
Enterprise PeopleTools 8.51
PeopleBook: PeopleCode
Developer's Guide

October 2011

Enterprise PeopleTools 8.51 PeopleBook: PeopleCode Developer's Guide
SKU pt8.51tpcd-b1011

Copyright © 1988, 2011, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

PeopleCode Developer's Guide Preface ... xv

Overview of PeopleCode Developer's Guide .. xv
PeopleCode Typographical Conventions .. xv
PeopleBooks and the PeopleSoft Online Library ... xvi

Chapter 1

Getting Started with PeopleCode ... 1

PeopleCode Overview ... 1
Creating PeopleCode Programs .. 2

Chapter 2

Understanding the PeopleCode Language ... 5

PeopleCode Language Structure ... 5
Data Types .. 5

Conventional Data Types ... 6
Object Data Types .. 7

Comments ... 9
Statements ... 10

Separators ... 11
Assignment Statements .. 11
Language Constructs .. 11
Branching Statements ... 12
Conditional Loops .. 15

Functions .. 15
Supported Functions ... 16
Function Definitions ... 16
Function Declarations .. 17
Function Calls .. 17
Function Return Values .. 18
Function Naming Conflicts .. 18

Expressions .. 19
Expression Fundamentals ... 19

Contents

iv Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Constants .. 19
Functions as Expressions ... 21
System Variables .. 21
Metastrings ... 21
Record Field References .. 22
Definition Name References .. 23
PeopleCode Reserved Words ... 24

Variables .. 26
Supported Variable Types .. 26
User-Defined Variables .. 27
User-Defined Variable Declaration and Scope .. 27
Variable Declaration .. 28
User-Defined Variable Initialization .. 29
Restrictions on Variable Use .. 29
Scope of Local Variables ... 30
Duration of Local Variables ... 30
Variables and Functions ... 31
Recursive Functions ... 32
State of Shared Objects Using PeopleSoft Pure Internet Architecture .. 32

Operators ... 33
Math Operators ... 33
Operations on Dates and Times ... 34
String Concatenation .. 34
@ Operator ... 35
Comparison Operators .. 35
Boolean Operators .. 36

Chapter 3

Understanding Objects and Classes in PeopleCode ... 39

Classes and Objects ... 39
Classes .. 39
Objects .. 40
Object Instantiation .. 40

Creating and Using Objects ... 40
Instantiating Objects ... 41
Changing Properties ... 41
Invoking Methods .. 42
Copying Objects ... 43

Assigning Objects ... 43
Passing Objects ... 44

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. v

Chapter 4

Referencing Data in the Component Buffer .. 47

Understanding Component Buffer Structure and Contents ... 47
Component Buffer Contents ... 47
Rowsets and Scroll Areas ... 49
Record Fields and the Component Buffer .. 50

Specifying Data with Contextual References ... 51
Understanding Current Context ... 51
Using Contextual Row References .. 53
Using Contextual Buffer Field References .. 54

Specifying Data with References Using Scroll Path Syntax and Dot Notation ... 56
Understanding Scroll Paths .. 56
Structuring Scroll Path Syntax in PeopleTools 7.5 .. 56
Referencing Scroll Levels, Rows, and Buffer Fields ... 59

Chapter 5

Accessing the Data Buffer ... 67

Understanding Data Buffer Access .. 67
Data Buffer Access ... 67
Access Classes .. 67
Data Buffer Model and Data Access Classes ... 68

Understanding Data Buffer Classes Examples .. 68
Employee Checklist Page Structure ... 69
Object Creation Examples .. 72
Data Buffer Hierarchy Examples ... 78
Rowset Examples ... 82
Hidden Work Scroll Example .. 84

Understanding Current Context .. 85
Accessing Secondary Component Buffer Data ... 87
Instantiating Rowsets Using Non-Component Buffer Data .. 87

Chapter 6

PeopleCode and the Component Processor ... 89

Understanding the Component Processor ... 89
Events Outside the Component Processor Flow ... 89
PeopleCode Program Triggers .. 90

Understanding PeopleCode Program Triggers .. 90

Contents

vi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Accessing PeopleCode Programs ... 91
Associating Execution Order of Events and PeopleCode .. 93

Component Processor Behavior ... 96
Component Processor Behavior from Page Start to Page Display ... 97
Component Behavior Following User Actions in the Component .. 98

Processing Sequences ... 100
Flow Charts ... 101
Default Processing .. 102
Search Processing in Update Modes .. 104
Search Processing in Add Modes ... 108
Component Build Processing in Update Modes .. 111
Row Select Processing ... 112
Component Build Processing in Add Modes ... 115
Field Modification .. 116
Row Insert Processing .. 119
Row Delete Processing ... 121
Buttons ... 123
Prompts ... 123
Pop-Up Menu Display .. 124
Selected Item Processing ... 124
Save Processing .. 125

PeopleSoft Pure Internet Architecture Processing Considerations ... 127
Deferred Processing Mode .. 127
PeopleCode Events ... 130

Activate Event .. 131
FieldChange Event ... 131
FieldDefault Event ... 132
FieldEdit Event ... 132
FieldFormula Event .. 133
ItemSelected Event ... 133
PostBuild Event .. 134
PreBuild Event ... 134
PrePopup Event .. 134
RowDelete Event .. 135
RowInit Event .. 135
RowInsert Event ... 136
RowSelect Event .. 138
SaveEdit Event ... 138
SavePostChange Event ... 139
SavePreChange Event .. 139
SearchInit Event ... 140
SearchSave Event ... 141
Workflow Event ... 142

PeopleCode Execution in Pages with Multiple Scroll Areas .. 142

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. vii

Chapter 7

PeopleCode and PeopleSoft Pure Internet Architecture .. 145

Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture .. 145
Using PeopleCode with PeopleSoft Pure Internet Architecture ... 146

Using Internet Scripts ... 146
Using the Field Object Style Property .. 146
Using the HTML Area ... 147
Using HTML Definitions and the GetHTMLText Function .. 148
Using HTML Definitions and the GetJavaScriptURL Method ... 149
Using PeopleCode to Populate Key Fields in Search Dialog Boxes .. 150

Calling DLL Functions on the Application Server ... 150
Sample Cross-Platform External Test Function .. 151

Updating the Installation and PSOPTIONS Tables .. 153

Chapter 8

Using Methods and Built-In Functions .. 155

Understanding Restrictions on Method and Function Use .. 155
Think-Time Functions .. 156
WinMessage and MessageBox Functions .. 157
Program Execution with Fields Not in the Data Buffer ... 159
Errors and Warnings ... 159
DoSave Function .. 160
Record Class Database Methods .. 160
SQL Class Methods and Functions .. 160
Component Interface Restricted Functions .. 161
SearchInit PeopleCode Function Restrictions .. 161
CallAppEngine Function .. 162
ReturnToServer Function ... 162
GetPage Function ... 162
GetGrid and GetAnalyticGrid Functions ... 163
Publish Method .. 163
SyncRequest Method .. 163

Implementing Modal Transfers .. 163
Understanding Modal Transfers ... 163
Implementing Modal Transfers .. 165

Implementing the Multi-Row Insert Feature .. 166
Using the ImageReference Field ... 167
Inserting Rows Using PeopleCode ... 168
Using OLE Functions .. 169

Contents

viii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Understanding OLE Functions ... 169
Using the Object Data Type ... 169
Sharing a Single Object Instance ... 170
Using the Exec and WinExec Functions .. 170

Using the Select and SelectNew Methods ... 171
Understanding the Select and SelectNew Methods .. 171
Using the Select Method .. 172

Using Standalone Rowsets ... 174
Understanding Standalone Rowsets ... 174
Using the Fill Method .. 174
Using the CopyTo Method ... 175
Adding Child Rowsets ... 175
Using Standalone Rowsets to Write a File ... 176
Using Standalone Rowsets to Read a File .. 178

Using Errors and Warnings ... 180
Using Error and Warning Syntax ... 180
Using Errors and Warnings in Edit Events .. 180
Using Errors and Warnings in RowSelect Events .. 181
Using Errors and Warnings in RowDelete Events ... 182
Using Errors and Warnings in Other Events .. 182

Using the RemoteCall Feature ... 182
Understanding RemoteCall Components ... 183
Deciding Between RemoteCall and PeopleSoft Process Scheduler ... 185
Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall 185

Chapter 9

Using HTML Trees and the GenerateTree Function ... 187

Using the GenerateTree Function .. 187
Understanding HTML Trees .. 187
Building HTML Tree Pages ... 188
Using HTML Tree Rowset Records ... 189
Using HTML Tree Actions (Events) .. 192
Initializing HTML Trees .. 193
Processing Events Passed from a Tree to an Application .. 196
Adding Mouse-Over Ability to HTML Trees .. 201
Adding Visual Selection Node Indicators .. 202
Specifying Override Images ... 202

Chapter 10

Working With File Attachments .. 203

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. ix

Understanding the File Attachment Functions .. 203
PeopleCode Built-in File Attachment Functions .. 203
Understanding the File Attachment Architecture .. 207
Understanding File Attachment Storage Locations .. 209
Understanding Storage Location URLs .. 210

Developing Applications that Use File Attachment Functions .. 211
Application Development Process Overview ... 211
Delivered Record Definitions .. 212
Managing Entries in File Reference Tables .. 214
Using the PeopleTools Test Utilities Page .. 215

Application Development Considerations ... 216
File Name Considerations ... 216
Restrictions on Invoking Functions in Certain PeopleCode Events ... 217
Converting File Names for Files Uploaded by PutAttachment ... 217
Considerations When Using CopyAttachments .. 218

Application Deployment and System Configuration Considerations .. 218
File Attachment Functions in an Environment with Multiple Application Server Domains 218
Configuring the Web Server to Support Additional MIME Types ... 219
Setting Up Virus Scanning .. 220
Considerations When Attaching Text Files .. 222
File Attachment Chunk Size ... 223
Using the Copy File Attachments Page ... 223

Debugging File Attachment Problems ... 223
Enabling Tracing on the Web Server or Application Server ... 224
Problems with Transfers to and from FTP Sites ... 225
Attachments with non-ASCII File Names .. 226
Problems Uploading Files ... 226
Problems Downloading Files .. 226
Passing Error Messages to the End User ... 227

Chapter 11

Accessing PeopleCode and Events .. 229

Understanding PeopleCode Programs and Events .. 229
Understanding Automatic Backup of PeopleCode .. 230
Accessing PeopleCode in Application Designer .. 230
Accessing Record Field PeopleCode ... 232

Understanding Record Field PeopleCode .. 232
Accessing Record Field PeopleCode from a Record Definition .. 233
Accessing Record Field PeopleCode from a Page Definition .. 234

Accessing Component Record Field PeopleCode ... 236
Understanding Component Record Field PeopleCode ... 236
Accessing Component Record Field PeopleCode .. 236

Contents

x Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Accessing Component Record PeopleCode ... 237
Understanding Component Record PeopleCode .. 237
Accessing Component Record PeopleCode ... 238

Accessing Component PeopleCode ... 238
Understanding Component PeopleCode .. 239
Accessing Component PeopleCode ... 239

Accessing Page PeopleCode .. 239
Understanding Page PeopleCode ... 239
Accessing Page PeopleCode .. 240

Accessing Menu Item PeopleCode .. 240
Understanding Menu Item PeopleCode ... 240
Defining PeopleCode Pop-Up Menu Items .. 241
Accessing Menu Item PeopleCode .. 241

Copying PeopleCode with a Parent Definition ... 241
Upgrading PeopleCode Programs ... 242

Chapter 12

Using the PeopleCode Editor .. 243

Navigating Between PeopleCode Programs ... 243
Understanding the PeopleCode Editor Window .. 243
Navigating Between Programs Associated With a Definition and Its Children 245
Navigating Between Programs Associated With Events ... 245

Using the PeopleCode Editor ... 246
Understanding the PeopleCode Editor ... 247
Writing and Editing PeopleCode .. 247
Find and Replace Dialogs .. 248
Go To Dialog .. 249
Validate Syntax Utility ... 249
Formatting Code Automatically ... 250
Using Drag-and-Drop Editing .. 250
Accessing PeopleCode External Functions .. 251
Accessing PeopleCode Application Packages and Application Classes ... 251
Accessing Definitions and Associated PeopleCode ... 253
Accessing Help ... 254
Setting up Help ... 254
Changing Colors in the PeopleCode Editor ... 255
Selecting a Font for the PeopleCode Editor ... 255
Changing Word Wrap in the PeopleCode Editor ... 255
Using the PeopleCode Event Properties .. 257

Generating PeopleCode Using Drag-and-Drop .. 257
Generating Definition References .. 257
Generating PeopleCode for a Business Interlink ... 258

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xi

Generating PeopleCode for a Component Interface ... 258
Generating PeopleCode for a File Layout .. 259

Chapter 13

Using the SQL Editor .. 261

Understanding the SQL Editor Window .. 261
Accessing SQL Definition Properties ... 262
Accessing the SQL Editor ... 263

Creating SQL Definitions ... 263
Creating Dynamic View or SQL View Records .. 264
Accessing the SQL Editor from Application Engine Programs ... 265

Using the SQL Editor .. 266

Chapter 14

Creating Application Packages and Classes .. 269

Understanding Application Packages ... 269
Creating Application Packages .. 270

Understanding Package Names .. 270
Creating Application Package Definitions .. 271

Using the Application Package Editor .. 272
Editing Application Package Classes .. 273

Chapter 15

Debugging Your Application .. 275

Understanding the PeopleCode Debugger .. 275
Accessing the PeopleCode Debugger ... 275
Using PeopleCode Debugger Features .. 278

Visible Current Line of Execution ... 278
Visible Breakpoints .. 278
Hover Inspect ... 279
Single Debugger ... 279
Variables Panes .. 280
Call Stack Pane ... 283
Setting Values for Variables and Properties ... 285
General Debugging Tips .. 286

Using PeopleCode Debugger Options .. 288
Setting Up the Debugging Environment ... 291
Compiling All PeopleCode Programs at Once ... 292

Contents

xii Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Setting PeopleCode Debugger Log Options ... 293
Interpreting the PeopleCode Debugger Log File .. 295

Log File Contents .. 296
Other Items in the Log File ... 296

Using Application Logging ... 297
Setting the Application Log Fence in the Configuration File ... 298
Using the Log Fence with PeopleSoft Analytic Calculation Engine ... 298

Using the Find In Feature ... 299
Searching for SQL Injection .. 302

Using Cross-Reference Reports .. 302

Chapter 16

Improving Your PeopleCode ... 305

Reducing Trips to the Server .. 305
Counting Server Trips .. 306
Using Deferred Mode ... 306
Hiding and Disabling Fields ... 307
Using the Refresh Button ... 307
Updating Totals and Balances .. 307
Using Warning Messages ... 308
Using the Fastest Algorithm ... 308

Using Better Coding Techniques for Improved Performance .. 308
Running a SQL Trace ... 309
Optimizing SQL ... 309
Using the GetNextNumberWithGaps Function ... 309
Consolidating PeopleCode Programs ... 309
Moving PeopleCode to a Component or Page Definition .. 309
Sending Messages in the SavePostChange Event .. 310
Using Metadata and the RowsetCache Class ... 310
Setting MaxCacheMemory .. 310

Writing More Efficient Code .. 310
Writing More Efficient Code Examples .. 315

Searching PeopleCode for SQL Injection ... 320
Preventing SQL Injection .. 321

Appendix A

PeopleCode Editor Short Cut Keys ... 323

Short Cut Keys in the PeopleCode Editor .. 323

Contents

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xiii

Index .. 327

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. xv

PeopleCode Developer's Guide Preface

This preface provides an overview of the PeopleCode Developer's Guide and lists typographical conventions
used in PeopleCode.

Overview of PeopleCode Developer's Guide

This PeopleBook covers the concepts of PeopleCode, the programming language used in the development of
Oracle's PeopleSoft applications. Its chapters describe techniques for adding PeopleCode to applications, tips
for using PeopleCode, the interaction of PeopleCode and the Component Processor, and a number of other
specialized topics, such as the use of the PeopleCode debugger and referencing data in the component buffer.

The accompanying books, the PeopleCode API Reference and the PeopleCode Language Reference, contain
the reference material for the PeopleCode language. The chapters in these books describe the syntax and
fundamental elements of the PeopleCode language.

PeopleBooks and the Online PeopleSoft Library contains general product line information, such as related
documentation, common page elements, and typographical conventions.

PeopleCode Typographical Conventions

Throughout this book, we use typographical conventions to distinguish between different elements of the
PeopleCode language, such as bold to indicate function names, italics for arguments, and so on.

This table describes the typographical conventions used in PeopleCode:

Font Type Description

monospace font Indicates a PeopleCode program or other example.

Keyword In PeopleCode syntax, keyword entries indicate
function names, method names, language constructs,
and PeopleCode reserved words that must be included
literally in the function call.

Variable In PeopleCode syntax, items in variable font are
placeholders for arguments that your program must
supply.

... In PeopleCode syntax, ellipses indicate that the
preceding item or series can be repeated any number of
times.

Preface

xvi Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Font Type Description

{Option1|Option2} In PeopleCode syntax, when multiple options are
available, they are enclosed in curly braces and
separated by a pipe.

[] In PeopleCode syntax, optional items are enclosed in
square brackets.

&Parameter In PeopleCode syntax, an ampersand before a parameter
indicates that the parameter is an already instantiated
object.

PeopleBooks and the PeopleSoft Online Library

A companion PeopleBook called PeopleBooks and the PeopleSoft Online Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the locally installed PeopleSoft online library, including web site folders.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Application abbreviations found in application fields.

You can find PeopleBooks and the PeopleSoft Online Library in the online PeopleBooks Library for your
PeopleTools release.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 1

Chapter 1

Getting Started with PeopleCode

PeopleCode is the proprietary language used by PeopleSoft applications. This chapter provides an overview
of PeopleCode and discusses how to create PeopleCode programs.

This chapter provides information to consider before you begin to use PeopleCode. In addition to the
considerations presented in this section, you should take advantage of all PeopleSoft sources of information,
including the installation guides, release notes, and PeopleBooks.

PeopleCode Overview

This section provides an overview of the conceptual information available about the PeopleCode language.
The reference material, that is, the actual descriptions of the functions, methods and properties can be found
in the following:

• PeopleTools 8.51 PeopleBook: PeopleCode Language Reference

This book contains information about PeopleCode built-in functions, meta-SQL, system variables, and
meta-HTML.

• PeopleTools 8.51 PeopleBook: PeopleCode API Reference

This book contains information about all the classes delivered with Oracle's PeopleTools, as well as
specifics about each class's methods and properties.

PeopleCode resembles other programming languages. However, many aspects are unique to the language and
the PeopleTools environment. To learn more about the language, see Understanding the PeopleCode
Language.

See Chapter 2, "Understanding the PeopleCode Language," page 5.

PeopleCode is an object-oriented language. To learn about objects and how they're used in PeopleCode, see
Understanding Objects and Classes in PeopleCode.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer is the area in memory that stores data for the currently active component. Which fields
are loaded into the component buffer, as well as how to access them, is covered in Referencing Data in the
Component Buffer.

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

The system uses a data buffer as well as the component buffer. The data buffer is used to store data added
from sources other than the component, such as from a Application Engine program, an application message,
and so on. For information about this buffer, see Accessing the Data Buffer.

Getting Started with PeopleCode Chapter 1

2 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Chapter 5, "Accessing the Data Buffer," page 67.

All PeopleCode is associated with a definition and an event. The events run in a particular order from the
Component Processor. To learn more about the Component Processor and the standard event set, see
PeopleCode and the Component Processor.

See Chapter 6, "PeopleCode and the Component Processor," page 89.

You should take into account certain considerations when creating applications to be used in the PeopleSoft
Pure Internet Architecture. These include how to make your code more efficient when running on the internet,
as well as considerations when using specific definitions.

See Chapter 7, "PeopleCode and PeopleSoft Pure Internet Architecture," page 145.

There are restrictions on using some of the functions and methods in the PeopleCode language, as well as
considerations for others, like using standalone rowsets and the OLE functions. These are covered in the
Using Methods and Built-in Functions chapter.

See Chapter 8, "Using Methods and Built-In Functions," page 155.

PeopleCode has a tremendous amount of specialized functionality, such as:

• Using the GenerateTree function to create a tree in your application.

• Viewing, adding, and deleting files.

See Chapter 9, "Using HTML Trees and the GenerateTree Function," Using the GenerateTree Function, page
187.

See Chapter 10, "Working With File Attachments," page 203.

Creating PeopleCode Programs

All PeopleCode programs are associated with a definition as well as an event. To learn more about where you
can place your PeopleCode, and have it executed as part of the Component Processor event flow, see
Accessing PeopleCode and Events.

See Chapter 11, "Accessing PeopleCode and Events," page 229.

Use the PeopleCode editor to create your PeopleCode programs. All the functionality of the PeopleCode
editor is described in Using the PeopleCode Editor.

See Chapter 12, "Using the PeopleCode Editor," page 243.

Every PeopleCode program is associated with a definition. The following definitions have additional
functionality associated with the PeopleCode editor:

• SQL definitions

• Application Package definitions

See Chapter 13, "Using the SQL Editor," page 261.

See Chapter 14, "Creating Application Packages and Classes," page 269.

Chapter 1 Getting Started with PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 3

After you have created your program, you must run it. Often, that involves fixing any errors that you find.
The PeopleCode debugger is an integrated part of PeopleSoft Application Designer, and it has many useful
tools for determining where code errors are occurring. All the functionality is described in Debugging your
Application.

See Chapter 15, "Debugging Your Application," page 275.

After your PeopleCode program is running, you may want to either improve its performance or the user
experience. Techniques for doing this are discussed in Improving Your PeopleCode.

See Chapter 16, "Improving Your PeopleCode," page 305.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 5

Chapter 2

Understanding the PeopleCode Language

This chapter discusses:

• PeopleCode language structure.

• Data types.

• Comments

• Statements.

• Functions.

• Expressions.

• Variables

• Operators.

PeopleCode Language Structure

This chapter assumes that you are familiar with a programming language, such as C, Visual Basic, or Java.

In its fundamentals, PeopleCode syntax resembles other programming languages. Some aspects of the
PeopleCode language, however, are specifically related to the PeopleTools environment. Definition name
references, for example, enable you to refer to PeopleTools definitions, such as record definitions or pages,
without using hard-coded string literals. Other language features, such as PeopleCode data types and
metastrings, reflect the close interaction of PeopleTools and SQL. Dot notation, classes, and methods in
PeopleCode are similar to other object-oriented languages, like Java.

Data Types

Conventional data types include number, date, string. Use them for basic computing. Object data types
instantiate objects from PeopleTools classes. The appropriate use of each data type is demonstrated where the
documentation discusses PeopleCode that uses that data type.

Declare variables before you use them.

This section discusses:

• Conventional data types.

Understanding the PeopleCode Language Chapter 2

6 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Object data types.

See Also

Chapter 2, "Understanding the PeopleCode Language," Variables, page 26

Conventional Data Types

PeopleCode includes these conventional data types:

• Any

When variables and function return values are declared as Any, the data type is indeterminate, enabling
PeopleTools to determine the appropriate type of value based on context. Undeclared local variables are
Any by default.

• Boolean

• Date

• DateTime

• Float

• Integer

Note. The Float and Integer data types should be used instead of Number only when a performance
analysis indicates that the increased speed is useful and an application analysis indicates that the different
representations will not affect the results of the computations.

• Number

• Object

• String

• Time

Considerations for Float, Integer, and Number Types

The Integer type is a number represented as a 32-bit signed twos complement number, so it has a range of -
2,147,483,648 to 2,147,483,647.

The Float type is a number represented using the machine floating binary point (double precision)
representation. This floating binary point representation is not appropriate for exact calculations involving
decimal fractions; in particular, calculations involving money. For example, because a tenth (1/10 or .1)
cannot be exactly represented in floating binary point, a floating binary point sum of .10 + .10 is not be equal
to .20.

The Number type has a size limit of 34 digits, not including the decimal point, with a maximum of 32 digits
to the right of the decimal point. Since the Number type is a floating decimal point representation, it is the
appropriate data type for calculations involving money.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 7

Operations (other than division) are done using integer arithmetic if the operands are both integers and the
destination is an integer, even if the variable is declared as the Number type. The destination is considered to
be an integer if one of the following is True:

• The destination is an assignment to an integer variable or parameter.

• The destination is an array subscript.

• The destination is the right-hand operand of a comparison and the left-hand operand is an integer.

• The destination is a when-expression part of an evaluate statement, and the expression evaluated at the
start of the evaluate statement is an integer.

• The destination is a for-loop initial, limit, or step expression and the control variable of the for-loop is an
integer.

Division (the / operator) is never performed using integer arithmetic. It is always performed using the
floating-decimal-point arithmetic, even if the result variable is declared as an Integer type.

Follow these recommendations for assigning types to numbers:

• Use Number for most application data values.

• Use Integer when you are counting items, such as rows in a rowset.

• Use Float only when you are tuning the code for performance (after it is already working).

In addition, you should only use the Float type when you are certain that the resulting loss of precision
will not affect the application and that the increase in the speed of the computation makes a difference to
the transaction. In general, few applications should use the Float type.

Object Data Types

For most classes in PeopleTools, you need a corresponding data type to instantiate objects from that class.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

PeopleCode includes these data buffer access types:

• Field

• Record

• Row

• Rowset

PeopleCode includes these display data types:

• AnalyticGrid

• Chart

• Gantt

• Grid

Understanding the PeopleCode Language Chapter 2

8 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• GridColumn

• OrgChart

• Page

• RatingBoxChart

PeopleCode includes these internet script data types:

• Cookie

• Request

• Response

PeopleCode includes these miscellaneous data types:

• AESection

• AnalyticInstance

• Array

• Crypt

• Exception

• File

• Interlink

• BIDocs

Note. BIDocs and Interlink objects used in PeopleCode programs run on the application server can only
be declared as type Local. You can declare Interlinks as Global only in an Application Engine program.

See Chapter 2, "Understanding the PeopleCode Language," User-Defined Variable Declaration and
Scope, page 27.

• JavaObject

Note. JavaObject objects can only be declared as type Local.

• Message

• MCFIMInfo

• OptEngine

• PostReport

• ProcessRequest

• RowsetCache

• SoapDoc

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 9

• SQL

• SyncServer

• TransformData

Note. TransformData objects can only be declared as type Local.

• XmlDoc

• XmlNode

Note. XmlNode objects can only be declared as type Local.

API Object Types

Use this data type for any ApiObject, such as a session object, a tree object, a component interface, a portal
registry, and so on.

The following ApiObject data type objects can be declared as type Global:

• Session

• PSMessages collection

• PSMessages

• All tree classes (trees, tree structures, nodes, levels, and so on)

• All query classes

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Comments

Use comments to explain, preferably in language comprehensible to anyone reading your program, what your
code does. Comments also enable you to differentiate between PeopleCode delivered with the product and
PeopleCode that you add or change. This differentiation helps in your analysis for debugging and upgrades.

Note. Use comments to place a unique identifier marking any changes or enhancements that you have made
to a PeopleSoft application. This marker makes it possible for you to search for all the changes you have
made, which is particularly helpful when you are upgrading a database.

You insert comments into PeopleCode in these ways:

• You can surround comments with /* at the beginning and */ at the end.

• You can use a REM (remark) statement for commenting.

Put a semicolon at the end of a REM comment. If you do not, everything up to the end of the next
statement is treated as part of the comment.

Understanding the PeopleCode Language Chapter 2

10 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• You can surround commented text with <* at the start and *> at the end.

Use this type of comment to enclose one set of comments within another set. You generally use this when
you are testing code and want to comment out a section that already contains comments.

Warning! In application classes, you will see the use of /+ +/ style comments. Do not use these in your
PeopleCode. These annotations are generated by the compiler. If you use them, they are removed by the
system the next time you validate, compile, or save your PeopleCode. They are used to provide signature
information on application class methods and properties, and they are regenerated each time the compiler
compiles your application class PeopleCode. Instead, use the standard commenting mechanisms listed above.

Note. Commented text cannot exceed a maximum of 16383 characters.

The following code sample shows comment formatting:

<* this program is no longer valid commenting out
entire thing

REM This is an example of commenting PeopleCode;
/* ----- Logic for Compensation Change ----- */
/* Recalculate compensation change for next row.
Next row is based on prior value of EFFDT. */

calc_next_compchg(&OLDDT, EFFSEQ, 0);

/* Recalculate compensation change for current row and next row.
Next row is based on new value of EFFDT. */

calc_comp_change(EFFDT, EFFSEQ, COMP_FREQUENCY, COMPRATE,
CHANGE_AMT, CHANGE_PCT);

calc_next_compchg(EFFDT, EFFSEQ, 0);

*>

Note. All text between the <* and *> comment markers is scanned. If you have mismatched quotation marks,
invalid assignments, and so on, you may receive an error when using this type of comment.

Statements

A statement can be a declaration, an assignment, a program construct (such as a Break statement or a
conditional loop), or a subroutine call.

This section discusses:

• Separators.

• Assignment statements.

• Language constructs.

• Branching statements.

• Conditional loops.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 11

Separators

PeopleCode statements are generally terminated with a semicolon. The PeopleCode language accepts
semicolons even if they are not required, such as after the last statement completed within an If statement.
This functionality enables you to consistently add semicolons after each statement.

Extra spaces are ignored. They are removed by the PeopleCode Editor when you save the code.

Assignment Statements

The assignment statement is the most basic type of statement in PeopleCode. It consists of an equal sign with
a variable name on the left and an expression on the right:

variableName = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left. Depending
on the data types involved, the assignment is passed either by value or by reference.

Assignment by Value

In most types of assignments, the result of the right-hand expression is assigned to the variable as a newly
created value, in the variable's own allocated memory area. Subsequent changes to the value of that variable
have no effect on any other data.

Assignment by Reference

When both sides of an assignment statement are object variables, the result of the assignment is not to create a
copy of the object in a unique memory location and assign it to the variable. Instead, the variable points to the
object's memory location. Additional variables can point to the same object location.

For example, both &AN and &AN2 are arrays of type Number. Assigning &AN2 to &AN does not assign a
copy of &AN2 to &AN. Both array objects point to the same information in memory.

Local array of number &AN, &AN2;
Local number &NUM;

&AN = CreateArray(100, 200, 300);
&AN2 = &AN;
&NUM = &AN[1];

In the code example, &AN2 and &AN point to the same object: an array of three numbers. If you were to
change the value of &AN[2] to 500 and then reference the value of &AN2[2], you would get 500, not 300.
On the other hand, assigning &NUM to the first element in &AN (100) is not an object assignment. It is an
assignment by value. If you changed &AN[1] to 500, then &NUM remains 200.

Note. In PeopleCode, the equal sign can function as either an assignment operator or a comparison operator,
depending on context.

Language Constructs

PeopleCode language constructs include:

Understanding the PeopleCode Language Chapter 2

12 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Branching structures: If and Evaluate.

• Loops and conditional loops: For, Repeat, and While.

• Break, Continue, and Exit statements loop control and terminating programs.

• The Return statement for returning from functions.

• Variable and function declaration statements: Global, Local, and Component for variables, and Declare
Function for functions.

• The Function statement for defining functions.

• Class definition statements.

• Try, Catch, and Throw statements for error handling.

Functions as Subroutines

PeopleCode, like C, does not have subroutines as we generally refer to them. PeopleCode subroutines are the
subset of PeopleCode functions only that are defined to return no value or to return a value optionally. Calling
a subroutine is the same as calling a function with no return value:

function_name([param_list]);

See Also

Chapter 2, "Understanding the PeopleCode Language," Branching Statements, page 12

Chapter 2, "Understanding the PeopleCode Language," Functions, page 15

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare
Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CreateException

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Try

Branching Statements

Branching statements control program flow based on evaluation of conditional expressions.

If, Then, and Else statements

The syntax of If, Then, and Else statements is:

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 13

If condition Then
 [statement_list_1]
[Else
 [statement_list_2]]
End-if;

This statement evaluates the Boolean expression condition. If condition is True, then the If statement executes
the statements in statement_list_1. If condition is False, then the program executes the statements in the Else
clause; if there is no Else clause, the program continues to the next statement.

Evaluate Statement

Use the Evaluate statement to check multiple conditions. Its syntax is:

Evaluate left_term
 When [relop_1] right_term_1
 [statement_list]
 .
 .
 .

 When [relop_n] right_term_n
 [statement_list]
 [When-other
 [statement_list]]
End-evaluate;

The Evaluate statement takes an expression, left_term, and compares it to compatible expressions
(right_term) using the relational operators (relop) in a sequence of When clauses. If relop is omitted, then the
equal sign is assumed. If the result of the comparison is True, the program executes the statements in the
When clause, and then moves on to evaluate the comparison in the following When clause. The program
executes the statements in all of the When clauses for which the comparison evaluates to True. If none of the
When comparisons evaluates to True, the program executes the statement in the When-other clause, if one is
provided. For example, the following Evaluate statement executes only the first When clause.
&USE_FREQUENCY in the following example can only have one of three string values:

evaluate &USE_FREQUENCY
when = "never"
 PROD_USE_FREQ = 0;
when = "sometimes"
 PROD_USE_FREQ = 1;
when = "frequently"
 PROD_USE_FREQ = 2;
when-other
 Error "Unexpected value assigned to &USE_FREQUENCY."
end-evaluate;

To end the Evaluate statement after the execution of a When clause, you can add a Break statement at the end
of the clause, as in the following example:

Understanding the PeopleCode Language Chapter 2

14 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

evaluate &USE_FREQUENCY
when = "never"
 PROD_USE_FREQ = 0;
 Break;
when = "sometimes"
 PROD_USE_FREQ = 1;
 Break;
when = "frequently"
 PROD_USE_FREQ = 2;
 Break;
when-other
 Error "Unexpected value assigned to &USE_FREQUENCY."
end-evaluate;

In rare cases, you may want to make it possible for more than one When clause to execute, as shown in the
following example:

evaluate &PURCHASE_AMT
when >= 100000
 BASE_DISCOUNT = "Y";
when >= 250000
 SPECIAL_SERVICES = "Y";
when >= 1000000
 MUST_GROVEL = "Y";
end-evaluate;

For Statement

The For statement repeats a sequence of statements a specified number of times. Its syntax is:

For count = expression1 to expression2
 [Step i];
 statement_list
End-for;

The For statement initializes the value of count to expression1, and then increments count by i each time after
it executes the statements in statement_list. The program continues in this loop until count is equal to
expression2. If the Step clause is omitted, then i equals one. To count backwards from a higher value to a
lower value, use a negative value for i. You can exit a For loop using a Break statement.

The following example demonstrates the For statement:

&MAX = 10;
for &COUNT = 1 to &MAX;
 WinMessage("Executing statement list, count = " | &COUNT);
end-for;

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," If

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Evaluate

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 15

Conditional Loops

Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional expression
each time through the loop. The loop terminates when the condition evaluates to True. You can exit from a
conditional loop using a Break statement. If the Break statement is in a loop embedded in another loop, the
break applies only to the inside loop.

Repeat Statement

The syntax of the Repeat statement is:

Repeat
 statement_list
Until logical_expression;

The Repeat statement executes the statements in statement_list once, and then evaluates logical_expression.
If logical_expression is False, the sequence of statements is repeated until logical_expression is True.

While Statement

The syntax of the While statement is:

While logical_expression
 statement_list
End-while;

The While statement evaluates logical_expression before executing the statements in statement_list. It
continues to repeat the sequence of statements until logical_expression evaluates to False.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Repeat

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," While

Functions

This section discusses:

• Supported functions.

• Function definitions.

• Function declarations.

• Function calls.

• Function return values.

• Function naming conflicts.

Understanding the PeopleCode Language Chapter 2

16 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions"

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare
Function

Supported Functions

PeopleCode supports the following types of functions:

• Built-in: The standard set of PeopleCode functions. These can be called without being declared.

• Internal: Functions that are defined (using the Function statement) within the PeopleCode program in
which they are called.

• External PeopleCode: PeopleCode functions defined outside the calling program. These are generally
contained in record definitions that serve as function libraries.

• External non-PeopleCode: Functions stored in external (C-callable) libraries.

Note. PeopleSoft Analytic Calculation Engine provides its own set of built-in functions.

See Enterprise PeopleTools 8.51 PeopleBook: Analytic Calculation Engine, "Using Built-in Functions in
Analytic Models."

In addition, PeopleCode supports methods. The main differences between a built-in function and a method
are:

• A built-in function, in your code, is on a line by itself, and it does not (generally) have any dependencies.

You do not have to instantiate an object before you can use the function.

• A method can only be executed by an object (using dot notation).

You must instantiate the object first.

Function Definitions

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at the
top of the program, along with any variable and external function declarations. The syntax for a PeopleCode
function definition is as follows:

Function name[(paramlist)] [Returns data_type]
 [statements]
End-function

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB_, and they are
always attached to the FieldFormula event.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 17

Note. Application classes can provide an alternative, and sometimes cleaner, mechanism for separating
functionality than the functions stored in function libraries.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Function

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes"

Function Declarations

If you call an external function from a PeopleCode program, you must declare the function at the top of the
program. The syntax of the function declaration varies, depending on whether the external function is written
in PeopleCode or compiled in a dynamic link library.

The following is an example of a function declaration of a function that is in another FUNCLIB record
definition:

Declare Function UpdatePSLOCK PeopleCode FUNCLIB_NODES.MSGNODENAME FieldFormula;

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Declare
Function

Function Calls

Functions are called with this syntax:

function_name([param_list])

The optional parameter list (param_list) is a list of expressions, separated by commas, that the function
expects you to supply. If a parameter is listed in the function definition, then it is required when the function
is called.

You can check the values of parameters that get passed to functions at runtime in the Parameter window of
the PeopleCode debugger.

If the return value is required, then the function must be called as an expression, for example:

&RESULT = Product(&RAISE_PERCENT, .01, EMPL_SALARY);

If the function has an optional return value, it can be called as a subroutine. If the function has no return
value, it must be called as a subroutine:

WinMessage(64, "I can't do that, " | &OPER_NICKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the function is
supposed to change the data the caller passes, you must also pass in a variable.

Understanding the PeopleCode Language Chapter 2

18 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Built-in function parameters can be passed by reference or by value, depending on the function. External C
function parameters can be passed by value or by reference, depending on the declaration and type.

See Also

Chapter 15, "Debugging Your Application," page 275

Chapter 2, "Understanding the PeopleCode Language," Variables and Functions, page 31

Function Return Values

Functions can return values of any supported data type; some functions do not return any value.

Optional return values occur only in built-in functions. You cannot define a function that optionally returns a
value. Optional return values are typical in functions that return a Boolean value indicating whether execution
was successful. For example, the following call to DeleteRow ignores the Boolean return value and deletes a
row:

DeleteRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW);

The following example checks the return value and returns a message saying whether it succeeded:

if DeleteRow(RECORD.BUS_EXPENSE_PER, &L1_ROW, RECORD.BUS_EXPENSE_DTL, &L2_ROW) then
 WinMessage("Row deleted.");
else
 WinMessage("Sorry -- couldn't delete that row.");
end-if;

Function Naming Conflicts

If you define a function with the same name as a built-in function, the function that you defined takes
precedence over the built-in function.

Anytime you compile the PeopleCode in the PeopleCode Editor, a warning message appears in the Validate
tab, indicating that a user-defined function has the same name as an existing built-in function.

In addition, if you select Compile All PeopleCode, an error message is generated in the log file for every
user-defined function that has the same name as a built-in function.

The following is an example error message: User-defined function IsNumber is overriding the built-in
function of the same name. (2,98)

If you notice that you named a function the same as a built-in function, and that the built-in function does
what you're trying to achieve, replace your function with a reference to the built-in function. The built-in
function is probably more efficient. In addition, using the built-in function reduces confusion for people who
maintain your code, because if they miss the warning message in the Validate tab, they might assume the
built-in function is being called when it is not.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 19

Expressions

This section discusses:

• Expression fundamentals.

• Constants.

• Functions as expressions.

• System variables.

• Metastrings.

• Record field references.

• Definition name references.

• Reserved word summary table.

See Also

Chapter 2, "Understanding the PeopleCode Language," Variables, page 26

Expression Fundamentals

Expressions evaluate to values of PeopleCode data types. A simple PeopleCode expression can consist of a
constant, a temporary variable, a system variable, a record field reference, or a function call. Simple
expressions can be modified by unary operators (such as a negative sign or logical NOT), or combined into
compound expressions using binary operators (such a plus sign or logical AND).

Definition name references evaluate to strings equal to the name of a PeopleTools definition, such as a record
or page. They enable you to refer to definitions without using string literals, which are difficult to maintain.

Metastrings (also called meta-SQL) are special expressions used within SQL string literals. At runtime, the
metastrings expand into the appropriate SQL for the current database platform.

Constants

PeopleCode supports numeric, string, and Boolean constants, as well as user-defined constants. It also
supports the constant Null, which indicates an object reference that does not refer to a valid object.

Note. You can express Date, DateTime, and Time values by converting from String and Number constants
using the Date, Date3, DateTime6, DateTimeValue, DateValue, Time3, TimePart, and the TimeValue
functions. You can also format a DateTime value as text using FormatDateTime.

Understanding the PeopleCode Language Chapter 2

20 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Numeric Constants

Numeric constants can be any decimal number. Some examples are:

• 7

• 0.8725

• -172.0036

String Constants

String constants can be delimited by using either single (') or double (") quotation marks. If a quotation mark
occurs as part of a string, the string can be surrounded by the other delimiter type. As an alternative, you can
include the delimiter twice. Some examples are:

• "This is a string constant."

• 'So is this.'

• 'She said, "This is a string constant."'

• "She said, ""This is a string constant."""

Use the following code to include a literal quotation mark as part of your string:

&cDblQuote = '"'; /* singlequote doublequote singlequote */

The following also produces a string with two double quotation marks in it:

&cDblQuote = """"; /* dquote dquote dquote dquote */

You can also directly embed the doubled double quotation mark in strings, such as:

&sImage = Char(10) | '<IMG SRC="%IMAGE(' | &pImageName | ')"';

Strings must be contained on a single line. If you need to create a multi-line string, you must use
concatenation to connect the lines to be a single sting. For example, one method to do this is:

&string = "Line 1" | Char(10) | "Line 2" | Char(10);

Boolean Constants

Boolean constants represent a truth value. The two possible values are True and False.

Null Constant

Null constants represent an object reference value that does not refer to a valid object. This means that calling
a method on the object or trying to get or set a property of it fails. The Null constant is just the keyword Null.

User-Defined Constants

You can define constants at the start of a PeopleCode program. Then you can use the declared constant
anywhere that the corresponding value would be allowed. Constants can be defined as numbers, strings, or
Boolean values.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 21

User-defined constants can only be declared as Local.

The following is an example of user-defined constant declarations:

Constant &Start_New_Instance = True;
Constant &Display_Mode = 0;
Constant &AddMode = "A":
Local Field &Start_Date;
. . .
MyFunction(&Start_New_Instance, &Display_Mode, &Add_Mode);

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Functions as Expressions

You can use any function that returns a value as an expression. The function can be used on the right side of
an assignment statement, passed as a parameter to another function, or combined with other expressions to
form a compound expression.

See Also

Chapter 2, "Understanding the PeopleCode Language," Functions, page 15

System Variables

System variables are preceded by a percent (%) symbol whenever they appear in a program. Use these
variables to get the current date and time, or to get information about the user, the current language, the
current record, page, or component, and more.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables"

Metastrings

Metastrings are special SQL expressions. The metastrings, also called meta-SQL, are preceded with a percent
(%) symbol, and can be included directly in string literals. They expand at runtime into an appropriate
substring for the current database platform. Metastrings are used in or with:

• SQLExec.

• Scroll buffer functions (ScrollSelect and its relatives).

• PeopleSoft Application Designer to construct dynamic views.

• Some rowset object methods (Select, SelectNew, Fill, and so on).

Understanding the PeopleCode Language Chapter 2

22 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• SQL objects.

• Application Engine.

• Some record class methods (Insert, Update, and so on).

• COBOL.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SQLExec

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
ScrollSelect

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "Meta-SQL Elements"

Record Field References

Use record field references to retrieve the value stored in a record field or to assign a value to a record field.

Record Field Reference Syntax

References to record fields have the following form:

[recordname.]fieldname

You must supply the recordname only if the record field and your PeopleCode program are in different
record definitions.

For example, suppose that in a database for veterinarians you have two records, PET_OWNER and PET. A
program in the record definition PET_OWNER must refer to the PET_BREED record field in the PET record
definition as PET.PET_BREED.

However, a program in the PET record definition can refer to this same record field more directly as
PET_BREED.

If the program is in the PET_BREED record field itself, it can refer to this record field using the caret (^)
symbol.

The PeopleCode Editor replaces the caret symbol with the actual record field name.

You can also use object dot notation to refer to record fields, for example:

&FIELD = GetRecord(RECORD.PET_OWNER).GetField(FIELD.PET_BREED);

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

Legal Record Field Names

A record field name consists of two parts, the record name and the field name, separated by a period.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 23

The field names used in PeopleCode are consistent with the field names allowed in the field definition. Case
is ignored, although the PeopleCode Editor for the sake of convention, automatically formats field names in
uppercase. A field name can be 1 to 18 characters, consisting of alphanumeric characters determined by your
current language setting in Microsoft Windows, and characters #, @, $, and _.

A record name can be 1 to 15 characters, consisting of alphanumeric letters determined by your current
language setting in Microsoft Windows, and characters #, @, $, and _.

Definition Name References

Definition name references are special expressions that reference the name of a PeopleTools definition, such
as a record, page, component, business interlink, and so on. Syntactically, a definition name reference
consists of a reserved word indicating the type of definition, followed by a period, then the name of the
PeopleTools definition. For example, the definition name reference RECORD.BUS_EXPENSE_PER refers
to the definition name BUS_EXPENSE_PER.

Generally, definition name references are passed as parameters to functions. If you attempt to pass a string
literal instead of a definition name reference to such a function, you receive a syntax error.

You also use definition name references outside function parameter lists, for example, in comparisons:

If (%Page = PAGE.SOMEPAGE) Then
 /* do stuff specific to SOMEPAGE */
End-If;

In these cases, the definition name reference evaluates to a string literal. Using the definition name reference
instead of a string literal enables PeopleTools to maintain the code if the definition name changes.

If you use the definition name reference, and the name of the definition changes, the change automatically
ripples through the code, so you do not have to change it or maintain it.

In the PeopleCode Editor, if you place your cursor over any definition name reference and right-click, you
can select View Definition to open the definition.

In addition, for most definitions, if you specify a definition that was not created in PeopleSoft Application
Designer, you receive an error message when you try to save your program.

Legal and Illegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of alphanumeric letters
determined by your current language setting in Microsoft Windows, and the characters #, @, $, and _.

In some cases, however, the definition supports the use of other characters. You can, for example, have a
menu item named A&M stored in the menu definition even though & is an illegal character in the definition
name reference. The illegal character results in an error when you validate the syntax or attempt to save the
PeopleCode.

You can avoid this problem in two ways:

• Rename the definition so that it uses only legal characters.

• Enclose the name of the definition in quotation marks in the reference, for example:
ITEMNAME."A&M"

Understanding the PeopleCode Language Chapter 2

24 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

The second solution is a commonly used workaround in cases where the definition name contains illegal
characters. If you use this notation, the definition name reference is not treated as a string literal: PeopleTools
maintains the reference the same way as it does other definition name references.

Note. If your definition name begins with a number, you must enclose the name in quotation marks when you
use it in a definition name reference. For example, CompIntfc."1_DISCPLIN_ACTN".

PeopleCode Reserved Words

The following table summarizes the reserved words used in definition name references:

Reserved Word Common Usage

ANALYTICMODEL

BARNAME Used with transfers and modal transfers.

BUSACTIVITY Used with TriggerBusinessEvent.

BUSEVENT Used with TriggerBusinessEvent.

BUSPROCESS Used with TriggerBusinessEvent.

COMPINTFC Used with Component Interface Classes.

COMPONENT Used with transfers and modal transfers, as well as for
generating URLs.

FIELD Used with methods and functions to designate a field.

FILELAYOUT Used with the SetFileLayout File class method.

HTML Used with the GetHTMLText function.

IMAGE Used in with functions and methods to designate an
image.

INTERLINK Used with the GetInterlink function.

ITEMNAME Used with transfers and modal transfers.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 25

Reserved Word Common Usage

MARKET Used with transfers and URL generation.

MENUNAME Used with transfers and modal transfers.

MESSAGE Used with Messaging functions and methods.

MOBILEPAGE Used to identify a mobile page (used with transfers.)

NODE Used with transfers and modal transfers, as well as
generating URLs.

OPERATION Used with the CreateMessage function.

PAGE Used with transfers and modal transfers to pass the page
item name (instead of the page name), and with controls
and other functions to pass the page name.

PANEL Used with the deprecated TransferPanel function.

Note. Use the TransferPage function and the PAGE
reserved word instead.

PANELGROUP Used with the deprecated DoModalPanelGroup
function.

Note. Use the DoModalComponent function and the
COMPONENT reserved word instead.

PORTAL Used with transfers and modal transfers, as well as
generating URLs.

RECORD Used in functions and methods to designate a record.

ROWSET Used in functions and methods to designate a rowset.

ROWSETCACHE

SCROLL The name of the scroll area in the page. This name is
always equal to the primary record of the scroll.

Understanding the PeopleCode Language Chapter 2

26 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Reserved Word Common Usage

SQL Used with SQL definitions.

STYLESHEET Used with style sheets.

URL Used with file attachment functions.

Variables

This section discusses.

• Supported variable types.

• User-defined variables.

• User-defined variable declaration and scope.

• Variable declaration.

• User-defined variable initialization.

• Restrictions on variable use.

• Scope of local variables.

• Duration of local variables.

• Variables and functions.

• Recursive functions.

• State of shared objects using PeopleSoft Pure Internet Architecture.

See Also

Chapter 2, "Understanding the PeopleCode Language," System Variables, page 21

Supported Variable Types

PeopleCode supports these types of variables:

User-defined variables These variable names are preceded by an & character wherever they appear
in a program. Variable names can be 1 to 1000 characters, consisting of
letters A through Z and a through z, digits 0 through 9, and characters #, @,
$, and _.

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 27

System variables System variables provide access to system information. System variables
have a prefix of the % character rather than the & character. Use these
variables wherever you can use a constant, passing them as parameters to
functions or assigning their values to fields or to temporary variables.

User-Defined Variables

A user-defined variable can hold the contents of a record field for program code clarity. For example, you
may give a variable a more descriptive name than a record field, based on the context of the program. If the
record field is from another record, you may assign it to a temporary variable rather than always using the
record field reference. This makes it easier to enter the program, and can also make the program easier to
read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to avoid some
processing by calling the function once and placing the result in a variable.

User-Defined Variable Declaration and Scope

The difference between the variable declarations concerns their life spans:

• Global

The variable is valid for the entire session.

• Component

The variable is valid while any page in the component in which the variable is defined stays active.

• Local

The variable is valid for the duration of the PeopleCode program or function in which the variable is
defined.

You can declare variables using the Global, Local, or Component statements, or you can use local variables
without declaring them. Here are some examples:

Local Number &AGE;
Global String &OPER_NICKNAME;
Component Rowset &MY_ROWSET;
Local Any &SOME_FIELD;
Local ApiObject &MYTREE;
Local Boolean &Compare = True;

Variable declarations are usually placed above the main body of a PeopleCode program (along with function
declarations and definitions). The exception is the Local declaration, which you can use within a function or
the main section of a program. You can declare variables as any of the PeopleCode data types. If a variable is
declared as an Any data type, or if a variable is not declared, PeopleTools uses an appropriate data type based
on context.

Note. Declare a variable as an explicit data type unless the variable will hold a value of an unknown data
type.

Understanding the PeopleCode Language Chapter 2

28 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Global variables can be accessed from different components and applications, including an Application
Engine program. A global variable must be declared, however, in each PeopleCode program where it's used.
Use global variables rarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases.

Component variables remain defined and keep their values while any page in the component in which they
are defined remains active. Similar to a global variable, a component variable must be declared in each
PeopleCode program where it is used.

Component variables act the same as global variables when an Application Engine program is called from a
page (using CallAppEngine).

Component variables remain defined after a TransferPage, DoModal, or DoModalComponent function.
However, variables declared as Component do not remain defined after using the Transfer function, whether
you are transferring within the same component or not.

Local variables declared at the top of a PeopleCode program (or within the main, that is, non-function, part of
a program) remain in scope for the life of that PeopleCode program. Local variables declared within a
function are valid to the end of the function and not beyond.

You can check the values of Local, Global, and Component variables at runtime in the different variable
windows of the PeopleCode debugger. Local variables declared within a function appear in the Function
Parameters window.

Variable Declaration

Declare variables before you use them. If you do not declare a variable, it is automatically declared with the
scope Local and the data type Any. You receive a warning message in the Validation tab of the PeopleSoft
Application Designer output window for every variable that is not declared when you save the PeopleCode
program, as shown in the following example:

Validation tab with auto-declared variables

If you declared all the variables, you can use these values to ensure you do not have misspellings. For
example, if you declared a variable as &END_DATE and then accidentally spell it as &EDN_DATE, the
"new variable" appears on the Validate tab when you save the program.

Another reason to declare variables is for the design-time checking. If you declare a variable of one data type
and then assign to it a value of a different type, the PeopleCode Editor catches that assignment as a design-
time error when you try to save the program. With an undeclared variable, the assignment error does not
appear until runtime.

The following example produces a design-time error when you try to save the program:

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 29

Local Field &DATE;

&DATE = GetRecord(RECORD.DERIVED_HR);

In addition, if you declare variables, the Find Object Reference feature finds embedded definitions. For
example, suppose you wanted to find all occurrences of the field DEPT_ID. If you have not declared
&MyRecord as a record, Find Object References does not find the following reference of the field DEPT_ID:

&MyRecord.DEPT_ID.Visible = False;

User-Defined Variable Initialization

To declare and initialize variables in one step, use the following format:

Local String &MyString = "New";

Local Date &MyDate = %Date;

This method is available only for variables with the scope of Local.

Though you can declare more than one variable on a single line, you can only initialize one variable on a line.
The following code creates a syntax error when you try to save the program:

Local Number &N1, &N2 = 5;

You cannot declare a variable, then initialize it in a second declaration statement. The following produces a
duplicate declaration error when you try to save the program:

Global Number &N1;
...
Local String &N1 = "Str"; /* Duplicate definition. */

If you do not initialize variables, either when you declare them or before you use them, strings are initialized
as Null strings, dates and times as Null, and numbers as zero.

Restrictions on Variable Use

The following data types can only be declared as Local:

• JavaObject

• Interlink

Note. Interlink objects can be declared as type Global in an Application Engine program.

• TransformData

• XmlNode

The following ApiObject data type objects can be declared as Global:

• Session

• PSMessages collection

• PSMessage

Understanding the PeopleCode Language Chapter 2

30 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• All tree classes (trees, tree structures, nodes, levels, and so on)

• Query classes

All other ApiObject data type objects (such as all the PortalRegistry classes) must be declared as Local.

Scope of Local Variables

The two types of local variables are: program-local and function-local.

• A program-local variable is declared as local in the main part of the program and is local to that program.

• A function-local variable is declared as local inside a function and is local only to that function.

See Chapter 2, "Understanding the PeopleCode Language," Recursive Functions, page 32.

A program-local variable can be affected by statements anywhere in the program. For example, suppose
RECORD_A.FIELD_A.FieldFormula has two functions, FUNC_1 and FUNC_2, and both modify a local
variable named &TEMP. They could affect each other, as they both use the same variable name in the same
PeopleCode program.

If, however, FUNC_3 is defined in RECORD_B_FIELD_B.FieldFormula and makes reference to &TEMP, it
is not the same &TEMP as in RECORD_A.FIELD_A.FieldFormula. This difference becomes important
when FUNC_1 calls FUNC_3. Technically, both functions exist at the same time, one inside the other, but
&TEMP is a different variable for each of them. However, if FUNC_1 calls FUNC_2, then &TEMP is the
same variable for both.

Duration of Local Variables

A local variable is valid for the duration of the PeopleCode program or function in which it is defined. A
PeopleCode program is defined as what the PeopleCode Editor in Application Designer presents in a single
window: a chunk of PeopleCode text associated with a single item (a record field event, a component record
event, and so on.)

When the system evaluates a PeopleCode program and calls a function in the same PeopleCode program, a
new program evaluation is not started.

However, when a function from a different PeopleCode program is called (that is, some PeopleCode text
associated with a different item), the current PeopleCode program is suspended, and the Component
Processor starts evaluating the new program. This means that any local variables in the calling program
(called A) are no longer available. Those in the called program (called B) are available.

Even if the local variables in the A program have the same name as those in the B program, they are different
variables and are stored separately.

If the called program (B) in turn calls a function in program A, a new set of program A's variables are
allocated, and the called function in A uses these new variables. Thus, this second use of program A gets
another lifetime, until execution returns to program B.

The following is an example of pseudocode to show how this might work. (This is non-compiled, non-
working code. To use this example, you'd have to enter a similar program without the external declaration of
the function in the other, not yet compiled, one.)

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 31

Program A (Rec.Field.FieldChange):
local number &temp;
declare function B1 PeopleCode Rec.Field FieldFormula;
/* Uncomment this declaration and comment above to compile this the first time.
 function B1
 end-function;
*/

function A1
WinMessage("A1: &temp is " | &temp);
&temp = &temp + 1;
A2();
B1();
A2();
end-function;

function A2
WinMessage("A2: &temp is " | &temp);
&temp = &temp + 1;
end-function;

A1();

Program B (Rec.Field.FieldFormula):
local number &temp;
declare function A2 PeopleCode Rec.Field FieldChange;

function B1
WinMessage("B1: &temp is " | &temp);
&temp = &temp + 1;
A2();
end-function;

When this is compiled and run, it produces the following output:

A1: &temp is 0
A2: &temp is 1
B1: &temp is 0
A2: &temp is 0
A2: &temp is 2

Variables and Functions

PeopleCode variables are always passed to functions by reference. This means, among other things, that a
function can change the value of a variable passed to it so that the variable has the new value on return to the
calling routine.

