93 USDSof t war e, | nc.
10100

BB8001 08/ 22/ 1998NNPO Regi onal Users G oup Meeting

CC8001 08/ 22/ 199808/ 22/ 19981045. 69 USDDri ve to Meeting
10100

CC8001 08/ 22/ 199808/ 22/ 19980912. 44 USDCity Parking
10100

BB8001 12/ 12/ 1998NNPO Custoner Visit: Nevco

CC8001 12/ 12/ 199812/ 02/ 199801945. 67 USDCust orrer Feedback
00001

CCs8001 12/ 12/ 199812/ 02/ 19981010. 54 USDTo Airport
00001

CC8001 12/ 12/ 199812/ 03/ 19980610 USDAI r port Tax
00001

CC8001 12/ 12/ 199812/ 03/ 199804149. 58 USDCust orrer Feedback
00001

CCs8001 12/ 12/ 199812/ 04/ 1998055. 65 USDCheck Voi cemmai
00001

CC8001 12/ 12/ 199812/ 04/ 19980988 USDAI r port Parki ng
00001

CC8001 12/ 12/ 199812/ 04/ 199802246. 95 USDCust orrer Feedback
00001

CC8001 12/ 12/ 199812/ 04/ 199803135. 69 USDCust onrer Feedback
See Also

Chapter 8

00001

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Constructing File

Layouts and Performing Data I nterchanges'

Using Standalone Rowsets to Read a File

The following code shows an example of reading in afile and inserting the rows into the database:

178 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Local File &MWYFILE;

Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d(Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d(Recor d. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset (Recor d. BUS_EXPENSE_PER,
Cr eat eRowset (Record. BUS_EXPENSE_DTL))) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "R', 9%-il ePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS EXP_QOUT) ;

&SQL1 = CreateSQL("%nsert(:1)");

& sBusExp = &WYFI LE. ReadRowset () ;
Wil e & sBusExp <> Nul | ;
& sBusExp. Get Row 1) . PERSONAL_DATA. CopyFi el dsTo(& BusExp) ;
& sBusExpPer = &rsBusExp. Get Row(1) . Get Rowset (1) ;
For & = 1 To & sBusExpPer. Acti veRowCount
&r sBusExpPer (&) . BUS_EXPENSE_PER. CopyFi el dsTo(& BusExpPer) ;
& BusExpPer . Execut eEdi t s(%Edi t _Requi r ed) ;
| f & BusExpPer.|sEditError Then
For & = 1 To & BusExpPer. Fi el dCount
&MWYFI ELD = &r BusExpPer . Get Fi el d(&K) ;
| f &MWYFI ELD. Edi t Error Then

&VBGNUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MWYFI ELD. MessageSet Nunber ;
End- | f;
End- For ;

El se
&SQL1. Execut e(& BusExpPer) ;
& sBusExpDt| = & sBusExpPer. Get Rom &l). Get Rowset (1) ;
For & = 1 To & sBusExpDtl| . Acti veRowCount
& sBusExpDt | (&J) . BUS EXPENSE DTL. CopyFi el dsTo(& BusExpDtl);
& BusExpDt | . Execut eEdi t s(%&di t _Requi red) ;
| f & BusExpDtl.|sEditError Then
For & = 1 To & BusExpDtl. Fi el dCount
&WFI ELD = &r BusExpDt! . Get Fi el d(&K) ;
| f &WFI ELD. Edi t Error Then
&VBANUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MYFI ELD. MessageSet Nunber ;
End- I f;
End- For ;
El se
&SQL1. Execut e(& BusExpDt 1) ;
End- | f;
End- For ;
End- I f;
End- For ;
& sBusExp = &MWYFI LE. ReadRowset () ;
End- Wi | e;
&WYFI LE. d ose();

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 179

Using Methods and Built-In Functions Chapter 8

Using Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid data. For this
reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in SearchSave PeopleCode for
validation during search processing. In conjunction with edits, errors stop processing, while warnings allow
processing to continue. When errors and warnings appear in places other than FieldEdit or SaveEdit, their
effectsvary.

This section discusses how to:

« Useerrors and warning syntax.

» Useerorsand warningsin edit events.

» Useerrors and warnings in RowSelect events.
» Useerrors and warnings in RowDelete events.

» Useerrorsand warningsin other events.

Using Error and Warning Syntax

Errors and warnings require only a message that the Component Processor displays to users. Y ou can code
the message into the error or warning statement, or you can use the message catal og. Use the message catalog
with the MsgGet, MsgGetExplainText, and similar functions.

Errors and warnings use the same syntax. For example:

Error MsgGet (11100, 180, "Message not found.");
Warni ng MsgGet (11100, 180, "Message not found.");

Using Errors and Warnings in Edit Events

180

Y ou can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The Component
Processor applies FieldEdit when the user changes afield, and SaveEdit when the user saves a component.
Errors and warnings in these events display a message. Most errors and warnings appear in these event types,
although you can use errors and warnings el sewhere.

FieldEdit Event Errors

Y ou can use either the record field or component record field event. The record field event for each record
runs before the component record field event for that record.

An error in FieldEdit prevents the system from accepting the new value of afield. The Component Processor
highlights the problem field. The user must either change the field back to its original value or to something
else which does not trigger the error. A warning enables the Component Processor to accept the new data.
The Component Processor does not highlight afield that has warnings.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

SaveEdit Event Errors

Y ou can use the record field or the component record event. All record field events for arecord run before the
component record events.

An error in SaveEdit prevents the system from saving any row of data. The Component Processor does not
update the database for any field if one field has an error. Although the Component Processor displays an
error message, it does not turn any field red. Unlike FieldEdit errors, SaveEdit errors can happen anywhere on
apage or component, for any row of data. The data causing the error may appear on a different page within
the same group, or arow of data not currently displayed. If thisisthe case, thefield in error is brought into
view by the system.

A warning in SaveEdit also is applied to all datain the page or component, but the Component Processor will
accept the data, if told to by the user. In a FieldEdit warning, the Component Processor displays a message
box with the text and two buttons: OK and the standard Explain (the Explain button returns an explanation for
the last message retrieved with the MsgGet function). In a SaveEdit warning, the message box contains an
additional button, Cancel. OK accepts the data, overriding the warning and continuing the save process.
Cancel ends the save process.

Because errors and warnings apply to al rows of dataand all pagesin a group, you must provide the user
explicit information about what caused the error. Typically, you use the message catalog function to store
messages and substitute variables into them. However, you can also facilitate this by concatenating in afield
value. For example, if you have a stack of historical data on the page, you could use the following error
statement:

Error ("The value exceeds the maxi mumon "|effdt|".");

Using Errors and Warnings in RowSelect Events

RowSelect PeopleCode filters out rows of data after the system applies search record criteria. It also can stop
the Component Processor from reading additional rows of data.

Note. Errors and warnings should no longer be used in RowSelect processing; instead, use DiscardRow and
StopFetching. The behavior of errors and warnings in RowSelect PeopleCode is retained for compatibility
with previous releases of PeopleTools.

A warning causes the Component Processor to reject the current row, but the Component Processor continues
reading more data. An error prevents more data coming into the page or component. The Component
Processor accepts the row that causes the error, but does not read any more data. To reject the current row and
stop loading additional rows, issue awarning and an error.

Y ou must specify text for an error or warning, but the Component Processor does not display messages from
RowSelect. Y ou can still use the message text as away of documenting the program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 181

Using Methods and Built-In Functions Chapter 8

See Also

Chapter 11, "Accessing PeopleCode and Events,” page 229

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
DiscardRow

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
StopFetching

Using Errors and Warnings in RowDelete Events

When you delete arow of data, the system prompts you to confirm. If you confirm, any record field
RowDel ete PeopleCode runs, and any component record RowDel ete PeopleCode al so runs. Errors and
warnings in RowDelete display a message box.

A warning from RowDel ete presents two choices: accept the RowDelete (the OK button), or cancel the
RowDel ete (the Cancel button). An error from RowDel ete PeopleCode prevents the Component Processor
from removing that row of data from the page.

Using Errors and Warnings in Other Events

Do not put errors or warning in PeopleCode attached to the FieldDefault, FieldFormula, Rowlnit,
FieldChange, Rowlnsert, SavePreChange, WorkFlow, and SavePostChange events. These event types
activate processing that a user has no direct control over. However, the Component Processor may issue its
own errors and warnings when it runs PeopleCode and encounters an unrecoverable error. The Component
Processor cancels the transaction to avoid unpredictabl e results.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCade Built-in Functions," Warning

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

Using the RemoteCall Feature

This section provides an overview of RemoteCall components and discusses how to:

» Decide between RemoteCall and PeopleSoft Process Scheduler.
« Modify PeopleSoft Process Scheduler programs to run with RemoteCall.

182 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 156

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CallAppEngine

Understanding RemoteCall Components

RemoteCall is a PeopleTools feature that enables executing a COBOL program remotely from within a
PeopleSoft application. Remote calls are made using the RemoteCall PeopleCode function.

Because all PeopleCode runs on the application server, the RemoteCall PeopleCode function has more
limited utility. However, RemoteCall can enable you to take advantage of existing COBOL processes.

In the application server configuration file, you can specify where the COBOL executables are |ocated.

See PeopleTools 8.51 PeopleBook: System and Server Administration, " Setting Application Server Domain
Parameters," Remote Call Options.

The RemoteCall function is a synchronous call. The PeopleSoft system passes parameters to the remote
program, and then waits while the program runs. When the remote program is done, it returns any results or
status information to the client, which then resumes execution. This means that RemoteCall is a think-time
function. RemoteCall is designed for fast response time, and has an application programming interface (API)
that provides programs with the response time needed for transaction processing. However, RemoteCall has
no scheduling or multistep job capabilities. Each execution of RemoteCall is independent.

Note. For PeopleTools 8, you can no longer use RemoteCall to execute an Application Engine program. Use
the Call AppEngine function instead.

The RemoteCall PeopleTools feature consists of the following components:

» PeopleCode program.

This interface consists of the RemoteCall PeopleCode function. It is used from PeopleCode to start a
remote program and process results. The PeopleCode program does not include any specia code to
specify where the remote program is executed. Y ou can configure Oracle Tuxedo to locally execute the
program for testing.

« Remote program API.
Thisis used by the remote COBOL program to receive or pass parameters and return status information.
» PeopleSoft RemoteCall service.

The PeopleSoft application server, PSAPPSRV, advertises the RemoteCall service. The service receives
requests from clients and starts the reguested program. When the program is compl eted, it passes the
parameters and status code back to the client.

* Oracle Tuxedo.

Oracle Tuxedo is a message-based transaction monitor for distributed applications. No direct Oracle
Tuxedo calls need to be implemented in PeopleCode or remote programs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 183

Using Methods and Built-In Functions Chapter 8

184

PeopleCode Program

Y ou can execute the RemoteCall function from PeopleCode associated with any Component Processor event
except SavePostChange, SavePreChange, Workflow, RowSelect, or in any PeopleCode event resulting from a
ScrollSelect or related function call. However, remote programs that change data should not be run as part of
a SaveEdit process, because the remote program may complete successfully even though an error occurs later
in the save process.

To call aremote program that changes data, use FieldChange PeopleCode in arecord field associated with a
command button, or from a pop-up menu item.

Do not use RemoteCall if you expect the remote program to return alarge amount of datato the client,
because datais passed back only through the parameters of the PeopleCode API.

Authorization to run aremote program is like authorization to run a PeopleCode program. Because aremote
program is started from PeopleCode, the user has authorization to use the page that executes the PeopleCode.

The remote program runs in adifferent unit of work from the page. A commit isissued by PeopleTools if
needed on the client before RemoteCall is called. This meansthat, by default, the remote program does not
know about any database changes unless the page is saved before the program is called. After the remote
program starts, it runs to completion and commits or ends before returning to the page. In this way, the
remote program and the page do not have locking contention. To ensure that the save has actually been done,
use the DoSaveNow built-in function.

When using RemoteCall to execute a COBOL program, two types of errors can occur:
» PeopleToolserrors.

An error could occur in PeopleTools or Oracle Tuxedo, or the service might not be found. These are
treated as hard errors by PeopleCode. An error message box appears, and that piece of PeopleCodeis
terminated. In the case of a PeopleTools error, the remote program always either returns a code of zero or
terminates with a message due to a system error.

« Application-specific errors.

Any error information specific to the remote application must be passed back in regular data variables,
and the application can process these in an application-specific way. If you have a status code on which
the application depends, you should initialize it to an invalid value to be sure the COBOL program does
return the status code.

Because the remote program is executed synchronously, users receive an hourglass icon and cannot do
anything in the current window until the remote application completes. They could move to another window
and do processing there, or they could open another PeopleSoft window. They cannot cancel the remote
program after it starts. If the program does not terminate in atimely fashion (as determined by the
RemoteCall timeout set with PeopleSoft Configuration Manager), RemoteCall attempts to terminate the
process and returns an error indicating that the program was terminated.

Remote Program API

The remote program API provides the functions to get and put data between the network and the COBOL
program. These functions are implemented in C, but are callable from COBOL through the PTPNETRT
program. For an example, seethe PTPNTEST.CBL program.

Note. If these APIs are called when the program is not running as a remote program, ACTION-GET and
ACTION-PUT return an error. All other actions return without doing anything.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-PUT to send
back any error status variables, then with ACTION-DONE to send the buffer.
PeopleSoft RemoteCall Service

The RemoteCall service serves as a bridge between the PeopleCode APl and remote COBOL programs.
RemoteCall is one of many services advertised from the PSAPPSRV Oracle Tuxedo server, and can be
configured as part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the program
name, as well as any other parameters for the program, to the application server. The RemoteCall service then
executes the program and passes it the connect string.

RemoteCall Programming Guidelines

K eep the following points in mind when using RemoteCall:

» Do not use RemoteCall for long-running batch jobs.

Asadgenera rule, if you think execution will take more than 15 seconds, you should not be using
RemoteCall, but should instead use PeopleSoft Process Scheduler.

» RemoteCall is meant for running jobs on the server.

It should not be used to invoke client-only programs. Support for local calling with RemoteCall is
provided solely as a debugging and development aid. For client-only programs, use Declare Function,
then call the external function from alibrary.

« If you do not want to modify an existing program, then pass only the program name and run control, and
do not return any parameters.

Thisway, the program requires few changes to run as a remote function.

Deciding Between RemoteCall and PeopleSoft Process Scheduler

COBOL application programs initiated by the RemoteCall service use the same COBOL application
architecture used by PeopleSoft Process Scheduler. After being initiated by the dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the relational database
management system to compile and execute SQL statements. Y ou can design and implement COBOL
programs to be understood by both PeopleSoft Process Scheduler and RemoteCall.

Follow these guidelines to select the optimal method for running a particular COBOL program:

» Use PeopleSoft Process Scheduler for asynchronous processes, or processes that can be scheduled, are
multistep, or that require printed output.

« Use RemoteCall for synchronous processes that are quick (transaction processing types of processes).

Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

To enable an existing program that runs under PeopleSoft Process Scheduler to run under RemoteCall as
well, make the following changes:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 185

Using Methods and Built-In Functions Chapter 8

Include the PTCNETRT copy member.
» Include the PTCNCHEK member before the connection call to PTPSQLRT.

+ Addthecdl to PTPNETRT ACTION-DONE just before the program terminates (after the call to
disconnect from the database).

This should be conditional on whether you are RUNNING-REMOTE-CALL.
» If you are running as a RemoteCall, ensure that PROCESS-INSTANCE OF PRUNSTATUS is hot set.

Otherwise your callsto PTCPSTAT try to update the PSPRCSRQST table. This does not cause an error,
but it is unnecessary processing.

This program can now run from PeopleSoft Process Scheduler or from RemoteCall. If a program has to pass
parameters, it must have RemoteCall-specific ACTION-GET and ACTION-PUT calls.

186 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using HTML Trees and the GenerateTree
Function

This chapter discusses the GenerateTree function.

Using the GenerateTree Function

This section provides an overview of HTML trees and discusses how to:

* Build HTML tree pages.

e UseHTML treerowset records.

» Usetree actions (events).

« Initialize HTML trees.

» Process events passed from atree to an application.
» Add mouse-over ability to HTML trees.

« Add visua selection node indicators.

» Specify override images.

Understanding HTML Trees

Use the GenerateTree function to display datain atree format. The result of the GenerateTree function is an
HTML string, which can appear in an HTML area control. The tree generated by GenerateTreeis called an
HTML tree.

The GenerateTree function displays data from arowset. Y ou can populate this rowset using existing record
data. Y ou can also use the tree classes to display data from trees created using PeopleSoft Tree Manager.

To use this function, you must set up a page for displaying the data and populate a standal one rowset with the
data to be displayed.

The following example shows an HTML tree:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 187

Using HTML Trees and the GenerateTree Function

‘.'“ Tree Control Test ‘.I_
SetiD:

Tree Hame: DEFPT_SECURITY

Set Control Value:

Effective Date: 01/01/1 996

Chapter 9

| | Mext | Last | |

(= p0001 - Corporate Headguarters

FIM - Financial Serices

HLC - Health Care Senices

(= MFG - Manufacturing
M-AMERICAS - Morth and South America
M-ASIAFPALC - Asia Pacific
M-EUR-ALL - Europe-Africa-Middle East

LOC - Local Counties

UMY - Higher Education

(£ UTIL - Liilities

(= 1000

Q Return to Search

HTML tree example

The positional links at the top of the page (First,Previous,Next, Last,L eft,Right) enable the user to navigate
around the tree. These links are automatically generated as part of the execution of GenerateTree.

When anode is collapsed, a plus sign appears on the node icon, and the node's children are hidden. When a
node is expanded, all child nodes appear, and the icon displays a minus sign. |cons without a plus or minus
sign are termina nodes, which have no children and cannot be expanded or collapsed.

Building HTML Tree Pages

188

The page you useto display the HTML tree must contain:

« ANnHTML areaused to display the HTML tree.

« A character field that has a page field name, is at |east 46 characterslong, and isinvisible.

Note. The edit box should be invisible, but not display-only. Aninvisible edit box cannot be seen by the user,
but it still has a buffer that can be written to. Page fields that have been specified asinvisible do not need to
be marked as Modifiable from HTML unless they are located on a page that is not active when GenerateTree
is called. For example, if your application calls GenerateTree from one page and then saves the result in a
field that is displayed by an HTML area on another page in the component, the associated event field must be
marked both Invisible and Modifiable from HTML.

Events are sent to the application from the HTML tree using the invisible field. The events are processed by
FieldChange PeopleCode that is attached to the invisible field.

Thisis an example page for an HTML tree:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Page Dezigner 10rder ;

Example of PeopleSoft Application Designer HTML tree page
The large areathat is selected in the example isthe HTML areathat displaysthe HTML tree. The HTML area
is attached to the DERIVED_HTML.HTMLAREA field for this example.

The white edit box is the invisible field used to pass events from the HTML tree to the application. It is
attached to the DERIVED_HTML.TREECTLEVENT field for this example.

The edit box must have a page field name. In this example, the page field nameis TREECTLEVENT.

Using HTML Tree Rowset Records

The GenerateTree function takes a prebuilt and populated rowset as a parameter. This rowset must have a
certain structure and contain certain fields. In the following examples, the rowset is standalone, that is, the
rowset is created using the CreateRowset function. The fields necessary for the rowset are contained in the
following record definitions:

» The header record TREECTL_HRD, containing the subrecord TREECTL_HDR_SBR.
» Thenoderecord TREECTL_NDE, containing the subrecord TREECTL _NDE_SBR.

The header record isthe level zero record of the HTML tree rowset. It contains options for the HTML tree,
such as the name of the collapsed node image, the height of the images, the number of pixels to indent each
node, and so on.

The node record is the level one record of the HTML tree rowset. |t contains the tree data and information
about the data, such as the dynamic range leaf, the level, and so on.

The level one scroll area contains arow for each node or leaf in the tree data.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 189

Using HTML Trees and the GenerateTree Function

190

Chapter 9

To store additional application data with each node in the tree, you can incorporate the
TREECTL_NDE_SBRinto arecord of your definition and use your record to define the HTML tree rowset.

For example, you might want to store application key values with each node record, so that when a user
selects anode, you have the data you need to perform the action that you want.

This table describes the relevant fieldsin TREECTL_HDR_SBR:

Field

Description

PAGE_NAME

Name of the page that containsthe HTML area and the
invisible field used to processthe HTML tree events.

PAGE_FIELD_NAME

Page field name of the invisible field used to process the
HTML tree events.

PAGE_SIZE

Number of nodes or |eaves to send to the browser at a
time. Set to 0 to send all visible nodes or leaves to the
browser. The default valueis 0.

DISPLAY_LEVELS

Number of levelsto display on the browser at atime. The
default valueis 8.

COLLAPSED_IMAGE

Collapsed node image name. The default valueis
PT_TREE_COLLAPSED.

EXPANDED_IMAGE

Expanded node image name. The default valueis
PT_TREE_EXPANDED.

END_NODE_IMAGE

End node image name. The default valueis
PT_TREE_END_NODE.

LEAF_IMAGE

Leaf image name. The default valueisPT_TREE_LEAF.

IMAGE_WIDTH

Image width in pixels. All four images need to be the
same width. The default value is 15 pixels.

IMAGE_HEIGHT

Image height in pixels. All four images need to be the
same height. The default value is 12 pixels.

INDENT_PIXELS

Number of pixelsto indent each level. The default value is
20 pixels.

TREECTL_VERSION

Version of the HTML tree. The default valueis 812. Used
with the DESCR_IMAGE field in the
TREECTL_HDR_SBR record.

This table describes the relevant fieldsin TREECTL_NDE_SBR:

Field

Description

LEAF_FLAG

If thisisaleaf, setto Y. The default valueis N.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function
Field Description
TREE_NODE Node name.
DESCR (Optional) Node description.
RANGE_FROM The range from value of the lesf.
RANGE_TO The range to value of the leaf.

DYNAMIC_FLAG

If this leaf has adynamic range, setto Y. The default
vaueisN.

ACTIVE_FLAG

Set to N for the node or leaf not to be alink. The default
vaueisY.

DISPLAY_OPTION

Set to N to display the name only. Set to D to display the
description only. Set to B to display both the name and the
description. Used for nodes only. The default value is B.

STYLECLASSNAME

Use to control the style of the link associated with the
node or leaf. The default value is PSHY PERLINK.

PARENT_FLAG

If thisnodeis aparent and its direct children are loaded
now, set to Y. If thisnode is a parent and its direct
children are loaded on demand, set to X. If thisnodeis not
aparent, set to N. The default valueis N.

TREE_LEVEL_NUM

Set to the level of the node. The default valueis 1.

LEVEL_OFFSET

If achild node isto appear more than one level to the right
of its parent, specify the number of additional levels. The
default value is 0.

DESCR_IMAGE

Use to display an image after the node or leaf image and
before the name or description. The two images are
separated by a space. The new image is not scaled. This
field takes a string value, the name of an image definition
created in PeopleSoft Application Designer.

Thisfield isonly recognized if the TREECTL_VERSION
field is greater than or equal to 812.

EXPANDED_FLAG

When the EXPANDED_FLAG of anodeissettoY, the
GenerateTree function expects the immediate children of
the node to be loaded into the & TREECTL rowset (such
asin PostBuild), and GenerateTree generates HTML such
that the node is expanded and its immediate children

appear.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

191

Using HTML Trees and the GenerateTree Function Chapter 9

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CreateRowset

Using HTML Tree Actions (Events)

The GenerateTree function works with an HTML area control and an invisible field. When a user selects a
node, expands a node, collapses anode, or uses one of the navigation links, that event (user action) is passed
totheinvisible field, and the FieldChange PeopleCaode for the invisible field is executed.

The FieldChange PeopleCode example program (below) checks for expanding (or collapsing) a node and
selecting a node by checking the first character in the invisible field. The following example checks for
whether anode is selected:

I f Left(TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following user actions:

Event Description

Tn Expand or collapse the node, whichever is the opposite
of the previous state. N is the row number of the nodein
the TREECTL_NODE rowset.

Xn Expand the node, but load the children first. The
children are loaded in PeopleCode, and then the event is
passed to GenerateTree so that the HTML can be
generated with the node expanded. N is the row number
of the node in the TREECTL_NODE rowset.

F Display the first page.

P Display the previous page.

N Display the next page.

L Display the last page.

Q Move the display left one level.

R Move the display to the right one level.

Sn Select the node or leaf. N is the row number of the node

or leaf inthe TREECTL_NODE rowset.

192 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Note. Drag-and-drop functionality is not supported in an HTML tree.

Initializing HTML Trees

For this example, the PeopleCode for initializing the HTML tree was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree using the
Tree classes and load only the root node into the HTML tree rowset.

The first time a user expands a node, the direct children of the node are loaded into the HTML tree rowset by
the FieldChange PeopleCode Example program, shown in the following section. This chunking functionality
enables the HTML tree to support trees of any size with good performance.

Y ou cannot simply copy either the PostBuild or FieldChange PeopleCode example programs into your
application. Y ou must modify them to make them work with your data. Y ou must make these changes to the
PostBuild PeopleCodeto initialize HTML trees:

1. Setthe PAGE_NAME and PAGE_FIELD_NAME fields.

The PAGE_NAME field contains the name of the page that contains the HTML areaand the invisible
field that processes HTML tree events. The PAGE_FIELD_NAME field is the page field name of the
invisible field that is used to processthe HTML tree events.

Note. The PAGE_FIELD NAME field isthe page field name of theinvisible field, not the invisible field
name.

2. Set tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME, & TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, these varaibles are set as follows:

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NANME,
&TREE_DT = PSTREEDEFN VW EFFDT;
&BRANCH _NAME = "";

3. Setthe PAGE_SIZE field.

If you do not want the page to expand vertically to display the tree, set the PAGE_SIZE to a number of
rowsthat will fit insidethe HTML area. If some vertical expansion is okay, but you do not want the page
to get too large, set the PAGE_SIZE to whatever value you like. Set the PAGE_SIZE to 0 if you do not
care how big the page gets.

4. Setthe DISPLAY_LEVELSfield to the number of levelsthat will fit inside the HTML area.

If thisfield is set too large, wrapping may occur. Positional links at the top of the HTML area enable the
user to navigate as the tree expands.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 193

Using HTML Trees and the GenerateTree Function Chapter 9

5. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY _OPTION field is to display both the node name and the description. Y ou
can display just the node name or just the description. The values for thisfield are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

6. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change thisfield value to the style you want.

7. Changethelast line to assign the output of GenerateTree to the field attached to the HTML area that will
display thetree.

In the example that follows, the HTML area control isthe DERIVED _HTML.HTMLAREA. Y ou must
specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

This example shows how to initialize the HTML tree using the tree classes and load only the root node into
the HTML tree rowset:

194 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Conponent Rowset &TREECTL;

&NODE_ROWSET = Cr eat eRowset (Recor d. TREECTL_NODE) ;
&TREECTL = Creat eRowset (Record. TREECTL_HDR, &NODE ROWSET) ;

&TREECTL. I nsert Rowm 1) ;
&REC = &TREECTL. Get Row(2) . Get Record(1);

/* Set the HDR options:

1) PAGE_NAME - Name of the page that contains the HTM. Area

and the invisible field that will be used to process the HIM.
tree events.

2) PAGE _FIELD NAME - Page field nane of the invisible field that
will be used to process the HTM. tree events.

3) PAGE_SIZE - Nunber of nodes or |leaves to send to the browser at

a tine.

Set to 0 to send all of the visible nodes or | eaves to the browser.

Default value: 0

4) DI SPLAY _LEVELS - Nunber of levels to display on the browser at

atime. Default value: 8

5) COLLAPSED | MAGE - Col | apsed node i mage nane.

Default val ue: PT_TREE COLLAPSED

6) EXPANDED | MAGE - Expanded node i mage nane.

Def aul t val ue: PT_TREE_EXPANDED

7) END _NODE | MAGE - End node inage nane.

Def aul t val ue: PT_TREE_END_ NODE

8) LEAF_| MAGE - Leaf inmge name. Default value: PT_TREE _LEAF
9) IMAGE_ WDTH - | nage wi dth.

Al four images need to be the sane size. Default value: 15
10) | MAGE HEI GHT - I mage height. Default value: 12

11) | NDENT_PI XELS - Nunber of pixels to indent each |evel.

Def aul t val ue: 20

*/

&REC. Get Fi el d(Fi el d. PAGE_NAME) . Val ue = "TREECTL_TEST";

&REC. CGet Fi el d(Fi el d. PAGE_FI ELD_NAME) . Val ue = " TREECTLEVENT";
&REC. CGet Fi el d(Fi el d. PAGE_SI ZE) . Val ue = 15;

&REC. CGet Fi el d(Fi el d. DI SPLAY_LEVELS) . Val ue = 8;

&REC. Get Fi el d(Fi el d. COLLAPSED | MAGE) . Val ue = "PT_TREE_COLLAPSED';
&REC. Get Fi el d(Fi el d. EXPANDED _| MAGE) . Val ue = "PT_TREE_EXPANDED";
&REC. Get Fi el d(Fi el d. END_NODE_| MAGE) . Val ue = "PT_TREE_END_NODE";
&REC. Get Fi el d(Fi el d. LEAF_I MAGE) . Val ue = "PT_TREE_LEAF";

&REC. CGet Fi el d(Fi el d. | MAGE_W DTH) . Val ue = 15;

&REC. CGet Fi el d(Fi el d. | MAGE_HEI GHT) . Val ue = 12;

&REC. Cet Fi el d(Fi el d. | NDENT_PI XELS) . Val ue = 20;

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH NAME = "";

&MYSESS|I ON = %Bessi on;

&SRC TREE = &MWYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN(&SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Just insert the root node into the &TREECTL Rowset.

If the root node has children, set the &ARENT FLAGto ' X,
so that its children will be | oaded on demand. */
&ROOT_NODE = &SRC TREE. Fi ndRoot () ;

| f &ROOT_NODE. HasChi | dren Then

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

195

Using HTML Trees and the GenerateTree Function Chapter 9

&PARENT FLAG = "X";
El se

&PARENT_FLAG
End- I f;

"N

&NODE_ROWBET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&NODE_ROWSET. | nsert Row(1) ;
&REC = &NODE ROWBET. Get Row 2) . Get Record(1);

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N

2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this |leaf has a dynanic range, set to "Y".

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link.
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D' to display the description only.

Set to "B" to display both the nanme and the description.

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be |oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0

*/

&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue "N';

&REC. Get Fi el d(Fi el d. TREE_NCDE) . Val ue = &ROCOT_NODE. NAME;

&REC. CGet Fi el d(Fi el d. DESCR) . Val ue = &ROOT_NODE. DESCRI PTI ON,;

&REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue = "";

&REC. Get Fi el d(Fi el d. RANGE_TO). Value = "";

&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N';

&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";

&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";

&REC. Get Fi el d(Fi el d. STYLECLASSNAME) . Val ue = " PSHYPERLI NK";
&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT FLAG
&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue = 1;

&REC. Get Fi el d(Fi el d. LEVEL_OFFSET) . Val ue = 0;

&SRC TREE. d ose();
DERI VED_HTM.. HTMLAREA = Gener at eTr ee(&TREECTL) ;

Processing Events Passed from a Tree to an Application

To modify the FieldChange PeopleCode to load the direct children of the node into the HTML trees, use the
following FieldChange PeopleCode to process the events passed from an HTML treeto an application. The
code that processes the load children event loads the direct children of a node the first time the node is
expanded by the user. Changes that you must make to the FieldChange PeopleCode are as follows.

1. Globally change TREECTLEVENT to the name of theinvisible field used to process the events.

196 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using HTML Trees and the GenerateTree Function

. Set the tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME,& TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, they are set like this:

&SET | D = PSTREEDEFN VW SETI D
&USERKEYVALUE = "";

&TREE_NAMVE = PSTREEDEFN VW TREE_NAME;
&TREE_DT = PSTREEDEFN VW EFFDT;
&BRANCH NAME = "";

(Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY _OPTION field is to display both the node name and the description. Y ou
can display just the node name or just the description. The values for thisfield are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

(Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK isnot the style you want to use,
change thisfield value to the style you want.

. Change the assignment of the output of every GenerateTree call to the field attached to the HTML area

that will display the tree.

In this example, the HTML area control isthe DERIVED _HTML.HTMLAREA. Y ou must specify the
record and field name associated with the HTML area control on your page.

. Change the code that processes the select event to perform the action you want when the user selects a

node or leaf.

This section is marked as Process Select Event in the following code sample.

FieldChange PeopleCode Example
The following is the PostBuild PeopleCode example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 197

Using HTML Trees and the GenerateTree Function Chapter 9

Conponent Rowset &TREECTL;

/* process load children event */

I f Left(TREECTLEVENT, 1) = "X' Then
&ROW = Val ue(Ri ght (TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NODE_ROWSET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&PARENT_REC = &NODE_ROWSET. Get Rowm &ROW . Get Recor d(1) ;
&PARENT_LEVEL = &PARENT_REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM . Val ue;
&ROW = &ROW + 1;

&SET_| D = PSTREEDEFN_ VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH _NAME = "";

&MYSESS| ON = %Bessi on;

&SRC TREE = &MWYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN(&SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Find the parent node and expand the tree one |evel bel ow
the parent. |Insert just the direct children of the parent node
into the &TREECTL Rowset. |If any of the child nodes have
children, set their PARENT FLAGto 'X , so that their children
are | oaded on demand. */

&PARENT_NODE = &SRC TREE. Fi ndNode(&PARENT_REC.
Get Fi el d(Fi el d. TREE_NCDE) . Val ue, "");
I f &PARENT_NODE. HasChi | dren Then
&PARENT _NODE. Expand(2) ;

| f &PARENT_NODE. HasChi | dLeaves Then
/* Load the child | eaves into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD LEAF = &PARENT_NOCDE. Fi r st Chi | dLeaf;
Whi |l e &I RST Or
&CHI LD _LEAF. HasNext Si b
I f &FI RST Then
&FI RST = Fal se;
El se
&CHI LD LEAF = &CHI LD LEAF. Next Si b
End- I f;
I f &CHI LD LEAF. Dynanic = True Then
&RANGE_FROM = "";
&RANGE TO = "";
&DYNAM C RANGE = "Y"
El se
&RANGE_FROM = &CHI LD _LEAF. RangeFr om
&RANGE_TO = &CHI LD_LEAF. RangeTo;
&DYNAM C RANGE = "N
End- I f;

&NODE_ROWSET. | nser t Row(&ROW - 1) ;
&REC = &NODE_ROWBET. Get Row(&ROW . Get Recor d(1) ;

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N
2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this leaf has a dynanmic range, set to "Y".

198 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D'" to display the description only.

Set to "B" to display both the nane and the description

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be | oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0
*/
&REC. CGet Fi el d(Fi el d. LEAF_FLAG) . Val ue "y
&REC. Cet Fi el d(Fi el d. TREE_NODE) . Val ue s
&REC. CGet Fi el d(Fi el d. DESCR) . Val ue = "";
&REC. Get Fi el d(Fi el d. RANGE_FROM) . Val ue = &RANGE_FROM
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue = &RANGE_TGQO
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue =
&DYNAM C_RANGE
&REC. Cet Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";
&REC. Get Fi el d(Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK";
/* Leaves never have children. */
&REC. CGet Fi el d(Fi el d. PARENT_FLAG) . Val ue = "N
&REC. Cet Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT_LEVEL + 1;
&REC. Get Fi el d(Fi el d. LEVEL_OFFSET) . Val ue = 0;

&ROW = &ROW + 1;
End- Wi | e;
End- I f;

| f &PARENT_NODE. HasChi | dNodes Then
/* Load the child nodes into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD _NODE = &PARENT_NOCDE. Fi r st Chi | dNode;
Whi |l e &I RST Or
&CHI LD _NODE. HasNext Si b
I f &FI RST Then
&Fl RST = Fal se;
El se
&CHI LD_NODE = &CHI LD _NODE. Next Si b
End- I f;
| f &CHI LD_NODE. HasChi | dren Then
&PARENT FLAG = "X";
El se
&PARENT FLAG = "N';
End- I f;

/[* If the tree uses strict levels, set the
&LEVEL_OFFSET to the number of levels that the child node is to
the right of its parent minus 1. */

| f &SRC TREE. Level Use = "S" Then

&LEVEL_OFFSET = &CHI LD_NODE. Level Nunber -
&PARENT _NODE. Level Nunber - 1
El se
&L EVEL_OFFSET = 0;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 199

Using HTML Trees and the GenerateTree Function

End- I f;

&NODE_ROWBET. | nsert Row(&ROW - 1) ;
&REC = &NCDE_ROWSET. Get Row(&ROW . Get Recor d(1) ;
&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue = "N'

&REC. Cet Fi el d(Fi el d. TREE_NODE) . Val ue = &CHI LD_NCDE. Nane;

&REC. Get Fi el d(Fi el d. DESCR) . Val ue =
&CHI LD_NODE. Descri pti on

&REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue = "";
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue —'”H
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N';
&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y‘
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Value = "
&REC. Cet Fi el d(Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK" ;
&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT_ FLAG
&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT _LEVEL + 1;
&REC. GEtFieId(FieId.LEVEL_CFFSET).VaIue = &LEVEL_OFFSET

&ROW = &ROW + 1;
End- Wi | e;
End- | f;

/* change the parent's PARENT _FLAG from'X to 'Y */
&PARENT_REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = "Y"

HTMLAREA = Gener at eTr ee(&TREECTL, TREECTLEVENT);
End- I f;

&SRC TREE. d ose();
El se

/* Process select event. */

/* As an exanple, just display the selected node nanme or
| eaf range as a MessageBox. */

I f Left(TREECTLEVENT, 1) = "S" Then
&ROW = Val ue(Ri ght (TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NCDE_ROWBET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&REC = &NCDE_ROWSET. Get Row &ROW . GEtRecord(l)
| f &REC. Get Fi el d(Fi el d. LEAF_FLAG). Value = "N' Then
MessageBox(0, "", 0, 0, "The selected node is %A.
&REC. Get Fi el d(Fi el d. TREE_NCDE) . Val ue) ;
El se
| f &REC. Cet Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N' Then
I f &REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue =
&REC. CGet Fi el d(Fi el d. RANGE_TO) . Val ue Then
&TEMP = "[" | &REC. CGet Fi el d(Fi el d. RANGE_FRQOM) .

Value | "1";
El se
&TEMP = "[" | &REC. GetFi el d(Fi el d. RANGE_FROW)
Value | " - " | &REC CetField(Field. RANGE TO.Value | "1";
End- | f;
El se
&TEMP = "[1";
End- | f;
MessageBox(0, "", 0, 0, "The selected leaf is %d.", &TEMP);
End- I f;
El se

/* process all other events */
HTMLAREA = Gener at eTr ee(&TREECTL, TREECTLEVENT);
End- | f;

Chapter 9

200 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using HTML Trees and the GenerateTree Function

End- I f;

/* done processing the event, so clear it */
TREECTLEVENT = "";

See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using HTML Tree Actions (Events), page

192

Adding Mouse-Over Ability to HTML Trees

To add mouse-over ability to HTML tree elements, you must add fieldsto the TREECTL_HDR_SBR record
and PeopleCode to the program to set the values and the images.

1

2.

3.

4.

Add the following fields to thr TREECTL_HDR_SBR (tree control header subrecord) record.
« COLLAPSED_MSGNUM

e COLLAPSED_MSGSET

« END_NODE_MSGNUM

- END_NODE_MSGSET

« EXPANDED_MSGNUM

« EXPANDED_MSGSET

« LEAF _NODE_MSGNUM

. LEAF NODE_MSGSET

Add the following PeopleCode to set the message set and number for the mouse-over text:

&REC. Cet Fi el d(Fi el d. EXPANDED_MSGSET) . Val ue = 2;

&REC. CGet Fi el d(Fi el d. EXPANDED_MSGNUM) . Val ue 903;
&REC. CGet Fi el d(Fi el d. COLLAPSED_MSGSET) . Val ue = 2;
&REC. Cet Fi el d(Fi el d. COLLAPSED_NMSGNUM . Val ue = 904;
&REC. Cet Fi el d(Fi el d. END_NODE_MSGSET) . Val ue = 2;
&REC. Cet Fi el d(Fi el d. END_NODE_MSGNUM) . Val ue = 905;

&REC. Get Fi el d(Fi el d. LEAF_MBGSET) . Val ue
&REC. Get Fi el d(Fi el d. LEAF_MBGNUM) . Val ue

2;
906;

Add the following fields fields to the TREECTL_NDE_SBR record:

« DESCR_MSGNUM

+ DESCR_MSGSET

Add PeopleCode to set the DESCR_MSGNUM and DESCR_MSGSET fields.

These two fields should be set to the correct message number and message set values that contain the text
to be used as the mouse-over text.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 201

Using HTML Trees and the GenerateTree Function Chapter 9

Adding Visual Selection Node Indicators

Sometimes, users need a visual indicator, such as adifferent color or style, to indicate which node is selected.
This example shows a selected node style:

[= 00001 - Corporate Headguarters
FIM - Financial Services
HLC - Health Care Services
MFG - Manpiacturing
LOC - Lo& JCounties
UMY - Higher Education
B UTIL - Utilities
(1000

Example of selected node style

To add selected node highlighting:

1. Addthefield NODESELECTEDSTY LE to the TREECTL_HDR_SBR record.

2. Add PeopleCode to set the NODESELECTEDSTY LE field to provide the highlighting effect.
The NODESELECTEDSTY LE field takes the name of astyle class.

The following example uses the PSTREENODESEL ECTED style:
&REC. Get Fi el d(Fi el d. NODESELECTEDSTYLE) . Val ue = " PSTREENODESELECTED";

Y ou can set the style of the selected node when processing the select event.

Note. Y ou also must reset the style of the previous selected node when processing the select event. To
find the previous selected node, you can search the node rowset looking for anode with a
STYLECLASSNAME equal to the style you set for selected nodes. Alternatively, you can keep a global
variable with the index of the node in the rowset. If you keep an index variable, however, you may have
to update the index when processing the load children event.

Specifying Override Images
Y ou specify different images to represent the nodesin atree by using the TREECTL_NODE record.
To specify override images:
1. Add thefollowing fields to the tree control node record:
+ OVERRIDE_IMAGE
« OVERRIDE_MSGSET
« OVERRIDE_MSGNUM

2. Add PeopleCode to use the override values when writing tree control node records.

202 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Working With File Attachments

This chapter provides an overview of the file attachment functions and discusses:

« Developing applications that use file attachment functions.
» Application development considerations.
« Application deployment and system configuration considerations.

» Debugging file attachment problems.

Understanding the File Attachment Functions

This section provides an overview of:

» PeopleCode built-in file attachment functions.
» File attachment architecture.

« Fileattachment storage locations.

» Storagelocation URLSs.

PeopleCode Built-in File Attachment Functions

All file attachments are performed using PeopleCode built-in functions, such as AddAttachment,
ViewAttachment, GetAttachment, and so on. These functions operate on and transfer filesto and from
supported storage locations: database records, FTP sites, and HTTP repositories.

PeopleCode provides eight built-in file attachment functions that are organized into three categories:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 203

Working With File Attachments Chapter 10

» End user upload/downl oad:

AddAttachment

Use the AddAttachment function to upload afile from an end user machine to a specified storage
location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," AddAttachment.

DetachAttachment

Use the DetachAttachment function to download afile from its source storage location and save it
locally on the end user machine. Thefileis sent to the browser with appropriate HTTP headers to
cause the browser to display a save dialog box to the user.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," DetachAttachment.

ViewAttachment

Use the ViewAttachment function to download afile from its source storage location and open it
locally on the end user machine.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," ViewAttachment.

» Application server upload/download:

204

PutAttachment

Use the PutAttachment function to upload afile from the file system of the application server to the
specified storage location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," PutAttachment.

GetAttachment

Use the GetAttachment function to download afile from its source storage location to the file system
of the application server.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," GetAttachment.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Working With File Attachments

» Storage location maintenance:

CleanAttachments

Use the CleanAttachments function to remove orphan files (files with no corresponding file reference)
from specified records used as storage locations in the current database.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CleanAttachments.

CopyAttachments

Use the CopyAttachments function to copy all files with file references from one storage location to
another. Thefilesto be copied can be limited to those referenced in specific file reference records.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CopyAttachments.

DeleteAttachment
Use the DeleteAttachment function to delete a file from the specified storage location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," DeleteAttachment.

The following diagram illustrates the operation of these PeopleCode file attachment functions:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 205

Working With File Attachments Chapter 10

206

End user
i Z
- <
IMI t
AddAttachment ViewAttachment
l DetachAttachment
- < GetAttachment .
o PeopleSoft database
PutAttachment
»
Application o~ e
sernver _‘.f :|.-'
FTP site HTTP repasitary
f Storage Locations
CopyAtLacthrﬂssj |
DeleteAttachment
| ¥

PeopleCode file attachment functions

Because these functions abstract the storage of the attachments, you can use any defined storage location. The
location to be used is determined by the URL passed as the first parameter to the invoked attachment
function. The actual value of the URL is maintained on the URL Maintenance page.

See Also

Chapter 10, "Working With File Attachments," Understanding File Attachment Storage L ocations, page 209

Chapter 10, "Working With File Attachments," Understanding Storage L ocation URL s, page 210

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Working With File Attachments

Understanding the File Attachment Architecture

File attachments are supported by using PeopleCode built-in functions that implement the transfer of afileto
or from a storage location. Using the PeopleCode functions, files can be transferred back and forth from the
end user machine to the storage location (by way of the web server and application server) or transferred back
and forth from the application server file system to the storage location.

The following steps depict the process of transferring a file with the AddAttachment function:

1

The browser-to-web server transfer is performed using a standard HTML form construct.

Note. Thistransfer can be performed securely in an encrypted fashion if the web server uses Secure
Sockets Layer (SSL) to communicate to the browser.

Note. When the user selects afile for uploading, file size is not checked until after thefile is transferred to
the web server. Once the file gets to the web server the file size is compared to the value of the
AddAttachment function's MaxSize parameter. The transfer is terminated if the file size exceeds this
parameter or if thefileis 0 bytes.

After thefileisreceived at the web server, the file is transferred from the web server to the application
server in one-megabyte chunks.

Note. The one-megabyte transfer size cannot be customized.

Note. The web server-to-application server transfer is performed by using Oracle Jolt, which is securely
encrypted. Because this transfer is done using the standard Oracle Jolt mechanism, no additional settings
to the firewall are required (you do not need to open additiona ports).

The file gets re-chunked (as specified by the value of the Maximum Attachment Chunk Size field on the
PeopleTools Options page) and then is temporarily stored in a PeopleTools table in the database.

Once the entirefile is transferred, the application server reassembles the file as atemporary file on the
application server's file system and del etes the temporary copy from the PeopleTools table in the
database.

Then, the application server transfers the file to its ultimate storage location.

Note. If the storage location is a database record, then the file gets re-chunked (as specified by the value
of the Maximum Attachment Chunk Size field) when the file is transferred from the application server to
the database.

See Chapter 10, "Working With File Attachments," File Attachment Chunk Size, page 223.

The following diagram depicts this process of transferring afile with the AddAttachment function:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 207

Working With File Attachments Chapter 10

208

l/gl O End user system
“
<

1. Transfer from browser

HTML form
to web server.

HTTR/HTTFS

-~
,I" Web server

2. Transfer from web server to
application server in 1-MB chunks.

Oracle Jolt
3. Transfer re-chunked data to the
Y database for temporary storage,
o - > Database (temp storage
Application il as Maximum Attachment
server * Chunk Size chunks)
4. Reassemble the file on the
application server's file system.
5. Transfer the file to the storage location.
- -~
" < HTTPR/ > - PeopleSoft database (storage
i HTTPS : as Maximum Attachment
ETPIETPS/ . Chunk Size chunks)
SFTP

HTTFP repository

~
_.l"' FTP site

AddAttachment file transfer process

The file attachment architecture is designed for use in the frame template or the iframe template only. It is not
supported in a pagelet or an HTML template. When content is rendered in a pagelet or HTML template, the
user interaction is managed through the PeopleSoft portal servlet. For the file attachment architecture to work,
the browser must communicate directly with the PeopleSoft content servlet, which requires the use of the
frame or iframe template.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

See Also

PeopleTools 8.51 PeopleBook: PeopleTools Portal Technologies, "Working with Portal Templates,"
Understanding Portal Templates

PeopleTools 8.51 PeopleBook: PeopleTools Portal Technologies, "Working with Portal Templates,"
Understanding Template Types

Understanding File Attachment Storage Locations

PeopleTools supports three types of storage locations: database records, FTP sites, and HTTP repositories.
Except for the CleanAttachments function, all PeopleCode file attachment functions support all three storage
locations. The CleanAttachments function supports only database records as storage locations.

This section provides an overview of the following:
« Database storage considerations
« FTPsite considerations

» HTTPrepository considerations

Database Storage Considerations

To store file attachments in the database, you must create atarget record to store the attachments themselves.
Thistarget record must include the FILE_ATTDET_SBR subrecord and no other fields.

This chapter contains additional information on how to create the target record.

See Chapter 10, "Working With File Attachments," Application Development Process Overview, page 211.
When the storage location is a database record, the URL can be defined in one of two ways:

« A string in the form of:

record: // MYRECORD

In this case, MYRECORD is the target record.
e A URL identifier in the form of:

URL. URL_I D

FTP Site Considerations
When the storage location is an FTP site, the URL can be defined in one of two ways:

A URL string in the form of:
ftp://FTP_user: FTP_pwd@TP_site/ path

Important! Only the FTP protocol supports a URL string in thisform. FTPS and SFTP require that a
URL identifier be used.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 209

Working With File Attachments Chapter 10

« A URL identifier in the form of:
URL. URL_ID

When specifying an FTP URL asastring or asa URL identifier, specify the FTP server'sname or its |P
address. Specify a path on the FTP server relative to the directory specified as the FTP server's home
directory.

The default FTP port is 21. If you want to use a different port you must specify it in the URL, as part of the
FTP server address.

For example:

ftp://user0l: password@t pserver. peopl esoft. com 6000/

Note. If the specified subdirectories do not exist the PeopleCode function tries to create them.

The following limitations apply to FTP URLSs:

e TheFTP user nameto islimited to 30 characters.

» TheFTP password toislimited to 16 characters.

HTTP Repository Considerations

An HTTP repository can reside on a PeopleSoft web server, or on a different web server environment. If the
HTTP repository resides on a PeopleSoft web server, then the psfiletransfer serviet has been provided to
manage the file transfers to and from the storage location. If the HTTP repository resides on a non-PeopleSoft
web server, then you need to ensure that the web server can handle file transfer security and requests.

Additional configuration isrequired to set up a PeopleSoft web server asan HTTP repository.

When the storage location isan HTTP repository, the URL must be defined as a URL identifier in the form
of:

URL. URL_I D

Understanding Storage Location URLS

210

Storage location URLSs define both the protocol to be used and the address for a storage location. These
URLSs can be defined and maintained as URL identifiers, and in limited cases, they can also be specified asa
string at run time. Oracle recommends that you always use URL identifiers since that approach gives you the
flexibility of later changing the storage location of your files without having to modify your PeopleCode or
the contents of any file reference tables used. In addition, by using a URL identifier and the GetUrl function
to get the underlying FTP URL, you can mask the FTP user ID and password when necessary.

URL identifiers are created and maintained using the URL Maintenance page (PeopleTools, Administration,
Utilities, URLS). The length of the full URL islimited to 254 characters. Certain protocols—specifically,
FTPS, SFTP, HTTP, and HTTPS—require information in addition to the URL itself. This additional
information is defined as URL properties on the associated URL Properties page.

Note. For database records and the FTP protocol only, the storage location can be specified as a string at run
time because these file transfer methods do not require additional URL properties.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

The following are examples of some valid storage location URLs:

record: // MYAPP_ATT_CNTNT

ftp://user0l: password@t pserver. peopl esoft. conl nyfil es
ftps://ftp_user:usr_pwd@t ps. oracl e.com 6000/ i nages
sftp://usrl10: pwd@t p. myconpany. conf attachment s

htt p: // ww. peopl esoft. com 8080/ psfil etransfer/ps/docs
htt ps://ww. peopl esoft. com 8090/ psfil etransfer/enpl/docs

The PeopleTools 8.51 PeopleBook: System and Server Administration contains detailed information on
creating and maintaining URL identifiers.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities," URL
Maintenance.

Developing Applications that Use File Attachment Functions

This section discusses:

« Application development process overview.
» Délivered record definitions.
« Managing entriesin file reference tables.

« Using the PeopleTools Test Utilities page.

Application Development Process Overview
Follow these steps to develop an application that uses file attachments:
1. Create an application-specific, default storage location.

Oracle recommends that you use a database record as the default storage location so that it is available to
you during application development, and to customers as a default when the application isinstaled. You
must include the FILE_ATTDET_SBR subrecord in this target record; the target record must have no
other fields.

Create a storage location that is unique to your application (that is, do not share storage locations among
severa applications). For example, create a record definition named MYAPP_ATT_CNTNT and build
the associated database table. If you need to store other information, storeit as part of the file reference, as
described in the step 3, or create another record and use it in the component.

2. Create aURL identifier that corresponds to your default storage location.

See Chapter 10, "Working With File Attachments," Understanding Storage L ocation URLs, page 210.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 211

Working With File Attachments

3. Create a custom record to store file reference information and any additional information about the file
attachments. Y ou must include the FILE_ ATTACH_SBR subrecord in this new record.

For example, create anew record called MYAPP_ATT_REF. Add fields for any other information related
to the transaction you want to store. Y our application must populate these fields with the system file
name, user file name, and any information about the file that will be needed for later use..

Chapter 10

Note. Create afile reference record that is specific to your application and to the storage location. Doing
so eliminates the need to store the URL string or URL identifier with each file reference.

4. Clonethe FILE_ ATTACH_WRK record to create a custom derived/work record with a unique name.
Save the PeopleCode with the new record.

For example, create arecord named MYAPP_ATT _WRK by cloning FILE ATTACH_WRK. You can
use this copy of the sample PeopleCode as the basis for your own application.

Important! The FILE_ATTACH_WRK record is delivered as asample only. It is not intended for use as
part of an application running in production unlessit has been customized. It isimportant to create your
own PeopleCode programs. Oracle can change the delivered sample PeopleCode in future releases. Any
application that directly usesthe FILE_ ATTACH_WRK record might fail. Customizing your application
makes it easier to manage during upgrades and your PeopleCode can be reused in other components that
use file attachment functionality.

5. Usetherecords you created in the previous steps to create the file attachment component and page.

The custom derived/work record has fields with FieldChange PeopleCode that you can use for Add,
Delete, Detach, and View buttons.

Add PeopleCode—probably at the component record field level—to invoke the underlying functionsin
the custom derived/work record when the user clicks on one of the buttons.

Delivered Record Definitions

212

The following table summarizes the delivered record definitions for use in afile attachment application:

Record Example Description

FILE ATTDET_SB | MYAPP_ATT _CNTNT | Insert this subrecord in any target record that will store attached

R files. Do not add other fields to this record.
FILE_ATTACH_SB | MYAPP_ATT_REF Insert this subrecord in any custom record that will store
R references to attached files. The fields in this subrecord store the

system file name and the user file name.

FILE_ ATTACH_WR | MYAPP_ATT_WRK Clone this derived/work record to create your own custom
K derived/work record. In your custom derived/work record, you can
modify the delivered sample code to meet your file attachment
reguirements.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

FILE_ATTDET_SBR Subrecord

Working With File Attachments

To use a database record as a storage location, you must create a custom record to receive the attachments.
You must includethe FILE_ ATTDET_SBR subrecord in your custom record, and it can contain no additional

fields.

The FILE_ATTDET_SBR subrecord has the following fields:

Field

Description

ATTACHSY SFILENAME

The unique system file name.

The value of the ATTACHSY SFILENAME field in the corresponding row
of the file reference table must be identical to this value.

FILE_SEQ The file sequence number (used in chunking).
VERSION Version number.

FILE_SIZE The physical size of thefile.
LASTUPDDTTM Last update date and time.

LASTUPDOPRID

The user ID of the last user to update the attachment.

FILE_DATA

The data of thefile.

PeopleTools maintains the values in this table. Therefore, do not reuse the fields in this table to store
incomplete or nonstandard versions of the file name or other data.

FILE_ATTACH_SBR Subrecord

You must insert the FILE_ ATTACH_SBR subrecord in the custom record that will store references to the
attached files. The fieldsin this subrecord store the system file name and the user file name. No PeopleCode

is associated with this subrecord.

The FILE_ATTACH_SBR subrecord contains the following fields:

Field

Description

ATTACHSY SFILENAME

The system file name (the name of the file asit exists at the storage
location).

If the fileis stored in a database record, then the value in this field must be
identical to the value of the ATTACHSY SFILENAME field in the rows
that correspond to the file chunks in the database record.

ATTACHUSERFILE

The user file name (the name that the end user associates with the file).

Y our application must populate these fields with the system file name, user file name, and any information
about the file that will be needed for later use.

See Chapter 10, "Working With File Attachments,” Managing Entriesin File Reference Tables, page 214.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 213

Working With File Attachments Chapter 10

FILE_ATTACH_WRK Derived/Work Record

The FILE_ ATTACH_WRK derived/work record provides sample PeopleCode programs that demonstrate the
use the file attachment PeopleCode built-in functions. Clone this derived/work record so that you can
customize the programs to suit your application's needs.

The FILE_ATTACH_WRK derived/work record contains the following fields:

Field Description

ATTACHADD Contains a PeopleCode program used for uploading an attachment from an
end user machine to the specified storage location (the AddAttachment
built-in function).

ATTACHDET Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be saved on the end user machine (the
DetachAttachment built-in function).

ATTACHDELETE Contains a PeopleCode program used for deleting an attachment from the
specified storage location (the DeleteAttachment built-in function).

ATTACHUTIL Contains a user-defined PeopleCode function that can be called to
determine (by file name extension) whether the attachment operation will
be permitted on afile. In this function, an array of file name extensions
identifies which types of fileswill be regarded asimpermissible.

Note. The sample PeopleCode programs included in the
FILE_ATTACH_WRK derived/work record invoke this user-defined
PeopleCaode function.

ATTACHVIEW Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be viewed on the end user machine (the
ViewAttachment built-in function).

The PeopleTools Test Utilities page demonstrates a sample application that makes use of the PeopleCode
programsinthe FILE ATTACH_WRK derived/work record.

See Chapter 10, "Working With File Attachments," Using the PeopleT ools Test Utilities Page, page 215.

Managing Entries in File Reference Tables

When you create a file attachment application, you create a custom record to store file reference information
and any additional information about the file attachments. Y ou must includethe FILE_ ATTACH_SBR
subrecord in this new record. For example, you might create a new record called MYAPP_ATT_REF. Then,
you would add fields for any other information related to the transaction you want to store.

Y our application must popul ate these fields with the system file name, user file name, and any information
about thefile that will be needed for later use. Y our application should use the fields in file reference tables as
follows:

214 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

» When your application is uploading files (for example, with AddAttachment):

+ ATTACHSYSFILENAME — Save the system file name in the ATTACHSY SFILENAME field. This

isthe name of thefile asit exists at the storage location and is also akey field of your file reference
table.

» ATTACHUSERFILE — Save the user file name, which is the value returned by AddAttachment in its
UserFile parameter. Thisis essentially the base name of file selected by the end user for uploading and
would be used by end usersto identify the file in other file attachment operations (such as viewing,
downloading, or deleting).

» When your application is downloading or deleting files (for example, with ViewAttachment,
DetachAttachment, or DeleteAttachment):

» ATTACHUSERFILE — Usethe ATTACHUSERFILE field to present alist of available files for end
user selection. Thisfield is also passed as a parameter to the built-in PeopleCode functions.

« ATTACHSYSFILENAME — Usethe ATTACHSY SFILENAME field (along with the
ATTACHUSERFILE field) to construct the parameters to be passed to the built-in PeopleCode
functions.

See Also

Chapter 10, "Working With File Attachments," FILE ATTACH SBR Subrecord, page 213

Using the PeopleTools Test Utilities Page
Access the PeopleTools Test Utilities page (PeopleTools, Utilities, Debug, PeopleTools Test Utilities).

The PeopleTools Test Utilities page contains a sample file attachment application that allows you to upload
(Attach button), download (Detach button), delete (Delete button), and open (View button) afile attachment.
The page allows you to specify a storage location as a URL identifier or interactively as a string. By clicking
the Attach button, the file is uploaded to the storage location. Once the selected file has been successfully
uploaded, buttons appear that allow you to open, download, or delete that file from its storage location.

Note. This demonstration application permits the user to enter a URL of up to 120 characters only.

The actua page definition involved, PSTESTUTIL, contains buttons that execute FieldChange PeopleCode
programsin the FILE_ATTACH_WRK derived/work record definition. These programs are provided as
working examples of how to use the following file attachment functions: AddAttachment, DeleteAttachment,
DetachAttachment, and ViewAttachment. If you are developing afile attachment application, you can clone
the FILE_ ATTACH_WRK derived/work record definition and customize the copied programsto fit your file
processing requirements.

Important! Do not modify the delivered FILE_ATTACH_WRK record definition or the PeopleCode
programs it contains. In addition, do not directly call these PeopleCode programs from any PeopleCode
programs you implement. Oracle might modify these sample programs in a future release of PeopleTools.

See Chapter 10, "Working With File Attachments,"” FILE ATTACH WRK Derived/Work Record, page 214.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 215

Working With File Attachments

Chapter 10

Application Development Considerations

This section discusses:

File name considerations.

Restrictions on invoking functions in certain PeopleCode events.

Converting file names for files uploaded by PutAttachment.

Considerations when using CopyA ttachments.

File Name Considerations

216

If the source file name specified using one of the file attachment. contains any of the following characters, the
invoking function will be stopped and an error (YoAttachment_Failed) is returned. The actual error message
can be found in the logs.

* (asterisk)

> (colon)

" (quotation mark)

< (less than symbol)

> (greater than symbol)

? (question mark)

When thefile is uploaded to or downloaded from a storage location, the following characters are replaced
with an underscore:

(space)

@ (at sign)

; (semicolon)

+ (plussign)

% (percent sign)

& (ampersand)

' (apostrophe)

I (exclamation point)
(pound sign)

$ (dollar sign)

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

Note. In general, you should exercise caution when using an @or : character in the name of afile selected
for uploading. In FTP URLS, the : character must to be used as a delimiter between the FTP user ID and the
FTP password or just before the FTP port number (if oneis specified). In addition, in FTP URLS, the @
character must be used as a delimiter between the FTP password and the FTP server address.

Restrictions on Invoking Functions in Certain PeopleCode Events

Because AddAttachment, DetachAttachment, and ViewAttachment are interactive, they are known as "think-
time" functions. This means that these functions should not be used in any of the following PeopleCode
events:

» SavePreChange
« SavePostChange
+ Workflow

* RowSelect

« Any PeopleCode event that initiates as aresult of a Select or SelectNew method, or any of the
Scroll Select functions.

If you want to transfer files in a non-interactive mode with functions that aren't think-time functions, see
GetAttachment and PutAttachment.

See Also
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," Select
PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Rowset Class," SelectNew

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 156

Converting File Names for Files Uploaded by PutAttachment

Generally, a PeopleCode program that calls PutAttachment will also need to save (for later use) the name of
each uploaded file asit ended up actually being named at the specified storage location. However, the
destination file name (which may have been converted as described in "File Name Considerations”) is not
passed back to the PutAttachment function. So, the only way for your PeopleCode program to ensure that it is
saving the correct name isto either avoid using special characters in the destination file name or to simulate
the conversion process in something like the following example:

&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE

Subst i t ut e(GATTACHUSERFI LE, "
Substi t ut e(&ATTACHUSERFI LE, "; ",
Substi t ut e(&ATTACHUSERFI LE, " +",
Substi t ut e(SATTACHUSERFI LE, "%,
Substi t ut e(&ATTACHUSERFI LE, "&",
Substi t ut e(&ATTACHUSERFI LE, "' ",
Substi t ut e(&QATTACHUSERFI LE, "!",
Substi t ut e(&ATTACHUSERFI LE, " @,
Substi t ut e(GATTACHUSERFI LE, "#",
Subst it ut e(&ATTACHUSERFI LE, "$",

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 217

Working With File Attachments Chapter 10

Note. Unlike the PutAttachment function, the AddAttachment function automatically returns the converted
file name for reference and later use. For example, the file name My Resume.doc is returned through the
AddAttachment function as My _Resume.doc, with the space converted to an underscore.

See Also

Chapter 10, "Working With File Attachments," File Name Considerations, page 216

Considerations When Using CopyAttachments

CopyAttachments does not modify the contents of any of the associated file reference tables. Y ou must
design your application in such away that using CopyAttachments does not, by itself, require any subsequent
changes to the contents of any of the associated file reference tables.

Application Deployment and System Configuration Considerations

This section discusses;

« Fileattachment functions in an environment with multiple application server domains.
« Configuring the web server to support additional MIME types.

» Setting up virus scanning.

» Considerations when attaching text files.

+ File attachment chunk size.

« Using the Copy File Attachments page.