For example, the Amortize built-in function expects you to pass it variables into which it places the amount of
a loan payment applied towards interest (&PYMNT_INTRST), the amount of the payment applied towards
principal (&PYMNT_PRIN), and the remaining balance (&BAL). It calculates these values based on
information that the calling routine supplies in other parameters:

&INTRST_RT=12;
&PRSNT_BAL=100;
&PYMNT_AMNT=50;
&PYMNT_NBR=1;
Amortize(&INTRST_RT, &PRSNT_BAL, &PYMNT_AMNT, &PYMNT_NBR,
&PYMNT_INTRST, &PYMNT_PRIN, &BAL);
&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" |
String(&PYMNT_PRIN) | " Bal=" | String(&BAL);

Understanding the PeopleCode Language Chapter 2

32 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Recursive Functions

PeopleCode supports True recursive functions. A function can call itself, and each possibly recursive call of
the function has its own independent copy of the parameters and function-local variables.

When writing recursive functions, be careful about passing variables as parameters, because PeopleCode
implements such calls by reference. This means that if you call a function such as:

Function Func(&n as Number)
&n = 3;
End-Function;
local &x = 5;
Func(&x);

After the call to Func(&x), &x has the value 3, not 5. If the call was Func(Value(&x)), after the call &x is still
5.

State of Shared Objects Using PeopleSoft Pure Internet Architecture

Consider the following scenario:

• A local and a global variable refer to the same object.

• That object is used in a modal component.

• Instead of completing the modal component, the user clicks the browser Back button.

In general, the global state of the object is restored. If the object has not been destroyed from the global state,
the global state of the object is used for local references; otherwise, the local state is used for local references.

Here is an example:

Global array of number &Global_Array;
Local array of number &Local_Array:

&Global_Array = CreateArray(1, 2, 3);
&Local_Array = &Global_Array
DoModal(Page.PAGENAME, "", -1, -1, 1, Record.SHAREDREC, 1);
/* return to here */
&Local_Array[1] = -1;
&Global_Array[2] = -2;
WinMessage(&Local_Array is " | &Local_Array.Join());
WinMessage(&Global_Array is " | &Global_Array.Join());

The following program, program 2, is located on the modal page the user is transferred to:

Global array of number &Global_Array;
&Global_Array[3] = -3;

The following program, program 3, is also located on the modal page:

Global array of number &Global_Array;
&Global_Array = CreateArray(1, 2, -3);

If program 2 is run, the output is the following:

&Local_Array is -1, -2, -3

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 33

&Global_Array is -1, -2, -3

However, if program 3 is run, thereby destroying the original global state, the output is the following:

 &Local_Array is -1, 2, 3

&Global_Array is 1, -2, -3

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables"

Chapter 15, "Debugging Your Application," page 275

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and Boolean
operators.

This section discusses:

• Math operators.

• Operations on dates and times.

• String concatenation.

• @ operator.

• Comparison operators.

• Boolean operators.

Math Operators

PeopleCode uses standard mathematical operators:

• +

Add

• -

Subtract (or unary negative sign)

• *

Multiply

• /

Divide

Understanding the PeopleCode Language Chapter 2

34 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• **

Exponential

Exponentiation occurs before multiplication and division; multiplication and division occur before addition
and subtraction. Otherwise, math expressions are evaluated from left to right. You can use parentheses to
force the order of operator precedence.

The minus sign can also, of course, be used as a negation operator, as in the following expressions:

-10
- &NUM
- Product(&PERCENT_CUT, .01, SALARY)

Operations on Dates and Times

You can add or subtract two date values or two time values, which provides a Number result. In the case of
dates, the number represents the difference between the two dates in days. In the case of time, the number
represents the difference in seconds. You can also add and subtract numbers to or from a time or date, which
results in another date or time. Again, in the case of days, the number represents days, and in the case of time,
the number represents seconds.

The following table summarizes these operations:

Operation Result Type Result Represents

Time + number of seconds Time Resulting time

Date + number of days Date Resulting date

Date - date Number Difference in days

Time - time Number Difference in seconds

Date + time DateTime Date and time combined

String Concatenation

The string concatenation operator (|) is used to combine strings. For example, assuming
&OPER_NICKNAME is "Dave", the following statement sets &RETORT to "I can't do that, Dave."

&RETORT = "I can't do that, " | &OPER_NICKNAME | "."

The concatenation operator automatically converts its operands to strings. This conversion makes it easy to
write statements that display mixed data types. For example:

&DAYS_LEFT = &CHRISTMAS - %Date;
WinMessage("Today is " | %Date | ". Only " | &DAYS_LEFT | " shopping days left!");

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 35

@ Operator

The @ operator converts a string storing a definition reference into the definition. This is useful, for example,
if you want to store definition references in the database as strings and retrieve them for use in PeopleCode;
or if you want to obtain a definition reference in the form of a string from the operator using the Prompt
function.

To take a simple example, if the record field EMPLID is currently equal to 8001, the following expression
evaluates to 8001:

@"EMPLID"

The following example uses the @ operator to convert strings storing a record reference and a record field
reference:

&STR1 = "RECORD.BUS_EXPENSE_PER";
&STR2 = "BUS_EXPENSE_DTL.EMPLID";
&STR3 = FetchValue(@(&STR1), CurrentRowNumber(1), @(&STR2), 1);
WinMessage(&STR3, 64);

Note. String literals that reference definitions are not maintained by PeopleTools. If you store definition
references as strings, then convert them with the @ operator in the code, this creates maintenance problems
whenever definition names change.

The following function takes a rowset and a record, passed in from another program, and performs some
processing. The GetRecord method does not take a variable for the record, however, you can dereference the
record name using the @ symbol. Because the record name is never hard-coded as a string, if the record name
changes, this code does not have to change.

Function Get_My_Row(&PASSED_ROWSET, &PASSED_RECORD)

 For &ROWSET_ROW = 1 To &PASSED_ROWSET.RowCount
 &UNDERLYINGREC = "RECORD." | &PASSED_ROWSET.DBRecordName;
 &ROW_RECORD = &PASSED_ROWSET.GetRow(&ROWSET_ROW).GetRecord(@&UNDERLYINGREC);

 /* Do other processing */

 End-For;

End-Function;

Comparison Operators

Comparison operators compare two expressions of the same data type. The result of the comparison is a
Boolean value. The following table summarizes these operators:

Operator Meaning

= Equal

!= Not equal

Understanding the PeopleCode Language Chapter 2

36 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Operator Meaning

<> Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

You can precede any of the comparison operators with the word Not, for example:

• Not=

• Not<

• Not>=

Expressions formed with comparison operators form logical terms that can be combined using Boolean
operators.

String comparisons are case-sensitive. You can use the Upper or Lower built-in functions to do a case-
insensitive comparison.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Lower

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Upper

Boolean Operators

The logical operators AND, OR, and NOT are used to combine Boolean expressions. The following table
shows the results of combining two Boolean expressions with AND and OR operators:

Expression 1 Operator Expression 2 Result

False AND False False

False AND True False

True AND True True

Chapter 2 Understanding the PeopleCode Language

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 37

Expression 1 Operator Expression 2 Result

False OR False False

False OR True True

True OR True True

The NOT operator negates Boolean expressions, changing a True value to False and a False value to True.

In complex logical expressions using the operations AND, OR, and NOT, NOT takes the highest precedence,
AND is next, and OR is lowest. Use parentheses to override precedence. (Generally, it is a good idea to use
parentheses in logical expressions anyway, because it makes them easier to decipher.) If used on the right side
of an assignment statement, Boolean expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

&FLAG = (Not (&FLAG)); /* toggles a Boolean */
if ((&HAS_FLEAS or &HAS_TICKS) and
SOAP_QTY <= MIN_SOAP_QTY) then
 SOAP_QTY = SOAP_QTY + OrderFleaSoap(SOAP_ORDER_QTY);
end-if;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 39

Chapter 3

Understanding Objects and Classes in
PeopleCode

This chapter discusses:

• Classes and objects

• Creating and using objects.

• Assigning objects.

• Passing objects.

Classes and Objects

PeopleSoft delivers classes of objects that you can manipulate with PeopleCode. In addition, you can extend
the existing classes or create your own. The delivered classes may or may not have a graphic user interface
equivalent; some are representations of data structures that occur only at runtime. With PeopleCode, you can
manipulate data in the data buffer easily and consistently. These classes enable you to write code that's more
readable, more easily maintained, and more useful.

This section discusses:

• Classes.

• Objects.

• Object instantiation.

Classes

A class is the formal definition of an object and acts as a template from which an instance of an object is
created at runtime. The class defines the properties of the object and the methods used to control the object's
behavior.

PeopleSoft delivers predefined classes, such as Array, File, Field, SQL, and so on. You can create your own
classes using the Application class. You can also extend the functionality of the existing classes using the
Application class.

Understanding Objects and Classes in PeopleCode Chapter 3

40 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes"

Objects

An object represents a unique instance of a data structure defined by the template provided by its class. Each
object has its own values for the variables belonging to its class and responds to methods defined by that
class. This is the same for classes provided by PeopleSoft and for classes you create yourself.

After an object has been created (instantiated) from a class, you can change its properties. A property is an
attribute of an object. Properties define:

• Object characteristics, such as name or value.

• The state of an object, such as deleted or changed.

Some properties are read-only and cannot be set, such as Name or Author. Other properties can be set, such as
Value or Label.

Objects are different from other data structures. They include code (in the form of methods), not just static
data. A method is a procedure or routine, associated with one or more classes, that acts on an object.

An analogy to illustrate the difference between an object and its class is the difference between a car and the
blue Citroen with license plate number TS5800B. A class is a general category, while the object is a specific
instance of that class. Each car comes with standard characteristics, such as four wheels, an engine, or brakes,
that define the class and are the template from which the individual car is created. You can change the
properties of an individual car by personalizing it with bumper stickers or racing stripes, which is like
changing the Name or Visible property of an object. The model and date that the car is created are similar to
read-only properties because you cannot alter them. A tune-up acts on the individual car and changes its
behavior, much as a method acts on an object.

Object Instantiation

A class is the blueprint for something, like a bicycle, a car, or a data structure. An object is the actual thing
that is built using that class (or blueprint.) From the blueprint for a bicycle, you can build a specific mountain
bike with 23 gears and tight suspension. From the blueprint of a data structure class, you build a specific
instance of that class. Instantiation is the term for building that copy, or an instance, of a class.

Creating and Using Objects

This section discusses how to:

• Instantiate objects.

• Change object properties.

• Invoke methods.

Chapter 3 Understanding Objects and Classes in PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 41

• Copy objects.

Instantiating Objects

Generally you instantiate objects (create them from their classes) using built-in functions or methods of other
objects. Some objects are instantiated from data already existing in the data buffer. Think about this kind of
object instantiation as taking a chunk of data from the buffer, encapsulating it in code (methods and
properties), manipulating it, then freeing the references. Some objects can be instantiated from a previously
created definition, such as a page or file layout definition, instead of from data.

The following example creates a field object:

Local field &MyField

&MyField = GetField();

Get functions, which include functions such as GetField, GetRecord, and so on, generally provide access to
data that already exists, whether in the data buffers or from an existing definition.

Create functions, which include functions such as CreateObject, CreateArray, CreateRecord, generally create
defined objects that do not yet exist in the data buffer. Create functions create only a buffer structure. They do
not populate it with data. For example, the following function returns a record object for a record that already
exists in the component buffer:

&REC = GetRecord();

The following example creates a standalone record. However, there is no data in &REC2. The specified
record definition must be created previously, but the record does not have to exist in either the component or
data buffer:

&REC2 = CreateRecord(EMP_CHKLST_ITM);

Objects with no built-in functions can only be instantiated from a session object (such as tree classes,
component interfaces, and so on). For most of these classes, when you use a Get function, all you get is an
identifier for the object. To fully instantiate the object, you must use an Open method.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Session Class"

Changing Properties

To set or get characteristics of an object, or to determine the state of an object, you must access its properties
through dot notation syntax. Follow the reference to the object with a period, followed by the property, and
assign it a value. The format is generally as follows:

Object.Property = Value

The following example hides the field &MYFIELD:

&MYFIELD.Visible = False

Understanding Objects and Classes in PeopleCode Chapter 3

42 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

You can return information about an object by returning the value of one of its properties. In the following
example, &X is a variable that is assigned the value found in the field &MYFIELD:

&X = &MYFIELD.Value

In the following example, a property is used as the test for a condition:

If &ROWSET.ActiveRowCount <> &I Then

Invoking Methods

You also use dot notation to execute methods. Follow the reference to the object with a period, then with the
method name and any parameters the method takes. The format is generally:

Object.method();

You can string methods and property values together into one statement. The following example strings
together the GetField method with the Name property:

If &REC_BASE.GetField(&R).Name = &REC_RELLANG.GetField(&J).Name Then

Some methods return a Boolean value: True if the method executes successfully; False if it does not. The
following method compares all like-named fields of the current record object with the specified record. This
method returns as True if all like-named fields have the same value:

If &MYRECORD.CompareFields(&OTHERRECORD) Then

Other methods return a reference to an object. The GetCurrEffRow method returns a row object:

&MYROW = &MYROWSET.GetCurrEffRow();

Some methods do not return anything. Each method's documentation indicates what it returns.

Many objects have default methods. Instead of entering the name of the method explicitly, you can use that
method's parameters. Objects with default methods are composite objects; that is, they contain additional
objects within them. The default method is generally the method used to get the lower-level object.

A good example of a composite object is a record object. Record definitions are composed of field
definitions. The default method for a record object is GetField.

The following lines of code are equivalent:

&FIELD = &RECORD.GetField(FIELD.EMPLID);
&FIELD = &RECORD.EMPLID;

Note. If the field you're accessing has the same name as a record property (such as NAME) you cannot use
the shortcut method for accessing the field. You must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows, so the default
method for a rowset is GetRow. The two specified lines of code are equivalent: They both get the fifth row of
the rowset:

&ROWSET = GetRowSet();

/*the next two lines of code are equivalent */

&ROW = &ROWSET.GetRow(5);
&ROW = &ROWSET(5);

Chapter 3 Understanding Objects and Classes in PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 43

The following example illustrates the long way of enabling the Name field on a second-level scroll area (the
code is executing on the first-level scroll area):

GetRowset(SCROLL.EMPLOYEE_CHECKLIST).GetRow(1).
GetRecord(EMPL_CHKLST_ITM).GetField(FIELD.NAME).Enabled = True;

Using default methods enables you to shorten the previous code to the following:

GetRowset(SCROLL.EMPLOYEE_CHECKLIST)(1).EMPL_CHKLST_ITM.NAME.
Enabled = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a corresponding
object. For example, the code &temp = RECORD.JOB.IsChanged; is evaluated as if it were &temp =
GetRecord(RECORD.JOB).IsChanged;.

Furthermore, the code JOB.EMPLID.Visible = False; is evaluated as if it were
GetField(JOB.EMPLID).Visible = False;.

Copying Objects

Many of the classes delivered with PeopleTools have some sort of copy method, such as the rowset class
CopyTo, the tree class Copy, and so on. Unless specifically identified (such as the message class
CopyRowsetDelta) all copy methods use the current data of the object. This may be different than the original
data values if the object was retrieved from the database and the values in it have been changed either by an
end-user or a PeopleCode program.

Assigning Objects

When you assign one object to another, you do not create a copy of the object, but only make a copy of the
reference.

In the following example, &A1 and &A2 refer to the same object. The assignment of &A1 to &A2 does not
allocate any database memory or copy any part of the original object. It makes &A2 refer to the same object
to which &A1 refers.

Local Array of Number &A1, &A2;

&A1 = CreateArray(2, 4, 6, 8, 10);
&A2 = &A1;

The following diagram shows how both references point to the same object:

Representation of two arrays

Understanding Objects and Classes in PeopleCode Chapter 3

44 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If the next statement is &A2[5] = 12;, then &A1[5] also equals 12, as shown in the following diagram:

Representation of two arrays with same content

The following example is not considered an object assignment:

Local number &NUM;
Local Array of Number &A1;

&A1 = CreateArray(2, 4, 6, 8, 10);
&NUM = &A1[3];

&NUM is of data type Number, which is not an object type. If you later change the value of &NUM in the
program, you will nott change the element in the array.

Passing Objects

All PeopleCode objects can be passed as function parameters. You can pass complex data structures between
PeopleCode functions (as opposed to passing long lists of fields). If a function is passed an object, the
function works on the actual object, not on a copy of the object.

In the following simple example, a reference to the Visible property is passed, not the value of Visible. This
enables the MyPeopleCodeFunction either to get or set the value of the Visible property:

MyPeopleCodeFunction(&MyField.Visible);

In the following example, the function Process_Rowset loops through every row and record in the rowset
passed to it and executes an Update statement on each record in the rowset. This function can be called from
any PeopleCode program and can process any rowset that is passed to it.

Local Rowset &RS;
Local Record &REC;

Function Process_RowSet(&ROWSET as Rowset);

 For &I = 1 To &ROWSET.Rowcount
 For &J = 1 To &ROWSET.Recordcount
 &REC = &ROWSET.GetRow(&I).GetRecord(&J);
 &REC.Update();
 End-For;
 End-For;
End-Function;

&RS = GetLevel0();

Process_RowSet(&RS);

Chapter 3 Understanding Objects and Classes in PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 45

The following function takes a rowset and a record passed in from another program. GetRecord does not take
a variable for the record; however, you can use the @ symbol to dereference the record name.

Function Get_My_Row(&PASSED_ROWSET, &PASSED_RECORD)

 For &ROWSET_ROW = 1 To &PASSED_ROWSET.RowCount
 &UNDERLYINGREC = "RECORD." | &PASSED_ROWSET.DBRecordName;
 &ROW_RECORD = &PASSED_ROWSET.GetRow(&ROWSET_ROW).GetRecord(@&UNDERLYINGREC);

 /* Do other processing */

 End-For;

End-Function;

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 47

Chapter 4

Referencing Data in the Component
Buffer

This chapter provides an overview of component buffer structure and contents and discusses how to:

• Specify data with contextual references.

• Specify data with references using scroll path syntax and dot notation.

Understanding Component Buffer Structure and Contents

This section discusses:

• Component buffer contents.

• Rowsets and scroll areas.

• Record fields in the component buffer.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Component Buffer Contents

PeopleCode frequently must refer to data in the component buffer, the area in memory that stores data for the
currently active component.

The two methods for specifying a piece of data in the component buffer from within PeopleCode are:

• Contextual references, which refer to data relative to the location of the currently executing PeopleCode
program.

• References using scroll path syntax, which provide a complete, or absolute, path through the component
buffer to the referenced component.

Referencing Data in the Component Buffer Chapter 4

48 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

In addition to the built-in functions used to access the component buffer, PeopleCode provides enhanced
access to structured data buffers using the object syntax. Use the object-oriented PeopleCode to resolve
contextual ambiguities when you reference a nonprimary record field that appears on more than one scroll
level in a component. As with built-in functions, object syntax provides for both relative and absolute
references to component buffer data.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer consists of rows of buffer fields that hold data for the records associated with page
controls, including primary scroll records, related display records, derived/work records, and Translate table
records. PeopleCode can reference buffer fields associated with page controls and other buffer fields from the
primary scroll record and related display records.

See Chapter 4, "Referencing Data in the Component Buffer," Record Fields and the Component Buffer, page
50.

Primary scroll records are the principal SQL tables or views associated with page scroll levels. A primary
scroll record uniquely identifies a scroll level in the context of its page: each scroll level can have only one
primary scroll record, and the same primary scroll record cannot occur on more than one scroll area at the
same level of the page. Parent-child relations between primary scroll records determine the dependency
structure of the scroll areas on the page. The primary record on a level one scroll area must be a child of the
primary record on level zero, the primary record on a level two scroll area must be a child of the primary
record on its enclosing level one scroll area, and the primary record on a level three scroll area must be a child
of the primary record on its enclosing level two scroll area.

Note. Level zero may have multiple records.

The hierarchical relations among scroll areas, controlled by hierarchical relations among primary scroll
records, enable the user and PeopleCode to drill down through the scroll hierarchy to access any buffer field,
including related display, derived/work, and Translate table buffer fields, which occupy space on the same
rows as the primary scroll record buffer fields with which they are associated.

For example, to access a page field on level two of a page, a user must:

1. Select a field on level one of the page.

2. Scroll to and select the field on level two of the page.

The following diagram illustrates this scroll path taken by the user:

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 49

Scroll path to a buffer field

To access the same field in the component buffer, PeopleCode must:

1. Specify a scroll area and row on scroll level one: this selects a subset of dependent rows on level two.

2. Specify a scroll area and row on scroll level two.

3. Specify the recordname.fieldname on the level two row.

PeopleCode component buffer functions use a common scroll path syntax for locating scrolls, rows, and
fields in multiple-scroll pages.

Rowsets and Scroll Areas

Rowsets enable more consistent, more convenient, and less ambiguous manipulation of buffer data than
previous built-in functions could achieve. It's a hierarchical data object that can represent an entire scroll area
and all of its subordinate scroll areas.

A rowset can contain the entire contents of a component buffer, or the contents of any lower-level scroll area
plus all of its subordinate buffer data. The hierarchical structure of component levels—scroll area, row,
record, field—is provided by the new object data types, Rowset, Row, Record, and Field.

You can access any rowset, row, record, or field within the buffer using the dot notation inherent in
PeopleTools 8 object-oriented programming. This enables you to reference fields within a record object,
records within a row object, and rows within a rowset object as properties of the parent objects.

Referencing Data in the Component Buffer Chapter 4

50 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class"

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

Record Fields and the Component Buffer

The record fields in the component buffer are a superset of those accessible to the user through page controls.
In most cases, PeopleCode can reference any record field in a scroll area's primary scroll record or in a related
display record, not just those fields that are associated with page controls. The following table lists record
types and locations:

Type and Location of Record Presence in Component Buffer

Primary record on scroll levels greater than zero On scroll levels greater than zero, all record fields from
the primary scroll record are in the component buffer.
PeopleCode can refer to any record field on the primary
scroll record, even if it is not associated with a page
control.

Primary record on scroll level zero If scroll level zero of a page contains only controls
associated with primary scroll record fields that are
search keys or alternate search keys, then only the
search key and alternate search key fieldsave in the
component buffer, not the entire record. The values for
the fields come from the keylist, and the record cannot
run RowInit PeopleCode. If level zero contains at least
one record field from the primary scroll record that is
not a search key or alternate search key, then all the
record fields from the primary scroll record are
available in the buffer. (For this reason, you may
sometimes need to add one such record field at level
zero of the page to make sure that all the record fields of
the level-zero primary record can be referenced from
PeopleCode.)

Related display record fields The buffer contains the related display record field, plus
any record fields from the related display record that are
referenced by PeopleCode programs. You can reference
any record field in a related display record.

Derived/work record fields Only derived/work record fields associated with page
controls are in the component buffer. Other record fields
from the derived/work record cannot be referenced from
PeopleCode.

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 51

Type and Location of Record Presence in Component Buffer

Translate table record fields Only Translate table fields associated with page controls
are available in the component buffer. Other fields from
the Translate table cannot be referenced from
PeopleCode.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed.

Specifying Data with Contextual References

In a contextual reference, PeopleCode refers to a row or buffer field determined by the context in which a
PeopleCode program is currently executing.

This section includes an overview of current context and discusses how to:

• Use contextual row references.

• Use contextual buffer field references.

Understanding Current Context

All PeopleCode programs, with the exception of programs associated with standard menu items, execute in a
current context. The current context determines which buffer fields can be contextually referenced from
PeopleCode, and which row of data is the current row on each scroll level at the time a PeopleCode program
is executing.

The current context comprises a subset of the buffer fields in the component buffer, determined by the row of
data where a PeopleCode program is executing. The current context includes:

• All buffer fields in the row of data where the PeopleCode program is executing.

• All buffer fields in rows that are hierarchically superior to the row where the PeopleCode program is
executing.

In the following diagram, all rows enclosed in dotted rectangles are part of the current context:

Referencing Data in the Component Buffer Chapter 4

52 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Context of PeopleCode executing on a level two scroll area

In the preceding diagram, a PeopleCode program is executing in a buffer field on row R3 on scroll level two.
The rows in scroll level two are dependent on row R2 on scroll level one. The rows in scroll level one are
dependent on the single row at scroll level zero. The current context consists of all the buffer fields at level
two row R3, level one row R2, and level zero row R1. The rows in the current context on levels one and two
are the current rows on their respective scroll areas. The single row on level zero is always current and is
included in any current context. All rows other than the current rows and the level zero row are outside the
current context. No current row can be determined on scroll areas below the one where the PeopleCode is
executing.

With PeopleTools 8, contextual references work within the structure of a rowset object, and can include
references to all field objects, record objects, row objects, and rowset objects in the current context.

Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first checking the row where the PeopleCode
program is executing. If PeopleCode does not find an appropriate buffer field, it looks in progressively higher
rows in the current context. The following diagram indicates this processing order:

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 53

Processing order of a contextual reference

In typical pages, this processing order is not significant; however, if the same record occurs on more than one
level of a page, you should understand how the direct reference is resolved.

Using Contextual Row References

A contextual row reference refers to a row in the current context on level one or lower in the page. Because
each scroll area uses a unique primary record, the name of that record uniquely identifies whichever row is in
the current context for that scroll level. A contextual row reference uses a RECORD.recordname component
name reference to specify the scroll level of the intended row, resulting in a reference to the current row at the
specified scroll level.

For example, you can use contextual row references with the RecordDeleted, RecordNew, and
RecordChanged functions:

If RecordDeleted(RECORD.SOME_REC) Then...

With PeopleTools 8 object-oriented programming, a row can be referenced by specifying parent rows or
rowsets of the current rowset:

Referencing Data in the Component Buffer Chapter 4

54 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

If GetRowSet().ParentRowset.ParentRow.IsDeleted Then...

In early versions of PeopleTools, you could make contextual row references using a recordname.fieldname
expression:

HideRow(SOME_REC.ANY_FIELD)

If RecordDeleted(SOME_REC.ANY_FIELD) Then...

This syntax is still supported.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

Using Contextual Buffer Field References

A contextual buffer field reference is a type of PeopleCode expression that refers to a buffer field by
specifying a record field. The row of the buffer field is determined by the current context of the PeopleCode
program where the reference is made. You can use a contextual buffer field reference to retrieve or update the
value in the buffer field, to pass the buffer field value to a function, or to reference an instance of a page
control associated with the buffer field. The following statements use contextual buffer field references:

/* Assigns value of variable to buffer field */
SOME_RECORD.SOME_FIELD = &VAL;
/* Assigns value of buffer field to variable */
&VAL = SOME_RECORD.SOME_FIELD;
/* Hides instance of control associated with buffer field */
Hide(SOME_RECORD.SOME_FIELD);

With PeopleTools 8 object-oriented programming, a field object incorporates information about both the
record field on which the buffer field is based and the page control with which the buffer field is associated.
By referring to the field object, you either make a contextual buffer field reference or you change an interface
attribute of the associated page control, depending on the object property you use. The following example has
the same effect as a contextual buffer field reference:

/* Assigns value of a variable to a buffer field */
&MYFIELD.Value = &SOMEVAL;

Contextual Buffer Field Reference Ambiguity

Nonprimary record fields may appear on more than one scroll level in a page. For example, a page may use a
derived/work field DERIVED_JS.CALC_1 as a work field on level one and level two of the same page. This
creates distinct DERIVED_JS.CALC_1 buffer fields for rows on both levels. Because of the order in which
PeopleCode resolves contextual buffer field references, if the contextual reference &VAL =
DERIVED_JS.CALC_1; executes in a PeopleCode program on a level-two row, the reference always
retrieves the buffer field value on the current row on level two. PeopleCode on level two is unable to retrieve
the value of the DERIVED_JS.CALC_1 on level one using a contextual reference.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level one, use a component buffer function
with a scroll path:

&VAL = FetchValue(SCROLL.level1_scrollname, CurrentRowNumber(1), DERIVED_JS.CALC_⇒
1);

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 55

The CurrentRowNumber function returns the current row on level one, or the parent row of the level two row
where the PeopleCode program is executing.

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only a single row of data, and the buffer fields in this row are always in the
current context. For this reason you can almost always refer to a level zero buffer field using a contextual
reference. However, referential ambiguity can make it impossible to reference a buffer field on level zero
contextually. For example, a page may use a derived/work field DERIVED_JS.CALC_1 as a work field on
level zero and level one of the same page. This creates distinct DERIVED_JS.CALC_1 buffer fields for rows
on both levels. Because of the order in which PeopleCode resolves contextual field references, if the &VAL =
DERIVED_JS.CALC_1; contextual reference executes in a PeopleCode program on a level-one row, it
always retrieves the buffer field value on the current row on level one.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level zero, you must use a component
buffer function with this syntax:

Function([recordname.]fieldname, rownum)

Here rownum, because it is on level zero, is always equal to one. In the previous example of the
DERIVED_JS.CALC_1 field, you would use this statement:

&VAL = FetchValue(DERIVED_JS.CALC_1, 1);

Ambiguous References with Objects

With PeopleTools 8 object-oriented programming, even if two field objects that are in different rowsets
contain buffer data that's based on the same underlying record field, references to those objects are inherently
unique, because each is instantiated with respect to a specific point in the hierarchy of the buffer. Any
manipulation of a field object's interface properties affects only the page control with which it's associated.

The following example instantiates a field object using the long form, to emphasize the hierarchical form of
the data. It then hides the field's associated page control. Because this is a unique instance of the field, based
on its hierarchy, hiding this field does not affect the visibility of any other page control associated with the
same record field:

&MYFIELD = GetRowset(SCROLL.EMPL_CHECKLIST).GetRow(&I).
GetRecord(RECORD.EMPL_CHECKLIST).GetField(EMPL_CHECKLIST.EMPLID);
&MYFIELD.Visible = False;
/* the same code, using the "short" form */
&MYFIELD = GetRowset(SCROLL.EMPL_CHECKLIST).GetRow(&I).
EMPL_CHECKLIST.EMPLID;

Note. Any change in a field object's value affects both the underlying record field and the value of any other
field object oriented on the same record field. This behavior is the same as the behavior of contextual buffer
field references that alter the field value.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Referencing Data in the Component Buffer Chapter 4

56 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Specifying Data with References Using Scroll Path Syntax and Dot
Notation

This section provides an overview of scroll paths and discusses how to:

• Structure scroll path syntax in PeopleTools 7.5.

• Reference scroll levels, rows, and buffer fields.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Understanding Scroll Paths

A scroll path is a construction found in the parameter lists of many component buffer functions, which
specifies a scroll level in the currently active page. Additional parameters are required to locate a row or a
buffer field at the specified scroll level.

PeopleTools 7.5 scroll path syntax enables you to eliminate ambiguous references, which, although rare, do
sometimes occur in complex components.

See Chapter 4, "Referencing Data in the Component Buffer," Using Contextual Buffer Field References, page
54.

PeopleTools 8 adds the convenience of object-oriented dot notation and default methods, which produce
inherently non-ambiguous references, to PeopleCode programs. There are examples of dot notation in this
section and examples of the scroll path syntax available in PeopleTools 7.5, which is still valid in
PeopleTools 8.

Structuring Scroll Path Syntax in PeopleTools 7.5

PeopleTools 7.5 offers two constructions for scroll paths: a standard scroll path syntax and an alternative
syntax using a SCROLL.scrollname expression. The latter is more powerful in that it can process some rare
cases where a RECORD.recordname expression results in an ambiguous reference.

Scroll Path Syntax with RECORD.recordname

Here is the standard scroll path syntax:

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]] RECORD.⇒
target_recname

If the target level (the level you want to reference) is one, you must supply only the RECORD.
target_recname parameter. If the target scroll level is greater than one, you must provide scroll name and row
level parameters for all hierarchically superior scroll levels, beginning at level one. The following table
indicates the scroll path syntax for the three possible target scroll levels:

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 57

Target Level Scroll Path Syntax

1 RECORD.target_recname

2 RECORD.level1_recname, level1_row,
RECORD.target_recname

3 RECORD.level1_recname, level1_row, RECORD.level2_⇒
recname, level2_row, RECORD.target_recname

If you are referring to a row or a buffer field, additional parameters are required after the scroll path.

The following table describes the standard scroll path syntax parameters:

Syntax Parameters Description

RECORD.level1_recname Specifies the name of a record associated with scroll level
one, normally the primary scroll record. This parameter is
required if the target scroll level is two or three.

level1_row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

RECORD.level2_recname Specifies the name of a record associated with scroll level
two, normally the primary scroll record. This parameter is
required if the target row is on scroll level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

RECORD.target_recname Specifies a record associated with the target scroll level,
generally the primary scroll record. The scroll can be on
level one, two, or three of the active page.

Scroll Path Syntax with SCROLL.scrollname

As an alternative to RECORD.recordname expressions in scroll path constructions, PeopleTools 7.5 permits
use of a SCROLL.scrollname expression. Scroll paths using SCROLL.scrollname are functionally identical
to those using RECORD.recordname, except that SCROLL.scrollname expressions are more strict: they can
refer only to a scroll level's primary record; whereas RECORD.recordname expressions can refer to any
record in the scroll level, which in some rare cases can result in ambiguous references. (This can occur, for
example, if the RECORD.recordname expression inadvertently references a related display record in another
page in the component.) Use of RECORD.recordname is still permitted, and there is no requirement to use
the SCROLL.scrollname alternative unless it is needed to avoid an ambiguous reference.

The scrollname is the same as the scroll level's primary record name.

The scroll name cannot be viewed or changed through the PeopleSoft Application Designer interface. Here is
the complete scroll path syntax using SCROLL.scrollname expressions:

Referencing Data in the Component Buffer Chapter 4

58 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

[SCROLL.level1_scrollname, level1_row, [SCROLL.level2_scrollname, level2_row,]], ⇒
SCROLL.target_scrollname

The target scroll level in this construction is the scroll level that you want to specify. If the target level is one,
you need to supply only the SCROLL.target_scrollname parameter. If the target scroll level is greater than
one, you need to provide scroll name and row-level parameters for hierarchically superior scroll levels,
beginning at level one. The following table indicates the scroll path syntax for the three possible target scroll
levels:

Target Level Scroll Path Syntax

1 SCROLL.target_scrollname

2 SCROLL.level1_scrollname, level1_row, SCROLL.target_⇒
scrollname

3 SCROLL.level1_scrollname, level1_row, SCROLL.level2_⇒
scrollname, level2_row, SCROLL.target_scrollname

If the component you are referring to is a row or a buffer field, additional parameters are required after the
scroll path.

The following table describes the alternative scroll path syntax parameters:

Parameter Description

SCROLL.level1_scrollname Specifies the name of the page's level-one scroll area. This
is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target scroll level is two or three.

level1_row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

SCROLL.level2_scrollname Specifies the name of the page's level two scroll area. This
is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target row is on scroll level three.

level2_row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

SCROLL.target_scrollname The scroll name of the target scroll level, which can be
level one, two, or three of the active page.

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 59

See Also

Chapter 4, "Referencing Data in the Component Buffer," Referencing Scroll Levels, Rows, and Buffer Fields,
page 59

Referencing Scroll Levels, Rows, and Buffer Fields

You can reference a scroll level using the scrollpath construct only. Functions that reference rows for buffer
fields require additional parameters. The following table summarizes the three types of component buffer
references:

Target Component Reference Syntax Example Function

Scroll level scrollpath HideScroll(scrollpath);

Row scrollpath, row_number HideRow(scrollpath, ⇒
row_number);

Field scrollpath, row_number,
[recordname.]fieldname

FetchValue(scrollpath, ⇒
row_number, fieldname);

PeopleTools 8 provides an alternative to the scroll level, row, and field components in the form of the data
buffer classes Rowset, Row, Record, and Field, which you reference using dot notation with object methods
and properties. The following table demonstrates the syntax for instantiating and manipulating objects in the
current context from these classes:

Target Object Example Instantiation Example Operation

Rowset &MYROWSET = GetRowset(); &MYROWSET.Refresh();

Row &MYROW = GetRow(); &MYROW.CopyTo(&SOMEROW);

Record &MYRECORD = GetRecord(); &MYREC.CompareFields(&REC);

Field &MYFIELD = GetRecord().
fieldname;

&MYFIELD.Label = "Last Name";

The following sections provide examples of functions using scroll path syntax, which refer to an example
page from a fictitious veterinary clinic database. The page has three scroll levels, shown in the following
table:

Referencing Data in the Component Buffer Chapter 4

60 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Level Scroll Name (Primary Scroll Record Name)

0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object-oriented syntax assumes that the following initializing code was
executed:

Local Rowset &VET_SCROLL, &OWNER_SCROLL, &PET_SCROLL, &VISIT_SCROLL;

&VET_SCROLL = GetLevel0();
&OWNER_SCROLL = &VET_SCROLL.GetRow(1).GetRowSet(SCROLL.OWNER);
&PET_SCROLL = &OWNER_SCROLL.GetRow(2).GetRowSet(SCROLL.PET);
&VISIT_SCROLL = &PET_SCROLL.GetRow(2).GetRowSet(SCROLL.VISIT);

Referring to Scroll Levels

The HideScroll function provides an example of a reference to a scroll level. The syntax of the function is:

HideScroll(scrollpath)

where scrollpath is

[RECORD.level1_recname, level1_row, [RECORD.level2_recname, level2_row,]] RECORD.⇒
target_recname

To reference the level 1 scroll in the example, use this syntax:

HideScroll(RECORD.OWNER);

This hides the OWNER, PET, and VISIT scroll areas on the example page.

In PeopleTools 8, the object-oriented version of this is:

&OWNER_SCROLL.HideAllRows();

To hide scroll levels two and below, supply the primary record and row in scroll level one, and then the
record identifying the target scroll area:

HideScroll(RECORD.OWNER, &L1ROW, RECORD.PET);

The following diagram shows the scroll path of this statement, assuming that the value of &L1ROW is 2:

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 61

Sample scroll path

Similarly, to hide the VISIT scroll area on level three, you specify rows on scroll levels one and two.

HideScroll(RECORD.OWNER, &L1ROW, RECORD.PET, &L2ROW, RECORD.VISIT);

To use the SCROLL.scrollname syntax, the previous example could be written as the following:

HideScroll(SCROLL.OWNER, &L1ROW, SCROLL.PET, &L2ROW, SCROLL.VISIT);

In PeopleTools 8, the object-oriented version of this is:

&VISIT_SCROLL.HideAllRows();

Referring to Rows

Referring to rows is the same as referring to scroll areas, except that you need to specify the row you want to
select on the target scroll area. As an example, examine the HideRow function, which hides a specific row in
the level three scroll area of the page. Here is the function syntax:

HideRow(scrollpath, target_row)

To hide row number &ROW_NUM on level one:

HideRow(RECORD.OWNER, &ROW_NUM);

To do the same using the SCROLL.scrollname syntax:

HideRow(SCROLL.OWNER, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&OWNER_SCROLL(&ROW_NUM).Visible = False;

On level two:

Referencing Data in the Component Buffer Chapter 4

62 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

HideRow(RECORD.OWNER, &L1_ROW), RECORD.PET, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the PET rowset is:

&PET_SCROLL(&ROW_NUM).Visible = False;

The following diagram indicates the scroll path of this statement, assuming that the value of &L1_ROW is 2
and that &ROW_NUM is equal to 2:

Scroll path statement

On level three:

HideRow(RECORD.OWNER, CurrentRowNumber(1), RECORD.PET,
CurrentRowNumber(2), RECORD.VISIT, &ROW_NUM);

In PeopleTools 8, the object-oriented version of this for the VISIT rowset is:

&VISIT_SCROLL(&ROW_NUM).Visible = False;

Referring to Buffer Fields

Buffer field references require a [recordname.]fieldname parameter to specify a record field. The combination
of scroll level, row number, and record field name uniquely identifies the buffer field. Here is the syntax:

 FetchValue(scrollpath, target_row, [recordname.]fieldname)

Assume, for example, that record definitions in the veterinary database have the following fields that you
want to reference:

Record Sample Field

OWNER OWNER_NAME

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 63

Record Sample Field

PET PET_BREED

VISIT VISIT_REASON

You could use the following examples to retrieve values on levels one, two, or three from a PeopleCode
program executing on level zero.

To fetch a value of the OWNER_NAME field on the current row of scroll area one:

&SOMENAME = FetchValue(RECORD.OWNER, &L1_ROW, OWNER.OWNER_NAME);

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&SOMENAME = &OWNER_SCROLL(&L1_ROW).OWNER.OWNER_NAME;

To fetch PET_BREED on level two:

&SOMEBREED = FetchValue(RECORD.OWNER, &L1_ROW, RECORD.PET, &L2_ROW, PET.PET_BREED);

In PeopleTools 8, the object-oriented version of this for the PET rowset is:

&SOMEBREED = &PET_SCROLL(&L2_ROW).PET.PET_BREED;

The following diagram indicates the scroll path to the target field, assuming that &L1_ROW equals 2,
&L2_ROW equals 2, and field F3 is PET.PET_BREED:

Scroll path to target field

To fetch VISIT_REASON on level three:

Referencing Data in the Component Buffer Chapter 4

64 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&SOMEREASON = FetchValue(RECORD.OWNER, &L1_ROW, RECORD.PET,
&L2_ROW, RECORD.VISIT, &L3_ROW, VISIT.VISIT_REASON);

To do the same using the SCROLL.scrollname syntax:

&SOMEREASON = FetchValue(SCROLL.OWNER, &L1_ROW, SCROLL.PET,
&L2_ROW, SCROLL.VISIT, &L3_ROW, SCROLL.VISIT_REASON);

In PeopleTools 8, the object-oriented version of this is:

&SOMEREASON = &VISIT_SCROLL(&L3_ROW).VISIT.VISIT_REASON;

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context, for a specific
scroll level in the active page. CurrentRowNumber is often used to determine a value for the level1_row and
level2_row parameters in scroll path constructions. Because current row numbers are determined by the
current context, CurrentRowNumber cannot determine a current row on a scroll level outside the current
context (a scroll level below the level where the PeopleCode program is currently executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level three of the
PET_VISITS page, in a PeopleCode program executing on level two:

&VAL = FetchValue(RECORD.OWNER, CurrentRowNumber(1),
RECORD.PET, CurrentRowNumber(2), RECORD.VISIT, &TARGETROW,
VISIT_REASON);

Because the PeopleCode program is executing on level two, CurrentRowNumber can return values for levels
one and two, but not three, because level three is outside of the current context and has no current row
number.

Looping Through Scroll Levels

Component buffer functions are often used in For loops to loop through the rows on scroll levels below the
level where the PeopleCode program is executing. The following loop, for example could be used in
PeopleCode executing on a level two record field to loop through rows of data on level three:

For &I = 1 To ActiveRowCount(RECORD.OWNER,
CurrentRowNumber(1), RECORD.PET, CurrentRowNumber(2), RECORD.VISIT)
 &VAL = FetchValue(RECORD.OWNER, CurrentRowNumber(1),
RECORD.PET, CurrentRowNumber(2), RECORD.VISIT, &I, VISIT_REASON);
 If &VAL = "Fleas" Then
 /* do something about fleas */
 End-If;
End-For;

A similar construct may be used in accessing other level two or level one scroll areas, such as work scroll
areas.

In these constructions, the ActiveRowCount function is often used to determine the upper bounds of the loop.
When ActiveRowCount is used for this purpose, the loop goes through all of the active rows in the scroll
(rows that have not been specified as deleted). If you use TotalRowCount to determine the upper bounds of
the loop, the loop goes through all of the rows in the scroll area: first those that have not been specified as
deleted, then those that have been specified as deleted.

Chapter 4 Referencing Data in the Component Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 65

See Also

Chapter 4, "Referencing Data in the Component Buffer," Structuring Scroll Path Syntax in PeopleTools 7.5,
page 56

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CurrentRowNumber

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 67

Chapter 5

Accessing the Data Buffer

This chapter provides overviews of data buffer access, data buffer class examples, and current context, and
discusses how to:

• Access secondary component buffer data.

• Instantiate rowsets using non-component buffer data.

Understanding Data Buffer Access

This section discusses:

• Data buffer access.

• Access classes.

• Data buffer model and data access objects.

Data Buffer Access

In addition to the built-in functions you use to access the component buffer, classes of objects are available
that provide access to structured data buffers using the PeopleCode object syntax.

The data buffers accessed by these classes are typically the component buffers that are loaded when you open
a component. However, these classes may also be used to access data from general data buffers, loaded by an
Application Engine program, a component interface, and so on.

The methods and properties of these classes provide functionality that is similar to what has been available
using built-in functions. However, they also provide improved consistency, flexibility, and new functionality.

Access Classes

The four data buffer classes are: Rowset, Row, Record, and Field. These four classes are the foundation for
accessing component buffer data through the new object syntax.

A field object, which is instantiated from the Field class, is a single instance of data within a record. It is
based on a field definition.

A record object, which is instantiated from the Record class, is a single instance of a data within a row. It is
based on a record definition. A record object consists of one to n fields.

Accessing the Data Buffer Chapter 5

68 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

A row object, which is instantiated from the Row class, is a single row of data that consists of one to n
records of data. A single row in a component scroll area is a row. A row may have one to n child rowsets. For
example, a row in a level two scroll area may have n level three child rowsets.

A rowset object is a data structure used to describe hierarchical data. It is made up of a collection of rows. A
component scroll area is a rowset. You can also have a level zero rowset.

Data Buffer Model and Data Access Classes

The data model assumed by the data buffer classes is that of a PeopleTools component, where scroll bars or
grids are used to describe a hierarchical, multiple-occurrence data structure. You can access these classes
using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main points to understand these
relationships are:

• A record contains one or more fields.

• A row contains one or more records and zero or more child rowsets.

• A rowset contains one or more rows.

For component buffers, think of a rowset as a scroll area on a page that contains all of the data in that scroll
area. A level zero rowset contains all the data for the entire component. You can use rowsets with application
messages, file layouts, business interlinks, and other definitions in addition to components. A level zero
rowset from a component buffer only contains one row: the keys that the user specifies to initiate that
component. A level zero rowset from data that is not a component, such as a message or a file layout, might
contain more than one level zero row.

The following is basic PeopleCode that traverses through a two-level component buffer using dot notation
syntax. Level zero is based on record QA_INVEST_HDR, and level one is based on record
QA_INVEST_LN.

Local Rowset &HDR_ROWSET, &LINE_ROWSET;
Local Record &HDR_REC, &LINE_REC;
&HDR_ROWSET = GetLevel0();

For &I = 1 to &HDR_ROWSET.RowCount
 &HDR_REC = &HDR_ROWSET(&I).QA_INVEST_HDR;
 &EMPLID = &HDR_REC.EMPLID.Value;
 &LINE_ROWSET = &HDR_ROWSET(&I).GetRowset(1);
 For &J = 1 to &LINE_ROWSET.RowCount
 &LINE_REC = &LINE_ROWSET(&J).QA_INVEST_LN;
 &LINE_SUM = &LINE_SUM + &LINE_REC.AMOUNT.Value;
 End-For;
End-For;

Each rowset is declared and instantiated. In general, your code is easier to read and maintain if you follow
this practice.

Understanding Data Buffer Classes Examples

This section discusses:

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 69

• Employee Checklist page structure.

• Object creation examples.

• Data buffer hierarchy examples.

• Rowset examples.

• Hidden work scroll area example.

Employee Checklist Page Structure

Most of the examples in this section use the Employee Checklist page.

Employee Checklist page

This page has the following record structure:

Scroll Level Associated Primary Record Rowset and Variable Name

Level zero PERSONAL_DATA Level zero rowset: &RS0

Level one scroll area EMPL_CHECKLIST Level one rowset: &RS1

Accessing the Data Buffer Chapter 5

70 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Scroll Level Associated Primary Record Rowset and Variable Name

Level one hidden work scroll area CHECKLIST_ITEM Level one rowset: &RS1H

Level two scroll area EMPL_CHKLST_ITM Level two rowset: &RS2

Another way of looking at the structure of a component is to use the Structure view. All the scroll areas are
labeled, and the primary record is associated with each:

EMPLOYEE_CHECKLIST structure

In the example, the visible level one scroll area also has only one row. That row is made up of the following
records:

• EMPL_CHECKLIST

• DERIVED_HR

• CHECKLIST_TBL

• PERSONAL_DATA

You can see which records are associated with a scroll area by looking at the Order view for a page:

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 71

EMPLOYEE_CHECKLIST page Order view showing records

The level two rowset has three rows. Each row is made up of two records: the primary record,
EMPL_CHKLST_ITM, and CHKLST_ITM_TBL, the record associated with the related display field
DESCR. The following example shows the rowset:

Accessing the Data Buffer Chapter 5

72 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

EMPLOYEE_CHECKLIST rowsets and rows

Every record has fields associated with it, such as NAME, EMPLID and CHECKLIST_SEQ. These fields are
associated with the record definitions; they are not the fields that appear on the page.

Object Creation Examples

When declaring variables, use the class with the same name as the data buffer access data type (rowset
objects should be declared as type Rowset, field objects as type Field, and so on). Data buffer access class
objects can be of type Local, Global, or Component.

The following declarations are assumed throughout the examples that follow:

Local Rowset &LEVEL0, &ROWSET;
Local Row &ROW;
Local Record &REC;
Local Field &FIELD;

Level Zero Access

The following code instantiates a rowset object, from the Rowset class, that references the level zero rowset,
containing all the page data. It stores the object in the &LEVEL0 variable.

&LEVEL0 = GetLevel0();

The level zero rowset contains all the rows, rowsets, records, and fields underneath it.

If the level zero rowset is formed from component buffer data, then the level zero rowset has one row of data
and that row contains all the child rowsets, which in turn contain rows of data that contain other child
rowsets.

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 73

If the level zero rowset is formed from buffer data, such as from an application message, then the level zero
rowset may contain more than one row of data. Each row of the level zero rowset contains all the child
rowsets associated with that row, which in turn contain rows of data that contain other child rowsets.

Use a level zero rowset when you want an absolute path to a lower-level object or to do some processing on
the entire data buffer. For example, suppose you load all new data into the component buffers and want to
redraw the page. You could use the following code:

/* Do processing to reload Component Buffers */
&LEVEL0 = GetLevel0();
&LEVEL0.Refresh();

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the currently running
PeopleCode program:

&ROWSET = GetRowset();

You might later use the &ROWSET variable and the ActiveRowCount property to iterate over all the rows of
the rowset, to access a specific row (using the GetRow method), or to hide a child rowset (by setting the
Visible property).

The level one rowset contains all the level two rowsets. However, the level two rowsets can only be accessed
using the different rows of the level one rowset. From the level zero or level one rowset, you can only access
a level two rowset by using the level one rowset and the appropriate row.

For example, suppose your program is running on some field of row five of a level two scroll area, which is
on row three of its level one scroll area. The resulting rowset contains all the rows of the level two scroll area
that are under the row three of the level one scroll area. The rowset does not contain any data that is under
any other level two scroll areas. The following diagram illustrates these results:

Accessing the Data Buffer Chapter 5

74 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Level two rowset from level one row

A further illustration uses an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign Loan Departure, Foreign
Loan Arrival, and Foreign Loan Host. The checklist code field (CHECKLIST_CD) on the first level of the
page drives the entries on the second level. Each row in the level one rowset produces a different level two
rowset.

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as Briefing with
Human Resources and Apply for Visas/Work permits, as shown in the following example:

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 75

EMPLOYEE_CHECKLIST Foreign Loan Departure checklist

The Foreign Loan Arrival checklist (0000004) produces a checklist that contains items such as Register at
Consulate and Open New Foreign Bank Accounts, as shown in the following example:

Accessing the Data Buffer Chapter 5

76 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

EMPLOYEE_CHECKLIST Foreign Load Arrival Checklist

Row Object

When you create a page, you put fields from different records onto the page. You can think of this as creating
a type of pseudo-SQL join. The row returned from this pseudo-join is a row object.

For example, the first level scroll area of the EMPLOYEE_CHECKLIST page contains the following fields,
associated with these records:

Field Record

CHECKLIST_DT EMPL_CHECKLIST

CHECKLIST_CD EMPL_CHECKLIST

COMMENTS EMPL_CHECKLIST

DESCR CHECKLIST_TBL

NAME PERSONAL_DATA

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 77

Field Record

RESPONSIBLE_ID EMPL_CHECKLIST

The pseudo-SQL join might look like this:

JOIN A.CHECKLIST_DT, A.CHECKLIST_CD, A.COMMENTS, B.DESCR, C.NAME, A.RESPONSIBLE_ID
FROM PS_EMPL_CHECKLIST A, PS_CHECKLIST_TBL B, PS_PERSONAL_DATA C, WHERE. . .

What goes into the Where clause is determined by the level zero of the page. For our example, the value is
WHERE EMPLID=8001.

When the component is opened, data is loaded into the component buffers. Any row returned by the pseudo-
SQL statement is a level one row object. The following table shows a returned row:

CHECKLIST_DT CHECKLIST_CD COMMENTS DESCR NAME RESPONSIBLE_ID

12/03/98 000001 Foreign Loan
Department
Checklist

Peppen, Jacques 6602

Record Object

A record definition is a definition of what your underlying SQL database tables look like and how they
process data. After you create record definitions, you build the underlying SQL tables that contain the
application data that your users enter online in your production environment.

When you create a record object using the CreateRecord function, you are creating an area in the data buffers
that has the same structure as the record definition, but no data.

When you instantiate a record object from the Record class using some variation of GetRecord, that record
object references a single row of data in the SQL table.

Note. The data in the record that you retrieve is based on the row, which is analogous to setting keys to return
a unique record.

The following code instantiates a record object for referencing the EMPL_CHECKLIST record of the
specified row:

&REC = &ROW.GetRecord(RECORD.EMPL_CHECKLIST);

Using the short method, the following line of code is identical to the previous line:

&REC = &ROW.EMPL_CHECKLIST;

You might later use the &REC variable and the CopyFieldsTo property to copy all like-named fields from
one record to another. In the following example, two row objects are created, the copy from row
(COPYFRMROW) and the copy to row (COPYTROW). Using these rows, like-named fields are copied from
CHECKLIST_ITEM to EMPL_CHKLST_ITM.

For &I = 1 To &ROWSET1.ActiveRowCount
 ©FRMROW = &ROWSET1.GetRow(&I);
 ©TROW = &RS2.GetRow(&I);
 ©FRMROW.CHECKLIST_ITEM.CopyFieldsTo(©TROW.EMPL_CHKLST_ITM);
End-For;

Accessing the Data Buffer Chapter 5

78 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

A row may contain more than one record: in addition to the primary database record, you may have a related
display record or a derived record. You can access these records as well. The level one rowset, &ROWSET1,
is made up of many records. The following accesses two of them: EMPL_CHECKLIST and DERIVED_HR.

&REC1 = &ROW.EMPL_CHECKLIST;
&REC2 = &ROW.DERIVED_HR;

Field Object

The following instantiates a field object, from the Field class, that is used to access a specific field in the
record:

&FIELD = &REC.GetField(FIELD.CHECKLIST_CD);

You might later use the &FIELD variable as a condition:

If ALL(&FIELD) Then

Here is another example:

If &FIELD.Value = "N" Then

Note. The data in the field that you retrieve is based on the record, which is in turn based on the row.

You can also set the value of a field. Using the GetField function does not create a copy of the data from the
component buffer. Setting the value or a property of the field object sets the actual component buffer field or
property.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," Assigning Objects, page 43.

In the following example, the type of field is verified, and the value is replaced with the tangent of that value
if it is a number

If &FIELD.Type <> "NUMBER" Then
 /* do error recording */
Else
 &FIELD.Value = Tan(&FIELD.Value);
End-If;

Data Buffer Hierarchy Examples

Suppose you want to access the BRIEFING_STATUS field at level two of the following page:

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 79

EMPLOYEE_CHECKLIST repatriation checklist

First, determine where your code is running. For this example, the code is starting at a field on a record at
level zero. However, you do not always have to start at level zero.

If you start with level zero, you must traverse the data hierarchy, through the level one rowset to the level two
rowset, before you can access the record that contains the field.

Obtaining the Rowset

You first obtain the level zero rowset, which is the PERSONAL_DATA rowset. You do not need to know the
name of the level zero rowset to access it:

&LEVEL0 = GetLevel0();

Obtaining Rows

The next object to get is a row. As the following code is working with data that is loaded from a page, only
one row is at level zero. However, if you have rowsets that are populated with data that is not based on
component buffers (for example, an application message), you may have more than one row at level zero.

&LEVEL0_ROW = &LEVEL0(1);

Obtaining Child Rowsets

To obtain the level two rowset, traverse through the level one rowset first. Therefore, the next object to get is
the level one rowset, as shown in the following example:

Accessing the Data Buffer Chapter 5

80 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&LEVEL1 = &LEVEL0_ROW.GetRowset(SCROLL.EMPL_CHECKLIST);

Obtaining Subsequent Rows

If you are traversing a page, obtain the appropriate row after you get a rowset. To process all the rows of the
rowset, set this functionality up in a loop, as shown in the following example:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 . . .
End-For;

Obtaining Subsequent Rowsets and Rows

Traverse another level in the page structure to access the second level rowset, and then use a loop to access
the rows in the level two rowset.

Because we are processing all the rows at level one, we are just adding code to the previous For loop. As we
process through all the rows at level two, we are adding a second For loop. The new code is in bold in the
following example:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.
EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 . . .
 End-For;
End-For;

Obtaining Records

A row always contains a record, and it may contain only a child rowset, depending on how your page is set
up. GetRecord is the default method for a row, so all you have to specify is the record name.

Because we are processing all the rows at level two, we just add code to the For loops of the previous
example. The new code is in bold:

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 &RECORD = &LEVEL2_ROW.EMPL_CHKLST_ITM;
 . . .
 End-For;
End-For;

Obtaining Fields

Records are made up of fields. GetField is the default method for a record, so all you have to specify is the
field name.

Because we are processing all the rows at the level one, we are just adding code to the For loops of the
previous example. The new code is in bold:

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 81

For &I = 1 to &LEVEL1.ActiveRowCount
 &LEVEL1_ROW = &LEVEL1(&I);
 &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);
 For &J = 1 to &LEVEL2.ActiveRowCount
 &LEVEL2_ROW = &LEVEL2(&J);
 &RECORD = &LEVEL2_ROW.EMPL_CHKLST_ITM;
 &FIELD = &RECORD.BRIEFING_STATUS;
 /* Do processing */
 End-For;
End-For;

Using Shortcuts

The previous code is the long way of accessing this field. The following example uses shortcuts to access the
field in one line of code. The following code assumes all rows are level one:

Rowset example

Here's another method of expressing the code:

Object Type Code

Rowset &LEVEL0 = GetLevel0();

Row &LEVEL0_ROW = &LEVEL0(1);

Rowset &LEVEL1 = &LEVEL0_ROW.GetRowset(SCROLL.EMPL_CHECKLIST);

For &I = 1 to &LEVEL1.ActiveRowCount

Row &LEVEL1_ROW = &LEVEL1(&I);

Rowset &LEVEL2 = &LEVEL1_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);

 For &J = 1 to &LEVEL2.ActiveRowCount

Row &LEVEL2_ROW = &LEVEL2(&J);

Record &RECORD = &LEVEL2_ROW.EMPL_CHKLST_ITM;

Accessing the Data Buffer Chapter 5

82 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Object Type Code

Field &FIELD = &RECORD.BRIEFING_STATUS;

 /* Do processing */

 End-For;

End-For;

Rowset Examples

The following code example traverses up to four levels of rowsets and could easily be modified to do more.
This example only processes the first record in every rowset. To process every record, set up another For loop
(For &R = 1 to &LEVELX.RECORDCOUNT, and so on). Notice the use of the ChildCount function (to
process all children rowsets within a rowset), ActiveRowCount, IsChanged, and dot notation.

In the following example, ellipses indicate where application-specific code should go.

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 83

&Level0_ROWSET = GetLevel0();
For &A0 = 1 To &Level0_ROWSET.ActiveRowCount

 ...

/***************************/
/* Process Level 1 Records */
/*-------------------------*/
 If &Level0_ROWSET(&A0).ChildCount > 0 Then
 For &B1 = 1 To &Level0_ROWSET(&A0).ChildCount
 &LEVEL1_ROWSET = &Level0_ROWSET(&A0).GetRowset(&B1);
 For &A1 = 1 To &LEVEL1_ROWSET.ActiveRowCount
 If &LEVEL1_ROWSET(&A1).GetRecord(1).IsChanged Then

 ...

 /***************************/
 /* Process Level 2 Records */
 /*-------------------------*/
 If &LEVEL1_ROWSET(&A1).ChildCount > 0 Then
 For &B2 = 1 To &LEVEL1_ROWSET(&A1).ChildCount
 &LEVEL2_ROWSET = &LEVEL1_ROWSET(&A1).GetRowset(&B2);
 For &A2 = 1 To &LEVEL2_ROWSET.ActiveRowCount
 If &LEVEL2_ROWSET(&A2).GetRecord(1).IsChanged Then

 ...

/***************************/
/* Process Level 3 Records */
/*-------------------------*/
 If &LEVEL2_ROWSET(&A2).ChildCount > 0 Then
 For &B3 = 1 To &LEVEL1_ROWSET(&A2).ChildCount
 &LEVEL3_ROWSET = &LEVEL2_ROWSET(&A2).GetRowset(&B3);
 For &A3 = 1 To &LEVEL3_ROWSET.ActiveRowCount
 If &LEVEL3_ROWSET(&A3).GetRecord(1).IsChanged Then

 ...

 End-If; /* A3 - IsChanged */
 End-For; /* A3 - Loop */
 End-For; /* B3 - Loop */
 End-If; /* A2 - ChildCount > 0 */
/*--------------------------------*/
/* End of Process Level 3 Records */
/**********************************/

 End-If; /* A2 - IsChanged */
 End-For; /* A2 - Loop */
 End-For; /* B2 - Loop */
 End-If; /* A1 - ChildCount > 0 */
/*--------------------------------*/
/* End of Process Level 2 Records */
/**********************************/

 End-If; /* A1 - IsChanged */
 End-For; /* A1 - Loop */
 End-For; /* B1 - Loop */
 End-If; /* A0 - ChildCount > 0 */

/*--------------------------------*/
/* End of Process Level 1 Records */
/**********************************/

End-For; /* A0 - Loop */

Accessing the Data Buffer Chapter 5

84 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Hidden Work Scroll Example

In the FieldChange event for the CHECKLIST_CD field on the EMPL_CHECKLIST record, a PeopleCode
program does the following:

1. Flushes the rowset and hidden work scroll area.

2. Performs a Select statement on the hidden work scroll area based on the value of the CHECKLIST_CD
field and the effective date.

3. Clears the level two scroll area.

4. Copies like-named fields from the hidden work scroll area to the level two scroll area.

The following example shows how to do this using built-in functions.

&CURRENT_ROW_L1 = CurrentRowNumber(1);

&ACTIVE_ROW_L2 = ActiveRowCount(RECORD.EMPL_CHECKLIST,
&CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM);

If All(CHECKLIST_CD) Then
 ScrollFlush(RECORD.CHECKLIST_ITEM);
 ScrollSelect(1, RECORD.CHECKLIST_ITEM, RECORD.CHECKLIST_ITEM,
"Where Checklist_Cd = :1 and EffDt = (Select Max(EffDt) From
PS_Checklist_Item Where Checklist_Cd = :2)",
CHECKLIST_CD, CHECKLIST_CD);

 &FOUNDDOC = FetchValue(CHECKLIST_ITEM.CHKLST_ITEM_CD, 1);
 &SELECT_ROW = ActiveRowCount(RECORD.CHECKLIST_ITEM);

 For &I = 1 To &ACTIVE_ROW_L2
 DeleteRow(RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM, 1);
 End-For;

 If All(&FOUNDDOC) Then
 For &I = 1 To &SELECT_ROW
 CopyFields(1, RECORD.CHECKLIST_ITEM, &I, 2,
RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1, RECORD.EMPL_CHKLST_ITM, &I);
 If &I <> &SELECT_ROW Then
 InsertRow(RECORD.EMPL_CHECKLIST, &CURRENT_ROW_L1,
RECORD.EMPL_CHKLST_ITM, &I);
 End-If;
 End-For;
 End-If;
End-If;

The following example performs the same function as the previous code, only it uses the data buffer classes:

1. Flushes the rowset and hidden work scroll area (&RS1H).

2. Performs a Select statement on &RS1H based on the value of the CHECKLIST_CD field and the
effective date.

3. Clears the level two rowset (&RS2).

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 85

4. Copies like-named fields from &RS1H to &RS1.

Local Rowset &RS0, &RS1, &RS2, &RS1H;

&RS0 = GetLevel0();
&RS1 = GetRowset();
&RS2 = GetRowset(SCROLL.EMPL_CHKLST_ITM);
&RS1H = &RS0.GetRow(1).GetRowset(SCROLL.CHECKLIST_ITEM);

&MYFIELD = CHECKLIST_CD;

If All(&MYFIELD) Then
 &RS1H.Flush();
 &RS1H.Select(RECORD.CHECKLIST_ITEM, "where Checklist_CD = :1
and EffDt = (Select Max(EffDt) from PS_CHECKLIST_ITEM
Where CheckList_CD = :2)", CHECKLIST_CD, CHECKLIST_CD);

 For &I = 1 To &RS2.ActiveRowCount
 &RS2.DeleteRow(1);
 End-For;

&FOUND = &RS1H.GetCurrEffRow().CHECKLIST_ITEM. CHKLST_ITEM_CD.Value;

 If All(&FOUND) Then
 For &I = 1 To &RS1H.ActiveRowCount
 ©FRMROW = &RS1H.getrow(&I);
 ©TROW = &RS2.getrow(&I);
 ©FRMROW.CHECKLIST_ITEM.CopyFieldsTo(©TROW.EMPL_CHKLST_ITM);
 If &I <> &RS1H.ActiveRowCount Then
 &RS2.InsertRow(&I);
 End-If;
 End-For;
 End-If;
End-If;

Understanding Current Context

Most PeopleCode programs run in a current context. The current context determines which buffer fields can
be contextually referenced from PeopleCode, and which row of data is the current row on each scroll level at
the time a PeopleCode program is running.

The current context for the data buffer access classes is similar to the current context for accessing the
component buffer, as shown in the following diagram:

Accessing the Data Buffer Chapter 5

86 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Current context for rowsets

In this example, a PeopleCode program is running in a buffer field on the second row of the level one rowset.
The following code returns a row object for the second row of the level one rowset, because that is the row
that is the current context.

Local Row &ROW

&ROW = GetRow();

The following code returns the B2 level two rowset because of the current context:

Local Rowset &ROWSET2

&ROWSET2 = &ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);

This code does not return either the C2 or the A2 rowsets. It returns only the rowset associated with the
second row of the level one rowset.

Chapter 5 Accessing the Data Buffer

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 87

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an area in the
data buffers that has the same structure as the record definition. It does not contain any data. This record
object does not have a parent rowset and is not associated with a row. It is a freestanding record object and,
therefore, is not considered part of the current context.

The same concept applies when you instantiate a rowset object using the CreateRowset function. You are
only creating an area in the data buffers that has the same structure as the records or rowset that the new
rowset is based on. The rowset does not contain any data. This type of rowset does not have a parent rowset
or row.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with Contextual References, page
51

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CreateRecord

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CreateRowset

Accessing Secondary Component Buffer Data

When a secondary page is run, the data for its buffers is copied from the parent component to a buffer
structure for the secondary page. That is, two copies of this data are made. The data buffer classes give access
to both of these copies of the data. Direct field references (recname.fieldname) always use the current context
to determine which value to access. So, in general, when using a secondary page, make sure that references
are based on the secondary page.

Instantiating Rowsets Using Non-Component Buffer Data

Both the application message and the file layout technologies represent hierarchical data, and both use the
rowset, row, record, and field hierarchy. Though you use different methods to instantiate a rowset object for
this data, you still use the same rowset, row, record, and field methods and properties to manipulate the data.
(Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:

&MSG = CreateMessage(OPERATION.EMPLOYEE_DATA);
&MYROWSET = &MSG.GetRowset();

To instantiate a rowset for a file layout:

Accessing the Data Buffer Chapter 5

88 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

&MYFILE = GetFile(&SOMENAME, "R");

If &MYFILE.IsOpen Then
 &MYFILE.SetFileLayout(FILELAYOUT.SOMELAYOUT);
 &MYROWSET = &MYFILE.ReadRowset();
End-if;

In an Application Engine program, the default state record is considered the primary record and the main
record in context. You can access the default state record using the following:

&STATERECORD = GetRecord();

If you have more than one state record associated with an Application Engine program, you can access them
the same way you would access other, nonprimary data records, by specifying the record name. For example:

&ALTSTATE = GetRecord(RECORD.AE_STATE_ALT);

See Also

Chapter 8, "Using Methods and Built-In Functions," Using Standalone Rowsets, page 174

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages"

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Using Meta-SQL and PeopleCode"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 89

Chapter 6

PeopleCode and the Component
Processor

This chapter provides an overview of the Component Processor and discusses:

• Events outside the Component Processor flow.

• PeopleCode program triggers.

• Component Processor behavior.

• Processing sequences.

• PeopleSoft Pure Internet Architecture processing considerations.

• Deferred processing mode.

• PeopleCode events.

• PeopleCode execution in pages with multiple scroll areas.

Understanding the Component Processor

The Component Processor is the PeopleTools runtime engine that controls processing of an application from
the time that a user requests a component from an application menu until the database is updated and
processing of the component is complete.

Events Outside the Component Processor Flow

An Application Engine program can have a PeopleCode program as an action. Though the right-hand drop-
down list box on the PeopleCode Editor window displays the text OnExecute, the PeopleCode program really
is not an event. Any PeopleCode contained in an Application Engine action is executed only when the action
is executed.

A component interface can have user-defined methods associated with it. These methods are not part of any
processor flow; they are called as needed by the program executing the component interface.

Security has a signon event during signon. This is actually PeopleCode programs on a record field that you
have specified in setting up security.

PeopleCode and the Component Processor Chapter 6

90 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Though application packages have a right-hand drop-down list box on the PeopleCode Editor window that
displays the text OnExecute, this is not an event. Any PeopleCode contained in the application class is only
executed when called explicitly in a PeopleCode program.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Component Interface Classes"

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes"

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Creating Application Engine Programs,"
Specifying PeopleCode Actions

PeopleTools 8.51 PeopleBook: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Program Triggers

This section provides an overview of PeopleCode program triggers and discusses how to:

• Access PeopleCode programs.

• Associate execution order of events and PeopleCode.

Understanding PeopleCode Program Triggers

PeopleCode can be associated with a PeopleCode record field, a component record, and many other items.
PeopleCode events are initiated at particular times, in particular sequences, during the course of the
Component Processor's flow of execution. When an event is initiated, it triggers PeopleCode programs on
specific objects.

The following items have events that are part of the Component Processor flow:

Items Event Triggers

Menu items Programs associated with the menu item

Component record fields Programs on specific rows of data

Component records Programs on specific rows of data

Components Programs associated with the component

Pages Programs associated with the page

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 91

Items Event Triggers

Record fields Programs on specific rows of data

Suppose a user changes the data in a page field, and then presses Tab to move out of the field. This user
action initiates the FieldEdit PeopleCode event. The FieldEdit event affects only the field and row where the
change took place. If a FieldEdit PeopleCode program is associated with that record field, the program is
executed once.

If you have two FieldEdit PeopleCode programs, one associated with the record field and a second associated
with the component record field, both programs execute, but only on the specific field and row of data. The
FieldEdit PeopleCode program associated with the first record field is initiated first, and then the FieldEdit
PeopleCode program associated with the first component record field is initiated.

By contrast, suppose a user has opened a component for updating. As part of building the component, the
Component Processor initiates the RowInit event. This event triggers RowInit PeopleCode programs on every
record field on every row of data in the component. In a scroll area with multiple rows of data, every RowInit
PeopleCode program is executed once for each row.

In addition, if you have RowInit PeopleCode associated with both the record field and the component record,
both programs are executed against every record field on every row of data in the component. The RowInit
PeopleCode program associated with the first record field is initiated first, and then the RowInit PeopleCode
program associated with the first component record is initiated. If you set the value of a field with the record
field RowInit PeopleCode, and then reset the field with the component record RowInit PeopleCode, the
second value appears to the user.

When you develop with PeopleCode, you must consider when and where your programs are triggered during
execution of the Component Processor flow.

This section discusses how to:

• Access PeopleCode programs.

• Understand the execution order of events and PeopleCode.

See Also

Chapter 6, "PeopleCode and the Component Processor," Associating Execution Order of Events and
PeopleCode, page 93

Accessing PeopleCode Programs

Every PeopleCode program is associated with a PeopleCode event and is often referred to by that name, such
as RowInit PeopleCode or FieldChange PeopleCode. These programs are accessible from, and associated
with, different items. The following table lists items and associated events.

Note.

During search processing in update modes or add mode, the SearchInit and SearchSave events (in the
Component Record column of the table) are available only for the search record associated with a component.

PeopleCode and the Component Processor Chapter 6

92 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Record Field
Events

Component
Record Field

Events

Component
Record Events

Component
Events

Page Events Menu Events

FieldChange

FieldDefault

FieldEdit

FieldFormula

PrePopup

RowDelete

RowInit

RowInsert

RowSelect

SaveEdit

SavePostChg

SavePreChg

SearchInit

SearchSave

Workflow

FieldChange

FieldDefault

FieldEdit

PrePopup

RowDelete

RowInit

RowInsert

RowSelect

SaveEdit

SavePostChg

SavePreChg

SeachInit

SearchSave

PostBuild

PreBuild

SavePostChg

SavePreChg

Workflow

Activate ItemSelected

The following table lists types of PeopleCode programs and where to access them in PeopleSoft Application
Designer.

PeopleCode Programs Location in PeopleSoft Application Designer

Record field Record definitions and page definitions

Component record field, component record, and
component

Component definitions

Menu item Menu definitions

Page field Page definitions

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 93

Associating Execution Order of Events and PeopleCode

In PeopleSoft, the component is the representation of a transaction. Therefore, any PeopleCode that is
associated with a transaction should be in events associated with some level of the component. Code that
should be executed every time a field is edited should be at the record field level. If you associate code with
the correct transaction, you do not have to check for the component that is issuing it (such as surrounding
your code with dozens of If %Component = statements). Records are more reusable, and code is more
maintainable.

For example, if you have start and end dates for a course, you would always want to make sure that the end
date was after the start date. Your program to check the dates would go on the SaveEdit at the record field
level.

All similarly named component events are initiated after the like-named record event. The PeopleCode
program associated with the record field event is initiated first, and then the PeopleCode program associated
with the like-named component event is initiated. If you set the value of a field with the record field
PeopleCode, and then reset the field with like-named component PeopleCode, the second value is displayed
to the user.

Events After Field Changes

The following events occur after a user changes a field:

Record.recordA.fielda.FieldEdit -> Component.recordA.fielda.FieldEdit ->
Record.recordB.fieldb.FieldEdit -> Component.recordB.fieldb.FieldEdit ->
Record.recordA.fielda.FieldChange -> Component.recordA.fielda.FieldChange ->
Record.recordB.fieldb.FieldChange -> Component.recordB.fieldb.FieldChange ->

The following diagram shows the event flow:

PeopleCode and the Component Processor Chapter 6

94 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Flow of events and PeopleCode programs after a user changes a field

Events After User Saves

The following events occur after a user saves:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 95

Record.recordA.fielda.SaveEdit ->
Record.recordA.fieldb.SaveEdit ->
Record.recordA.fieldc.SaveEdit ->
Component.recordA.SaveEdit

Record.recordB.fielda.SaveEdit ->
Record.recordB.fieldb.SaveEdit ->
Record.recordB.fieldc.SaveEdit ->
Component.recordB.SaveEdit

Record.recordA.fielda.SavePreChange ->
Record.recordA.fieldb.SavePreChange ->
Record.recordA.fieldc.SavePreChange ->
Component.recordA.SavePreChange

Record.recordB.fielda.SavePreChange ->
Record.recordB.fieldb.SavePreChange ->
Record.recordB.fieldc.SavePreChange ->
Component.recordB.SavePreChange

Record.recordA.fieldA.WorkFlow ->
Record.recordB.fieldB.WorkFlow ->
Record.reocrdC.fieldC.WorkFlow
Component.Workflow

Record.recordA.fielda.SavePostChange ->
Record.recordA.fieldb.SavePostChange ->
Record.recordA.fieldc.SavePostChange ->
Component.recordA.SavePostChange

Record.recordB.fielda.SavePostChange ->
Component.recordB.SavePostChange
Component.SavePostChange

The following diagram shows the event flow:

PeopleCode and the Component Processor Chapter 6

96 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Flow of PeopleCode programs after SavePostChange event

Note. SaveEdit does not fire for deleted rows, but SavePreChange, Workflow, and SavePostChange do.

Component Processor Behavior

This section discusses:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 97

• Component Processor behavior from page start to page display.

• Component Processor behavior following user actions in the component.

Note. Components behave differently when run in deferred mode .

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100

Component Processor Behavior from Page Start to Page Display

Before a user selects a component, the system is in reset state, in which no component is displayed. The
Component Processor flow of execution begins when a user selects a component from a PeopleSoft menu.
The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the component.

2. Retrieves from the database server any data needed to build the component.

3. Builds the component, creating buffers for the component data.

4. Performs any additional processing for the component or the page.

5. Displays the component and waits for user action.

The following flowchart shows the flow of execution at a high level:

PeopleCode and the Component Processor Chapter 6

98 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Processing up to Page Display

Component Behavior Following User Actions in the Component

After a component is built and displayed, the Component Processor can respond to a number of possible user
actions. The following table lists the user actions and briefly describes the resulting processing:

See Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100.

User Action Description

Row Insert Processing When a user requests a row insert, the Component
Processor adds a row of data in the active scroll area,
then displays the page again and waits for another
action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Insert Processing, page 119.

Row Delete Processing When a user requests a row delete, the Component
Processor flags the current row as deleted, then displays
the page again and waits for another action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Delete Processing, page 121.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 99

User Action Description

Field Modification If a user edits a page field, then leaves the field, the
Component Processor performs standard edits (such as
checking the data type and checking for values out of
range). If the contents of the field do not pass the
standard system edits, the Component Processor
redisplays the page with an error or warning message
and changes the field's color to the system color for field
edit errors, usually red. Until the user corrects the error,
the Component Processor does not let the user save
changes or navigate to another field. If the contents of
the field pass the standard system edits, the system
redisplays the page and waits for further action.

See Chapter 6, "PeopleCode and the Component
Processor," Field Modification, page 116.

Prompts If a user clicks the prompt icon next to a field, a list of
values for the prompt field appears. If the Allow Search
Events for Prompt Dialogs checkbox is selected in the
record field properties for the search key, the SearchInit
event will trigger before the prompt dialog appears. If
the user clicks the Look Up button the SearchSave event
will trigger.

If the end-user clicks the detail button next to a date
field, a calendar appears.

If the user clicks Return To Search, or presses Alt+2, a
search page appears, enabling the user to enter an
alternate search key or partial value.

See Chapter 6, "PeopleCode and the Component
Processor," Prompts, page 123 and Chapter 6,
"PeopleCode and the Component Processor," Search
Processing in Update Modes, page 104.

Pop-up Menu Display If a user clicks the pop-up icon next to a field, a pop-up
menu appears. This can be a default pop-up menu or one
that has been defined by the developer. If the user clicks
the pop-up icon at the bottom of the page, the pop-up
menu for the page appears.

See Chapter 6, "PeopleCode and the Component
Processor," Pop-Up Menu Display, page 124.

ItemSelected Processing A user can select an item from a pop-up menu to
execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Selected Item Processing, page 124.

PeopleCode and the Component Processor Chapter 6

100 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

User Action Description

Push Button A user can click a button to execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Buttons, page 123.

Save Processing A user can direct the system to save a component by
clicking Save or by pressing Alt+1. If any component
data has been modified, the system also prompts the
user to save a component when the Next or List button
is clicked, or when a new action or component is
selected.

The Component Processor first validates the data in the
component, and then updates the database with the
changed component data. After the update, a SQL
Commit command finalizes the changes.

See Chapter 6, "PeopleCode and the Component
Processor," Save Processing, page 125.

Processing Sequences

This section presents an overview of flow charts and discusses:

• Default processing.

• Search processing in update mode.

• Search processing in add mode.

• Component build processing in update mode.

• Row select processing.

• Component build processing in add mode.

• Field modification.

• Row insert processing.

• Row delete processing.

• Buttons.

• Prompts.

• Pop-up menu display.

• Selected item processing.

• Save processing.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 101

Flow Charts

Actions and PeopleCode events can occur in various sequences within the Component Processor's flow of
execution. Flow charts represent each sequence. In a flow chart, different shapes and colors represent
different concepts.

Blue rectangles represent actions taken by the system.

Dark rhomboids represent branches (decision points) in the logic.

Dark ellipses represent PeopleCode events.

Light ellipses are subprocesses.

Most processing sequences correspond to high-level component processor behaviors. However, two
important subsequences occur only in the context of a larger sequence. These subsequences are:

• Default processing, which occurs in a number of different contexts.

• Row select processing, which most commonly occurs as a part of component build in any of the update
action modes.

Row select processing also occurs when a ScrollSelect or related function is executed to load data into a
scroll area.

See Chapter 6, "PeopleCode and the Component Processor," Component Processor Behavior, page 96;
Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102 and Chapter 6,
"PeopleCode and the Component Processor," Row Select Processing, page 112.

Note. Variations may occur in processing sequences, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if a row of data is inserted or deleted
programmatically during the component build sequence, a row insert or row delete sequence is initiated. Also
note that components that run in deferred mode behave differently.

See Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127.

PeopleCode and the Component Processor Chapter 6

102 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Default Processing

In default processing, any blank fields in the component are set to their default values. You can specify the
default value either in the record field properties or in FieldDefault PeopleCode. If no default value is
specified, the field is left blank.

Note. In PeopleSoft Pure Internet Architecture, if a user changes a field, but there is nothing to cause a trip to
the server on that field, default processing and FieldFormula PeopleCode do not run. They only run when
another event causes a trip to the server.

Default processing is relatively complex. The following two sections describe how default processing works
on the level of the individual field, and how default processing works in the broader context of the
component.

Field-Level Default Processing

During default processing, the Component Processor examines all fields in all rows of the component. On
each field, it performs the following:

1. If the field is set to NULL (blank) for a character field, or set to 0 for a numeric field, the Component
Processor sets the field to any default value specified in the record field properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component Processor
initiates the FieldDefault event, which triggers any FieldDefault PeopleCode associated with the record
field or the component record field.

3. If an error or warning executes in any FieldDefault PeopleCode, a runtime error occurs.

Important! Avoid using error and warning statements in FieldDefault PeopleCode.

The following flowchart shows this logic:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 103

Field-level default sequence flow

Default Processing on Component Level

Under normal circumstances, default processing in a component is relatively simple: each field on each row
of data undergoes field-level default processing. For typical development tasks, this is all you need to be
concerned with. However, the complete context of default processing is somewhat more complex.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102.

During component-level default processing, the Component Processor performs these tasks:

1. Field-level default processing is performed on all fields on all rows of data in the component.

2. If any field is still blank and any other field in the component has changed, field-level default processing
may be repeated, in case a condition changed that causes default processing to now assign a value to
something that was previously left blank.

3. The FieldFormula Event is initiated on all fields on all rows of data in the component.

This PeopleCode event is often used for FUNCLIB_ (function library) record definitions to store shared
functions, so normally no PeopleCode programs execute.

PeopleCode and the Component Processor Chapter 6

104 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

4. If the FieldFormula Event changed anything, field-level default processing is performed again, in case
FieldFormula PeopleCode changed a field value to blank, or changed something that causes default
processing to now assign a value to a field that was previously left blank.

Because there should not be any FieldFormula PeopleCode, this is unlikely to affect the development
process or performance.

5. If any field is still blank and any other field in the component has changed, field-level default processing
is repeated.

The following flowchart shows this logic:

Default processing on component level

Search Processing in Update Modes

If a user selects any of the update action modes (Update, Update/Display All, or Correction), the Component
Processor begins update mode search processing, which includes the following steps:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 105

1. The SearchInit PeopleCode event is initiated, which triggers any SearchInit PeopleCode associated with
the record field or the component search record, on the keys or alternate search keys in the component
search record.

This enables you to control the search page field values or the search page appearance programmatically,
or to perform other processing prior to the appearance of the search page.

Note. Set the search record for the component in the component properties.

For example, the following program in SearchInit PeopleCode on the component search key record field
EMPLID sets the search key page field to the user's employee ID, makes the page field unavailable for
entry, and enables the user to modify the user's own data in the component:

EMPLID = %EmployeeId;
&Field = GetField(EMPLID).Enabled = False;
AllowEmplIdChg(True);

Note. Generally, the system search processing displays the search page. You can use the SearchInit event,
and the SetSearchDialogBehavior function, to set the behavior of the search page before it is displayed. If
SetSearchDialogBehavior is set to Force display, the dialog box is displayed even if all required keys
have been provided. You can also set SetSearchDialogBehavior to skip if possible. In addition, you can
force search processing to always occur by selecting Force Search Processing in the component definition
properties in PeopleSoft Application Designer.

2. The search page and prompt list appear, in which the user can enter search keys or select an advanced
search to enter alternate search keys.

Note. Normally, the values in the search page are not set to default values. However, if the SearchDefault
function was executed in SearchInit PeopleCode for any of the search key or alternate search fields, those
fields in the dialog box are set to their system default values. No other default processing occurs (that is,
the FieldDefault event is not initiated).

3. The user enters a value or partial value in the search page, and then clicks Search.

PeopleCode and the Component Processor Chapter 6

106 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

4. The SearchSave PeopleCode event is initiated, which triggers any SearchSave PeopleCode associated
with the record field or the component search record, on the search keys or alternate search keys in the
search record.

This enables you to validate the user entry in the search page by testing the value in the search record field
in PeopleCode and, if necessary, issuing an error or warning. If an error is executed in SearchSave, the
user is sent back to the search page. If a warning is executed, the user can click OK to continue or click
Cancel to return to the search page and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows, then the prompt
list dialog box is filled, and the user can select a value. If key values from the search page are blank, or if
the system cannot select any data based on the user entry in the search page, the system displays a
message and redisplays the search page. If the values entered produce a unique value, the prompt list is
not filled. Instead, the user is taken directly to the page.

Note. Normally, no system edits are applied when the user changes a field in the search page. However, if
the SearchEdit property is executed for specific search page fields in SearchInit PeopleCode, the system
edits are applied to those fields after the user changes a field and either leaves the field or clicks Search.
In addition, the SearchEdit property can also be set in metadata for the record field definition.

If the user entry in the field fails the system edits, the system displays a message, highlights the field in
question, and returns the user to the dialog box. The FieldEdit and SaveEdit PeopleCode events are not
initiated. The SearchSave event is not initiated after values are selected from the search list. To validate
data entered in the search page, use the Component PreBuild event.

5. The Component Processor buffers the search key values.

If the user then opens another component while this component is active, the Component Processor uses
the same search key values and bypasses the search page.

The following flowchart shows this logic. (It does not show the effects of executing the SearchDefault and
SearchEdit Field class properties.)

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 107

Search processing logic in update mode

Note. You can use the IsSearchDialog built-in function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode system variable. This
could be useful in code that is part of a library function and that is invoked in places other than from the
search page. It could also be used in PeopleCode associated with a record field that appears in pages and in
the search page.

PeopleCode and the Component Processor Chapter 6

108 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SetSearchDialogBehavior

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Field Class," SearchDefault

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables," %Mode

Search Processing in Add Modes

When a user opens a component in add or data-entry modes, the following actions occur:

1. The Component Processor runs default processing on the high-level keys that appear in the Add or Data
Entry dialog box.

2. The Component Processor initiates the RowInit event, which triggers any RowInit PeopleCode associated
with the record field or the component record, on the Add or Data Entry dialog box fields.

3. The Component Processor initiates the SearchInit event on dialog fields, which triggers any SearchInit
PeopleCode associated with the record field or the component search record.

This enables you to execute PeopleCode programs before the dialog box appears.

4. The Component Processor displays the Add or Data Entry dialog box.

5. If the user changes a dialog box field, and then leaves the field or clicks OK, the following actions occur:

• In add mode only, a field modification processing sequence occurs.

See Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116.

• Default processing is run on the Add or Data Entry dialog box fields.

Normally this does not have any effect, because the fields have a value.

6. When the user clicks OK in the dialog box, the SaveEdit event is initiated, which triggers any PeopleCode
associated with the record field or the component record.

7. The Component Processor initiates the SearchSave event, which triggers any SearchSave PeopleCode
associated with the record field or the component search record.

This enables you to validate user entry in the dialog box. If an error is executed in SearchSave, the user is
sent back to the Add or Data Entry dialog box. If a warning is executed, the user can click OK to continue
or click Cancel to return to the dialog box and enter new values.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 109

8. The Component Processor buffers the search key values and continues processing.

Note. If you compare the following diagram with search processing in update modes, notice that the add
modes are considerably more complex and involve more PeopleCode events. However, in practice,
PeopleCode development is similar in both cases. PeopleCode that runs before the dialog box appears (for
example, to control dialog box appearance or set values in the dialog box fields) generally is placed in the
SearchInit event; PeopleCode that validates user entry in the dialog box is placed in the SearchSave event.

See Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page
104.

The following flowchart shows this logic:

PeopleCode and the Component Processor Chapter 6

110 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Search processing logic in add and data-entry modes

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 111

Note. You can use the IsSearchDialog function to create PeopleCode that runs only during search processing.
To create processes that run only in a specific action mode, use the %Mode system variable. This could be
useful in code that is part of a library function and that is invoked in places other than from the search page. It
could also be used in PeopleCode associated with a record field that appears in pages and in the search page.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
IsSearchDialog

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables," %Mode

Component Build Processing in Update Modes

After the Component Processor has saved the search keys values for the component, it uses the search key
values to select rows of data from the database server using a SQL Select statement. After the rows are
retrieved, the Component Processor performs these actions:

1. Performs row select processing, in which rows of data that have already been selected from the database
server can be filtered before they are added to the component buffer.

See Chapter 6, "PeopleCode and the Component Processor," Row Select Processing, page 112.

2. Initiates the PreBuild event, which triggers any PreBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

The PreBuild event is also used to validate data entered in the search page, after a prompt list is displayed.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If there is no search page, that is, the search record has no keys, a blank component page appears.

3. Performs default processing on all the rows and fields in the component.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102.

4. Initiates the RowInit event, which triggers any RowInit PeopleCode associated with the record field or the
component record.

The RowInit event enables you to programmatically initialize the values of non-blank fields in the
component.

5. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

6. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmatically control the display of that page.

7. Displays the component and waits for end-user action.

The following flowchart shows this logic.

PeopleCode and the Component Processor Chapter 6

112 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component build processing in update modes

Row Select Processing

Row select processing enables PeopleCode to filter out rows of data after they have been retrieved from the
database server and before they are copied to the component buffers. Row select processing uses a SQL
Select statement .

Row select processing is a subprocess of component build processing in add modes. It also occurs after a
ScrollSelect or related function is executed.

See Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes,
page 115.

Note. Instead of using row select processing, it is more efficient to filter out the rows using a search view, an
effective-dated record, the Select method, or ScrollSelect or a related function, before the rows are sent to the
browser.

In row select processing, the following actions occur:

1. The Component Processor checks for more rows to add to the component.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 113

2. The Component Processor initiates the RowSelect event, which triggers any RowSelect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions. StopFetching
causes the system to add the current row to the component, and then to stop adding rows to the
component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the rows to
the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both StopFetching
and DiscardRow are called, the current row is not added to the page, and no more rows are added to the
page.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed, because the buffers are in the process of being populated. This means that the data might not
be present.

The following flowchart shows this logic:

PeopleCode and the Component Processor Chapter 6

114 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RowSelect processing logic

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
StopFetching

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 115

Component Build Processing in Add Modes

After search processing in add or data-entry modes, the Component Processor:

1. Initiates the PreBuild event.

2. Runs default processing on all page fields.

This enables you to set default fields programmatically using FieldDefault PeopleCode.

3. Initiates the RowInit event on all fields in the component, which triggers any RowInit PeopleCode
associated with the record field or component record.

This enables you to initialize the state of page controls, using RowInit PeopleCode, before the controls are
displayed. (RowInit enables you to set the values of non-blank fields programmatically, whereas default
processing is used to set blank fields to their default values.)

4. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

5. Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmatically control the display of that page.

6. Displays a new component, using the search keys obtained from the Add or Data Entry dialog box, with
other fields set to their default values.

The following flowchart shows the logic:

Logic of component build processing in add modes

PeopleCode and the Component Processor Chapter 6

116 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Field Modification

The field modification processing sequence occurs after a user does any of the following:

• Changes the contents of a field, and then leaves the field.

• Changes the state of a radio button or check box.

• Clicks a command button.

In this sequence, the following actions occur:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 117

1. The Component Processor performs standard system edits.

To reduce trips to the server, some processing must be done locally on the machine where the browser is
located, while some is performed on the server.

Standard system edits can be done either in the browser, utilizing local JavaScript code, or on the
application server. The following table outlines where these system edits are done.

System Edits Location of Execution

Checking data type Browser

Formatting Application server or browser

Updating current or history record Application server

Effective date Application server

Effective date or sequence Application server

New effective date in range Application server

Duplicate key Application server

Current level is not effective-dated but one of its child
scroll areas is

Application server

Required field Browser

Date range Browser

Prompt table Application server

Translate table Browser

Yes/no table Depends on the field type. Browser if the field is a
check box. Application server if the field is an edit
box and the values are Y or N.

PeopleCode and the Component Processor Chapter 6

118 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. Default processing for the field can be done in the browser only if the default value is specified as a
constant in the record field properties. If the field contains a default, these defaults occur only upon
component initialization. Then, if a user replaces a default value with a blank, the field is not initialized
again. The required fields check is not performed on derived work fields when you press Tab to move out
of a field.

If the data fails the system edits, the Component Processor displays an error message and highlights the
field in the system color for errors (usually red).

2. If the field passes the system edits, Component Processor initiates the FieldEdit PeopleCode event, which
triggers any FieldEdit PeopleCode associated with the record field or the component record field.

This enables you to perform additional data validation in PeopleCode. If an Error statement is called in
any FieldEdit PeopleCode, the Component Processor treats the error as it does a system edit failure; a
message is displayed, and the field is highlighted. If a Warning statement is executed in any FieldEdit
PeopleCode, a warning message appears, alerting the user to a possible problem, but the system accepts
the change to the field.

3. If the field change is accepted, the Component Processor writes the change to the component buffer, then
initiates the FieldChange event, which triggers any FieldChange PeopleCode associated with the record
field or the component record field.

This event enables you to add processes other than validation initiated by the changed field value, such as
changes to page appearance or recalculation of values in other page fields. An Error or Warning statement
in any FieldChange PeopleCode causes a runtime error.

Important! Do not use Error or Warning statements in FieldChange PeopleCode. All data validation
should be performed in FieldEdit PeopleCode.

After FieldChange processing, Component Processor runs default processing on all page fields, then
redisplays the page. If the user has changed the field value to a blank, or if SetDefault or a related function
is executed, and the changed field has a default value specified in the record field definition or any
FieldDefault PeopleCode, the field is initialized again to the default value.

The following flowchart shows this logic:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 119

Logic of field modification processing

Row Insert Processing

Row insert processing occurs when:

• A user requests a row insert in a scroll area by pressing Alt+7, by clicking the Insert Row button, or by
clicking the New button.

• A PeopleCode RowInsert function or a InsertRow method requests a row insert.

PeopleCode and the Component Processor Chapter 6

120 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

In either case, the Component Processor performs these actions:

1. Inserts a new row of data into the active scroll area.

If the scroll area has a dependent scroll area, the system inserts a single new row into the blank scroll area,
and the system continues until it reaches the lowest-level scroll area.

2. Initiates the RowInsert PeopleCode event, which triggers any RowInsert PeopleCode associated with the
record field or the component record.

This event processes fields only on the inserted row and any dependent rows that were inserted on lower-
level scroll areas.

3. Runs default processing on all component fields.

Normally this affects only the inserted row fields and fields on dependent rows, because other rows
already have undergone default processing.

4. Initiates the RowInit PeopleCode event, which triggers any RowInit PeopleCode associated with the
record field or the component record.

This event affects fields only on the inserted row and any dependent rows that were inserted.

5. Redisplays the page and waits for user action.

Important! Do not use Error or Warning statements in RowInsert PeopleCode. All data validation should
be performed in FieldEdit or SaveEdit PeopleCode.

The following flowchart shows this logic:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 121

Logic of row insert processing

Note. If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the user), the new row is not inserted into the database when the page is saved.

Row Delete Processing

Row delete processing occurs when:

• A user requests a row delete in a scroll area by pressing Alt+8, by clicking the Delete Row button, or by
clicking the Delete button.

• A PeopleCode RowDelete function or a DeleteRow method requests a row delete.

In either case, these actions occur:

PeopleCode and the Component Processor Chapter 6

122 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

1. The Component Processor initiates the RowDelete PeopleCode event, which triggers RowDelete
PeopleCode associated with the record field or the component record.

This event processes fields on the deleted row and any dependent child scroll areas. RowDelete
PeopleCode enables you to check for conditions and control whether a user can delete the row. An Error
statement displays a message and prevents the user from deleting the row. A Warning statement displays
a message alerting the user about possible consequences of the deletion, but permits deletion of the row.

2. If the deletion is rejected, the page is redisplayed after the error message.

3. If the deletion is accepted, the row, and any child scroll areas dependent on the row, are flagged as
deleted.

The row no longer appears in the page, but it is not physically deleted from the buffer and can be accessed
by PeopleCode all the way through the SavePostChange event (note, however, that SaveEdit PeopleCode
is not run on deleted rows).

4. The Component Processor runs default processing on all component fields.

5. The Component Processor redisplays the page and waits for a user action

Note. PeopleCode programs are triggered on rows flagged as deleted in SavePreChange and
SavePostChange PeopleCode. Use the IsDeleted row class property to test whether a row has been
flagged as deleted. You can also access rows flagged as deleted by looping through the rows of a scroll
area using a For loop delimited by the value returned by the RowCount rowset property.

The following flowchart shows this logic:

Logic of row delete processing

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 123

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Row Class," IsDeleted

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," RowCount

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," For

Buttons

When a user presses a button, this initiates the same processing as changing a field. Typically, PeopleCode
programs started by button are placed in the FieldChange event.

See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Prompts

If the Allow Search Events for Prompt Dialogs checkbox is selected for the Record Field properties for a
search key on a prompt table record, the search processing events are enabled for that field. When the user
selects the prompt icon, the SearchInit event for that field executes before the search dialog displays. When
the user selects the Look Up button on a prompt dialog the SearchSave event for the field executes.

Search event processing on prompt dialogs can affect performance. Oracle recommends that you limit the use
of search events in prompt dialogs to simple tasks such as showing and hiding fields or character
manipulation. Do not use the search events on prompt dialogs for complex functions such as
AddKeyListItem, ClearKeyList, ClearSearchDefault, ClearSearchEdit, IsSearchDialog, SetSearchDefault,
SetSearchDialogBehavior, or SetSearchEdit, and so on.

By default, Allow Search Events for Prompt Dialogs is off, in which case no PeopleCode event is initiated as
a result of prompts.

No PeopleCode events are initiated as a result of the user returning to the search page or displaying a
calendar. This process is controlled automatically by the system.

Note. When the value of a field is changed using a prompt, the standard field modification processing occurs.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Record
Definitions," Setting Record Field Use Properties

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

PeopleCode and the Component Processor Chapter 6

124 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Pop-Up Menu Display

To display a pop-up menu, a user can click the pop-up button, either next to a field or at the bottom of a page
(if the page has a pop-up menu associated with it.) The user can open a standard pop-up menu on a page field
if no pop-up menu has been defined by an application developer for that page field.

The PrePopup PeopleCode event initiates only if the user opens a pop-up menu defined by an application
developer on a page field. It does not initiate for a pop-up menu attached to the page background.

The PrePopup PeopleCode event enables you to disable, check, or hide menu items in the pop-up menu.

PrePopup PeopleCode menu item operations (such as HideMenuItem, EnableMenuItem, and so on) work
with pop-up menus attached to a grid, not a field in a grid, only if the PrePopup PeopleCode meant to operate
on that pop-up menu resides in the record field that is attached to the first column in the grid. It does not
matter if the first field is visible or hidden.

The following flowchart shows this logic:

Logic of PrePopup even processing

Selected Item Processing

Selected item processing occurs when a user selects a menu item from a pop-up menu. This initiates the
ItemSelected PeopleCode event, which is a menu PeopleCode event.

The following flowchart shows this logic:

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 125

Logic of selected item processing

Save Processing

A user can direct the system to save a component by clicking Save or by pressing Alt+1.

An application can prompt the user to save a component when the Next or List button is clicked, or when a
new action or component is selected. If the user clicks Save after being prompted, save processing begins.

The following actions occur in save processing:

1. The Component Processor initiates the SaveEdit PeopleCode event, which triggers any SaveEdit
PeopleCode associated with a record field or a component record.

This enables you to cross-validate page fields before saving, checking consistency among the page field
values. An Error statement in SaveEdit PeopleCode displays a message and then redisplays the page,
stopping the save. A Warning statement enables the user to cancel save processing by clicking Cancel, or
to continue with save processing by clicking OK.

2. The Component Processor initiates the SavePreChange event, which triggers any SavePreChange
PeopleCode associated with a record field, a component record, or a component.

SavePreChange PeopleCode enables you to process data after validation and before the database is
updated.

3. The Component Processor initiates the Workflow event, which triggers any Workflow PeopleCode
associated with a record field or a component.

Workflow PeopleCode should be used only for workflow-related processing (TriggerBusinessEvent and
related functions).

4. The Component Processor updates the database with the changed component data, performing any
necessary SQL Insert, Update, and Delete statements.

5. The Component Processor initiates the SavePostChange PeopleCode event, which triggers any
SavePostChange PeopleCode associated with a record field, a component record, or a component.

You can use SavePostChange PeopleCode for processing that must occur after the database update, such
as updates to other database tables not in the component buffer.

6. The Component Processor issues a SQL Commit statement to the database server.

PeopleCode and the Component Processor Chapter 6

126 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

7. The Component Processor redisplays the component.

Important! Never use an Error or Warning statement in any save processing event other than SaveEdit.
Perform all component data validation in SaveEdit.

The following flow chart shows the logic of this sequence:

Logic of save processing

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 127

PeopleSoft Pure Internet Architecture Processing Considerations

Keep the following points in mind concerning the PeopleSoft Pure Internet Architecture:

• If a user changes a field that field has nothing to cause a trip to the server, then default processing and
FieldFormula PeopleCode do not run.

These processes only run when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

• In applications that run on the PeopleSoft portal, external, dynamic link information must be placed in
RowInit PeopleCode.

If it is placed in FieldChange PeopleCode, it will not work.

Deferred Processing Mode

When a component runs in deferred processing mode, trips to the server are reduced. When deploying some
pages in the browser, you may want the user to be able to input data with minimal interruption or trips to the
server. Each trip to the server can slow down your application. By specifying a component as deferred
processing mode, you can achieve better performance.

PeopleSoft applications use Asynchronous JavaScript and XML (AJAX) technology to limit server trips and
perform partial page refreshes. With a partial page refresh, the browser refreshes the entire page only when
the user navigates to a new page. Any server trips triggered by PeopleCode functions such as FieldChange
and FieldEdit for related display fields do not redraw the entire page; the refresh updates only the changed
fields. Because of AJAX technology, much of the communication with the server happens in the background.
You continue to work uninterrupted during the process.

Even with AJAX and partial page refresh, Oracle recommends that you leverage deferred processing mode to
limit network traffic. Although server trips are reduced, if you selectively disable deferred processing you
will incur not only additional network traffic to process the request, you will also add additional processing
on the webserver and appserver to deal with this request.

See PeopleTools 8.51 PeopleBook: PeopleSoft Applications User's Guide, "Using PeopleSoft Application
Pages."

If you specified deferred processing mode for a component, you can then specify whether a page within a
component, or a field on a page, also performs processing in deferred mode. The default is for all pages and
components to allow deferred processing. By default, fields do not allow deferred processing.

If you specify that a field or page allows deferred processing but do not set the component to deferred
processing mode, then the deferred processing mode is not initiated. You must set the component first.

The characteristics of this mode are:

PeopleCode and the Component Processor Chapter 6

128 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

1. Field modification processing is deferred.

No field modification processing is done in the browser. FieldEdit and FieldChange PeopleCode, as well
as other edits, such as required field checks, formats, and so on, do not run until a specific user action
occurs. Several actions cause field modification processing to execute, for example, clicking a button or
link, navigating to another page in the component, and saving the page. The following actions do not
cause field processing:

• Clicking an external link.

• Clicking a list (performing a search).

• Clicking a process button.

Deferred processing mode affects the appearance of pages in significant ways. For example, related
processing is not done when the user presses Tab to move out of a field. Avoid related fields for
components that use this mode.

2. Drop-down list box values are static while the page appears in the browser.

Drop-down list box values are generated on the application server when generating the HTML for the
page.

If translate values are used to populate the drop-down list box, and the current record contains an effective
date, that date is static while the page is displayed. This means the drop-down list box values may become
out of date.

If prompt table values are used to populate the drop-down list box, the high-order key field values for the
prompt table are static while the page is displayed. This means the drop-down list box values may become
out of date.

Avoid interdependencies in drop-down lists used on pages executed in deferred mode, because the lists
may quickly become out of date.

3. No field modification processing is done during prompt button processing.

When the user clicks a prompt button, a trip is made to the application server (if values were not already
downloaded) to select the search results from the database and to generate the HTML for the prompt
dialog box. During this trip to the application server, field modification processing for the field being
prompted is not performed, because this may cause an error message for another field on the page, and
this error may confuse the user. When deferred changes are made to other fields, field modification
processing for these fields is done before prompting. The field modification for the prompted field is done
after returning from the prompt page. While the system displays the page, the high-order key field values
for the prompt table should be static or not require field modification processing. Display-only drop-down
list box, radio button, and check box fields do not require field modification processing. Field values that
do not require field modification processing are temporarily written to the component buffer, without any
field modification processing being performed on them, including FieldEdit and FieldChange
PeopleCode. The system restores the original state of the page processor before returning to the browser.

4. Field modification processing executes in field layout order.

The entire field modification processing sequence executes in field layout order for each field. If a field
passes the system edits and FieldEdit PeopleCode, the field value is written to the component buffer. If an
error occurs, field modification processing stops, and the system generates new HTML for the page, with
the field in error highlighted and sent to the browser.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 129

5. PeopleCode dependencies between fields on the page do not work as expected.

Avoid PeopleCode dependencies between fields on pages displayed in deferred processing mode. Also,
avoid FieldChange PeopleCode that changes the display.

The following are examples of PeopleCode dependencies between fields on the page and the application
server's action. In the following examples, field A comes before field B, which comes before field C.

• Field A has FieldChange PeopleCode that hides field B or it makes unavailable for entry.

The value in field B of the page that was submitted from the browser is discarded.

• Field B has FieldChange PeopleCode that hides field A or makes it unavailable for entry.

The change made by the user for field A, if any, remains in the component buffer.

• Field A has FieldChange PeopleCode that changes the value in the component buffer for field B.

If the value in field B of the page that was submitted from the browser passes the system edits and
FieldEdit PeopleCode, it is written to the component buffer, overriding the change made by field A's
FieldChange PeopleCode.

• Field B has FieldChange PeopleCode that changes the value in the component buffer for field A.

The change made by field B's FieldChange PeopleCode overrides the change made by the user to field
A, if any.

• Field A has FieldChange PeopleCode that unhides field B or makes it available for entry.

Field B has the value that was already in the component buffer. If the user requests a different page or
finishes, the user may not have the opportunity to enter a value into field B, and therefore the value
may not be correct.

• Field B has FieldChange PeopleCode that changes the value in the component buffer for field A, but
field C has FieldChange PeopleCode that hides field B or makes it unavailable for entry.

The change made by field B's FieldChange PeopleCode, a field that is now hidden or unavailable for
entry, overrides the change made by the user to field A, if any.

Avoid such dependencies by moving FieldChange PeopleCode logic from individual fields to save
processing for the component or FieldChange PeopleCode on a PeopleCode command button.

6. Not all buttons cause field modification processing to execute.

External links, list (search), and process buttons do not cause field modification processing to execute.

7. You can use a PeopleCode command button to cause field modification processing to execute.

An application can include a button for the sole purpose of causing field modification processing to
execute. The result is a new page showing any display changes that resulted from field modification
processing.

In addition, if the user clicks the Refresh button, or presses Alt + 0, deferred processing is executed.

Note. The Refresh button does not refresh the page from the database. It simply causes a server trip so
any deferred PeopleCode changes get processed. If the page has no deferred changes or the deferred
changes do not cause any errors or other changes on the page, it may appear to the user as if nothing
happened.

PeopleCode and the Component Processor Chapter 6

130 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

8. A scroll button (link) causes field modification processing to execute.

PeopleCode Events

This section discusses:

• Activate event.

• FieldChange event.

• FieldDefault event.

• FieldEdit event.

• FieldFormula event.

• ItemSelected event.

• PostBuild event.

• PreBuild event.

• PrePopup event.

• RowDelete event.

• RowInit event.

• RowInsert event.

• RowSelect event.

• SaveEdit event.

• SavePostChange event.

• SavePreChange event.

• SearchInit event.

• SearchSave event.

• Workflow event.

Note. The term PeopleCode type is still frequently used, but it does not fit into the PeopleTools object-based,
event-driven metaphor. The term PeopleCode event should now be used instead. However, it's often
convenient to qualify a class of PeopleCode programs triggered by a specific event with the event name; for
example, PeopleCode programs associated with the RowInit events are collectively referred to as RowInit
PeopleCode.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 131

Activate Event

The Activate event is initiated each time that a page is activated, including when a page is first displayed by a
user, or if a user presses Tab between different pages in a component. Each page has its own Activate event.

Activate PeopleCode associated with a popup page execut after the page activate event for the main page.
When fields on the main page change and trigger updates on the popup page the page activate event for the
popup page is executed.

The Activate event segregates PeopleCode that is related to a specific page from the rest of the application's
PeopleCode. Place PeopleCode related to page display or page processing, such as enabling a field or hiding a
scroll area, in this event. Also, you can use this event for security validation: if an user does not have
clearance to view a page in a component, you would put the code for hiding the page in this event.

Note. PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a complete grid, you
cannot attach PeopleCode that uses the Grid class to events that occur before the grid is built; the earliest
event you can use is the Activate event. The Activate event is not associated with a specific row and record at
the point of execution. This means you cannot use functions such as GetRecord, GetRow, and so on, which
rely on context, without specifying more context.

Activate PeopleCode can only be associated with pages.

This event is valid only for pages that are defined as standard or secondary. This event is not supported for
subpages.

Note. If your application uses the MessageBox built-in function in the Activate event with a message from
the message catalog that's defined as type Error, Warning or Cancel, all component processing stops with an
error message to that effect. If the message has a type of Message, processing does not stop.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Update Modes, page
111

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

FieldChange Event

Use FieldChange PeopleCode to recalculate page field values, change the appearance of page controls, or
perform other processing that results from a field change other than data validation. To validate the contents
of the field, use the FieldEdit event.

See Chapter 6, "PeopleCode and the Component Processor," FieldEdit Event, page 132.

The FieldChange event applies to the field and row that just changed.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these RowInit/FieldChange pairs, the
RowInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

PeopleCode and the Component Processor Chapter 6

132 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To take a simple example, suppose you have a derived/work field called PRODUCT, the value of which is
always the product of page field A and page field B. When the component is initialized, you would use
RowInit PeopleCode to initialize PRODUCT equal to A × B when the component starts up or when a new
row is inserted. You could then attach FieldChange PeopleCode programs to both A and B which also set
PRODUCT equal to A × B. Whenever a user changes the value of either A or B, PRODUCT is recalculated.

FieldChange PeopleCode can be associated with record fields and component record fields.

See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldDefault Event

The FieldDefault PeopleCode event enables you to programmatically set fields to default values when they
are initially displayed. This event is initiated on all page fields as part of many different processes; however,
it triggers PeopleCode programs only when the following conditions are all True:

• The page field is still blank after applying any default value specified in the record field properties.

This is True if there is no default specified, if a null value is specified, or if a 0 is specified for a numeric
field.

• The field has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally sets fields by default when new data is being added to the
component; that is, in Add mode and when a new row is inserted into a scroll area.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
set to True. The exception to this is when a change is done in the FieldDefault or FieldFormula events. If a
value is set in FieldDefault or FieldFormula, the row is not marked as changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

You must attach FieldDefault PeopleCode to the field where the default value is being populated.

Note. An error or warning issued from FieldDefault PeopleCode causes a runtime error.

FieldDefault PeopleCode can be associated with record fields and component record fields.

See Also

Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 102

FieldEdit Event

Use FieldEdit PeopleCode to validate the contents of a field, supplementing standard system edits. If the data
does not pass the validation, the PeopleCode program should display a message using the Error statement,
which redisplays the page, displaying an error message and turning the field red.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 133

To permit the field edit but alert the user to a possible problem, use a Warning statement instead of an Error
statement. A Warning statement displays a warning dialog box with OK and Explain buttons. It permits field
contents to be changed and continues processing as usual after the user clicks OK.

If the validation must check for consistency across page fields, then use SaveEdit PeopleCode instead of
FieldEdit.

The FieldEdit event applies to the field and row that just changed.

FieldEdit PeopleCode can be associated with record fields and component record fields.

See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldFormula Event

The FieldFormula event is not currently used. Because FieldFormula PeopleCode initiates in many different
contexts and triggers PeopleCode on every field on every row in the component buffer, it can seriously
degrade application performance. Use RowInit and FieldChange events rather than FieldFormula.

If a field value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
usually set to True. However, if a value is set in FieldDefault or FieldFormula, the row is not marked as
changed.

At save time, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Note. In PeopleSoft Pure Internet Architecture, if a user changes a field but that field has nothing to cause a
trip to the server, then default processing and FieldFormula PeopleCode do not run. They only run when
another event causes a trip to the server.

As a matter of convention, FieldFormula is now often used in FUNCLIB_ (function library) record
definitions to store shared functions. However, you can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

ItemSelected Event

The ItemSelected event is initiated whenever a user selects a menu item from a pop-up menu. In pop-up
menus, ItemSelected PeopleCode executes in the context of the page field from where the pop-up menu is
attached, which means that you can freely reference and change page fields, just as you could from a button.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

ItemSelected PeopleCode is only associated with pop-up menu items.

PeopleCode and the Component Processor Chapter 6

134 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 6, "PeopleCode and the Component Processor," Selected Item Processing, page 124

PostBuild Event

The PostBuild event is initiated after all the other component build events have been initiated. This event is
often used to hide or unhide pages. It is also used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event

The PreBuild event is initiated before the rest of the component build events. This event is often used to hide
or unhide pages. It is also used to set component variables.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search page. If
the search record has no keys, a blank component page appears.

Also use the PreBuild event to validate data entered in a search page after a prompt list is displayed. For
example, after a user selects key values on a search, the PreBuild PeopleCode program runs, catches the error
condition, and issues an error message. The user receives and acknowledges the error message. The
component is canceled (because of the error), and the user is returned to the search page. PreBuild
PeopleCode is only associated with components.

PrePopup Event

The PrePopup event is initiated just before the display of a pop-up menu.