Thetopicsin this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

File Attachment Functions in an Environment with Multiple Application Server
Domains

218

In an environment involving multiple application server domains, a call to one of the PeopleCode file
attachment functions must not be passed a parameter designating afile that is located on the file system of a
particular application server domain. The problem isthat at the time of the call, the application server domain
currently in use (as a conseguence of load-balancing) might not be the application server domain that has the
filein question. In this case, afile-not-found error would result. For example, this may be an issue for acall
to PutAttachment, or this might cause a call to GetAttachment to result in the file being downloaded to an
unexpected location (the file system of the wrong application server domain) or to fail entirely if the specified
destination directory does not exist on the application server domain currently in use.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

Configuring the Web Server to Support Additional MIME Types

When abrowser attempts to open afile attachment, the browser invokes a viewer based on the MIME
(Multipurpose Internet Mail Extensions) type sent in the response header from the web server. For example, if
the user tried to view an MP3 file, the response header sent to the browser by the web server would indicate
the audio/M PEG content type:

HTTP/ 1.1 200 K

Server: Mcrosoft-11S/5.0

Date: Mn, 01 Cct 2001 21:25:51 GVIr
Cont ent - Type: audi o/ npeg

Accept - Ranges: bytes

Last-Modified: Mn, 01 Cct 2001 21:00:26 GVI
ETag: "78e21918bc4acll: cc8"

Content-Lengt h: 60

Notice that the content-type is audio/mpeg. The browser uses this MIME type to determine that the viewer for
audio/MPEG is the appropriate application to open this attachment. If the web server did not send this
content-type header, the browser would not be able to determine the nature of the file being transmitted, and it
would be unable to invoke the correct viewer application. The browser would try to display thefile as
text/plain, which is often the wrong behavior.

The web server maps file extensions to MIME types through entriesin aweb.xml configuration file. A copy
of web.xml is deployed to each web server instance when it isinstalled. After aweb server instanceis
created, edit its deployed copy to add any additional MIME types.

The location of the deployment copies varies depending on the web server:

Web Server Location of Deployment Copy

WebL ogic PS HOME/wehserviweb_server/applications/peoplesoft/PORTAL .war/WEB-INF/web.xml

WebSphere PS HOME/wehserv/profile_name/installedA pps/app_nameNodeCell/app_name
.ear/PORTAL .war/WEB-INF/web.xml

See your web server documentation for the name and location of the master copy of this configuration file.
Thisfile contains definitions similar to the following:

<m ne- mappi ng>
<ext ensi on>
doc
</ ext ensi on>
<m nme-type>
appl i cati on/ nswor d
</ m ne-type>
</ m me- mappi ng>
<mi nme- mappi ng>
<ext ensi on>
xl's
</ ext ensi on>
<m me-type>
appl i cation/vnd. nms- excel
</ m nme-type>
</ m me- mappi ng>

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 219

Working With File Attachments Chapter 10

Let's say you want to add a mapping that causes .log filesto be interpreted as regular text files. To determine
the correct MIME type, check RFC (Request for Comments) documents 2045, 2046, 2047, 2048, and 2077,
which discuss internet media types and the internet media type registry.

After checking the RFCs, you determine that the correct MIME type istext/plain. The following is an
example of code you would add to the previous section of the configuration file:

<m me- mappi ng>
<ext ensi on>
| og
</ ext ensi on>
<m nme-type>
text/plain
</ m nme-type>
</ m me- mappi ng>

Once you save thefile, the .log extension is associated with the content type of text/plain.

Note. You must restart your web server before these changes are recognized.

Note. When trying to view the objects, the extension must exactly match what is set up in the web.xml file.
Thisvalueis case-sensitive. If the object view appears garbled, chances are that either the extension is not set
up in the web.xml file or there is a case mismatch.

See Also

Documentation for your web server

Setting Up Virus Scanning

220

This section discusses:

« Enabling virus scanning.

» Configuring VirusScan.xml.

« Logging virus scans.

 Virus scan errors and return codes.

Vi Irus scanning can be performed on al files uploaded with the AddAttachment and Insertlmage functions
only.

Enabling Virus Scanning

To enable virus scanning, open the file VirusScan.xml and set the value of disableAll to "False". By defaullt,
disableAll is"True".

<Provi ders disabl eAl | ="Fal se" | ogFile="./servers/Pl Al'l ogs/ VirusScan%. | og" >
The location of VirusScan.xml on your system depends on which web server you use.

Oracle WebL ogic Server:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

PS_HOVE/ webser v/ web_server/applicati ons/ peopl esof t/ PORTAL. war / WEB- | NF/ cl asses/ >
psft/pt8/virusscan

IBM WebSphere:

PS HOVE/ webser v/ profil e_nane/install edApps/ app_naneNodeCel | / =
app_nane. ear/ PORTAL. war / VEB- | NF/ cl asses/ psft/ pt8/virusscan

Configuring VirusScan.xml

These tags are mandatory in VirusScan.xml:

Tag Description Example Value for Scan Engine

<class> Provider class of the scan engine psft.pt8.virusscan. provider.

. . Generi cVi rusScanPr ovi der | npl
Default provider classis: P

psft. pt8.virusscan. provider.
Generi cVi rusScanPr ovi der | npl

<icapversion> ICAP version ICAP/1.0
<service-name> Service name for the scan engine host. /SYMCScanResp-AV
<policycommand> Policy command used by the Scan Engine. ?action=SCAN

Only SCAN is supported.

<address> IP address of Scan Engine host. | P address of the machine where the scan
engineisrunning

<port> IP port of Scan Engine host. Port where the scan engine is running

See PeopleTools 8.51 PeopleBook: MultiChannel Framework for complete details on configuring
VirusScan.xml.

See PeopleTools 8.51 PeopleBook: PeopleSoft MultiChannel Framework, " Configuring the Email Channel,”
Enabling Virus Scanning.

Logging Virus Scans

Detailed logging is configured in the logging.properties file on the web server.

Oracle WebL ogic:

PS_HOVE/ webser v/ web_server/ appl i cations/ peopl esoft/| oggi ng. properties

IBM WebSphere:

PS HOVE/ webser v/ profil e _nane/install edApps/ app_naneNodeCel | / app_nane. ear/ =
| oggi ng. properties

Set the location of the log file in VirusScan.xml.
<Provi ders disabl eAl | ="Fal se" | ogFile="./servers/ Pl A/l ogs/ VirusScan%. | og">

The following results are logged with the date and the file name that was scanned:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 221

Working With File Attachments Chapter 10

e CLEAN, INFECTED, and SCANERROR
The results for these statusesis logged in this form:
filename = result
For example:
finance.xls = | NFECTED
+ CONNECTERROR and CONFIGERROR

The results for these statuses is logged in this form:

Unabl e to connect to the Scan engi ne: REASON = result
For example:
Unabl e to connect to the Scan engi ne: REASON = CONFI GERROR

Virus Scan Errors and Return Codes

If thefile is uploaded successfully and no problems are found in the virus scan, the AddAttachment or
I nsertlmage function returns %A ttachment_Succeeded.

If aproblem is found, the PeopleCode function returns one the following return codes:

Numeric Value Constant Value Description

13 %Attachment_ViolationFound File violation detected by virus scan engine.
14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError | Virus scan engine connection error.

Considerations When Attaching Text Files

222

The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed. In fact, when any fileis uploaded, it is always copied to the specified destination byte-for-byte.

Warning! You may encounter problems when atext file is uploaded from one operating system or
environment and then later viewed on another. For instance, suppose atext file on aDB2 system is encoded
in EBCDIC. A user viewing that file in a Windows environment might see garbled content because the text
file viewer is expecting ANSI encoding.

Similar issues can occur when two file systems have different character sets, such as Japanese JIS and
Unicode, or different line endings.

It is the developer's responsibility to manage thisissuein their environments. A number of text file
conversion utilities are available for various platforms.

Some steps you can take to avoid conversion problemsinclude:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

» Educate your users.
« Standardize on file formats and encodings.
« Make sure that the user's environment supports the files being transferred.

« Redtrict attachmentsto file types that are known to be compatible across user platforms.

File Attachment Chunk Size

When using a database record as the storage location, the file is automatically "chunked," or stored, in

multiple rows of the database table. The size of each chunk is determined by the Maximum Attachment

Chunk Size field on the Peopl€eTools Options page.

Because each file is chunked, you cannot pull whole files directly from the database. Y ou must use the

PeopleCode file attachment functions, which automatically put the data back together into one file for you.

Because the chunk size is stored with the file, if you change the system chunk size, you can still retrieve files

with different chunk sizes.
See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,”
PeopleTools Options

Using the Copy File Attachments Page
The Copy File Attachments page is provided as away to launch a CopyAttachments operation (select
PeopleTools, Utilities, Administration, Copy File Attachments). The CleanAttachments function is also
available from this page.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CopyAttachments

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
CleanAttachments

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities," Copy File

Attachments

Debugging File Attachment Problems

This debugging section discusses the following:

« Enabling tracing on the web server or application server.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

223

Working With File Attachments Chapter 10

Problems with transfers to and from FTP sites.
« Attachments with non-ASCII file names.

« Problems uploading files.

« Problems downloading files.

» Passing error messages to the end user.

Thetopicsin this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

Enabling Tracing on the Web Server or Application Server
This section discusses how to:
» Enabletracing on the web server.

» Enable PeopleCode tracing on the application server.

Enabling Tracing on the Web Server

To enable web server tracing of file attachment processes.

1. Select PeopleTools, Web Profile, Web Profile Configuration, and open the current web profile.
2. Select the Custom Properties page.

3. Add anew row, and enter these values:

Column Value

Property Name IDDA

Validation Type Number

Property Value 32 (File processing)

4. Setthe .level property of the logging.propertiesfileto ALL.

5. Restart theweb server.

Thelog files are written to a directory that depends on the java.util.logging.FileHandler.pattern property of
the logging.propertiesfile.

More information on IDDA logging is available in the PeopleT ool s PeopleBooks.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Tracing, Logging, and Debugging,”
Enabling IDDA Logging.

224 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

Enabling PeopleCode Tracing on the Application Server

PeopleCode trace level 2048 (show each statement as it's executed) is the appropriate level for tracing file
attachment issues. Y ou can enable PeopleCode tracing on the application server in several ways:

« For al client sessions by setting TracePC in Configuration Manager.

« For aspecific client session through the Trace PeopleCode page (select PeopleTools, Utilities, Debug,
Trace PeopleCode.

Because PeopleCode tracing can generate alot of output, setting tracing for a specific client session only is
recommended.

Application server log files can be found in the PS CFG_HOME/appserv/domain/L OGS directory.

« The application server log files have namesin the form APPSRV_MMDD.LOG (in which MMDD
represents the month and date).

« Thefiletransfer log file has a name in the form of FILETRANSFERpid.LOG.
» The PeopleCode trace file has a name of the form, * .tracesql.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleSoft Configuration
Manager," Specifying Trace Settings.

Problems with Transfers to and from FTP Sites

A common reason that atransfer failsis that the FTP server is not accessible from the application server. This
error could be due to:

« Anincorrect password.

« Anincorrect account name.

« Aninability of the application server to resolve the FTP server's host name.
e TheFTP server isdown.

Try to ping the FTP server from the application server system, and then try to transfer afile to the FTP server
from the application server.

If the FTP site is on Microsoft Windows, the host name for the system might not be associated with afixed IP
address and might not be resolvable using DNS (Domain Name System). If the application server ison a
UNIX machine, the application server can resolve the host name using DNS only—or perhaps using NIS
(Network Information System) or an /etc/hosts file. However, the application server will be unable to use
Windows mechanisms such as WinBeui or WINS. Therefore, the application server will not be ableto
convert the host name indicated for the Microsoft Windows file server into an 1P address and route to it.

If the file transfer fails, you must resolve the problem by either specifying the numeric IP addressin the FTP
URL or by putting the host name for the FTP site into DNS, NIS, or the hosts file on your application server
so that the name can be resolved.

Typically, the URL used for file attachments has the following format:
ftp://user: pwd@ystem nane/dir1l/ subdir

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 225

Working With File Attachments Chapter 10

However, if you are using a UNIX system and the domain name cannot be resolved with DNS, then use the
numeric | P address. The following example assumes system name has the | P address of 123.123.123.123:

ftp://user:pwd@23.123. 123. 123/ dir1/ subdir

Note. Use numeric IP addresses only when absolutely necessary.

Attachments with non-ASCII File Names

To successfully upload an attachment from alocale with afile name in alanguage that uses a non-ASCI|
characters, such as Japanese, Oracle recommends running your application server in an environment that
supports non-ASCII character languages.

If the storage location for the attachment is an FTP site or an HT TP repository, Oracle recommends that the
storage location aso be running in an environment that supports the same language or locale as the file names
used. The web server (which serves as an intermediary in the transfer of the file from the browser to the
application server and then on to the storage location) can be running on either an English environment or a
non-ASCII character language environment.

If your environment does not fully support non-ASCII characters, then the file-processing system will convert
file namesinto names that are fully ASCII strings. At upload time, the new file names will be passed back to
the calling PeopleCode program rather than the original names of the files as selected by the end users. This
means that it may be more difficult for an end user to later identify the renamed file for further processing,
such as selecting and viewing thefile.

Problems Uploading Files

Y ou cannot use arelative path to specify the file that is to be uploaded; you must use afull path. If users
experiences problemsin uploading files, ensure that they specify the full path to the file to be uploaded.

This problem can manifest itself differently depending on the browser used. For example, with some browser
versions, the PeopleSoft page appearsto bein an infinite "Processing” state.

See Also

My Oracle Support, "Troubleshooting Browser Limitations"

Problems Downloading Files

226

In some environments, ViewAttachment, DetachAttachment, download-to-Excel, or XML Publisher
operations fail with a message of the following form in the web server's output window:

***x* Jol t Sessi onPool : Domain // connection_string is Unavail abl e

For ViewAttachment, download-to-Excel, or XML Publisher operations, such situations also result in the
following message being displayed to the end user:

bea.jolt. ServiceException: Invalid Session

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Working With File Attachments

Note. In the case of DetachAttachment, no error message is displayed to the end user and the function fails
silently.

This problem occurs because the web server is unable to connect to the application server in question by
using the connection string the application server knows itself by—that is, the application server's canonical
connection string. For example, this may take place as aresult of the use of virtual |P addresses. The
resolution to thisissue can be found in PeopleTools PeopleBooks.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Troubleshooting Server Issues,” File
Processing: Jolt Session Pooling and Invalid Session Errors.

Passing Error Messages to the End User

When working with the attachment functions, if you want the end user to be able to view error messages
(such asthat the file istoo large, that the file was not found, that there is no disk space at the storage location,
and so on), then you need to write code to interpret function return codes and pass error messages back to the
user.

As an example, each of the programsinthe FILE_ ATTACH_WRK derived/work record includes a parameter
that sets the message level. The message levels that can be set are:

» 0-— Suppress al messages including errors.
» 1-Display al messages.
» 2 — Suppress success messages only, but display error messages.

By default, the message level is 0 for each of these programs. The programs are demonstrated on the
PeopleTools Test Utilities page.

See Also

Chapter 10, "Working With File Attachments," FILE ATTACH WRK Derived/Work Record, page 214

Chapter 10, "Working With File Attachments," Using the PeopleTools Test Utilities Page, page 215

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 227

Chapter 11

Accessing PeopleCode and Events

This chapter provides overviews of PeopleCode programs and events and PeopleCode automatic backup, and
discusses how to:

» Access PeopleCode in Application Designer.
» Accessrecord field PeopleCaode.

» Access component record field PeopleCode.
» Access component record PeopleCode.

» Access component PeopleCaode.

» Access page PeopleCode.

» Access menu item PeopleCode.

» Copy PeopleCode with a parent definition.

» Upgrade PeopleCode programs.

Understanding PeopleCode Programs and Events

Every PeopleCode program is associated with an aspect of a Application Designer definition and an event.
Events are predefined points either in the Component Processor flow or in the program flow. As each event is
encountered, it fires on each component, triggering any PeopleCode program associated with that component
and that event. Each definition in Application Designer can have an event set, that is, a group of events
appropriate to that definition. A definition can have zero or one PeopleCode programs for each event in its
event set.

Some definitions have events that fall outside the Component Processor flow. These definitionsinclude
Application Engine programs, component interfaces, and application packages. In addition, security has a
signon event,. which is described in the documentation for the definition or topic.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 229

Accessing PeopleCode and Events Chapter 11

See Also
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Component Interface Classes'
PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes'

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages," Adding Message
Definitions

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, " Creating Application Engine Programs,”
Specifying PeopleCode Actions

PeopleTools 8.51 PeopleBook: Security Administration, "Understanding PeopleSoft Security"

Understanding Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to afile while you are working on it. This checkpoint occurs at
the following times:

» Every 10 keystrokes.

« Onasave command, just before the save is executed (in case the save does not actually execute because
the codeisinvalid).

» When another PeopleCode program is selected to be edited (if you have two PeopleCode editor windows
open at the same time and you move from one to the other).

Thefileis saved to your temp directory, as specified in your environment, in afile with the following name:
PPCVVDDYY_HHMVES. t xt

, where MMDDYY represents the month, date, and year of the checkpoint, respectively, and HHMMSS
represents the hour, minute, and second of the checkpoint, respectively.

Thetop of the checkpoint file contains the following information:
[Peopl eCode Checkpoint Fil e]
[RECORD. r ecor dnaneFl ELD. f i el dnameMETHOD. event nane]

If your PeopleCode program saves successfully, checkpoint files associated with that program are
automatically deleted.

Accessing PeopleCode in Application Designer

Y ou can access PeopleCode associated with Application Designer definitionsin severa ways.

230 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11

Accessing PeopleCode and Events

For record fields and pop-up menu items, the Project view displays PeopleCode programs within the project
hierarchy using alightning bolt icon. The programs are children of the fields and pop-up menu items with
which they are associated, and they are named according to their associated events, such as ItemSel ected,
Rowlnit, or SaveEdit, as shown in the following example. Double-click arecord field or pop-up menu item
program in the Project view to start the PeopleCode Editor and load that program for editing.

[oemo

{:| Application Engine Programs
-0 Business Interlink

{27 Component Interface
(0] Components

=27 Fields

-2 File Layout Defiitions
- HTHL

=] Images

-3 Menus

=B JOBCODE_POPLP
=-E MEMUITEMI
=& ADD_JOB
- #F llemSelected

27 Meszage Definitions

H-{_] Pages

=5 Records

=654 DIMENSION
-4 DIMEMSION_ID

EI@‘ CIMEMSION_TPE
2% SaveEdit

£ @ DESCR
- 2F FieldD efault

i 8T Fiald™hanoe

1]

w-Bd CORE_PERS_DATA_POPUP

E JOBCODE_TRAMSFER

o

%l Development B Upgrade I

Example of PeopleCode programs in the Project view hierarchy

Y ou can associate PeopleCode with other types of definitions, such as:

« Components
+ Pages

» Component interfaces

Such PeopleCode programs do not appear in the Project view. Instead, you right-click the name of the
definition and select View PeopleCode. Y ou can also access these programs from their associated definitions.

PeopleCode can also be associated with:

« Component records (specific records included in components).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

231

Accessing PeopleCode and Events Chapter 11

» Component record fields (specific record fields included in components).

Because component record fields and component records do not appear in the Project view, you must access
their associated programs through their parent definitions.

See Also

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 232

Chapter 11, "Accessing PeopleCode and Events," Accessing Component PeopleCode, page 238

Accessing Record Field PeopleCode

This section provides an overview of the record field event set and discusses how to:

« Accessrecord field PeopleCode from a record definition.

» Accessrecord field PeopleCode from a page definition.

Understanding Record Field PeopleCode

232

A record is atable-level definition. Record definitions are of different types, such as SQL table, dynamic
view, derived/work, and so on.

Record fields are child definitions of records. Record field PeopleCode programs are child definitions of
record fields. A record field can have zero or one PeopleCode programs for each event in the record field
event set.

The following events are associated with arecord field:

FieldChange Event

» FieldDefault Event

« FieldEdit Event

« FieldFormula Event

* Rowlnit Event

* RowSelect Event

* RowDelete Event

« PrePopup Event

+ SaveEdit Event

» SavePreChange Event

« Workflow Event

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

SavePostChange Event
Searchinit Event

» SearchSave event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Record Field PeopleCode from a Record Definition

Record definition fields that have PeopleCode associated with them appear in bold type in record views.

Efi EMPL_CHECKLIST [Record)

Record Fields IRE.;.;.,».;{ Type I

Hum Field Hame Type | Len | Format | H Short Hame Long Ham
EMPLID 1 pper) EmpliC
2 GCHECKLIST_DT Diate 10 Chkl=t Ot Checklist Date
3 CHECKLIST_CD Char E pper Checklist Checklist Code
4 RESPOMSIBLE_ID Char 1 pper Resp 1D Responszible 1T
5 GCOMMENTS Long o Commert Commerit

Record definition showing three fields associated with PeopleCode

In the previous example, the first three fields (in boldface font) have PeopleCode associated with them. If you
expand the subrecords in arecord definition, any fields in the subrecord that have PeopleCode associated with
them also appear in bold type.

To access record field PeopleCode from an open record definition:
1. Click the PeopleCode Display button on the toolbar.

A grid appears with a column for each event in the record field event set. Each cell represents a field-
event combination. The column names are abbreviations of the record field event names, for example,
FCh for the FieldChange event and RIn for the RowlInit event. A check mark appearsin the appropriate
cell for each field/event combination that has an associated PeopleCode program.

2. Access the PeopleCode using one of these methods:
» Double-click the cell.
« Right-click the cell and select View PeopleCode.
« Select View, PeopleCode.

The PeopleCode Editor appears. If the field/event combination has an associated program, it appearsin the
editor.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 233

Accessing PeopleCode and Events Chapter 11

See Also

Chapter 11, "Accessing PeopleCode and Events," Understanding Record Field PeopleCode, page 232

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Record Field PeopleCode from a Page Definition

234

Y ou can associate a PeopleCode program with any page control that you can associate with arecord field.

To access record field PeopleCode from a page definition, right-click a page control and select View Record
PeopleCode. The PeopleCode Editor appears, displaying the first event in the event set associated with the
underlying record field of that control.

Button controls are a specia case. Y ou can associate a PeopleCode program with a button only if its
destination is defined as PeopleCode Command. When the user clicks a button defined using this method, the
FieldEdit and FieldChange events are triggered, so the PeopleCode must be associated with one of those two
events. Typically, you use the FieldChange event. The following example shows button properties:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

Page Field Properties E |

Type |Lahe| I Generall

— Tupe = Extermal Link
> [i
Puzh Buttan Huyperlink, b Dy
Qestinatinn: F'E|:||:||E|:|:||:|E Command ‘. Ziafie
Eecord Mame: [DIMENSION_wRK =] EL | =l
Field Mame: |PB_DIM_D PTIONS =]
= | termal Lk
[T EnableWhen Page is Dizplay Orly -
: : (il = I J
™| Gper i ewiwindavs
— dligrment [EamEaremt I J
) left. €0 Cenfered) €00 Right Page: I El
= Ak Aation: I j
EEHOTTEE: I j I} 12 data fram cunent page in seamch
Helated [Eamtnal I j
= Fiozess
T Secondary Fage Ipe; I j
Fame; I j [Emme; I j

k. I Cancel

Page Field Properties dialog box for buttons

To define acommand button:

1. Inthe page definition, double-click the button to accessits properties.

2. Select PeopleCode Command as the button destination.

3. Select the record and field with which your button and PeopleCode are associated.

Y ou should associate the button with a derived/work record field, which separates its PeopleCode from
the PeopleCode associated with any of the page's other underlying record fields. Y ou can then store
generic PeopleCode with thisfield so that you can reuse it with buttons on other pages.

4. Click OK to return to the page.
Right-click the command button and select View PeopleCode to access the PeopleCode Editor.
See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

235

Accessing PeopleCode and Events Chapter 11

Accessing Component Record Field PeopleCode

This section provides an overview of component record field PeopleCode and discusses how to access
component record field PeopleCode.

Understanding Component Record Field PeopleCode

Component record field PeopleCode is associated with arecord field, but only with respect to a component
and one of its events. Use thistype of association to tailor your programsto a particular component. This
PeopleCode is accessible only through the component structure view, not from arecord definition.

The following events are associated with a component record field:
« FieldChange Event

» FieldDefault Event

» FieldEdit Event

» PrePopup Event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record Field PeopleCode

To access PeopleCode associated with a component record field, open the component, click the Select tab,
select afield, right-click the field name, and select View PeopleCode. A lightning bolt appears next to the
field name if PeopleCode is associated with the field at the component level. If PeopleCode is associated with
thefield at the record level, then alightning bolt does not appear, as shown in the following example:

236 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11

Accessing PeopleCode and Events

j&j OF_ABSENCE_HISTORY.GEL {Component}

Defintion Structure I

QE_ABSENCE_HISTORY [Component]
QE_PERS_SRCH [Wiew) - Search Fecord
= E Scroll - Level 0
QE_PERS_DATA [Table]
= E Scroll - Lewel 1 Primary Record: QE_ABSEMCE_HIST
=62 QE_ABSENCE_HIST (Table)
----- e JE_EMPLID [Record Field)

¢ OE_DURATION_DAYS (R
----- ¢ OE_DURATION_HOURS (Fecord Field)
..... ¢ OE_REASOM [Record Field)
----- ¢ QE_PAID_UNPAID (Record Field)
----- ¢ QE_EMPLOYER_APPROV [Record Field)
----- ¢ OE_COMMENTS (Record Field)
=63 QE_DERNED_HR [Derived)

~ @ QE_DAY_OF_WEEK (Fecord Field)

Accessing component record field PeopleCode from the component structure

Note. The Structure tab displays only the runtime state of the PeopleCode. That is, it only displays record
field PeopleCode. For example, PeopleCode programs that are orphaned as aresult of a page definition
change do not appear on the Structure tab. Orphaned PeopleCode programs do appear, however, in the

PeopleCode Editor, which displays the design-time view of PeopleCode.

The PeopleCode Editor appears. If that field has associated PeopleCode, then the first program in the

component record field event set appearsin the editor.
See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 232

Accessing Component Record PeopleCode

This section provides an overview of component record PeopleCode and discusses how to access component

record PeopleCode.

Understanding Component Record PeopleCode

Component record PeopleCode is associated with arecord definition, but only with respect to a component
and one of its events. Use thistype of association to tailor programs to a particular component. This
PeopleCode is directly accessible through the component structure view, not from the record definition.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

237

Accessing PeopleCode and Events Chapter 11

Search records and non-search records in components have different associated event sets. The following
events are associated with component search records:

e Searchlnit Event
» SearchSave Event

The following events are associated with component non-search records.

« RowDe€ete Event
* Rowlnit Event

In rare circumstances, the Component Processor does not run Rowlnit PeopleCode for some record fields.
The Component Processor runs Rowlnit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

+ RowSelect Event

« SaveEdit Event

» SavePostChange Event
» SavePreChange Event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record PeopleCode

To access PeopleCode associated with a component record, open the structure view of the component, select
arecord, right-click the record name, and select View PeopleCode.

The PeopleCode Editor appears. If the record has associated PeopleCode, then the first program in the
component record event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor,"” page 243

Accessing Component PeopleCode

This section provides an overview of component PeopleCode and discusses how to access component
PeopleCode.

238 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

Understanding Component PeopleCode
Component PeopleCode is associated with a component definition and an event.
The following events can be associated with a component:
» PostBuild Event
+ PreBuild Event
» SavePostChange Event
» SavePreChange Event
« Workflow Event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component PeopleCode

To access PeopleCode associated with a component, open its structure view, select the component name,
right-click the name, and select View PeopleCode.

The PeopleCode Editor appears. If the component has associated PeopleCode, the first program in the
component event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Page PeopleCode

This section provides an overview of page PeopleCode and discusses how to access page PeopleCode.

Understanding Page PeopleCode
Page PeopleCaode is associated with a page definition. The page event set consists of a single event, the

Activate event, which fires every time the page is activated. This event isvalid only for pages that are defined
as standard or secondary, and it is not supported for subpages.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 239

Accessing PeopleCode and Events Chapter 11

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Page PeopleCode

To access PeopleCode associated with a page, right-click any part of the page definition and select View Page
PeopleCode.

Note. Page PeopleCode can only be accessed in thisway. Y ou cannot access Page PeopleCode from the
component definition Structure tab, from a project, or any other way.

The PeopleCode Editor appears. If the page has associated PeopleCode, it appears in the editor.

Note. The term page PeopleCode refers to PeopleCode programs owned by pages. Do not confuse page
PeopleCode with PeopleCaode properties related to the appearance of pages, such asthe Visible Page Class
property.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Page Class'
Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Menu Item PeopleCode

This section provides an overview of menu item PeopleCode and discusses how to:
» Define PeopleCode pop-up menu items.
» Access menu item PeopleCode.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Menu
Definitions’

Chapter 12, "Using the PeopleCode Editor," page 243

Understanding Menu Item PeopleCode

PeopleTools menus are one of two types, either pop-up or standard, both of which are standalone definitions
in the project hierarchy. However, you can only associate PeopleCode with menu items in pop-up menus.

240 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

The menu item event set consists of asingle event, the ItemSelected Event. This event fires whenever an user
selects amenu item from a pop-up menu.

Note. Do not confuse menu item PeopleCode with PeopleCode functions related to the appearance of menu
items, such as CheckMenultem.

See Also

Chapter 6, "PeopleCode and the Component Processor," [temSelected Event, page 133

Defining PeopleCode Pop-Up Menu Items
To define a PeopleCode pop-up menu item:
1. Inthe open pop-up menu definition, double-click the menu item to access its properties.
If you are creating a new menu item, double-click the empty rectangle at the bottom of the pop-up menu.
The Menu Item Properties dialog box appears.
2. If thisisanew menu item, enter aname and alabel for the item.
3. Select PeopleCode from the Type group box.

4. Click OK to close the Menu Item Properties dialog box.

Accessing Menu Item PeopleCode
To access pop-up menu item PeopleCode:
1. Open the pop-up menu definition.
2. Right-click the menu item and select View PeopleCode.

The PeopleCode Editor appears, displaying the associated program for that menu item, if any.

Copying PeopleCode with a Parent Definition

When you copy a Application Designer definition that contains PeopleCode, you can choose whether to copy
all PeopleCode programs and the definition. Each copy of the definition receives a separate copy of the
PeopleCode programs.

To copy adefinition with its PeopleCode:

1. Open the definition you want to copy.

2. Select File, Save As.

The Save As dialog appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 241

Accessing PeopleCode and Events Chapter 11

3. Typeaname for the new definition in the dialog box.
4. Click OK, and then click Y esto copy the PeopleCode.
Click Yesto copy al PeopleCode associated with the definition.

Upgrading PeopleCode Programs

Y ou can upgrade PeopleCode programs independently of the definitions with which they are associated.
Refer to the upgrade instructions for your product for details.

242 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12

Using the PeopleCode Editor

This chapter discusses how to:

» Navigate between PeopleCode programs.
» Usethe PeopleCode Editor.

» Generate PeopleCode using drag-and-drop.

Navigating Between PeopleCode Programs

After you access a PeopleCode program associated with a Application Designer definition, you can access
programs associated with other related definitions without having to close the editor window.

This section provides an overview of the PeopleCode Editor window and discusses how to:
» Navigate between programs associated with a definition and its children.

« Navigate between programs associated with a definition’'s event set.

See Also

Chapter 11, "Accessing PeopleCode and Events,” page 229

Understanding the PeopleCode Editor Window
Application Designer supplies an independent editor window for each parent definition, such as arecord,

component interface, or an analytic model, for which you invoke the editor. The editor window's title bar
displays the name and type of the parent definition, as shown in the following illustration:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 243

Using the PeopleCode Editor Chapter 12

!__JIJE_ABEEHEE_HIST.QE_RETURN_DT.FiEIdEhangE {Record PeopleCode)

QE_RETURM DT ([field) j FieldChange j

IIf All{QE_AR3IENCE_HI3T.(QE_BEGIN DT, QE_ABIENCE HIST.(QE_FETURMN DT &And ﬂ
QE_AB3IENCE _HI3T.(QE_BEGIN DT <= QE_AR3IENCE HI3T.QE_FETUFRN DT Then
«DURATION DAYS = QE_ABSENCE HIST.QE _FETURN DT - QE_ABIENCE HIST.QE_EEGIN DT
If &DURATION DAYE > 999 Then
QE_ABSENCE HI3T.QE_DURATION_DAYI = 999
Else
QE_AB3ENCE_HI3T.(QE_DURATION DAY3 = <DURATION DAY3
End-If:;
End-If:;

4] | Ay

PeopleCode Editor window with record field PeopleCode

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the drop-
down event list at the upper-right. The drop-down lists enable you to navigate directly to the PeopleCode
associated with related child definitions, for example, fields within arecord and their event sets.

Note. When you make a selection from either drop-down list box, your selected entry has a yellow
background, indicating that you must click the edit pane before you can start typing.

Y ou can open as many editor windows as you want and resize them in Application Designer. Each line of
code wraps automatically based on the window's current width. A vertical scroll bar appearsif the program
has more lines than the editor can display in the edit pane.