You can use PrePopup PeopleCode to control the appearance of the pop-up menu.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

PrePopup PeopleCode can be associated with record fields and component record fields.

See Also

Chapter 6, "PeopleCode and the Component Processor," Pop-Up Menu Display, page 124

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 135

RowDelete Event

The RowDelete event is initiated whenever a user attempts to delete a row of data from a page scroll area.
Use RowDelete PeopleCode to prevent the deletion of a row (using an Error or Warning statement) or to
perform any other processing contingent on row deletion. For example, you could have a page field called
Total on scroll area level zero whose value is the sum of all the Extension page fields on scroll area level one.
If the user deleted a row on scroll area level one, you could use RowDelete PeopleCode to recalculate the
value of the Total field.

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as deleted.

Note. RowDelete does not trigger programs on derived/work records.

RowDelete PeopleCode can be associated with record fields and component records.

Deleting All Rows from a Scroll Area

When the last row of a scroll area is deleted, a new, dummy row is automatically added. As part of the
RowInsert event, RowInit PeopleCode is run on this dummy row. If a field is changed by RowInit (even if it's
left blank), the row is no longer new, and therefore is not reused by any of the ScrollSelect functions or the
Select method. In this case, you may want to move your initialization code from the RowInit event to
FieldDefault.

See Also

Chapter 6, "PeopleCode and the Component Processor," Row Delete Processing, page 121

Chapter 8, "Using Methods and Built-In Functions," Using Errors and Warnings in RowDelete Events, page
182

RowInit Event

The RowInit event is initiated the first time that the Component Processor encounters a row of data. Use it to
set the initial state of component controls during component build processing and row insert processing. The
RowInit event also occurs after a Select or SelectAll Rowset method, or a ScrollSelect or related function, is
executed.

Note. Generally, if none of the fields in the new row are changed after the row is inserted (either by a user
pressing Alt+7 or programmatically) when the page is saved, the new row is not inserted into the database.
However, if the ChangeOnInit rowset class property is set to False, you can set values for fields a new row in
RowInsert or RowInit PeopleCode, and the row will not be saved.

RowInit is not field-specific. It triggers PeopleCode on all fields and on all rows in the component buffer.

Do not use Error or Warning statements in RowInit PeopleCode. They cause a runtime error.

RowInit PeopleCode is often paired with FieldChange PeopleCode. In these RowInit/FieldChange pairs, the
RowInit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

PeopleCode and the Component Processor Chapter 6

136 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For a simple example, suppose you have a derived/work field called PRODUCT, the value of which is always
the product of page field A and page field B. When the component is initialized, use RowInit PeopleCode to
initialize PRODUCT equal to A × B when the component starts up or when a new row is inserted. You could
then attach FieldChange PeopleCode programs to both A and B, which also sets PRODUCT equal to A × B.
Whenever a user changes the value of either A or B, PRODUCT is recalculated.

RowInit PeopleCode can be associated with record fields and component records.

RowInit Exceptions

In certain rare circumstances, the Component Processor does not run RowInit PeopleCode for some record
fields. The Component Processor runs RowInit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

For RowInit to not run, the following must all be True:

• The record is at level zero.

• Every record field that is present in the data buffers is also present in the keys for the component.

The Component Processor determines if the field is required by the component. In practice, this usually
means that the field is associated with a page field, possibly hidden, for some page of the component. It
could also mean that the field is referenced by some PeopleCode program that is attached to an event on
some other field of the component.

• Every record field that is present in the data buffers is display-only.

RowInit not running is not considered to be an error. The purpose of RowInit PeopleCode is to complete
initialization of data on the row after it has been read from the database. Because the data in this special
circumstance is coming from the keylist, it was already initialized correctly by whatever processing produced
the keylist. More general initialization of the component should be done in PostBuild PeopleCode, not
RowInit.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOnInit

RowInsert Event

When a user adds a row of data, the Component Processor generates a RowInsert event. You should use
RowInsert PeopleCode for processing specific to the insertion of new rows. Do not put PeopleCode in
RowInsert that already exists in RowInit, because a RowInit event always initiates after the RowInsert event,
which will cause your code to be run twice.

Note. Generally, if none of the fields in the new row are changed after the row has been inserted (either by a
user pressing Alt+7 or programmatically), when the page is saved, the new row is not inserted into the
database. However, if the ChangeOnInit rowset class property is set to False, you can set values for fields a
new row in RowInsert or RowInit PeopleCode, and the row won't be saved.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 137

The RowInsert event triggers PeopleCode on any field on the inserted row of data.

Do not use a warning or error in RowInsert.

You can prevent a user from inserting rows into a scroll area by selecting the No Row Insert check box in the
scroll bar's page field properties, as shown in the following illustration. However, you cannot prevent row
insertion conditionally.

Setting row insert properties in page field properties for a scroll bar

Note. RowInsert does not trigger PeopleCode on derived/work fields.

RowInsert PeopleCode can be associated with record fields and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor," Row Insert Processing, page 119

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOnInit

PeopleCode and the Component Processor Chapter 6

138 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

RowSelect Event

The RowSelect event is initiated at the beginning of the component build process in any of the update action
modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter out rows of data as
they are being read into the component buffer. This event also occurs after a ScrollSelect or related function
is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the current row of
data and continue to process other rows. A StopFetching statement causes the Component Processor to accept
the current row of data, and then stop reading additional rows. If both statements are executed, the program
skips the current row of data, and then stops reading additional rows.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data after they've
already been selected. Instead, screen out rows of data using search record views and effective-dated tables,
which filter out the rows before they're selected. You could also use a ScrollSelect or related function to
programmatically select rows of data into the component buffer.

In previous versions of PeopleTools, the Warning and Error statements were used instead of DiscardRow and
StopFetching. Warning and Error statements still work as before in RowSelect, but their use is discouraged.

Note. In RowSelect PeopleCode, you can refer to record fields only on the record that is currently being
processed. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

RowSelect PeopleCode can be associated with record fields and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor," Row Select Processing, page 112

SaveEdit Event

The SaveEdit event is initiated whenever a user attempts to save the component. You can use SaveEdit
PeopleCode to validate the consistency of data in component fields. Whenever a validation involves more
than one component field, you should use SaveEdit PeopleCode. If a validation involves only one page field,
use FieldEdit PeopleCode.

SaveEdit is not field-specific. It triggers associated PeopleCode on every row of data in the component
buffers except rows flagged as deleted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component without saving
data. A Warning statement enables the user to click OK and save the data, or to click Cancel and return to the
component without saving.

Use the SetCursorPos function to set the cursor position to a specific page field following a warning or error
in SaveEdit, to show the user the field (or at least one of the fields) that is causing the problem. Make sure to
call SetCursorPos before the error or warning, because these may terminate the PeopleCode program.

SaveEdit PeopleCode can be associated with record fields and components.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 139

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SetCursorPos

SavePostChange Event

After the Component Processor updates the database, it initiates the SavePostChange event. You can use
SavePostChange PeopleCode to update tables not in your component using the SQLExec built-in function.

An error or warning in SavePostChange PeopleCode causes a runtime error. Avoid errors and warnings in
this event.

The system issues a SQL Commit statement after SavePostChange PeopleCode completes successfully.

If you are executing Workflow PeopleCode, keep in mind that if the Workflow PeopleCode fails,
SavePostChange PeopleCode is not executed. If your component has both Workflow and SavePostChange
PeopleCode, consider moving the SavePostChange PeopleCode to SavePreChange or Workflow.

If you are doing messaging, your Publish PeopleCode should go into this event.

SavePostChange does not execute if there is an error during the save. For example, if there is a data conflict
error because another user updated the same data at the same time, SavePostChange does not execute.

Important! Never issue a SQL Commit or Rollback statement manually from within a SQLExec function.
Let the Component Processor issue these SQL commands.

SavePostChange PeopleCode can be associated with record fields, components, and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SQLExec

SavePreChange Event

The SavePreChange event is initiated after SaveEdit completes without errors. SavePreChange PeopleCode
provides one final opportunity to manipulate data before the system updates the database; for instance, you
could use SavePreChange PeopleCode to set sequential high-level keys. If SavePreChange runs successfully,
a Workflow event is generated, and then the Component Processor issues appropriate Insert, Update, or
Delete SQL statements.

SavePreChange PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of data
in the component buffer.

SavePreChange PeopleCode can be associated with record fields, components, and component records.

PeopleCode and the Component Processor Chapter 6

140 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

SearchInit Event

The SearchInit event is generated just before a search, add, or data-entry dialog box is displayed. SearchInit
triggers associated PeopleCode in the search key fields of the search record. This enables you to control
processing before a user enters values for search keys in the dialog box. In some cases, you may want to set
the value of the search dialog fields programmatically. For example, the following program in SearchInit
PeopleCode on the component search key record field EMPLID sets the search key page field to the user's
employee ID, makes the page field unavailable for entry, and enables the user to modify the user's own data
in the component:

EMPLID = %EmployeeId;
Gray (EMPLID);
AllowEmplIdChg(True);

You can activate system defaults and system edits in the search page by calling SetSeachDefault and
SetSearchEdit in SearchInit PeopleCode. You can also control the behavior of the search page, either forcing
it to appear even if all the required keys have been provided, or by skipping it if possible, with the
SetSeachDialogBehavior function. You can also force search processing to always occur by selecting the
Force Search Processing check box in the component properties in PeopleSoft Application Designer.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

SearchInit PeopleCode can be associated with record fields on search records and prompt table records and on
component search records and component prompt table records.

SearchInit with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the SearchInit and SearchSave events on the
search keys of prompt table records. SearchInit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox was selected for the search key's record field properties in Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dialogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

SearchInit PeopleCode Function Restrictions

You cannot use the following functions in SearchInit PeopleCode:

• DoModal

• DoModalComponent

• Transfer

• TransferExact

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 141

• TransferNode

• TransferPage

• TransferPortal

See Also

Chapter 6, "PeopleCode and the Component Processor," Prompts, page 123

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
SetSearchDefault

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

SearchSave Event

SearchSave PeopleCode is executed for all search key fields on a search, add, or data-entry dialog box after a
user clicks Search. This enables you to control processing after search key values are entered, but before the
search based on these keys is executed. A typical use of this feature is to provide cross-field edits for selecting
a minimum set of key information. This event is also used to force a user to enter a value in at least one field,
even if it's a partial value, to help narrow a search for tables with many rows.

Note. SearchSave is not initiated when values are selected from the search list. To validate data entered in the
search page, use the Component PreBuild event.

You can use Error and Warning statements in SearchSave PeopleCode to send the user back to the search
page if the user entry does not pass validations implemented in the PeopleCode.

Note. This event, and all its associated PeopleCode, is not initiated if run from a component interface.

SearchSave PeopleCode can be associated with record fields and component search records.

Note. Do not use the %Menu system variable in this event. You may get unexpected results.

SearchSave with Prompt Dialogs

Beginning with PeopleTools 8.50, you can put PeopleCode on the SearchInit and SearchSave events on the
search keys of prompt table records. SearchInit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox is selected for the search key's record field properties in Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dialogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

PeopleCode and the Component Processor Chapter 6

142 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 6, "PeopleCode and the Component Processor," Prompts, page 123

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

Workflow Event

Workflow PeopleCode executes immediately after the SavePreChange event and before the database update
that precedes the SavePostChange event. The Workflow event segregates PeopleCode related to workflow
from the rest of the application's PeopleCode. Only PeopleCode related to workflow (such as
TriggerBusinessEvent) should be in workflow programs. Your program should deal with the Workflow event
only after any SavePreChange processing is complete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of data in the
component buffer.

WorkFlow PeopleCode can be associated with record fields and components.

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Enterprise PeopleTools 8.51 PeopleBook: Workflow Technology, "Defining Event Triggers," Writing
Workflow PeopleCode

PeopleCode Execution in Pages with Multiple Scroll Areas

Components with multiple levels can have multiple rows of data from multiple primary record definitions.
You must know the order in which the system processes buffers for this data, because it applies PeopleCode
in the same order.

The Component Processor uses a depth-first algorithm to process rows in multiple-scroll-area pages, starting
with a row at level zero, drilling down to dependent rows on lower levels, and then working up the hierarchy
until the system has processed all the dependent rows of the last row on the highest level.

Scroll Level One

When pages have only one scroll bar, the Component Processor processes record definitions at scroll level
zero, and then all rows of data at scroll level one.

Data is retrieved for all rows with a single Select statement, and then it is merged with buffer structures.

Chapter 6 PeopleCode and the Component Processor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 143

Scroll Level Two

With scroll bars at multiple scroll levels, the system processes a single row of data at scroll level one, and
then it processes all subordinate rows of data at scroll level two. After processing all subordinate data at scroll
level two, it processes the next row for scroll level one, and all the subordinate data for that row. The system
continues in this fashion until all data is processed.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level three. Data is
retrieved for all rows with a single Select statement, and then merged with buffer structures. The Component
Processor processes a single row of data at scroll level two, and it processes all subordinate data at scroll level
three. After processing all subordinate data at scroll level three, it processes the next row for scroll level two
and all the suboridinates data for that row. The system continues in this fashion until all data is processed..

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Component Buffer Structure and
Contents, page 47

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 145

Chapter 7

PeopleCode and PeopleSoft Pure Internet
Architecture

The chapter discusses how to:

• Using PeopleCode in PeopleSoft Pure Internet Architecture.

• Using PeopleCode with PeopleSoft Pure Internet Architecture

• Call dynamic link library (DLL) functions on the application server.

• Update the Installation and PSOPTIONS tables.

Considerations Using PeopleCode in PeopleSoft Pure Internet
Architecture

Consider the following points when writing PeopleCode programs for PeopleSoft Pure Internet Architecture:

• To help your application run efficiently, avoid using field-level PeopleCode events (FieldEdit and
FieldChange).

Each field-level PeopleCode program requires a trip to the application server.

The majority of PeopleCode programs run on the application server as part of the component build and
save process. Do not hesitate to use PeopleCode for building and saving components.

• If a user changes a field but nothing on that field will cause a trip to the server, then default processing
and FieldFormula PeopleCode do not run.

This processing occurs only when another event causes a trip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

• In applications that run on the PeopleSoft portal, external dynamic link information must be placed in
RowInit PeopleCode.

If external dynamic link information is placed in FieldChange PeopleCode, it will not work.

• Trips to the server are reduced when a component runs in deferred processing mode.

Each trip to the server results in the page being completely refreshed on the browser, which may cause the
display to flicker. It can also slow down your application. Deferred processing mode results in better
performance.

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

146 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Using PeopleCode with PeopleSoft Pure Internet Architecture

This section discusses how to:

• Use internet scripts.

• Use the field object Style property.

• Use the HTML area.

• Use HTML definitions and the GetHTMLText function.

• Use HTML definitions and the GetJavaScriptURL method.

• Use PeopleCode to populate key fields in search dialog boxes

Using Internet Scripts

An internet script is a specialized PeopleCode function that generates dynamic web content. Internet scripts
interact with web clients (browsers) using a request-response paradigm based on HTTP.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Internet Script Classes (iScript)"

Using the Field Object Style Property

In PeopleSoft Application Designer, on the Use tab of the page definition properties, you can associate a page
with a style sheet component.

The style sheet has several classes of styles defined for it. You can edit each style class to change the font, the
color, the background, and so on. Then, you can dynamically change the style of a field using the Style field
class property. The style sheet does not change, only the style class associated with that field changes.

The following example changes the style class of a field depending on a value entered by the user. This code
is in the FieldChange event.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 147

Local Field &field;

&field = GetField();

If TESTFIELD1 = 1 Then;
 &field.Style = "PSHYPERLINK";
End-If;

If TESTFIELD1 = 2 Then;
 &field.Style = "PSIMAGE";
End-If;

The following examples show the fields with different styles:

Field with PSHYPERLINK style

Field with PSIMAGE style

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Style Sheet
Definitions"

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Field Class"

Using the HTML Area

Two methods are used to populate an HTML area control. Both require accessing the HTML area in the
PeopleSoft Application Designer. One method is to select Constant on the HTML tab of the HTML page field
properties dialog and enter HTML directly into the page field dialog.

The other method is to select Value on the HTML tab of the HTML page field properties dialog and associate
the control with a record field. At runtime, populate that field with the text that you want to appear in the
HTML area.

If you are using an HTML area to add form controls to a page, you can use GetParameter request class
method in PeopleCode to get the user input from those controls.

Note. When you associate an HTML area control with a field, make sure the field is long enough to contain
the data you want to pass to it. For example, if you associate an HTML area control with a field that is only
10 characters long, only the first 10 characters of your text will appear.

The following code populates an HTML area with a simple bulleted list. This code is in the RowInit event of
the record field associated with the HTML control.

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

148 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local Field &HTMLField;

&HTMLField = GetField();
&HTMLField.Value = "Item oneItem two";

The following code is in the FieldChange event of a button. It populates an HTML area (associated with the
record field CHART_DATA.HTMLAREA) with a simple list.

Local Field &HTMLField;

&HTMLField = GetRecord(Record.CHART_DATA).HTMLAREA;
&HTMLField.Value = "Item oneItem two";

The following code populates an HTML area (associated with the record DERIVED_HTML and the field
HTMLAREA) with the output of the GenerateTree function:

DERIVED_HTML.HTMLAREA = GenerateTree(&TREECTL);

The following tags are unsupported by the HTML area control:

• Body

• Frame

• Frameset

• Form

• Head

• HTML

• Meta

• Title

See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using the GenerateTree Function, page 187

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating HTML
Definitions"

Using HTML Definitions and the GetHTMLText Function

If you are using the same HTML text in more than one place or if it is a large, unwieldy string, you can create
an HTML definition in PeopleSoft Application Designer, and then use the GetHTMLText function to
populate an HTML area control.

The following is the HTML string to create a simple table:

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 149

<P>
<TABLE>

 <TR bgColor=#008000>
 <TD>
 <P><FONT color=#f5f5dc face="Arial, Helvetica, sans-serif"
 size=2>message 1 </P></TD></TR>
 <TR bgColor=#0000cd>
 <TD>
 <P><FONT color=#00ffff face="Arial, Helvetica, sans-serif"
 size=2>message 2</P></TD></TR>
 </TABLE></P>

This HTML is saved to an HTML definition called TABLE_HTML.

This code is in the RowInit event of the record field associated with the HTML area control:

Local Field &HTMLField;

&HTMLField = GetField();
&string = GetHTMLText(HTML.TABLE_HTML);
&HTMLField.Value = &string;

This code produces the following:

HTML definition example

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
GetHTMLText

Using HTML Definitions and the GetJavaScriptURL Method

HTML definitions can contain JavaScript programs in addition to HTML. If you have an HTML definition
that contains JavaScript, use the GetJavaScriptURL Response method to access and execute the script.

This example assumes the existence in the database of a HTML definition called HelloWorld_JS that contains
some JavaScript:

Function IScript_TestJavaScript()

 %Response.WriteLine("<script src= " |
%Response.GetJavaScriptURL(HTML.HelloWorld_JS) | "></script>");

End-Function;

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

150 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Internet Script Classes (iScript),"
GetJavaScriptURL

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating HTML
Definitions"

Using PeopleCode to Populate Key Fields in Search Dialog Boxes

In a PeopleSoft Pure Internet Architecture application, you typically want users to directly access their own
data. To facilitate this, you may want to use SearchInit PeopleCode to populate standard key fields in search
page fields and then make the fields unavailable for entry. You might assign the search key field a default
value based on the user ID or alias the user entered when signing in.

You must also call the AllowEmplIdChg function, which enables users to change their own data. This
function takes a single Boolean parameter in which you pass True to allow employees to change their own
data.

Here is a simple example of such a SearchInit program, using %EmployeeId to identify the user:

EMPLID = %EmployeeId;

Gray (EMPLID);

AllowEmplIdChg(True);

Calling DLL Functions on the Application Server

To support processes running on an application server, you can declare and call functions compiled in
Microsoft Windows DLLs and in UNIX shared libraries (or shared objects, depending on the specific UNIX
platform). You can do this either with a special PeopleCode declaration, or using the business interlink
framework.

When you call out to a DLL using PeopleCode, on Microsoft Windows NT application servers, the DLL file
has to be on the path. On UNIX application servers, the shared library file must be on the library path (as
defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the following
PeopleCode could be used to declare and call a function LogMsg in an external library Testdll.dll on a
Microsoft Windows client or a Windows application server, or a libtestdll.so on an UNIX application server.
The UNIX shared library's extension varies by the specific UNIX platform.

Declare Function LogMsg Library "testdll" (string, string)
 Returns integer;

&res = LogMsg("\temp\test.log", "This is a test");

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 151

Sample Cross-Platform External Test Function

Following is the C source code for a sample cross-platform test file. It is a basic function that opens a log file
and appends a line to it. If you compile the code using a C++ compiler, the functions must be declared using
external C, to ensure C-language linkage.

This file contains an interface function required for non-Microsoft-Windows environments. This function is
compiled only when compiling for a non-Windows environment (for example, UNIX). The interface function
references a provided header file, pcmext.h. The interface function is passed type codes that can be optionally
used for parameter checking.

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

152 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

/*
 * Simple test function for calling from PeopleCode.
 * This is passed two strings, a file name and a message.
 * It creates the specified file and writes the message
 * to it.
 */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#ifdef _WINDOWS
#define DLLEXPORT __declspec(dllexport)
#define LINKAGE __stdcall
#else
#define DLLEXPORT
#define LINKAGE
#endif

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg);

/**
* PeopleCode External call test function. *
* *
* Parameters are two strings (filename and message) *
* Result is 0 if error, 1 if OK *
* *
* *
* To call this function, the following PeopleCode is *
* used *
* *
* Declare Function LogMsg Library "testdll" *
* (string, string) *
* Returns integer; *
* *
* &res = LogMsg("\temp\test.log", "This is a test"); *
* *
**/

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg)
{
 FILE *fp;

 fp = fopen(fname, "a"); /* append */
 if (fp == NULL) return 0;

 fprintf(fp, "%s\n", msg);
 fclose(fp);
 return 1;
}

#ifndef _WINDOWS

/**
* Interface function. *
* *
* This is not needed for Windows.... *
* *
**/

#include "pcmext.h"
#include "assert.h"

void LogMsg_intf(int nParam, void ** ppParams, EXTPARAMDESC * pDesc)

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 153

{
 int rc;

 /* Some error checking */
 assert(nParam == 2);
 assert(pDesc[0].eExtType == EXTTYPE_STRING
 && pDesc[1].eExtType == EXTTYPE_STRING
 && pDesc[2].eExtType == EXTTYPE_INT);

 rc = LogMsg((char *)ppParams[0],
 (char *)ppParams[1]);
 *(int *)ppParams[2] = rc;

}

#endif

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call UpdateSysVersion
from the SavePreChange PeopleCode event. This way, updates take effect at the next page load. Otherwise,
the change does not take effect at the client workstation until the user signs out and signs back in.

Important! Only a database administrator or the equivalent should change these tables.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 155

Chapter 8

Using Methods and Built-In Functions

This chapter provides an overview of restrictions on method and function use and discusses how to:

• Implement modal transfers.

• Implement the multi-row insert feature.

• Use the ImageReference field.

• Insert rows using PeopleCode.

• Use object linking and embedding (OLE) functions.

• Use the Select and SelectNew methods.

• Use standalone rowsets.

• Use errors and warnings.

• Use the RemoteCall feature.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Understanding Restrictions on Method and Function Use

This section discusses:

• Think-time functions.

• WinMessage and MessageBox functions.

• Program execution with fields not in the data buffer.

• Errors and warnings.

• DoSave function.

• Record class database methods.

• SQL class methods and functions.

• Component interface restricted functions.

Using Methods and Built-In Functions Chapter 8

156 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• SearchInit PeopleCode function restrictions.

• CallAppEngine function.

• ReturnToServer function.

• GetPage function.

• GetGrid function.

• Publish method.

• SyncRequest method.

Think-Time Functions

Think-time functions suspend processing either until the user has taken some action (such as clicking a button
in a message box) or until an external process has run to completion (for example, a remote process).

Avoid think-time functions in the following PeopleCode events:

• SavePreChange.

• Workflow.

• RowSelect.

• SavePostChange.

• Any PeopleCode event that executes as a result of a ScrollSelect, ScrollSelectNew, RowScrollSelect, or
RowScrollSelectNew function call.

• Any PeopleCode event that executes as a result of a Select or SelectNew rowset method.

Violation of this rule can result in application failure.

The following are think-time functions:

• Calls to an external DLL.

• DoCancel.

• DoModal.

• DoModalComponent.

• Exec (this is think-time only when synchronous).

• File attachment functions AddAttachment, ViewAttachment, and DetachAttachment.

• InsertImage.

• Object functions, such as CreateObject, ObjectDoMethod, ObjectSetProperty, and ObjectGetProperty
(these are think-time only when the object requires user action).

• Prompt.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 157

• RemoteCall.

• RevalidatePassword.

• WinExec (think-time only when synchronous).

• WinMessage and MessageBox (depending on the style parameter).

WinMessage and MessageBox Functions

The WinMessage and MessageBox functions sometimes behave as think-time functions, depending on the
value passed in the function's style parameter, which controls, among other things, the number of buttons
displayed in the message dialog box.

Note. The style parameter is ignored if the message has any severity other than Message.

Here is the syntax of both functions:

MessageBox(style, title, message_set, message_num, default_txt [, paramlist])

WinMessage(message [, style] [, title])

Note. The WinMessage function is supported for compatibility with previous releases of PeopleTools. New
applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time function and is
subject to the same restrictions as other think-time functions (that is, it should never be used from
SavePreChange through SavePostChange PeopleCode, or in RowSelect).

If the style parameter specifies a single button (that is, the OK button), then the function can be called in any
PeopleCode event.

Note. In the Microsoft Windows client, MessageBox dialog boxes include an Explain button to display more
detailed information stored in the message catalog. The presence of the Explain button has no bearing on
whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If style is omitted, WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid this situation, always pass an
appropriate value in the WinMessage style parameter.

The following table shows the values that can be passed in the style parameter. To calculate the value to pass,
make one selection from each category in the table, then add the selections.

Category Value Constant Meaning

Buttons 0 %MsgStyle_OK The message box
contains one button: OK.

Buttons 1 %MsgStyle_OKCancel The message box
contains two buttons: OK
and Cancel.

Using Methods and Built-In Functions Chapter 8

158 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Category Value Constant Meaning

Buttons 2 %MsgStyle_AbortRetryI
gnore

The message box
contains three buttons:
Abort, Retry, and Ignore.

Buttons 3 %MsgStyle_YesNoCance
l

The message box
contains three buttons:
Yes, No, and Cancel.

Buttons 4 %MsgStyle_YesNo The message box
contains two buttons: Yes
and No.

Buttons 5 %MsgStyle_RetryCancel The message box
contains two buttons:
Retry and Cancel.

Note. The following values for style can only be used in the Microsoft Windows client. They have no affect
in PeopleSoft Pure Internet Architecture.

Category Value Constant Meaning

Default Button 0 %MsgDefault_First The first button is the
default.

Default Button 256 %MsgDefault_Second The second button is the
default.

Default Button 512 %MsgDefault_Third The third button is the
default.

Icon 0 %MsgIcon_None None

Icon 16 %MsgIcon_Error A stop-sign icon appears
in the message box.

Icon 32 %MsgIcon_Query A question-mark icon
appears in the message
box.

Icon 48 %MsgIcon_Warning An exclamation-point
icon appears in the
message box.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 159

Category Value Constant Meaning

Icon 64 %MsgIcon_Info An icon consisting of a
lowercase letter i in a
circle appears in the
message box.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
MessageBox

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
WinMessage

Program Execution with Fields Not in the Data Buffer

Under certain conditions, when you access a field that is not in the data buffer, a portion of your PeopleCode
program is skipped. The skip occurs when:

• The reference is in the Import Manager.

• The reference is from the FieldDefault or FieldFormula events.

After the call to the invalid field, execution skips to the next top-level statement. Top-level statements are not
nested inside other statements. The start of a PeopleCode program is a top-level statement. Nesting begins
with the first conditional statement (such as While or If) or the first function call.

For example, if your code is executing in a function and inside an If … then … end-if statement, and it runs
into the skip conditions, the next statement executed is the one after the End-if statement, still inside the
function.

Errors and Warnings

Errors and warnings should not be used in FieldDefault, FieldFormula, RowInit, FieldChange, RowInsert,
SavePreChange, WorkFlow, and SavePostChange PeopleCode events. An error or warning in these events
causes a runtime error that forces cancellation of the component.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Warning

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

Using Methods and Built-In Functions Chapter 8

160 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

DoSave Function

Use DoSave only in FieldEdit, FieldChange, or MenuItemSelected PeopleCode events.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," DoSave

Record Class Database Methods

You use the following record class methods to update the database:

• Delete

• Insert

• Save

• Update

Only use these methods in the following events (events that allow database updates):

• SavePreChange

• WorkFlow

• SavePostChange

• FieldChange

• Application Engine PeopleCode action

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Record Class"

SQL Class Methods and Functions

Use the SQL class to update the database. Use these functions and methods only in the following events
(events that allow database updates):

• SavePreChange

• WorkFlow

• SavePostChange

• FieldChange

• Application Engine PeopleCode action

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 161

Component Interface Restricted Functions

PeopleCode events and functions that relate exclusively to the page interface (the GUI) and online processing
can't be used by Component Interfaces. These include:

• Menu PeopleCode and pop-up menus.

The ItemSelected and PrePopup PeopleCode events are not supported. In addition, the DisableMenuItem,
EnableMenuItem, and HideMenuItem functions aren't supported.

• Transfers between components, including modal transfers.

The DoModal, EndModal, IsModal, Transfer, TransferPage, DoModalComponent, TransferNode,
TransferPortal, and IsModalComponent functions cannot be used.

• Cursor position.

SetControlValue cannot be used.

• WinMessage cannot be used.

• Save in the middle of a transaction.

DoSave cannot be used.

• The page Activate event cannot be used.

When executed using a component interface, these functions do nothing and return a default value. In
addition, using the Transfer function terminates the current PeopleCode program.

For the unsupported functions, you should put a condition around them, testing whether there's an existing
Component Interface.

If %ComponentName Then
 /* process is being called from a Component Interface */
 /* do CI specific processing */
Else
 /* do regular processing */
 . . .
End-if;

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Component Interfaces, "Programming Component Interfaces
Using PeopleCode"

SearchInit PeopleCode Function Restrictions

You cannot use the following functions in SearchInit PeopleCode:

• DoModal

• DoModalComponent

Using Methods and Built-In Functions Chapter 8

162 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Transfer

• TransferPage

CallAppEngine Function

Use the CallAppEngine function only in events that allow database updates, because, generally, if you are
calling Application Engine, you intend to perform database updates. This category of events includes the
following PeopleCode events:

• SavePreChange (Page)

• SavePostChange (Page)

• Workflow

• FieldChange

CallAppEngine cannot be used in a Application Engine PeopleCode action. If you need to access one
Application Engine program from another Application Engine program, use the CallSection action.

See Also

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Creating Application Engine Programs"

ReturnToServer Function

The ReturnToServer function returns a value from a PeopleCode application messaging program to the
publication or subscription server. You would use this in either your publication or subscription routing code,
not in one of the standard Component Processor events.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages"

GetPage Function

The GetPage function cannot be used until after the Component Processor has loaded the page. You should
not use this function in an event prior to the PostBuild event.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," GetPage

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 163

GetGrid and GetAnalyticGrid Functions

PeopleSoft builds a grid one row at a time. Because the grid and AnalyticGrid classes apply to a complete
grid, you cannot use either the GetGrid or GetAnalyticGrid functions in an event prior to the Activate event.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," GetGrid

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes"

Publish Method

If you are using PeopleSoft Integration Broker, your sending PeopleCode should go in the SavePostChange
event, for either the record or the component.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages"

SyncRequest Method

If you are using PeopleSoft Integration Broker, your SyncRequest PeopleCode should go in the
SavePostChange event, for either the record or the component.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages"

Implementing Modal Transfers

This section provides an overview of modal transfers and discusses how to implement modal transfers.

Understanding Modal Transfers

When you use modal transfers to transfer from one component (the originating component) to another
component (the modal component), the user must click the OK or Cancel buttons on the modal component
before returning to the originating component.

Using Methods and Built-In Functions Chapter 8

164 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Modal transfers provide some control over the order in which the user fills in pages, which is useful where
data in the originating component can be derived from data entered by the user into the modal component.

Limit use of this feature, as it forces users to complete interaction with the modal page before returning to the
main component.

Note. Modal transfers cannot be initiated from SearchInit PeopleCode.

A modal component resembles a Microsoft Windows modal dialog box. It displays three buttons: OK,
Cancel, and Apply. No toolbars or windows are available while the modal component has the focus. The OK
button saves changes to the modal component and returns the user to the originating component. The Apply
button saves changes to the modal component without returning to the originating component. The Cancel
button returns the user to the originating component without saving changes to the modal component.

Modal components are generally smaller than the page from which they are invoked. Remember that OK and
Cancel buttons are added at runtime, thus increasing the size of the pages.

The originating component and the modal component share record fields in a derived/work record called a
shared work record. The derived/work fields of this record provide the two components with an area in
memory where they can share data. Edit boxes in both components are associated with the same derived/work
field, so that changes made to this field in the originating component are reflected in the modal component,
and vice versa. The following diagram illustrates this shared memory:

Edit boxes on the originating and modal components share the same data

Edit boxes associated with the same derived/work fields must be placed at level zero in both the originating
component and the modal component.

You can use the shared fields to:

• Pass values assigned to the search keys in the modal component search record.

If these fields are missing or invalid, the search page appears, enabling the user to enter search keys.

• Pass other values from the originating component to the modal component.

• Pass values back from the modal component to the originating component.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 165

Implementing Modal Transfers

Any component accessible through an application menu system can be accessed using a modal transfer.
However, to implement a modal transfer, you must modify pages in both the originating component and the
modal component. After these modifications are complete, you can implement the modal transfer using the
DoModalComponent function from a page in the originating component.

Before beginning this process, you should answer the following questions:

• Should the originating component provide search key values for the modal component?

If so, what are the search keys? (Check the modal component's search record.)

• Does the originating component need to pass any data to the modal component?

If so, what record fields are needed to store this data?

• Does the modal component need to pass any data back to the originating component?

If so, what record fields are needed to store this data?

To implement a modal transfer:

1. Create derived/work record fields for sharing data between the originating and modal components.

Create a new derived/work record or open an existing derived/work record. If suitable record fields exist,
you can use them; otherwise create new record fields for any data that needs to be shared between the
components. These can be search keys for the modal component, data to pass to the modal component, or
data to pass back to the originating component.

2. Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the derived/work fields that you need to share between the originating and
modal components to the level-zero area of the page from which the transfer will take place. You
probably want to make the edit boxes invisible.

3. Add the same derived work fields to the level-zero area of the modal component.

Add one edit box for each of the edit boxes that you added in the previous step to the level-zero area of
the page to which you are transferring. You probably want to make the edit boxes invisible.

4. Add PeopleCode to pass values into the derived/work fields in the originating component.

To provide search key values or pass data to the modal page, write PeopleCode that assigns appropriate
values to the derived/work fields before DoModalComponent is called.

For example, if the modal component search key is PERSONAL_DATA.EMPLID, you could place the
following assignment statement in the derived/work field's RowInit event:

EMPLID = PERSONAL_DATA.EMPLID

You also might assign these values in the same program where DoModalComponent is called.

Using Methods and Built-In Functions Chapter 8

166 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. Add PeopleCode to access and change the derived/work fields in the modal component.

No PeopleCode is required to pass search key values during the search. However, if other data has been
passed to the modal component, you may need PeopleCode to access and use the data. You may also need
to assign new values to the shared fields so that they can be used by the originating component.

It is possible that the component was accessed through the menu system and not through a modal transfer.
To write PeopleCode that runs only in the component when it is running modally, use the
IsModalComponent function:

If IsModalComponent() Then
 /* PeopleCode for modal execution only. */
End-If

6. Add PeopleCode to access changed derived/work fields in the originating component.

If the modal component has altered the data in the shared work fields, you can write PeopleCode to access
and use the data after DoModalComponent has executed.

Note. You can use the EndModalComponent function as a programmatic implementation of the OK and
Cancel buttons.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
DoModalComponent

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," IsModal

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
EndModalComponent

Implementing the Multi-Row Insert Feature

Enabling the multi-row insert feature in grids or scroll areas can reduce response times for transactions that
usually require entering many rows of data. With the multi-row feature, users specify the number of rows to
add to a grid or scroll area, and empty rows appear for data entry.

This feature cannot be used with effective-dated grids or scroll areas. In addition, the feature may not apply if
the entire row is populated using PeopleCode, especially if the data is copied from prior rows. If the feature
does apply in this case, the default value of the ChangeOnInit property can be used (the default value is True,
which means any PeopleCode updates done in the RowInit or RowInsert events set the IsChanged and IsNew
properties to True).

To use the multi-row insert feature:

1. Specify deferred mode processing.

The multi-row feature reduces transaction times by eliminating excess server trips. To take full advantage
of this feature, the transaction should be set to execute in deferred mode. Deferred mode should be set for
the component, all pages in the component, and all fields on those pages.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 167

2. Enable the multi-row feature.

For each grid or scroll area where appropriate, select the Allow Multi-row Insert check box under the Use
tab in the grid or scroll area property sheet.

3. Add ChangeOnInit PeopleCode.

Setting the ChangeOnInit property for a rowset to False enables PeopleCode to modify data in the rowset
during RowInit and RowInsert events without flagging the rows as changed. This ensures that only user
changes cause the affected row to be saved.

Note. Each rowset that is referenced by a grid or scroll area with the multi-row feature enabled should
have the ChangeOnInit property for the rowset set to False. This includes lower-level rowsets. In addition,
this property must be set prior to any RowInsert or RowInit PeopleCode for the affected row.

4. Empty rows at save.

After a transaction is saved, any empty rows are discarded before the page is redisplayed to the user. An
empty row means that the user did not access the data because PeopleCode or record defaults may have
been used to initialize the row for the initial display.

Note. PeopleCode save processing (SaveEdit and SavePreChange) PeopleCode executes for all rows in
the buffer (including the empty ones). Therefore, SaveEdit and SavePreChange PeopleCode should be
coded so that it is executed only if the field contains data, or if the row properties IsNew and IsChanged
are both True. An alternative method is adding PeopleCode in the first save program in the component, to
explicitly delete any row based on the IsNew and IsChanged properties. If you choose this method, then
rows should be deleted from the bottom of the data buffer to the top (last row first).

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOnInit

Using the ImageReference Field

To associate an image definition with a field at runtime, the field has to be of type ImageReference. An
example of this is referencing a red, yellow, or green light on a page, depending on the context.

To change the image value of an ImageReference field:

1. Create a field of type ImageReference.

2. Create the images you want to use.

These images must be saved in PeopleSoft Application Designer as image definitions.

3. Add the field to a record that will be accessed by the page.

4. Add an image control to the page and associate the image control with the ImageReference field.

Using Methods and Built-In Functions Chapter 8

168 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. Assign the field value.

Use the keyword Image to assign a value to the field. For example:

Local Record &MyRec;
Global Number &MyResult;

&MyRec = GetRecord();
If &MyResult Then
 &MyRec.MyImageField.Value = Image.THUMBSUP;
Else
 &MyRec.MyImageField.Value = Image.THUMBSDOWN;
End-If;

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Field
Definitions"

Inserting Rows Using PeopleCode

When inserting rows using PeopleCode, you can either use the Insert method with a record object or create a
SQL Insert statement using the SQL object. If you do a single insert, use the Record Insert method. If you are
in a loop and,therefore, calling the insert more than once, use the SQL object. The SQL object uses dedicated
cursors and, if the database you are working with supports it, bulk insert.

A dedicated cursor means that the SQL gets compiled only once on the database, so PeopleTools looks for
the meta-SQL only once. This can increase performance.

For bulk insert, inserted rows are buffered and sent to the database server only when the buffer is full or a
commit occurs. This reduces the number of round-trips to the database. Again, this can increase performance.

The following is an example of using the Record Insert method:

&REC = CreateRecord(Record.GREG);
&REC.DESCR.Value = "Y" | &I;
&REC.EMPLID.Value = &I;
&REC.Insert();

The following is an example using a SQL object to insert rows:

&SQL = CreateSQL("%INSERT(:1)");
&REC = CreateRecord(Record.GREG);
&SQL.BulkMode = True;
For &I = 1 to 10
 &REC.DESCR.Value = "Y" | &I;
 &REC.EMPLID.Value = &I;
 &SQL.Execute(&REC);
End-For;

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 169

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Record Class," Insert

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class"

Using OLE Functions

This section provides an overview of OLE functions and discusses how to:

• Use the Object data type.

• Share a single object instance.

• Use the Exec and WinExec functions.

Understanding OLE Functions

OLE automation is a Microsoft Windows protocol that enables one application to control another's operation.
The applications communicate by means of an OLE object. One of the applications (called the automation
server) makes available an OLE object that the second application (the client application) can use to send
commands to the server application. The OLE object has methods associated with it, each of which
corresponds to an action that the server application can perform. The client runs the methods, which cause the
server application to perform the specified actions.

PeopleCode includes a set of functions that enable your PeopleCode program to be an OLE client. You can
connect to any application that's registered as an OLE automation server and invoke its methods.

Note. Differences in Microsoft Windows applications from one release to the next (that is, properties
becoming methods or vice versa) can cause problems with the ObjectGetProperty, ObjectSetProperty and
ObjectDoMethod functions.

See the documentation for the OLE-automated application.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions"

Using the Object Data Type

To support OLE, PeopleCode has a special data type, Object, which it uses for OLE objects. The purpose of
the Object data type is to hold OLE objects during the course of a session so that you can run its methods.
You cannot store Object data for any extended period of time.

Important! Object is a valid data type for variables, but not for record fields. Because OLE objects are by
nature temporary, you cannot store Object data in a record field, including work record fields.

Using Methods and Built-In Functions Chapter 8

170 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Some OLE object methods return data to the client. You can use such methods to get data from the
automation server, if the method returns the data in a PeopleCode-supported data type. If the method returns
data in an spreadsheet, for example, you cannot accept the data, because PeopleCode does not support
spreadsheets.

Sharing a Single Object Instance

When you need the services of an OLE automation server, you create an instance of its OLE object, using the
CreateObject function. After you have the object, you can run its methods as often as you like. You do not
need to create a new instance of the object each time.

In a typical scenario, you have a PeopleSoft component that needs to access Microsoft Excel or Word, or
some other automation server, perhaps one you have created yourself. Various PeopleCode programs
associated with the component must run OLE object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should create one
instance of the OLE object in a PeopleCode program that runs when the component starts (such as RowInit)
and assign it to a global variable. Then, any PeopleCode program can reference the object and invoke its
methods.

Using the Exec and WinExec Functions

The WinExec and Exec built-in functions provide another way to start another application from PeopleCode.
Unlike the OLE functions, however, Exec and WinExec do not enable you to control what actions the
application takes after you start it. You can start the application, and if you use the synchronous option you
can find out when it closes, but you cannot affect its course or receive any data in return.

WinExec is appropriate in two situations:

• When you want to start an application and continue processing.

• When you have a short, unvarying process that you want to run, such as copying a file.

The Exec function, unlike WinExec and the OLE functions, is not Microsoft Windows-specific. You can run
it on an application server to call an executable on the application server platform, which in PeopleTools
release 7 and later can be either Windows NT or UNIX.

Important! If you use the WinExec function with its synchronous option, the PeopleCode program (and the
PeopleSoft application) remain paused until the called program is complete. If you start a program that waits
for user input, such as Notepad, the application appears to hang until the user closes the called program. The
synchronous option also imposes limits on the PeopleCode.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Exec

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," WinExec

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 171

Using the Select and SelectNew Methods

This section provides an overview of the Select method and discusses how to use the Select method.

Understanding the Select and SelectNew Methods

The Select and SelectNew methods, like the ScrollSelect functions, enable you to control the process of
selecting data into a page scroll area. The Select method selects rows from a table or view and adds the rows
to either a rowset or a row. Let's call the record definition of the table or view that it selected from the select
record. Let's call the primary database record of the top-level rowset object executing the method the default
scroll record.

The select record can be the same as the default scroll record, or it can be a different record definition that has
the same key fields as the default scroll record. If you define a select record that differs from the default scroll
record, you can restrict the number of fields loaded into the buffers by including only the fields you actually
need.

You can use these methods only with a rowset. A rowset can be thought of as a page scroll area.

A level zero rowset starts at the top level of the page, level zero, and contains all the data in the component
buffers. A child rowset is contained by an upper-level rowset, also called the parent rowset. For example, a
level one rowset could be considered the child rowset of a level zero, or parent, rowset. Or a level two rowset
could be the child rowset of a level one rowset. The data contained in a child rowset depends on the row of
the parent rowset.

When a rowset is selected into, any autoselected child rowsets are also read. The child rowsets are read using
a Where clause that filters the rows according to the Where clause used for the parent rowset, using a
Subselect.

The Select method automatically places child rowsets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row, an error occurs.

The Select method also accepts an optional SQL string that can contain a Where clause restricting the number
of rows selected into the scroll area. The SQL string can also contain an Order By clause, enabling you to sort
the rows.

The Select and SelectNew methods generate an SQL Select statement at runtime, based on the fields in the
select record and the Where clause passed to them in the function call. This gives Select and SelectNew a
significant advantage over the SQLExec function: they enable you to change the structure of the select record
without affecting the PeopleCode program, unless the field affected is referred to in the Where clause string.
This can make the application easier to maintain.

Also, if you use one of the meta-SQL constructs or shortcuts in the Where clause, such as %KeyEqual or
%List, even if a field has changed, you do not have to change your code.

Unlike the ScrollSelect functions, neither Select or SelectNew allow you to operate in turbo mode.

Note. In addition to these methods, the SelectByKey record class method enables you to select into a record
object. If you're only interested in selecting a single row of data, consider this method instead.

Using Methods and Built-In Functions Chapter 8

172 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Using the Select Method

The syntax of the Select method is:

Select([parmlist], RECORD.selrecord [, wherestr, bindvars]);

Where paramlist is a list of child rowsets, given in the following form:

SCROLL.scrollname1 [SCROLL., scrollname2] . . .

The first scrollname must be a child rowset of the rowset object executing the method, the second scrollname
must be a child of the first child, and so on.

This syntax does the following:

• Specifies an optional child rowset into which to read the selected rows.

• Specifies the select record from which to select rows.

• Passes a string containing a SQL Where clause to restrict the selection of rows or an Order By clause to
sort the rows, or both.

Specifying Child Rowsets

The first part of the Select syntax specifies a child rowset into which rows are selected. This parameter is
optional.

If you do not specify any child rowsets in paramlist, Select selects from a SQL table or view specified by
selrecord into the rowset object executing the method. For example, suppose you've instantiated a level one
rowset &BUS_EXPENSES_PER. The following would select into this rowset:

Local Rowset &BUS_EXPENSES_PER;

&BUS_EXPENSES_PER = GetRowset(SCROLL.BUS_EXPSNESE_PER);
&BUS_EXPENSES_PER.Select(RECORD.BUS_EXPENSE_VW,
"WHERE SETID = :1 and CUST_ID = :2", SETID, CUST_ID);

If the rowset executing the method is a level zero rowset, and you specify the Select method without
specifying any child rowsets with paramlist,, the method reads only a single row, because only one row is
allowed at level zero.

Note. For developers familiar with previous releases of PeopleCode: In this situation, the Select method is
acting like the RowScrollSelect function.

If you specify a child rowset in paramlist, the Select method selects from a SQL table or view specified by
selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset executing the
method.

In the following example, rows are selected into a child rowset BUS_EXPENSE_DTL, matching level-one
keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 173

Local Record &REC_EXP;
Local Rowset &BUS_EXPENSE_PER;

&REC_EXP = GetRecord(RECORD.BUSINESS_EXPENSE_PER;
&BUS_EXPENSE_PER = GetRowset(SCROLL.BUS_EXPSNESE_PER);
&BUS_EXPENSE_PER.Select(SCROLL.BUS_EXPENSE_DTL,
RECORD.BUS_EXPENSE_DTL, "WHERE %KeyEqual(:1) AND EXPENSE_AMT
>= 200 ORDER BY EXPENSE_AMT", &REC_EXP);

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and identified with
RECORD.selrecord.. The select record can be the same as the primary database record associated with the
rowset executing the method, or it can be a different record definition that has compatible fields.

The select record must be defined in PeopleSoft Application Designer and be a built SQL table or view (using
Build, Project), unless the select record is the same record as the primary database record associated with the
rowset.

The select record can contain fewer fields than the primary record associated with the rowset, although it
must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can restrict the
number of fields that are loaded into the buffers on the client work station by including only the fields you
actually need.

The Where Clause

The Select method accepts a SQL string that can contain a Where clause restricting the number of rows
selected into the object. The SQL string can also contain an Order By clause to sort the rows.

Select and SelectNew generate a SQL Select statement at runtime, based on the fields in the select record and
the Where clause passed to them in the method parameters.

To avoid errors, the Where clause should explicitly select matching key fields on parent and child rows. You
do this using the %KeyEqual meta-SQL.

Select Like RowScrollSelect

If the rowset executing the method is a level zero rowset, and you specify Select without specifying any child
rowsets with paramlist, the method reads only a single row, because only one row is allowed at level zero.

Note. For developers familiar with previous releases of PeopleCode: In this situation, the Select method is
acting like the RowScrollSelect function.

If you qualify the lower-level rowset so that it only returns one row, it acts like the RowScrollSelect method.

&RSLVL1 = GetRowset(SCROLL.PHYSICAL_INV);
&RSLVL2 = &RSLVL1(&PHYSICAL_ROW).GetRowset(SCROLL.PO_RECEIVED_INV);
&REC2 = &RSLVL2.PO_RECEIVED_INV;
If &PO_ROW = 0 Then
 &RSLVL2.Select(PO_RECEIVED_INV, "WHERE %KeyEqual(:1)
and qty_available > 0", &REC2);
End-if;

Using Methods and Built-In Functions Chapter 8

174 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "Meta-SQL Elements," %KeyEqual

Using Standalone Rowsets

This section provides an overview of standalone rowsets and discusses how to:

• Use the Fill rowset method.

• Use the CopyTo rowset method.

• Add child rowsets.

• Use standalone rowsets to write a file.

• Use standalone rowsets to read a file.

Understanding Standalone Rowsets

Standalone rowsets are not associated with a component or page. Use them to work on data that is not
associated with a component or page buffer.In earlier releases, this was done using derived work records. You
still must build work pages.

Note. Standalone rowsets are not connected to the Component Processor, so there are no database updates
when they are manipulated. Delete and insert actions on these types of rowsets are not automatically applied
at save time.

As with any PeopleTools object, the scope of standalone rowsets can be Local, Global, or Component.
Consider the following code:

Local Rowset &MYRS;

&MYRS = CreateRowset(RECORD.SOMEREC);

This code creates a rowset with SOMEREC as the level zero record. The rowset is unpopulated. Functionally,
it is the same as an array of rows.

Using the Fill Method

The Fill method fills the rowset by reading records from the database, by first flushing out all the contents of
the rowset. A Where clause must be provided to get all the relevant rows.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 175

Local Rowset &MYRS;
Local String &EMPLID;

&MYRS = CreateRowset(RECORD.SOMEREC);
&EMPLID = '8001';

&MYRS.Fill("where EMPLID = :1", &EMPLID);

Use the Fill method with standalone rowsets, created using the CreateRowset function. Do not use Fill with
component buffer rowsets.

Using the CopyTo Method

The CopyTo method copies like-named fields from a source rowset to a destination rowset. To perform the
copy, it uses like-named records for matching, unless specified. It works on any rowset except the
Application Engine state records. The following is an example:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLID;

&MYRS1 = CreateRowset(RECORD.SOMEREC);
&MYRS2 = CreateRowset(RECORD.SOMEREC);

&EMPLID = '8001';

&MYRS1.Fill("where EMPLID = :1", &EMPLID);
&MYRS1.CopyTo(&MYRS2);

After running the previous code segment, &MYRS2 contains that same data as &MYRS1. Both &MYRS1
and &MYRS2 were built using like-named records.

To use the CopyTo method where there are no like-named records, you must specify the source and
destination records. The following code copies only like-named fields:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLID;

&MYRS1 = CreateRowset(RECORD.SOMEREC1);
&MYRS2 = CreateRowset(RECORD.SOMEREC2);

&EMPLID = '8001';

&MYRS1.Fill("where EMPLID = :1", &EMPLID);
&MYRS1.CopyTo(&MYRS2, RECORD.SOMEREC1, RECORD.SOMEREC2);

Adding Child Rowsets

The first parameter of the CreateRowset method determines the top-level structure. If you pass the name of
the record as the first parameter, the rowset is based on a record. You can also base the structure on a
different rowset. In the following example, &MYRS2 inherits the structure of &MYRS1:

Local Rowset &MYRS1, MYRS2;

&MYRS1 = CreateRowset(RECORD.SOMEREC1);
&MYRS2 = CreateRowset(&MYRS1);

Using Methods and Built-In Functions Chapter 8

176 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To add a child rowset, suppose the following records describe a relationship. The structure is made up of
three records:

• PERSONAL_DATA

• BUS_EXPENSE_PER

• BUS_EXPENSE_DTL

To build rowsets with child rowsets, use code like the following:

Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;

&rsBusExpDtl = CreateRowset(Record.BUS_EXPENSE_DTL);
&rsBusExpPer = CreateRowset(Record.BUS_EXPENSE_PER, &rsBusExpDtl);
&rsBusExp = CreateRowset(Record.PERSONAL_DATA, &rsBusExpPer);

Another variation is

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));

Using Standalone Rowsets to Write a File

The following is an example of using standalone rowsets along with a file layout to write a file:

File layout example

The following example writes a file using a file layout that contains parent-child records:

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 177

Local File &MYFILE;
Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1, &SQL2, &SQL3;

&rBusExp = CreateRecord(Record.PERSONAL_DATA);
&rBusExpPer = CreateRecord(Record.BUS_EXPENSE_PER);
&rBusExpDtl = CreateRecord(Record.BUS_EXPENSE_DTL);

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));
&rsBusExpPer = &rsBusExp.GetRow(1).GetRowset(1);

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "W", %FilePath_Absolute);
&MYFILE.SetFileLayout(FileLayout.BUS_EXP_OUT);

&EMPLID = "8001";

&SQL1 = CreateSQL("%selectall(:1) where EMPLID = :2", &rBusExp, &EMPLID);
&SQL2 = CreateSQL("%selectall(:1) where EMPLID = :2", &rBusExpPer, &EMPLID);

While &SQL1.Fetch(&rBusExp)
 &rBusExp.CopyFieldsTo(&rsBusExp.GetRow(1).PERSONAL_DATA);
 &I = 1;
 While &SQL2.Fetch(&rBusExpPer)
 &rBusExpPer.CopyFieldsTo(&rsBusExpPer(&I).BUS_EXPENSE_PER);
 &J = 1;
 &SQL3 = CreateSQL("%selectall(:1) where EMPLID = :2
and EXPENSE_PERIOD_DT = :3", &rBusExpDtl, &EMPLID,
&rsBusExpPer(&I).BUS_EXPENSE_PER.EXPENSE_PERIOD_DT.Value);
 &rsBusExpDtl = &rsBusExpPer.GetRow(&I).GetRowset(1);
 While &SQL3.Fetch(&rBusExpDtl)
 &rBusExpDtl.CopyFieldsTo(&rsBusExpDtl(&J).BUS_EXPENSE_DTL);
 &rsBusExpDtl.InsertRow(&J);
 &J = &J + 1;
 End-While;

 &rsBusExpPer.InsertRow(&I);
 &I = &I + 1;
 End-While;
 &MYFILE.WriteRowset(&rsBusExp);
End-While;
&MYFILE.Close();

The previous code generates the following output file.