Note. Y ou cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

See Also

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With a Definition and
Its Children, page 245

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With Events, page 245

244 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Navigating Between Programs Associated With a Definition and Its Children

Y ou use the drop-down definition list to navigate between PeopleCode programs that are associated with a
parent definition and its children. The list displays the complete hierarchy of child definitions to which you
can navigate; bold items have PeopleCode associated with at least one event in the item's event set. The
structure of the definition list depends on the type of parent definition. Parent definitions include:

* Records.

Select record fields from the record drop-down list. The record name appears at the top of thelist asa
visual clueto clarify the location of the record fields, but you cannot associate PeopleCode with a record.

« Components.

Select component records and component record fields from the component drop-down list.
» Pages.

Select the page definition from the page drop-down list.
« Pop-up menus.

Select pop-up menu items from the menu drop-down list. The menu and menu bars appear in thelist as
visual clues, but you cannot associate PeopleCode with these elements.

Navigating Between Programs Associated With Events

Use the PeopleCode Editor's drop-down event list to select an event from the event set of the currently
selected definition. Use this event list to navigate between PeopleCode programs that are associated with that
definition. For every definition-event combination with associated PeopleCode, the event name is displayed
in bold, and it appears at the top of the event list, as shown in the following illustration:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 245

Using the PeopleCode Editor

Chapter 12

!__JABSENEE_HIST.HETI.IHN_DT.FieIdEhange [Record PeopleCode]

BRETURMN_DT (field) j

If 411 (BEGIN DT, FETURN_DT] ind
BEGIN DT <= RFETUEN DT Then
sDURATION DAY = FETURN _DT - BEGIN DT
If DURATION DAYTHE > 993 Theﬂ
LURATION _D&T3 = 9399
Else
DURATION_DAa¥: = sDURATION DAYS
End-If:
End-If:;

FieldD efault

FieldChange j

SaveEdit
FieldFarrmula

FieldE dit

F ol it

S avePreChange

5 aveFostChange

FowS elect

R ol nzert

R oD elete

S earchlnt

SearchSave
arkflow

FreFopup

Selecting an event from the PeopleCode Editor

See Also

Chapter 11, "Accessing PeopleCode and Events,” page 229

Chapter 6, "PeopleCode and the Component Processor," page 89

Using the PeopleCode Editor

246

This section provides an overview of the PeopleCode Editor and col or-coded language elements and

discusses how to:

« Write and edit PeopleCode.

» Format code automatically.

» Usedrag-and-drop editing.

» Access PeopleCode external functions.

« Access definitions and associated PeopleCode.
» Access help.

» Set up help.

« Change colors in the PeopleCode Editor.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12

Using the PeopleCode Editor

Select afont for the PeopleCode Editor.
Change word wrap in the PeopleCode Editor.
Use PeopleCode Event properties.

Understanding the PeopleCode Editor

The PeopleCode Editor works much like any other text editor, but has capabilities specifically geared toward
the PeopleTools environment. Some of its features include:

Editing functions are integrated with the menus and toolbar of Application Designer and are a'so
accessible from a pop-up window.

It checks, formats, and saves all programs associated with Application Designer definitions
simultaneously when any definition is saved.

It includes a Validate Syntax command for checking and formatting a single PeopleCode program without
saving.

It supports standard Microsoft Windows drag-and-drop editing.
It supports color-coding for the different elements of the PeopleCode language.

It supports word wrap based on either the size of the editor window or a specific number of characters per
line.

Y ou can open separate instances of the editor simultaneously, and you can use a drag-and-drop text
operation between programs.

Y ou can open the definition with which the current set of PeopleCode programs is associated from within
the PeopleCode Editor.

Y ou can open afield, record, page, file layout, or other definitions from a PeopleCade reference to the
field, record, page, or file layout, and so on.

Y ou can access PeopleCode programs associated with afield, record, page or file layout, or other
definitions from a PeopleCode reference to the field, record, page, or file layout, and so on.

Y ou can open a PeopleCode Editor window containing an external function definition from afunction
declaration or function call.

Y ou can press F1 with the cursor in a PeopleCode built-in function, method, meta-SQL., and so on, to
open the PeopleSoft help for that item.

Writing and Editing PeopleCode

The PeopleCode Editor supports standard editing function commands such as Save, Cancel, Cut, Copy, Paste,
Find, Replace, and Undo, from the PeopleCode Editor pop-up menu. Cut, Copy, and Paste use standard
Microsoft Windows keyboard shortcuts. Y ou can also cut, copy, and paste within the same PeopleCode
program or across multiple programs.

Use these buttons to perform editing functions:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 247

Using the PeopleCode Editor Chapter 12

El Save the current PeopleCode program. Y ou can also use the key
combination CTRL+S.
b Cut the selected text or item. Y ou can also use the CTRL+X or

SHIFT+DEL key combinations.

Copy the selected text or item. Y ou can also use the CTRL+C or
CTRL+INS key combinations.

i

Paste from the clipboard. Y ou can also use the CTRL+V or SHIFT+INS
key combinations.

Find specified text. Y ou can also use the key combination CTRL+F.

2z la

Find and replace specified text. Y ou can also use the key combination
CTRL+H.

Validate the current PeopleCode program.

Undo the last change. Use the CTRL+Z or ALT+BACKSPACE key
combinations.

&

Cancel the current operation. Use Esc key.

See Also

Appendix A, "PeopleCode Editor Short Cut Keys," page 323

Find and Replace Dialogs
When you use the Find and Replace functions, any text string that is highlighted appears when either the Find

or Replace dialog boxes are called. For example, if you select the method ActiveRowCount it appearsin the
Find dialog box whenit's called, as shown in the following example:

Find what: I = [Endnen |
[T Match whale waord oy |'Directi|:|n— tark Al |

[T Match case " Up

% Down Cancel |

Find dialog box

Y ou can move through finding and replacing text strings one string at atime, or click Replace All to replace
globally. The Undo function is available to undo the last replace or replace all.

248 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

The Mark All button places a bookmark next to all lines that have the matching text. Use Shift+ctrl+f2 to
remove all bookmarks.

With the Replace dialog box, you can select to replace text either in a selected section or awholefile (that is,
a PeopleCode program.)

Go To Dialog

Use the Go To dialog box to specify aline number in the current program, then go to that line. If you have
line wrap not enabled, you can specify to go to statement numbers instead of line numbers.

G ta Enter Line Mumber:
nter Line Mumber m

% Line Mumber

= Statement Mumber Cloze |

T o enable Statement Mumber uncheck YWiew | Word ‘wWirap.

Go To dialog box

Validate Syntax Utility

To check the syntax of the current PeopleCode program and format it if it is syntactically correct, do one of
the following:

« Click the Validate Syntax button on the Application Designer toolbar.
» Within Application Designer, select Toals, Validate Syntax.
« Right-click in the PeopleCode Editor window, then select Validate Syntax.

The Validate utility has several functions, such as finding undeclared variables, mismatching data types, or
invalid methods or properties for aclass. Y ou can check either a single component or an entire project.

Errors or warnings produced by the Validate utility are displayed in the Validate tab at the bottom of the
PeopleCode Editor window.

Any variables that you don't declare are automatically declared for you, and a warning message appears in the
Validate tab for each undeclared variable. Y ou can right-click in the Validate tab and select Clear to delete all
the warnings listed there, then use the Validate utility again to ensure that your code runs without errors or
warnings.

Note. Thisfeatureis convenient if you have written multiple PeopleCode programs and you want to check the
syntax of one without saving. All PeopleCode programs associated with an item (record, component, and so
on) are checked prior to saving.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 249

Using the PeopleCode Editor Chapter 12

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Working With
Projects," Validating Projects

Chapter 15, "Debugging Y our Application,"” Compiling All PeopleCode Programs at Once, page 292

Formatting Code Automatically

Y ou do not need to format your PeopleCode statements; you need only to use the correct syntax. When you
save or validate, the system formats the code according to the rules in the PeopleCode tables, no matter how
you entered it originally. The PeopleCode Editor automatically converts field names to uppercase and indents
statements.

PeopleCode is case-insensitive, except for quoted literals. PeopleCode does not format anything surrounded
by quotation marks. String comparisons, however, are case-sensitive. When you compare the contents of a
field or avariable to a string literal, make sure the literal isin the correct case.

All field names in a PeopleCode program must be fully qualified, even if the field is on the same record
definition as the PeopleCode program. However, you only need to type in the name of the field. The editor
validates if the field exists on the current record, and reformats the field name to recordname.fieldname.

Using Drag-and-Drop Editing

In addition to the standard keyboard shortcuts and toolbar buttons, you can copy or move text within a
window or between two PeopleCode Editor windows by using the mouse and the CTRL key.

Note. Y ou cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

To move text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Place the mouse over the text and drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.
To copy text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Hold down the CTRL key as you drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

250 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Accessing PeopleCode External Functions

An external PeopleCode function is afunction written in PeopleCode (as opposed to a built-in function or
external DLL function) and defined in a program outside the one from which it is called. Externa
PeopleCode functions can be defined in any record PeopleCode program, but typically they are stored in the
FieldFormula event in records beginning with FUNCLIB_.

The PeopleCode Editor provides immediate access to external PeopleCode function definitions. Right-click
the function name in the program where the function is called, then select View Function FunctionName. This
opens a new PeopleCode Editor window containing the external function definition.

Note. Internet scripts are contained in records similar to FUNCLIB_ records. However, their names begin
with WEBLIB._.

Accessing PeopleCode Application Packages and Application Classes

The PeopleCode Editor provides immediate access to application packages, application classes, and
application class method definitions.

Right-click the package, class, or method name and, depending on the context, select from:

« View Application Package

+ View Application Class

« View Application Class Method

This opens the application package or a new PeopleCode Editor window containing the application class.

The following example shows the context menu for a fully-qualified application class name.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 251

Using the PeopleCode Editor Chapter 12

B PT_SECURITY.LDAP.AuthenticationMap.OnExecute (Application Package PeopleCode) N m]

I AuthenticationMap [application_class) jIDnExecute j
=

method setDirProd({edirProd As stringl:
method setlonnectDN (econnectDN As string)l:
method setlonnectPWD (sconnectPWD As string)s
method setS55L(&isSSL As string):

method addLDAPServer (saServer As PT_SECTURITY:LDAF:LDZRSsrwari-
method AuthenticationMap(): View Application Package l J
View Application Class
private
instance string sm host; Cut
instance integer &m port; Zopy.
instance integer em SSLport; Paste
instance string sm base;
N Find..

instance string sm_scope; .
instance string sm_authAttr; Replace...
instance string sm_connectDN;

instance string sm_connectPwd; Huthing 2o Unds ki
instance string sm dirID; Validate Syntax

instance string sm dirProd;

instance string &m_authMaplD; Definition Praperties

instance boolean em bSSL;
instance array of PT_SECURITY:LDAF:LDAPServer sm ldapServers;

N v

Context menu with options for View Application Package and View Application Class

The following example shows the context menu for a method.

!.' PT_NAV.NavEndNode.OnExecute (Application Package PeopleCode) - |EI|5|
I MavEndMode [application_class) jIDnExecute j
f+ e0penFolderHTML as String, +/ ﬂ

/+ enavlewvel as Number +/

/+ Beturns String +/

f+ Extendsz/implements PI_KNAV:NavNode.GenerateHIML +/
Local string enewHIML;

cnewHIML = 3This.GetNavTho—- e e e, 2Thi=z, snavlewvel, sFolderId, %This.:
Berurn cnewHTML: View Application Class Method I
end-method; View Application Class J
Ll
method GetFolderCachePath
/+ Beturns String +/ Capy
Paste
BEEM Build the folder ob? Eind caching;

Local string &FolderPatk)

Local string &Path = 3Tt Replace...

Local number &3tartPos = o uioq b (jndg Chrl+z
Local number sRightParer
Local number sleftParent validate Syntax H

While sLeftParenPos <> Definition Properties

sRightParenPos = Find("} , &Path, =leftParenfFos);

&FolderPath = &zFolderPath | Substring(sPath, sleftParenPos + 1, sRightParenPos - {&LEE‘I:PEEij
Ll |

|

Context menu with options for View Application Class Method and View Application Class

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Note. The application class context menu is not available for methods that are called by indirection.
In the following example the method CallMe would not be available to view using the context menu.

hj ect 0. Get bj ect (). Cal | Me();

Accessing Methods in Derived Classes

A method that is defined only in the superclassis not available if you attempt to view it using View
Application Class Method with the derived class, or subclass.

For example, in the following code snippet CCl_CRM extends CCI_BASE. The method Validate is not
defined in CCI_CRM; itisavailableto CCl_CRM by extension. The method Submit, on the other hand, is
overriddenin CCl_CRM.

If you right-click Validate and select View Application Class Method, the cursor will be placed at the
beginning of the application class CCR_CRM, not at the method definition in CCl_BASE.

If you right-click Submit and select View Application Class Method, you will be taken to the method
definition for Submit in CCI_CRM.

| mport EOCC: CCl _CRM
&CCl = Create EOCC:. CCl _CRM);

&CCl . Val i dat e(&Car d) ;
&CCl . Submi t (&Card);

This may be helpful when you need to know whether a method has been overridden.

Accessing Definitions and Associated PeopleCode

Y ou can open fields, records, pages, application packages, and other definitions from the PeopleCode Editor.
Or you can open a new PeopleCode Editor window containing the programs associated with afield, record,
page, application class, or other definition.

To open adefinition from the PeopleCaode Editor, right-click a PeopleCode definition reference and select
View Definition or View Application Package.

For example, you could open definitions by clicking the following references:
e Record.BUS EXPENSE _PER

« BUS EXPENSE_PER.EXPENSE_PERIOD DT

+ Page BUSINESS EXPENSES

+ PT_BRANDING:BrandingBase

If you access arecord definition from arecord field reference (that is, recordname.fieldname) the specified
record field is sel ected when the record definition opens.

To open anew PeopleCode editor window, right-click a reference to the definition and select View
PeopleCode or, for application class PeopleCode, select View Application Class Method or View Application
Class.

For example, you can access record PeopleCode from the following record and record field references:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 253

Using the PeopleCode Editor Chapter 12

+ Record.BUS EXPENSE_PER
« BUS EXPENSE_PER.EXPENSE_PERIOD DT

Note. Y ou can only view the PeopleCode and definition when the text isin the format recordname.fieldname.
If the text isin the format method(i).recordname,method(i).fieldname, or & MyRecord.Fieldname, the View
PeopleCode and View Definition commands are not available.

Y ou can access application class PeopleCode from the following references:

« PT_BRANDING:BrandingBase
* %This.ValidateSave(& aErrs)

Accessing Help

The PeopleCode Editor has context-sensitive online help for al PeopleCode built-in functions, methods,
properties, system variables, and meta-SQL . To access online help, place the cursor in the name of what you
want to look up, then press F1. If there is a corresponding entry in the online reference system it appears;
otherwise aNo Help Available error message appears.

If more than one entry is applicable, a pop-up window that lists all applicable entries appears. Select the
correct entry.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Setting up Help

254

To set up the help, use the F1 Help URL field on the PeopleTools Options page to specify where the
documentation is stored.

The format of the URL isasfollows:
http://doc_location/f1sear ch.htm?Contextl D=% CONTEXT_ID%& LangCD=%LANG_CD%

The doc_location specifies where the documentation files are located on your system. The rest of the URL
exactly the above format.

For example, you might place the following URL in the F1 Help URL field:
http://Pandora/doc/f 1search.htm?Contexti D=%CONTEXT_ID%& LangCD=%LANG_CD%

After you specify the help location, you must exit all PeopleTools sessions and start again before you can
access the help.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Changing Colors in the PeopleCode Editor

Y ou can change the display (foreground) color for many language elements in the PeopleCode Editor,
including quoted strings, keywords, and built-in functions. Y ou can also change the background color.

To change the display colors:
1. Select Edit, Display Font and Colors.
2. Select the language element that you want to change.
3. Select the foreground color.
If you click the Automatic check box, the default color is used.
A box displaying the selected color isonly available if the Automatic check box is not selected.

If you click the box displaying the selected color, the standard color chart for your display appears. If you
click Other from this dialog or click the drop-down list on the Font and Color Settings dialog box, the
custom color chart for your display appears.

4. Select the background color.

If you click Reset All, the default colors for the PeopleCode language elements are reassigned.

Selecting a Font for the PeopleCode Editor
The default font for the PeopleCode Editor is 9-point Courier New.

To change the PeopleCode Editor font, select Edit, Display Fonts and Colors. Use this dialog box to change
the font for the editor.

Note. When you select afont for the PeopleCode Editor, the font selection dialog box provides choices based
on acharacter set appropriate for your international version of Microsoft Windows. If you experience trouble
embedding foreign characters (such as Thai characters) in PeopleCode, you might need to change the font
setting. If you are trying to display Thai charactersin Microsoft Windows 95, you might also need to change
your keyboard input settings for the charactersto display correctly. Y ou can change your keyboard input
settings from the Input Local es tab on the Windows Regional Settings control panel, or on the Keyboard
control panel.

Changing Word Wrap in the PeopleCode Editor

The PeopleCode Editor supports text word wrapping. Y ou can turn word wrapping on and off for an open
editor window. Y ou can also specify the default value for word wrap, as well as whether the text wrapsto the
editor's window size or to a fixed number of characters per line.

To turn word wrapping on or off for an open editor window, go to Edit, Word Wrap. After you close
Application Designer, all word wrap values are reset to the default value for the editor.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 255

Using the PeopleCode Editor

256

Chapter 12

Specifying Word Wrap Options

Go to the Tools, Options dialog box, Editorstab, to specify the word wrap options.

F'rn:niec:tl Yalidate Editars | Generall Elwnerldl Imagel Brnwserl F'e::npleE-:u:IeI

—Wwhord Wrap

PeopleCode Editor word wiap: [Enable
% wiiap onwindow size,

€ Wiap online size. Marimum characters per line;

SOL Editor waord wrap:

f* “Wiap on window size.
£~ Wwiap on line size. fasimum charackers per line;

HTHL Editor ward wrap:

£ Wiap onwindow size,

£ Wiap online size. Maximum characters per line;
Free Form Style Sheet Editor waord wiap: [Enable

€ Wiap onwindow size,
£ wirap o line size. Masimum characters per line;

¥ Enable

[~ Enable

Il

Options dialog box: Editors tab

Enable (word wrap)

Wrap on Window Size

Wrap on LineSize

Maximum Char acters per
Line

Specify whether word wrap is the default mode when opening the editor. If
this box is not checked, wrapping text based on window sizeis the defaullt.

Specify whether the text wraps based on the size of the window.

Specify whether the text wraps based on the number of charactersin aline.
If this box is checked, you can specify the number of maximum number of
characters per line.

Specify the maximum number of characters alowed for aline before the
text wraps. The default value is 90. Valid values are between 25 and 2000.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Using the PeopleCode Event Properties

To access the PeopleCode Event properties, open a PeopleCode editor window, then either press Alt + Enter
or click the Properties button.

PeopleCode Event Properties |

ES) |

3-Tier Execution Location
i Application server

£ Client

| k. I Cancel

PeopleCode Event Properties dialog box

Note. This dialog box has been deprecated. It has no effect on the location of the execution of code.

Generating PeopleCode Using Drag-and-Drop

Y ou can generate references to definitions using a drag-and-drop operation. Y ou can also generate
PeopleCode templates for accessing business interlinks and component interfaces.

This section discusses how to:

« Generate definition references.
» Generate PeopleCode for a business interlink.
» Generate PeopleCode for a component interface.

» Generate PeopleCode for afile layout.

Generating Definition References

When you drag definitions, such as menus, records, record fields, and pages, from a project into an open
PeopleCode editor window, you generate a reference to the definition. For example, suppose your project
contain a component named QEACTIVITY_GUIDE 1. If you drag the QEACTIVITY_GUIDE 1
component definition from the project into an open PeopleCode window, the word QEACTIVITY_GUIDE 1
prefixed with the keyword COM PONENT iswritten to the PeopleCode program in the place where you
dragged the definition.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 257

Using the PeopleCode Editor Chapter 12

Generating PeopleCode for a Business Interlink

After you create a business interlink definition, you use PeopleCode to instantiate an interlink object and
activate the interlink plug-in. This PeopleCode can be long and complex. Rather than write it directly, you
can drag and drop the business interlink definition from the Application Designer Project view into an open
PeopleCode edit pane. PeopleCode Application Designer analyzes the definition and generates initial
PeopleCode as a template, which you can modify to suit your purpose.

The following is a snippet of the code that is generated:
| * ===>

| * ===>

This is a dynanically generated Peopl eCode tenplate to be

used only as a helper to the application devel oper.

You need to replace all references to '<*>' OR default val ues
with references to Peopl eCode variables and/or a Rec.Fields.*/

/* ===> Declare and instantiate: */

Local Interlink &Q¥E_AE NONSSL_ 1;

Local BI Docs & nDoc;

Local BI Docs &out Doc;

Local bool ean &RSLT;

Local numnmber &EXECRSLT;

&QE AE NONSSL__ 1 = Getlnterlink(lNTERLI NK. QE_ AE NONSSL_BI) ;

Generating PeopleCode for a Component Interface

258

After you create a component interface definition, you can use PeopleCode to accessit. This PeopleCode can
be long and complex. Rather than write it directly, you can drag and drop the component interface definition
from the Application Designer Project view into an open PeopleCode edit pane. Application Designer
analyzes the definition and generatesinitial PeopleCode as a template, which you can modify to meet your
reguirements.

Thefollowing is a snippet of the code that is generated:

[* ===>

This is a dynanically generated Peopl eCode tenplate to be

used only as a helper to the application devel oper.

You need to replace all references to '<*>' OR default val ues
with references to Peopl eCode variables and/or a Rec.Fields. */

Local Api Obj ect &oSession;

Local Api Obj ect &oCurrencyCdG ;

Local Api Obj ect &oPSMessageCol | ecti on;

Local Api Obj ect & PSMessage;

Local File &lLogFile;

Local nunber & ;

Local String &strErrMgSet Num &strErrMsgNum &strErrMsgText,
&strErrType;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Y ou can also access a component interface using the component object model (COM). Y ou can automatically
generate a Visua Basic template, a Javatemplate, or a C template, similar to the PeopleCode template, to

begin.

To generate atemplate:

1. Open acomponent interface in Application Designer.

2. Right-click anywhere in the open component interface and select atemplate type.
Y ou must save the component interface before generating the template.

When the template is successfully generated, a message appears with the full path and name of thefile
containing the template.

3. Open the generated file and modify the source code to meet the needs of your application.

Thefollowing isthe initial code snippet that is generated for a Visual Basic template:
Option Explicit

=-==>

"This is a dynanically generated Visual Basic tenplate to be
"used only as a helper to the application devel oper.

"You need to replace all references to '<*>' OR default
"values with references to Visual Basic variables.

Di m oSessi on As Peopl eSoft _Peopl eSoft. Sessi on

Private Sub ErrorHandl er()
"xxxx% O splay Peopl eSoft Error Messages *****
If Not oSession Is Nothing Then
I f oSession. ErrorPendi ng O o0Sessi on. War ni ngPendi ng Then
Di m oPSMessageCol | ecti on As PSMessageCol | ecti on
Di m oPSMessage As PSMessage
Set oPSMessageCol | ection = 0Sessi on. PSMessages
Dimi As |nteger
For i = 1 To oPSMessageCol | ecti on. Count
Set oPSMessage = oPSMessageCol | ection.lten(i)
Debug. Print "(" & oPSMessage. MessageNunber & "," &
oPSMessage. MessageSet Nunber & ") : " & oPSMessage. Text
Next i
"***x* Done processing nessages in the collection;
' %% % %% G(to del ete * Kk Kk k%
oPSMessageCol | ecti on. Del et eAl' |
End |f
End If
End Sub

Generating PeopleCode for a File Layout

After you create afile layout definition, you can use PeopleCode to accessit. This PeopleCode can be long
and complex. Rather than write it directly, you can drag and drop the file layout definition from the
PeopleCode Application Designer Project view into an open PeopleCode edit pane. Application Designer
analyzes the definition and generatesinitial PeopleCode as a template, which you can modify to meet your
reguirements.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 259

Using the PeopleCode Editor Chapter 12

This example shows some of the code that is generated:

Function Edit Record(&REC As Record) Returns bool ean ;
Local integer &E;

REM &REC. Execut eEdi t s(%&Edi t _Requi red + %&dit_Dat eRange +
%Edit _YesNo + %Edit_Transl ateTable + %&dit_Pronpt Table +
%Edi t _OneZero);

&REC. Execut eEdi t s(%Edit _Required + %dit_ Dat eRange +
%Edit _YesNo + %Edit_OneZero);
If &REC. |IsEditError Then
For & = 1 To &REC. Fi el dCount
&WYFI ELD = &REC. Get Fi el d(&E) ;
| f &WFIELD. EditError Then
&VBGNUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MYFI ELD. MessageSet Nunber ;
&L OGFI LE. WiteLine("****Record:" | &REC Nane | ",
Field:" | &WFIELD. Nane);
&L OGFI LE. WiteLine("****" | MgGet (&MSGSET,
&VBGANUM " ")) ;
End- | f;
End- For ;
Return Fal se;
El se
Ret urn True;
End- | f;
End- Functi on;

260 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13

Using the SQL Editor

This chapter provides an overview of the SQL editor window and discusses how to:
» Access SQL definition properties.

» Accessthe SQL editor.

» Usethe SQL editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Understanding the SQL Editor Window

Use the SQL Editor to create SQL for SQL definitions, record views, and Application Engine programs.

The SQL Editor and the PeopleCode editor interfaces are similar. Y ou can add, delete, and change text; you
can use the find and replace function; and you can validate the SQL. When you save a SQL definition, the
code is automatically formatted (indented and so on) the same as it is for a PeopleCode program. Y ou can
select the colors for displaying keywords, comments, operators, and so on. Y ou can also specify word wrap
options.

See Chapter 12, "Using the PeopleCode Editor," Using the PeopleCode Editor, page 246.

Thetitle bar of the editor window displays either the name of the SQL definition or the name of the
component that contains the SQL. For example, if the SQL statement is part of an Application Engine
program, then the names of the program, the section, the step, and the action are listed in the title bar, as
shown in the following example:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 261

Using the SQL Editor

Chapter 13

E ARCH_EXPORT SECTION: MAIN STEP: Step001 ACTION: SOL -0 x|

$Select (PSARCH ID) A
SELECT PSARCH_ID

FROM PS_ARCH HST ROST
WHERE OPEID = %0peratorId

AND RUN_CNTL_ID = $Eind(RUN CNTL_ID):

< | vl 2

Example of Application Engine program SQL in the SQL editor window

The editor window consists of the main edit pane. For SQL definitions and SQL used with records, a drop-
down database list appears at the upper left. For SQL definitions, a drop-down effective-date list is available

at the upper right.

Note. When you make a selection from either drop-down list box, your selected entry has ayellow
background, indicating that you must click the edit pane before you can start typing.

Accessing SQL Definition Properties

262

Do one of the following to access the definition properties for the SQL definition:
* PressALT+Enter.
« Select File, Definition Properties.

» Right-click in the definition and select Definition Properties.

Use general properties to specify adescription for the SQL definition as well as additional comments. The

description appearsin Application Designer search lists.

Use the advanced properties to display an effective date with the SQL definition.

Note. The Audit SQL field on the Advanced Properties tab is not used.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13 Using the SQL Editor

Accessing the SQL Editor

This section discusses how to:

» Create SQL definitions.
» Create dynamic view or SQL view records.
» Accessthe SQL editor from Application Engine programs.

Y ou access the SQL editor differently for each type of component.

Creating SQL Definitions

A SQL definition contains SQL statements, which can be entire SQL programs or just fragments that you
want to reuse. Y ou can access, create, change, or delete SQL definitions using Application Designer, or you
can use the SQL classin PeopleCode. Y ou can upgrade SQL definitions, and you can add them to a project.
The following example shows a SQL definition:

@ GET_DISTINCT_WORKLIST.O {S0L Definition}) = | Ellil
I[default] j I 01./01,/1300 j
SELECT busprochame ﬂ
;, activityname
; Eventname
, ROUTENAME
;, Wlrecname
FROM PREVENTROUTE
w
| M 4

Example of SQL definition with effective date

To create a SQL definition:

1. From Application Designer, select File, New, SQL.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 263

Using the SQL Editor Chapter 13

2. Specify the database type to associate with the SQL definition.
Y ou can associate more than one database type with asingle SQL definition. In PeopleCode, you can
specify the appropriate database type for the program. However, at least one of the SQL statements must
be of type Default.

3. (Optional) Specify an effective date.
To specify an effective date with your SQL definition:
a. Accessthe object properties by selecting File, Object Properties.

Alternatively, select the SQL definition, right-click it, and then select Object Properties, or press ALT
+ ENTER.

b. Click the Advanced tab, and then click Show Effective Date.
When you click OK, the SQL definition shows adate in the right-hand drop-down menu.
4. Enter the SQL code.
Y ou do not need to format your code. The SQL editor formats it when you save the SQL definition.
See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Using Peopl eSoft
Application Designer"

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class'

Creating Dynamic View or SQL View Records
When you create a SQL view or dynamic view record definition, you enter a SQL view Select statement to

indicate the field values that you want to join and the tables that contain the field values. Y ou do thisin the
SQL editor, as shown in the following example:

264 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13

Using the SQL Editor

E® ACLCOMPONENT_¥2.2 (SOL Definition)

=10l x|

I[default]

,

R - T T

< |

el = S O

SELECT &.MENUNAME

. ITEMHTTH

. BARNAME

. ITEMNAME

.BARLABEL

. ITEMLAEBEL

LACTIONS

. PNLGEPHANE

.HMARKET

FEOM PEMENUITEM &

P3FPNLGEFDEFN B

WHERE &.ITEMTYPE = &
AND &, PNLGRPHAME =

AND &A.MAPKET = B.MARFET

E.PNLGRPHAME

SQL editor for SQL view record definition

Access the SQL editor with record definitions.

1. Open or create adynamic view or SQL view record definition.

2. Select the Record Type tab.

3. Click the Click to Open SQL Editor button.

Y ou can select a database type, but not an effective date, from the SQL editor for dynamic view and SQL
view record definitions.

Note. Y ou must be sure to save record definitions of the SQL View type before opening the SQL editor. Once
the SQL editor is open, the Save options are disabled and inaccessible. If you do not save your changes before
opening the SQL editor, you may lose your work.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Accessing the SQL Editor from Application Engine Programs

Y ou can access the SQL editor from the following action types:

« Do Sdect

« Do Until

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

265

Using the SQL Editor Chapter 13

« Do When
« DoWhile
+ SQL

The following example shows an Application Engine program in the SQL editor:

" ARCH_REPORT SECTION: MAIN STEP: StepD01 ACTION: SQL (3 -0l x|

Fselect (PSARCH ID, PSARCH FILE PATH) |

SELECT P3ARCH_ID
;, PSARCH FILE PATH
FROM P53 _ARCH EPT _RQST
WHERE OPRID = %0peratorId
AND BEUN_CHTL_ID = :Bind(RUN_CNTL_ID)

£ vl

Example of an Application Engine program in the SQL editor window

Access the SQL editor in an Application Engine program.
1. Open the Application Engine program.
2. Select the action.
3. Either right-click and select View SQL, or select View, SQL.
Select the database type and effective date for this SQL in the section, not in the SQL editor.

Using the SQL Editor

The SQL editor works similarly to any other text editor. Many of the same functions are available as in the
PeopleCode editor, for example, cut, paste, find, and replace.

When you right-click in an open SQL editor window, you see available functions for the SQL editor:

266 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13 Using the SQL Editor

Format Dizplay
" alidate Suntax
Fesolve Meta SHL

Delete Statement F&

Cut Clrl+:
Copy Chrl+C
Fazte Clrl+4
ndo Chrl+2
Find... Chil+F
FReplace... Ctrl+H

Object Properties. ..

SQL editor shortcut menu

This table describes the functions that are available in the SQL editor but not the PeopleCode editor:

Function Description

Format Display Y ou do not need to format your SQL statements; you
only need to use the correct syntax. When you save or
validate, the system formats the code according to the
rules in the PeopleCode tables, no matter how you
entered it originally. It automatically convertsfield
names to uppercase and indents statements. The
resulting look of SQL is consistent with other programs
in the system.

Resolve Meta-SQL If the SQL contains meta-SQL, select Resolve Meta-
SQL to expand the meta-SQL statement in the output
window. This option is on the Meta-SQL tab.

Delete Statement Y ou can delete standalone SQL statements. This menu
itemis not enabled with SQL statements that have a
database type of Default with no effective date, or for
statements that have a database type of Default and an
effective date of 01/01/1900.

This example, using Resolve Meta-SQL, shows how the following code expands:

%Joi n(COWON_FI ELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ)

— —
AECAE_APPLID =32 AE_AFFLID -
AND ABCYERSIOM = =¥ WVERSIOM
AND AEC LASTUPDOPRID =342 LASTUPDOPRID
AND AECLASTUPDDTTM = 42 LASTUPDOTTH

AT\ Debd T Citject Pelererces. Upgrade o Fenuts) Walutse) Mets 0L

Meta-SQL expanded in the output window

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 267

Using the SQL Editor Chapter 13

See Also

Chapter 12, "Using the PeopleCode Editor," Writing and Editing PeopleCode, page 247

268 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14

Creating Application Packages and
Classes

This chapter provides an overview of application packages and discusses how to:
» Create application packages.

» Usethe Application Package Editor.

 Edit application package classes.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Application Classes'

Understanding Application Packages

Use the Application Packages Editor to create application packages. A package contains other packages or
application classes. A subpackage is any package within a primary, or parent, package.

Thetitle bar of the editor window displays the name of the application package definition. The main window
displays the classes and other application packages that make up the application package definition.

The application package hierarchy is displayed as atree structure. Y ou can use the expand icon (+) and the
collapse icon (-) to expand or collapse individual nodes.

To expand all the nodes in a package select View, Expand All or click the Expand All Nodes button on the
toolbar. To collapse all the nodes in a package select View, Collapse All or click the Collapse All Nodes
button on the toolbar.

In the following example, PTAF_UTILITIES is the primary package, and Encryption, Exception Utilities,
Integration, and so on, are subpackages. Printable Document isa classin the PTAF_UTILITIES application
package, while Base64 and PSCipher are classes in the Encryption subpackage.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 269

Creating Application Packages and Classes Chapter 14

%W PTAF_UTILITIES (Application Package)

FTAF_UTILITIES
EZ PrintableDocument
2 Encryption
g Base6d
Eg PSCipher
B2 Exception Utiities
EZ ExceptionHandler
B2 Integration
2 Portal
B2 PrintableDocument

EZ PrintableDocument
+- B2 Exceptions
—-E2 Lils
EZ printDocStateObj

Application Package Editor main window

Creating Application Packages

This section provides an overview of package names and discusses how to create application package
definitions.

Understanding Package Names

Y ou can create a subpackage with the same name as another package or subpackage within the same
application package definition, as long as the fully qualified name is unique for each subpackage. Each
subpackage is differentiated by the full path name of the class (from the package definition name and the
subpackage name).

For example, suppose in the application class PT_FRUIT, where PT_FRUIT isthe primary class, you had the
following structure of subpackages (no classes are listed in this example):

270 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14 Creating Application Packages and Classes

& PT_FRUIT {Application Package)

=€ Recipies
B3 Coocked

Example of application package naming conventions

In this example, three subpackages are named Raw, but the fully qualified name for each is unique. For
example, the first oneis qualified by the name of the primary package. Itsfully qualified nameis
PT_FRUIT:Raw.

The other Raw subpackages are also qualified by the subpackages that contain them. Their names are
PT_FRUIT:Reciepies:Raw and PT_FRUIT:Smoothies.Raw.

Similarly, you cannot create two classes with the same name within a given package or subpackage. Y ou can
create classes with the same name within the same application package definition, just like subpackages, as
long asthe fully qualified nameis unique. Each classis differentiated by the full path name of the class.

Note. Y ou cannot create a structure for which more than two levels of subpackages are defined below the
primary package.

Creating Application Package Definitions

This section discusses how to create a new application package or insert a new package or classinto an
application package.

To create a new application package, access Application Designer and select File, New, Application Package.

To insert anew package or class, open an application package definition. Select a package or subpackage and
select Insert, Package or Insert, Application Class.

Application package names and application class names must begin with an al phabetic character and must
consist of only alphanumeric characters and underscores (_).

Note. In certain cases you may encounter an error if you use Save Asto create a new application package.

The error occurs when you choose to save the PeopleCode with the application package and the PeopleCode
uses a %T his system variable. The %This system variable is used in application class PeopleCode to refer to
the current object.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "Application Classes," Using %This with
Constructors

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 271

Creating Application Packages and Classes Chapter 14

Using the Application Package Editor

When you right-click an open Application Package Editor window, you see the available functions:

B0t
[Eamy
Easte
Delete

= s e
| et Fackage

Fiename

Wiew PeopleCode

Frirt....

Application Package Editor pop-up menu

Cut, Copy, and Paste Not available for this release. Instead, insert new subpackage and class
nodes where needed and use the clipboard to copy and paste PeopleCode
text from classto class.

To copy the primary package, select File, Save As.

Delete Click to delete either a class or a package. The PeopleCode text is not
actually deleted until you save the application package. Deleted
PeopleCode classes can be recovered by reinserting the class node, as long
as you have not saved in the interim.

Insert App Class (insert Click to insert an application class. Because classes cannot have children
application class) (subclasses), they can be inserted only into an existing package.
Insert Package Click to insert an application package. Y ou can only insert packages into an

existing package or subpackage.

Rename Click to rename either a class or a subpackage. When you save the
definition, all PeopleCode programs associated with the renamed class are
also updated. To rename the primary package definition, select File,
Rename.

View PeopleCode Click to view the associated PeopleCode. PeopleCode can be defined only
for application classes, and it is not directly related to package nodes.

Print Click to print the application package definition, including al the
PeopleCode in the classes.

272 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14 Creating Application Packages and Classes

Editing Application Package Classes

From an application package, you can access the PeopleCode programs associated with the classes of the
package.

The Application Packages Editor and the PeopleCode Editor interfaces are similar. Y ou can add, delete, and
change text, you can use the find and replace functions, and you can validate syntax. When you save
application packages, the code is automatically formatted (indented and so on), just asit isin the PeopleCode
Editor.

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the drop-
down event list at the upper-right, as shown in the following example:

EB'PT_BRANDING.HeaderLinkPIA.OnExecute (Application Packs -1Of x|

HeaderLinkPlA [application_class]) j OnExecute

FT_BRAMDIMG [applization_package]

BrandingBase [application_clazs]
HeaderLinkBaze [application_class]
HeaderLinkHP [application class

[N

class HeaderLinkPId4 extends HeaderLinkBase

method HeaderLinkPIA (sapiPortal As ApilObject, sstrtabIndex Lz string,
sContentlRBL Az string) !

method ZetiddFawvi):

method 3etlWLi):

method JetiavellarningUREL (&URL 4= string) Feturhs string:

method CheckiaveWarningFlag() Eeturhs string:

method CGetHomeURL() Returns string;

method GetLogoutlURL() REeturns string;

method GetitartURL() Beturns string:

method GetWLURLI) Feturhs string:

method GetGoZavelWlarnHTML(1 Feturns string:

4 | v 4

Example of Application Packages Editor window
Only one event is defined for an application class, OnExecute. This is not an event in the Component
Processor flow. The application class runs when called.

The drop-down list at the upper-left enables you to navigate directly to the PeopleCode associated with every
classin the package, as well asto every subpackage and its classes.

To edit an application class:

1. Open the application package.

2. Select aclass.

3. Either select View, PeopleCode or right-click and select View PeopleCode.

A PeopleCode Editor window appears.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 273

Creating Application Packages and Classes Chapter 14

See Also

Chapter 12, "Using the PeopleCode Editor," Writing and Editing PeopleCode, page 247

274 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15

Debugging Your Application

This chapter provides an overview of the PeopleCode debugger and discusses how to:
» Access the PeopleCode debugger.

» Use PeopleCode debugger features.

» Use PeopleCode debugger options.

» Set up the debugging environment.

« Compile PeopleCode programs at once.

» Set PeopleCode debugger 1og options.

« Interpret the PeopleCode debugger log file.

» Useapplication logging.

e UsetheFind In feature.

» Usecross-reference reports.

Understanding the PeopleCode Debugger

The PeopleCode debugger is an integrated part of Application Designer. The interface to the debugger has a
visual indicator of breakpoints, an arrow indicating the current line, and the ability to step through code. Y ou
can inspect the value of avariable by holding the cursor over it and reading the pop-up bubble help. The
debugger also provides variable inspection windows for global variables, local variables, function parameters,
and component-scoped variables. It also enables PeopleCode objects to be expanded, so you can inspect their
component parts.

Note. The PeopleCode debugger does not work on Microsoft Windows 95 or Windows 98.

Do not try to use the PeopleCode debugger with the SwitchUser function. Only the first user islogged into
the PeopleCode debugger. Once the switch occurs, breakpoints, logging, and so on are no longer executed.

Accessing the PeopleCode Debugger

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 275

Debugging Your Application Chapter 15

Note. Y ou can start a debugging session either before or after you start a PeopleSoft component.

1. Determine whether to run Application Designer in two-tier mode or three-tier mode.

If you are debugging Application Engine or component interface PeopleCode, run Application Designer
in two-tier mode, with a direct connection to the datatbase.

If you are debugging an application in PeopleSoft Pure Internet Architecture (PIA), run Application
Designer in three-tier mode, through the application server. Y ou must be logged on to PIA and to
Application Designer using the same user ID.

276 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

2. Access the debugger through Application Designer by selecting Debug, PeopleCode Debugger Mode.

The Local Variables watch pane and the Call Stack pane open. PeopleCode programs that had breakpoints
set from your previous debugging session are opened also, and the breakpoints are restored.

If you did not have breakpoints set, open the PeopleCode program you want to debug and enter debug
mode. The debugger will open with the current PeopleCode program and you can set your breakpoints.

Note. If you have already opened the debugger and then closed it, the menu may not change correctly to
enable you to access the debugger a second time. If this occurs, click the Local Variables window, and
then try the Debug menu again.

In PIA, navigate to the point where the breakpoint occurs. Y our application pauses and the Application
Designer icon flashes in the task bar. Switch to Application Designer to step through your program or
continue running it.

ﬂ:'Mainl:ain Purchase Orders - Windows Internet Explorer

@\:—: - |g, http:,l',l'win2k33nt.us.oracle.com,l'psp,l'TlBBSElD1,I'EMPLO‘."EE,I'TRN,I'C,I'PSU_TRAINING.PSU_PO.j 3| X ILi\re Search 2|~

File Edit Wiew Favorites Tools Help

[] oo »
w o 88' ‘| € Maintain Purchase ... X | @ Inkernet Explorer cann... | @ Inkernet Explorer cann. .. =5 - Bl - = - b Page v (O Tooks -

Hotne: | Wiarklist | MuttiChannel Console | Add to Favorites | Sign out
Favorites Main Menu > Purdlasing > Maintain Purchase Orders
Mew Window | Help | Cus]‘ ;\l\ saving... —
Purchase Orders)
Business Unit: ASPO1
Order Humber: 00000028
*Order Date: 10082003 5 order Status: IOF]B” :" Status Date: 10/24/2003 [
\endor Code: BETAD! QU mata Ofice Supply Delivery Method: Q
Item Detail Customize | Find | 1] | i First L4 12 of 2 o Last
Line # |*hem Code |Description Part Humber Color *Quantity *Price Total Price
1 |PsUnss Qo Sticky Notes | || 200 | 067 &7.00 [=]
2 [PEUD4E O Clip Board | [= B | 2.59 16.54 [£] [=]
Grand Total: Fa2.54

e | CuReturn to Searchl +[E] Previous in List | +E] Mesxt in List | [=] matity | 4 Refresh | E‘+Add| UpdateJDiSplayl _|;|
| B

| ,— ,_ l_ l_ l_ l_ |\g Local intranet | h100% -
e

J I /€ Maintain Purchase Or... [N SR Iv

Application Designer icon flashes in the toolbar when the application hits a breakpoint

If the debugger does not engage, check that you used the same user ID to log into PIA and Application
Designer, then check your application server configuration to verify that PeopleCode debugger is enabled.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 277

Debugging Your Application Chapter 15

Note. Y our security administrator has options for allowing users to access different parts of Application
Designer, including the PeopleCode debugger. If you are having problems accessing the debugger, you may
need to contact your system administrator about your security access. Y ou can access the PeopleCode
debugger from outside a firewall.

Using PeopleCode Debugger Features

This section discusses:

« Visble current line of execution.
» Visible breakpoints.

« Hover inspect.

» Single debugger.

» Variable panes.

» Genera debugging tips.

Visible Current Line of Execution

This example shows the current line indicator (green arrow displayed in left-hand gutter):

E/FUNCLIB_PWDCNTLPWDCNTL FieldChange (Record PeopleCode) I] 4|

| PWDCNTL [field] j IFieIdChange

Declare Function UpdateSystemVersions PeopleCode FUNCLIB PTSEC.OPRID FieldFormula;

Declare Function UpdatePSLOCK PecopleCode FUNCLIB PTISEC.CPRID FieldFormula;

/¥ B.50 Enhancement to make sure account lock status gets published when changed. */

Declare Function updateUserProfilefAcctlockFailedlogins PeopleCode FUNCLIB PTSEC.FUNCTION FIELD FieldFormula;

Ll fLel

ooo Function PASSWORD CONTROLS():

ool If (IsDisconnectedClient(}) = False Then
rem get values from psoprden and pssecoptions;
00z Local string £USERID = %SignonUserId;
003 o Local number sFailedNum;
oo4 Local date eLASTCHANGE: -
KN — v

PeopleCode debugger with current line of execution

Visible Breakpoints
The PeopleCode debugger supports visual indicators that signify breakpoint locations. In the following
example, the current line indicator (green arrow) is shown at the first line, and the breakpoint (red dot
displayed in left-hand gutter) ison line 8:

All breakpoints are saved when Exit Debug Mode is selected.

278 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

Note. Y ou cannot set breakpoints in function declarations, variable declarations, or comments.

Hover Inspect

If the program is already running, you can see the actual values for the variables by holding the cursor over
them. The current value appearsin a pop-up window, as shown in the following example:

E'Funais_PWDONTLPWDONTL FieldChange (Record PeopleCode) Y] 21

| PWDCHTL (field) leieIdChange j
Declare Function UpdateSystemVersions FeopleCode FUNCLIB PTSEC.OPRID FieldFormula; -
Declare Function UpdatePSLOCK PeopleCode FUNCLIB PTSEC.OPRID FieldFormula;

f* B.50 Enhancement to make sure account lock status gets published when changed. */
. Declare Function updateUserProfilelcctlockFailedlogins PeopleCode FUNCLIE PTSEC.FUNCTION FIELD FieldFormula;

oo Function PASSWORD CONTROLS()

0oL If (IsDisconnectedClient()}} = False Then
rem get values from psoprden and pssecoptions;
00z Local string sUSERID = %SignonUserId:
00z o Local number &E‘ail'ﬁ@l
oo Local date eLASTCH! = -
KN — A

PeopleCode debugger with breakpoint, current line of execution, and hover inspect

Hover inspect isimplemented only for simple variables and fields.

Hover inspect is not implemented for object expressions (for example, rowset assignments and array
assignments).

Single Debugger

Each PeopleSoft session you run on a machine can have its own debugging session. However, only one
instance of the PeopleCode debugger can occur per session. If more than one instance of Application
Designer is running for asession, only one may be the active debugger at agiven time.

From within a running instance of Application Designer, any component in the same session is also placed
into debug mode.

After the session isin debug mode, any component that is started and that belongs to that session
automatically goes into debug mode.

Similarly, Application Engine PeopleCode and component interface PeopleCode can be debugged.

After you exit debug mode by selecting Debug, Exit Debug Mode or by exiting Application Designer, all
components in that session go out of debug mode. If you exit a component, debugging continues with any
remaining open and running components.

If more than one Application Designer session is running, the Application Designer session that is used as a
debugger isthefirst one to be started.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 279

Debugging Your Application Chapter 15

In debug mode, a PeopleCode Editor window opens for every item (for example, record, component, or page)
that has PeopleCode in it when that PeopleCode is executed. If a component has more than one event with a
PeopleCode program, then only one window opens per item. For example, if you have arecord that has
PeopleCode in both the SearchSave and Rowl nit events, only one PeopleCode Editor window opens: first it
contains the SearchSave PeopleCode program, and then the RowInit program. If you have PeopleCode in the
Rowlnit event for two different records that are part of the same component, two PeopleCode Editor windows
open, one for each RowInit PeopleCode program.

Variables Panes

280

The four types of variables panes are:
e Loca

+ Globa

« Component

» Parameter

The Local, Global, and Component variable panes show local, global, and component variables, respectively.
The Parameter variable pane shows the value of parameters passed in function declarations.

From the variables pane, you can check the value of the variables you have in the program. These values are
updated as the code runs. The following example shows the variables pane:

il Yariables H=] E3
Local Hame Local Yalue

ERS0 Rowset

ERS1 Rowset

ERS2 Rowset

&RSTH Rowset

EMYFIELD Qooooz

& 2

EF QUMD nooota

ECOPYFRMREOW =no values

ECOPYTROW =no values

1]] B

Local Variables pane

In addition, you can expand any of the objects to see its properties by clicking the plus sign next to the
variable name. In the following example, alevel one rowset is expanded. Y ou can see the properties, such as
ActiveRowCount and DBRecordName, that are part of the rowset.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

RowCount 1
ActiveRowCount 1
DeleteEnabled True
InserEnabled True
Level 1
(=1
EffSeq Q.00
H ParentRowset
FH ParentRow
Marne EMPL_CHECKLIST
DBRecordMame EMPL_CHECKLIST
IsEditErrar False
TopRowMumber 1
GetRow..)
&RS2 Rowset
&RSTH Rowset
EMYFIELD =ho value=
2l =rnowaliios=
1]

Local Variables pane with rowset object expanded

In addition, some objects contain other objects: arowset contains rows, rows contain records or child rowsets,
and records contain fields. Y ou can expand these secondary objects to see their properties. In the following
example, the first row of arowset is expanded, asisthe EMPL_CHECKLIST record:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 281

Debugging Your Application Chapter 15

Local Hame Local Walue

SRS

FoveiCount 1
ActiveRowCount 1
DeleteEnakbled True
InzernEnabled True
Lewel 1
Efflt

EffSeq 0.00
ParertRowset
ParertRo

Mame EmPL CHECKLIST
DBERecordMame EMPL CHECKLIST
I=EditErrar Falze
TopRowMumber 1
O GetRow(..)
El i1y
FecardCount 4
ChildCourt 1
RowwMumber 1
Wisible True
Selected Falze
lzChanged True
IzDeleted Falze
letewy True
ParertRowset
I=EditErraor Falze
Style

O GetRecord..)
B EMPL CHECKLIST

lzCeleted Falze

IzChanged True

Martme EMPL CHECKLIST
FieldCournt 5

1

Variable pane with rowset, row, and record expanded (shown with condensed font)

Field Values

When you view afield object in the debugger, the value of the field islisted in the Vaue column. Therefore,
you do not have to navigate to the Value property to see the value of afield.

The following example shows the PERSONAL_DATA record and the values of the fields:

282 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

Local Yanables

Local Hame
B PERSOMAL_DATA
IsDeleted Falze
lszhanged True
Mame FERSOMAL_DATA
FieldZount o3
FarentFow
FelLanoRecMame
IsEditError Falze
B GetFieldi.)
EH EMFPLID a001
[MAME Schumacher, Simam
H MNAME_PREFIA My
] MAME_SLUIFFIH
E LAST _MAME_SRCH SCHUMACHER
EHFIRST_MAME_SRCH SInAChd
EHADDRESS 461 Haven Ct
EHADDRESSZ
EHADDRESSS
EHADDRESS4
HciTy Moraga
1]

PERSONAL_DATA record field values

In addition, the only fields that appear in the debugger are the fields that are actualy in the Component
Buffer. For example, suppose you have a derived work record, but you do not access all the fields in the work
record. Only the fields that you access and that are in the Component Buffer actually appear in the debugger.
See Also

Chapter 4, "Referencing Data in the Component Buffer," Record Fields and the Component Buffer, page 50

Call Stack Pane

The Call Stack pane appears by default when the PeopleCode debugger is started. To reopen it, select Debug,
View Call Stack Window.

The Call Stack pane displays a stack of PeopleCode functions and methods that are currently active but not
completed. Y ou can use the Call Stack pane to observe the flow of an application as it executes a series of
nested functions. When afunction is called, it is pushed onto the top of the stack. When the function returns,
it is popped off the stack.

The Call Stack pane displays the currently executing function at the top of the stack and older function calls
below that, in reverse calling order. Y ou can navigate to the source code of afunction from the call stack
window. The variables panes update to reflect values for the selected function.

The Call Stack pane is updated and usable when execution is stopped at a breakpoint.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 283

Debugging Your Application Chapter 15

284

Call Stack Indicators
The Call Stack displays a current line indicator and a selected function indicator in the gutter.

The current line indicator is a green arrow that shows where in the call stack the execution stopped. The
current line indicator always appearsin the call stack pane.

The selected function indicator is ayellow triangle that marks the current function being displayed by the Edit
and Variables windows. The selected function indicator does not appear when the current function is at the
execution point.

Y ou can hover over afunction name to see the full program path in a pop-up window, as shown in the
following example.

=N WEBLIB_PORTAL PORTAL_HEADER FieldF ormula. CreateBrandingObject [Statement 84
PT_MAWZ MavBranding OnE secute HavBranding [Statement 2]
[PT_MaW2 NavHover OnE xecute. NavHover [Statement 7)

WEBLIB_PT_MAY ISCRIPT1 FieldFormula. buildD ropD ownM aw (Statement 109]
WEBLIB_PT_MAYISCRIPT FigldForrnula S cnpt_P k A% Hover [Statement 204
|WEBLIB_PT_NA\-'.ISCRIPT1 FieldFarnula. buildDropDownhlay (Statement 109)|

1 | i

Call Stack pane example showing execution pointer, selected function indicator, and hover pop-up

The Call Stack pane is updated, when necessary, with each change of the debug state.

Go To Source Code

Right-click on afunction to access a context menu with these options:

Options Description

Copy Copies the text of the selection in the call stack to the
clipboard.

Select All Selectsall rowsin the call stack. You can also use

standard shift-click and CTRL-click actions to select
multiple rows.

Go To Source Code Displays the selected function in the Edit window. In
addition, the active variables windows will be updated in
sync with the Call Stack and Edit windows.

Double-click afunction name to go to the source code.

When the displayed source codeis at the execution point, the execution pointer icon (green arrow) appearsin
the source window.

When the displayed source code is not at the execution point, the selected function icon (yellow triangle)
appears in the source window.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

!__JPT_NA'H'2.Na\rHuver.DnEuecute (Application Package PeopleCode)
I MavHover [apphcation_class] jIDnExecute j
-l
,,-'ww

* NavHowver constructor: 1

% Upon creating an instance of the NavTree, the HTHL property iz awailable and can

* be used to output to the browser.

i
oooo method NavHowver
ool Local Fequest sreq = 3Request:
oooz Local string smode;
oooa2 sportal = %5ession.GetPortalRegistry():
o004 If Not &portal.Openi(%Fortal)] Then
ooos Error Msgbet (95, 307, "Unable to open portal. PortallWame = %17, %Portal):;
ooos End-If;
0007 [x I shavBranding = create PT NAVZ:NavBrandingi) :
ooos smode = s&req.GetParameter ("wode™) 2
ooog If &mode = sEREADCEUME Then
oolo0 Local string «objType = &CREFTYPE:
0011 Local Apilbject snawilbi:
o0lz Local string sobjName = sred.GetParameter("objname™) ;
-

| b 4

Source code pane and call stack pane showing the yellow triangle execution pointer

Viewing source code for functions that are not at the top of the stack does not change the point of execution.
Nor does it disable the ability to continue execution. For example, in the previous example, selecting Go
would cause the program execution to continue at
"FUNCLIB_PORTAL.PORTAL_GEN_FUNC.FieldFormula Portal Open" and not at the function in the
source code window.

During debugging it is easier to go back to the previous code event from the call stack window as compared
to trying to keep track of where the control was transferred and then finding the right opened PeopleCode
window in Application Designer. This can be useful when trying to understand the component design and
PeopleCode flow.

Setting Values for Variables and Properties

Setting the value of avariable or property in the debugger gives you the flexihility to try out changes and see
the resultsin real time or to recover from alogic error and continue.

Y ou can change the value of variables or propertiesin the Local Variables, Component Variables, Function
Parameters, and Component Buffers panes. Only variables or properties with conventional data types (Any,
Boolean, Date, DateTime, Float, Integer, Number, String, Time) can by changed. Y ou cannot assign a new
object to an object variable. Values that are not editable appear on a gray background.

While the debugger is running and halted at a breakpoint, select afield in the value column, such asthe Local
Vaue column in the example, and revise the value.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 285

Debugging Your Application

Chapter 15

Localvariables @]
Local Hame Local ¥alue -

kLanguageCode "EMG"

fcounter Sl

karray_Languages HULL

ElanguageSelectionSHL SOL

&dE wpire 2007-07-30

LR eqistered_dttm 2007-07-31-12.51.03.00000

hatartTime 12 51.06.234000

Efloaty al 0.00

it al 1] L

EfoundaCh False =]

ELatil iFalze

Local Variables pane showing a drop-down list to set the value for a Boolean variable

The debugger performs data type checking to prevent entry of incorrect data type values. For example,
character strings are not allowed for integer data types, and so on. However, dataintegrity is not verified, so
be aware that changing variable values at runtime can corrupt program execution as well as program data. For
example, setting an integer value higher than what is permitted in the function could cause a crash when
execution continues. It is the developer's responsibility to enter an appropriate value.

Modifying a variable in a debugger pane changes the value in memory only. The change does not trigger any
PeopleCode events and does not cause any PeopleCode flags to be set.

General Debugging Tips

The following are generd tips for debugging your application:

« If you are having problems determining if the correct data is being loaded into the component buffers, use
the View Component Buffers view window to see all the values currently in the component buffer.

Thisis equivalent to putting a GetL evel O function at the start of a program.

Use the & LEVELO variable to navigate through all the levels of the rowset object, see the row, records,
fields, and so on. This shows you everything that has been loaded into the component buffers for that

component.

« While at abreakpoint, if you lose track of the window, or the location within the window, that is
displaying the green execution location arrow, you can use the Execution Location Properties menu item's
ViewCode button to find your current execution location again.

» Objects remain expanded in the variable windows as you move through PeopleCode.

This enables quick inspection of the state of an object as you step through the PeopleCode. However,
thereis a performance cost for using this feature. If you are finished examining an object, you may want

to collapse it to improve the response speed.

286

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15

Debugging Your Application

» |f adatabase transaction has been started (either for you by PeopleToals, or by you in PeopleCode) other

users of that database are blocked from accessing that database until the transaction is compl ete.

If you are stepping through PeopleCode while this transaction is open, you could potentially block other

users for an extended period of time. Y ou may want to use a private database for debugging to avoid

blocking other users.

» Using the debugger is resource intensive and will impact overall system performance. Oracle recommends

that you do not run debugger on your production system unless the issue you are trying to debug cannot
be replicated in any other environment. If that is the case, debug when there is the least activity on the

system. As an alternative you can try PeopleCode tracing.

» Tocreate afilethat contains all the PeopleCode for a project (or database), use the Find In feature and

search for ; .
Be sure to select Save PeopleCodeto File.

The following example shows the Find In dialog box:

Component PeopleCode

[w] Application Engine PeopleCode
Component Interfaces PeopleCode
beszage PeopleCode

[w] Application Package PeopleCode
Standalone SCGL Definitions

[w] Application Engine SGL Definitions
Fecord Wiew SGL Defintions

Find In...
s | 5
Find Type: ITE:-ct strinig in PeopleCode and SOL j Cancel |
Eroject: IEntire D atabaze j View: I vI
—Search

Fecord PeopleCode
beru PeopleCode
Fage People Code

[T Match case [T Save PeopleCode to File

Ready... Prezs Cancel bo end zearch

Find In dialog box

DoModal Considerations

If you set the PeopleCode debugger to break at start and you are using the DoModal PeopleCode function, the
DoModal window may appear behind the PeopleCode debugger window. The debugger may appear to have

stopped, but it has not. Be sure to check that other windows have not opened while you are debugging the

code.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

287

Debugging Your Application

Chapter 15

Using PeopleCode Debugger Options

While the debugger is running, you can use the Debug menu to select other options:

Emter Debug Mode
Exjt Debug Mode
ghort Runming Bragram

Execution Location Eroperkies

B b Beburm
Step Instruckion

Break at Stark Zkr[+F3
Toggle Break ak Cursor Fa

Edit Breakpaints alk+F9
(&0 FS
step Fa
Step Ower FLo

Wiew Call Shack YWindow
Wiew Global Yariables

YWieww Component Yariables
Wiew Local Wariables

View Function Parameters

Yiew Component Buffers

Qpkions

+

-]

PeopleCode debugger options

Exit Debug M ode

Abort Running Program

Execution L ocation
Properties

288

Exits debug mode. When you exit debug mode, all breakpoints are
automatically saved. If you close Application Designer, you automatically
exit debug mode.

Stops the PeopleCode program that is currently running.

Displays the location of the running code in adialog box. This display
includes the record name, field name, event name, and line number of the
code. It also indicates if the code is executing on the client or server. You
can view the exact code by clicking View Code.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15

Debugging Your Application

Execution Location Properties

]|

Line number: 1

Locatian: Client Process

Process |D: 400

Prograrm: RECORD.PERS_SGEL_SER.FIELD.EMPLID.METHOD. Searchs ave

Execution Location Properties dialog box

Break at Start

Toggle Break at Cur sor

Edit Breakpoints

Pauses execution of the component on the first line of every PeopleCode
program that executes in the component. If you start a component with
Break at Start selected and then you start a second component, the

Peopl eCode associated with the second component is stopped at the first
line of the first PeopleCaode program as well, as part of the same debugging
session.

Removes the breakpoint if the line the cursor is currently on hasa
breakpoint. Adds a breakpoint if the line the cursor is currently on does not
have a breakpoint.

Opens a dialog box that displays the lines that have breakpoints. From this
dialog box, you can display the code that contains the breakpoint by
clicking View Code. Y ou can also remove one or all breakpoints.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 289

Debugging Your Application Chapter 15

Breakpoints

HEECORDAWOLMTER ORG THLFIELD.DESCH.
{RECORD MAMES FIELD MAME_TYPE.METHOD FieldChange} line: &]9
{RECORD.MAMES FIELD.MAME_T¥PE.METHOD FieldChangs} line: 17

Cancel

Wiew Code

Remawve All

Bemove

I e

« I 2

Breakpoints dialog box

Go Continues processing until the next breakpoint. If Break At Start is enabled,
processing pauses at the next PeopleCode program.

Step Executes the current line of the PeopleCode program, stepping into
functions.

Step Over Steps through each line of the PeopleCode program, one line at atime, but
steps over the functions; the functions are executed, but not stepped into.

Run to Return Processes past the return of the current function, and then pauses.

Step Instruction Processes |ow-level, pseudo-machine code instructions internal to

PeopleCode. This option is used in conjunction with Log Options.

View Call Stack Window Opens a separate window for viewing the call stack. The Call Stack
window displays a stack of PeopleCode functions and methods that are
currently active but not completed. Y ou can use the Call Stack window to
observe the flow of an application asit executes a series of nested
functions.

View Global Variables Opens a separate window for watching global variables.
View Component Variables Opens a separate window for watching component variables.
View Local Variables Opens a separate window for watching local variables.

View Function Parameters Opens a separate window for watching user-specified parametersin
function calls.

290 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

View Component Buffers Opens a separate window for viewing the current component buffers. This
isequivalent to getting a level zero rowset for the component.

Note. The previous five windows update continuously as the program executes.

Options Enables you to select between opening a dialog box for general options or
for specifying log options.

General Options |

Wariable Views
¥ Enable suta Scroll
[T Enable Condenszed Font

Cancel |

General Options dialog box

The General Options dialog box enables you to specify conditions of the view windows. The default isfor
both of these options to be selected.

Enable Auto Scroll If you select this check box and you click a plus symbol next to avariable
name in aview window, the variable you clicked scrolls to the top of the
window.

Enable Condensed Font Select to display all view windows with a smaller font.

Additional Features

Break at Termination After you are in debug mode, generally, any PeopleCode program in the
session that terminates abnormally first breaks in the debugger. In addition,
the error message appears in the PeopleCode log in the bottom window of
Application Designer.

See Also

Chapter 15, "Debugging Y our Application," Setting PeopleCode Debugger Log Options, page 293

Setting Up the Debugging Environment

Y ou can use the PeopleCode debugger for two-tier and three-tier debugging. The database and application
can reside on remote servers; they do not need to reside on the local machine.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 291

Debugging Your Application Chapter 15

Two-tier debugging works out of the box. Setting up three-tier debugging requires you to make afew
modifications in PSADMIN (PSAPPSRYV.CFG) to enable debugging.