Using Methods and Built-In Functions Chapter 8

178 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

AA8001 Schumacher,Simon
BB8001 06/11/1989YNA0 Customer Go-Live Celebration
CC8001 06/11/1989
 06/01/198908226.83 USDEntertain Clients ⇒
 10100
BB8001 08/31/1989YNA0 Customer Focus Group Meeting
CC8001 08/31/198908/11/1989012401.58 USDCustomer Visit ⇒
 10100
CC8001 08/31/198908/12/198904250.48 USDCustomer Visit ⇒
 10100
CC8001 08/31/198908/12/198902498.34 USDCustomer Visit ⇒
 10100
BB8001 03/01/1998YYP0 Attend Asia/Pacific Conference
CC8001 03/01/199802/15/1998011200 USDConference ⇒
 00001
CC8001 03/01/199802/16/19980220000 JPYConference ⇒
 00001
BB8001 05/29/1998NNP0 Annual Subscription
CC8001 05/29/199805/29/199814125.93 USDSoftware, Inc. ⇒
 10100
BB8001 08/22/1998NNP0 Regional Users Group Meeting
CC8001 08/22/199808/22/19981045.69 USDDrive to Meeting ⇒
 10100
CC8001 08/22/199808/22/19980912.44 USDCity Parking ⇒
 10100
BB8001 12/12/1998NNP0 Customer Visit: Nevco
CC8001 12/12/199812/02/199801945.67 USDCustomer Feedback ⇒
 00001
CC8001 12/12/199812/02/19981010.54 USDTo Airport ⇒
 00001
CC8001 12/12/199812/03/19980610 USDAirport Tax ⇒
 00001
CC8001 12/12/199812/03/199804149.58 USDCustomer Feedback ⇒
 00001
CC8001 12/12/199812/04/1998055.65 USDCheck Voicemail ⇒
 00001
CC8001 12/12/199812/04/19980988 USDAirport Parking ⇒
 00001
CC8001 12/12/199812/04/199802246.95 USDCustomer Feedback ⇒
 00001
CC8001 12/12/199812/04/199803135.69 USDCustomer Feedback 00001

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Constructing File
Layouts and Performing Data Interchanges"

Using Standalone Rowsets to Read a File

The following code shows an example of reading in a file and inserting the rows into the database:

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 179

Local File &MYFILE;
Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1;

&rBusExp = CreateRecord(Record.PERSONAL_DATA);
&rBusExpPer = CreateRecord(Record.BUS_EXPENSE_PER);
&rBusExpDtl = CreateRecord(Record.BUS_EXPENSE_DTL);

&rsBusExp = CreateRowset(Record.PERSONAL_DATA,
CreateRowset(Record.BUS_EXPENSE_PER,
CreateRowset(Record.BUS_EXPENSE_DTL)));

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "R", %FilePath_Absolute);
&MYFILE.SetFileLayout(FileLayout.BUS_EXP_OUT);

&SQL1 = CreateSQL("%Insert(:1)");

&rsBusExp = &MYFILE.ReadRowset();
While &rsBusExp <> Null;
 &rsBusExp.GetRow(1).PERSONAL_DATA.CopyFieldsTo(&rBusExp);
 &rsBusExpPer = &rsBusExp.GetRow(1).GetRowset(1);
 For &I = 1 To &rsBusExpPer.ActiveRowCount
 &rsBusExpPer(&I).BUS_EXPENSE_PER.CopyFieldsTo(&rBusExpPer);
 &rBusExpPer.ExecuteEdits(%Edit_Required);
 If &rBusExpPer.IsEditError Then
 For &K = 1 To &rBusExpPer.FieldCount
 &MYFIELD = &rBusExpPer.GetField(&K);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 End-If;
 End-For;
 Else
 &SQL1.Execute(&rBusExpPer);
 &rsBusExpDtl = &rsBusExpPer.GetRow(&I).GetRowset(1);
 For &J = 1 To &rsBusExpDtl.ActiveRowCount
 &rsBusExpDtl(&J).BUS_EXPENSE_DTL.CopyFieldsTo(&rBusExpDtl);
 &rBusExpDtl.ExecuteEdits(%Edit_Required);
 If &rBusExpDtl.IsEditError Then
 For &K = 1 To &rBusExpDtl.FieldCount
 &MYFIELD = &rBusExpDtl.GetField(&K);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 End-If;
 End-For;
 Else
 &SQL1.Execute(&rBusExpDtl);
 End-If;
 End-For;
 End-If;
 End-For;
 &rsBusExp = &MYFILE.ReadRowset();
End-While;
&MYFILE.Close();

Using Methods and Built-In Functions Chapter 8

180 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid data. For this
reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in SearchSave PeopleCode for
validation during search processing. In conjunction with edits, errors stop processing, while warnings allow
processing to continue. When errors and warnings appear in places other than FieldEdit or SaveEdit, their
effects vary.

This section discusses how to:

• Use errors and warning syntax.

• Use errors and warnings in edit events.

• Use errors and warnings in RowSelect events.

• Use errors and warnings in RowDelete events.

• Use errors and warnings in other events.

Using Error and Warning Syntax

Errors and warnings require only a message that the Component Processor displays to users. You can code
the message into the error or warning statement, or you can use the message catalog. Use the message catalog
with the MsgGet, MsgGetExplainText, and similar functions.

Errors and warnings use the same syntax. For example:

Error MsgGet(11100, 180, "Message not found.");
Warning MsgGet(11100, 180, "Message not found.");

Using Errors and Warnings in Edit Events

You can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The Component
Processor applies FieldEdit when the user changes a field, and SaveEdit when the user saves a component.
Errors and warnings in these events display a message. Most errors and warnings appear in these event types,
although you can use errors and warnings elsewhere.

FieldEdit Event Errors

You can use either the record field or component record field event. The record field event for each record
runs before the component record field event for that record.

An error in FieldEdit prevents the system from accepting the new value of a field. The Component Processor
highlights the problem field. The user must either change the field back to its original value or to something
else which does not trigger the error. A warning enables the Component Processor to accept the new data.
The Component Processor does not highlight a field that has warnings.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 181

SaveEdit Event Errors

You can use the record field or the component record event. All record field events for a record run before the
component record events.

An error in SaveEdit prevents the system from saving any row of data. The Component Processor does not
update the database for any field if one field has an error. Although the Component Processor displays an
error message, it does not turn any field red. Unlike FieldEdit errors, SaveEdit errors can happen anywhere on
a page or component, for any row of data. The data causing the error may appear on a different page within
the same group, or a row of data not currently displayed. If this is the case, the field in error is brought into
view by the system.

A warning in SaveEdit also is applied to all data in the page or component, but the Component Processor will
accept the data, if told to by the user. In a FieldEdit warning, the Component Processor displays a message
box with the text and two buttons: OK and the standard Explain (the Explain button returns an explanation for
the last message retrieved with the MsgGet function). In a SaveEdit warning, the message box contains an
additional button, Cancel. OK accepts the data, overriding the warning and continuing the save process.
Cancel ends the save process.

Because errors and warnings apply to all rows of data and all pages in a group, you must provide the user
explicit information about what caused the error. Typically, you use the message catalog function to store
messages and substitute variables into them. However, you can also facilitate this by concatenating in a field
value. For example, if you have a stack of historical data on the page, you could use the following error
statement:

Error ("The value exceeds the maximum on "|effdt|".");

Using Errors and Warnings in RowSelect Events

RowSelect PeopleCode filters out rows of data after the system applies search record criteria. It also can stop
the Component Processor from reading additional rows of data.

Note. Errors and warnings should no longer be used in RowSelect processing; instead, use DiscardRow and
StopFetching. The behavior of errors and warnings in RowSelect PeopleCode is retained for compatibility
with previous releases of PeopleTools.

A warning causes the Component Processor to reject the current row, but the Component Processor continues
reading more data. An error prevents more data coming into the page or component. The Component
Processor accepts the row that causes the error, but does not read any more data. To reject the current row and
stop loading additional rows, issue a warning and an error.

You must specify text for an error or warning, but the Component Processor does not display messages from
RowSelect. You can still use the message text as a way of documenting the program.

Using Methods and Built-In Functions Chapter 8

182 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 11, "Accessing PeopleCode and Events," page 229

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
DiscardRow

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
StopFetching

Using Errors and Warnings in RowDelete Events

When you delete a row of data, the system prompts you to confirm. If you confirm, any record field
RowDelete PeopleCode runs, and any component record RowDelete PeopleCode also runs. Errors and
warnings in RowDelete display a message box.

A warning from RowDelete presents two choices: accept the RowDelete (the OK button), or cancel the
RowDelete (the Cancel button). An error from RowDelete PeopleCode prevents the Component Processor
from removing that row of data from the page.

Using Errors and Warnings in Other Events

Do not put errors or warning in PeopleCode attached to the FieldDefault, FieldFormula, RowInit,
FieldChange, RowInsert, SavePreChange, WorkFlow, and SavePostChange events. These event types
activate processing that a user has no direct control over. However, the Component Processor may issue its
own errors and warnings when it runs PeopleCode and encounters an unrecoverable error. The Component
Processor cancels the transaction to avoid unpredictable results.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Warning

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Error

Using the RemoteCall Feature

This section provides an overview of RemoteCall components and discusses how to:

• Decide between RemoteCall and PeopleSoft Process Scheduler.

• Modify PeopleSoft Process Scheduler programs to run with RemoteCall.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 183

See Also

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 156

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CallAppEngine

Understanding RemoteCall Components

RemoteCall is a PeopleTools feature that enables executing a COBOL program remotely from within a
PeopleSoft application. Remote calls are made using the RemoteCall PeopleCode function.

Because all PeopleCode runs on the application server, the RemoteCall PeopleCode function has more
limited utility. However, RemoteCall can enable you to take advantage of existing COBOL processes.

In the application server configuration file, you can specify where the COBOL executables are located.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Setting Application Server Domain
Parameters," Remote Call Options.

The RemoteCall function is a synchronous call. The PeopleSoft system passes parameters to the remote
program, and then waits while the program runs. When the remote program is done, it returns any results or
status information to the client, which then resumes execution. This means that RemoteCall is a think-time
function. RemoteCall is designed for fast response time, and has an application programming interface (API)
that provides programs with the response time needed for transaction processing. However, RemoteCall has
no scheduling or multistep job capabilities. Each execution of RemoteCall is independent.

Note. For PeopleTools 8, you can no longer use RemoteCall to execute an Application Engine program. Use
the CallAppEngine function instead.

The RemoteCall PeopleTools feature consists of the following components:

• PeopleCode program.

This interface consists of the RemoteCall PeopleCode function. It is used from PeopleCode to start a
remote program and process results. The PeopleCode program does not include any special code to
specify where the remote program is executed. You can configure Oracle Tuxedo to locally execute the
program for testing.

• Remote program API.

This is used by the remote COBOL program to receive or pass parameters and return status information.

• PeopleSoft RemoteCall service.

The PeopleSoft application server, PSAPPSRV, advertises the RemoteCall service. The service receives
requests from clients and starts the requested program. When the program is completed, it passes the
parameters and status code back to the client.

• Oracle Tuxedo.

Oracle Tuxedo is a message-based transaction monitor for distributed applications. No direct Oracle
Tuxedo calls need to be implemented in PeopleCode or remote programs.

Using Methods and Built-In Functions Chapter 8

184 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode Program

You can execute the RemoteCall function from PeopleCode associated with any Component Processor event
except SavePostChange, SavePreChange, Workflow, RowSelect, or in any PeopleCode event resulting from a
ScrollSelect or related function call. However, remote programs that change data should not be run as part of
a SaveEdit process, because the remote program may complete successfully even though an error occurs later
in the save process.

To call a remote program that changes data, use FieldChange PeopleCode in a record field associated with a
command button, or from a pop-up menu item.

Do not use RemoteCall if you expect the remote program to return a large amount of data to the client,
because data is passed back only through the parameters of the PeopleCode API.

Authorization to run a remote program is like authorization to run a PeopleCode program. Because a remote
program is started from PeopleCode, the user has authorization to use the page that executes the PeopleCode.

The remote program runs in a different unit of work from the page. A commit is issued by PeopleTools if
needed on the client before RemoteCall is called. This means that, by default, the remote program does not
know about any database changes unless the page is saved before the program is called. After the remote
program starts, it runs to completion and commits or ends before returning to the page. In this way, the
remote program and the page do not have locking contention. To ensure that the save has actually been done,
use the DoSaveNow built-in function.

When using RemoteCall to execute a COBOL program, two types of errors can occur:

• PeopleTools errors.

An error could occur in PeopleTools or Oracle Tuxedo, or the service might not be found. These are
treated as hard errors by PeopleCode. An error message box appears, and that piece of PeopleCode is
terminated. In the case of a PeopleTools error, the remote program always either returns a code of zero or
terminates with a message due to a system error.

• Application-specific errors.

Any error information specific to the remote application must be passed back in regular data variables,
and the application can process these in an application-specific way. If you have a status code on which
the application depends, you should initialize it to an invalid value to be sure the COBOL program does
return the status code.

Because the remote program is executed synchronously, users receive an hourglass icon and cannot do
anything in the current window until the remote application completes. They could move to another window
and do processing there, or they could open another PeopleSoft window. They cannot cancel the remote
program after it starts. If the program does not terminate in a timely fashion (as determined by the
RemoteCall timeout set with PeopleSoft Configuration Manager), RemoteCall attempts to terminate the
process and returns an error indicating that the program was terminated.

Remote Program API

The remote program API provides the functions to get and put data between the network and the COBOL
program. These functions are implemented in C, but are callable from COBOL through the PTPNETRT
program. For an example, see the PTPNTEST.CBL program.

Note. If these APIs are called when the program is not running as a remote program, ACTION-GET and
ACTION-PUT return an error. All other actions return without doing anything.

Chapter 8 Using Methods and Built-In Functions

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 185

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-PUT to send
back any error status variables, then with ACTION-DONE to send the buffer.

PeopleSoft RemoteCall Service

The RemoteCall service serves as a bridge between the PeopleCode API and remote COBOL programs.
RemoteCall is one of many services advertised from the PSAPPSRV Oracle Tuxedo server, and can be
configured as part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the program
name, as well as any other parameters for the program, to the application server. The RemoteCall service then
executes the program and passes it the connect string.

RemoteCall Programming Guidelines

Keep the following points in mind when using RemoteCall:

• Do not use RemoteCall for long-running batch jobs.

As a general rule, if you think execution will take more than 15 seconds, you should not be using
RemoteCall, but should instead use PeopleSoft Process Scheduler.

• RemoteCall is meant for running jobs on the server.

It should not be used to invoke client-only programs. Support for local calling with RemoteCall is
provided solely as a debugging and development aid. For client-only programs, use Declare Function,
then call the external function from a library.

• If you do not want to modify an existing program, then pass only the program name and run control, and
do not return any parameters.

This way, the program requires few changes to run as a remote function.

Deciding Between RemoteCall and PeopleSoft Process Scheduler

COBOL application programs initiated by the RemoteCall service use the same COBOL application
architecture used by PeopleSoft Process Scheduler. After being initiated by the dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the relational database
management system to compile and execute SQL statements. You can design and implement COBOL
programs to be understood by both PeopleSoft Process Scheduler and RemoteCall.

Follow these guidelines to select the optimal method for running a particular COBOL program:

• Use PeopleSoft Process Scheduler for asynchronous processes, or processes that can be scheduled, are
multistep, or that require printed output.

• Use RemoteCall for synchronous processes that are quick (transaction processing types of processes).

Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

To enable an existing program that runs under PeopleSoft Process Scheduler to run under RemoteCall as
well, make the following changes:

Using Methods and Built-In Functions Chapter 8

186 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Include the PTCNETRT copy member.

• Include the PTCNCHEK member before the connection call to PTPSQLRT.

• Add the call to PTPNETRT ACTION-DONE just before the program terminates (after the call to
disconnect from the database).

This should be conditional on whether you are RUNNING-REMOTE-CALL.

• If you are running as a RemoteCall, ensure that PROCESS-INSTANCE OF PRUNSTATUS is not set.

Otherwise your calls to PTCPSTAT try to update the PSPRCSRQST table. This does not cause an error,
but it is unnecessary processing.

This program can now run from PeopleSoft Process Scheduler or from RemoteCall. If a program has to pass
parameters, it must have RemoteCall-specific ACTION-GET and ACTION-PUT calls.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 187

Chapter 9

Using HTML Trees and the GenerateTree
Function

This chapter discusses the GenerateTree function.

Using the GenerateTree Function

This section provides an overview of HTML trees and discusses how to:

• Build HTML tree pages.

• Use HTML tree rowset records.

• Use tree actions (events).

• Initialize HTML trees.

• Process events passed from a tree to an application.

• Add mouse-over ability to HTML trees.

• Add visual selection node indicators.

• Specify override images.

Understanding HTML Trees

Use the GenerateTree function to display data in a tree format. The result of the GenerateTree function is an
HTML string, which can appear in an HTML area control. The tree generated by GenerateTree is called an
HTML tree.

The GenerateTree function displays data from a rowset. You can populate this rowset using existing record
data. You can also use the tree classes to display data from trees created using PeopleSoft Tree Manager.

To use this function, you must set up a page for displaying the data and populate a standalone rowset with the
data to be displayed.

The following example shows an HTML tree:

Using HTML Trees and the GenerateTree Function Chapter 9

188 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

HTML tree example

The positional links at the top of the page (First,Previous,Next, Last,Left,Right) enable the user to navigate
around the tree. These links are automatically generated as part of the execution of GenerateTree.

When a node is collapsed, a plus sign appears on the node icon, and the node's children are hidden. When a
node is expanded, all child nodes appear, and the icon displays a minus sign. Icons without a plus or minus
sign are terminal nodes, which have no children and cannot be expanded or collapsed.

Building HTML Tree Pages

The page you use to display the HTML tree must contain:

• An HTML area used to display the HTML tree.

• A character field that has a page field name, is at least 46 characters long, and is invisible.

Note. The edit box should be invisible, but not display-only. An invisible edit box cannot be seen by the user,
but it still has a buffer that can be written to. Page fields that have been specified as invisible do not need to
be marked as Modifiable from HTML unless they are located on a page that is not active when GenerateTree
is called. For example, if your application calls GenerateTree from one page and then saves the result in a
field that is displayed by an HTML area on another page in the component, the associated event field must be
marked both Invisible and Modifiable from HTML.

Events are sent to the application from the HTML tree using the invisible field. The events are processed by
FieldChange PeopleCode that is attached to the invisible field.

This is an example page for an HTML tree:

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 189

Example of PeopleSoft Application Designer HTML tree page

The large area that is selected in the example is the HTML area that displays the HTML tree. The HTML area
is attached to the DERIVED_HTML.HTMLAREA field for this example.

The white edit box is the invisible field used to pass events from the HTML tree to the application. It is
attached to the DERIVED_HTML.TREECTLEVENT field for this example.

The edit box must have a page field name. In this example, the page field name is TREECTLEVENT.

Using HTML Tree Rowset Records

The GenerateTree function takes a prebuilt and populated rowset as a parameter. This rowset must have a
certain structure and contain certain fields. In the following examples, the rowset is standalone, that is, the
rowset is created using the CreateRowset function. The fields necessary for the rowset are contained in the
following record definitions:

• The header record TREECTL_HRD, containing the subrecord TREECTL_HDR_SBR.

• The node record TREECTL_NDE, containing the subrecord TREECTL_NDE_SBR.

The header record is the level zero record of the HTML tree rowset. It contains options for the HTML tree,
such as the name of the collapsed node image, the height of the images, the number of pixels to indent each
node, and so on.

The node record is the level one record of the HTML tree rowset. It contains the tree data and information
about the data, such as the dynamic range leaf, the level, and so on.

The level one scroll area contains a row for each node or leaf in the tree data.

Using HTML Trees and the GenerateTree Function Chapter 9

190 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

To store additional application data with each node in the tree, you can incorporate the
TREECTL_NDE_SBR into a record of your definition and use your record to define the HTML tree rowset.

For example, you might want to store application key values with each node record, so that when a user
selects a node, you have the data you need to perform the action that you want.

This table describes the relevant fields in TREECTL_HDR_SBR:

Field Description

PAGE_NAME Name of the page that contains the HTML area and the
invisible field used to process the HTML tree events.

PAGE_FIELD_NAME Page field name of the invisible field used to process the
HTML tree events.

PAGE_SIZE Number of nodes or leaves to send to the browser at a
time. Set to 0 to send all visible nodes or leaves to the
browser. The default value is 0.

DISPLAY_LEVELS Number of levels to display on the browser at a time. The
default value is 8.

COLLAPSED_IMAGE Collapsed node image name. The default value is
PT_TREE_COLLAPSED.

EXPANDED_IMAGE Expanded node image name. The default value is
PT_TREE_EXPANDED.

END_NODE_IMAGE End node image name. The default value is
PT_TREE_END_NODE.

LEAF_IMAGE Leaf image name. The default value is PT_TREE_LEAF.

IMAGE_WIDTH Image width in pixels. All four images need to be the
same width. The default value is 15 pixels.

IMAGE_HEIGHT Image height in pixels. All four images need to be the
same height. The default value is 12 pixels.

INDENT_PIXELS Number of pixels to indent each level. The default value is
20 pixels.

TREECTL_VERSION Version of the HTML tree. The default value is 812. Used
with the DESCR_IMAGE field in the
TREECTL_HDR_SBR record.

This table describes the relevant fields in TREECTL_NDE_SBR:

Field Description

LEAF_FLAG If this is a leaf, set to Y. The default value is N.

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 191

Field Description

TREE_NODE Node name.

DESCR (Optional) Node description.

RANGE_FROM The range from value of the leaf.

RANGE_TO The range to value of the leaf.

DYNAMIC_FLAG If this leaf has a dynamic range, set to Y. The default
value is N.

ACTIVE_FLAG Set to N for the node or leaf not to be a link. The default
value is Y.

DISPLAY_OPTION Set to N to display the name only. Set to D to display the
description only. Set to B to display both the name and the
description. Used for nodes only. The default value is B.

STYLECLASSNAME Use to control the style of the link associated with the
node or leaf. The default value is PSHYPERLINK.

PARENT_FLAG If this node is a parent and its direct children are loaded
now, set to Y. If this node is a parent and its direct
children are loaded on demand, set to X. If this node is not
a parent, set to N. The default value is N.

TREE_LEVEL_NUM Set to the level of the node. The default value is 1.

LEVEL_OFFSET If a child node is to appear more than one level to the right
of its parent, specify the number of additional levels. The
default value is 0.

DESCR_IMAGE Use to display an image after the node or leaf image and
before the name or description. The two images are
separated by a space. The new image is not scaled. This
field takes a string value, the name of an image definition
created in PeopleSoft Application Designer.

This field is only recognized if the TREECTL_VERSION
field is greater than or equal to 812.

EXPANDED_FLAG When the EXPANDED_FLAG of a node is set to Y, the
GenerateTree function expects the immediate children of
the node to be loaded into the &TREECTL rowset (such
as in PostBuild), and GenerateTree generates HTML such
that the node is expanded and its immediate children
appear.

Using HTML Trees and the GenerateTree Function Chapter 9

192 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CreateRowset

Using HTML Tree Actions (Events)

The GenerateTree function works with an HTML area control and an invisible field. When a user selects a
node, expands a node, collapses a node, or uses one of the navigation links, that event (user action) is passed
to the invisible field, and the FieldChange PeopleCode for the invisible field is executed.

The FieldChange PeopleCode example program (below) checks for expanding (or collapsing) a node and
selecting a node by checking the first character in the invisible field. The following example checks for
whether a node is selected:

If Left(TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following user actions:

Event Description

Tn Expand or collapse the node, whichever is the opposite
of the previous state. N is the row number of the node in
the TREECTL_NODE rowset.

Xn Expand the node, but load the children first. The
children are loaded in PeopleCode, and then the event is
passed to GenerateTree so that the HTML can be
generated with the node expanded. N is the row number
of the node in the TREECTL_NODE rowset.

F Display the first page.

P Display the previous page.

N Display the next page.

L Display the last page.

Q Move the display left one level.

R Move the display to the right one level.

Sn Select the node or leaf. N is the row number of the node
or leaf in the TREECTL_NODE rowset.

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 193

Note. Drag-and-drop functionality is not supported in an HTML tree.

Initializing HTML Trees

For this example, the PeopleCode for initializing the HTML tree was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree using the
Tree classes and load only the root node into the HTML tree rowset.

The first time a user expands a node, the direct children of the node are loaded into the HTML tree rowset by
the FieldChange PeopleCode Example program, shown in the following section. This chunking functionality
enables the HTML tree to support trees of any size with good performance.

You cannot simply copy either the PostBuild or FieldChange PeopleCode example programs into your
application. You must modify them to make them work with your data. You must make these changes to the
PostBuild PeopleCode to initialize HTML trees:

1. Set the PAGE_NAME and PAGE_FIELD_NAME fields.

The PAGE_NAME field contains the name of the page that contains the HTML area and the invisible
field that processes HTML tree events. The PAGE_FIELD_NAME field is the page field name of the
invisible field that is used to process the HTML tree events.

Note. The PAGE_FIELD_NAME field is the page field name of the invisible field, not the invisible field
name.

2. Set tree-specific variables.

The &SET_ID,&USERKEYVALUE,&TREE_NAME, &TREE_DT, and &BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, these varaibles are set as follows:

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

3. Set the PAGE_SIZE field.

If you do not want the page to expand vertically to display the tree, set the PAGE_SIZE to a number of
rows that will fit inside the HTML area. If some vertical expansion is okay, but you do not want the page
to get too large, set the PAGE_SIZE to whatever value you like. Set the PAGE_SIZE to 0 if you do not
care how big the page gets.

4. Set the DISPLAY_LEVELS field to the number of levels that will fit inside the HTML area.

If this field is set too large, wrapping may occur. Positional links at the top of the HTML area enable the
user to navigate as the tree expands.

Using HTML Trees and the GenerateTree Function Chapter 9

194 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY_OPTION field is to display both the node name and the description. You
can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

6. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change this field value to the style you want.

7. Change the last line to assign the output of GenerateTree to the field attached to the HTML area that will
display the tree.

In the example that follows, the HTML area control is the DERIVED_HTML.HTMLAREA. You must
specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

This example shows how to initialize the HTML tree using the tree classes and load only the root node into
the HTML tree rowset:

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 195

Component Rowset &TREECTL;

&NODE_ROWSET = CreateRowset(Record.TREECTL_NODE);
&TREECTL = CreateRowset(Record.TREECTL_HDR, &NODE_ROWSET);

&TREECTL.InsertRow(1);
&REC = &TREECTL.GetRow(2).GetRecord(1);

/* Set the HDR options:

1) PAGE_NAME - Name of the page that contains the HTML Area
and the invisible field that will be used to process the HTML
tree events.
2) PAGE_FIELD_NAME - Page field name of the invisible field that
will be used to process the HTML tree events.
3) PAGE_SIZE - Number of nodes or leaves to send to the browser at
a time.
Set to 0 to send all of the visible nodes or leaves to the browser.
Default value: 0
4) DISPLAY_LEVELS - Number of levels to display on the browser at
a time. Default value: 8
5) COLLAPSED_IMAGE - Collapsed node image name.
Default value: PT_TREE_COLLAPSED
6) EXPANDED_IMAGE - Expanded node image name.
Default value: PT_TREE_EXPANDED
7) END_NODE_IMAGE - End node image name.
Default value: PT_TREE_END_NODE
8) LEAF_IMAGE - Leaf image name. Default value: PT_TREE_LEAF
9) IMAGE_WIDTH - Image width.
All four images need to be the same size. Default value: 15
10) IMAGE_HEIGHT - Image height. Default value: 12
11) INDENT_PIXELS - Number of pixels to indent each level.
Default value: 20
*/
&REC.GetField(Field.PAGE_NAME).Value = "TREECTL_TEST";
&REC.GetField(Field.PAGE_FIELD_NAME).Value = "TREECTLEVENT";
&REC.GetField(Field.PAGE_SIZE).Value = 15;
&REC.GetField(Field.DISPLAY_LEVELS).Value = 8;
&REC.GetField(Field.COLLAPSED_IMAGE).Value = "PT_TREE_COLLAPSED";
&REC.GetField(Field.EXPANDED_IMAGE).Value = "PT_TREE_EXPANDED";
&REC.GetField(Field.END_NODE_IMAGE).Value = "PT_TREE_END_NODE";
&REC.GetField(Field.LEAF_IMAGE).Value = "PT_TREE_LEAF";
&REC.GetField(Field.IMAGE_WIDTH).Value = 15;
&REC.GetField(Field.IMAGE_HEIGHT).Value = 12;
&REC.GetField(Field.INDENT_PIXELS).Value = 20;

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

&MYSESSION = %Session;
&SRC_TREE = &MYSESSION.GetTree();
&RES = &SRC_TREE.OPEN(&SET_ID, &USERKEYVALUE, &TREE_NAME,
&TREE_DT, &BRANCH_NAME, False);

/* Just insert the root node into the &TREECTL Rowset.
If the root node has children, set the &PARENT_FLAG to 'X',
so that its children will be loaded on demand. */

&ROOT_NODE = &SRC_TREE.FindRoot();

If &ROOT_NODE.HasChildren Then

Using HTML Trees and the GenerateTree Function Chapter 9

196 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 &PARENT_FLAG = "X";
Else
 &PARENT_FLAG = "N";
End-If;

&NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
&NODE_ROWSET.InsertRow(1);
&REC = &NODE_ROWSET.GetRow(2).GetRecord(1);

/* Set the NODE values:

1) LEAF_FLAG - If this is a leaf set to "Y". Default value: N
2) TREE_NODE - Node name.
3) DESCR - Node description. (optional)
4) RANGE_FROM - Leaf's range from value.
5) RANGE_TO - Leaf's range to value.
6) DYNAMIC_FLAG - If this leaf has a dynamic range, set to "Y".
Default value: N
7) ACTIVE_FLAG - Set to "N" for the node or leaf not to be a link.
 Default value: Y
8) DISPLAY_OPTION - Set to "N" to display the name only.
Set to "D" to display the description only.
Set to "B" to display both the name and the description.
Only used for nodes. Default value: B
9) STYLECLASSNAME - Used to control the style of the link
associated with the node or leaf. Default value: PSHYPERLINK
10) PARENT_FLAG - If this node is a parent and its direct
children will be loaded now, set to "Y". If this node is a
parent and its direct children are to be loaded on demand,
set to "X". Default value: N
11) TREE_LEVEL_NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed more than
one level to the right of its parent, specify the number of
additional levels. Default value: 0
*/
&REC.GetField(Field.LEAF_FLAG).Value = "N";
&REC.GetField(Field.TREE_NODE).Value = &ROOT_NODE.NAME;
&REC.GetField(Field.DESCR).Value = &ROOT_NODE.DESCRIPTION;
&REC.GetField(Field.RANGE_FROM).Value = "";
&REC.GetField(Field.RANGE_TO).Value = "";
&REC.GetField(Field.DYNAMIC_FLAG).Value = "N";
&REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
&REC.GetField(Field.DISPLAY_OPTION).Value = "B";
&REC.GetField(Field.STYLECLASSNAME).Value = "PSHYPERLINK";
&REC.GetField(Field.PARENT_FLAG).Value = &PARENT_FLAG;
&REC.GetField(Field.TREE_LEVEL_NUM).Value = 1;
&REC.GetField(Field.LEVEL_OFFSET).Value = 0;

&SRC_TREE.Close();
DERIVED_HTML.HTMLAREA = GenerateTree(&TREECTL);

Processing Events Passed from a Tree to an Application

To modify the FieldChange PeopleCode to load the direct children of the node into the HTML trees, use the
following FieldChange PeopleCode to process the events passed from an HTML tree to an application. The
code that processes the load children event loads the direct children of a node the first time the node is
expanded by the user. Changes that you must make to the FieldChange PeopleCode are as follows.

1. Globally change TREECTLEVENT to the name of the invisible field used to process the events.

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 197

2. Set the tree-specific variables.

The &SET_ID,&USERKEYVALUE,&TREE_NAME,&TREE_DT, and &BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, they are set like this:

&SET_ID = PSTREEDEFN_VW.SETID;
&USERKEYVALUE = "";
&TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
&TREE_DT = PSTREEDEFN_VW.EFFDT;
&BRANCH_NAME = "";

3. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY_OPTION field is to display both the node name and the description. You
can display just the node name or just the description. The values for this field are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

4. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change this field value to the style you want.

5. Change the assignment of the output of every GenerateTree call to the field attached to the HTML area
that will display the tree.

In this example, the HTML area control is the DERIVED_HTML.HTMLAREA. You must specify the
record and field name associated with the HTML area control on your page.

6. Change the code that processes the select event to perform the action you want when the user selects a
node or leaf.

This section is marked as Process Select Event in the following code sample.

FieldChange PeopleCode Example

The following is the PostBuild PeopleCode example:

Using HTML Trees and the GenerateTree Function Chapter 9

198 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Component Rowset &TREECTL;

/* process load children event */
If Left(TREECTLEVENT, 1) = "X" Then
 &ROW = Value(Right(TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
 &NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
 &PARENT_REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 &PARENT_LEVEL = &PARENT_REC.GetField(Field.TREE_LEVEL_NUM).Value;
 &ROW = &ROW + 1;

 &SET_ID = PSTREEDEFN_VW.SETID;
 &USERKEYVALUE = "";
 &TREE_NAME = PSTREEDEFN_VW.TREE_NAME;
 &TREE_DT = PSTREEDEFN_VW.EFFDT;
 &BRANCH_NAME = "";

 &MYSESSION = %Session;
 &SRC_TREE = &MYSESSION.GetTree();
 &RES = &SRC_TREE.OPEN(&SET_ID, &USERKEYVALUE, &TREE_NAME,
&TREE_DT, &BRANCH_NAME, False);

 /* Find the parent node and expand the tree one level below
the parent. Insert just the direct children of the parent node
into the &TREECTL Rowset. If any of the child nodes have
children, set their PARENT_FLAG to 'X', so that their children
are loaded on demand. */

 &PARENT_NODE = &SRC_TREE.FindNode(&PARENT_REC.
GetField(Field.TREE_NODE).Value, "");
 If &PARENT_NODE.HasChildren Then
 &PARENT_NODE.Expand(2);

 If &PARENT_NODE.HasChildLeaves Then
 /* Load the child leaves into the &TREECTL Rowset. */
 &FIRST = True;
 &CHILD_LEAF = &PARENT_NODE.FirstChildLeaf;
 While &FIRST Or
 &CHILD_LEAF.HasNextSib
 If &FIRST Then
 &FIRST = False;
 Else
 &CHILD_LEAF = &CHILD_LEAF.NextSib;
 End-If;
 If &CHILD_LEAF.Dynamic = True Then
 &RANGE_FROM = "";
 &RANGE_TO = "";
 &DYNAMIC_RANGE = "Y";
 Else
 &RANGE_FROM = &CHILD_LEAF.RangeFrom;
 &RANGE_TO = &CHILD_LEAF.RangeTo;
 &DYNAMIC_RANGE = "N";
 End-If;

 &NODE_ROWSET.InsertRow(&ROW - 1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);

 /* Set the NODE values:

1) LEAF_FLAG - If this is a leaf set to "Y". Default value: N
2) TREE_NODE - Node name.
3) DESCR - Node description. (optional)
4) RANGE_FROM - Leaf's range from value.
5) RANGE_TO - Leaf's range to value.
6) DYNAMIC_FLAG - If this leaf has a dynamic range, set to "Y".

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 199

Default value: N
7) ACTIVE_FLAG - Set to "N" for the node or leaf not to be a link.
 Default value: Y
8) DISPLAY_OPTION - Set to "N" to display the name only.
Set to "D" to display the description only.
Set to "B" to display both the name and the description.
Only used for nodes. Default value: B
9) STYLECLASSNAME - Used to control the style of the link
associated with the node or leaf. Default value: PSHYPERLINK
10) PARENT_FLAG - If this node is a parent and its direct
children will be loaded now, set to "Y". If this node is a
parent and its direct children are to be loaded on demand,
set to "X". Default value: N
11) TREE_LEVEL_NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed more than
one level to the right of its parent, specify the number of
additional levels. Default value: 0
*/
 &REC.GetField(Field.LEAF_FLAG).Value = "Y";
 &REC.GetField(Field.TREE_NODE).Value = "";
 &REC.GetField(Field.DESCR).Value = "";
 &REC.GetField(Field.RANGE_FROM).Value = &RANGE_FROM;
 &REC.GetField(Field.RANGE_TO).Value = &RANGE_TO;
 &REC.GetField(Field.DYNAMIC_FLAG).Value =
&DYNAMIC_RANGE;
 &REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
 &REC.GetField(Field.DISPLAY_OPTION).Value = "B";
 &REC.GetField(Field.STYLECLASSNAME).Value =
"PSHYPERLINK";
 /* Leaves never have children. */
 &REC.GetField(Field.PARENT_FLAG).Value = "N";
 &REC.GetField(Field.TREE_LEVEL_NUM).Value =
&PARENT_LEVEL + 1;
 &REC.GetField(Field.LEVEL_OFFSET).Value = 0;

 &ROW = &ROW + 1;
 End-While;
 End-If;

 If &PARENT_NODE.HasChildNodes Then
 /* Load the child nodes into the &TREECTL Rowset. */
 &FIRST = True;
 &CHILD_NODE = &PARENT_NODE.FirstChildNode;
 While &FIRST Or
 &CHILD_NODE.HasNextSib
 If &FIRST Then
 &FIRST = False;
 Else
 &CHILD_NODE = &CHILD_NODE.NextSib;
 End-If;
 If &CHILD_NODE.HasChildren Then
 &PARENT_FLAG = "X";
 Else
 &PARENT_FLAG = "N";
 End-If;

 /* If the tree uses strict levels, set the
&LEVEL_OFFSET to the number of levels that the child node is to
the right of its parent minus 1. */
 If &SRC_TREE.LevelUse = "S" Then
 &LEVEL_OFFSET = &CHILD_NODE.LevelNumber -
&PARENT_NODE.LevelNumber - 1;
 Else
 &LEVEL_OFFSET = 0;

Using HTML Trees and the GenerateTree Function Chapter 9

200 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

 End-If;

 &NODE_ROWSET.InsertRow(&ROW - 1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 &REC.GetField(Field.LEAF_FLAG).Value = "N";
 &REC.GetField(Field.TREE_NODE).Value = &CHILD_NODE.Name;
 &REC.GetField(Field.DESCR).Value =
&CHILD_NODE.Description;
 &REC.GetField(Field.RANGE_FROM).Value = "";
 &REC.GetField(Field.RANGE_TO).Value = "";
 &REC.GetField(Field.DYNAMIC_FLAG).Value = "N";
 &REC.GetField(Field.ACTIVE_FLAG).Value = "Y";
 &REC.GetField(Field.DISPLAY_OPTION).Value = "B";
 &REC.GetField(Field.STYLECLASSNAME).Value =
"PSHYPERLINK";
 &REC.GetField(Field.PARENT_FLAG).Value = &PARENT_FLAG;
 &REC.GetField(Field.TREE_LEVEL_NUM).Value =
&PARENT_LEVEL + 1;
 &REC.GetField(Field.LEVEL_OFFSET).Value = &LEVEL_OFFSET;

 &ROW = &ROW + 1;
 End-While;
 End-If;

 /* change the parent's PARENT_FLAG from 'X' to 'Y' */
 &PARENT_REC.GetField(Field.PARENT_FLAG).Value = "Y";

 HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);
 End-If;

 &SRC_TREE.Close();
Else

 /* Process select event. */

 /* As an example, just display the selected node name or
leaf range as a MessageBox. */

 If Left(TREECTLEVENT, 1) = "S" Then
 &ROW = Value(Right(TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
 &NODE_ROWSET = &TREECTL.GetRow(2).GetRowset(1);
 &REC = &NODE_ROWSET.GetRow(&ROW).GetRecord(1);
 If &REC.GetField(Field.LEAF_FLAG).Value = "N" Then
 MessageBox(0, "", 0, 0, "The selected node is %1.",
&REC.GetField(Field.TREE_NODE).Value);
 Else
 If &REC.GetField(Field.DYNAMIC_FLAG).Value = "N" Then
 If &REC.GetField(Field.RANGE_FROM).Value =
&REC.GetField(Field.RANGE_TO).Value Then
 &TEMP = "[" | &REC.GetField(Field.RANGE_FROM).
Value | "]";
 Else
 &TEMP = "[" | &REC.GetField(Field.RANGE_FROM).
Value | " - " | &REC.GetField(Field.RANGE_TO).Value | "]";
 End-If;
 Else
 &TEMP = "[]";
 End-If;
 MessageBox(0, "", 0, 0, "The selected leaf is %1.", &TEMP);
 End-If;
 Else
 /* process all other events */
 HTMLAREA = GenerateTree(&TREECTL, TREECTLEVENT);
 End-If;

Chapter 9 Using HTML Trees and the GenerateTree Function

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 201

End-If;

/* done processing the event, so clear it */
TREECTLEVENT = "";

See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using HTML Tree Actions (Events), page
192

Adding Mouse-Over Ability to HTML Trees

To add mouse-over ability to HTML tree elements, you must add fields to the TREECTL_HDR_SBR record
and PeopleCode to the program to set the values and the images.

1. Add the following fields to thr TREECTL_HDR_SBR (tree control header subrecord) record.

• COLLAPSED_MSGNUM

• COLLAPSED_MSGSET

• END_NODE_MSGNUM

• END_NODE_MSGSET

• EXPANDED_MSGNUM

• EXPANDED_MSGSET

• LEAF_NODE_MSGNUM

• LEAF_NODE_MSGSET

2. Add the following PeopleCode to set the message set and number for the mouse-over text:

&REC.GetField(Field.EXPANDED_MSGSET).Value = 2;
&REC.GetField(Field.EXPANDED_MSGNUM).Value = 903;
&REC.GetField(Field.COLLAPSED_MSGSET).Value = 2;
&REC.GetField(Field.COLLAPSED_MSGNUM).Value = 904;
&REC.GetField(Field.END_NODE_MSGSET).Value = 2;
&REC.GetField(Field.END_NODE_MSGNUM).Value = 905;
&REC.GetField(Field.LEAF_MSGSET).Value = 2;
&REC.GetField(Field.LEAF_MSGNUM).Value = 906;

3. Add the following fields fields to the TREECTL_NDE_SBR record:

• DESCR_MSGNUM

• DESCR_MSGSET

4. Add PeopleCode to set the DESCR_MSGNUM and DESCR_MSGSET fields.

These two fields should be set to the correct message number and message set values that contain the text
to be used as the mouse-over text.

Using HTML Trees and the GenerateTree Function Chapter 9

202 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Adding Visual Selection Node Indicators

Sometimes, users need a visual indicator, such as a different color or style, to indicate which node is selected.
This example shows a selected node style:

Example of selected node style

To add selected node highlighting:

1. Add the field NODESELECTEDSTYLE to the TREECTL_HDR_SBR record.

2. Add PeopleCode to set the NODESELECTEDSTYLE field to provide the highlighting effect.

The NODESELECTEDSTYLE field takes the name of a style class.

The following example uses the PSTREENODESELECTED style:

&REC.GetField(Field.NODESELECTEDSTYLE).Value = "PSTREENODESELECTED";

You can set the style of the selected node when processing the select event.

Note. You also must reset the style of the previous selected node when processing the select event. To
find the previous selected node, you can search the node rowset looking for a node with a
STYLECLASSNAME equal to the style you set for selected nodes. Alternatively, you can keep a global
variable with the index of the node in the rowset. If you keep an index variable, however, you may have
to update the index when processing the load children event.

Specifying Override Images

You specify different images to represent the nodes in a tree by using the TREECTL_NODE record.

To specify override images:

1. Add the following fields to the tree control node record:

• OVERRIDE_IMAGE

• OVERRIDE_MSGSET

• OVERRIDE_MSGNUM

2. Add PeopleCode to use the override values when writing tree control node records.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 203

Chapter 10

Working With File Attachments

This chapter provides an overview of the file attachment functions and discusses:

• Developing applications that use file attachment functions.

• Application development considerations.

• Application deployment and system configuration considerations.

• Debugging file attachment problems.

Understanding the File Attachment Functions

This section provides an overview of:

• PeopleCode built-in file attachment functions.

• File attachment architecture.

• File attachment storage locations.

• Storage location URLs.

PeopleCode Built-in File Attachment Functions

All file attachments are performed using PeopleCode built-in functions, such as AddAttachment,
ViewAttachment, GetAttachment, and so on. These functions operate on and transfer files to and from
supported storage locations: database records, FTP sites, and HTTP repositories.

PeopleCode provides eight built-in file attachment functions that are organized into three categories:

Working With File Attachments Chapter 10

204 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• End user upload/download:

• AddAttachment

Use the AddAttachment function to upload a file from an end user machine to a specified storage
location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," AddAttachment.

• DetachAttachment

Use the DetachAttachment function to download a file from its source storage location and save it
locally on the end user machine. The file is sent to the browser with appropriate HTTP headers to
cause the browser to display a save dialog box to the user.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," DetachAttachment.

• ViewAttachment

Use the ViewAttachment function to download a file from its source storage location and open it
locally on the end user machine.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," ViewAttachment.

• Application server upload/download:

• PutAttachment

Use the PutAttachment function to upload a file from the file system of the application server to the
specified storage location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," PutAttachment.

• GetAttachment

Use the GetAttachment function to download a file from its source storage location to the file system
of the application server.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," GetAttachment.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 205

• Storage location maintenance:

• CleanAttachments

Use the CleanAttachments function to remove orphan files (files with no corresponding file reference)
from specified records used as storage locations in the current database.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CleanAttachments.

• CopyAttachments

Use the CopyAttachments function to copy all files with file references from one storage location to
another. The files to be copied can be limited to those referenced in specific file reference records.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CopyAttachments.

• DeleteAttachment

Use the DeleteAttachment function to delete a file from the specified storage location.

See PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," DeleteAttachment.

The following diagram illustrates the operation of these PeopleCode file attachment functions:

Working With File Attachments Chapter 10

206 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode file attachment functions

Because these functions abstract the storage of the attachments, you can use any defined storage location. The
location to be used is determined by the URL passed as the first parameter to the invoked attachment
function. The actual value of the URL is maintained on the URL Maintenance page.

See Also

Chapter 10, "Working With File Attachments," Understanding File Attachment Storage Locations, page 209

Chapter 10, "Working With File Attachments," Understanding Storage Location URLs, page 210

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 207

Understanding the File Attachment Architecture

File attachments are supported by using PeopleCode built-in functions that implement the transfer of a file to
or from a storage location. Using the PeopleCode functions, files can be transferred back and forth from the
end user machine to the storage location (by way of the web server and application server) or transferred back
and forth from the application server file system to the storage location.

The following steps depict the process of transferring a file with the AddAttachment function:

1. The browser-to-web server transfer is performed using a standard HTML form construct.

Note. This transfer can be performed securely in an encrypted fashion if the web server uses Secure
Sockets Layer (SSL) to communicate to the browser.

Note. When the user selects a file for uploading, file size is not checked until after the file is transferred to
the web server. Once the file gets to the web server the file size is compared to the value of the
AddAttachment function's MaxSize parameter. The transfer is terminated if the file size exceeds this
parameter or if the file is 0 bytes.

2. After the file is received at the web server, the file is transferred from the web server to the application
server in one-megabyte chunks.

Note. The one-megabyte transfer size cannot be customized.

Note. The web server-to-application server transfer is performed by using Oracle Jolt, which is securely
encrypted. Because this transfer is done using the standard Oracle Jolt mechanism, no additional settings
to the firewall are required (you do not need to open additional ports).

3. The file gets re-chunked (as specified by the value of the Maximum Attachment Chunk Size field on the
PeopleTools Options page) and then is temporarily stored in a PeopleTools table in the database.

4. Once the entire file is transferred, the application server reassembles the file as a temporary file on the
application server's file system and deletes the temporary copy from the PeopleTools table in the
database.

5. Then, the application server transfers the file to its ultimate storage location.

Note. If the storage location is a database record, then the file gets re-chunked (as specified by the value
of the Maximum Attachment Chunk Size field) when the file is transferred from the application server to
the database.

See Chapter 10, "Working With File Attachments," File Attachment Chunk Size, page 223.

The following diagram depicts this process of transferring a file with the AddAttachment function:

Working With File Attachments Chapter 10

208 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

AddAttachment file transfer process

The file attachment architecture is designed for use in the frame template or the iframe template only. It is not
supported in a pagelet or an HTML template. When content is rendered in a pagelet or HTML template, the
user interaction is managed through the PeopleSoft portal servlet. For the file attachment architecture to work,
the browser must communicate directly with the PeopleSoft content servlet, which requires the use of the
frame or iframe template.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 209

See Also

PeopleTools 8.51 PeopleBook: PeopleTools Portal Technologies, "Working with Portal Templates,"
Understanding Portal Templates

PeopleTools 8.51 PeopleBook: PeopleTools Portal Technologies, "Working with Portal Templates,"
Understanding Template Types

Understanding File Attachment Storage Locations

PeopleTools supports three types of storage locations: database records, FTP sites, and HTTP repositories.
Except for the CleanAttachments function, all PeopleCode file attachment functions support all three storage
locations. The CleanAttachments function supports only database records as storage locations.

This section provides an overview of the following:

• Database storage considerations

• FTP site considerations

• HTTP repository considerations

Database Storage Considerations

To store file attachments in the database, you must create a target record to store the attachments themselves.
This target record must include the FILE_ATTDET_SBR subrecord and no other fields.

This chapter contains additional information on how to create the target record.

See Chapter 10, "Working With File Attachments," Application Development Process Overview, page 211.

When the storage location is a database record, the URL can be defined in one of two ways:

• A string in the form of:

record://MYRECORD

 In this case, MYRECORD is the target record.

• A URL identifier in the form of:

URL.URL_ID

FTP Site Considerations

When the storage location is an FTP site, the URL can be defined in one of two ways:

• A URL string in the form of:

ftp://FTP_user:FTP_pwd@FTP_site/path

Important! Only the FTP protocol supports a URL string in this form. FTPS and SFTP require that a
URL identifier be used.

Working With File Attachments Chapter 10

210 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• A URL identifier in the form of:

URL.URL_ID

When specifying an FTP URL as a string or as a URL identifier, specify the FTP server's name or its IP
address. Specify a path on the FTP server relative to the directory specified as the FTP server's home
directory.

The default FTP port is 21. If you want to use a different port you must specify it in the URL, as part of the
FTP server address.

For example:

ftp://user01:password@ftpserver.peoplesoft.com:6000/

Note. If the specified subdirectories do not exist the PeopleCode function tries to create them.

The following limitations apply to FTP URLs:

• The FTP user name to is limited to 30 characters.

• The FTP password to is limited to 16 characters.

HTTP Repository Considerations

An HTTP repository can reside on a PeopleSoft web server, or on a different web server environment. If the
HTTP repository resides on a PeopleSoft web server, then the psfiletransfer servlet has been provided to
manage the file transfers to and from the storage location. If the HTTP repository resides on a non-PeopleSoft
web server, then you need to ensure that the web server can handle file transfer security and requests.

Additional configuration is required to set up a PeopleSoft web server as an HTTP repository.

When the storage location is an HTTP repository, the URL must be defined as a URL identifier in the form
of:

URL.URL_ID

Understanding Storage Location URLs

 Storage location URLs define both the protocol to be used and the address for a storage location. These
URLs can be defined and maintained as URL identifiers, and in limited cases, they can also be specified as a
string at run time. Oracle recommends that you always use URL identifiers since that approach gives you the
flexibility of later changing the storage location of your files without having to modify your PeopleCode or
the contents of any file reference tables used. In addition, by using a URL identifier and the GetUrl function
to get the underlying FTP URL, you can mask the FTP user ID and password when necessary.

URL identifiers are created and maintained using the URL Maintenance page (PeopleTools, Administration,
Utilities, URLs). The length of the full URL is limited to 254 characters. Certain protocols—specifically,
FTPS, SFTP, HTTP, and HTTPS—require information in addition to the URL itself. This additional
information is defined as URL properties on the associated URL Properties page.

Note. For database records and the FTP protocol only, the storage location can be specified as a string at run
time because these file transfer methods do not require additional URL properties.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 211

The following are examples of some valid storage location URLs:

record://MYAPP_ATT_CNTNT
ftp://user01:password@ftpserver.peoplesoft.com/myfiles
ftps://ftp_user:usr_pwd@ftps.oracle.com:6000/images
sftp://usr10:pwd@ftp.mycompany.com/attachments
http://www.peoplesoft.com:8080/psfiletransfer/ps/docs
https://www.peoplesoft.com:8090/psfiletransfer/empl/docs

The PeopleTools 8.51 PeopleBook: System and Server Administration contains detailed information on
creating and maintaining URL identifiers.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities," URL
Maintenance.

Developing Applications that Use File Attachment Functions

This section discusses:

• Application development process overview.

• Delivered record definitions.

• Managing entries in file reference tables.

• Using the PeopleTools Test Utilities page.

Application Development Process Overview

Follow these steps to develop an application that uses file attachments:

1. Create an application-specific, default storage location.

Oracle recommends that you use a database record as the default storage location so that it is available to
you during application development, and to customers as a default when the application is installed. You
must include the FILE_ATTDET_SBR subrecord in this target record; the target record must have no
other fields.

Create a storage location that is unique to your application (that is, do not share storage locations among
several applications). For example, create a record definition named MYAPP_ATT_CNTNT and build
the associated database table. If you need to store other information, store it as part of the file reference, as
described in the step 3, or create another record and use it in the component.

2. Create a URL identifier that corresponds to your default storage location.

See Chapter 10, "Working With File Attachments," Understanding Storage Location URLs, page 210.

Working With File Attachments Chapter 10

212 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

3. Create a custom record to store file reference information and any additional information about the file
attachments. You must include the FILE_ATTACH_SBR subrecord in this new record.

For example, create a new record called MYAPP_ATT_REF. Add fields for any other information related
to the transaction you want to store. Your application must populate these fields with the system file
name, user file name, and any information about the file that will be needed for later use..

Note. Create a file reference record that is specific to your application and to the storage location. Doing
so eliminates the need to store the URL string or URL identifier with each file reference.

4. Clone the FILE_ATTACH_WRK record to create a custom derived/work record with a unique name.
Save the PeopleCode with the new record.

For example, create a record named MYAPP_ATT_WRK by cloning FILE_ATTACH_WRK. You can
use this copy of the sample PeopleCode as the basis for your own application.

Important! The FILE_ATTACH_WRK record is delivered as a sample only. It is not intended for use as
part of an application running in production unless it has been customized. It is important to create your
own PeopleCode programs. Oracle can change the delivered sample PeopleCode in future releases. Any
application that directly uses the FILE_ATTACH_WRK record might fail. Customizing your application
makes it easier to manage during upgrades and your PeopleCode can be reused in other components that
use file attachment functionality.

5. Use the records you created in the previous steps to create the file attachment component and page.

The custom derived/work record has fields with FieldChange PeopleCode that you can use for Add,
Delete, Detach, and View buttons.

Add PeopleCode—probably at the component record field level—to invoke the underlying functions in
the custom derived/work record when the user clicks on one of the buttons.

Delivered Record Definitions

The following table summarizes the delivered record definitions for use in a file attachment application:

Record Example Description

FILE_ATTDET_SB
R

MYAPP_ATT_CNTNT Insert this subrecord in any target record that will store attached
files. Do not add other fields to this record.

FILE_ATTACH_SB
R

MYAPP_ATT_REF Insert this subrecord in any custom record that will store
references to attached files. The fields in this subrecord store the
system file name and the user file name.

FILE_ATTACH_WR
K

MYAPP_ATT_WRK Clone this derived/work record to create your own custom
derived/work record. In your custom derived/work record, you can
modify the delivered sample code to meet your file attachment
requirements.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 213

FILE_ATTDET_SBR Subrecord

 To use a database record as a storage location, you must create a custom record to receive the attachments.
You must include the FILE_ATTDET_SBR subrecord in your custom record, and it can contain no additional
fields.

The FILE_ATTDET_SBR subrecord has the following fields:

Field Description

ATTACHSYSFILENAME The unique system file name.

The value of the ATTACHSYSFILENAME field in the corresponding row
of the file reference table must be identical to this value.

FILE_SEQ The file sequence number (used in chunking).

VERSION Version number.

FILE_SIZE The physical size of the file.

LASTUPDDTTM Last update date and time.

LASTUPDOPRID The user ID of the last user to update the attachment.

FILE_DATA The data of the file.

PeopleTools maintains the values in this table. Therefore, do not reuse the fields in this table to store
incomplete or nonstandard versions of the file name or other data.

FILE_ATTACH_SBR Subrecord

You must insert the FILE_ATTACH_SBR subrecord in the custom record that will store references to the
attached files. The fields in this subrecord store the system file name and the user file name. No PeopleCode
is associated with this subrecord.

The FILE_ATTACH_SBR subrecord contains the following fields:

Field Description

ATTACHSYSFILENAME The system file name (the name of the file as it exists at the storage
location).

If the file is stored in a database record, then the value in this field must be
identical to the value of the ATTACHSYSFILENAME field in the rows
that correspond to the file chunks in the database record.

ATTACHUSERFILE The user file name (the name that the end user associates with the file).

Your application must populate these fields with the system file name, user file name, and any information
about the file that will be needed for later use.

See Chapter 10, "Working With File Attachments," Managing Entries in File Reference Tables, page 214.

Working With File Attachments Chapter 10

214 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

FILE_ATTACH_WRK Derived/Work Record

The FILE_ATTACH_WRK derived/work record provides sample PeopleCode programs that demonstrate the
use the file attachment PeopleCode built-in functions. Clone this derived/work record so that you can
customize the programs to suit your application's needs.

The FILE_ATTACH_WRK derived/work record contains the following fields:

Field Description

ATTACHADD Contains a PeopleCode program used for uploading an attachment from an
end user machine to the specified storage location (the AddAttachment
built-in function).

ATTACHDET Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be saved on the end user machine (the
DetachAttachment built-in function).

ATTACHDELETE Contains a PeopleCode program used for deleting an attachment from the
specified storage location (the DeleteAttachment built-in function).

ATTACHUTIL Contains a user-defined PeopleCode function that can be called to
determine (by file name extension) whether the attachment operation will
be permitted on a file. In this function, an array of file name extensions
identifies which types of files will be regarded as impermissible.

Note. The sample PeopleCode programs included in the
FILE_ATTACH_WRK derived/work record invoke this user-defined
PeopleCode function.

ATTACHVIEW Contains a PeopleCode program used for downloading an attachment from
the specified storage location to be viewed on the end user machine (the
ViewAttachment built-in function).

The PeopleTools Test Utilities page demonstrates a sample application that makes use of the PeopleCode
programs in the FILE_ATTACH_WRK derived/work record.

See Chapter 10, "Working With File Attachments," Using the PeopleTools Test Utilities Page, page 215.

Managing Entries in File Reference Tables

When you create a file attachment application, you create a custom record to store file reference information
and any additional information about the file attachments. You must include the FILE_ATTACH_SBR
subrecord in this new record. For example, you might create a new record called MYAPP_ATT_REF. Then,
you would add fields for any other information related to the transaction you want to store.

Your application must populate these fields with the system file name, user file name, and any information
about the file that will be needed for later use. Your application should use the fields in file reference tables as
follows:

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 215

• When your application is uploading files (for example, with AddAttachment):

• ATTACHSYSFILENAME – Save the system file name in the ATTACHSYSFILENAME field. This
is the name of the file as it exists at the storage location and is also a key field of your file reference
table.

• ATTACHUSERFILE – Save the user file name, which is the value returned by AddAttachment in its
UserFile parameter. This is essentially the base name of file selected by the end user for uploading and
would be used by end users to identify the file in other file attachment operations (such as viewing,
downloading, or deleting).

• When your application is downloading or deleting files (for example, with ViewAttachment,
DetachAttachment, or DeleteAttachment):

• ATTACHUSERFILE – Use the ATTACHUSERFILE field to present a list of available files for end
user selection. This field is also passed as a parameter to the built-in PeopleCode functions.