Y ou can connect to a Microsoft Windows NT server domain that is not on your local machine. Y ou do not
have to configure alocal domain to do this. Y ou also do not have to have Peopl€eT ools software installed
locally for three-tier debugging.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Tracing, Logging, and Debugging,”
Setting Up the PeopleCode Debugger

Compiling All PeopleCode Programs at Once

292

In addition to checking individual programs, you can compile al PeopleCode programs either in a database or
in aproject to check for errors. This option opens and compiles every PeopleCode program. This process can
be run on an as-needed basis to check for corruption in your programs. Run this option after an upgrade to
verify that all the programs were upgraded correctly. Y ou run this option from the Tools menu:

Yalidate Synkax
‘alidate Projeck

‘alidate Database WaRP

Compile all PeopleCode

Compile Project PeopleCode
Ciff Merge Project PeopleCode *
DiffiMerge External Texk 3

Compate and Repaork
Copy Project

Data Adminiskration
Change Control
Upgrade

Miscellaneous Definitions
Bulk, ©perations

v T v v v v r

options. ..

Create Change Package
Einalize Change Package

Tools menu - Compile All PeopleCode option

To compile al PeopleCode programs.

1. Open Application Designer while accessing the database that contains the PeopleCode that you want to
check.

2. Select the compile option to use.

Select Tools, Compile All PeopleCode or Tools, Compile Project PeopleCode.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

3. Click Compile in the Compile All PeopleCode dialog box.
Errors appear in the PeopleCode log display window.

Note. If you specified alog file in the debugger log options, then all errors are written to the log file as
well.

Setting PeopleCode Debugger Log Options

Use the PeopleCode debugger to view PeopleCode that is executed while you step through your application.
Select Debug, Log Options to access the PeopleCode L og Options dialog box.

PeopleCode Log Options |
—Execution Trace———— ~Call Trace
™ Start of Program I Extemnal Calls
¥ Each statement [Intemal Callz
[T Each instruction [Retums:
[™ Function parameter
—Data Trace
™ Assignments [Lizt Program
I™ Fetches [LogtaFile:
[Stack

|PSDEBUG.LOG

|] I Cancel |

PeopleCode Log Options dialog box

All log information appears in the PeopleCode |og window, at the bottom of Application Designer.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 293

Debugging Your Application Chapter 15

=== start MNest=00 . PERZ_SGBL_SBR EMPLID SearchZave
=== end Mest=00 . PERS_SGHAL_SBR EMPLID SearchSawe Dussl) 090
=== start Mest=00 . DERIVED_HR DAY _OF WEEK FieldDefault

4|+ Build A Find Object References A Uporade A Resuttz A Validate } PeopleCode Log /

PeopleCode log window
Y ou can record what you seein alog file. Also, you can tailor the log results to record a variety of online
information.

If you exit debug mode but do not close Application Designer, al the log options that you specified are still
there when you start debug mode again.

When you close the Application Designer, all log options are clear. The next time you enter debugging mode,
you must reselect debug log options.

See Chapter 15, "Debugging Y our Application,” Interpreting the PeopleCode Debugger Log File, page 295.

All the options available in the Log Options dialog box are also available in PeopleSoft Configuration
Manager, on the Trace tab, in the PeopleCode Trace section.

Execution Trace Options

Execution trace is set to trace each PeopleCode statement. Y ou can also trace the start of each program or
each program instruction.

Data Trace Options

This table describes the data trace options:

Option Description

Assignments Records each assignment made to afield.

Fetches Records the field values retrieved from a PeopleCode
fetch.

Stack Indicates the contents of the internal machine stack.
Typicaly, only PeopleSoft staff developing PeopleCode
language enhancements use this option.

294 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

Call Trace Options

The call trace options, described in the following table, enable you to record the values of external calls,
internal calls, returns, and function parameters.

Option Description
External calls Traces each call to external (PeopleCode) functions.
Internal calls Records each call to internal subroutines.
Returns Logs the occurrence of program returns.
Function parameters Logs the value of individual PeopleCode function
parameters.
Log To File

When you select this option, you must specify the name of afile, or you receive an error and logging to fileis
disabled.

If you do not specify adirectory location, the file is placed in the same directory from which you are running
PeopleTools.

If you specify the name of an existing file, a warning message appears, asking you whether to overwrite the
file. You must go back into the Log Options dialog box and specify a different file name; otherwise, the log
fileis overwritten.

If you do not exit Application Designer before running a different application, each trace is appended to the
specified log file.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleSoft Configuration
Manager," Specifying Trace Settings

Interpreting the PeopleCode Debugger Log File

Y ou can produce atrace log using any of the following methods:

» Using the Log File option in the PeopleCode debugger.
» With the PeopleSoft Configuration Manager Trace tab.
» Using the SetTracePC and SetTraceSQL built-in functions.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 295

Debugging Your Application Chapter 15

» With PeopleTools utilities (included for backward compatibility purposes only and should not be used).

All trace files except those produced using the Log File option contain timing information, such as when each
line started processing and how long it took to execute.

The Log File option writes to afile that you specify. The log file produced by the other optionsis specified by
the PeopleTools Trace File option in PeopleSoft Configuration Manager. All of these options write to the
samefile.

Tracefiles are aso produced by Application Engine. These logs may contain more information.
This section discusses:

« Logfile contents.

« Other itemsin thelog file.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,” Using
Debug Utilities

Log File Contents
The log file contains information useful for debugging PeopleCode.

Y ou can view the log using any editor that displays ASCII text, such as Notepad. The log file has the
following components.

Line Count Specifies aline number in thefile.

Internal Information Contains reference numbers used for internal tracing. Y ou can ignore this
information.

Instruction L ocation Address of an instruction processed in the program. Y ou can follow

programs and functions using this number.

Operation Code Indicates the operation performed by the program.

Operation Operands Contains information specific to each operation. The following table lists
the possible operations and the operands that appear for the list and trace
options.

Other Items in the Log File

The following table describes other items that can appear in a debugging trace:

296 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

Trace Item Description

Store Field:record name.field name Vaue=xx I ssued when the assignments trace option is selected. It
contains the record and field names and the value that is
stored.

Fetch Field:recordname.fieldname Value=xx Issued when the Fetch Field option is selected. It
contains the record and field name and the value that is
retrieved.

Fetch Field:recordname.fieldname Contains Null Value Issued when the Fetch Field option is selected and the
selected record.field contains anull value.

Fetch Field:recordname.fieldname Does Not Exist Issued when the Fetch Fields option is selected and
when the field is not found.

Branch Taken Displayed after abranch test when the branch is taken.

Field Not Found, Statement Skipped Displayed whenever areferenced field was not found
error causes the PeopleCode processor to skip to the
next statement.

vvvvvv PeopleCode Program Listing Issued when the List Program option is selected. It

marks the beginning of a PeopleCode program listing.

AANA PeopleCode Program Listing End Issued when the List Program option is selected. It
marks the end of a PeopleCode program listing.

Error Return -> NNN Issued when afatal error condition terminates the
PeopleCode program.

Using Application Logging

Application logging enables you to do error logging using an independent application log fence mechanism. It
also enables you to write to the PeopleTools log using the WriteToL og built-in function.

Note. Thisisan application log fence, and it is distinct from the PeopleTools LogFence setting.

In PeopleTools, alog fence isatype of barrier. Application error messages are only written to the
PeopleTools log if the log fence setting that the messages are written to the log with (using WriteTolL og) is
less than or equal to the current application log fence setting (AppL ogFence) in the application server
configuration file (PSAPPSRV.CFG).

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 297

Debugging Your Application Chapter 15

For exampleif the AppLogFence setting is 2, only messages written using the WriteToL og function with a
log fence value less than or equal to 2 will be written. This allows you to have application logging code
written in your application that will only be in effect if the log fence setting permits.

The application log fence setting is available through the system variable %A pplicationL ogFence.

Apart from the obvious use of allowing the application to write to the Tools log file, this mechanismis also
an aid in debugging. For example, you could interleave PeopleCode, SQL, and application level tracing in the
same log fileto easily correlate application and PeopleTools actions.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,”
WriteToLog

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, " System Variables,"
%A pplicationL ogFence

Setting the Application Log Fence in the Configuration File

The application log fence default is %A pplicationLogFence Levell (3). If you want to use this setting, you
need to placeit in the application server configuration file (PSAPPSRV.CFG.) The setting is dynamic change
enabled; that is, if its value is changed in the file, then the new value will be used. As the following example
illustrates, the AppL ogFence setting must be in the PSTOOL S section. If you add this setting, your
configuration file can look like this:

[PSTOOLS]

AppLogFence=1
See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, " Setting Application Server Domain
Parameters," PSAPPSRV Options

Using the Log Fence with PeopleSoft Analytic Calculation Engine

If you set the application log fence to 3 or above, all the detailed messages created on the analytic server to be
sent back to the application server are also logged in the analytic server log file.

In addition, if you set the application log fence to 4 or above, all tracing information islogged to the analytic
server log file.

298 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Debugging Your Application

Using the Find In Feature

Use the Find In feature of Application Designer to search for strings, either in PeopleCode programs or in
SQL definitions. This feature searches:

» All PeopleCode programs and all SQL statements.
« Only PeopleCode programs.

« Only SQL statements.

« Only HTML definitions.

« Only freeform stylesheets.

» SQL injection in PeopleCode.

The following example shows the Find In dialog:

X
Find hat: I j
Find Type: ITE:-:t stiing in PeopleCode and SOL j Caricel |
~ Cearch—] Test gtring in SOL

Test ztring in HTML

Test stiing in Freeform Styleshests
S0L Injection in PeopleCode
Fage People Code

Component PeopleCode

[v] Application Engine PeopleCode
Component Interfaces PeopleCode
Mezzage PeopleCode

[v] Application Package PeopleCode
Standalone SCGL D efintions

[v] Application Engine SOL Defintions
Fecord View SOL Definitions

[T Match case [T Save PeopleCode to File

Ready... Prezs Cancel to end zearch

Example of Find In dialog showing options for Find Type

Y ou can further refine your search by specific project. If you are searching PeopleCode programs and SQL
statements, you can specify if you want record PeopleCode, page PeopleCode, menu PeopleCode, and so on.

All output from the search is placed in an output window. Y ou can save these resultsto afile, copy them,
clear them, or print them.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 299

Debugging Your Application Chapter 15

300

From the output window, you can immediately open any of the PeopleCode programs, SQL statement,
HTML definitions, or freeform stylesheets listed. Y ou also can insert selected definitions into a project from
the output window. Then, if you need to search those definitions again, you can search by project.

Note. To create afile that contains al the PeopleCode for a project (or database) you can use the Find In
feature and search for ; . Be sure to select Save PeopleCodeto File.

To find atext string:

1

In Application Designer, select Edit, Find in.
The Find In dialog box appears.
Type the string that you want to find in the Find What edit box.

If you want only those items that match the case of what you entered, select the Match Case check box at
the bottom of the dialog box.

Specify with the Find Type edit box whether you are searching in PeopleCode and SQL, just PeopleCode,
just SQL, HTML definitions, or freeform stylesheets..

Select the project to search.
Y ou can search the entire database or any existing project.
(Optional) Select the view to search.

If you decide to not search the entire database, you can specify if you want to search the Development
view or the Upgrade view. The default is the Development view.

Select the items to search.

Y ou can search al items that contain either PeopleCode or SQL, or asubset of items.

Note. When you select a Find Type of Text String in HTML the Search check box list is empty. The
search is conducted against all HTML definitions.

Similarly, when you select a Find Type of Text String in Freeform Stylesheets the Search check box list is
empty. The search is conducted against all freeform stylesheets.

(Optional) Save the search resultsto afile.

Y ou can save the results of a PeopleCode search to atext file, which you can view or print using atext
editor or word processor. The text file contains the entire PeopleCode program that contained the string.

To save your resultsto afile, select the Save PeopleCode to File check box at the bottom of the dialog
box. The results are saved to the file, and appear in the Application Designer Find In output window.

This option is not available when searching SQL, HTML, or freeform stylesheets.
Click the Find button to start the search.

Asthe Find In feature searches the database, it displays a counter at the bottom of the Find In dialog box
indicating the number of PeopleCode programs searched.

Y ou can click the Cancel button to stop the process.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15

0.

Debugging Your Application

Check the Find in tab on the output window for results.

The results of the search appear in the Find In tab of the output window. Each line shows where the string

was found. Y ou can open any of the programs listed by double-clicking alinein the output window.

The following example shows the Find In tab of an output window:

E'ACCOMP_TBL (Record PeopleCode) _IO[=]

ACCOMPLISHMENT [field) j SearchSave j

If %Mode = "A"™ Then -
EAR e | "SELECT ACCOMP_CATEGORY FROM P2 _ACCOMP_TEL WHERE ACCOMPLISHMENT =
1", ACCOMPLISHMENT, &CAT):
Evaluate %Panellzroup
Then = PANELGROUP.TE3T TAELE
#CURR_CAT = "T&T":
Ereak:
When = PANELGROUP.DEGFEE _TAELE j

ST A FET. TS

Searching for sglexec...

ACCOMP_TBL ACCOMPLISHMERT SearchZave - SQLExec("SELECT ACCOMP_CATEGORY FROM PS_ACCOMP_TBL WHI

ADJUST_INY W BUSINESS _UNIT Rowwinit - SQLExec"select sumigty), sumioty_base) from ps_physical_iny where bus
ACJUST_ThP_IMY ADJUST _QTY SavePreChange - SQLExec"select NETTABLE_FLG from PS_STOR_LOC_IMY where E
ADJUST_ThP_IMY ADJUST _QTY SavePreChange - SQLExec"update PS_LOT_CONTROL _IMNY set QTY_AWAILABLE =G

n = 1T ikl
4' SIE. Euild i Find Chject Feferences x Lpgrade E Fesuts ﬁ Walidate }-.Fmd In._ {

Opening a PeopleCode program from the Find In tab

To save records, you select them in the output window, as shown in the following example:

Searching for sglexec...

ADJIST TI'-.-1P' IN"..-" ADJIST QT“r’ SavePreChangE -- SGLExec("update Ps LOT CONTROL MY SE‘t QT“r’ A'\-"AILAE

L= B |
4' SIE. Eiuilid ﬁ Find COhject Feferences x Upirade E Fesultz x Walidate }'ﬂFlnd In... F

Find In output window with definitions selected

To save definitions in a project:

1
2.

4,

Use the Find In feature to search for a string.

Press the Shift key while selecting the references to save in the output window.
Right-click the highlighted definitions and select Insert Into Project.

All the selected definitions are inserted into the current open project.

Save your project.

The following example shows the Insert Into Project option:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

301

Debugging Your Application Chapter 15

Wiew Definition

Wiew PeopleCode
Inzert [nto Project
Save TaoFile...
Copy

Clear

Frirt

Example of Find In pop-up menu

The next time you search, you can search only your project (select a project in the Find In dialog box) instead
of searching the entire database.

Searching for SQL Injection

SQL injection is atechnique that enables users to pass SQL to an application that was not intended by the
developer. Opportunities for SQL injection are usually created when devel opers use string-building
techniques to generate SQL that is subsequently executed.

Search PeopleCode for SQL injection vulnerabilities.

See Also

Chapter 16, "Improving Y our PeopleCode," Searching PeopleCode for SQL |njection, page 320

Using Cross-Reference Reports

302

If afield value changes and you do not know how it changed, you can find all referencesto afield using:
» TheFind References option in Application Designer.
» Cross-reference reports.

See PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Working With
Projects.”

PeopleTools is delivered with these PeopleCode cross-reference reports:
+ XRFFLPC.
Reports on al fieldsin the system referenced by other PeopleCode programs. The report sorts by record

names and field names. X RFFL PC shows the records, fields, and PeopleCode program types that
reference each field.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15

+ XRFPCFL.

Debugging Your Application

Reports on the fields that each program references. It sorts the report by record definition, field name, and
PeopleCode type. It shows the records and fields referenced for each program. This report and XRFFLPC
complement each other by using converse approaches to reporting the cross references.

+ XRFPNPC.

Reports on pages with PeopleCode. This report shows pages containing fields with PeopleCode attached

to them.

Y ou can run these reports using PeopleSoft Query and either view the reports online or print them. Y ou can
a so download them to a Microsoft Excel spreadsheet. The following example shows an XRFPNPC report:

T ™ N R T S NN
1—ACL_AF'F'DES_MISC DERMWED_APPDESM ACCESS_CD FieldChange

2 ACL_APPDES_MISC DERIVED_APPDESM ACCESS_CD Rowlnit

3 ACL_APPDES_MISC DERMNED_APPDESM FULL_ACCESS_BTH FieldChange

4 ACL_APPDES_MISC DERIWED_APPDESM ITEM_CHANGED SavePreChange

g ACL_APPDES_MISC DERMNED_APPDESM NO_ACCESS_BTH FieldChange

B ACL_APPDES_MISC DERIWED_APPDESM READ_ACCESS_BTH FieldChange

T ACL_APPDES_OBJECTS DERMNWED_APPDESD ACCESS_CD FieldChange

8 ACL_APPDES_OBJECTS DERIMWED_APPDESD ACCESS_CD Rowilnit

9 ACL_APPDES_OBJECTS DERMNWED_APPDESO FULL_ACCESS_BTH FieldChange

Example of XRFPNPC PeopleSoft Query results

See Also

Enterprise PeopleTools 8.51 PeopleBook: PeopleSoft Query, " PeopleSoft Query Preface”

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Running PeopleTools

Cross-Reference Reports'

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

303

Chapter 16

Improving Your PeopleCode

Developer changes can affect how a user interacts with a page. Slow performance and screen flicker, which
occurs whenever the screen refreshes after a server trip, are significant issues for users.

This chapter discusses how to:

» Reduce server trips.

» Use better coding techniques for improved performance.
« Write more efficient code.

» Search PeopleCode for SQL injection.

Reducing Trips to the Server

This section discusses how to:

« Count server trips.

» Usedeferred mode.

+ Hide and disable fields.

» Usethe Refresh button.

» Update totals and balances.
» Usewarning messages.

» Usethefastest algorithm.

Server trips are bad for performance. Each server trip consumes resources on the application server, slows
down the user data entry, and can affect type ahead. Whenever you see an hourglass as you move between
fields on apage, it is because the browser iswaiting for a server trip to complete.

The larger the component's buffer (based on the number of record definitions accessed, the number of fields
in each record, and the number of rows in each grid or scroll areafor each record), the longer each round trip
to the server, because of the increased server processing.

Deferred mode reduces the user's time to compl ete the transaction and conserves application server resources.

The following user interactions cause atrip to the server. Only the first three itemsin the list are deferred in
deferred processing mode.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 305

Improving Your PeopleCode Chapter 16

Entering datain fields with FieldEdit or FieldChange PeopleCode.
» Entering datain fields that have prompt table edits.

« Entering datain fields that have related displays.

» Inserting arow in agrid or scroll area.

« Deéleting arow from agrid or scroll area.

» Using grid or scroll area controls to move forward or back.

» Accessing another page in the component.

» Selecting an internal tab.

« Expanding or collapsing a collapsible section.

» Clicking abutton or link.

Each trip goes through the same process of checking security, unpacking the buffers that store the data being
processed, processing the service request, generating the HTML for the page to be redisplayed, packing
updated buffers, and storing the buffers on the web server. To maximize online performance, minimize server
trips.

Counting Server Trips

Count the trips to the server to quickly identify transactions that have performance issues. PeopleTools can
automatically count these trips by reason (such as, adding arow in agrid or FieldChange PeopleCode) and
write the output to alog file.

To turn this feature on, run a debug version of PeopleTools and add the following to the [trace] section of the
appserv.cfg file:

showcounters =1

The output is written to the appsrv.log file.

Using Deferred Mode

306

Keep components in deferred mode and enable fields for interactive mode only if there is a strong business
case.

For every field on the component to run in deferred mode, Deferred mode must be selected at the component
level, Allow Deferred Processing must be selected for each page in the component, and Allow Deferred
Processing must be selected for each field.

PeopleSoft recommends that you continue to code field editsin FieldEdit PeopleCode and field change logic
in FieldChange PeopleCode, but set thislogic to run in deferred mode. Y ou do not need to move field edits to
SaveEdit.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

Hiding and Disabling Fields

Avoid using FieldChange PeopleCode to hide, unhide, enable, or disable elements on the same page, unless
the element istriggered by a separate button.

Hiding or unhiding objects and enabling or disabling objects should, as a general rule, be coded in either page
Activate PeopleCode or, for objects that are on another page in the component, in FieldChange PeopleCode.

Perform cross-validation edits to prevent invalid data combinations from being written to the database for
fields that previously would have been hidden or unavailable. If unhiding fields that were previously hidden
or unavailable results in making the page confusing, consider designing alonger page so that users can easily
associate related fields.

Y ou can hide or unhide objects or set them to display-only in page Activate PeopleCode before the page
initially appears based on setup data, configuration options, or personalization settings. Y ou can set fields to
display-only using PeopleCode by setting the DisplayOnly property for the field to True.

Y ou can hide or unhide fields on another page, or set the fieldsto display-only, based on the value that a user
entersin afield on the current page, as long as that component or field is set up to run in deferred processing
mode. In some cases, it may make sense to split transactions across pages to achieve progressive disclosure.

Using the Refresh Button

The Refresh button gives users control of their environment. Clicking the Refresh button forces atrip to the
server. PeopleTools then redisplays the page in the browser. The refresh action alows the user to:

» Seerelated display field values for the data entered so far.
» Seeany default values based on data entered previously on the page.
« Validate the data that has been entered on the page so far.

When the page is redisplayed, the cursor is positioned in the same field it was when the user pressed the
Refresh button.

Note. The Refresh button does not refresh the page from the database. It smply causes a server trip so that
any deferred PeopleCode changes are processed. If no deferred changes exist or the deferred changes do not
cause any errors or other changes on the page, it may appear to the user as if nothing has happened.

Fields on derived work records are not updated if the user clicks the Refresh button.

Updating Totals and Balances

In some pages, totals or balances appear based on data entered into a grid or scroll area. This process should
work in deferred mode a so, showing the totals or balances as of the last trip to the application server.

Continue to keep any accumulation and balancing logic in FieldChange PeopleCode, but run the field in
deferred mode. Users can click the Refresh button at any time to see the latest totals based on the data
entered. Totals and balances in deferred mode are always updated and displayed after any trip to the
application server.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 307

Improving Your PeopleCode Chapter 16

Using Warning Messages

In deferred mode, FieldEdit PeopleCode errors and warnings do not appear when a user moves out of the
field, but rather on the next trip to the server. This next trip might not occur until the user enters all the data
and clicks the Save button.

For FieldEdit error messages running in deferred mode, PeopleTools changes the field to red and positions
the cursor to the field in error when it displays the message. This behavior alows the user to associate the
error message with a specific field.

For warning messages, however, PeopleT ools does not change the field to red or position the cursor. For a
user to clearly understand to which field a warning message applies, ensure that warning messages clearly
describe the fields affected by the warning.

For example, the warning message "Date out of range”" would be confusing if there are seven date fields on
the page, since a user could not easily determine which date field needed to be reviewed. Instead, you could
include bind variables in the message to show which dates are out of range.

Using the Fastest Algorithm

Y ou should determine which algorithms perform the best and have the smallest elapsed time. Tracing does
not provide subsecond level of timing information. Plus, tracing imposes a higher overhead to the runtime
environment, which skews the elapsed time reading.

However, you can use the %Perf Time system variable for determining elapsed time. %Perf Time retrieves the
local system clock time by making a system call, and the return time is down to the millisecond.

The following example of %Perf Time determines how long a program takes to execute:

&Start = %erfTi nme;
&results = "";
For & = 1 To &Count;
&GnnwgNumber = Get Next Nunber Wt hGapsCommi t (QEORDER _DTL. Qe _QTY, 999999, 1,>
"where QE_ORDER NBR=' GNNWG ") ;

& esults = &esults | " : " | &:nnwgNunber;
End- For ;
&End = 9%Perf Ti ne;
&out = "Count = " | & Count | ", total GNN\WG tine (s) = " | NunberToString=

("9%.3", Value(&End - &Start));

Using Better Coding Techniques for Improved Performance

308

This section discusses how to:

« RunaSQL trace.

Optimize SQL.

Use the GetNextNumberWithGaps function.

Consolidate PeopleCode programs.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

» Move PeopleCode to a component or page definition.
» Send messages in the SavePostChange event.
» Use metadata and the RowsetCache class.

» Setting MaxCacheMemory

Running a SQL Trace
Run a SQL Trace and review the transaction for SQL statements that have along processing time.

The duration column (Dur=) in a SQL trace displays thisinformation. If the duration is greater than 100
milliseconds, you may be able to make this SQL statement run faster. Work with your database administrator
to tune the SQL.

Optimizing SQL
A simplejoin optimizes SQL more effectively than issuing two related SQL statements separately.

However, if your transaction requires a complex SQL statement (for instance, one that uses correlated
subqueries), consider breaking it up into multiple SQL statements. Y ou may get more predictable
performance this way.

Using the GetNextNumberWithGaps Function

Many applications use a sequence number as a unique key. The last number used is stored in a common table,
and a SQL statement is issued to retrieve the last number used and update the table. This action locks the
common table until the whole transaction is saved and the unit of work committed.

Instead, consider using the GetNextNumberWithGaps PeopleCode function whenever gaps in the sequence
numbering are acceptable. The function retrieves the last number used, incrementsit by one, and updates the
common table. This action is done in a separate unit of work to minimize the time a database lock is held on
the common table.

GetNextNumberWithGaps issues a commit only when issued from the SavePreChange or Workflow event.

Consolidating PeopleCode Programs

Consolidate Rowlnit PeopleCode into one field within the record to reduce the number of PeopleCode events
that need to be triggered. Fewer PeopleCode programs results in fewer PeopleCode aobjects to manage. Do the
same for Rowlnsert, SaveEdit, SavePreChange, SavePostChange, and Workflow PeopleCode programs.

Moving PeopleCode to a Component or Page Definition

Analyze transactions and move PeopleCode that is specific to a component from the record definition to the
component or page definition. This action eliminates the need to execute conditional statements, such as| f
%Conponent =.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 309

Improving Your PeopleCode

Chapter 16

This action helps only if you are able to move all the PeopleCode in a program from the record to a
component or page, and multiple components access that record.

Sending Messages in the SavePostChange Event

M essages sent online should always be coded in the SavePostChange event. To minimize the time that
PeopleTools maintains locks on single-threaded messaging tables, behind-the-scenes logic in the
SavePostChange event defers sending the message until just before the commit for the transaction.

Using Metadata and the RowsetCache Class

If your application uses data that is common, used by a number of users, and yet isfairly static, you may see a
performance improvement by using the RowsetCache class.

PeopleTools stores application data in a database cache to increase system performance. The RowsetCache
class enables you to access this memory structure, created at runtime, and shared by all users.

Note. Non-base language users may see different performance due to language table considerations.

See PeopleTools 8.51 PeopleBook: PeopleCode APl Reference, "RowsetCache Class."

Setting MaxCacheMemory

PeopleTools stores application datain a memory cache to increase system performance. However, too large a
cache can leave insufficient available memory on your system, which leads to reduced performance.

Use this setting to specify the maximum size of the memory cache. PeopleTools prunes the cache to keep it
within the specified size, and places the pruned datain a disk cache instead. Because using adisk cache can
also reduce performance, the default setting might not be optimal for your application. Y ou can adjust this
setting to achieve the best trade-off between speed and available memory.

See PeopleTools 8.51 PeopleBook: System and Server Administration, " Setting Application Server Domain
Parameters,”" Cache Settings.

Writing More Efficient Code

310

Follow these steps to write more efficient PeopleCode:

1. Declareall variables.

One of the conveniences of PeopleCode is that you do not have to declare your variables before you use
them. The variableis assigned atype of ANY, taking on the type of the value it is assigned. However, if
you use this feature, you lose type-checking at compile time, which can lead to problems at runtime.

When you validate or save PeopleCode, watch for auto-declared messages and consider adding
declarations to your program.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16

Improving Your PeopleCode

2. Declare variable types specifically.

Most of the time, you know a variabl€e's type, so you should declare the variable of that type when you
begin.

For example, if you know that a particular variable is going to be an Integer value, declare it to be Integer
in the first place. Y ou can get much better runtime performance. It is particularly effective for loop
control variables but, since an integer has limited range (up to 9 or 10 digits), you must use it judiciously.

Watch references.

In PeopleCaode function calls, parameters are passed by reference; areference to the value is passed
instead of the value itself. If you are passing a reference to a complex data structure, such as a rowset
object or an array, passing by reference saves significant processing.

Watch out for unexpected results, though. In the following code, the function Test changes the value of
& Str after the function call.

Function Test(&Par as String)

&Par = "Surprise";
end-function;

Local String &Str = "Hell o";
Test (&Str);
/* now &Str has the value "surprise" */

Put Break statements in your Evaluate statements.

In an Evauate statement, the When clauses continue to be evaluated until an End-evaluate or a Break
statement is encountered.

If you have an Evaluate statement with a number of When clauses, and you only expect one of them to
match, put a Break statement following the likely clause. Otherwise, all the subsequent When clauses are
evaluated. Y our program is still correct, but it isinefficient at runtime, particularly if you have alarge
number of When clauses, and the Evaluate statement isin aloop.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 311

Improving Your PeopleCode Chapter 16

5. Govern your state.

One of the key featuresin PeopleSoft Pure Internet Architecture isthat the application server is stateless.
When required, the state of your session is bundled up and exchanged between the application server and
the web server.

For example, on a user interaction, the whole state, including your PeopleCode state, has to be serialized
to the web server. Then, once the interaction has completed, that state is deserialized in the application
server so that your application can continue.

To improve efficiency:

» Watch the size of PeopleCode objects that you create (strings, arrays, and so on) to make sure they are
only as big as you need them to be.

» For user interactions, you might be able to change the logic of your program to minimize the state.

For exampleif you are building up alarge string (a couple of megabytes) and then performing a user
interaction, you might be able to change your program logic to build the string after the interaction.

» For secondary pages that are infrequently accessed but retrieve lots of data, consider setting No Auto
Select in the Application Designer for the grids and scroll areas on the secondary page, to prevent
loading the data the secondary page when the page buffers are initialy built.

Then add the necessary Select method to the Activate event for the secondary page to load the data
into the grid or scroll area.

312 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

6. lsolate common expressions.

The PeopleCode compiler is not an optimizing compiler, unlike some current compilers for languages
such as C++. For example, the PeopleCode compiler does not do common subexpression analysis. So,
sometimes, if you have a complicated bit of PeopleCaode that is used often, you can isolate the common
expression yourself. Thisisolation can make your code look cleaner and make your code faster, especially
if itisinaloop.

In this example, notice how the common subexpression is broken ouit:

[*---- For this custoner, setup time on Bis influenced by
*.--- the nachine flavors of A */
& _machi ne = & s(& dB. Get Recor d(Recor d. MACHI NE_I NFO) ;
If (& ypeA = "F"') And (& ypeB == "U') Then
& machi ne. SETUP_TI ME. Val ue = 50;
El se
& machi ne. SETUP_TI ME. Val ue = 10;
End- I f;

The compiler has to evaluate each occurrence of the expression, even though it would only execute it
once.

Here is another example. Notice that once & RS and & StartDate are created, they can be used repeatedly
in the loop, saving significant processing time.

&RS = Get Rowset ();
&StartDate = GetFi el d(PSU_CRS SESSN. START_DATE) . Val ue;
For & = 1 To &RS. Acti veRowCount
&RecSt uEnrol | = &RS. Get Row(&). PSU_STU ENROLL;
&Cour se = &RecSt uEnr ol | . COURSE;
&St at us = &RecSt uEnrol | . ENROLL_STATUS;
&PreReqStart = &RS. Get Rowm &l) . PSU_CRS_SESSN. START_DATE. Val ue;
I f &Course. Value = "1002" And
(&Status.Value = "ENR' O
&St at us. Val ue = "CMP") Then
If &PreReqStart < &StartDate Then
&Conpl eted = True;
Br eak;
End- | f;
End- | f;
End- For ;

7. Avoid implicit conversions.

The most common implicit conversion is from a character string to a number and vice versa. Y ou might
not be able to do anything about this, but—by being aware of it—you might be able to spot opportunities
to improve performance.

In the following example, two character strings are converted into numeric values before the differenceis
taken. If this code were in aloop and one of the values did not change, performance would improve
significantly by doing the conversion once, as the second statement illustrates.

&Di ff = &R1. QE_EMPLID. Val ue - &R2. QE_EMPI D. Val ue;
& riginal = &R1. QG EMPLI D. Val ue;

&Diff = &riginal - &R2.QE_EMPID. Val ue;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 313

Improving Your PeopleCode Chapter 16

314

8. Choosetheright SQL style.

In certain cases, use SQLEXec, asit only returns asingle row. In other cases, you could benefit greatly by
using a SQL object instead, especialy if you can plan to execute a statement more than once with
different bind parameters. The performance gain comes from compiling the statement once and executing
it many times.

For instance, code that uses SQLExec might look like this:

Wil e (sone condition)
. . .set up &Rec
SQLExec("% nsert(:1)", &rec);
/* this does a separate tools parse of the sql and db compile
of the statenent and execute each tinme */
End- whi | e;

The following code rewrites the previous example to use the new SQL object:

Local SQL &SQL = CreateSQ("%Wnsert(:1)");

VWil e (some condition)

. . .Setup &Rec

&Sql . Execut e(&Rec); /* saves the tools parse and db conpile
on the SQ statenment and the db setup for the statenent */
end- whi | e;

SQL objects also have the ReuseCursor property, which can be used for further performance gains.

See PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class," ReuseCursor.

. Tighten up loops.

Examine loopsto see if code can be placed outside the loop.

For example, if you are working with file objects and your file layout does not change, thereis no reason
to set the file layout every time you go through the loop reading lines from the file. Set the file layout
once, outside the loop.

10. Set objectsto NULL when they will no longer be accessed.

Once you are finished with an object reference, especially one with a globa or component scope, assign it
to NULL to get rid of the object. This setting allows the runtime environment to clean up unused objects,
reducing the size of your PeopleCode state.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

11. Improve your application classes

Simple properties (without get/set) are much more efficient than method calls. Be clear in your design
about what needs to be simple properties, properties with get/set, and methods. Never make something a
method that really should be a property.

Analyze your use of properties implemented with get/set. While PeopleCode properties are in a sense first
class properties with more flexibility in that you can run PeopleCode to actually get and set their values,
make sure you actually need get and set methods. If all you have isanormal property which is more of an
instance variable then avoid get/set methods. In the following example (without the strikethrough!) by
having get/set for the property SomeString you have made it much more inefficient to get/set that property
since every property reference has to run some PeopleCode. Often, this inneficiency can creep in when
properties are designed to be flexible at the beginning and never subsequently analyzed for whether
getters/setters were really needed after all.

cl ass Test
b%bperty String SoneString get—set;

end- cl ass;

Writing More Efficient Code Examples

These examples demonstrate more efficiently written code:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 315

Improving Your PeopleCode Chapter 16

» Beware of the rowset Fill method. (Or, "What not to do in a Application Engine PeopleCode step.")

Sometimes you heed to examine the algorithm you are using. The following example is a PeopleCode
program that adopts this approach: read al the datainto a rowset, processit row by row, and then update
as necessary. One of the reasons thisis abad approach is because you lose the general advantage of set-
based programming that you get with Application Engine programs.

Local Rowset &RS;
Local Record &REC,
Local SQ. &SQL_UPDATE;

&REC NAME1l = "Record." | SOVE_AET. SOVE_TM;
&RS = Creat eRowset (@ &REC NAMEL)) ;
&LINE_NO = 1;

&NUM RONE = &RS. Fi | | ("WHERE PROCESS | NSTANCE = :1 AND BUSINESS_ UNIT = :2 AND=

TRANSACTI ON_GROUP = : 3 AND ADJUST_TYPE = :4 ", SOVE_AET. PROCESS | NSTANCE, SOVE =
AET. BUSI NESS_UNI T, SOVE_AET. TRANSACTI ON_GROUP, SOVE_AET. ADJUST_TYPE) ;

For & = 1 To &NUM RO\B
&REC = &RS(&) . Get Recor d(@ &REC_NAMEL)) ;
&REC. SOVE_FI ELD. Val ue = &LI NE_NG,
&REC. Updat e() ;
&LI NE_NO = &LI NE_NO + 2;
End- For ;

This code has the following problems:
» You might run out of memory in the Fill method if the Select gathers alarge amount of data.
« TheFill isselecting al the columns in the table when al that is being updated is one column.

Y ou can change this code to read in the data one row at atime using a SQL object or using a similar
algorithm, but chunking the rowsets into a manageabl e size through the use of an appropriate Where
clause.

The following are some approximate numbers you can use to see how large arowset can grow. The
overhead for afield buffer (independent of any field data) is approximately 88 bytes. The overhead for a
record buffer is approximately 44 bytes. The overhead for arow is approximately 26 bytes. So a rowset
with just one record (row) the general approximate formulais as follows:

memory_amount = nrows * (row overhead + nrecords* (rec overhead + nfields * (field overhead) +
average cumulative fielddata for al fields))

316 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

» Thefollowing are some code examples to show isolating common expressions.

In this example, a simple evaluation goes from happening three times to just once—
&RS Level 2(&) . PSU TASK EFFORT. In addition, the rewritten codeis easier to read.

Example of code before being rewritten:
Local Rowset &RS Level 2;
Local Bool ean &TrueOr Fal se = (PSU_TASK RSRC. COWPLETED FLAG Val ue = "N');

For & = 1 To &RS Level 2. Acti veRowCount
&RS Level 2(&) . PSU TASK EFFORT. EFFORT_DT. Enabl ed = &TrueOr Fal se;
&RS Level 2(&) . PSU TASK _EFFORT. EFFORT_AMT. Enabl ed = &TrueOr Fal se;
&RS Level 2(&) . PSU _TASK EFFORT. CHARGE_BACK. Enabl ed = &TrueOr Fal se;
End- For ;

Example of code after being rewritten:
Local Bool ean &TrueOr Fal se = (PSU TASK RSRC. COWPLETED FLAG. Val ue = "N');

For & = 1 To &RS Level 2. Acti veRowCount
Local Record &TaskEffort = &RS Level 2(&). PSU TASK EFFORT;

&TaskEf fort. EFFORT_DT. Enabl ed = &TrueOr Fal se;

&TaskEf fort. EFFORT_AMI. Enabl ed = &TrueOr Fal se;

&TaskEf f ort. CHARGE_BACK. Enabl ed = &TrueO Fal se;
End- For ;

In the next example, the following improvements are made to the code:
Shorthand is used: & ThisRs(&J) instead of & ThisRs.GetRow(&J).

Eliminated all the autodeclared messages by declaring all the local variables. This action can improve
your logic and possibly give you better performance.

Notice the integer declaration. If you know your variables will fit in an integer (or afloat), then declare
them that way. Runtime performance for Integers can be better than for variables declared as Number.

Fewer evaluation expressions.
Example of code before being rewritten:

Local Row &Current Row;
&TrueOrFal se = (GetField().Value = "N');
&Current Row = Get Row() ;
For & = 1 To &Current Row. Chi | dCount
For & = 1 To &Current Row. Get Rowset (&l) . Act i veRowCount
For & = 1 To &Current Row. Get Rowset (&l). Get Rowm &J) . Recor dCount
For & = 1 To &Current Row. Get Rowset (&). Get Rowm &J) . Get Recor d(&K) . Fi el dCount
&Cur r ent Row. Get Rowset (&l) . Get Rowm &J) . Get Recor d(&K) . Get Fi el d(&L) . Enabl ed>
= &TrueOr Fal se;
End- For ;
End- For ;
End- For ;
End- For ;

Example of code after being rewritten:

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 317

Improving Your PeopleCode

Local Row &Current Row,
Local integer &, &J, &K, &L;
Local bool ean &TrueO Fal se =

&Current Row = Get Row() ;

For & = 1 To &Current Row. Chi

/* No specific RowSet,
Local

&) =
Local

For

For
Local

For &L =

Record,
Rowset &Thi sRs = &Current Row. Get Rowset (&) ;

Chapter 16

(CGetField().Vvalue = "N');

| dCount

or Field is mentioned! */

1 To &Thi sRs. Acti veRowCount
Row &Thi sRow = &Thi sRs(&J);

&K = 1 To &Thi sRow. Recor dCount
Record &Thi sRec = &Thi sRow. Get Recor d(&K) ;

1 To &Thi sRec. Fi el dCount

&Thi sRec. Get Fi el d(&L) . Enabl ed = &TrueOr Fal se;

End- For ;
End- For ;
End- For ;
End- For ;

318

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Improving Your PeopleCode

» Concatenating alarge number of stringsinto alarge string. Sometimes you need to do this.
The simplest approach isto do something like:
&NewString = &NewString | &NewPi ece;

Initself thisis not a bad approach but you can do this much more efficiently using an application class
below.

class StringBuffer

nmet hod StringBuffer(& nitialValue As string);

nmet hod Append(&New As string) returns StringBuffer; // allows &X Append=
("this").Append("that"). Append("and this")

met hod Reset ();

property string Val ue get set;

property integer Length readonly;

property integer MaxLength;

private
i nstance array of string &Pieces;
end- cl ass;

nmet hod StringBuffer
/+ & nitial Value as String, +/

&Pi eces = CreateArray(& nitial Val ue);
&VaxLength = 2147483647; // default maxi num size
&Length = Len(& nitial Val ue);

end- net hod;

nmet hod Reset
&Pi eces. Len = 0;
&Length = 0;
end- net hod;

net hod Append

/+ &New as String +/

Local integer &TenmpLength = &Length + Len(&New);

If &Length > &VaxLength Then

t hrow Creat eException(0, 0, "Mximmsize of StringBuffer exceeded(" | &Max=

Length | ")");

End- | f;

&Lengt h = &TenplLengt h;

&Pi eces. Push(&New) ;

return 9%rhis;
end- net hod,;

get Val ue
/+ Returns String +/
Local string &Tenp = &Pieces.Join("", "", "", &lLength);

/* coll apse array now */
&Pi eces.Len = 1
&Pi eces[1] = &Tenp; /* start out with this conmbo string */
Return &Tenp;
end- get ;

set Val ue
/+ &NewVal ue as String +/
/* Ditch our current value */
&Pi eces.Len = 1
&Pi eces[1] = &NewValue; /* start out with this string */
&Length = Len(&Newval ue) ;
end- set ;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 319

Improving Your PeopleCode Chapter 16

Use this code as follows:
Local StringBuffer &S = create StringBuffer("");
&s. Append(&l i ne);

/* to get the value of string sinply use &S. Value */

Searching PeopleCode for SQL Injection

320

SQL injection is atechnique that enables users to pass unintended SQL to an application. SQL injection is
usually caused by devel opers who use string-building techniques to generate SQL that is subsequently
executed.

PeopleSoft recommends you search your PeopleCode for SQL injection vulnerabilities.

To search for potential SQL injection vulnerabilities:

1
2.
3.

Open Application Designer.

Select Edit, Find In. .

From the Find In dialog box, select SQL Injection in PeopleCode as the find type.
Only potential vulnerabilities will be found.

Review flagged PeopleCode programs.

V ulnerable PeopleCode programs allow unvalidated user input concatenated to SQL.

See Chapter 15, "Debugging Y our Application,” Using the Find In Feature, page 299.

The following functions and methods provide away for SQL to be submitted to the database; they are,
therefore, subject to SQL injection vulnerabilities:

SQL Exec function

CreateSQL function

Rowset class Select method
Rowset class SelectNew method
Rowset class Fill method

Rowset class Fill Append method

Look at the following PeopleCode as an example:

rem Retrieve user input fromthe nane field;
&User | nput = CGetFi el d(Fi el d. NAVE) . Val ue;
SQLExec(" SELECT NAME, PHONE FROM PS_| NFO WHERE NAME='"

&Userlnput | "'", &Name, &Phone);

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16

Improving Your PeopleCode

The code is meant to enable the user to type in a name and get the person's phone number. In the example, the
developer expects that the user will input data such as Smith, in which case the resulting SQL would look like
this:

SELECT NAME, PHONE FROM PS_I NFO WHERE NAME=' Smit h'

However, if the user specified "Smith' OR AGE > 55 --", the resulting SQL would look like this:

SELECT NAME, PHONE FROM PS_| NFO WHERE NAME=' Smith' OR AGE > 55 --'

Note the use of the comment operator (--) to ignore the trailing single quotation mark placed by the
developer's code. Thiswould allow a devious user to find everyone older than 55.

Preventing SQL Injection

Use the following approaches to avoid SQL injection vulnerabilities:

Where possible, avoid using string-building techniques to generate SQL .

Note. String-building technigues cannot always be avoided. String-building does not pose a threat unless
unvalidated user input is concatenated to SQL.

Use bind variables where possible rather that string concatenation.

The following exampleis vulnerable:

SQ.Exec(" SELECT NAME, PHONE FROM PS_| NFO WHERE NAME='" |
&Userlnput | "'", &Name, &Phone);

Use the Quote PeopleCaode function on the user input before concatenating it to SQL.
This pairs the quotation marks in the user input, effectively negating any SQL injection attack.

The following exampleis vulnerable:

SQLExec(" SELECT NAME, PHONE FROM PS_| NFO WHERE NAME='" |
&Userlnput | "'", &Nanme, &Phone);

This exampleis not vulnerable:

SQ.Exec(" SELECT NAME, PHONE FROM PS_| NFO WHERE NAME='" |
Quote(&Userlnput) | "'", &Name, &Phone);

Specify whether SQL errors appear to the user with the Suppress SQL Error setting in the PSTOOLS
section of the application server configuration file. Normally, the SQL in error appearsto the user in a
number of messages. If you consider this a security issue, add the following line to your application server
config file:

Suppress SQL Error=1

When thislineis set, SQL errors do not display details; instead, they refer the user to consult the system
log. The detail that wasin the SQL message is written to the log file.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 321

Improving Your PeopleCode Chapter 16

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,” Quote

PeopleTools 8.51 PeopleBook: System and Server Administration, "Setting Application Server Domain
Parameters," PSTOOL S Options

322 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix A

PeopleCode Editor Short Cut Keys

This appendix lists the short cut keys available in the PeopleCode Editor.

Short Cut Keys in the PeopleCode Editor

The following table lists all the short cut keys available in the PeopleCode Editor.

Note. The short cut keys for Application Designer are not listed.

Key Description

Ctrl-A Select dl

Ctrl-C Edit copy

Ctrl-F Edit find

Ctrl-H Edit replace

Ctrl-L Line cut

Shift-Ctrl-L Line delete

Ctrl-U Selection lowercase
Shift-Ctrl-U Selection uppercase
Ctrl-v Paste

Backspace Backspace and delete characters
Alt-Backspace Edit undo
Ctrl-Backspace Delete to start of word
Shift-Alt-Backspace Edit redo

Delete Delete

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

323

PeopleCode Editor Short Cut Keys

324

Appendix A

Key Description
Ctrl-Delete Delete to next word
Shift-Delete Edit cut

| (down arrow) Line down

Ctrl-| Scroll window down oneline
Shift-| Line down with selection
End Position cursor at end of line
Ctrl-End Position cursor at end of file
Shift-End Select to end of line
Shift-Ctrl-End Select to end of file

Enter New line

Esc (escape) Clear selection

F2 Next bookmark

Ctrl-F2 Toggle bookmark off and on
Shift-F2 Previous bookmark
Shift-Ctrl-F2 Remove all bookmarks

F3 Find next

Shift-F3 Find previous

F5 Go (Debug)

F8 Step (Debug)

F9 Toggle debug breakpoint
Atl-F9 Edit breakpoints (Debug)
Ctrl-F9 Break at start (Debug)

F10 Step over (Debug)

Home Position cursor to first character of line

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Appendix A

PeopleCode Editor Short Cut Keys

Key Description

Ctrl-Home Position cursor to start of file
Shift-Home Select to start of line
Shift-Ctrl-Home Select to start of file

Insert Toggle insert mode
Ctrl-Insert Copy

Shift-Insert Paste

«— (left arrow)

Position cursor |eft one character

Ctrl-— Position cursor left one word
Shift-«— Select one character |eft of cursor
Shift-Ctrl-— Select next word left of cursor
Page Down Page down

Page Up Page up

— (right arrow)

Position cursor right one character

Ctrl-— Position cursor right one word
Shift-— Select one character right of cursor
Shift-Ctrl-— Select next word right of cursor
Tab Tab

Shift-Tab Back tab

T (up arrow) Lineup

Ctrl-1 Scroll window up oneline
Shift-Ctrl-wW Select word

Ctrl-X Edit cut

Ctrl-Y Edit redo

Ctrl-z Edit undo

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

325

PeopleCode Editor Short Cut Keys

326

Appendix A

Key

Description

Shift-Ctrl-Z

Edit redo

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

Symbols

@ operator 35
%M ode system variable 107, 111
%PerfTime system variable 308

A

Activate event 131, 239, 307
AddAttachment function 204
problems with uploading files 226
virus scanning 220
add modes
processing component builds 115
search processing for components 108
algorithms
processing pages with multiple scroll areas
142
using the fastest 308
using the rowset Fill method 316
AllowEmplIdChg function 150
alternate search keys
saving fields 50
searching in update modes 105
analytic server
using log fence settings 298
AP
COBOL SQL (PTPSQLRT) 185
APIObject
scope restrictions 9
APIlobject datatype 29
Application class 39
application classes
Application class 39
deleting 272
editing 273
improving 315
inserting 272
printing/viewing PeopleCode 272
renaming 272
separating out functionality 17
Application Designer
accessing PeopleCode associated with
definitions 92, 230
compiling all PeopleCode programs 292
copying definitions containing PeopleCode
programs 241
creating application packages 271
creating SQL definitions 263
exiting debug mode 288
finding all referencesto afield 302
generating file templates 259
generating PeopleCode for business
interlinks 258
generating PeopleCode for component
interfaces 258
navigating between PeopleCode programs
243
PeopleCode Debugger

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also PeopleCode Debugger
populating HTML areas 147
using PeopleCode Editor
See Also PeopleCode Editor
using the field object Style property 146
using the Find In feature
See Also Find In feature
validating PeopleCode syntax 249
viewing PeopleCode log information 293
Application Engine
programs
See Also Application Engine programs
using the Call AppEngine function 162
Application Engine programs
accessing default state records 88
accessing SQL Editor 265
executing 183
running PeopleCode programs 89
Application logging
using 297
application package definitions
creating 271
functionality associated with PeopleCode
Editor 2
printing 272
viewing 269
Application Package Editor
editing classes 273
understanding 269
using the window 272
application packages
creating 271
definitions
See Also application package definitions
deleting 272
editing See Also Application Package Editor
inserting 272
naming 270
renaming 272
understanding 269
application server
configuration file AppLogFence setting 297
enabling tracing 225
application servers
caling DLL functions 150
configuring multiple for file attachments 218
governing the state 312
system edits 117
application subpackages 269, 270
AppLogFence 297
assignment statements 11
asynchronous processes 185
attachment functions
AddAttachment 204
architecture 207
CleanAttachments 205
configuring virus scanning 221
CopyAttachments 205
copying with 223
debugging problems 223
DeleteAttachment 205
DetachAttachment 204
developing applications 211

327

Index

328

enabling virus scanning 220

GetAttachment 204

logging virus scans 221

overview 203

PutAttachment 204, 217

sample application 215

storage locations 209

ViewAttachment 204
ATTACHSYSFILENAME

in file reference tables 214
ATTACHSY SFILENAME field 213
ATTACHUSERFILE

in file reference tables 214

B

BIDocs objects
data type restrictions 8
bind variables 321
Boolean
constants 20
operators 36
value for comparison operators 35
branching statements 12
breakpoints
abnormal terminations 291
editing/removing 289
locating 278, 286
saving 288
Breakpoints dialog box 289
browsers
default processing for fields 118
system edits 117
buffer fields
accessing in the component buffers 48
contextual reference processing order 52
current context 51
referencing 59, 62
resolving reference ambiguity 54
using contextual references 54
buffers
component See Also component buffers
data See Also data buffer
fields See Also buffer fields
build process
building strings to generate SQL 321

processing component builds in add modes

115
processing component builds in update
modes 111
using the PostBuild/PreBuild events 134
business interlinks 258
buttons
PeopleCode Editor 247
processing for components 100, 123
processing in deferred mode 128

C

CallAppEngine function 162, 183
call stack
monitoring 290
character strings
avoiding implicit conversions 313

chunk size 223
classes
Application 39
data buffer See Also data buffer classes
Field 67
Grid 131
instantiating objects 40
Record 67, 160
Row 67
Rowset 67
SQL 160
style sheets 146
understanding 39
CleanAttachments function 205
COBOL programs, executing remotely
See Also RemoteCall feature
colors
coding in PeopleCode Editor 255
indicating field edit errors 99
COM 259
comments
understanding 9
comparison operators 35
component buffers

accessing data buffers See Also data buffers

accessing secondary page data 87

contextual reference processing order 52

referencing scroll levels, rows and buffer
fields 59

resolving ambiguous references with objects

resolving buffer field reference ambiguity 54

understanding 1
understanding contents 47
understanding current context 51
understanding rowsets 68
understanding server trips 305
using contextual buffer field references 54
using contextual row references 53
using record fields 50
using rowsets and scroll areas 49
using scroll path syntax 56
verifying correct dataisloading 286
viewing in PeopleCode Debugger 291
component interfaces
generating PeopleCode templates 258
restricted events/functions 161
user-defined methods 89
component object model (COM) 259
component processor
Activate event 131
default processing 102, 118
deferred mode See Also deferred mode
eventsinside flow 90
events outside flow 89
event terminology 130
FieldChange event 131
FieldDefault event 132
FieldEdit event 132
FieldFormula event 133
issuing errors/warnings 182
ItemSel ected event 133
PrePopup event 134
processing build in add modes 115
processing build in update modes 111
processing buttons 123
processing field modifications 116
processing page start/display 97

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

processing pages with multiple scroll areas
142
processing PeopleSoft Pure Internet
Architecture 127
processing pop-up menu display/item-
selection 124
processing prompts 123
processing row deletions 121
processing row inserts 119
processing save actions 125
processing user actions 98
RowDelete event 135
Rowlnit event 135
Rowlnsert event 136
RowSelect event 138
row select processing 112
SaveEdit event 138
SavePostChange event 139
SavePreChange event 139
Searchinit event 140
search processing in add modes 108
search processing in update modes 104
SearchSave event 141
understanding 89
understanding the event order 93, 100
using PostBuild/PreBuild events 134
Workflow event 142
component record field program 92
component record program 92
components
accessing component PeopleCode 239
accessing component record field
PeopleCode 236
accessing component record PeopleCode 238
component-level default processing 103
component-related programs 92
component buffers
See Also component buffers
component processor
See Also component processor
list of events 92
moving programs from record definitions to
component definitions 309
saving 138
understanding component PeopleCode 239
understanding component record field
PeopleCode 236
understanding component record PeopleCode
237
using deferred mode 306
using modal transfers
See Also modal transfers
variables See Also component variables
component variables
monitoring 290
understanding 27
composite objects 42
conditional statements 12
constants 19
contextual references
processing order 52
resolving buffer field reference ambiguity 54
understanding 51
using buffer field references 54
using row references 53
CopyAttachments
considerations when using 218
CopyAttachments function 205

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

Copy File Attachments page 223
copying
file attachments 223
CopyTo method 175
Create functions 41
CreateRecord function 77, 87
CreateRowset function 87
cross-reference reports 302
C templates 259
current context
creating records/rowsets 87
instantiating objects 59
understanding 51, 85
using buffer field references 54
using row references 53
CurrentRowNumber function 64
Ccursors
positioning in PeopleCode Editor 323
setting to specific fields 138
using dedicated 168

D

database records
overview, as storage locations 209
databases
accessing during transactions 287
creating afile containing all PeopleCode 287
data buffer access
datatypes 7
data buffer classes
accessing secondary component buffers 87
creating objects (example) 72
current context 85
data model 68
hidden work scroll example 84
page structure example 69
understanding 67
data buffers
accessing 67
classes See Also data buffer classes
instantiating objects 41
traversing the hierarchy (example) 78
understanding 1
data types
APIObject 9
conventional 6
data buffer access 7
display 7
iScript 8
miscellaneous 8
object 7, 169
understanding 5
using Float, Integer and Number 6
date operators 34
debugging
counting server trips 306
debug mode See Also debug mode
file attachment problems 223
PeopleCode Debugger
See Also PeopleCode Debugger
using application logging 297
debug mode
exiting 288
setting PeopleCode log options 294
understanding 279

329

Index

330

decimal precision
using Float, Integer and Number data types 6
Declare function 185
dedicated cursors 168
default processing 102
deferred mode
reducing server trips 305
understanding 127
updating totals/balances 307
using 306
using errors'warnings 308
using the multi-row insert feature 166
definitions
accessing definitions containing PeopleCode
253
accessing PeopleCode associated with
92,230
application package
See Also application package definitions
business interlink 258
classes See Also classes
component interface 258
copying definitions containing PeopleCode
programs 241
file layout 259
function 16
generating PeopleCode referencesto 257
HTML See Also HTML definitions
image 167
name references 19, 23
navigating programs associated with 245
page See Also page definitions
record See Also record definitions
referencing via strings 35
SQL See Also SQL definitions
understanding events 229
using PeopleCode Editor 243
DeleteAttachment function 205
derived/work records See work records
DetachAttachment function 204
problems with downloading files 226
display
datatypes 7
DLL functions, calling 150
DoM odal Component function 165
DoModal function 287
DoModal window 287
DoSave function 160
downloading
problems with 226
drop-down list boxes in deferred mode 128
dynamic link library (DLL) functions, calling 150
dynamic links
libraries (DLL) 150
running applications on the PeopleSoft portal
145

E

edit boxes
associating with derived/work fields 164
using for HTML tree pages 188
editors
Application Package Editor
See Also Application Package Editor
PeopleCode Editor

See Also PeopleCode Editor
SQL Editor See Also SQL Editor
enabling
tracing on the application server 225
tracing on the web server 224
EndM oda Component function 166
error messages
passing 227
errors
avoiding in events 159, 182
compiling all PeopleCode programs 292
datafailure for system edits 118
debugging file attachment problems 223
debugging PeopleCode
See Also PeopleCode Debugger
deleting rows 122
displaying SQL errorsto users 321
function name conflicts 18
save processing events 126
understanding 180
understanding RemoteCall errors 184
using in deferred mode 308
using in edit events 180
using in FieldEdit events 118, 132
using in PreBuild events 134
using in RowDelete events 182
using in RowSelect events 181
using in SearchSave events 141
using syntax 180
using the Error statement 138
validating PeopleCode syntax 249
Evaluate statements
adding breaks 311
checking multiple conditions 13
events
Activate 131, 239
associated items 91

associated with component record fields 236

associated with component records 237
associated with components 239
associated with menu items 240
associated with pages 239
associated with record fields 232
avoiding errors/warnings 159, 182
avoiding think-time functions 156
events inside the component processor flow
90

events outside the component processor flow

89
execution order for component processor
93, 100
FieldChange See Also FieldChange event
FieldDefault See Also FieldDefault event
FieldEdit See Also FieldEdit event
FieldFormula See Also FieldFormula event
ItemSelected 133, 240
navigating programs associated with 245
PostBuild See Also PostBuild event
PreBuild 134
PrePopup 124, 134
processing events passed from trees to
applications 196
restricted from component interfaces 161
resulting from field changes and user saves
93
RowDelete See Also RowDelete event
Rowlnit See Also Rowlnit event
Rowlnsert 136

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RowSelect See Also RowSelect event
SaveEdit See Also SaveEdit event
SavePostChange
See Also SavePostChange event
SavePreChange
See Also SavePreChange event
Searchinit See Also Searchinit event
SearchSave 141
signon 89
understanding 229
understanding terminology 130
understanding triggers 90
using HTML tree user actions 192
using Record class methods 160
using SQL class functions/methods 160
using the Call AppEngine function 162
Workflow See Also Workflow event, 142
event sets
understanding 229
Exec function 170
Execution L ocation Properties dialog box 288
expressions
constants 19
definition name references 23
isolating common 313, 317
meta-SQL See Also meta-SQL
operators See Also operators
record field references 22
system variables See Also system variables
understanding 19
using contextual buffer field references 54
using functions as 21

F

FieldChange event 307
example 197
performance issues 145
processing events passed from trees to
applications 196
processing field changes 118
using 131
using deferred mode 306
using HTML tree events 192
Field class 67
FieldDefault event
deleting all scroll arearows 135
SKipping program sections 159
using 132
FieldEdit event 306
performance issues 145
processing field changes 118
understanding 91
using 132
using errors/warnings 180
FieldFormula event
server trips 127
skipping program sections 159
using 133
field objects
instantiating (example) 78
instantiating in the current context 59
Style property 146
understanding 67
fields
accessing fields not in the data buffer 159

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

ATTACHSY SFILENAME field 213
buffer See Also buffer fields
converting strings to field references 35
default processing 102, 118
default values for blank 102
events occurring after changesto 93
finding references to 302
hiding and disabling 307
ImageReference 167
Maximum Attachment Chunk Size field 223
objects See Also field objects
obtaining (example) 80
page field program 92
processing field actions for components 99
processing in deferred mode 127, 306
processing modifications 116
record See Also record fields
using the FieldChange event 131
using the FieldDefault event 132
using the FieldEdit event 132
viewing values via PeopleCode Debugger
282
FILE_ ATTACH_SBR
in file reference tables 214
FILE_ATTACH_SBR subrecord 213
FILE_ ATTACH_WRK derived/work record
214,215
FILE_ATTDET_SBR subrecord 213
file attachments
AddAttachment function 204
architecture 207
attachments with non-ASCI| file names 226
chunk size 223
CleanAttachments function 205
configuring additional MIME types 219
configuring multiple application servers 218
configuring virus scanning 221
converted charactersin file names 216
converting uploaded file names 217
CopyAttachments function 205
copying 223
debugging problems 223
DeleteAttachment function 205
DetachAttachment function 204
developing applications 211
enabling virus scanning 220
functions, overview 203
GetAttachment function 204
illegal charactersin file names 216
logging virus scans 221
passing error messages to the end user 227
problems with downloads 226
problems with FTP sites 225
problems with uploads 226
PutAttachment function 204
sample application 215
storage locations 209
text files 222
ViewAttachment function 204
file layouts
generating PeopleCode templates 259
instantiating rowsets 87
file names
converted characters 216
illegal characters 216
file reference tables
managing 214
Fill method

331

Index

332

coding efficiently 316
using 174
Find dialog box 248
Find function 248
Find In dialog box 287, 299
Find In feature
finding strings in PeopleCode/SQL 300
saving records in projects 301
searching for SQL injection 302, 320
understanding 299
Float data type 6
fonts
setting in PeopleCode Debugger 291
setting in PeopleCode Editor 255
For statement 14
freeform stylesheets
finding strings 299
FTPsites
file transfer problems 225
overview, as storage locations 209
function definitions 16
functions
accessing external 251
AllowEmplldChg 150
Application Package Editor 272
CallAppEngine 162, 183
caling 17
CreateRecord 77, 87
CreateRowset 87
CurrentRowNumber 64
Declare 185
declaring 17
definitions 16
DLL 150
DoModal 287
DoM odal Component 165
DoSave 160
EndM odal Component 166
Exec 170
Find 248
GenerateTree
See Also GenerateTree function
GetAnalyticGrid 163
GetGrid 163
GetHTML Text 148
GetNextNumberWithGaps 309
GetPage 162
GetRecord 77
GoTo 249
iScripts See Also i Scripts
IsSearchDialog 107, 111
Lower 36
MessageBox 157
naming conflicts 18
ObjectboMethod 169
ObjectGetProperty 169
ObjectSetProperty 169
OLE 169
parameter lists 17
parameters, passing by reference 311
parameters, viewing in PeopleCode
Debugger 290
passing objects 44
Quote 321
recursive 32
RemoteCall See Also RemoteCall feature
Replace 248
restricted from component interfaces 161

ReturnToServer 162

return values 18

Seachlnit 161

SearchDefault 105

SetCursorPos 138
SetSearchDialogBehavior 105

SQL class 160

SQL Editor 266

SQL Exec 139

stepping over in PeopleCode Debugger 290
subject to SQL injection vulnerabilities 320
subroutines 12

supported types 16

Test 151

think-time 156

understanding 16

Upper 36

using as expressions 21

variable duration, understanding 30
variables, function-local 30
variables, passing 31, 32

WinExec 170

WinMessage 157

G

General Options dialog box 291
GenerateTree function
adding mouse-over ability 201
adding visual selection node indicators 202
building HTML tree pages 188
FieldChange example 197
initializing HTML trees 193
PostBuild example 194
processing events passed from trees to
applications 196
specifying override images 202
understanding 187
using events 192
using rowset records 189
GetAnalyticGrid function 163
GetAttachment function 204
Get functions 41
GetGrid function 163
GetHTML Text function 148
GetJavaScriptURL method 149
GetNextNumberWithGaps function 309
GetPage function 162
GetRecord function 77
global variables
ApiObject objects 29
monitoring 290
shared objects 32
sharing a single object instance 170
understanding 27
Go To dialog box 249
Go To feature
using 249
Go To function 249
Grid class 131
grids
building 131
loading datain secondary pages 312
updating totalg/balances 307
using the GetAnalyticGrid function 163
using the GetGrid function 163

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

using the multi-row insert feature 166

H

help, PeopleCode online 254
HTML
definitions See Also HTML definitions
HTML areas See AlIso HTML areas
trees See Also HTML trees
using JavaScripts 149
using the GetHTML Text function 148
HTML areas
building HTML tree pages 188
populating 147, 148
HTML definitions
finding strings 299
using the GetHTML Text function 148
using the GetJavaScriptURL function 149
HTML trees
adding mouse-over ability 201
adding visual selection node indicators 202
building pages for 188
FieldChange example 197
initializing 193
navigating 187
PostBuild example 194
processing events passed from trees to
applications 196
specifying override images 202
understanding 187
using events 192
using rowset records 189
HTTP repositories
overview, as storage locations 210

image definitions 167
ImageReference field 167
images

definitions 167

specifying images for tree nodes 202

using the ImageReference field 167
Installation table 153
Integer datatype 6
Integration Broker 163
interactive mode

enabling fields for 306
interlink objects

data type restrictions 8
Internet scripts See i Scripts
iScripts

datatypes 8

naming 251

understanding 146
IsDeleted property 122
IsSearchDialog function 107, 111
ItemSelected event 133, 240