• ATTACHSYSFILENAME – Use the ATTACHSYSFILENAME field (along with the
ATTACHUSERFILE field) to construct the parameters to be passed to the built-in PeopleCode
functions.

See Also

Chapter 10, "Working With File Attachments," FILE_ATTACH_SBR Subrecord, page 213

Using the PeopleTools Test Utilities Page

Access the PeopleTools Test Utilities page (PeopleTools, Utilities, Debug, PeopleTools Test Utilities).

The PeopleTools Test Utilities page contains a sample file attachment application that allows you to upload
(Attach button), download (Detach button), delete (Delete button), and open (View button) a file attachment.
The page allows you to specify a storage location as a URL identifier or interactively as a string. By clicking
the Attach button, the file is uploaded to the storage location. Once the selected file has been successfully
uploaded, buttons appear that allow you to open, download, or delete that file from its storage location.

Note. This demonstration application permits the user to enter a URL of up to 120 characters only.

The actual page definition involved, PSTESTUTIL, contains buttons that execute FieldChange PeopleCode
programs in the FILE_ATTACH_WRK derived/work record definition. These programs are provided as
working examples of how to use the following file attachment functions: AddAttachment, DeleteAttachment,
DetachAttachment, and ViewAttachment. If you are developing a file attachment application, you can clone
the FILE_ATTACH_WRK derived/work record definition and customize the copied programs to fit your file
processing requirements.

Important! Do not modify the delivered FILE_ATTACH_WRK record definition or the PeopleCode
programs it contains. In addition, do not directly call these PeopleCode programs from any PeopleCode
programs you implement. Oracle might modify these sample programs in a future release of PeopleTools.

See Chapter 10, "Working With File Attachments," FILE_ATTACH_WRK Derived/Work Record, page 214.

Working With File Attachments Chapter 10

216 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Application Development Considerations

This section discusses:

• File name considerations.

• Restrictions on invoking functions in certain PeopleCode events.

• Converting file names for files uploaded by PutAttachment.

• Considerations when using CopyAttachments.

File Name Considerations

If the source file name specified using one of the file attachment. contains any of the following characters, the
invoking function will be stopped and an error (%Attachment_Failed) is returned. The actual error message
can be found in the logs.

• * (asterisk)

• : (colon)

• " (quotation mark)

• < (less than symbol)

• > (greater than symbol)

• ? (question mark)

When the file is uploaded to or downloaded from a storage location, the following characters are replaced
with an underscore:

• (space)

• @ (at sign)

• ; (semicolon)

• + (plus sign)

• % (percent sign)

• & (ampersand)

• ' (apostrophe)

• ! (exclamation point)

• # (pound sign)

• $ (dollar sign)

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 217

Note. In general, you should exercise caution when using an @ or : character in the name of a file selected
for uploading. In FTP URLs, the : character must to be used as a delimiter between the FTP user ID and the
FTP password or just before the FTP port number (if one is specified). In addition, in FTP URLs, the @
character must be used as a delimiter between the FTP password and the FTP server address.

Restrictions on Invoking Functions in Certain PeopleCode Events

 Because AddAttachment, DetachAttachment, and ViewAttachment are interactive, they are known as "think-
time" functions. This means that these functions should not be used in any of the following PeopleCode
events:

• SavePreChange

• SavePostChange

• Workflow

• RowSelect

• Any PeopleCode event that initiates as a result of a Select or SelectNew method, or any of the
ScrollSelect functions.

If you want to transfer files in a non-interactive mode with functions that aren't think-time functions, see
GetAttachment and PutAttachment.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," Select

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Rowset Class," SelectNew

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 156

Converting File Names for Files Uploaded by PutAttachment

Generally, a PeopleCode program that calls PutAttachment will also need to save (for later use) the name of
each uploaded file as it ended up actually being named at the specified storage location. However, the
destination file name (which may have been converted as described in "File Name Considerations") is not
passed back to the PutAttachment function. So, the only way for your PeopleCode program to ensure that it is
saving the correct name is to either avoid using special characters in the destination file name or to simulate
the conversion process in something like the following example:

 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, " ", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, ";", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "+", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "%", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "&", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "'", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "!", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "@", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "#", "_");
 &ATTACHUSERFILE = Substitute(&ATTACHUSERFILE, "$", "_");

Working With File Attachments Chapter 10

218 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. Unlike the PutAttachment function, the AddAttachment function automatically returns the converted
file name for reference and later use. For example, the file name My Resume.doc is returned through the
AddAttachment function as My_Resume.doc, with the space converted to an underscore.

See Also

Chapter 10, "Working With File Attachments," File Name Considerations, page 216

Considerations When Using CopyAttachments

CopyAttachments does not modify the contents of any of the associated file reference tables. You must
design your application in such a way that using CopyAttachments does not, by itself, require any subsequent
changes to the contents of any of the associated file reference tables.

Application Deployment and System Configuration Considerations

This section discusses:

• File attachment functions in an environment with multiple application server domains.

• Configuring the web server to support additional MIME types.

• Setting up virus scanning.

• Considerations when attaching text files.

• File attachment chunk size.

• Using the Copy File Attachments page.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

File Attachment Functions in an Environment with Multiple Application Server
Domains

In an environment involving multiple application server domains, a call to one of the PeopleCode file
attachment functions must not be passed a parameter designating a file that is located on the file system of a
particular application server domain. The problem is that at the time of the call, the application server domain
currently in use (as a consequence of load-balancing) might not be the application server domain that has the
file in question. In this case, a file-not-found error would result. For example, this may be an issue for a call
to PutAttachment, or this might cause a call to GetAttachment to result in the file being downloaded to an
unexpected location (the file system of the wrong application server domain) or to fail entirely if the specified
destination directory does not exist on the application server domain currently in use.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 219

Configuring the Web Server to Support Additional MIME Types

When a browser attempts to open a file attachment, the browser invokes a viewer based on the MIME
(Multipurpose Internet Mail Extensions) type sent in the response header from the web server. For example, if
the user tried to view an MP3 file, the response header sent to the browser by the web server would indicate
the audio/MPEG content type:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 01 Oct 2001 21:25:51 GMT
Content-Type: audio/mpeg
Accept-Ranges: bytes
Last-Modified: Mon, 01 Oct 2001 21:00:26 GMT
ETag: "78e21918bc4ac11:cc8"
Content-Length: 60

Notice that the content-type is audio/mpeg. The browser uses this MIME type to determine that the viewer for
audio/MPEG is the appropriate application to open this attachment. If the web server did not send this
content-type header, the browser would not be able to determine the nature of the file being transmitted, and it
would be unable to invoke the correct viewer application. The browser would try to display the file as
text/plain, which is often the wrong behavior.

The web server maps file extensions to MIME types through entries in a web.xml configuration file. A copy
of web.xml is deployed to each web server instance when it is installed. After a web server instance is
created, edit its deployed copy to add any additional MIME types.

The location of the deployment copies varies depending on the web server:

Web Server Location of Deployment Copy

WebLogic PS_HOME/webserv/web_server/applications/peoplesoft/PORTAL.war/WEB-INF/web.xml

WebSphere PS_HOME/webserv/profile_name/installedApps/app_nameNodeCell/app_name
.ear/PORTAL.war/WEB-INF/web.xml

See your web server documentation for the name and location of the master copy of this configuration file.

This file contains definitions similar to the following:

 <mime-mapping>
 <extension>
 doc
 </extension>
 <mime-type>
 application/msword
 </mime-type>
 </mime-mapping>
 <mime-mapping>
 <extension>
 xls
 </extension>
 <mime-type>
 application/vnd.ms-excel
 </mime-type>
 </mime-mapping>

Working With File Attachments Chapter 10

220 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Let's say you want to add a mapping that causes .log files to be interpreted as regular text files. To determine
the correct MIME type, check RFC (Request for Comments) documents 2045, 2046, 2047, 2048, and 2077,
which discuss internet media types and the internet media type registry.

After checking the RFCs, you determine that the correct MIME type is text/plain. The following is an
example of code you would add to the previous section of the configuration file:

 <mime-mapping>
 <extension>
 log
 </extension>
 <mime-type>
 text/plain
 </mime-type>
 </mime-mapping>

Once you save the file, the .log extension is associated with the content type of text/plain.

Note. You must restart your web server before these changes are recognized.

Note. When trying to view the objects, the extension must exactly match what is set up in the web.xml file.
This value is case-sensitive. If the object view appears garbled, chances are that either the extension is not set
up in the web.xml file or there is a case mismatch.

See Also

Documentation for your web server

Setting Up Virus Scanning

This section discusses:

• Enabling virus scanning.

• Configuring VirusScan.xml.

• Logging virus scans.

• Virus scan errors and return codes.

Virus scanning can be performed on all files uploaded with the AddAttachment and InsertImage functions
only.

Enabling Virus Scanning

To enable virus scanning, open the file VirusScan.xml and set the value of disableAll to "False". By default,
disableAll is "True".

<Providers disableAll="False" logFile="./servers/PIA/logs/VirusScan%u.log">

The location of VirusScan.xml on your system depends on which web server you use.

Oracle WebLogic Server:

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 221

PS_HOME/webserv/web_server/applications/peoplesoft/PORTAL.war/WEB-INF/classes/⇒
psft/pt8/virusscan

IBM WebSphere:

PS_HOME/webserv/profile_name/installedApps/app_nameNodeCell/⇒
app_name.ear/PORTAL.war/WEB-INF/classes/psft/pt8/virusscan

Configuring VirusScan.xml

These tags are mandatory in VirusScan.xml:

Tag Description Example Value for Scan Engine

<class> Provider class of the scan engine

Default provider class is:

psft.pt8.virusscan.provider.
GenericVirusScanProviderImpl

psft.pt8.virusscan.provider.
GenericVirusScanProviderImpl

<icapversion> ICAP version ICAP/1.0

<service-name> Service name for the scan engine host. /SYMCScanResp-AV

<policycommand> Policy command used by the Scan Engine.
Only SCAN is supported.

?action=SCAN

<address> IP address of Scan Engine host. IP address of the machine where the scan
engine is running

<port> IP port of Scan Engine host. Port where the scan engine is running

See PeopleTools 8.51 PeopleBook: MultiChannel Framework for complete details on configuring
VirusScan.xml.

See PeopleTools 8.51 PeopleBook: PeopleSoft MultiChannel Framework, "Configuring the Email Channel,"
Enabling Virus Scanning.

Logging Virus Scans

Detailed logging is configured in the logging.properties file on the web server.

Oracle WebLogic:

PS_HOME/webserv/web_server/applications/peoplesoft/logging.properties

IBM WebSphere:

PS_HOME/webserv/profile_name/installedApps/app_nameNodeCell/app_name.ear/⇒
logging.properties

Set the location of the log file in VirusScan.xml.

<Providers disableAll="False" logFile="./servers/PIA/logs/VirusScan%u.log">

The following results are logged with the date and the file name that was scanned:

Working With File Attachments Chapter 10

222 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• CLEAN, INFECTED, and SCANERROR

The results for these statuses is logged in this form:

filename = result

For example:

finance.xls = INFECTED

• CONNECTERROR and CONFIGERROR

The results for these statuses is logged in this form:

Unable to connect to the Scan engine: REASON = result

For example:

Unable to connect to the Scan engine: REASON = CONFIGERROR

Virus Scan Errors and Return Codes

If the file is uploaded successfully and no problems are found in the virus scan, the AddAttachment or
InsertImage function returns %Attachment_Succeeded.

If a problem is found, the PeopleCode function returns one the following return codes:

Numeric Value Constant Value Description

13 %Attachment_ViolationFound File violation detected by virus scan engine.

14 %Attachment_VirusScanError Virus scan engine error.

15 %Attachment_VirusConfigError Virus scan engine configuration error.

16 %Attachment_VirusConnectError Virus scan engine connection error.

Considerations When Attaching Text Files

The PeopleCode file attachment functions do not provide text file conversions when files are attached or
viewed. In fact, when any file is uploaded, it is always copied to the specified destination byte-for-byte.

Warning! You may encounter problems when a text file is uploaded from one operating system or
environment and then later viewed on another. For instance, suppose a text file on a DB2 system is encoded
in EBCDIC. A user viewing that file in a Windows environment might see garbled content because the text
file viewer is expecting ANSI encoding.

Similar issues can occur when two file systems have different character sets, such as Japanese JIS and
Unicode, or different line endings.

It is the developer's responsibility to manage this issue in their environments. A number of text file
conversion utilities are available for various platforms.

Some steps you can take to avoid conversion problems include:

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 223

• Educate your users.

• Standardize on file formats and encodings.

• Make sure that the user's environment supports the files being transferred.

• Restrict attachments to file types that are known to be compatible across user platforms.

File Attachment Chunk Size

When using a database record as the storage location, the file is automatically "chunked," or stored, in
multiple rows of the database table. The size of each chunk is determined by the Maximum Attachment
Chunk Size field on the PeopleTools Options page.

Because each file is chunked, you cannot pull whole files directly from the database. You must use the
PeopleCode file attachment functions, which automatically put the data back together into one file for you.
Because the chunk size is stored with the file, if you change the system chunk size, you can still retrieve files
with different chunk sizes.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Using the Copy File Attachments Page

The Copy File Attachments page is provided as a way to launch a CopyAttachments operation (select
PeopleTools, Utilities, Administration, Copy File Attachments). The CleanAttachments function is also
available from this page.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CopyAttachments

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
CleanAttachments

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities," Copy File
Attachments

Debugging File Attachment Problems

This debugging section discusses the following:

• Enabling tracing on the web server or application server.

Working With File Attachments Chapter 10

224 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Problems with transfers to and from FTP sites.

• Attachments with non-ASCII file names.

• Problems uploading files.

• Problems downloading files.

• Passing error messages to the end user.

The topics in this section are of interest primarily to customers deploying file processing applications, and
secondarily to application developers.

Enabling Tracing on the Web Server or Application Server

This section discusses how to:

• Enable tracing on the web server.

• Enable PeopleCode tracing on the application server.

Enabling Tracing on the Web Server

To enable web server tracing of file attachment processes:

1. Select PeopleTools, Web Profile, Web Profile Configuration, and open the current web profile.

2. Select the Custom Properties page.

3. Add a new row, and enter these values:

Column Value

Property Name IDDA

Validation Type Number

Property Value 32 (File processing)

4. Set the .level property of the logging.properties file to ALL.

5. Restart the web server.

The log files are written to a directory that depends on the java.util.logging.FileHandler.pattern property of
the logging.properties file.

More information on IDDA logging is available in the PeopleTools PeopleBooks.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Tracing, Logging, and Debugging,"
Enabling IDDA Logging.

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 225

Enabling PeopleCode Tracing on the Application Server

PeopleCode trace level 2048 (show each statement as it's executed) is the appropriate level for tracing file
attachment issues. You can enable PeopleCode tracing on the application server in several ways:

• For all client sessions by setting TracePC in Configuration Manager.

• For a specific client session through the Trace PeopleCode page (select PeopleTools, Utilities, Debug,
Trace PeopleCode.

Because PeopleCode tracing can generate a lot of output, setting tracing for a specific client session only is
recommended.

Application server log files can be found in the PS_CFG_HOME/appserv/domain/LOGS directory.

• The application server log files have names in the form APPSRV_MMDD.LOG (in which MMDD
represents the month and date).

• The file transfer log file has a name in the form of FILETRANSFERpid.LOG.

• The PeopleCode trace file has a name of the form, *.tracesql.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleSoft Configuration
Manager," Specifying Trace Settings.

Problems with Transfers to and from FTP Sites

A common reason that a transfer fails is that the FTP server is not accessible from the application server. This
error could be due to:

• An incorrect password.

• An incorrect account name.

• An inability of the application server to resolve the FTP server's host name.

• The FTP server is down.

 Try to ping the FTP server from the application server system, and then try to transfer a file to the FTP server
from the application server.

If the FTP site is on Microsoft Windows, the host name for the system might not be associated with a fixed IP
address and might not be resolvable using DNS (Domain Name System). If the application server is on a
UNIX machine, the application server can resolve the host name using DNS only—or perhaps using NIS
(Network Information System) or an /etc/hosts file. However, the application server will be unable to use
Windows mechanisms such as WinBeui or WINS. Therefore, the application server will not be able to
convert the host name indicated for the Microsoft Windows file server into an IP address and route to it.

If the file transfer fails, you must resolve the problem by either specifying the numeric IP address in the FTP
URL or by putting the host name for the FTP site into DNS, NIS, or the hosts file on your application server
so that the name can be resolved.

Typically, the URL used for file attachments has the following format:

ftp://user:pwd@system_name/dir1/subdir

Working With File Attachments Chapter 10

226 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

However, if you are using a UNIX system and the domain name cannot be resolved with DNS, then use the
numeric IP address. The following example assumes system_name has the IP address of 123.123.123.123:

ftp://user:pwd@123.123.123.123/dir1/subdir

Note. Use numeric IP addresses only when absolutely necessary.

Attachments with non-ASCII File Names

To successfully upload an attachment from a locale with a file name in a language that uses a non-ASCII
characters, such as Japanese, Oracle recommends running your application server in an environment that
supports non-ASCII character languages.

If the storage location for the attachment is an FTP site or an HTTP repository, Oracle recommends that the
storage location also be running in an environment that supports the same language or locale as the file names
used. The web server (which serves as an intermediary in the transfer of the file from the browser to the
application server and then on to the storage location) can be running on either an English environment or a
non-ASCII character language environment.

If your environment does not fully support non-ASCII characters, then the file-processing system will convert
file names into names that are fully ASCII strings. At upload time, the new file names will be passed back to
the calling PeopleCode program rather than the original names of the files as selected by the end users. This
means that it may be more difficult for an end user to later identify the renamed file for further processing,
such as selecting and viewing the file.

Problems Uploading Files

You cannot use a relative path to specify the file that is to be uploaded; you must use a full path. If users
experiences problems in uploading files, ensure that they specify the full path to the file to be uploaded.

This problem can manifest itself differently depending on the browser used. For example, with some browser
versions, the PeopleSoft page appears to be in an infinite "Processing" state.

See Also

My Oracle Support, "Troubleshooting Browser Limitations"

Problems Downloading Files

In some environments, ViewAttachment, DetachAttachment, download-to-Excel, or XML Publisher
operations fail with a message of the following form in the web server's output window:

***** JoltSessionPool: Domain // connection_string is Unavailable

For ViewAttachment, download-to-Excel, or XML Publisher operations, such situations also result in the
following message being displayed to the end user:

bea.jolt.ServiceException: Invalid Session

Chapter 10 Working With File Attachments

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 227

Note. In the case of DetachAttachment, no error message is displayed to the end user and the function fails
silently.

This problem occurs because the web server is unable to connect to the application server in question by
using the connection string the application server knows itself by—that is, the application server's canonical
connection string. For example, this may take place as a result of the use of virtual IP addresses. The
resolution to this issue can be found in PeopleTools PeopleBooks.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Troubleshooting Server Issues," File
Processing: Jolt Session Pooling and Invalid Session Errors.

Passing Error Messages to the End User

When working with the attachment functions, if you want the end user to be able to view error messages
(such as that the file is too large, that the file was not found, that there is no disk space at the storage location,
and so on), then you need to write code to interpret function return codes and pass error messages back to the
user.

As an example, each of the programs in the FILE_ATTACH_WRK derived/work record includes a parameter
that sets the message level. The message levels that can be set are:

• 0 – Suppress all messages including errors.

• 1 – Display all messages.

• 2 – Suppress success messages only, but display error messages.

By default, the message level is 0 for each of these programs. The programs are demonstrated on the
PeopleTools Test Utilities page.

See Also

Chapter 10, "Working With File Attachments," FILE_ATTACH_WRK Derived/Work Record, page 214

Chapter 10, "Working With File Attachments," Using the PeopleTools Test Utilities Page, page 215

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 229

Chapter 11

Accessing PeopleCode and Events

This chapter provides overviews of PeopleCode programs and events and PeopleCode automatic backup, and
discusses how to:

• Access PeopleCode in Application Designer.

• Access record field PeopleCode.

• Access component record field PeopleCode.

• Access component record PeopleCode.

• Access component PeopleCode.

• Access page PeopleCode.

• Access menu item PeopleCode.

• Copy PeopleCode with a parent definition.

• Upgrade PeopleCode programs.

Understanding PeopleCode Programs and Events

Every PeopleCode program is associated with an aspect of a Application Designer definition and an event.
Events are predefined points either in the Component Processor flow or in the program flow. As each event is
encountered, it fires on each component, triggering any PeopleCode program associated with that component
and that event. Each definition in Application Designer can have an event set, that is, a group of events
appropriate to that definition. A definition can have zero or one PeopleCode programs for each event in its
event set.

Some definitions have events that fall outside the Component Processor flow. These definitions include
Application Engine programs, component interfaces, and application packages. In addition, security has a
signon event,. which is described in the documentation for the definition or topic.

Accessing PeopleCode and Events Chapter 11

230 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Component Interface Classes"

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes"

PeopleTools 8.51 PeopleBook: PeopleSoft Integration Broker, "Managing Messages," Adding Message
Definitions

Enterprise PeopleTools 8.51 PeopleBook: Application Engine, "Creating Application Engine Programs,"
Specifying PeopleCode Actions

PeopleTools 8.51 PeopleBook: Security Administration, "Understanding PeopleSoft Security"

Understanding Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to a file while you are working on it. This checkpoint occurs at
the following times:

• Every 10 keystrokes.

• On a save command, just before the save is executed (in case the save does not actually execute because
the code is invalid).

• When another PeopleCode program is selected to be edited (if you have two PeopleCode editor windows
open at the same time and you move from one to the other).

The file is saved to your temp directory, as specified in your environment, in a file with the following name:

PPCMMDDYY_HHMMSS.txt

, where MMDDYY represents the month, date, and year of the checkpoint, respectively, and HHMMSS
represents the hour, minute, and second of the checkpoint, respectively.

The top of the checkpoint file contains the following information:

[PeopleCode Checkpoint File]

[RECORD.recordnameFIELD.fieldnameMETHOD.eventname]

If your PeopleCode program saves successfully, checkpoint files associated with that program are
automatically deleted.

Accessing PeopleCode in Application Designer

You can access PeopleCode associated with Application Designer definitions in several ways.

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 231

For record fields and pop-up menu items, the Project view displays PeopleCode programs within the project
hierarchy using a lightning bolt icon. The programs are children of the fields and pop-up menu items with
which they are associated, and they are named according to their associated events, such as ItemSelected,
RowInit, or SaveEdit, as shown in the following example. Double-click a record field or pop-up menu item
program in the Project view to start the PeopleCode Editor and load that program for editing.

Example of PeopleCode programs in the Project view hierarchy

You can associate PeopleCode with other types of definitions, such as:

• Components

• Pages

• Component interfaces

Such PeopleCode programs do not appear in the Project view. Instead, you right-click the name of the
definition and select View PeopleCode. You can also access these programs from their associated definitions.

PeopleCode can also be associated with:

• Component records (specific records included in components).

Accessing PeopleCode and Events Chapter 11

232 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Component record fields (specific record fields included in components).

Because component record fields and component records do not appear in the Project view, you must access
their associated programs through their parent definitions.

See Also

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 232

Chapter 11, "Accessing PeopleCode and Events," Accessing Component PeopleCode, page 238

Accessing Record Field PeopleCode

This section provides an overview of the record field event set and discusses how to:

• Access record field PeopleCode from a record definition.

• Access record field PeopleCode from a page definition.

Understanding Record Field PeopleCode

A record is a table-level definition. Record definitions are of different types, such as SQL table, dynamic
view, derived/work, and so on.

Record fields are child definitions of records. Record field PeopleCode programs are child definitions of
record fields. A record field can have zero or one PeopleCode programs for each event in the record field
event set.

The following events are associated with a record field:

• FieldChange Event

• FieldDefault Event

• FieldEdit Event

• FieldFormula Event

• RowInit Event

• RowSelect Event

• RowDelete Event

• PrePopup Event

• SaveEdit Event

• SavePreChange Event

• Workflow Event

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 233

• SavePostChange Event

• SearchInit Event

• SearchSave event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Record Field PeopleCode from a Record Definition

Record definition fields that have PeopleCode associated with them appear in bold type in record views.

Record definition showing three fields associated with PeopleCode

In the previous example, the first three fields (in boldface font) have PeopleCode associated with them. If you
expand the subrecords in a record definition, any fields in the subrecord that have PeopleCode associated with
them also appear in bold type.

To access record field PeopleCode from an open record definition:

1. Click the PeopleCode Display button on the toolbar.

A grid appears with a column for each event in the record field event set. Each cell represents a field-
event combination. The column names are abbreviations of the record field event names, for example,
FCh for the FieldChange event and RIn for the RowInit event. A check mark appears in the appropriate
cell for each field/event combination that has an associated PeopleCode program.

2. Access the PeopleCode using one of these methods:

• Double-click the cell.

• Right-click the cell and select View PeopleCode.

• Select View, PeopleCode.

The PeopleCode Editor appears. If the field/event combination has an associated program, it appears in the
editor.

Accessing PeopleCode and Events Chapter 11

234 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 11, "Accessing PeopleCode and Events," Understanding Record Field PeopleCode, page 232

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Record Field PeopleCode from a Page Definition

You can associate a PeopleCode program with any page control that you can associate with a record field.

To access record field PeopleCode from a page definition, right-click a page control and select View Record
PeopleCode. The PeopleCode Editor appears, displaying the first event in the event set associated with the
underlying record field of that control.

Button controls are a special case. You can associate a PeopleCode program with a button only if its
destination is defined as PeopleCode Command. When the user clicks a button defined using this method, the
FieldEdit and FieldChange events are triggered, so the PeopleCode must be associated with one of those two
events. Typically, you use the FieldChange event. The following example shows button properties:

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 235

Page Field Properties dialog box for buttons

To define a command button:

1. In the page definition, double-click the button to access its properties.

2. Select PeopleCode Command as the button destination.

3. Select the record and field with which your button and PeopleCode are associated.

You should associate the button with a derived/work record field, which separates its PeopleCode from
the PeopleCode associated with any of the page's other underlying record fields. You can then store
generic PeopleCode with this field so that you can reuse it with buttons on other pages.

4. Click OK to return to the page.

Right-click the command button and select View PeopleCode to access the PeopleCode Editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing PeopleCode and Events Chapter 11

236 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Accessing Component Record Field PeopleCode

This section provides an overview of component record field PeopleCode and discusses how to access
component record field PeopleCode.

Understanding Component Record Field PeopleCode

Component record field PeopleCode is associated with a record field, but only with respect to a component
and one of its events. Use this type of association to tailor your programs to a particular component. This
PeopleCode is accessible only through the component structure view, not from a record definition.

The following events are associated with a component record field:

• FieldChange Event

• FieldDefault Event

• FieldEdit Event

• PrePopup Event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record Field PeopleCode

To access PeopleCode associated with a component record field, open the component, click the Select tab,
select a field, right-click the field name, and select View PeopleCode. A lightning bolt appears next to the
field name if PeopleCode is associated with the field at the component level. If PeopleCode is associated with
the field at the record level, then a lightning bolt does not appear, as shown in the following example:

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 237

Accessing component record field PeopleCode from the component structure

Note. The Structure tab displays only the runtime state of the PeopleCode. That is, it only displays record
field PeopleCode. For example, PeopleCode programs that are orphaned as a result of a page definition
change do not appear on the Structure tab. Orphaned PeopleCode programs do appear, however, in the
PeopleCode Editor, which displays the design-time view of PeopleCode.

The PeopleCode Editor appears. If that field has associated PeopleCode, then the first program in the
component record field event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 232

Accessing Component Record PeopleCode

This section provides an overview of component record PeopleCode and discusses how to access component
record PeopleCode.

Understanding Component Record PeopleCode

Component record PeopleCode is associated with a record definition, but only with respect to a component
and one of its events. Use this type of association to tailor programs to a particular component. This
PeopleCode is directly accessible through the component structure view, not from the record definition.

Accessing PeopleCode and Events Chapter 11

238 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Search records and non-search records in components have different associated event sets. The following
events are associated with component search records:

• SearchInit Event

• SearchSave Event

The following events are associated with component non-search records:

• RowDelete Event

• RowInit Event

In rare circumstances, the Component Processor does not run RowInit PeopleCode for some record fields.
The Component Processor runs RowInit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

• RowSelect Event

• SaveEdit Event

• SavePostChange Event

• SavePreChange Event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record PeopleCode

To access PeopleCode associated with a component record, open the structure view of the component, select
a record, right-click the record name, and select View PeopleCode.

The PeopleCode Editor appears. If the record has associated PeopleCode, then the first program in the
component record event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Component PeopleCode

This section provides an overview of component PeopleCode and discusses how to access component
PeopleCode.

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 239

Understanding Component PeopleCode

Component PeopleCode is associated with a component definition and an event.

The following events can be associated with a component:

• PostBuild Event

• PreBuild Event

• SavePostChange Event

• SavePreChange Event

• Workflow Event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component PeopleCode

To access PeopleCode associated with a component, open its structure view, select the component name,
right-click the name, and select View PeopleCode.

The PeopleCode Editor appears. If the component has associated PeopleCode, the first program in the
component event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Page PeopleCode

This section provides an overview of page PeopleCode and discusses how to access page PeopleCode.

Understanding Page PeopleCode

Page PeopleCode is associated with a page definition. The page event set consists of a single event, the
Activate event, which fires every time the page is activated. This event is valid only for pages that are defined
as standard or secondary, and it is not supported for subpages.

Accessing PeopleCode and Events Chapter 11

240 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Page PeopleCode

To access PeopleCode associated with a page, right-click any part of the page definition and select View Page
PeopleCode.

Note. Page PeopleCode can only be accessed in this way. You cannot access Page PeopleCode from the
component definition Structure tab, from a project, or any other way.

The PeopleCode Editor appears. If the page has associated PeopleCode, it appears in the editor.

Note. The term page PeopleCode refers to PeopleCode programs owned by pages. Do not confuse page
PeopleCode with PeopleCode properties related to the appearance of pages, such as the Visible Page Class
property.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Page Class"

Chapter 12, "Using the PeopleCode Editor," page 243

Accessing Menu Item PeopleCode

This section provides an overview of menu item PeopleCode and discusses how to:

• Define PeopleCode pop-up menu items.

• Access menu item PeopleCode.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Menu
Definitions"

Chapter 12, "Using the PeopleCode Editor," page 243

Understanding Menu Item PeopleCode

PeopleTools menus are one of two types, either pop-up or standard, both of which are standalone definitions
in the project hierarchy. However, you can only associate PeopleCode with menu items in pop-up menus.

Chapter 11 Accessing PeopleCode and Events

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 241

The menu item event set consists of a single event, the ItemSelected Event. This event fires whenever an user
selects a menu item from a pop-up menu.

Note. Do not confuse menu item PeopleCode with PeopleCode functions related to the appearance of menu
items, such as CheckMenuItem.

See Also

Chapter 6, "PeopleCode and the Component Processor," ItemSelected Event, page 133

Defining PeopleCode Pop-Up Menu Items

To define a PeopleCode pop-up menu item:

1. In the open pop-up menu definition, double-click the menu item to access its properties.

If you are creating a new menu item, double-click the empty rectangle at the bottom of the pop-up menu.

The Menu Item Properties dialog box appears.

2. If this is a new menu item, enter a name and a label for the item.

3. Select PeopleCode from the Type group box.

4. Click OK to close the Menu Item Properties dialog box.

Accessing Menu Item PeopleCode

To access pop-up menu item PeopleCode:

1. Open the pop-up menu definition.

2. Right-click the menu item and select View PeopleCode.

The PeopleCode Editor appears, displaying the associated program for that menu item, if any.

Copying PeopleCode with a Parent Definition

When you copy a Application Designer definition that contains PeopleCode, you can choose whether to copy
all PeopleCode programs and the definition. Each copy of the definition receives a separate copy of the
PeopleCode programs.

To copy a definition with its PeopleCode:

1. Open the definition you want to copy.

2. Select File, Save As.

The Save As dialog appears.

Accessing PeopleCode and Events Chapter 11

242 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

3. Type a name for the new definition in the dialog box.

4. Click OK, and then click Yes to copy the PeopleCode.

Click Yes to copy all PeopleCode associated with the definition.

Upgrading PeopleCode Programs

You can upgrade PeopleCode programs independently of the definitions with which they are associated.
Refer to the upgrade instructions for your product for details.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 243

Chapter 12

Using the PeopleCode Editor

This chapter discusses how to:

• Navigate between PeopleCode programs.

• Use the PeopleCode Editor.

• Generate PeopleCode using drag-and-drop.

Navigating Between PeopleCode Programs

After you access a PeopleCode program associated with a Application Designer definition, you can access
programs associated with other related definitions without having to close the editor window.

This section provides an overview of the PeopleCode Editor window and discusses how to:

• Navigate between programs associated with a definition and its children.

• Navigate between programs associated with a definition's event set.

See Also

Chapter 11, "Accessing PeopleCode and Events," page 229

Understanding the PeopleCode Editor Window

Application Designer supplies an independent editor window for each parent definition, such as a record,
component interface, or an analytic model, for which you invoke the editor. The editor window's title bar
displays the name and type of the parent definition, as shown in the following illustration:

Using the PeopleCode Editor Chapter 12

244 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode Editor window with record field PeopleCode

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the drop-
down event list at the upper-right. The drop-down lists enable you to navigate directly to the PeopleCode
associated with related child definitions, for example, fields within a record and their event sets.

Note. When you make a selection from either drop-down list box, your selected entry has a yellow
background, indicating that you must click the edit pane before you can start typing.

You can open as many editor windows as you want and resize them in Application Designer. Each line of
code wraps automatically based on the window's current width. A vertical scroll bar appears if the program
has more lines than the editor can display in the edit pane.

Note. You cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

See Also

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With a Definition and
Its Children, page 245

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With Events, page 245

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 245

Navigating Between Programs Associated With a Definition and Its Children

You use the drop-down definition list to navigate between PeopleCode programs that are associated with a
parent definition and its children. The list displays the complete hierarchy of child definitions to which you
can navigate; bold items have PeopleCode associated with at least one event in the item's event set. The
structure of the definition list depends on the type of parent definition. Parent definitions include:

• Records.

Select record fields from the record drop-down list. The record name appears at the top of the list as a
visual clue to clarify the location of the record fields, but you cannot associate PeopleCode with a record.

• Components.

Select component records and component record fields from the component drop-down list.

• Pages.

Select the page definition from the page drop-down list.

• Pop-up menus.

Select pop-up menu items from the menu drop-down list. The menu and menu bars appear in the list as
visual clues, but you cannot associate PeopleCode with these elements.

Navigating Between Programs Associated With Events

Use the PeopleCode Editor's drop-down event list to select an event from the event set of the currently
selected definition. Use this event list to navigate between PeopleCode programs that are associated with that
definition. For every definition-event combination with associated PeopleCode, the event name is displayed
in bold, and it appears at the top of the event list, as shown in the following illustration:

Using the PeopleCode Editor Chapter 12

246 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Selecting an event from the PeopleCode Editor

See Also

Chapter 11, "Accessing PeopleCode and Events," page 229

Chapter 6, "PeopleCode and the Component Processor," page 89

Using the PeopleCode Editor

This section provides an overview of the PeopleCode Editor and color-coded language elements and
discusses how to:

• Write and edit PeopleCode.

• Format code automatically.

• Use drag-and-drop editing.

• Access PeopleCode external functions.

• Access definitions and associated PeopleCode.

• Access help.

• Set up help.

• Change colors in the PeopleCode Editor.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 247

• Select a font for the PeopleCode Editor.

• Change word wrap in the PeopleCode Editor.

• Use PeopleCode Event properties.

Understanding the PeopleCode Editor

The PeopleCode Editor works much like any other text editor, but has capabilities specifically geared toward
the PeopleTools environment. Some of its features include:

• Editing functions are integrated with the menus and toolbar of Application Designer and are also
accessible from a pop-up window.

• It checks, formats, and saves all programs associated with Application Designer definitions
simultaneously when any definition is saved.

• It includes a Validate Syntax command for checking and formatting a single PeopleCode program without
saving.

• It supports standard Microsoft Windows drag-and-drop editing.

• It supports color-coding for the different elements of the PeopleCode language.

• It supports word wrap based on either the size of the editor window or a specific number of characters per
line.

• You can open separate instances of the editor simultaneously, and you can use a drag-and-drop text
operation between programs.

• You can open the definition with which the current set of PeopleCode programs is associated from within
the PeopleCode Editor.

• You can open a field, record, page, file layout, or other definitions from a PeopleCode reference to the
field, record, page, or file layout, and so on.

• You can access PeopleCode programs associated with a field, record, page or file layout, or other
definitions from a PeopleCode reference to the field, record, page, or file layout, and so on.

• You can open a PeopleCode Editor window containing an external function definition from a function
declaration or function call.

• You can press F1 with the cursor in a PeopleCode built-in function, method, meta-SQL, and so on, to
open the PeopleSoft help for that item.

Writing and Editing PeopleCode

The PeopleCode Editor supports standard editing function commands such as Save, Cancel, Cut, Copy, Paste,
Find, Replace, and Undo, from the PeopleCode Editor pop-up menu. Cut, Copy, and Paste use standard
Microsoft Windows keyboard shortcuts. You can also cut, copy, and paste within the same PeopleCode
program or across multiple programs.

Use these buttons to perform editing functions:

Using the PeopleCode Editor Chapter 12

248 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Save the current PeopleCode program. You can also use the key
combination CTRL+S.

Cut the selected text or item. You can also use the CTRL+X or
SHIFT+DEL key combinations.

Copy the selected text or item. You can also use the CTRL+C or
CTRL+INS key combinations.

Paste from the clipboard. You can also use the CTRL+V or SHIFT+INS
key combinations.

Find specified text. You can also use the key combination CTRL+F.

Find and replace specified text. You can also use the key combination
CTRL+H.

Validate the current PeopleCode program.

Undo the last change. Use the CTRL+Z or ALT+BACKSPACE key
combinations.

Cancel the current operation. Use Esc key.

See Also

Appendix A, "PeopleCode Editor Short Cut Keys," page 323

Find and Replace Dialogs

When you use the Find and Replace functions, any text string that is highlighted appears when either the Find
or Replace dialog boxes are called. For example, if you select the method ActiveRowCount it appears in the
Find dialog box when it's called, as shown in the following example:

Find dialog box

You can move through finding and replacing text strings one string at a time, or click Replace All to replace
globally. The Undo function is available to undo the last replace or replace all.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 249

The Mark All button places a bookmark next to all lines that have the matching text. Use Shift+ctrl+f2 to
remove all bookmarks.

With the Replace dialog box, you can select to replace text either in a selected section or a whole file (that is,
a PeopleCode program.)

Go To Dialog

Use the Go To dialog box to specify a line number in the current program, then go to that line. If you have
line wrap not enabled, you can specify to go to statement numbers instead of line numbers.

Go To dialog box

Validate Syntax Utility

To check the syntax of the current PeopleCode program and format it if it is syntactically correct, do one of
the following:

• Click the Validate Syntax button on the Application Designer toolbar.

• Within Application Designer, select Tools, Validate Syntax.

• Right-click in the PeopleCode Editor window, then select Validate Syntax.

The Validate utility has several functions, such as finding undeclared variables, mismatching data types, or
invalid methods or properties for a class. You can check either a single component or an entire project.

Errors or warnings produced by the Validate utility are displayed in the Validate tab at the bottom of the
PeopleCode Editor window.

Any variables that you don't declare are automatically declared for you, and a warning message appears in the
Validate tab for each undeclared variable. You can right-click in the Validate tab and select Clear to delete all
the warnings listed there, then use the Validate utility again to ensure that your code runs without errors or
warnings.

Note. This feature is convenient if you have written multiple PeopleCode programs and you want to check the
syntax of one without saving. All PeopleCode programs associated with an item (record, component, and so
on) are checked prior to saving.

Using the PeopleCode Editor Chapter 12

250 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Working With
Projects," Validating Projects

Chapter 15, "Debugging Your Application," Compiling All PeopleCode Programs at Once, page 292

Formatting Code Automatically

You do not need to format your PeopleCode statements; you need only to use the correct syntax. When you
save or validate, the system formats the code according to the rules in the PeopleCode tables, no matter how
you entered it originally. The PeopleCode Editor automatically converts field names to uppercase and indents
statements.

PeopleCode is case-insensitive, except for quoted literals. PeopleCode does not format anything surrounded
by quotation marks. String comparisons, however, are case-sensitive. When you compare the contents of a
field or a variable to a string literal, make sure the literal is in the correct case.

All field names in a PeopleCode program must be fully qualified, even if the field is on the same record
definition as the PeopleCode program. However, you only need to type in the name of the field. The editor
validates if the field exists on the current record, and reformats the field name to recordname.fieldname.

Using Drag-and-Drop Editing

In addition to the standard keyboard shortcuts and toolbar buttons, you can copy or move text within a
window or between two PeopleCode Editor windows by using the mouse and the CTRL key.

Note. You cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

To move text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Place the mouse over the text and drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

To copy text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Hold down the CTRL key as you drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 251

Accessing PeopleCode External Functions

An external PeopleCode function is a function written in PeopleCode (as opposed to a built-in function or
external DLL function) and defined in a program outside the one from which it is called. External
PeopleCode functions can be defined in any record PeopleCode program, but typically they are stored in the
FieldFormula event in records beginning with FUNCLIB_.

The PeopleCode Editor provides immediate access to external PeopleCode function definitions. Right-click
the function name in the program where the function is called, then select View Function FunctionName. This
opens a new PeopleCode Editor window containing the external function definition.

Note. Internet scripts are contained in records similar to FUNCLIB_ records. However, their names begin
with WEBLIB_.

Accessing PeopleCode Application Packages and Application Classes

The PeopleCode Editor provides immediate access to application packages, application classes, and
application class method definitions.

 Right-click the package, class, or method name and, depending on the context, select from:

• View Application Package

• View Application Class

• View Application Class Method

This opens the application package or a new PeopleCode Editor window containing the application class.

The following example shows the context menu for a fully-qualified application class name.

Using the PeopleCode Editor Chapter 12

252 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Context menu with options for View Application Package and View Application Class

The following example shows the context menu for a method.

Context menu with options for View Application Class Method and View Application Class

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 253

Note. The application class context menu is not available for methods that are called by indirection.

In the following example the method CallMe would not be available to view using the context menu.

Object0.GetObject().CallMe();

Accessing Methods in Derived Classes

A method that is defined only in the superclass is not available if you attempt to view it using View
Application Class Method with the derived class, or subclass.

For example, in the following code snippet CCI_CRM extends CCI_BASE. The method Validate is not
defined in CCI_CRM; it is available to CCI_CRM by extension. The method Submit, on the other hand, is
overridden in CCI_CRM.

If you right-click Validate and select View Application Class Method, the cursor will be placed at the
beginning of the application class CCR_CRM, not at the method definition in CCI_BASE.

 If you right-click Submit and select View Application Class Method, you will be taken to the method
definition for Submit in CCI_CRM.

Import EOCC:CCI_CRM;
&CCI = Create EOCC:CCI_CRM();
&CCI.Validate(&Card);
&CCI.Submit(&Card);

This may be helpful when you need to know whether a method has been overridden.

Accessing Definitions and Associated PeopleCode

You can open fields, records, pages, application packages, and other definitions from the PeopleCode Editor.
Or you can open a new PeopleCode Editor window containing the programs associated with a field, record,
page, application class, or other definition.

To open a definition from the PeopleCode Editor, right-click a PeopleCode definition reference and select
View Definition or View Application Package.

For example, you could open definitions by clicking the following references:

• Record.BUS_EXPENSE_PER

• BUS_EXPENSE_PER.EXPENSE_PERIOD_DT

• Page.BUSINESS_EXPENSES

• PT_BRANDING:BrandingBase

If you access a record definition from a record field reference (that is, recordname.fieldname) the specified
record field is selected when the record definition opens.

To open a new PeopleCode editor window, right-click a reference to the definition and select View
PeopleCode or, for application class PeopleCode, select View Application Class Method or View Application
Class.

For example, you can access record PeopleCode from the following record and record field references:

Using the PeopleCode Editor Chapter 12

254 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Record.BUS_EXPENSE_PER

• BUS_EXPENSE_PER.EXPENSE_PERIOD_DT

Note. You can only view the PeopleCode and definition when the text is in the format recordname.fieldname.
If the text is in the format method(i).recordname,method(i).fieldname, or &MyRecord.Fieldname, the View
PeopleCode and View Definition commands are not available.

You can access application class PeopleCode from the following references:

• PT_BRANDING:BrandingBase

• %This.ValidateSave(&aErrs)

Accessing Help

The PeopleCode Editor has context-sensitive online help for all PeopleCode built-in functions, methods,
properties, system variables, and meta-SQL. To access online help, place the cursor in the name of what you
want to look up, then press F1. If there is a corresponding entry in the online reference system it appears;
otherwise a No Help Available error message appears.

If more than one entry is applicable, a pop-up window that lists all applicable entries appears. Select the
correct entry.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Setting up Help

To set up the help, use the F1 Help URL field on the PeopleTools Options page to specify where the
documentation is stored.

The format of the URL is as follows:

http://doc_location/f1search.htm?ContextID=%CONTEXT_ID%&LangCD=%LANG_CD%

The doc_location specifies where the documentation files are located on your system. The rest of the URL
exactly the above format.

For example, you might place the following URL in the F1 Help URL field:

http://Pandora/doc/f1search.htm?ContextID=%CONTEXT_ID%&LangCD=%LANG_CD%

After you specify the help location, you must exit all PeopleTools sessions and start again before you can
access the help.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 255

Changing Colors in the PeopleCode Editor

You can change the display (foreground) color for many language elements in the PeopleCode Editor,
including quoted strings, keywords, and built-in functions. You can also change the background color.

To change the display colors:

1. Select Edit, Display Font and Colors.

2. Select the language element that you want to change.

3. Select the foreground color.

If you click the Automatic check box, the default color is used.

A box displaying the selected color is only available if the Automatic check box is not selected.

If you click the box displaying the selected color, the standard color chart for your display appears. If you
click Other from this dialog or click the drop-down list on the Font and Color Settings dialog box, the
custom color chart for your display appears.

4. Select the background color.

If you click Reset All, the default colors for the PeopleCode language elements are reassigned.

Selecting a Font for the PeopleCode Editor

The default font for the PeopleCode Editor is 9-point Courier New.

To change the PeopleCode Editor font, select Edit, Display Fonts and Colors. Use this dialog box to change
the font for the editor.

Note. When you select a font for the PeopleCode Editor, the font selection dialog box provides choices based
on a character set appropriate for your international version of Microsoft Windows. If you experience trouble
embedding foreign characters (such as Thai characters) in PeopleCode, you might need to change the font
setting. If you are trying to display Thai characters in Microsoft Windows 95, you might also need to change
your keyboard input settings for the characters to display correctly. You can change your keyboard input
settings from the Input Locales tab on the Windows Regional Settings control panel, or on the Keyboard
control panel.

Changing Word Wrap in the PeopleCode Editor

The PeopleCode Editor supports text word wrapping. You can turn word wrapping on and off for an open
editor window. You can also specify the default value for word wrap, as well as whether the text wraps to the
editor's window size or to a fixed number of characters per line.

To turn word wrapping on or off for an open editor window, go to Edit, Word Wrap. After you close
Application Designer, all word wrap values are reset to the default value for the editor.

Using the PeopleCode Editor Chapter 12

256 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Specifying Word Wrap Options

Go to the Tools, Options dialog box, Editors tab, to specify the word wrap options.

Options dialog box: Editors tab

Enable (word wrap) Specify whether word wrap is the default mode when opening the editor. If
this box is not checked, wrapping text based on window size is the default.

Wrap on Window Size Specify whether the text wraps based on the size of the window.

Wrap on Line Size Specify whether the text wraps based on the number of characters in a line.
If this box is checked, you can specify the number of maximum number of
characters per line.

Maximum Characters per
Line

Specify the maximum number of characters allowed for a line before the
text wraps. The default value is 90. Valid values are between 25 and 2000.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 257

Using the PeopleCode Event Properties

To access the PeopleCode Event properties, open a PeopleCode editor window, then either press Alt + Enter
or click the Properties button.

PeopleCode Event Properties dialog box

Note. This dialog box has been deprecated. It has no effect on the location of the execution of code.

Generating PeopleCode Using Drag-and-Drop

You can generate references to definitions using a drag-and-drop operation. You can also generate
PeopleCode templates for accessing business interlinks and component interfaces.

This section discusses how to:

• Generate definition references.

• Generate PeopleCode for a business interlink.

• Generate PeopleCode for a component interface.

• Generate PeopleCode for a file layout.

Generating Definition References

When you drag definitions, such as menus, records, record fields, and pages, from a project into an open
PeopleCode editor window, you generate a reference to the definition. For example, suppose your project
contain a component named QEACTIVITY_GUIDE_1. If you drag the QEACTIVITY_GUIDE_1
component definition from the project into an open PeopleCode window, the word QEACTIVITY_GUIDE_1
prefixed with the keyword COMPONENT is written to the PeopleCode program in the place where you
dragged the definition.

Using the PeopleCode Editor Chapter 12

258 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Generating PeopleCode for a Business Interlink

After you create a business interlink definition, you use PeopleCode to instantiate an interlink object and
activate the interlink plug-in. This PeopleCode can be long and complex. Rather than write it directly, you
can drag and drop the business interlink definition from the Application Designer Project view into an open
PeopleCode edit pane. PeopleCode Application Designer analyzes the definition and generates initial
PeopleCode as a template, which you can modify to suit your purpose.

The following is a snippet of the code that is generated:

/* ===>

/* ===>
This is a dynamically generated PeopleCode template to be
used only as a helper to the application developer.
You need to replace all references to '<*>' OR default values
with references to PeopleCode variables and/or a Rec.Fields.*/

/* ===> Declare and instantiate: */
Local Interlink &QE_AE_NONSSL__1;
Local BIDocs &inDoc;
Local BIDocs &outDoc;
Local boolean &RSLT;
Local number &EXECRSLT;
&QE_AE_NONSSL__1 = GetInterlink(INTERLINK.QE_AE_NONSSL_BI);
.
.
.
.

Generating PeopleCode for a Component Interface

After you create a component interface definition, you can use PeopleCode to access it. This PeopleCode can
be long and complex. Rather than write it directly, you can drag and drop the component interface definition
from the Application Designer Project view into an open PeopleCode edit pane. Application Designer
analyzes the definition and generates initial PeopleCode as a template, which you can modify to meet your
requirements.

The following is a snippet of the code that is generated:

/* ===>
This is a dynamically generated PeopleCode template to be
used only as a helper to the application developer.
You need to replace all references to '<*>' OR default values
with references to PeopleCode variables and/or a Rec.Fields. */

Local ApiObject &oSession;
Local ApiObject &oCurrencyCdCi;
Local ApiObject &oPSMessageCollection;
Local ApiObject &oPSMessage;
Local File &LogFile;
Local number &i;
Local String &strErrMsgSetNum, &strErrMsgNum, &strErrMsgText,
&strErrType;
.
.
.

Chapter 12 Using the PeopleCode Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 259

You can also access a component interface using the component object model (COM). You can automatically
generate a Visual Basic template, a Java template, or a C template, similar to the PeopleCode template, to
begin.

To generate a template:

1. Open a component interface in Application Designer.

2. Right-click anywhere in the open component interface and select a template type.

You must save the component interface before generating the template.

When the template is successfully generated, a message appears with the full path and name of the file
containing the template.

3. Open the generated file and modify the source code to meet the needs of your application.

The following is the initial code snippet that is generated for a Visual Basic template:

Option Explicit
'===>
'This is a dynamically generated Visual Basic template to be
'used only as a helper to the application developer.
'You need to replace all references to '<*>' OR default
'values with references to Visual Basic variables.

Dim oSession As PeopleSoft_PeopleSoft.Session

Private Sub ErrorHandler()
'***** Display PeopleSoft Error Messages *****
If Not oSession Is Nothing Then
 If oSession.ErrorPending Or oSession.WarningPending Then
 Dim oPSMessageCollection As PSMessageCollection
 Dim oPSMessage As PSMessage
 Set oPSMessageCollection = oSession.PSMessages
 Dim i As Integer
 For i = 1 To oPSMessageCollection.Count
 Set oPSMessage = oPSMessageCollection.Item(i)
 Debug.Print "(" & oPSMessage.MessageNumber & "," &
oPSMessage.MessageSetNumber & ") : " & oPSMessage.Text
 Next i
 '***** Done processing messages in the collection;
 '***** OK to delete *****
 oPSMessageCollection.DeleteAll
 End If
End If
End Sub
.
.
.
.

Generating PeopleCode for a File Layout

After you create a file layout definition, you can use PeopleCode to access it. This PeopleCode can be long
and complex. Rather than write it directly, you can drag and drop the file layout definition from the
PeopleCode Application Designer Project view into an open PeopleCode edit pane. Application Designer
analyzes the definition and generates initial PeopleCode as a template, which you can modify to meet your
requirements.

Using the PeopleCode Editor Chapter 12

260 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

This example shows some of the code that is generated:

Function EditRecord(&REC As Record) Returns boolean ;
Local integer &E;

REM &REC.ExecuteEdits(%Edit_Required + %Edit_DateRange +
%Edit_YesNo + %Edit_TranslateTable + %Edit_PromptTable +
%Edit_OneZero);

 &REC.ExecuteEdits(%Edit_Required + %Edit_DateRange +
%Edit_YesNo + %Edit_OneZero);
 If &REC.IsEditError Then
 For &E = 1 To &REC.FieldCount
 &MYFIELD = &REC.GetField(&E);
 If &MYFIELD.EditError Then
 &MSGNUM = &MYFIELD.MessageNumber;
 &MSGSET = &MYFIELD.MessageSetNumber;
 &LOGFILE.WriteLine("****Record:" | &REC.Name | ",
Field:" | &MYFIELD.Name);
 &LOGFILE.WriteLine("****" | MsgGet(&MSGSET,
&MSGNUM, ""));
 End-If;
 End-For;
 Return False;
 Else
 Return True;
 End-If;
End-Function;
.
.
.
.

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 261

Chapter 13

Using the SQL Editor

This chapter provides an overview of the SQL editor window and discusses how to:

• Access SQL definition properties.

• Access the SQL editor.

• Use the SQL editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 243

Understanding the SQL Editor Window

Use the SQL Editor to create SQL for SQL definitions, record views, and Application Engine programs.

The SQL Editor and the PeopleCode editor interfaces are similar. You can add, delete, and change text; you
can use the find and replace function; and you can validate the SQL. When you save a SQL definition, the
code is automatically formatted (indented and so on) the same as it is for a PeopleCode program. You can
select the colors for displaying keywords, comments, operators, and so on. You can also specify word wrap
options.

See Chapter 12, "Using the PeopleCode Editor," Using the PeopleCode Editor, page 246.

The title bar of the editor window displays either the name of the SQL definition or the name of the
component that contains the SQL. For example, if the SQL statement is part of an Application Engine
program, then the names of the program, the section, the step, and the action are listed in the title bar, as
shown in the following example:

Using the SQL Editor Chapter 13

262 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example of Application Engine program SQL in the SQL editor window

The editor window consists of the main edit pane. For SQL definitions and SQL used with records, a drop-
down database list appears at the upper left. For SQL definitions, a drop-down effective-date list is available
at the upper right.

Note. When you make a selection from either drop-down list box, your selected entry has a yellow
background, indicating that you must click the edit pane before you can start typing.

Accessing SQL Definition Properties

Do one of the following to access the definition properties for the SQL definition:

• Press ALT+Enter.

• Select File, Definition Properties.

• Right-click in the definition and select Definition Properties.

Use general properties to specify a description for the SQL definition as well as additional comments. The
description appears in Application Designer search lists.

Use the advanced properties to display an effective date with the SQL definition.

Note. The Audit SQL field on the Advanced Properties tab is not used.

Chapter 13 Using the SQL Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 263

Accessing the SQL Editor

This section discusses how to:

• Create SQL definitions.

• Create dynamic view or SQL view records.

• Access the SQL editor from Application Engine programs.

You access the SQL editor differently for each type of component.

Creating SQL Definitions

A SQL definition contains SQL statements, which can be entire SQL programs or just fragments that you
want to reuse. You can access, create, change, or delete SQL definitions using Application Designer, or you
can use the SQL class in PeopleCode. You can upgrade SQL definitions, and you can add them to a project.
The following example shows a SQL definition:

Example of SQL definition with effective date

To create a SQL definition:

1. From Application Designer, select File, New, SQL.

Using the SQL Editor Chapter 13

264 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

2. Specify the database type to associate with the SQL definition.

You can associate more than one database type with a single SQL definition. In PeopleCode, you can
specify the appropriate database type for the program. However, at least one of the SQL statements must
be of type Default.

3. (Optional) Specify an effective date.

To specify an effective date with your SQL definition:

a. Access the object properties by selecting File, Object Properties.

Alternatively, select the SQL definition, right-click it, and then select Object Properties, or press ALT
+ ENTER.

b. Click the Advanced tab, and then click Show Effective Date.

When you click OK, the SQL definition shows a date in the right-hand drop-down menu.

4. Enter the SQL code.

You do not need to format your code. The SQL editor formats it when you save the SQL definition.

See Also

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Using PeopleSoft
Application Designer"

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class"

Creating Dynamic View or SQL View Records

When you create a SQL view or dynamic view record definition, you enter a SQL view Select statement to
indicate the field values that you want to join and the tables that contain the field values. You do this in the
SQL editor, as shown in the following example:

Chapter 13 Using the SQL Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 265

SQL editor for SQL view record definition

Access the SQL editor with record definitions.

1. Open or create a dynamic view or SQL view record definition.

2. Select the Record Type tab.

3. Click the Click to Open SQL Editor button.

You can select a database type, but not an effective date, from the SQL editor for dynamic view and SQL
view record definitions.