J

JavaObject objects 8

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

JavaScripts 149
Java templates 259
joins
optimizing SQL 309

K

keys
aternate search
See Also alternate search keys
PeopleCode Editor shortcut 323
search See Also search keys
using the %K eyEqual meta-SQL 173
using the SelectByKey method 171
keywords
Null constant 20
PeopleCode syntax xv

L

language constructs, PeopleCode 11
local variables
duration 30
local-only data types 29
monitoring 290
scope 30
shared objects 32
understanding 27
locking
sending messages via the SavePostChange
event 310
using the GetNextNumberWithGaps function
309
log fence 297
PeopleSoft Analytic Calculation Engine 298
logging
interpreting the PeopleCode Debugger 1og
file 295
setting PeopleCode Debugger options 293
SQL errors 321
using the Test function 151
logical operators 36
looping
caling inserts 1638
conditional loops 15
scroll levels 64
tightening loops 314
loops 14
Lower function 36

M

managing
file reference tables 214
math operators 33
MaxCacheMemory setting 310
Maximum Attachment Chunk Size field 223
menu item program 92
menus
accessing menu item PeopleCode 241
events 92
pop-up See Also pop-up menus

Index

333

Index

334

understanding menu item PeopleCode 240
MessageBox function 157
messaging
instantiating rowset objects 87
sending messages via the SavePostChange
event 310
using the ReturnToServer function 162
using the WinM essage/M essageBox
functions 157
meta-SQL
resolving 267
understanding 19, 21
metastrings See meta-SQL
methods
CopyTo 175
Fill See Also Fill method
GetJavaScriptURL 149
invoking 42
Open 41
Publish 163
Record class 160
Record Insert 168
Select See Also Select method
SelectByKey 171
SelectNew 171
SQL class 160
subject to SQL injection vulnerabilities 320
SyncRequest 163
understanding 16, 40
user-defined 89
MIME types 219
modal components See Also modal transfers
modal transfers
implementing 165
understanding 163
modes
add See Al'so add modes
debug See Also debug mode
deferred processing See Also deferred mode
update See Also update modes
multi-row insert feature
using 166

N

navigation
navigating between PeopleCode programs
243
null constants 20
Number data type 6
numeric constants 20

O

object data type 169
ObjectDoMethod function 169
ObjectGetProperty function 169
object linking and embedding (OLE) See OLE
objects

gning 43

changing properties 41

composite 42

copying 43

datatypes 7

field See Also field objects
hiding and disabling 307
instantiating 40, 41
instantiating in the current context 59
invoking methods 42
OLE See Also OLE objects
passing 44
record See Also record objects
resolving ambiguous references with 55
row See Also row objects
rowset See Also rowsets, rowset objects
session 41
setting to NULL 314
sharing variable references 32
understanding 39, 40
ObjectSetProperty function 169
OLE
objects See Also OLE objects
sharing asingle object instance 170
understanding OLE functions 169
using the object data type 169
OLE objects
sharing asingle instance 170
understanding 169
using the object data type 169
Open method 41
operators
@35
Boolean 36
comparison 35
date 34
math 33
string concatenation 34
time 34
Options dialog box 256

P

packages, application See application packages
page controls
accessing record field PeopleCode 234
resolving ambiguous references with objects

understanding record fields 50
understanding the component buffer 48
using contextual buffer field references 54
using the FieldChange event 131
page definitions
accessing record field PeopleCode 234
moving programs from record definitions
309
understanding page PeopleCode 239
page field program 92
pages
build HTML tree pages 188
Copy File Attachments page 223
definitions See Also page definitions
events 92
hiding and disabling fields 307
page field program 92
page PeopleCode, accessing 240
page PeopleCode, understanding 239
PeopleTools Test Utilities page 215
processing pages with multiple scroll areas
142
refreshing See Also refreshing pages

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

using deferred mode 306
using the Activate event 131
using the GetPage function 162

PeopleCode

accessing definitions containing 253
accessing external functions 251
compiling all programs 292
component processor

See Also component processor
constants 19
creating afile containing all PeopleCode for

a project/database 287
data types See Also data types
debugging See Also PeopleCode Debugger
editing See Also PeopleCode Editor
editing SQL See Also SQL Editor
expressions See Also expressions
functions See Also functions
generating See Also PeopleCode Editor
improving efficiency 310
inserting rows 168
isolating common expressions 313
looping See Also looping
meta-SQL See Also meta-SQL
methods See Also methods
objects See Also objects
programs See Also PeopleCode programs
properties See Also properties
RemoteCall 184
starting other applications from 170
statements See Also statements
typographical conventions xv
understanding 1
understanding comments 9
understanding the language structure 5
variables 26

PeopleCode Debugger

aborting programs 288

accessing 275

breaking at termination 291
breakpoints, editing/removing 289
breakpoints, locating 278
breakpoints at start, setting 287, 289
call stack, viewing 290

call stack pane 283

debugging tips 286

debug mode See Also debug mode
enabling auto scroll and condensed fonts 291
executing the current line 278, 290
function parameters, viewing 290
functions, stepping over 290
locating running code 288

log files, interpreting 295

log options, setting 291, 293
running instances 279

Setting options 288

Setting trace options 294

setting up 291

setting view options 291
understanding 275

using the DoModal function 287
variables, viewing 290

variables panes 280

variable values, inspecting 279
viewing component buffers 291
viewing field values 282

PeopleCode Editor

accessing/setting up context-sensitive help

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

254
accessing definitions containing PeopleCode
253
accessing external functions 251
buttons used in 247
changing colors 255
changing word wrap 255
editing PeopleCode 247
editing via drag-and-drop 250
finding strings 248
formatting statements 250
generating definition references 257
generating file templates 259
generating PeopleCode for business
interlinks 258
generating PeopleCode for component
interfaces 258
gotoline 249
navigating programs associated with
definitions 245
navigating programs associated with events
245
selecting afont 255
understanding 247
understanding programs 2
understanding the window 243
using shortcut keys 323
validating syntax 249
PeopleCode Log Options dialog box 293
PeopleCode log window 293
PeopleCode meta-SQL See meta-SQL
PeopleCode programs
aborting 288
accessing 91, 230
accessing associated application classes 273
Activate event 307
backing up automatically 230
coding techniques for better performance 308
component PeopleCode, accessing 239
component PeopleCode, locating 92
component PeopleCode, understanding 239
component record field PeopleCode,
accessing 236
component record field PeopleCode, locating
92
component record field PeopleCode,
understanding 236
component record PeopleCode, accessing
238
component record PeopleCode, locating 92
component record PeopleCode,
understanding 237
consolidating 309
copying definitions containing 241
executing with fields not in the data buffer
159
FieldChange event 306, 307
FieldEdit 306
finding fields referenced by 302
finding strings 299
GenerateTree function 192
improving 305
menu item PeopleCode, accessing 241
menu item PeopleCode, locating 92
menu item PeopleCode, understanding 240
moving from record to component or page
definitions 309
navigating 243

335

Index

page field PeopleCode, locating 92
page PeopleCode, accessing 240
page PeopleCode, understanding 239
pop-up menu items, defining 241
preventing SQL injection 321
record field PeopleCode, accessing 233, 234
record field PeopleCode, |ocating 92
record field PeopleCode, understanding 232
reducing server trips 305
running via Process Scheduler 185
searching for SQL injection 320
sharing a single object instance 170
understanding 2
understanding current context 51
understanding events 229
understanding triggers 90
upgrading 242
using in PeopleSoft Pure Internet
Architecture 145
variable duration, understanding 30
variables, program-local 30
PeopleCode statements See statements
PeopleSoft Analytic Calculation Engine
using log fence settings 298
PeopleSoft Integration Broker 163
PeopleSoft Process Scheduler 185
PeopleSoft Pure Internet Architecture
calling DLL functions on application servers
150
cross-platform external Test function
(example) 151
populating HTML areas 147
populating search dialog boxes 150
processing considerations 127
updating the PSOPTIONS/Installation tables
153
using i Scripts 146
using PeopleCode 145
using the field object Style property 146
using the GetHTML Text function 148
using the GetJavaScriptURL method 149
PeopleSoft Query 302
PeopleSoft RemoteCall service 185
PeopleSoft Tree Manager 187
PeopleTools Test Utilities page 215
performance issues
coding techniques for PeopleCode 308
improving PeopleCode 305, 310
inspecting objects via PeopleCode Debugger
286
MaxCacheMemory 310
preventing SQL injection 321
reducing server trips 305
searching for SQL injection 320
using dedicated cursors 168
using Float, Integer and Number data types 6
using programs in PeopleSoft Pure Internet
Architecture 145
using RowsetCache class 310
pop-up menus
defining items 241
processing actions for components 99
processing display/item-selection 124
using the ItemSel ected event 133
using the PrePopup event 134
portals
running applications on the PeopleSoft portal
145

336

PostBuild event
example 194
using 134
PreBuild event 134
PrePopup event 124, 134
primary scroll records 48
Process Scheduler 185
programs
Application Engine
See Also Application Engine programs
COBOL, executing remotely
See Also RemoteCall feature
PeopleCode See Also PeopleCode programs
projects
adding SQL definitions 263
creating afile containing all PeopleCode 287
dragging definitions into PeopleCode Editor
257
finding strings 299
saving recordsin 301
validating PeopleCode 249
viewing PeopleCode 230
prompts
processing for components 99, 123
processing in deferred mode 127
properties
changing 41
IsDeleted 122
SearchEdit 106
Style 146
understanding 40
PSOPTIONS table 153
PTPSQLRT program 185
Publish method 163
PutAttachment function 204, 217

Q

queries
PeopleSoft Query 302
SQL See Also SQL
Quote function 321

R

Record class 67, 160
record definitions
accessing record field PeopleCode 233
creating dynamic/SQL view 264
moving programs to component or page
definitions 309
specifying the select record 173
understanding 77
understanding component record PeopleCode
237
using rowset records for HTML trees 189
record fields
avoiding the object data type 169
component record field PeopleCode,
accessing 236
events, FieldFormula 133
events, list of 92, 232
events, Rowlnit 136
naming 22

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

record field PeopleCode, accessing 233, 234
record field PeopleCode, locating 92
record field PeopleCode, understanding 232
record field PeopleCode, understanding
component 236
references, understanding 22
references with objects, resolving ambiguous
55
understanding component buffers 50
understanding derived/work records
See Also work records
understanding user-defined variables 27
Record Insert method 168
record objects
creating in current context 87
instantiating (example) 77
instantiating in the current context 59
understanding 67
records
component record events 92
component record PeopleCode, accessing
238
component record PeopleCode,
understanding 237
component record program 92
default scroll 171
definitions See Also record definitions
derived/work See Also work records
fields See Also record fields
FILE_ATTACH_SBR subrecord 213
FILE ATTACH_WRK derived/work record
214, 215
FILE_ATTDET_SBR subrecord 213
objects See Also record objects
obtaining (example) 80
primary scroll 48
saving in projects 301
scroll level hierarchy 48
select 171
subrecords See Also subrecords
TREECTL_NODE 202
understanding 77
understanding the component buffer 48
using rowset records for HTML trees 189
recursive functions 32
references
contextual See Also contextual references
finding fields referenced by PeopleCode 302
passing function parameters for efficiency
311
using definition name 23
using record field 22
using the ImageReference field 167
refreshing pages
updating totalg/balances 307
using deferred mode 127
using the Refresh button 307
RemoteCall feature
PeopleCode program 184
PeopleSoft RemoteCall Service 185
programming guidelines 185
RemoteCall vs. Process Scheduler 185
remote program AP 184
running Process Scheduler programs with
185
understanding 183
understanding errors 184
RemoteCall function See Also RemoteCall feature

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

remote program AP 184
Repeat statement 15
Replace function 248
reports, cross-reference 302
reserved words 24
ReturnToServer function 162
Rollback statement 139
Row class 67
RowDelete event
using 135
using errors'warnings 182
Rowlnit event
deleting al scroll arearows 135
placing dynamic link information 127
understanding 91
using 135
Rowlnsert event 136
row objects
instantiating (example) 76
instantiating in the current context 59
understanding 67
rows
deleting al in scroll areas 135
inserting via PeopleCode 168
objects See Also row objects
obtaining (example) 79
processing deletions 121
processing inserts 119
processing row actions for components 98
referencing 59, 61
row select processing 101, 112
understanding current context 51
using contextual row references 53
using the CurrentRowNumber function 64
using the multi-row insert feature 166
using the RowDelete event 135
using the RowlInit event 135
using the Rowlnsert event 136
using the RowSelect event 138
RowSelect event
using 138
using errors'warnings 181
RowsetCache class
MaxCacheMemory setting 310
used for performance 310
Rowset class 67
rowset objects
creating in current context 87
instantiating (example) 73
instantiating in the current context 59
instantiating via non-component buffer data
87
understanding 67
rowsets
examples 82
objects See Also rowset objects
obtaining (example) 79
Rowset class 67
standal one See Also standalone rowsets
understanding 49, 68
using the Fill method 316
using the GenerateTree function 187
using the Select/SelectNew methods 171

Index

337

Index

338

SaveEdit event
save processing 125
using 138
using errors'warnings 180
SavePostChange event
save processing 125
sending messages 310
sending PeopleCode 163
using 139
SavePreChange event
save processing 125
updating the PSOPTIONS/Installation tables
153
using 139
scripts
iScripts See Also i Scripts
JavaScripts 149
scroll areas
deleting all rows 135
hidden work example 84
loading datain secondary pages 312
populating 171
processing pages with multiple 142
understanding rowsets 49
updating totals/balances 307
using contextual row references 53
using the multi-row insert feature 166
scroll levels
component buffers record fields 50
current context 51
hierarchy 48
looping through 64
processing pages with multiple scroll areas
142
referencing 59, 60
understanding scroll paths 56
using contextual row references 53
using the CurrentRowNumber function 64
scroll paths
referencing scroll levels, rows and buffer
fields 59
structuring syntax 56
syntax with RECORD.recordname 56
syntax with SCROLL .scrollname 57
understanding 56
Seachlnit function 161
SearchDefault function 105
SearchEdit property 106
searches
populating search dialog boxes 150
processing in add modes for components 108
processing in update modes for components
104
using the Find feature 248
using the Find In feature 299
using the go to feature 249
using the Searchinit event 140
using the SearchSave event 141
Searchlnit event
populating search dialog boxes 150
using 140
search keys
populating search dialog boxes 150
saving fields 50
searching in update modes 105
using derived/work fields 164
using the Searchinit event 140
using the SearchSave event 141

SearchSave event 141
secondary pages
accessing component buffer data 87
loading data into grids/scroll-areas 312
security
accessing PeopleCode Debugger 278
configuring multiple application servers for
file attachments 218
hiding pages 131
using the signon event 89
SelectByK ey method 171
Select method
specifying child rowsets 172, 173
specifying the select record 173
syntax 172
using 171
using the Where clause 173
SelectNew method 171
select records 171
separators, statement 11
servers
application See Also application servers
server trips See Also server trips
server trips
counting 306
hiding and disabling fields 307
reducing 305
updating totalg/balances 307
using deferred mode 306
using errors/warnings 308
using the fastest algorithm 308
using the Refresh button 307
session objects 41
SetCursorPos function 138
SetSearchDiaogBehavior function 105
signon 89
SQL
definitions See Also SQL definitions
deleting statements 267
displaying errorsto users 321
editing See Also SQL Editor
formatting statements 267
injection See Also SQL injection
meta-SQL See Also meta-SQL
optimizing via joing/statements 309
running SQL Trace 309
selecting theright style 314
tables See Also SQL tables
views See Also SQL views
SQL class 160
SQL Commit statement 139
SQL definitions
accessing properties 262
creating 263
finding strings 299
functionality associated with PeopleCode
Editor 2
using SQL Editor 261
SQL Editor
accessing 263
accessing definition properties 262
accessing from Application Engine programs
265
creating dynamic/SQL view records 264
using 266
using the window 261
SQL Exec function 139
SQL injection

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

finding 302, 320
preventing 321
SQL objects
improving performance via 314
inserting rows 168
SQL tables
scroll level hierarchy 48
understanding See Al'so records
SQL Trace 309
SQL views
creating records 264
scroll level hierarchy 48
standal one rowsets
adding child rowsets 175
reading files 178
understanding 174
using the Fill method 174, 175
writing files 176
Statements
assignment 11
branching 12
deleting SQL 267
Evaluate See Also Evaluate statement
For 14
formatting PeopleCode 250
formatting SQL 267
If, Then, and Else 12
language constructs 11
optimizing SQL 309
Repeat 15
Rollback 139
separators 11
SQL Commit 139
understanding 10
using contextual buffer field references 54
While 15
storage locations
database records 209
file attachments 209
FTP sites 209
HTTP repositories 210
URLs 210
string concatenation operator 34
strings
comparing 36
converting to field references 35
string concatenation operator 34
understanding string constants 20
Structured Query Language (SQL) See SQL
Style property 146
style sheets 146
subpackages, application 269, 270
subrecords
TREECTL_HDR_SBR 189
TREECTL_NDE_SBR 189, 190
subroutines 12
synchronous processes
using the Exec/WinExec functions 170
using the RemoteCall feature 185
using the RemoteCall function 183
SyncRequest method 163
system edits
field modifications 117
system variables
%Mode 107, 111
%PerfTime 308
understanding 21, 27

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Index

T

tables
Installation 153
PSOPTIONS 153
SQL See Also SQL tables
templates
Business Interlink 258
classes/objects See Also classes
component interface 258
Test function 151
text
editors See Also editors
going to strings 249
HTML See Also GetHTML Text function
word wrapping in PeopleCode Editor 255
think-time functions
avoiding in events 156
RemoteCall See Also RemoteCall feature
time operators 34
tracing
enabling on the application server 225
enabling on the web server 224
running SQL Trace 309
setting PeopleCode options 294
using the fastest algorithm 308
transactions
accessing databases 287
components See Also components
identifying performance issues 306
running SQL Trace 309
transfers
modal See Also modal transfers
TransformData objects
scope restrictions 9
TREECTL_HDR_SBR subrecord 189
TREECTL_NDE_SBR subrecord 189, 190
TREECTL_NODE record 202
Tree Manager 187
trees, HTML See HTML trees
triggers 90

U

uniform resource locators (URLS) See URLs
UNIX
caling DLL functions on application servers
150
update modes
processing component builds 111
search processing for components 104
upgrade issues
compiling all PeopleCode programs 292
upgrading PeopleCode programs 242
uploading
problems with 226
Upper function 36
URLs
setting up online help 254
storage locations 210
using the GetJavaScriptURL function 149
user-defined constants 20
user-defined variables
declarations/scope 27
initializing 29

339

Index

340

understanding 26, 27

V

Vdidate utility 249
validation
hidden/disabled fields 307
PeopleCode syntax 249
variables
bind 321
checking the valuesin programs via
PeopleCode Debugger 280
component See Also component variables
declaring 28
declaring for efficiency 310
global See Also global variables
local See Also local variables
passing to functions 31
passing to recursive functions 32
restrictions 29
system See Also system variables
types supported by PeopleCode 26
user-defined See Also user-defined variables
viewing programs via PeopleCode Debugger
283
ViewAttachment function 204, 219
file transfer process 207
problems with downloading files 226
virus scanning
configuring 221
enabling 220
errors and return codes 222
logging 221
Visual Basic templates 259

W

warnings
avoiding in events 159, 182
deleting rows 122
save processing events 126
understanding 180
using in deferred mode 308
using in edit events 180
using in FieldEdit events 118, 132
using in PreBuild events 134
using in RowDelete events 182
using in RowSelect events 181
using in SearchSave events 141
using syntax 180
using the Warning statement 138
validating PeopleCode syntax 249
web server
enabling tracing 224
web servers
configuring additional MIME types 219
While statement 15
Windows
calling DLL functions on application servers
150
MessageBox dialog boxes 157
using OLE functions 169
using PeopleCode Debugger 275
using the WinExec function 170

WinExec function 170
WinMessage function 157
Workflow event
save processing 125
using 142
using the SavePostChange event 139
work records
understanding 164

X

XmiNode objects
scope restrictions 9

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

	Enterprise PeopleTools 8.51 PeopleBook: PeopleCode Developer's Guide
	Copyright
	Contents
	Preface: PeopleCode Developer's Guide Preface
	Overview of PeopleCode Developer's Guide
	PeopleCode Typographical Conventions
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with PeopleCode
	PeopleCode Overview
	Creating PeopleCode Programs

	Chapter 2: Understanding the PeopleCode Language
	PeopleCode Language Structure
	Data Types
	Conventional Data Types
	Object Data Types

	Comments
	Statements
	Separators
	Assignment Statements
	Language Constructs
	Branching Statements
	Conditional Loops

	Functions
	Supported Functions
	Function Definitions
	Function Declarations
	Function Calls
	Function Return Values
	Function Naming Conflicts

	Expressions
	Expression Fundamentals
	Constants
	Functions as Expressions
	System Variables
	Metastrings
	Record Field References
	Definition Name References
	PeopleCode Reserved Words

	Variables
	Supported Variable Types
	User-Defined Variables
	User-Defined Variable Declaration and Scope
	Variable Declaration
	User-Defined Variable Initialization
	Restrictions on Variable Use
	Scope of Local Variables
	Duration of Local Variables
	Variables and Functions
	Recursive Functions
	State of Shared Objects Using PeopleSoft Pure Internet Architecture

	Operators
	Math Operators
	Operations on Dates and Times
	String Concatenation
	@ Operator
	Comparison Operators
	Boolean Operators

	Chapter 3: Understanding Objects and Classes in PeopleCode
	Classes and Objects
	Classes
	Objects
	Object Instantiation

	Creating and Using Objects
	Instantiating Objects
	Changing Properties
	Invoking Methods
	Copying Objects

	Assigning Objects
	Passing Objects

	Chapter 4: Referencing Data in the Component Buffer
	Understanding Component Buffer Structure and Contents
	Component Buffer Contents
	Rowsets and Scroll Areas
	Record Fields and the Component Buffer

	Specifying Data with Contextual References
	Understanding Current Context
	Using Contextual Row References
	Using Contextual Buffer Field References

	Specifying Data with References Using Scroll Path Syntax and Dot Notation
	Understanding Scroll Paths
	Structuring Scroll Path Syntax in PeopleTools 7.5
	Referencing Scroll Levels, Rows, and Buffer Fields

	Chapter 5: Accessing the Data Buffer
	Understanding Data Buffer Access
	Data Buffer Access
	Access Classes
	Data Buffer Model and Data Access Classes

	Understanding Data Buffer Classes Examples
	Employee Checklist Page Structure
	Object Creation Examples
	Data Buffer Hierarchy Examples
	Rowset Examples
	Hidden Work Scroll Example

	Understanding Current Context
	Accessing Secondary Component Buffer Data
	Instantiating Rowsets Using Non-Component Buffer Data

	Chapter 6: PeopleCode and the Component Processor
	Understanding the Component Processor
	Events Outside the Component Processor Flow
	PeopleCode Program Triggers
	Understanding PeopleCode Program Triggers
	Accessing PeopleCode Programs
	Associating Execution Order of Events and PeopleCode

	Component Processor Behavior
	Component Processor Behavior from Page Start to Page Display
	Component Behavior Following User Actions in the Component

	Processing Sequences
	Flow Charts
	Default Processing
	Search Processing in Update Modes
	Search Processing in Add Modes
	Component Build Processing in Update Modes
	Row Select Processing
	Component Build Processing in Add Modes
	Field Modification
	Row Insert Processing
	Row Delete Processing
	Buttons
	Prompts
	Pop-Up Menu Display
	Selected Item Processing
	Save Processing

	PeopleSoft Pure Internet Architecture Processing Considerations
	Deferred Processing Mode
	PeopleCode Events
	Activate Event
	FieldChange Event
	FieldDefault Event
	FieldEdit Event
	FieldFormula Event
	ItemSelected Event
	PostBuild Event
	PreBuild Event
	PrePopup Event
	RowDelete Event
	RowInit Event
	RowInsert Event
	RowSelect Event
	SaveEdit Event
	SavePostChange Event
	SavePreChange Event
	SearchInit Event
	SearchSave Event
	Workflow Event

	PeopleCode Execution in Pages with Multiple Scroll Areas

	Chapter 7: PeopleCode and PeopleSoft Pure Internet Architecture
	Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture
	Using PeopleCode with PeopleSoft Pure Internet Architecture
	Using Internet Scripts
	Using the Field Object Style Property
	Using the HTML Area
	Using HTML Definitions and the GetHTMLText Function
	Using HTML Definitions and the GetJavaScriptURL Method
	Using PeopleCode to Populate Key Fields in Search Dialog Boxes

	Calling DLL Functions on the Application Server
	Sample Cross-Platform External Test Function

	Updating the Installation and PSOPTIONS Tables

	Chapter 8: Using Methods and Built-In Functions
	Understanding Restrictions on Method and Function Use
	Think-Time Functions
	WinMessage and MessageBox Functions
	Program Execution with Fields Not in the Data Buffer
	Errors and Warnings
	DoSave Function
	Record Class Database Methods
	SQL Class Methods and Functions
	Component Interface Restricted Functions
	SearchInit PeopleCode Function Restrictions
	CallAppEngine Function
	ReturnToServer Function
	GetPage Function
	GetGrid and GetAnalyticGrid Functions
	Publish Method
	SyncRequest Method

	Implementing Modal Transfers
	Understanding Modal Transfers
	Implementing Modal Transfers

	Implementing the Multi-Row Insert Feature
	Using the ImageReference Field
	Inserting Rows Using PeopleCode
	Using OLE Functions
	Understanding OLE Functions
	Using the Object Data Type
	Sharing a Single Object Instance
	Using the Exec and WinExec Functions

	Using the Select and SelectNew Methods
	Understanding the Select and SelectNew Methods
	Using the Select Method

	Using Standalone Rowsets
	Understanding Standalone Rowsets
	Using the Fill Method
	Using the CopyTo Method
	Adding Child Rowsets
	Using Standalone Rowsets to Write a File
	Using Standalone Rowsets to Read a File

	Using Errors and Warnings
	Using Error and Warning Syntax
	Using Errors and Warnings in Edit Events
	Using Errors and Warnings in RowSelect Events
	Using Errors and Warnings in RowDelete Events
	Using Errors and Warnings in Other Events

	Using the RemoteCall Feature
	Understanding RemoteCall Components
	Deciding Between RemoteCall and PeopleSoft Process Scheduler
	Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

	Chapter 9: Using HTML Trees and the GenerateTree Function
	Using the GenerateTree Function
	Understanding HTML Trees
	Building HTML Tree Pages
	Using HTML Tree Rowset Records
	Using HTML Tree Actions (Events)
	Initializing HTML Trees
	Processing Events Passed from a Tree to an Application
	Adding Mouse-Over Ability to HTML Trees
	Adding Visual Selection Node Indicators
	Specifying Override Images

	Chapter 10: Working With File Attachments
	Understanding the File Attachment Functions
	PeopleCode Built-in File Attachment Functions
	Understanding the File Attachment Architecture
	Understanding File Attachment Storage Locations
	Understanding Storage Location URLs

	Developing Applications that Use File Attachment Functions
	Application Development Process Overview
	Delivered Record Definitions
	Managing Entries in File Reference Tables
	Using the PeopleTools Test Utilities Page

	Application Development Considerations
	File Name Considerations
	Restrictions on Invoking Functions in Certain PeopleCode Events
	Converting File Names for Files Uploaded by PutAttachment
	Considerations When Using CopyAttachments

	Application Deployment and System Configuration Considerations
	File Attachment Functions in an Environment with Multiple Application Server Domains
	Configuring the Web Server to Support Additional MIME Types
	Setting Up Virus Scanning
	Considerations When Attaching Text Files
	File Attachment Chunk Size
	Using the Copy File Attachments Page

	Debugging File Attachment Problems
	Enabling Tracing on the Web Server or Application Server
	Problems with Transfers to and from FTP Sites
	Attachments with non-ASCII File Names
	Problems Uploading Files
	Problems Downloading Files
	Passing Error Messages to the End User

	Chapter 11: Accessing PeopleCode and Events
	Understanding PeopleCode Programs and Events
	Understanding Automatic Backup of PeopleCode
	Accessing PeopleCode in Application Designer
	Accessing Record Field PeopleCode
	Understanding Record Field PeopleCode
	Accessing Record Field PeopleCode from a Record Definition
	Accessing Record Field PeopleCode from a Page Definition

	Accessing Component Record Field PeopleCode
	Understanding Component Record Field PeopleCode
	Accessing Component Record Field PeopleCode

	Accessing Component Record PeopleCode
	Understanding Component Record PeopleCode
	Accessing Component Record PeopleCode

	Accessing Component PeopleCode
	Understanding Component PeopleCode
	Accessing Component PeopleCode

	Accessing Page PeopleCode
	Understanding Page PeopleCode
	Accessing Page PeopleCode

	Accessing Menu Item PeopleCode
	Understanding Menu Item PeopleCode
	Defining PeopleCode Pop-Up Menu Items
	Accessing Menu Item PeopleCode

	Copying PeopleCode with a Parent Definition
	Upgrading PeopleCode Programs

	Chapter 12: Using the PeopleCode Editor
	Navigating Between PeopleCode Programs
	Understanding the PeopleCode Editor Window
	Navigating Between Programs Associated With a Definition and Its Children
	Navigating Between Programs Associated With Events

	Using the PeopleCode Editor
	Understanding the PeopleCode Editor
	Writing and Editing PeopleCode
	Find and Replace Dialogs
	Go To Dialog
	Validate Syntax Utility
	Formatting Code Automatically
	Using Drag-and-Drop Editing
	Accessing PeopleCode External Functions
	Accessing PeopleCode Application Packages and Application Classes
	Accessing Definitions and Associated PeopleCode
	Accessing Help
	Setting up Help
	Changing Colors in the PeopleCode Editor
	Selecting a Font for the PeopleCode Editor
	Changing Word Wrap in the PeopleCode Editor
	Using the PeopleCode Event Properties

	Generating PeopleCode Using Drag-and-Drop
	Generating Definition References
	Generating PeopleCode for a Business Interlink
	Generating PeopleCode for a Component Interface
	Generating PeopleCode for a File Layout

	Chapter 13: Using the SQL Editor
	Understanding the SQL Editor Window
	Accessing SQL Definition Properties
	Accessing the SQL Editor
	Creating SQL Definitions
	Creating Dynamic View or SQL View Records
	Accessing the SQL Editor from Application Engine Programs

	Using the SQL Editor

	Chapter 14: Creating Application Packages and Classes
	Understanding Application Packages
	Creating Application Packages
	Understanding Package Names
	Creating Application Package Definitions

	Using the Application Package Editor
	Editing Application Package Classes

	Chapter 15: Debugging Your Application
	Understanding the PeopleCode Debugger
	Accessing the PeopleCode Debugger
	Using PeopleCode Debugger Features
	Visible Current Line of Execution
	Visible Breakpoints
	Hover Inspect
	Single Debugger
	Variables Panes
	Call Stack Pane
	Setting Values for Variables and Properties
	General Debugging Tips

	Using PeopleCode Debugger Options
	Setting Up the Debugging Environment
	Compiling All PeopleCode Programs at Once
	Setting PeopleCode Debugger Log Options
	Interpreting the PeopleCode Debugger Log File
	Log File Contents
	Other Items in the Log File

	Using Application Logging
	Setting the Application Log Fence in the Configuration File
	Using the Log Fence with PeopleSoft Analytic Calculation Engine

	Using the Find In Feature
	Searching for SQL Injection

	Using Cross-Reference Reports

	Chapter 16: Improving Your PeopleCode
	Reducing Trips to the Server
	Counting Server Trips
	Using Deferred Mode
	Hiding and Disabling Fields
	Using the Refresh Button
	Updating Totals and Balances
	Using Warning Messages
	Using the Fastest Algorithm

	Using Better Coding Techniques for Improved Performance
	Running a SQL Trace
	Optimizing SQL
	Using the GetNextNumberWithGaps Function
	Consolidating PeopleCode Programs
	Moving PeopleCode to a Component or Page Definition
	Sending Messages in the SavePostChange Event
	Using Metadata and the RowsetCache Class
	Setting MaxCacheMemory

	Writing More Efficient Code
	Writing More Efficient Code Examples

	Searching PeopleCode for SQL Injection
	Preventing SQL Injection

	Appendix A: PeopleCode Editor Short Cut Keys
	Short Cut Keys in the PeopleCode Editor

	Index