Note. You must be sure to save record definitions of the SQL View type before opening the SQL editor. Once
the SQL editor is open, the Save options are disabled and inaccessible. If you do not save your changes before
opening the SQL editor, you may lose your work.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Accessing the SQL Editor from Application Engine Programs

You can access the SQL editor from the following action types:

• Do Select

• Do Until

Using the SQL Editor Chapter 13

266 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Do When

• Do While

• SQL

The following example shows an Application Engine program in the SQL editor:

Example of an Application Engine program in the SQL editor window

Access the SQL editor in an Application Engine program.

1. Open the Application Engine program.

2. Select the action.

3. Either right-click and select View SQL, or select View, SQL.

Select the database type and effective date for this SQL in the section, not in the SQL editor.

Using the SQL Editor

The SQL editor works similarly to any other text editor. Many of the same functions are available as in the
PeopleCode editor, for example, cut, paste, find, and replace.

When you right-click in an open SQL editor window, you see available functions for the SQL editor:

Chapter 13 Using the SQL Editor

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 267

SQL editor shortcut menu

This table describes the functions that are available in the SQL editor but not the PeopleCode editor:

Function Description

Format Display You do not need to format your SQL statements; you
only need to use the correct syntax. When you save or
validate, the system formats the code according to the
rules in the PeopleCode tables, no matter how you
entered it originally. It automatically converts field
names to uppercase and indents statements. The
resulting look of SQL is consistent with other programs
in the system.

Resolve Meta-SQL If the SQL contains meta-SQL, select Resolve Meta-
SQL to expand the meta-SQL statement in the output
window. This option is on the Meta-SQL tab.

Delete Statement You can delete standalone SQL statements. This menu
item is not enabled with SQL statements that have a
database type of Default with no effective date, or for
statements that have a database type of Default and an
effective date of 01/01/1900.

This example, using Resolve Meta-SQL, shows how the following code expands:

%Join(COMMON_FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ)

Meta-SQL expanded in the output window

Using the SQL Editor Chapter 13

268 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 12, "Using the PeopleCode Editor," Writing and Editing PeopleCode, page 247

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 269

Chapter 14

Creating Application Packages and
Classes

This chapter provides an overview of application packages and discusses how to:

• Create application packages.

• Use the Application Package Editor.

• Edit application package classes.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes"

Understanding Application Packages

Use the Application Packages Editor to create application packages. A package contains other packages or
application classes. A subpackage is any package within a primary, or parent, package.

The title bar of the editor window displays the name of the application package definition. The main window
displays the classes and other application packages that make up the application package definition.

The application package hierarchy is displayed as a tree structure. You can use the expand icon (+) and the
collapse icon (-) to expand or collapse individual nodes.

To expand all the nodes in a package select View, Expand All or click the Expand All Nodes button on the
toolbar. To collapse all the nodes in a package select View, Collapse All or click the Collapse All Nodes
button on the toolbar.

In the following example, PTAF_UTILITIES is the primary package, and Encryption, Exception Utilities,
Integration, and so on, are subpackages. Printable Document is a class in the PTAF_UTILITIES application
package, while Base64 and PSCipher are classes in the Encryption subpackage.

Creating Application Packages and Classes Chapter 14

270 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Application Package Editor main window

Creating Application Packages

This section provides an overview of package names and discusses how to create application package
definitions.

Understanding Package Names

You can create a subpackage with the same name as another package or subpackage within the same
application package definition, as long as the fully qualified name is unique for each subpackage. Each
subpackage is differentiated by the full path name of the class (from the package definition name and the
subpackage name).

For example, suppose in the application class PT_FRUIT, where PT_FRUIT is the primary class, you had the
following structure of subpackages (no classes are listed in this example):

Chapter 14 Creating Application Packages and Classes

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 271

Example of application package naming conventions

In this example, three subpackages are named Raw, but the fully qualified name for each is unique. For
example, the first one is qualified by the name of the primary package. Its fully qualified name is
PT_FRUIT:Raw.

The other Raw subpackages are also qualified by the subpackages that contain them. Their names are
PT_FRUIT:Reciepies:Raw and PT_FRUIT:Smoothies.Raw.

Similarly, you cannot create two classes with the same name within a given package or subpackage. You can
create classes with the same name within the same application package definition, just like subpackages, as
long as the fully qualified name is unique. Each class is differentiated by the full path name of the class.

Note. You cannot create a structure for which more than two levels of subpackages are defined below the
primary package.

Creating Application Package Definitions

This section discusses how to create a new application package or insert a new package or class into an
application package.

To create a new application package, access Application Designer and select File, New, Application Package.

To insert a new package or class, open an application package definition. Select a package or subpackage and
select Insert, Package or Insert, Application Class.

Application package names and application class names must begin with an alphabetic character and must
consist of only alphanumeric characters and underscores (_).

Note. In certain cases you may encounter an error if you use Save As to create a new application package.

The error occurs when you choose to save the PeopleCode with the application package and the PeopleCode
uses a %This system variable. The %This system variable is used in application class PeopleCode to refer to
the current object.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "Application Classes," Using %This with
Constructors

Creating Application Packages and Classes Chapter 14

272 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using the Application Package Editor

When you right-click an open Application Package Editor window, you see the available functions:

Application Package Editor pop-up menu

Cut, Copy, and Paste Not available for this release. Instead, insert new subpackage and class
nodes where needed and use the clipboard to copy and paste PeopleCode
text from class to class.

To copy the primary package, select File, Save As.

Delete Click to delete either a class or a package. The PeopleCode text is not
actually deleted until you save the application package. Deleted
PeopleCode classes can be recovered by reinserting the class node, as long
as you have not saved in the interim.

Insert App Class (insert
application class)

Click to insert an application class. Because classes cannot have children
(subclasses), they can be inserted only into an existing package.

Insert Package Click to insert an application package. You can only insert packages into an
existing package or subpackage.

Rename Click to rename either a class or a subpackage. When you save the
definition, all PeopleCode programs associated with the renamed class are
also updated. To rename the primary package definition, select File,
Rename.

View PeopleCode Click to view the associated PeopleCode. PeopleCode can be defined only
for application classes, and it is not directly related to package nodes.

Print Click to print the application package definition, including all the
PeopleCode in the classes.

Chapter 14 Creating Application Packages and Classes

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 273

Editing Application Package Classes

From an application package, you can access the PeopleCode programs associated with the classes of the
package.

The Application Packages Editor and the PeopleCode Editor interfaces are similar. You can add, delete, and
change text, you can use the find and replace functions, and you can validate syntax. When you save
application packages, the code is automatically formatted (indented and so on), just as it is in the PeopleCode
Editor.

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the drop-
down event list at the upper-right, as shown in the following example:

Example of Application Packages Editor window

Only one event is defined for an application class, OnExecute. This is not an event in the Component
Processor flow. The application class runs when called.

The drop-down list at the upper-left enables you to navigate directly to the PeopleCode associated with every
class in the package, as well as to every subpackage and its classes.

To edit an application class:

1. Open the application package.

2. Select a class.

3. Either select View, PeopleCode or right-click and select View PeopleCode.

A PeopleCode Editor window appears.

Creating Application Packages and Classes Chapter 14

274 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 12, "Using the PeopleCode Editor," Writing and Editing PeopleCode, page 247

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 275

Chapter 15

Debugging Your Application

This chapter provides an overview of the PeopleCode debugger and discusses how to:

• Access the PeopleCode debugger.

• Use PeopleCode debugger features.

• Use PeopleCode debugger options.

• Set up the debugging environment.

• Compile PeopleCode programs at once.

• Set PeopleCode debugger log options.

• Interpret the PeopleCode debugger log file.

• Use application logging.

• Use the Find In feature.

• Use cross-reference reports.

Understanding the PeopleCode Debugger

The PeopleCode debugger is an integrated part of Application Designer. The interface to the debugger has a
visual indicator of breakpoints, an arrow indicating the current line, and the ability to step through code. You
can inspect the value of a variable by holding the cursor over it and reading the pop-up bubble help. The
debugger also provides variable inspection windows for global variables, local variables, function parameters,
and component-scoped variables. It also enables PeopleCode objects to be expanded, so you can inspect their
component parts.

Note. The PeopleCode debugger does not work on Microsoft Windows 95 or Windows 98.

Do not try to use the PeopleCode debugger with the SwitchUser function. Only the first user is logged into
the PeopleCode debugger. Once the switch occurs, breakpoints, logging, and so on are no longer executed.

Accessing the PeopleCode Debugger

Debugging Your Application Chapter 15

276 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. You can start a debugging session either before or after you start a PeopleSoft component.

1. Determine whether to run Application Designer in two-tier mode or three-tier mode.

If you are debugging Application Engine or component interface PeopleCode, run Application Designer
in two-tier mode, with a direct connection to the datatbase.

If you are debugging an application in PeopleSoft Pure Internet Architecture (PIA), run Application
Designer in three-tier mode, through the application server. You must be logged on to PIA and to
Application Designer using the same user ID.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 277

2. Access the debugger through Application Designer by selecting Debug, PeopleCode Debugger Mode.

The Local Variables watch pane and the Call Stack pane open. PeopleCode programs that had breakpoints
set from your previous debugging session are opened also, and the breakpoints are restored.

If you did not have breakpoints set, open the PeopleCode program you want to debug and enter debug
mode. The debugger will open with the current PeopleCode program and you can set your breakpoints.

Note. If you have already opened the debugger and then closed it, the menu may not change correctly to
enable you to access the debugger a second time. If this occurs, click the Local Variables window, and
then try the Debug menu again.

In PIA, navigate to the point where the breakpoint occurs. Your application pauses and the Application
Designer icon flashes in the task bar. Switch to Application Designer to step through your program or
continue running it.

Application Designer icon flashes in the toolbar when the application hits a breakpoint

If the debugger does not engage, check that you used the same user ID to log into PIA and Application
Designer, then check your application server configuration to verify that PeopleCode debugger is enabled.

Debugging Your Application Chapter 15

278 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Note. Your security administrator has options for allowing users to access different parts of Application
Designer, including the PeopleCode debugger. If you are having problems accessing the debugger, you may
need to contact your system administrator about your security access. You can access the PeopleCode
debugger from outside a firewall.

Using PeopleCode Debugger Features

This section discusses:

• Visible current line of execution.

• Visible breakpoints.

• Hover inspect.

• Single debugger.

• Variable panes.

• General debugging tips.

Visible Current Line of Execution

This example shows the current line indicator (green arrow displayed in left-hand gutter):

PeopleCode debugger with current line of execution

Visible Breakpoints

The PeopleCode debugger supports visual indicators that signify breakpoint locations. In the following
example, the current line indicator (green arrow) is shown at the first line, and the breakpoint (red dot
displayed in left-hand gutter) is on line 8:

All breakpoints are saved when Exit Debug Mode is selected.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 279

Note. You cannot set breakpoints in function declarations, variable declarations, or comments.

Hover Inspect

If the program is already running, you can see the actual values for the variables by holding the cursor over
them. The current value appears in a pop-up window, as shown in the following example:

PeopleCode debugger with breakpoint, current line of execution, and hover inspect

Hover inspect is implemented only for simple variables and fields.

Hover inspect is not implemented for object expressions (for example, rowset assignments and array
assignments).

Single Debugger

Each PeopleSoft session you run on a machine can have its own debugging session. However, only one
instance of the PeopleCode debugger can occur per session. If more than one instance of Application
Designer is running for a session, only one may be the active debugger at a given time.

From within a running instance of Application Designer, any component in the same session is also placed
into debug mode.

After the session is in debug mode, any component that is started and that belongs to that session
automatically goes into debug mode.

Similarly, Application Engine PeopleCode and component interface PeopleCode can be debugged.

After you exit debug mode by selecting Debug, Exit Debug Mode or by exiting Application Designer, all
components in that session go out of debug mode. If you exit a component, debugging continues with any
remaining open and running components.

If more than one Application Designer session is running, the Application Designer session that is used as a
debugger is the first one to be started.

Debugging Your Application Chapter 15

280 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

In debug mode, a PeopleCode Editor window opens for every item (for example, record, component, or page)
that has PeopleCode in it when that PeopleCode is executed. If a component has more than one event with a
PeopleCode program, then only one window opens per item. For example, if you have a record that has
PeopleCode in both the SearchSave and RowInit events, only one PeopleCode Editor window opens: first it
contains the SearchSave PeopleCode program, and then the RowInit program. If you have PeopleCode in the
RowInit event for two different records that are part of the same component, two PeopleCode Editor windows
open, one for each RowInit PeopleCode program.

Variables Panes

The four types of variables panes are:

• Local

• Global

• Component

• Parameter

The Local, Global, and Component variable panes show local, global, and component variables, respectively.
The Parameter variable pane shows the value of parameters passed in function declarations.

From the variables pane, you can check the value of the variables you have in the program. These values are
updated as the code runs. The following example shows the variables pane:

Local Variables pane

In addition, you can expand any of the objects to see its properties by clicking the plus sign next to the
variable name. In the following example, a level one rowset is expanded. You can see the properties, such as
ActiveRowCount and DBRecordName, that are part of the rowset.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 281

Local Variables pane with rowset object expanded

In addition, some objects contain other objects: a rowset contains rows, rows contain records or child rowsets,
and records contain fields. You can expand these secondary objects to see their properties. In the following
example, the first row of a rowset is expanded, as is the EMPL_CHECKLIST record:

Debugging Your Application Chapter 15

282 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Variable pane with rowset, row, and record expanded (shown with condensed font)

Field Values

When you view a field object in the debugger, the value of the field is listed in the Value column. Therefore,
you do not have to navigate to the Value property to see the value of a field.

The following example shows the PERSONAL_DATA record and the values of the fields:

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 283

PERSONAL_DATA record field values

In addition, the only fields that appear in the debugger are the fields that are actually in the Component
Buffer. For example, suppose you have a derived work record, but you do not access all the fields in the work
record. Only the fields that you access and that are in the Component Buffer actually appear in the debugger.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Record Fields and the Component Buffer, page 50

Call Stack Pane

The Call Stack pane appears by default when the PeopleCode debugger is started. To reopen it, select Debug,
View Call Stack Window.

The Call Stack pane displays a stack of PeopleCode functions and methods that are currently active but not
completed. You can use the Call Stack pane to observe the flow of an application as it executes a series of
nested functions. When a function is called, it is pushed onto the top of the stack. When the function returns,
it is popped off the stack.

The Call Stack pane displays the currently executing function at the top of the stack and older function calls
below that, in reverse calling order. You can navigate to the source code of a function from the call stack
window. The variables panes update to reflect values for the selected function.

The Call Stack pane is updated and usable when execution is stopped at a breakpoint.

Debugging Your Application Chapter 15

284 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Call Stack Indicators

The Call Stack displays a current line indicator and a selected function indicator in the gutter.

The current line indicator is a green arrow that shows where in the call stack the execution stopped. The
current line indicator always appears in the call stack pane.

The selected function indicator is a yellow triangle that marks the current function being displayed by the Edit
and Variables windows. The selected function indicator does not appear when the current function is at the
execution point.

You can hover over a function name to see the full program path in a pop-up window, as shown in the
following example.

Call Stack pane example showing execution pointer, selected function indicator, and hover pop-up

The Call Stack pane is updated, when necessary, with each change of the debug state.

Go To Source Code

Right-click on a function to access a context menu with these options:

Options Description

Copy Copies the text of the selection in the call stack to the
clipboard.

Select All Selects all rows in the call stack. You can also use
standard shift-click and CTRL-click actions to select
multiple rows.

Go To Source Code Displays the selected function in the Edit window. In
addition, the active variables windows will be updated in
sync with the Call Stack and Edit windows.

Double-click a function name to go to the source code.

When the displayed source code is at the execution point, the execution pointer icon (green arrow) appears in
the source window.

When the displayed source code is not at the execution point, the selected function icon (yellow triangle)
appears in the source window.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 285

Source code pane and call stack pane showing the yellow triangle execution pointer

Viewing source code for functions that are not at the top of the stack does not change the point of execution.
Nor does it disable the ability to continue execution. For example, in the previous example, selecting Go
would cause the program execution to continue at
"FUNCLIB_PORTAL.PORTAL_GEN_FUNC.FieldFormula PortalOpen" and not at the function in the
source code window.

During debugging it is easier to go back to the previous code event from the call stack window as compared
to trying to keep track of where the control was transferred and then finding the right opened PeopleCode
window in Application Designer. This can be useful when trying to understand the component design and
PeopleCode flow.

Setting Values for Variables and Properties

Setting the value of a variable or property in the debugger gives you the flexibility to try out changes and see
the results in real time or to recover from a logic error and continue.

You can change the value of variables or properties in the Local Variables, Component Variables, Function
Parameters, and Component Buffers panes. Only variables or properties with conventional data types (Any,
Boolean, Date, DateTime, Float, Integer, Number, String, Time) can by changed. You cannot assign a new
object to an object variable. Values that are not editable appear on a gray background.

While the debugger is running and halted at a breakpoint, select a field in the value column, such as the Local
Value column in the example, and revise the value.

Debugging Your Application Chapter 15

286 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local Variables pane showing a drop-down list to set the value for a Boolean variable

The debugger performs data type checking to prevent entry of incorrect data type values. For example,
character strings are not allowed for integer data types, and so on. However, data integrity is not verified, so
be aware that changing variable values at runtime can corrupt program execution as well as program data. For
example, setting an integer value higher than what is permitted in the function could cause a crash when
execution continues. It is the developer's responsibility to enter an appropriate value.

Modifying a variable in a debugger pane changes the value in memory only. The change does not trigger any
PeopleCode events and does not cause any PeopleCode flags to be set.

General Debugging Tips

The following are general tips for debugging your application:

• If you are having problems determining if the correct data is being loaded into the component buffers, use
the View Component Buffers view window to see all the values currently in the component buffer.

This is equivalent to putting a GetLevel0 function at the start of a program.

Use the &LEVEL0 variable to navigate through all the levels of the rowset object, see the row, records,
fields, and so on. This shows you everything that has been loaded into the component buffers for that
component.

• While at a breakpoint, if you lose track of the window, or the location within the window, that is
displaying the green execution location arrow, you can use the Execution Location Properties menu item's
ViewCode button to find your current execution location again.

• Objects remain expanded in the variable windows as you move through PeopleCode.

This enables quick inspection of the state of an object as you step through the PeopleCode. However,
there is a performance cost for using this feature. If you are finished examining an object, you may want
to collapse it to improve the response speed.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 287

• If a database transaction has been started (either for you by PeopleTools, or by you in PeopleCode) other
users of that database are blocked from accessing that database until the transaction is complete.

If you are stepping through PeopleCode while this transaction is open, you could potentially block other
users for an extended period of time. You may want to use a private database for debugging to avoid
blocking other users.

• Using the debugger is resource intensive and will impact overall system performance. Oracle recommends
that you do not run debugger on your production system unless the issue you are trying to debug cannot
be replicated in any other environment. If that is the case, debug when there is the least activity on the
system. As an alternative you can try PeopleCode tracing.

• To create a file that contains all the PeopleCode for a project (or database), use the Find In feature and
search for ;.

Be sure to select Save PeopleCode to File.

The following example shows the Find In dialog box:

Find In dialog box

DoModal Considerations

If you set the PeopleCode debugger to break at start and you are using the DoModal PeopleCode function, the
DoModal window may appear behind the PeopleCode debugger window. The debugger may appear to have
stopped, but it has not. Be sure to check that other windows have not opened while you are debugging the
code.

Debugging Your Application Chapter 15

288 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using PeopleCode Debugger Options

While the debugger is running, you can use the Debug menu to select other options:

PeopleCode debugger options

Exit Debug Mode Exits debug mode. When you exit debug mode, all breakpoints are
automatically saved. If you close Application Designer, you automatically
exit debug mode.

Abort Running Program Stops the PeopleCode program that is currently running.

Execution Location
Properties

Displays the location of the running code in a dialog box. This display
includes the record name, field name, event name, and line number of the
code. It also indicates if the code is executing on the client or server. You
can view the exact code by clicking View Code.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 289

Execution Location Properties dialog box

Break at Start Pauses execution of the component on the first line of every PeopleCode
program that executes in the component. If you start a component with
Break at Start selected and then you start a second component, the
PeopleCode associated with the second component is stopped at the first
line of the first PeopleCode program as well, as part of the same debugging
session.

Toggle Break at Cursor Removes the breakpoint if the line the cursor is currently on has a
breakpoint. Adds a breakpoint if the line the cursor is currently on does not
have a breakpoint.

Edit Breakpoints Opens a dialog box that displays the lines that have breakpoints. From this
dialog box, you can display the code that contains the breakpoint by
clicking View Code. You can also remove one or all breakpoints.

Debugging Your Application Chapter 15

290 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Breakpoints dialog box

Go Continues processing until the next breakpoint. If Break At Start is enabled,
processing pauses at the next PeopleCode program.

Step Executes the current line of the PeopleCode program, stepping into
functions.

Step Over Steps through each line of the PeopleCode program, one line at a time, but
steps over the functions; the functions are executed, but not stepped into.

Run to Return Processes past the return of the current function, and then pauses.

Step Instruction Processes low-level, pseudo-machine code instructions internal to
PeopleCode. This option is used in conjunction with Log Options.

View Call Stack Window Opens a separate window for viewing the call stack. The Call Stack
window displays a stack of PeopleCode functions and methods that are
currently active but not completed. You can use the Call Stack window to
observe the flow of an application as it executes a series of nested
functions.

View Global Variables Opens a separate window for watching global variables.

View Component Variables Opens a separate window for watching component variables.

View Local Variables Opens a separate window for watching local variables.

View Function Parameters Opens a separate window for watching user-specified parameters in
function calls.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 291

View Component Buffers Opens a separate window for viewing the current component buffers. This
is equivalent to getting a level zero rowset for the component.

Note. The previous five windows update continuously as the program executes.

Options Enables you to select between opening a dialog box for general options or
for specifying log options.

General Options dialog box

The General Options dialog box enables you to specify conditions of the view windows. The default is for
both of these options to be selected.

Enable Auto Scroll If you select this check box and you click a plus symbol next to a variable
name in a view window, the variable you clicked scrolls to the top of the
window.

Enable Condensed Font Select to display all view windows with a smaller font.

Additional Features

Break at Termination After you are in debug mode, generally, any PeopleCode program in the
session that terminates abnormally first breaks in the debugger. In addition,
the error message appears in the PeopleCode log in the bottom window of
Application Designer.

See Also

Chapter 15, "Debugging Your Application," Setting PeopleCode Debugger Log Options, page 293

Setting Up the Debugging Environment

You can use the PeopleCode debugger for two-tier and three-tier debugging. The database and application
can reside on remote servers; they do not need to reside on the local machine.

Debugging Your Application Chapter 15

292 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Two-tier debugging works out of the box. Setting up three-tier debugging requires you to make a few
modifications in PSADMIN (PSAPPSRV.CFG) to enable debugging.

You can connect to a Microsoft Windows NT server domain that is not on your local machine. You do not
have to configure a local domain to do this. You also do not have to have PeopleTools software installed
locally for three-tier debugging.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Tracing, Logging, and Debugging,"
Setting Up the PeopleCode Debugger

Compiling All PeopleCode Programs at Once

In addition to checking individual programs, you can compile all PeopleCode programs either in a database or
in a project to check for errors. This option opens and compiles every PeopleCode program. This process can
be run on an as-needed basis to check for corruption in your programs. Run this option after an upgrade to
verify that all the programs were upgraded correctly. You run this option from the Tools menu:

Tools menu - Compile All PeopleCode option

To compile all PeopleCode programs:

1. Open Application Designer while accessing the database that contains the PeopleCode that you want to
check.

2. Select the compile option to use.

Select Tools, Compile All PeopleCode or Tools, Compile Project PeopleCode.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 293

3. Click Compile in the Compile All PeopleCode dialog box.

Errors appear in the PeopleCode log display window.

Note. If you specified a log file in the debugger log options, then all errors are written to the log file as
well.

Setting PeopleCode Debugger Log Options

Use the PeopleCode debugger to view PeopleCode that is executed while you step through your application.
Select Debug, Log Options to access the PeopleCode Log Options dialog box.

PeopleCode Log Options dialog box

All log information appears in the PeopleCode log window, at the bottom of Application Designer.

Debugging Your Application Chapter 15

294 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode log window

You can record what you see in a log file. Also, you can tailor the log results to record a variety of online
information.

If you exit debug mode but do not close Application Designer, all the log options that you specified are still
there when you start debug mode again.

When you close the Application Designer, all log options are clear. The next time you enter debugging mode,
you must reselect debug log options.

See Chapter 15, "Debugging Your Application," Interpreting the PeopleCode Debugger Log File, page 295.

All the options available in the Log Options dialog box are also available in PeopleSoft Configuration
Manager, on the Trace tab, in the PeopleCode Trace section.

Execution Trace Options

Execution trace is set to trace each PeopleCode statement. You can also trace the start of each program or
each program instruction.

Data Trace Options

This table describes the data trace options:

Option Description

Assignments Records each assignment made to a field.

Fetches Records the field values retrieved from a PeopleCode
fetch.

Stack Indicates the contents of the internal machine stack.
Typically, only PeopleSoft staff developing PeopleCode
language enhancements use this option.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 295

Call Trace Options

The call trace options, described in the following table, enable you to record the values of external calls,
internal calls, returns, and function parameters.

Option Description

External calls Traces each call to external (PeopleCode) functions.

Internal calls Records each call to internal subroutines.

Returns Logs the occurrence of program returns.

Function parameters Logs the value of individual PeopleCode function
parameters.

Log To File

When you select this option, you must specify the name of a file, or you receive an error and logging to file is
disabled.

If you do not specify a directory location, the file is placed in the same directory from which you are running
PeopleTools.

If you specify the name of an existing file, a warning message appears, asking you whether to overwrite the
file. You must go back into the Log Options dialog box and specify a different file name; otherwise, the log
file is overwritten.

If you do not exit Application Designer before running a different application, each trace is appended to the
specified log file.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleSoft Configuration
Manager," Specifying Trace Settings

Interpreting the PeopleCode Debugger Log File

You can produce a trace log using any of the following methods:

• Using the Log File option in the PeopleCode debugger.

• With the PeopleSoft Configuration Manager Trace tab.

• Using the SetTracePC and SetTraceSQL built-in functions.

Debugging Your Application Chapter 15

296 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• With PeopleTools utilities (included for backward compatibility purposes only and should not be used).

All trace files except those produced using the Log File option contain timing information, such as when each
line started processing and how long it took to execute.

The Log File option writes to a file that you specify. The log file produced by the other options is specified by
the PeopleTools Trace File option in PeopleSoft Configuration Manager. All of these options write to the
same file.

Trace files are also produced by Application Engine. These logs may contain more information.

This section discusses:

• Log file contents.

• Other items in the log file.

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Using PeopleTools Utilities," Using
Debug Utilities

Log File Contents

The log file contains information useful for debugging PeopleCode.

You can view the log using any editor that displays ASCII text, such as Notepad. The log file has the
following components.

Line Count Specifies a line number in the file.

Internal Information Contains reference numbers used for internal tracing. You can ignore this
information.

Instruction Location Address of an instruction processed in the program. You can follow
programs and functions using this number.

Operation Code Indicates the operation performed by the program.

Operation Operands Contains information specific to each operation. The following table lists
the possible operations and the operands that appear for the list and trace
options.

Other Items in the Log File

The following table describes other items that can appear in a debugging trace:

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 297

Trace Item Description

Store Field:record name.field name Value=xx Issued when the assignments trace option is selected. It
contains the record and field names and the value that is
stored.

Fetch Field:recordname.fieldname Value=xx Issued when the Fetch Field option is selected. It
contains the record and field name and the value that is
retrieved.

Fetch Field:recordname.fieldname Contains Null Value Issued when the Fetch Field option is selected and the
selected record.field contains a null value.

Fetch Field:recordname.fieldname Does Not Exist Issued when the Fetch Fields option is selected and
when the field is not found.

Branch Taken Displayed after a branch test when the branch is taken.

Field Not Found, Statement Skipped Displayed whenever a referenced field was not found
error causes the PeopleCode processor to skip to the
next statement.

vvvvvv PeopleCode Program Listing Issued when the List Program option is selected. It
marks the beginning of a PeopleCode program listing.

^^^^^ PeopleCode Program Listing End Issued when the List Program option is selected. It
marks the end of a PeopleCode program listing.

Error Return -> NNN Issued when a fatal error condition terminates the
PeopleCode program.

Using Application Logging

Application logging enables you to do error logging using an independent application log fence mechanism. It
also enables you to write to the PeopleTools log using the WriteToLog built-in function.

Note. This is an application log fence, and it is distinct from the PeopleTools LogFence setting.

In PeopleTools, a log fence is a type of barrier. Application error messages are only written to the
PeopleTools log if the log fence setting that the messages are written to the log with (using WriteToLog) is
less than or equal to the current application log fence setting (AppLogFence) in the application server
configuration file (PSAPPSRV.CFG).

Debugging Your Application Chapter 15

298 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

For example if the AppLogFence setting is 2, only messages written using the WriteToLog function with a
log fence value less than or equal to 2 will be written. This allows you to have application logging code
written in your application that will only be in effect if the log fence setting permits.

The application log fence setting is available through the system variable %ApplicationLogFence.

Apart from the obvious use of allowing the application to write to the Tools log file, this mechanism is also
an aid in debugging. For example, you could interleave PeopleCode, SQL, and application level tracing in the
same log file to easily correlate application and PeopleTools actions.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions,"
WriteToLog

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "System Variables,"
%ApplicationLogFence

Setting the Application Log Fence in the Configuration File

The application log fence default is %ApplicationLogFence_Level1 (3). If you want to use this setting, you
need to place it in the application server configuration file (PSAPPSRV.CFG.) The setting is dynamic change
enabled; that is, if its value is changed in the file, then the new value will be used. As the following example
illustrates, the AppLogFence setting must be in the PSTOOLS section. If you add this setting, your
configuration file can look like this:

[PSTOOLS]
;==
; General settings for PSTOOLS
;==
AppLogFence=1

See Also

PeopleTools 8.51 PeopleBook: System and Server Administration, "Setting Application Server Domain
Parameters," PSAPPSRV Options

Using the Log Fence with PeopleSoft Analytic Calculation Engine

If you set the application log fence to 3 or above, all the detailed messages created on the analytic server to be
sent back to the application server are also logged in the analytic server log file.

In addition, if you set the application log fence to 4 or above, all tracing information is logged to the analytic
server log file.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 299

Using the Find In Feature

Use the Find In feature of Application Designer to search for strings, either in PeopleCode programs or in
SQL definitions. This feature searches:

• All PeopleCode programs and all SQL statements.

• Only PeopleCode programs.

• Only SQL statements.

• Only HTML definitions.

• Only freeform stylesheets.

• SQL injection in PeopleCode.

The following example shows the Find In dialog:

Example of Find In dialog showing options for Find Type

You can further refine your search by specific project. If you are searching PeopleCode programs and SQL
statements, you can specify if you want record PeopleCode, page PeopleCode, menu PeopleCode, and so on.

All output from the search is placed in an output window. You can save these results to a file, copy them,
clear them, or print them.

Debugging Your Application Chapter 15

300 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

From the output window, you can immediately open any of the PeopleCode programs, SQL statement,
HTML definitions, or freeform stylesheets listed. You also can insert selected definitions into a project from
the output window. Then, if you need to search those definitions again, you can search by project.

Note. To create a file that contains all the PeopleCode for a project (or database) you can use the Find In
feature and search for ;. Be sure to select Save PeopleCode to File.

To find a text string:

1. In Application Designer, select Edit, Find in.

The Find In dialog box appears.

2. Type the string that you want to find in the Find What edit box.

If you want only those items that match the case of what you entered, select the Match Case check box at
the bottom of the dialog box.

3. Specify with the Find Type edit box whether you are searching in PeopleCode and SQL, just PeopleCode,
just SQL, HTML definitions, or freeform stylesheets..

4. Select the project to search.

You can search the entire database or any existing project.

5. (Optional) Select the view to search.

If you decide to not search the entire database, you can specify if you want to search the Development
view or the Upgrade view. The default is the Development view.

6. Select the items to search.

You can search all items that contain either PeopleCode or SQL, or a subset of items.

Note. When you select a Find Type of Text String in HTML the Search check box list is empty. The
search is conducted against all HTML definitions.

Similarly, when you select a Find Type of Text String in Freeform Stylesheets the Search check box list is
empty. The search is conducted against all freeform stylesheets.

7. (Optional) Save the search results to a file.

You can save the results of a PeopleCode search to a text file, which you can view or print using a text
editor or word processor. The text file contains the entire PeopleCode program that contained the string.

To save your results to a file, select the Save PeopleCode to File check box at the bottom of the dialog
box. The results are saved to the file, and appear in the Application Designer Find In output window.

This option is not available when searching SQL, HTML, or freeform stylesheets.

8. Click the Find button to start the search.

As the Find In feature searches the database, it displays a counter at the bottom of the Find In dialog box
indicating the number of PeopleCode programs searched.

You can click the Cancel button to stop the process.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 301

9. Check the Find in tab on the output window for results.

The results of the search appear in the Find In tab of the output window. Each line shows where the string
was found. You can open any of the programs listed by double-clicking a line in the output window.

The following example shows the Find In tab of an output window:

Opening a PeopleCode program from the Find In tab

To save records, you select them in the output window, as shown in the following example:

Find In output window with definitions selected

To save definitions in a project:

1. Use the Find In feature to search for a string.

2. Press the Shift key while selecting the references to save in the output window.

3. Right-click the highlighted definitions and select Insert Into Project.

All the selected definitions are inserted into the current open project.

4. Save your project.

The following example shows the Insert Into Project option:

Debugging Your Application Chapter 15

302 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Example of Find In pop-up menu

The next time you search, you can search only your project (select a project in the Find In dialog box) instead
of searching the entire database.

Searching for SQL Injection

SQL injection is a technique that enables users to pass SQL to an application that was not intended by the
developer. Opportunities for SQL injection are usually created when developers use string-building
techniques to generate SQL that is subsequently executed.

Search PeopleCode for SQL injection vulnerabilities.

See Also

Chapter 16, "Improving Your PeopleCode," Searching PeopleCode for SQL Injection, page 320

Using Cross-Reference Reports

If a field value changes and you do not know how it changed, you can find all references to a field using:

• The Find References option in Application Designer.

• Cross-reference reports.

See PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Working With
Projects."

PeopleTools is delivered with these PeopleCode cross-reference reports:

• XRFFLPC.

Reports on all fields in the system referenced by other PeopleCode programs. The report sorts by record
names and field names. XRFFLPC shows the records, fields, and PeopleCode program types that
reference each field.

Chapter 15 Debugging Your Application

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 303

• XRFPCFL.

Reports on the fields that each program references. It sorts the report by record definition, field name, and
PeopleCode type. It shows the records and fields referenced for each program. This report and XRFFLPC
complement each other by using converse approaches to reporting the cross references.

• XRFPNPC.

Reports on pages with PeopleCode. This report shows pages containing fields with PeopleCode attached
to them.

You can run these reports using PeopleSoft Query and either view the reports online or print them. You can
also download them to a Microsoft Excel spreadsheet. The following example shows an XRFPNPC report:

Example of XRFPNPC PeopleSoft Query results

See Also

Enterprise PeopleTools 8.51 PeopleBook: PeopleSoft Query, "PeopleSoft Query Preface"

PeopleTools 8.51 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Running PeopleTools
Cross-Reference Reports"

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 305

Chapter 16

Improving Your PeopleCode

Developer changes can affect how a user interacts with a page. Slow performance and screen flicker, which
occurs whenever the screen refreshes after a server trip, are significant issues for users.

This chapter discusses how to:

• Reduce server trips.

• Use better coding techniques for improved performance.

• Write more efficient code.

• Search PeopleCode for SQL injection.

Reducing Trips to the Server

This section discusses how to:

• Count server trips.

• Use deferred mode.

• Hide and disable fields.

• Use the Refresh button.

• Update totals and balances.

• Use warning messages.

• Use the fastest algorithm.

Server trips are bad for performance. Each server trip consumes resources on the application server, slows
down the user data entry, and can affect type ahead. Whenever you see an hourglass as you move between
fields on a page, it is because the browser is waiting for a server trip to complete.

The larger the component's buffer (based on the number of record definitions accessed, the number of fields
in each record, and the number of rows in each grid or scroll area for each record), the longer each round trip
to the server, because of the increased server processing.

Deferred mode reduces the user's time to complete the transaction and conserves application server resources.

The following user interactions cause a trip to the server. Only the first three items in the list are deferred in
deferred processing mode.

Improving Your PeopleCode Chapter 16

306 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Entering data in fields with FieldEdit or FieldChange PeopleCode.

• Entering data in fields that have prompt table edits.

• Entering data in fields that have related displays.

• Inserting a row in a grid or scroll area.

• Deleting a row from a grid or scroll area.

• Using grid or scroll area controls to move forward or back.

• Accessing another page in the component.

• Selecting an internal tab.

• Expanding or collapsing a collapsible section.

• Clicking a button or link.

Each trip goes through the same process of checking security, unpacking the buffers that store the data being
processed, processing the service request, generating the HTML for the page to be redisplayed, packing
updated buffers, and storing the buffers on the web server. To maximize online performance, minimize server
trips.

Counting Server Trips

Count the trips to the server to quickly identify transactions that have performance issues. PeopleTools can
automatically count these trips by reason (such as, adding a row in a grid or FieldChange PeopleCode) and
write the output to a log file.

To turn this feature on, run a debug version of PeopleTools and add the following to the [trace] section of the
appserv.cfg file:

showcounters = 1

The output is written to the appsrv.log file.

Using Deferred Mode

Keep components in deferred mode and enable fields for interactive mode only if there is a strong business
case.

For every field on the component to run in deferred mode, Deferred mode must be selected at the component
level, Allow Deferred Processing must be selected for each page in the component, and Allow Deferred
Processing must be selected for each field.

PeopleSoft recommends that you continue to code field edits in FieldEdit PeopleCode and field change logic
in FieldChange PeopleCode, but set this logic to run in deferred mode. You do not need to move field edits to
SaveEdit.

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 307

Hiding and Disabling Fields

Avoid using FieldChange PeopleCode to hide, unhide, enable, or disable elements on the same page, unless
the element is triggered by a separate button.

Hiding or unhiding objects and enabling or disabling objects should, as a general rule, be coded in either page
Activate PeopleCode or, for objects that are on another page in the component, in FieldChange PeopleCode.

Perform cross-validation edits to prevent invalid data combinations from being written to the database for
fields that previously would have been hidden or unavailable. If unhiding fields that were previously hidden
or unavailable results in making the page confusing, consider designing a longer page so that users can easily
associate related fields.

You can hide or unhide objects or set them to display-only in page Activate PeopleCode before the page
initially appears based on setup data, configuration options, or personalization settings. You can set fields to
display-only using PeopleCode by setting the DisplayOnly property for the field to True.

You can hide or unhide fields on another page, or set the fields to display-only, based on the value that a user
enters in a field on the current page, as long as that component or field is set up to run in deferred processing
mode. In some cases, it may make sense to split transactions across pages to achieve progressive disclosure.

Using the Refresh Button

The Refresh button gives users control of their environment. Clicking the Refresh button forces a trip to the
server. PeopleTools then redisplays the page in the browser. The refresh action allows the user to:

• See related display field values for the data entered so far.

• See any default values based on data entered previously on the page.

• Validate the data that has been entered on the page so far.

When the page is redisplayed, the cursor is positioned in the same field it was when the user pressed the
Refresh button.

Note. The Refresh button does not refresh the page from the database. It simply causes a server trip so that
any deferred PeopleCode changes are processed. If no deferred changes exist or the deferred changes do not
cause any errors or other changes on the page, it may appear to the user as if nothing has happened.

Fields on derived work records are not updated if the user clicks the Refresh button.

Updating Totals and Balances

In some pages, totals or balances appear based on data entered into a grid or scroll area. This process should
work in deferred mode also, showing the totals or balances as of the last trip to the application server.

Continue to keep any accumulation and balancing logic in FieldChange PeopleCode, but run the field in
deferred mode. Users can click the Refresh button at any time to see the latest totals based on the data
entered. Totals and balances in deferred mode are always updated and displayed after any trip to the
application server.

Improving Your PeopleCode Chapter 16

308 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Using Warning Messages

In deferred mode, FieldEdit PeopleCode errors and warnings do not appear when a user moves out of the
field, but rather on the next trip to the server. This next trip might not occur until the user enters all the data
and clicks the Save button.

For FieldEdit error messages running in deferred mode, PeopleTools changes the field to red and positions
the cursor to the field in error when it displays the message. This behavior allows the user to associate the
error message with a specific field.

For warning messages, however, PeopleTools does not change the field to red or position the cursor. For a
user to clearly understand to which field a warning message applies, ensure that warning messages clearly
describe the fields affected by the warning.

For example, the warning message "Date out of range" would be confusing if there are seven date fields on
the page, since a user could not easily determine which date field needed to be reviewed. Instead, you could
include bind variables in the message to show which dates are out of range.

Using the Fastest Algorithm

You should determine which algorithms perform the best and have the smallest elapsed time. Tracing does
not provide subsecond level of timing information. Plus, tracing imposes a higher overhead to the runtime
environment, which skews the elapsed time reading.

However, you can use the %PerfTime system variable for determining elapsed time. %PerfTime retrieves the
local system clock time by making a system call, and the return time is down to the millisecond.

The following example of %PerfTime determines how long a program takes to execute:

 &Start = %PerfTime;
 &results = "";
 For &I = 1 To &Count;
 &GnnwgNumber = GetNextNumberWithGapsCommit(QEORDER_DTL.QE_QTY, 999999, 1,⇒
 "where QE_ORDER_NBR='GNNWG'");
 &results = &results | " : " | &GnnwgNumber;
 End-For;

 &End = %PerfTime;
 &out = "Count = " | &Count | ", total GNNWG time (s) = " | NumberToString⇒
("%6.3", Value(&End - &Start));

Using Better Coding Techniques for Improved Performance

This section discusses how to:

• Run a SQL trace.

• Optimize SQL.

• Use the GetNextNumberWithGaps function.

• Consolidate PeopleCode programs.

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 309

• Move PeopleCode to a component or page definition.

• Send messages in the SavePostChange event.

• Use metadata and the RowsetCache class.

• Setting MaxCacheMemory

Running a SQL Trace

Run a SQLTrace and review the transaction for SQL statements that have a long processing time.

The duration column (Dur=) in a SQL trace displays this information. If the duration is greater than 100
milliseconds, you may be able to make this SQL statement run faster. Work with your database administrator
to tune the SQL.

Optimizing SQL

A simple join optimizes SQL more effectively than issuing two related SQL statements separately.

However, if your transaction requires a complex SQL statement (for instance, one that uses correlated
subqueries), consider breaking it up into multiple SQL statements. You may get more predictable
performance this way.

Using the GetNextNumberWithGaps Function

Many applications use a sequence number as a unique key. The last number used is stored in a common table,
and a SQL statement is issued to retrieve the last number used and update the table. This action locks the
common table until the whole transaction is saved and the unit of work committed.

Instead, consider using the GetNextNumberWithGaps PeopleCode function whenever gaps in the sequence
numbering are acceptable. The function retrieves the last number used, increments it by one, and updates the
common table. This action is done in a separate unit of work to minimize the time a database lock is held on
the common table.

GetNextNumberWithGaps issues a commit only when issued from the SavePreChange or Workflow event.

Consolidating PeopleCode Programs

Consolidate RowInit PeopleCode into one field within the record to reduce the number of PeopleCode events
that need to be triggered. Fewer PeopleCode programs results in fewer PeopleCode objects to manage. Do the
same for RowInsert, SaveEdit, SavePreChange, SavePostChange, and Workflow PeopleCode programs.

Moving PeopleCode to a Component or Page Definition

Analyze transactions and move PeopleCode that is specific to a component from the record definition to the
component or page definition. This action eliminates the need to execute conditional statements, such as If
%Component = .

Improving Your PeopleCode Chapter 16

310 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

This action helps only if you are able to move all the PeopleCode in a program from the record to a
component or page, and multiple components access that record.

Sending Messages in the SavePostChange Event

Messages sent online should always be coded in the SavePostChange event. To minimize the time that
PeopleTools maintains locks on single-threaded messaging tables, behind-the-scenes logic in the
SavePostChange event defers sending the message until just before the commit for the transaction.

Using Metadata and the RowsetCache Class

If your application uses data that is common, used by a number of users, and yet is fairly static, you may see a
performance improvement by using the RowsetCache class.

PeopleTools stores application data in a database cache to increase system performance. The RowsetCache
class enables you to access this memory structure, created at runtime, and shared by all users.

Note. Non-base language users may see different performance due to language table considerations.

See PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "RowsetCache Class."

Setting MaxCacheMemory

PeopleTools stores application data in a memory cache to increase system performance. However, too large a
cache can leave insufficient available memory on your system, which leads to reduced performance.

Use this setting to specify the maximum size of the memory cache. PeopleTools prunes the cache to keep it
within the specified size, and places the pruned data in a disk cache instead. Because using a disk cache can
also reduce performance, the default setting might not be optimal for your application. You can adjust this
setting to achieve the best trade-off between speed and available memory.

See PeopleTools 8.51 PeopleBook: System and Server Administration, "Setting Application Server Domain
Parameters," Cache Settings.

Writing More Efficient Code

Follow these steps to write more efficient PeopleCode:

1. Declare all variables.

One of the conveniences of PeopleCode is that you do not have to declare your variables before you use
them. The variable is assigned a type of ANY, taking on the type of the value it is assigned. However, if
you use this feature, you lose type-checking at compile time, which can lead to problems at runtime.

When you validate or save PeopleCode, watch for auto-declared messages and consider adding
declarations to your program.

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 311

2. Declare variable types specifically.

Most of the time, you know a variable's type, so you should declare the variable of that type when you
begin.

For example, if you know that a particular variable is going to be an Integer value, declare it to be Integer
in the first place. You can get much better runtime performance. It is particularly effective for loop
control variables but, since an integer has limited range (up to 9 or 10 digits), you must use it judiciously.

3. Watch references.

In PeopleCode function calls, parameters are passed by reference; a reference to the value is passed
instead of the value itself. If you are passing a reference to a complex data structure, such as a rowset
object or an array, passing by reference saves significant processing.

Watch out for unexpected results, though. In the following code, the function Test changes the value of
&Str after the function call.

Function Test(&Par as String)

&Par = "Surprise";
end-function;

Local String &Str = "Hello";
Test(&Str);
/* now &Str has the value "surprise" */

4. Put Break statements in your Evaluate statements.

In an Evaluate statement, the When clauses continue to be evaluated until an End-evaluate or a Break
statement is encountered.

If you have an Evaluate statement with a number of When clauses, and you only expect one of them to
match, put a Break statement following the likely clause. Otherwise, all the subsequent When clauses are
evaluated. Your program is still correct, but it is inefficient at runtime, particularly if you have a large
number of When clauses, and the Evaluate statement is in a loop.

Improving Your PeopleCode Chapter 16

312 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

5. Govern your state.

One of the key features in PeopleSoft Pure Internet Architecture is that the application server is stateless.
When required, the state of your session is bundled up and exchanged between the application server and
the web server.

For example, on a user interaction, the whole state, including your PeopleCode state, has to be serialized
to the web server. Then, once the interaction has completed, that state is deserialized in the application
server so that your application can continue.

To improve efficiency:

• Watch the size of PeopleCode objects that you create (strings, arrays, and so on) to make sure they are
only as big as you need them to be.

• For user interactions, you might be able to change the logic of your program to minimize the state.

For example if you are building up a large string (a couple of megabytes) and then performing a user
interaction, you might be able to change your program logic to build the string after the interaction.

• For secondary pages that are infrequently accessed but retrieve lots of data, consider setting No Auto
Select in the Application Designer for the grids and scroll areas on the secondary page, to prevent
loading the data the secondary page when the page buffers are initially built.

Then add the necessary Select method to the Activate event for the secondary page to load the data
into the grid or scroll area.

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 313

6. Isolate common expressions.

The PeopleCode compiler is not an optimizing compiler, unlike some current compilers for languages
such as C++. For example, the PeopleCode compiler does not do common subexpression analysis. So,
sometimes, if you have a complicated bit of PeopleCode that is used often, you can isolate the common
expression yourself. This isolation can make your code look cleaner and make your code faster, especially
if it is in a loop.

In this example, notice how the common subexpression is broken out:

/*---- For this customer, setup time on B is influenced by
 *---- the machine flavors of A. */
 &r_machine = &rs(&idB.GetRecord(Record.MACHINE_INFO);
 If (&typeA = "F") And (&typeB == "U") Then
 &r_machine.SETUP_TIME.Value = 50;
 Else
 &r_machine.SETUP_TIME.Value = 10;
 End-If;

The compiler has to evaluate each occurrence of the expression, even though it would only execute it
once.

Here is another example. Notice that once &RS and &StartDate are created, they can be used repeatedly
in the loop, saving significant processing time.

 &RS = GetRowset();
 &StartDate = GetField(PSU_CRS_SESSN.START_DATE).Value;
 For &I = 1 To &RS.ActiveRowCount
 &RecStuEnroll = &RS.GetRow(&I).PSU_STU_ENROLL;
 &Course = &RecStuEnroll.COURSE;
 &Status = &RecStuEnroll.ENROLL_STATUS;
 &PreReqStart = &RS.GetRow(&I).PSU_CRS_SESSN.START_DATE.Value;
 If &Course.Value = "1002" And
 (&Status.Value = "ENR" Or
 &Status.Value = "CMP") Then
 If &PreReqStart < &StartDate Then
 &Completed = True;
 Break;
 End-If;
 End-If;
 End-For;

7. Avoid implicit conversions.

The most common implicit conversion is from a character string to a number and vice versa. You might
not be able to do anything about this, but—by being aware of it—you might be able to spot opportunities
to improve performance.

In the following example, two character strings are converted into numeric values before the difference is
taken. If this code were in a loop and one of the values did not change, performance would improve
significantly by doing the conversion once, as the second statement illustrates.

 &Diff = &R1.QE_EMPLID.Value - &R2.QE_EMPID.Value;
&Original = &R1.QE_EMPLID.Value;
. . .
&Diff = &Original - &R2.QE_EMPID.Value;

Improving Your PeopleCode Chapter 16

314 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

8. Choose the right SQL style.

In certain cases, use SQLExec, as it only returns a single row. In other cases, you could benefit greatly by
using a SQL object instead, especially if you can plan to execute a statement more than once with
different bind parameters. The performance gain comes from compiling the statement once and executing
it many times.

For instance, code that uses SQLExec might look like this:

While (some condition)
 . . .set up &Rec
 SQLExec("%Insert(:1)", &rec);
/* this does a separate tools parse of the sql and db compile
of the statement and execute each time */
End-while;

The following code rewrites the previous example to use the new SQL object:

Local SQL &SQL = CreateSQL("%Insert(:1)");
While (some condition)
. . .Setup &Rec
&Sql.Execute(&Rec); /* saves the tools parse and db compile
on the SQL statement and the db setup for the statement */
end-while;

SQL objects also have the ReuseCursor property, which can be used for further performance gains.

See PeopleTools 8.51 PeopleBook: PeopleCode API Reference, "SQL Class," ReuseCursor.

9. Tighten up loops.

Examine loops to see if code can be placed outside the loop.

For example, if you are working with file objects and your file layout does not change, there is no reason
to set the file layout every time you go through the loop reading lines from the file. Set the file layout
once, outside the loop.

10. Set objects to NULL when they will no longer be accessed.

Once you are finished with an object reference, especially one with a global or component scope, assign it
to NULL to get rid of the object. This setting allows the runtime environment to clean up unused objects,
reducing the size of your PeopleCode state.

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 315

11. Improve your application classes

Simple properties (without get/set) are much more efficient than method calls. Be clear in your design
about what needs to be simple properties, properties with get/set, and methods. Never make something a
method that really should be a property.

Analyze your use of properties implemented with get/set. While PeopleCode properties are in a sense first
class properties with more flexibility in that you can run PeopleCode to actually get and set their values,
make sure you actually need get and set methods. If all you have is a normal property which is more of an
instance variable then avoid get/set methods. In the following example (without the strikethrough!) by
having get/set for the property SomeString you have made it much more inefficient to get/set that property
since every property reference has to run some PeopleCode. Often, this inneficiency can creep in when
properties are designed to be flexible at the beginning and never subsequently analyzed for whether
getters/setters were really needed after all.

class Test
...
property String SomeString get set;

end-class;

get SomeString
return &SomeString;
end-get;

set SomeString
&SomeString = &NewValue;
end-set;

Writing More Efficient Code Examples

These examples demonstrate more efficiently written code:

Improving Your PeopleCode Chapter 16

316 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

• Beware of the rowset Fill method. (Or, "What not to do in a Application Engine PeopleCode step.")

Sometimes you need to examine the algorithm you are using. The following example is a PeopleCode
program that adopts this approach: read all the data into a rowset, process it row by row, and then update
as necessary. One of the reasons this is a bad approach is because you lose the general advantage of set-
based programming that you get with Application Engine programs.

Local Rowset &RS;
Local Record &REC;
Local SQL &SQL_UPDATE;

&REC_NAME1 = "Record." | SOME_AET.SOME_TMP;
&RS = CreateRowset(@(&REC_NAME1));
&LINE_NO = 1;

&NUM_ROWS = &RS.Fill("WHERE PROCESS_INSTANCE = :1 AND BUSINESS_UNIT = :2 AND⇒
 TRANSACTION_GROUP = :3 AND ADJUST_TYPE = :4 ", SOME_AET.PROCESS_INSTANCE, SOME_⇒
AET.BUSINESS_UNIT, SOME_AET.TRANSACTION_GROUP, SOME_AET.ADJUST_TYPE);

For &I = 1 To &NUM_ROWS
 &REC = &RS(&I).GetRecord(@(&REC_NAME1));
 &REC.SOME_FIELD.Value = &LINE_NO;
 &REC.Update();
 &LINE_NO = &LINE_NO + 2;
End-For;

This code has the following problems:

• You might run out of memory in the Fill method if the Select gathers a large amount of data.

• The Fill is selecting all the columns in the table when all that is being updated is one column.

You can change this code to read in the data one row at a time using a SQL object or using a similar
algorithm, but chunking the rowsets into a manageable size through the use of an appropriate Where
clause.

The following are some approximate numbers you can use to see how large a rowset can grow. The
overhead for a field buffer (independent of any field data) is approximately 88 bytes. The overhead for a
record buffer is approximately 44 bytes. The overhead for a row is approximately 26 bytes. So a rowset
with just one record (row) the general approximate formula is as follows:

memory_amount = nrows * (row overhead + nrecords * (rec overhead + nfields * (field overhead) +
average cumulative fielddata for all fields))

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 317

• The following are some code examples to show isolating common expressions.

In this example, a simple evaluation goes from happening three times to just once–
&RS_Level2(&I).PSU_TASK_EFFORT. In addition, the rewritten code is easier to read.

Example of code before being rewritten:

Local Rowset &RS_Level2;

Local Boolean &TrueOrFalse = (PSU_TASK_RSRC.COMPLETED_FLAG.Value = "N");

For &I = 1 To &RS_Level2.ActiveRowCount
 &RS_Level2(&I).PSU_TASK_EFFORT.EFFORT_DT.Enabled = &TrueOrFalse;
 &RS_Level2(&I).PSU_TASK_EFFORT.EFFORT_AMT.Enabled = &TrueOrFalse;
 &RS_Level2(&I).PSU_TASK_EFFORT.CHARGE_BACK.Enabled = &TrueOrFalse;
End-For;

Example of code after being rewritten:

Local Boolean &TrueOrFalse = (PSU_TASK_RSRC.COMPLETED_FLAG.Value = "N");

For &I = 1 To &RS_Level2.ActiveRowCount
 Local Record &TaskEffort = &RS_Level2(&I).PSU_TASK_EFFORT;

 &TaskEffort.EFFORT_DT.Enabled = &TrueOrFalse;
 &TaskEffort.EFFORT_AMT.Enabled = &TrueOrFalse;
 &TaskEffort.CHARGE_BACK.Enabled = &TrueOrFalse;
End-For;

In the next example, the following improvements are made to the code:

Shorthand is used: &ThisRs(&J) instead of &ThisRs.GetRow(&J).

Eliminated all the autodeclared messages by declaring all the local variables. This action can improve
your logic and possibly give you better performance.

Notice the integer declaration. If you know your variables will fit in an integer (or a float), then declare
them that way. Runtime performance for Integers can be better than for variables declared as Number.

Fewer evaluation expressions.

Example of code before being rewritten:

Local Row &CurrentRow;
&TrueOrFalse = (GetField().Value = "N");
&CurrentRow = GetRow();
For &I = 1 To &CurrentRow.ChildCount
 For &J = 1 To &CurrentRow.GetRowset(&I).ActiveRowCount
 For &K = 1 To &CurrentRow.GetRowset(&I).GetRow(&J).RecordCount
 For &L = 1 To &CurrentRow.GetRowset(&I).GetRow(&J).GetRecord(&K).FieldCount
 &CurrentRow.GetRowset(&I).GetRow(&J).GetRecord(&K).GetField(&L).Enabled⇒
 = &TrueOrFalse;
 End-For;
 End-For;
 End-For;
End-For;

Example of code after being rewritten:

Improving Your PeopleCode Chapter 16

318 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Local Row &CurrentRow;
Local integer &I, &J, &K, &L;

Local boolean &TrueOrFalse = (GetField().Value = "N");
&CurrentRow = GetRow();
For &i = 1 To &CurrentRow.ChildCount
/* No specific RowSet, Record, or Field is mentioned! */
 Local Rowset &ThisRs = &CurrentRow.GetRowset(&i);

 For &J = 1 To &ThisRs.ActiveRowCount
 Local Row &ThisRow = &ThisRs(&J);

 For &K = 1 To &ThisRow.RecordCount
 Local Record &ThisRec = &ThisRow.GetRecord(&K);

 For &L = 1 To &ThisRec.FieldCount
 &ThisRec.GetField(&L).Enabled = &TrueOrFalse;
 End-For;
 End-For;
 End-For;
End-For;

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 319

• Concatenating a large number of strings into a large string. Sometimes you need to do this.

The simplest approach is to do something like:

&NewString = &NewString | &NewPiece;

In itself this is not a bad approach but you can do this much more efficiently using an application class
below.

class StringBuffer
 method StringBuffer(&InitialValue As string);
 method Append(&New As string) returns StringBuffer; // allows &X.Append⇒
("this").Append("that").Append("and this")
 method Reset();
 property string Value get set;
 property integer Length readonly;
 property integer MaxLength;
private
 instance array of string &Pieces;
end-class;

method StringBuffer
 /+ &InitialValue as String, +/

 &Pieces = CreateArray(&InitialValue);
 &MaxLength = 2147483647; // default maximum size
 &Length = Len(&InitialValue);
end-method;

method Reset
 &Pieces.Len = 0;
 &Length = 0;
end-method;

method Append
 /+ &New as String +/
 Local integer &TempLength = &Length + Len(&New);
 If &Length > &MaxLength Then
 throw CreateException(0, 0, "Maximum size of StringBuffer exceeded(" | &Max⇒
Length | ")");
 End-If;
 &Length = &TempLength;
 &Pieces.Push(&New);
 return %This;
end-method;

get Value
 /+ Returns String +/
 Local string &Temp = &Pieces.Join("", "", "", &Length);
 /* collapse array now */
 &Pieces.Len = 1;
 &Pieces[1] = &Temp; /* start out with this combo string */
 Return &Temp;
end-get;

set Value
 /+ &NewValue as String +/
 /* Ditch our current value */
 &Pieces.Len = 1;
 &Pieces[1] = &NewValue; /* start out with this string */
 &Length = Len(&NewValue);
end-set;

Improving Your PeopleCode Chapter 16

320 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Use this code as follows:

Local StringBuffer &S = create StringBuffer("");

....
&S.Append(&line);

/* to get the value of string simply use &S.Value */

Searching PeopleCode for SQL Injection

SQL injection is a technique that enables users to pass unintended SQL to an application. SQL injection is
usually caused by developers who use string-building techniques to generate SQL that is subsequently
executed.

PeopleSoft recommends you search your PeopleCode for SQL injection vulnerabilities.

To search for potential SQL injection vulnerabilities:

1. Open Application Designer.

2. Select Edit, Find In. .

3. From the Find In dialog box, select SQL Injection in PeopleCode as the find type.

Only potential vulnerabilities will be found.

4. Review flagged PeopleCode programs.

Vulnerable PeopleCode programs allow unvalidated user input concatenated to SQL.

See Chapter 15, "Debugging Your Application," Using the Find In Feature, page 299.

The following functions and methods provide a way for SQL to be submitted to the database; they are,
therefore, subject to SQL injection vulnerabilities:

• SQLExec function

• CreateSQL function

• Rowset class Select method

• Rowset class SelectNew method

• Rowset class Fill method

• Rowset class FillAppend method

Look at the following PeopleCode as an example:

rem Retrieve user input from the name field;
&UserInput = GetField(Field.NAME).Value;
SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='"
| &UserInput | "'", &Name, &Phone);

Chapter 16 Improving Your PeopleCode

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 321

The code is meant to enable the user to type in a name and get the person's phone number. In the example, the
developer expects that the user will input data such as Smith, in which case the resulting SQL would look like
this:

SELECT NAME, PHONE FROM PS_INFO WHERE NAME='Smith'

However, if the user specified "Smith' OR AGE > 55 --", the resulting SQL would look like this:

SELECT NAME, PHONE FROM PS_INFO WHERE NAME='Smith' OR AGE > 55 --'

Note the use of the comment operator (--) to ignore the trailing single quotation mark placed by the
developer's code. This would allow a devious user to find everyone older than 55.

Preventing SQL Injection

Use the following approaches to avoid SQL injection vulnerabilities:

• Where possible, avoid using string-building techniques to generate SQL.

Note. String-building techniques cannot always be avoided. String-building does not pose a threat unless
unvalidated user input is concatenated to SQL.

• Use bind variables where possible rather that string concatenation.

The following example is vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
&UserInput | "'", &Name, &Phone);

• Use the Quote PeopleCode function on the user input before concatenating it to SQL.

This pairs the quotation marks in the user input, effectively negating any SQL injection attack.

The following example is vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
&UserInput | "'", &Name, &Phone);

This example is not vulnerable:

SQLExec("SELECT NAME, PHONE FROM PS_INFO WHERE NAME='" |
Quote(&UserInput) | "'", &Name, &Phone);

• Specify whether SQL errors appear to the user with the Suppress SQL Error setting in the PSTOOLS
section of the application server configuration file. Normally, the SQL in error appears to the user in a
number of messages. If you consider this a security issue, add the following line to your application server
config file:

Suppress SQL Error=1

When this line is set, SQL errors do not display details; instead, they refer the user to consult the system
log. The detail that was in the SQL message is written to the log file.

Improving Your PeopleCode Chapter 16

322 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

See Also

PeopleTools 8.51 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in Functions," Quote

PeopleTools 8.51 PeopleBook: System and Server Administration, "Setting Application Server Domain
Parameters," PSTOOLS Options

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 323

Appendix A

PeopleCode Editor Short Cut Keys

This appendix lists the short cut keys available in the PeopleCode Editor.

Short Cut Keys in the PeopleCode Editor

The following table lists all the short cut keys available in the PeopleCode Editor.

Note. The short cut keys for Application Designer are not listed.

Key Description

Ctrl-A Select all

Ctrl-C Edit copy

Ctrl-F Edit find

Ctrl-H Edit replace

Ctrl-L Line cut

Shift-Ctrl-L Line delete

Ctrl-U Selection lowercase

Shift-Ctrl-U Selection uppercase

Ctrl-V Paste

Backspace Backspace and delete characters

Alt-Backspace Edit undo

Ctrl-Backspace Delete to start of word

Shift-Alt-Backspace Edit redo

Delete Delete

PeopleCode Editor Short Cut Keys Appendix A

324 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Key Description

Ctrl-Delete Delete to next word

Shift-Delete Edit cut

↓ (down arrow) Line down

Ctrl-↓ Scroll window down one line

Shift-↓ Line down with selection

End Position cursor at end of line

Ctrl-End Position cursor at end of file

Shift-End Select to end of line

Shift-Ctrl-End Select to end of file

Enter New line

Esc (escape) Clear selection

F2 Next bookmark

Ctrl-F2 Toggle bookmark off and on

Shift-F2 Previous bookmark

Shift-Ctrl-F2 Remove all bookmarks

F3 Find next

Shift-F3 Find previous

F5 Go (Debug)

F8 Step (Debug)

F9 Toggle debug breakpoint

Atl-F9 Edit breakpoints (Debug)

Ctrl-F9 Break at start (Debug)

F10 Step over (Debug)

Home Position cursor to first character of line

Appendix A PeopleCode Editor Short Cut Keys

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 325

Key Description

Ctrl-Home Position cursor to start of file

Shift-Home Select to start of line

Shift-Ctrl-Home Select to start of file

Insert Toggle insert mode

Ctrl-Insert Copy

Shift-Insert Paste

← (left arrow) Position cursor left one character

Ctrl-← Position cursor left one word

Shift-← Select one character left of cursor

Shift-Ctrl-← Select next word left of cursor

Page Down Page down

Page Up Page up

→ (right arrow) Position cursor right one character

Ctrl-→ Position cursor right one word

Shift-→ Select one character right of cursor

Shift-Ctrl-→ Select next word right of cursor

Tab Tab

Shift-Tab Back tab

↑ (up arrow) Line up

Ctrl-↑ Scroll window up one line

Shift-Ctrl-W Select word

Ctrl-X Edit cut

Ctrl-Y Edit redo

Ctrl-Z Edit undo

PeopleCode Editor Short Cut Keys Appendix A

326 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

Key Description

Shift-Ctrl-Z Edit redo

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 327

Symbols
@ operator 35
%Mode system variable 107, 111
%PerfTime system variable 308

A
Activate event 131, 239, 307
AddAttachment function 204

problems with uploading files 226
virus scanning 220

add modes
processing component builds 115
search processing for components 108

algorithms
processing pages with multiple scroll areas

142
using the fastest 308
using the rowset Fill method 316

AllowEmplIdChg function 150
alternate search keys

saving fields 50
searching in update modes 105

analytic server
using log fence settings 298

API
COBOL SQL (PTPSQLRT) 185

APIObject
scope restrictions 9

APIobject datatype 29
Application class 39
application classes

Application class 39
deleting 272
editing 273
improving 315
inserting 272
printing/viewing PeopleCode 272
renaming 272
separating out functionality 17

Application Designer
accessing PeopleCode associated with

definitions 92, 230
compiling all PeopleCode programs 292
copying definitions containing PeopleCode

programs 241
creating application packages 271
creating SQL definitions 263
exiting debug mode 288
finding all references to a field 302
generating file templates 259
generating PeopleCode for business

interlinks 258
generating PeopleCode for component

interfaces 258
navigating between PeopleCode programs

243
PeopleCode Debugger

See Also PeopleCode Debugger
populating HTML areas 147
using PeopleCode Editor

See Also PeopleCode Editor
using the field object Style property 146
using the Find In feature

See Also Find In feature
validating PeopleCode syntax 249
viewing PeopleCode log information 293

Application Engine
programs

See Also Application Engine programs
using the CallAppEngine function 162

Application Engine programs
accessing default state records 88
accessing SQL Editor 265
executing 183
running PeopleCode programs 89

Application logging
using 297

application package definitions
creating 271
functionality associated with PeopleCode

Editor 2
printing 272
viewing 269

Application Package Editor
editing classes 273
understanding 269
using the window 272

application packages
creating 271
definitions

See Also application package definitions
deleting 272
editing See Also Application Package Editor
inserting 272
naming 270
renaming 272
understanding 269

application server
configuration file AppLogFence setting 297
enabling tracing 225

application servers
calling DLL functions 150
configuring multiple for file attachments 218
governing the state 312
system edits 117

application subpackages 269, 270
AppLogFence 297
assignment statements 11
asynchronous processes 185
attachment functions

AddAttachment 204
architecture 207
CleanAttachments 205
configuring virus scanning 221
CopyAttachments 205
copying with 223
debugging problems 223
DeleteAttachment 205
DetachAttachment 204
developing applications 211

Index

328 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

enabling virus scanning 220
GetAttachment 204
logging virus scans 221
overview 203
PutAttachment 204, 217
sample application 215
storage locations 209
ViewAttachment 204

ATTACHSYSFILENAME
in file reference tables 214

ATTACHSYSFILENAME field 213
ATTACHUSERFILE

in file reference tables 214

B
BIDocs objects

data type restrictions 8
bind variables 321
Boolean

constants 20
operators 36
value for comparison operators 35

branching statements 12
breakpoints

abnormal terminations 291
editing/removing 289
locating 278, 286
saving 288

Breakpoints dialog box 289
browsers

default processing for fields 118
system edits 117

buffer fields
accessing in the component buffers 48
contextual reference processing order 52
current context 51
referencing 59, 62
resolving reference ambiguity 54
using contextual references 54

buffers
component See Also component buffers
data See Also data buffer
fields See Also buffer fields

build process
building strings to generate SQL 321
processing component builds in add modes

115
processing component builds in update

modes 111
using the PostBuild/PreBuild events 134

business interlinks 258
buttons

PeopleCode Editor 247
processing for components 100, 123
processing in deferred mode 128

C
CallAppEngine function 162, 183
call stack

monitoring 290
character strings

avoiding implicit conversions 313

chunk size 223
classes

Application 39
data buffer See Also data buffer classes
Field 67
Grid 131
instantiating objects 40
Record 67, 160
Row 67
Rowset 67
SQL 160
style sheets 146
understanding 39

CleanAttachments function 205
COBOL programs, executing remotely

See Also RemoteCall feature
colors

coding in PeopleCode Editor 255
indicating field edit errors 99

COM 259
comments

understanding 9
comparison operators 35
component buffers

accessing data buffers See Also data buffers
accessing secondary page data 87
contextual reference processing order 52
referencing scroll levels, rows and buffer

fields 59
resolving ambiguous references with objects

55
resolving buffer field reference ambiguity 54
understanding 1
understanding contents 47
understanding current context 51
understanding rowsets 68
understanding server trips 305
using contextual buffer field references 54
using contextual row references 53
using record fields 50
using rowsets and scroll areas 49
using scroll path syntax 56
verifying correct data is loading 286
viewing in PeopleCode Debugger 291

component interfaces
generating PeopleCode templates 258
restricted events/functions 161
user-defined methods 89

component object model (COM) 259
component processor

Activate event 131
default processing 102, 118
deferred mode See Also deferred mode
events inside flow 90
events outside flow 89
event terminology 130
FieldChange event 131
FieldDefault event 132
FieldEdit event 132
FieldFormula event 133
issuing errors/warnings 182
ItemSelected event 133
PrePopup event 134
processing build in add modes 115
processing build in update modes 111
processing buttons 123
processing field modifications 116
processing page start/display 97

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 329

processing pages with multiple scroll areas
142

processing PeopleSoft Pure Internet
Architecture 127

processing pop-up menu display/item-
selection 124

processing prompts 123
processing row deletions 121
processing row inserts 119
processing save actions 125
processing user actions 98
RowDelete event 135
RowInit event 135
RowInsert event 136
RowSelect event 138
row select processing 112
SaveEdit event 138
SavePostChange event 139
SavePreChange event 139
SearchInit event 140
search processing in add modes 108
search processing in update modes 104
SearchSave event 141
understanding 89
understanding the event order 93, 100
using PostBuild/PreBuild events 134
Workflow event 142

component record field program 92
component record program 92
components

accessing component PeopleCode 239
accessing component record field

PeopleCode 236
accessing component record PeopleCode 238
component-level default processing 103
component-related programs 92
component buffers

See Also component buffers
component processor

See Also component processor
list of events 92
moving programs from record definitions to

component definitions 309
saving 138
understanding component PeopleCode 239
understanding component record field

PeopleCode 236
understanding component record PeopleCode

237
using deferred mode 306
using modal transfers

See Also modal transfers
variables See Also component variables

component variables
monitoring 290
understanding 27

composite objects 42
conditional statements 12
constants 19
contextual references

processing order 52
resolving buffer field reference ambiguity 54
understanding 51
using buffer field references 54
using row references 53

CopyAttachments
considerations when using 218

CopyAttachments function 205

Copy File Attachments page 223
copying

file attachments 223
CopyTo method 175
Create functions 41
CreateRecord function 77, 87
CreateRowset function 87
cross-reference reports 302
C templates 259
current context

creating records/rowsets 87
instantiating objects 59
understanding 51, 85
using buffer field references 54
using row references 53

CurrentRowNumber function 64
cursors

positioning in PeopleCode Editor 323
setting to specific fields 138
using dedicated 168

D
database records

overview, as storage locations 209
databases

accessing during transactions 287
creating a file containing all PeopleCode 287

data buffer access
data types 7

data buffer classes
accessing secondary component buffers 87
creating objects (example) 72
current context 85
data model 68
hidden work scroll example 84
page structure example 69
understanding 67

data buffers
accessing 67
classes See Also data buffer classes
instantiating objects 41
traversing the hierarchy (example) 78
understanding 1

data types
APIObject 9
conventional 6
data buffer access 7
display 7
iScript 8
miscellaneous 8
object 7, 169
understanding 5
using Float, Integer and Number 6

date operators 34
debugging

counting server trips 306
debug mode See Also debug mode
file attachment problems 223
PeopleCode Debugger

See Also PeopleCode Debugger
using application logging 297

debug mode
exiting 288
setting PeopleCode log options 294
understanding 279

Index

330 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

decimal precision
using Float, Integer and Number data types 6

Declare function 185
dedicated cursors 168
default processing 102
deferred mode

reducing server trips 305
understanding 127
updating totals/balances 307
using 306
using errors/warnings 308
using the multi-row insert feature 166

definitions
accessing definitions containing PeopleCode

253
accessing PeopleCode associated with

92, 230
application package

See Also application package definitions
business interlink 258
classes See Also classes
component interface 258
copying definitions containing PeopleCode

programs 241
file layout 259
function 16
generating PeopleCode references to 257
HTML See Also HTML definitions
image 167
name references 19, 23
navigating programs associated with 245
page See Also page definitions
record See Also record definitions
referencing via strings 35
SQL See Also SQL definitions
understanding events 229
using PeopleCode Editor 243

DeleteAttachment function 205
derived/work records See work records
DetachAttachment function 204

problems with downloading files 226
display

data types 7
DLL functions, calling 150
DoModalComponent function 165
DoModal function 287
DoModal window 287
DoSave function 160
downloading

problems with 226
drop-down list boxes in deferred mode 128
dynamic link library (DLL) functions, calling 150
dynamic links

libraries (DLL) 150
running applications on the PeopleSoft portal

145

E
edit boxes

associating with derived/work fields 164
using for HTML tree pages 188

editors
Application Package Editor

See Also Application Package Editor
PeopleCode Editor

See Also PeopleCode Editor
SQL Editor See Also SQL Editor

enabling
tracing on the application server 225
tracing on the web server 224

EndModalComponent function 166
error messages

passing 227
errors

avoiding in events 159, 182
compiling all PeopleCode programs 292
data failure for system edits 118
debugging file attachment problems 223
debugging PeopleCode

See Also PeopleCode Debugger
deleting rows 122
displaying SQL errors to users 321
function name conflicts 18
save processing events 126
understanding 180
understanding RemoteCall errors 184
using in deferred mode 308
using in edit events 180
using in FieldEdit events 118, 132
using in PreBuild events 134
using in RowDelete events 182
using in RowSelect events 181
using in SearchSave events 141
using syntax 180
using the Error statement 138
validating PeopleCode syntax 249

Evaluate statements
adding breaks 311
checking multiple conditions 13

events
Activate 131, 239
associated items 91
associated with component record fields 236
associated with component records 237
associated with components 239
associated with menu items 240
associated with pages 239
associated with record fields 232
avoiding errors/warnings 159, 182
avoiding think-time functions 156
events inside the component processor flow

90
events outside the component processor flow

89
execution order for component processor

93, 100
FieldChange See Also FieldChange event
FieldDefault See Also FieldDefault event
FieldEdit See Also FieldEdit event
FieldFormula See Also FieldFormula event
ItemSelected 133, 240
navigating programs associated with 245
PostBuild See Also PostBuild event
PreBuild 134
PrePopup 124, 134
processing events passed from trees to

applications 196
restricted from component interfaces 161
resulting from field changes and user saves

93
RowDelete See Also RowDelete event
RowInit See Also RowInit event
RowInsert 136

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 331

RowSelect See Also RowSelect event
SaveEdit See Also SaveEdit event
SavePostChange

See Also SavePostChange event
SavePreChange

See Also SavePreChange event
SearchInit See Also SearchInit event
SearchSave 141
signon 89
understanding 229
understanding terminology 130
understanding triggers 90
using HTML tree user actions 192
using Record class methods 160
using SQL class functions/methods 160
using the CallAppEngine function 162
Workflow See Also Workflow event, 142

event sets
understanding 229

Exec function 170
Execution Location Properties dialog box 288
expressions

constants 19
definition name references 23
isolating common 313, 317
meta-SQL See Also meta-SQL
operators See Also operators
record field references 22
system variables See Also system variables
understanding 19
using contextual buffer field references 54
using functions as 21

F
FieldChange event 307

example 197
performance issues 145
processing events passed from trees to

applications 196
processing field changes 118
using 131
using deferred mode 306
using HTML tree events 192

Field class 67
FieldDefault event

deleting all scroll area rows 135
skipping program sections 159
using 132

FieldEdit event 306
performance issues 145
processing field changes 118
understanding 91
using 132
using errors/warnings 180

FieldFormula event
server trips 127
skipping program sections 159
using 133

field objects
instantiating (example) 78
instantiating in the current context 59
Style property 146
understanding 67

fields
accessing fields not in the data buffer 159

ATTACHSYSFILENAME field 213
buffer See Also buffer fields
converting strings to field references 35
default processing 102, 118
default values for blank 102
events occurring after changes to 93
finding references to 302
hiding and disabling 307
ImageReference 167
Maximum Attachment Chunk Size field 223
objects See Also field objects
obtaining (example) 80
page field program 92
processing field actions for components 99
processing in deferred mode 127, 306
processing modifications 116
record See Also record fields
using the FieldChange event 131
using the FieldDefault event 132
using the FieldEdit event 132
viewing values via PeopleCode Debugger

282
FILE_ATTACH_SBR

in file reference tables 214
FILE_ATTACH_SBR subrecord 213
FILE_ATTACH_WRK derived/work record

214, 215
FILE_ATTDET_SBR subrecord 213
file attachments

AddAttachment function 204
architecture 207
attachments with non-ASCII file names 226
chunk size 223
CleanAttachments function 205
configuring additional MIME types 219
configuring multiple application servers 218
configuring virus scanning 221
converted characters in file names 216
converting uploaded file names 217
CopyAttachments function 205
copying 223
debugging problems 223
DeleteAttachment function 205
DetachAttachment function 204
developing applications 211
enabling virus scanning 220
functions, overview 203
GetAttachment function 204
illegal characters in file names 216
logging virus scans 221
passing error messages to the end user 227
problems with downloads 226
problems with FTP sites 225
problems with uploads 226
PutAttachment function 204
sample application 215
storage locations 209
text files 222
ViewAttachment function 204

file layouts
generating PeopleCode templates 259
instantiating rowsets 87

file names
converted characters 216
illegal characters 216

file reference tables
managing 214

Fill method

Index

332 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

coding efficiently 316
using 174

Find dialog box 248
Find function 248
Find In dialog box 287, 299
Find In feature

finding strings in PeopleCode/SQL 300
saving records in projects 301
searching for SQL injection 302, 320
understanding 299

Float data type 6
fonts

setting in PeopleCode Debugger 291
setting in PeopleCode Editor 255

For statement 14
freeform stylesheets

finding strings 299
FTP sites

file transfer problems 225
overview, as storage locations 209

function definitions 16
functions

accessing external 251
AllowEmplIdChg 150
Application Package Editor 272
CallAppEngine 162, 183
calling 17
CreateRecord 77, 87
CreateRowset 87
CurrentRowNumber 64
Declare 185
declaring 17
definitions 16
DLL 150
DoModal 287
DoModalComponent 165
DoSave 160
EndModalComponent 166
Exec 170
Find 248
GenerateTree

See Also GenerateTree function
GetAnalyticGrid 163
GetGrid 163
GetHTMLText 148
GetNextNumberWithGaps 309
GetPage 162
GetRecord 77
Go To 249
iScripts See Also iScripts
IsSearchDialog 107, 111
Lower 36
MessageBox 157
naming conflicts 18
ObjectDoMethod 169
ObjectGetProperty 169
ObjectSetProperty 169
OLE 169
parameter lists 17
parameters, passing by reference 311
parameters, viewing in PeopleCode

Debugger 290
passing objects 44
Quote 321
recursive 32
RemoteCall See Also RemoteCall feature
Replace 248
restricted from component interfaces 161

ReturnToServer 162
return values 18
SeachInit 161
SearchDefault 105
SetCursorPos 138
SetSearchDialogBehavior 105
SQL class 160
SQL Editor 266
SQLExec 139
stepping over in PeopleCode Debugger 290
subject to SQL injection vulnerabilities 320
subroutines 12
supported types 16
Test 151
think-time 156
understanding 16
Upper 36
using as expressions 21
variable duration, understanding 30
variables, function-local 30
variables, passing 31, 32
WinExec 170
WinMessage 157

G
General Options dialog box 291
GenerateTree function

adding mouse-over ability 201
adding visual selection node indicators 202
building HTML tree pages 188
FieldChange example 197
initializing HTML trees 193
PostBuild example 194
processing events passed from trees to

applications 196
specifying override images 202
understanding 187
using events 192
using rowset records 189

GetAnalyticGrid function 163
GetAttachment function 204
Get functions 41
GetGrid function 163
GetHTMLText function 148
GetJavaScriptURL method 149
GetNextNumberWithGaps function 309
GetPage function 162
GetRecord function 77
global variables

ApiObject objects 29
monitoring 290
shared objects 32
sharing a single object instance 170
understanding 27

Go To dialog box 249
Go To feature

using 249
Go To function 249
Grid class 131
grids

building 131
loading data in secondary pages 312
updating totals/balances 307
using the GetAnalyticGrid function 163
using the GetGrid function 163

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 333

using the multi-row insert feature 166

H
help, PeopleCode online 254
HTML

definitions See Also HTML definitions
HTML areas See Also HTML areas
trees See Also HTML trees
using JavaScripts 149
using the GetHTMLText function 148

HTML areas
building HTML tree pages 188
populating 147, 148

HTML definitions
finding strings 299
using the GetHTMLText function 148
using the GetJavaScriptURL function 149

HTML trees
adding mouse-over ability 201
adding visual selection node indicators 202
building pages for 188
FieldChange example 197
initializing 193
navigating 187
PostBuild example 194
processing events passed from trees to

applications 196
specifying override images 202
understanding 187
using events 192
using rowset records 189

HTTP repositories
overview, as storage locations 210

I
image definitions 167
ImageReference field 167
images

definitions 167
specifying images for tree nodes 202
using the ImageReference field 167

Installation table 153
Integer data type 6
Integration Broker 163
interactive mode

enabling fields for 306
interlink objects

data type restrictions 8
Internet scripts See iScripts
iScripts

data types 8
naming 251
understanding 146

IsDeleted property 122
IsSearchDialog function 107, 111
ItemSelected event 133, 240

J
JavaObject objects 8

JavaScripts 149
Java templates 259
joins

optimizing SQL 309

K
keys

alternate search
See Also alternate search keys

PeopleCode Editor shortcut 323
search See Also search keys
using the %KeyEqual meta-SQL 173
using the SelectByKey method 171

keywords
Null constant 20
PeopleCode syntax xv

L
language constructs, PeopleCode 11
local variables

duration 30
local-only data types 29
monitoring 290
scope 30
shared objects 32
understanding 27

locking
sending messages via the SavePostChange

event 310
using the GetNextNumberWithGaps function

309
log fence 297

PeopleSoft Analytic Calculation Engine 298
logging

interpreting the PeopleCode Debugger log
file 295

setting PeopleCode Debugger options 293
SQL errors 321
using the Test function 151

logical operators 36
looping

calling inserts 168
conditional loops 15
scroll levels 64
tightening loops 314

loops 14
Lower function 36

M
managing

file reference tables 214
math operators 33
MaxCacheMemory setting 310
Maximum Attachment Chunk Size field 223
menu item program 92
menus

accessing menu item PeopleCode 241
events 92
pop-up See Also pop-up menus

Index

334 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

understanding menu item PeopleCode 240
MessageBox function 157
messaging

instantiating rowset objects 87
sending messages via the SavePostChange

event 310
using the ReturnToServer function 162
using the WinMessage/MessageBox

functions 157
meta-SQL

resolving 267
understanding 19, 21

metastrings See meta-SQL
methods

CopyTo 175
Fill See Also Fill method
GetJavaScriptURL 149
invoking 42
Open 41
Publish 163
Record class 160
Record Insert 168
Select See Also Select method
SelectByKey 171
SelectNew 171
SQL class 160
subject to SQL injection vulnerabilities 320
SyncRequest 163
understanding 16, 40
user-defined 89

MIME types 219
modal components See Also modal transfers
modal transfers

implementing 165
understanding 163

modes
add See Also add modes
debug See Also debug mode
deferred processing See Also deferred mode
update See Also update modes

multi-row insert feature
using 166

N
navigation

navigating between PeopleCode programs
243

null constants 20
Number data type 6
numeric constants 20

O
object data type 169
ObjectDoMethod function 169
ObjectGetProperty function 169
object linking and embedding (OLE) See OLE
objects

assigning 43
changing properties 41
composite 42
copying 43
data types 7

field See Also field objects
hiding and disabling 307
instantiating 40, 41
instantiating in the current context 59
invoking methods 42
OLE See Also OLE objects
passing 44
record See Also record objects
resolving ambiguous references with 55
row See Also row objects
rowset See Also rowsets, rowset objects
session 41
setting to NULL 314
sharing variable references 32
understanding 39, 40

ObjectSetProperty function 169
OLE

objects See Also OLE objects
sharing a single object instance 170
understanding OLE functions 169
using the object data type 169

OLE objects
sharing a single instance 170
understanding 169
using the object data type 169

Open method 41
operators

@ 35
Boolean 36
comparison 35
date 34
math 33
string concatenation 34
time 34

Options dialog box 256

P
packages, application See application packages
page controls

accessing record field PeopleCode 234
resolving ambiguous references with objects

55
understanding record fields 50
understanding the component buffer 48
using contextual buffer field references 54
using the FieldChange event 131

page definitions
accessing record field PeopleCode 234
moving programs from record definitions

309
understanding page PeopleCode 239

page field program 92
pages

build HTML tree pages 188
Copy File Attachments page 223
definitions See Also page definitions
events 92
hiding and disabling fields 307
page field program 92
page PeopleCode, accessing 240
page PeopleCode, understanding 239
PeopleTools Test Utilities page 215
processing pages with multiple scroll areas

142
refreshing See Also refreshing pages

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 335

using deferred mode 306
using the Activate event 131
using the GetPage function 162

PeopleCode
accessing definitions containing 253
accessing external functions 251
compiling all programs 292
component processor

See Also component processor
constants 19
creating a file containing all PeopleCode for

a project/database 287
data types See Also data types
debugging See Also PeopleCode Debugger
editing See Also PeopleCode Editor
editing SQL See Also SQL Editor
expressions See Also expressions
functions See Also functions
generating See Also PeopleCode Editor
improving efficiency 310
inserting rows 168
isolating common expressions 313
looping See Also looping
meta-SQL See Also meta-SQL
methods See Also methods
objects See Also objects
programs See Also PeopleCode programs
properties See Also properties
RemoteCall 184
starting other applications from 170
statements See Also statements
typographical conventions xv
understanding 1
understanding comments 9
understanding the language structure 5
variables 26

PeopleCode Debugger
aborting programs 288
accessing 275
breaking at termination 291
breakpoints, editing/removing 289
breakpoints, locating 278
breakpoints at start, setting 287, 289
call stack, viewing 290
call stack pane 283
debugging tips 286
debug mode See Also debug mode
enabling auto scroll and condensed fonts 291
executing the current line 278, 290
function parameters, viewing 290
functions, stepping over 290
locating running code 288
log files, interpreting 295
log options, setting 291, 293
running instances 279
setting options 288
setting trace options 294
setting up 291
setting view options 291
understanding 275
using the DoModal function 287
variables, viewing 290
variables panes 280
variable values, inspecting 279
viewing component buffers 291
viewing field values 282

PeopleCode Editor
accessing/setting up context-sensitive help

254
accessing definitions containing PeopleCode

253
accessing external functions 251
buttons used in 247
changing colors 255
changing word wrap 255
editing PeopleCode 247
editing via drag-and-drop 250
finding strings 248
formatting statements 250
generating definition references 257
generating file templates 259
generating PeopleCode for business

interlinks 258
generating PeopleCode for component

interfaces 258
go to line 249
navigating programs associated with

definitions 245
navigating programs associated with events

245
selecting a font 255
understanding 247
understanding programs 2
understanding the window 243
using shortcut keys 323
validating syntax 249

PeopleCode Log Options dialog box 293
PeopleCode log window 293
PeopleCode meta-SQL See meta-SQL
PeopleCode programs

aborting 288
accessing 91, 230
accessing associated application classes 273
Activate event 307
backing up automatically 230
coding techniques for better performance 308
component PeopleCode, accessing 239
component PeopleCode, locating 92
component PeopleCode, understanding 239
component record field PeopleCode,

accessing 236
component record field PeopleCode, locating

92
component record field PeopleCode,

understanding 236
component record PeopleCode, accessing

238
component record PeopleCode, locating 92
component record PeopleCode,

understanding 237
consolidating 309
copying definitions containing 241
executing with fields not in the data buffer

159
FieldChange event 306, 307
FieldEdit 306
finding fields referenced by 302
finding strings 299
GenerateTree function 192
improving 305
menu item PeopleCode, accessing 241
menu item PeopleCode, locating 92
menu item PeopleCode, understanding 240
moving from record to component or page

definitions 309
navigating 243

Index

336 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

page field PeopleCode, locating 92
page PeopleCode, accessing 240
page PeopleCode, understanding 239
pop-up menu items, defining 241
preventing SQL injection 321
record field PeopleCode, accessing 233, 234
record field PeopleCode, locating 92
record field PeopleCode, understanding 232
reducing server trips 305
running via Process Scheduler 185
searching for SQL injection 320
sharing a single object instance 170
understanding 2
understanding current context 51
understanding events 229
understanding triggers 90
upgrading 242
using in PeopleSoft Pure Internet

Architecture 145
variable duration, understanding 30
variables, program-local 30

PeopleCode statements See statements
PeopleSoft Analytic Calculation Engine

using log fence settings 298
PeopleSoft Integration Broker 163
PeopleSoft Process Scheduler 185
PeopleSoft Pure Internet Architecture

calling DLL functions on application servers
150

cross-platform external Test function
(example) 151

populating HTML areas 147
populating search dialog boxes 150
processing considerations 127
updating the PSOPTIONS/Installation tables

153
using iScripts 146
using PeopleCode 145
using the field object Style property 146
using the GetHTMLText function 148
using the GetJavaScriptURL method 149

PeopleSoft Query 302
PeopleSoft RemoteCall service 185
PeopleSoft Tree Manager 187
PeopleTools Test Utilities page 215
performance issues

coding techniques for PeopleCode 308
improving PeopleCode 305, 310
inspecting objects via PeopleCode Debugger

286
MaxCacheMemory 310
preventing SQL injection 321
reducing server trips 305
searching for SQL injection 320
using dedicated cursors 168
using Float, Integer and Number data types 6
using programs in PeopleSoft Pure Internet

Architecture 145
using RowsetCache class 310

pop-up menus
defining items 241
processing actions for components 99
processing display/item-selection 124
using the ItemSelected event 133
using the PrePopup event 134

portals
running applications on the PeopleSoft portal

145

PostBuild event
example 194
using 134

PreBuild event 134
PrePopup event 124, 134
primary scroll records 48
Process Scheduler 185
programs

Application Engine
See Also Application Engine programs

COBOL, executing remotely
See Also RemoteCall feature

PeopleCode See Also PeopleCode programs
projects

adding SQL definitions 263
creating a file containing all PeopleCode 287
dragging definitions into PeopleCode Editor

257
finding strings 299
saving records in 301
validating PeopleCode 249
viewing PeopleCode 230

prompts
processing for components 99, 123
processing in deferred mode 127

properties
changing 41
IsDeleted 122
SearchEdit 106
Style 146
understanding 40

PSOPTIONS table 153
PTPSQLRT program 185
Publish method 163
PutAttachment function 204, 217

Q
queries

PeopleSoft Query 302
SQL See Also SQL

Quote function 321

R
Record class 67, 160
record definitions

accessing record field PeopleCode 233
creating dynamic/SQL view 264
moving programs to component or page

definitions 309
specifying the select record 173
understanding 77
understanding component record PeopleCode

237
using rowset records for HTML trees 189

record fields
avoiding the object data type 169
component record field PeopleCode,

accessing 236
events, FieldFormula 133
events, list of 92, 232
events, RowInit 136
naming 22

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 337

record field PeopleCode, accessing 233, 234
record field PeopleCode, locating 92
record field PeopleCode, understanding 232
record field PeopleCode, understanding

component 236
references, understanding 22
references with objects, resolving ambiguous

55
understanding component buffers 50
understanding derived/work records

See Also work records
understanding user-defined variables 27

Record Insert method 168
record objects

creating in current context 87
instantiating (example) 77
instantiating in the current context 59
understanding 67

records
component record events 92
component record PeopleCode, accessing

238
component record PeopleCode,

understanding 237
component record program 92
default scroll 171
definitions See Also record definitions
derived/work See Also work records
fields See Also record fields
FILE_ATTACH_SBR subrecord 213
FILE_ATTACH_WRK derived/work record

214, 215
FILE_ATTDET_SBR subrecord 213
objects See Also record objects
obtaining (example) 80
primary scroll 48
saving in projects 301
scroll level hierarchy 48
select 171
subrecords See Also subrecords
TREECTL_NODE 202
understanding 77
understanding the component buffer 48
using rowset records for HTML trees 189

recursive functions 32
references

contextual See Also contextual references
finding fields referenced by PeopleCode 302
passing function parameters for efficiency

311
using definition name 23
using record field 22
using the ImageReference field 167

refreshing pages
updating totals/balances 307
using deferred mode 127
using the Refresh button 307

RemoteCall feature
PeopleCode program 184
PeopleSoft RemoteCall Service 185
programming guidelines 185
RemoteCall vs. Process Scheduler 185
remote program API 184
running Process Scheduler programs with

185
understanding 183
understanding errors 184

RemoteCall function See Also RemoteCall feature

remote program API 184
Repeat statement 15
Replace function 248
reports, cross-reference 302
reserved words 24
ReturnToServer function 162
Rollback statement 139
Row class 67
RowDelete event

using 135
using errors/warnings 182

RowInit event
deleting all scroll area rows 135
placing dynamic link information 127
understanding 91
using 135

RowInsert event 136
row objects

instantiating (example) 76
instantiating in the current context 59
understanding 67

rows
deleting all in scroll areas 135
inserting via PeopleCode 168
objects See Also row objects
obtaining (example) 79
processing deletions 121
processing inserts 119
processing row actions for components 98
referencing 59, 61
row select processing 101, 112
understanding current context 51
using contextual row references 53
using the CurrentRowNumber function 64
using the multi-row insert feature 166
using the RowDelete event 135
using the RowInit event 135
using the RowInsert event 136
using the RowSelect event 138

RowSelect event
using 138
using errors/warnings 181

RowsetCache class
MaxCacheMemory setting 310
used for performance 310

Rowset class 67
rowset objects

creating in current context 87
instantiating (example) 73
instantiating in the current context 59
instantiating via non-component buffer data

87
understanding 67

rowsets
examples 82
objects See Also rowset objects
obtaining (example) 79
Rowset class 67
standalone See Also standalone rowsets
understanding 49, 68
using the Fill method 316
using the GenerateTree function 187
using the Select/SelectNew methods 171

S

Index

338 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

SaveEdit event
save processing 125
using 138
using errors/warnings 180

SavePostChange event
save processing 125
sending messages 310
sending PeopleCode 163
using 139

SavePreChange event
save processing 125
updating the PSOPTIONS/Installation tables

153
using 139

scripts
iScripts See Also iScripts
JavaScripts 149

scroll areas
deleting all rows 135
hidden work example 84
loading data in secondary pages 312
populating 171
processing pages with multiple 142
understanding rowsets 49
updating totals/balances 307
using contextual row references 53
using the multi-row insert feature 166

scroll levels
component buffers record fields 50
current context 51
hierarchy 48
looping through 64
processing pages with multiple scroll areas

142
referencing 59, 60
understanding scroll paths 56
using contextual row references 53
using the CurrentRowNumber function 64

scroll paths
referencing scroll levels, rows and buffer

fields 59
structuring syntax 56
syntax with RECORD.recordname 56
syntax with SCROLL.scrollname 57
understanding 56

SeachInit function 161
SearchDefault function 105
SearchEdit property 106
searches

populating search dialog boxes 150
processing in add modes for components 108
processing in update modes for components

104
using the Find feature 248
using the Find In feature 299
using the go to feature 249
using the SearchInit event 140
using the SearchSave event 141

SearchInit event
populating search dialog boxes 150
using 140

search keys
populating search dialog boxes 150
saving fields 50
searching in update modes 105
using derived/work fields 164
using the SearchInit event 140
using the SearchSave event 141

SearchSave event 141
secondary pages

accessing component buffer data 87
loading data into grids/scroll-areas 312

security
accessing PeopleCode Debugger 278
configuring multiple application servers for

file attachments 218
hiding pages 131
using the signon event 89

SelectByKey method 171
Select method

specifying child rowsets 172, 173
specifying the select record 173
syntax 172
using 171
using the Where clause 173

SelectNew method 171
select records 171
separators, statement 11
servers

application See Also application servers
server trips See Also server trips

server trips
counting 306
hiding and disabling fields 307
reducing 305
updating totals/balances 307
using deferred mode 306
using errors/warnings 308
using the fastest algorithm 308
using the Refresh button 307

session objects 41
SetCursorPos function 138
SetSearchDialogBehavior function 105
signon 89
SQL

definitions See Also SQL definitions
deleting statements 267
displaying errors to users 321
editing See Also SQL Editor
formatting statements 267
injection See Also SQL injection
meta-SQL See Also meta-SQL
optimizing via joins/statements 309
running SQL Trace 309
selecting the right style 314
tables See Also SQL tables
views See Also SQL views

SQL class 160
SQL Commit statement 139
SQL definitions

accessing properties 262
creating 263
finding strings 299
functionality associated with PeopleCode

Editor 2
using SQL Editor 261

SQL Editor
accessing 263
accessing definition properties 262
accessing from Application Engine programs

265
creating dynamic/SQL view records 264
using 266
using the window 261

SQLExec function 139
SQL injection

Index

Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved. 339

finding 302, 320
preventing 321

SQL objects
improving performance via 314
inserting rows 168

SQL tables
scroll level hierarchy 48
understanding See Also records

SQLTrace 309
SQL views

creating records 264
scroll level hierarchy 48

standalone rowsets
adding child rowsets 175
reading files 178
understanding 174
using the Fill method 174, 175
writing files 176

statements
assignment 11
branching 12
deleting SQL 267
Evaluate See Also Evaluate statement
For 14
formatting PeopleCode 250
formatting SQL 267
If, Then, and Else 12
language constructs 11
optimizing SQL 309
Repeat 15
Rollback 139
separators 11
SQL Commit 139
understanding 10
using contextual buffer field references 54
While 15

storage locations
database records 209
file attachments 209
FTP sites 209
HTTP repositories 210
URLs 210

string concatenation operator 34
strings

comparing 36
converting to field references 35
string concatenation operator 34
understanding string constants 20

Structured Query Language (SQL) See SQL
Style property 146
style sheets 146
subpackages, application 269, 270
subrecords

TREECTL_HDR_SBR 189
TREECTL_NDE_SBR 189, 190

subroutines 12
synchronous processes

using the Exec/WinExec functions 170
using the RemoteCall feature 185
using the RemoteCall function 183

SyncRequest method 163
system edits

field modifications 117
system variables

%Mode 107, 111
%PerfTime 308
understanding 21, 27

T
tables

Installation 153
PSOPTIONS 153
SQL See Also SQL tables

templates
Business Interlink 258
classes/objects See Also classes
component interface 258

Test function 151
text

editors See Also editors
going to strings 249
HTML See Also GetHTMLText function
word wrapping in PeopleCode Editor 255

think-time functions
avoiding in events 156
RemoteCall See Also RemoteCall feature

time operators 34
tracing

enabling on the application server 225
enabling on the web server 224
running SQL Trace 309
setting PeopleCode options 294
using the fastest algorithm 308

transactions
accessing databases 287
components See Also components
identifying performance issues 306
running SQL Trace 309

transfers
modal See Also modal transfers

TransformData objects
scope restrictions 9

TREECTL_HDR_SBR subrecord 189
TREECTL_NDE_SBR subrecord 189, 190
TREECTL_NODE record 202
Tree Manager 187
trees, HTML See HTML trees
triggers 90

U
uniform resource locators (URLs) See URLs
UNIX

calling DLL functions on application servers
150

update modes
processing component builds 111
search processing for components 104

upgrade issues
compiling all PeopleCode programs 292
upgrading PeopleCode programs 242

uploading
problems with 226

Upper function 36
URLs

setting up online help 254
storage locations 210
using the GetJavaScriptURL function 149

user-defined constants 20
user-defined variables

declarations/scope 27
initializing 29

Index

340 Copyright © 1988, 2011, Oracle and/or its affiliates. All Rights Reserved.

understanding 26, 27

V
Validate utility 249
validation

hidden/disabled fields 307
PeopleCode syntax 249

variables
bind 321
checking the values in programs via

PeopleCode Debugger 280
component See Also component variables
declaring 28
declaring for efficiency 310
global See Also global variables
local See Also local variables
passing to functions 31
passing to recursive functions 32
restrictions 29
system See Also system variables
types supported by PeopleCode 26
user-defined See Also user-defined variables
viewing programs via PeopleCode Debugger

283
ViewAttachment function 204, 219

file transfer process 207
problems with downloading files 226

virus scanning
configuring 221
enabling 220
errors and return codes 222
logging 221

Visual Basic templates 259

W
warnings

avoiding in events 159, 182
deleting rows 122
save processing events 126
understanding 180
using in deferred mode 308
using in edit events 180
using in FieldEdit events 118, 132
using in PreBuild events 134
using in RowDelete events 182
using in RowSelect events 181
using in SearchSave events 141
using syntax 180
using the Warning statement 138
validating PeopleCode syntax 249

web server
enabling tracing 224

web servers
configuring additional MIME types 219

While statement 15
Windows

calling DLL functions on application servers
150

MessageBox dialog boxes 157
using OLE functions 169
using PeopleCode Debugger 275
using the WinExec function 170

WinExec function 170
WinMessage function 157
Workflow event

save processing 125
using 142
using the SavePostChange event 139

work records
understanding 164

X
XmlNode objects

scope restrictions 9

	Enterprise PeopleTools 8.51 PeopleBook: PeopleCode Developer's Guide
	Copyright
	Contents
	Preface: PeopleCode Developer's Guide Preface
	Overview of PeopleCode Developer's Guide
	PeopleCode Typographical Conventions
	PeopleBooks and the PeopleSoft Online Library

	Chapter 1: Getting Started with PeopleCode
	PeopleCode Overview
	Creating PeopleCode Programs

	Chapter 2: Understanding the PeopleCode Language
	PeopleCode Language Structure
	Data Types
	Conventional Data Types
	Object Data Types

	Comments
	Statements
	Separators
	Assignment Statements
	Language Constructs
	Branching Statements
	Conditional Loops

	Functions
	Supported Functions
	Function Definitions
	Function Declarations
	Function Calls
	Function Return Values
	Function Naming Conflicts

	Expressions
	Expression Fundamentals
	Constants
	Functions as Expressions
	System Variables
	Metastrings
	Record Field References
	Definition Name References
	PeopleCode Reserved Words

	Variables
	Supported Variable Types
	User-Defined Variables
	User-Defined Variable Declaration and Scope
	Variable Declaration
	User-Defined Variable Initialization
	Restrictions on Variable Use
	Scope of Local Variables
	Duration of Local Variables
	Variables and Functions
	Recursive Functions
	State of Shared Objects Using PeopleSoft Pure Internet Architecture

	Operators
	Math Operators
	Operations on Dates and Times
	String Concatenation
	@ Operator
	Comparison Operators
	Boolean Operators

	Chapter 3: Understanding Objects and Classes in PeopleCode
	Classes and Objects
	Classes
	Objects
	Object Instantiation

	Creating and Using Objects
	Instantiating Objects
	Changing Properties
	Invoking Methods
	Copying Objects

	Assigning Objects
	Passing Objects

	Chapter 4: Referencing Data in the Component Buffer
	Understanding Component Buffer Structure and Contents
	Component Buffer Contents
	Rowsets and Scroll Areas
	Record Fields and the Component Buffer

	Specifying Data with Contextual References
	Understanding Current Context
	Using Contextual Row References
	Using Contextual Buffer Field References

	Specifying Data with References Using Scroll Path Syntax and Dot Notation
	Understanding Scroll Paths
	Structuring Scroll Path Syntax in PeopleTools 7.5
	Referencing Scroll Levels, Rows, and Buffer Fields

	Chapter 5: Accessing the Data Buffer
	Understanding Data Buffer Access
	Data Buffer Access
	Access Classes
	Data Buffer Model and Data Access Classes

	Understanding Data Buffer Classes Examples
	Employee Checklist Page Structure
	Object Creation Examples
	Data Buffer Hierarchy Examples
	Rowset Examples
	Hidden Work Scroll Example

	Understanding Current Context
	Accessing Secondary Component Buffer Data
	Instantiating Rowsets Using Non-Component Buffer Data

	Chapter 6: PeopleCode and the Component Processor
	Understanding the Component Processor
	Events Outside the Component Processor Flow
	PeopleCode Program Triggers
	Understanding PeopleCode Program Triggers
	Accessing PeopleCode Programs
	Associating Execution Order of Events and PeopleCode

	Component Processor Behavior
	Component Processor Behavior from Page Start to Page Display
	Component Behavior Following User Actions in the Component

	Processing Sequences
	Flow Charts
	Default Processing
	Search Processing in Update Modes
	Search Processing in Add Modes
	Component Build Processing in Update Modes
	Row Select Processing
	Component Build Processing in Add Modes
	Field Modification
	Row Insert Processing
	Row Delete Processing
	Buttons
	Prompts
	Pop-Up Menu Display
	Selected Item Processing
	Save Processing

	PeopleSoft Pure Internet Architecture Processing Considerations
	Deferred Processing Mode
	PeopleCode Events
	Activate Event
	FieldChange Event
	FieldDefault Event
	FieldEdit Event
	FieldFormula Event
	ItemSelected Event
	PostBuild Event
	PreBuild Event
	PrePopup Event
	RowDelete Event
	RowInit Event
	RowInsert Event
	RowSelect Event
	SaveEdit Event
	SavePostChange Event
	SavePreChange Event
	SearchInit Event
	SearchSave Event
	Workflow Event

	PeopleCode Execution in Pages with Multiple Scroll Areas

	Chapter 7: PeopleCode and PeopleSoft Pure Internet Architecture
	Considerations Using PeopleCode in PeopleSoft Pure Internet Architecture
	Using PeopleCode with PeopleSoft Pure Internet Architecture
	Using Internet Scripts
	Using the Field Object Style Property
	Using the HTML Area
	Using HTML Definitions and the GetHTMLText Function
	Using HTML Definitions and the GetJavaScriptURL Method
	Using PeopleCode to Populate Key Fields in Search Dialog Boxes

	Calling DLL Functions on the Application Server
	Sample Cross-Platform External Test Function

	Updating the Installation and PSOPTIONS Tables

	Chapter 8: Using Methods and Built-In Functions
	Understanding Restrictions on Method and Function Use
	Think-Time Functions
	WinMessage and MessageBox Functions
	Program Execution with Fields Not in the Data Buffer
	Errors and Warnings
	DoSave Function
	Record Class Database Methods
	SQL Class Methods and Functions
	Component Interface Restricted Functions
	SearchInit PeopleCode Function Restrictions
	CallAppEngine Function
	ReturnToServer Function
	GetPage Function
	GetGrid and GetAnalyticGrid Functions
	Publish Method
	SyncRequest Method

	Implementing Modal Transfers
	Understanding Modal Transfers
	Implementing Modal Transfers

	Implementing the Multi-Row Insert Feature
	Using the ImageReference Field
	Inserting Rows Using PeopleCode
	Using OLE Functions
	Understanding OLE Functions
	Using the Object Data Type
	Sharing a Single Object Instance
	Using the Exec and WinExec Functions

	Using the Select and SelectNew Methods
	Understanding the Select and SelectNew Methods
	Using the Select Method

	Using Standalone Rowsets
	Understanding Standalone Rowsets
	Using the Fill Method
	Using the CopyTo Method
	Adding Child Rowsets
	Using Standalone Rowsets to Write a File
	Using Standalone Rowsets to Read a File

	Using Errors and Warnings
	Using Error and Warning Syntax
	Using Errors and Warnings in Edit Events
	Using Errors and Warnings in RowSelect Events
	Using Errors and Warnings in RowDelete Events
	Using Errors and Warnings in Other Events

	Using the RemoteCall Feature
	Understanding RemoteCall Components
	Deciding Between RemoteCall and PeopleSoft Process Scheduler
	Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

	Chapter 9: Using HTML Trees and the GenerateTree Function
	Using the GenerateTree Function
	Understanding HTML Trees
	Building HTML Tree Pages
	Using HTML Tree Rowset Records
	Using HTML Tree Actions (Events)
	Initializing HTML Trees
	Processing Events Passed from a Tree to an Application
	Adding Mouse-Over Ability to HTML Trees
	Adding Visual Selection Node Indicators
	Specifying Override Images

	Chapter 10: Working With File Attachments
	Understanding the File Attachment Functions
	PeopleCode Built-in File Attachment Functions
	Understanding the File Attachment Architecture
	Understanding File Attachment Storage Locations
	Understanding Storage Location URLs

	Developing Applications that Use File Attachment Functions
	Application Development Process Overview
	Delivered Record Definitions
	Managing Entries in File Reference Tables
	Using the PeopleTools Test Utilities Page

	Application Development Considerations
	File Name Considerations
	Restrictions on Invoking Functions in Certain PeopleCode Events
	Converting File Names for Files Uploaded by PutAttachment
	Considerations When Using CopyAttachments

	Application Deployment and System Configuration Considerations
	File Attachment Functions in an Environment with Multiple Application Server Domains
	Configuring the Web Server to Support Additional MIME Types
	Setting Up Virus Scanning
	Considerations When Attaching Text Files
	File Attachment Chunk Size
	Using the Copy File Attachments Page

	Debugging File Attachment Problems
	Enabling Tracing on the Web Server or Application Server
	Problems with Transfers to and from FTP Sites
	Attachments with non-ASCII File Names
	Problems Uploading Files
	Problems Downloading Files
	Passing Error Messages to the End User

	Chapter 11: Accessing PeopleCode and Events
	Understanding PeopleCode Programs and Events
	Understanding Automatic Backup of PeopleCode
	Accessing PeopleCode in Application Designer
	Accessing Record Field PeopleCode
	Understanding Record Field PeopleCode
	Accessing Record Field PeopleCode from a Record Definition
	Accessing Record Field PeopleCode from a Page Definition

	Accessing Component Record Field PeopleCode
	Understanding Component Record Field PeopleCode
	Accessing Component Record Field PeopleCode

	Accessing Component Record PeopleCode
	Understanding Component Record PeopleCode
	Accessing Component Record PeopleCode

	Accessing Component PeopleCode
	Understanding Component PeopleCode
	Accessing Component PeopleCode

	Accessing Page PeopleCode
	Understanding Page PeopleCode
	Accessing Page PeopleCode

	Accessing Menu Item PeopleCode
	Understanding Menu Item PeopleCode
	Defining PeopleCode Pop-Up Menu Items
	Accessing Menu Item PeopleCode

	Copying PeopleCode with a Parent Definition
	Upgrading PeopleCode Programs

	Chapter 12: Using the PeopleCode Editor
	Navigating Between PeopleCode Programs
	Understanding the PeopleCode Editor Window
	Navigating Between Programs Associated With a Definition and Its Children
	Navigating Between Programs Associated With Events

	Using the PeopleCode Editor
	Understanding the PeopleCode Editor
	Writing and Editing PeopleCode
	Find and Replace Dialogs
	Go To Dialog
	Validate Syntax Utility
	Formatting Code Automatically
	Using Drag-and-Drop Editing
	Accessing PeopleCode External Functions
	Accessing PeopleCode Application Packages and Application Classes
	Accessing Definitions and Associated PeopleCode
	Accessing Help
	Setting up Help
	Changing Colors in the PeopleCode Editor
	Selecting a Font for the PeopleCode Editor
	Changing Word Wrap in the PeopleCode Editor
	Using the PeopleCode Event Properties

	Generating PeopleCode Using Drag-and-Drop
	Generating Definition References
	Generating PeopleCode for a Business Interlink
	Generating PeopleCode for a Component Interface
	Generating PeopleCode for a File Layout

	Chapter 13: Using the SQL Editor
	Understanding the SQL Editor Window
	Accessing SQL Definition Properties
	Accessing the SQL Editor
	Creating SQL Definitions
	Creating Dynamic View or SQL View Records
	Accessing the SQL Editor from Application Engine Programs

	Using the SQL Editor

	Chapter 14: Creating Application Packages and Classes
	Understanding Application Packages
	Creating Application Packages
	Understanding Package Names
	Creating Application Package Definitions

	Using the Application Package Editor
	Editing Application Package Classes

	Chapter 15: Debugging Your Application
	Understanding the PeopleCode Debugger
	Accessing the PeopleCode Debugger
	Using PeopleCode Debugger Features
	Visible Current Line of Execution
	Visible Breakpoints
	Hover Inspect
	Single Debugger
	Variables Panes
	Call Stack Pane
	Setting Values for Variables and Properties
	General Debugging Tips

	Using PeopleCode Debugger Options
	Setting Up the Debugging Environment
	Compiling All PeopleCode Programs at Once
	Setting PeopleCode Debugger Log Options
	Interpreting the PeopleCode Debugger Log File
	Log File Contents
	Other Items in the Log File

	Using Application Logging
	Setting the Application Log Fence in the Configuration File
	Using the Log Fence with PeopleSoft Analytic Calculation Engine

	Using the Find In Feature
	Searching for SQL Injection

	Using Cross-Reference Reports

	Chapter 16: Improving Your PeopleCode
	Reducing Trips to the Server
	Counting Server Trips
	Using Deferred Mode
	Hiding and Disabling Fields
	Using the Refresh Button
	Updating Totals and Balances
	Using Warning Messages
	Using the Fastest Algorithm

	Using Better Coding Techniques for Improved Performance
	Running a SQL Trace
	Optimizing SQL
	Using the GetNextNumberWithGaps Function
	Consolidating PeopleCode Programs
	Moving PeopleCode to a Component or Page Definition
	Sending Messages in the SavePostChange Event
	Using Metadata and the RowsetCache Class
	Setting MaxCacheMemory

	Writing More Efficient Code
	Writing More Efficient Code Examples

	Searching PeopleCode for SQL Injection
	Preventing SQL Injection

	Appendix A: PeopleCode Editor Short Cut Keys
	Short Cut Keys in the PeopleCode Editor

	Index

