ORACLE

Oracle® Agile
Engineering Data Management

e6.1.2 Web Services Manual

Part No. E24278-01

August 2011

e6.1.2 Web Services Manual

Copyright and Trademarks

Copyright © 1995, 2011,0racle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,

reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services.

Engineering Data Management i

CONTENTS

Copyright @and Trad@mMArKScoocuii ittt et e e stae e s tr e e sabeeeaaes iii
o =1 =T S RSPRRUR Vi
Introduction to Agile @6 Web Services.....cicciimiimimmimmimmsimssmssmsssmsssmsssssssnnsssnssnnssnns 1
ADOUL WED SEIVICES ..ottt ettt et e st e et e e et e e snteeenseeessaeesnteneaneeennees 1
COre TECNNOIOGIES ... bbb bbb a bbb s bbb s bbbttt aeee 1
WeED SErviCeS ArChITECIUIE. ... st 2
ADOUL AGIle €6 WED SEIVICES ... 3
THE COre WED SEIVICES ..ottt bbb 3
About Agile e6 Web Services FrameWOrKo e 3
Components of Agile e6 Web Services FrameWOrkK.......cnnnsssesesseesesesessseens 4
Getting Started with Agile €6 Web Services......ccuimiimimmiimiiminsimssmssssnssss s 5
ST =Te LU TR L= PSP 5
Operating ENVIFONMENT ...t bbb bbb bbb 5
WED SEIVICES ENGINES ...ttt sttt et st sttt bbb a bbb et a et 5
Web Service DevelOpmMENT TOOIS ...ttt 6
StaNAards COMPIANCE ...ttt ettt st a bbb et a st aeee 6
Understanding the Agile e6 Web Services Authentication and Performance.............c......... 6
The Agile €6 PLM Session HandliNg.......c.cocieceee st 7
Understanding the Agile €6 Web Services ReqUESES..........cccoviiieiiiiiie e 8
Understanding the Agile é6 Web Services RESPONSEScocviiiiiiiiiiii i 9
RESPONSE STALUS COUE ..ottt 9
White-list MechaniSm fOr MaSKS ...ttt 9
EXCEPLiONS @Nd WaININGS ..ottt 10
CoUNLiNG The ODJECLS ..o e e et e e e sbaee e et 11
Setting up the Agile e6 Web Services Infrastructure.....cccccimmcimmcinmcinncinninnsnnsse, 13
Installing the Agile e6 Web Services Framework ..o, 13
Creating the WebLogic Agile €6 DOM@IN ..ottt 13
Configuring the PLM Authentication Provider in the WebLogic Server.........cccociiiiencens 13
Testing the INbound WED SErVICESoooiiiiiee e 19
Testing with the WebLogic Test Clent ...t 19
Testing with the IJDeveloper HTTP ANAIYZEN ...t sssensns 21
USING @ GUESE ACCOUNT ...ttt bbb 22

iv Engineering Data Management

e6.1.2 Web Services Manual

Configuring Agile e6 Web Services Securitycccuummmmcniimmmesiinmmeesinmmssssssss-. 24
Setting up the Web Services Security POIICIES.........cccooiiicccire e 24
Setting up the Web Services SECUTILY ... 27
Authenticating in @ Web Service CHENT ...t 29

Working with Agile €6 Web Servicesccucimmimmimmimmeimmmssmssmssmssmsssnsssnsssnsssnnssnns 34

Bulk Processing of REQUESTES.......couiiiiiiie et 34
Handling the BUIK REQUESTES ...ttt sttt sttt 34

Developing the Outbound Web Services Wrapper.......ccccvieeiiiiee ettt 35
The Web Services Wrapper INEEIrfACe ...ttt 35
Developing @ CUSEOM WIAPPEL ...ttt ettt sttt sttt esae st 36
Calling @ Custom Wrapper frOM €6 ...ttt essssss s ssesssssessnes 42
Deploying @ CUSEOM WGP PEN ...ttt ettt sttt bbbttt esa st 42
Web Service Wrapper LOG MESSQAQES ...t s st st bbb 43

Agile e6 Core Web Services Operationsciccuummmsinmmssmsesinmsssnmsssmmmssinmsssnsssnnssses 44

Business ObJect WED SEIVICES ..ot 45
BUITK OPEIALIONS ...ttt ettt sr s 45
CFEALEODTECE ...ttt s b bbbt 46
GEEODJECE ..ottt bbb bt bbbt bt 47
CrEALEREIALION ... bbbt 49
GEEREIGQEIONS ..ottt bt a bt s bbb a bbbt bbb 51

Document Management WED SEIVICES.......oo ittt 53
BUITK OPEIALIONS ...ttt st 53
GEEFIIES ...ttt ettt sttt bt sttt 54
GEEFIIECOPY ettt ettt bt a bbb bbbttt e 56
CRECKINFIIE ... bbb b s b a bbb bbbt 57

MetaData WED SEIVICES.......co e e e tae e e e enees 59
BUITK OPEIALIONS ...ttt £t 59
GOEENEIEY . e 60
GO E N LY TY D ettt e bbb b st bbb s bbb bttt n s 62
GEEENTIEYREIGEION ...t 64

Configuration WED SEIVICESoiiiiieeee ettt nae e 66
BUIK OPEIATIONS ...ttt s bbb bbb 66
GEEUSEICONTEXL ... bbbt 67
SEEUSEICONTEXE ... bbbt R bRttt b 69
GEEDETFAUIL. ..ttt 70

Engineering Data Management v

Preface

The Oracle documentation set includes Adobe® Acrobat™ PDF files. The Oracle Technology
Network (OTN) Web site (http://www.oracle.com/technology/documentation/agile.html) contains the
latest versions of the Oracle Agile e6 PDF files. You can view or download these manuals from the
Web site, or you can ask your Agile administrator if there is an Oracle Documentation folder
available on your network from which you can access the documentation (PDF) files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader™ version 7.0 or
later. This program can be downloaded from the Adobe Web site
(http://www.adobe.com).

Note Before calling Agile Support about a problem with an Oracle Agile e6 manual, please
have the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Oracle Agile e6 can be found in the Release Notes file on the
Oracle Technology Network (OTN) Web site
(http://www.oracle.com/technology/documentation/agile eseries.html)

Oracle Training Aids

Go to the Oracle University Web page
(http://www.oracle.com/education/chooser/selectcountry _new.html) for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

Vi Engineering Data Management

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile_eseries.html
http://www.oracle.com/education/chooser/selectcountry_new.html

Chapter 1
Introduction to Agile e6 Web Services

About Web Services

Web Services are technologies for building distributed applications. These services, which can be
made available over the Internet, use a standardized XML messaging system and are not tied to
specific operating systems or programming languages. Through Web Services, companies can
encapsulate existing business processes, publish them as services, search for and subscribe to
other services, and exchange information throughout and beyond the enterprise. Web Services are
based on universally agreed upon specifications for structured data exchange, messaging,
discovery of services, interface description, and business process design.

A Web Service makes remote procedure calls across the Internet using:
o HTTP/HTTPS or other protocols to transport requests and responses.

@ Simple Object Access Protocol (SOAP) to communicate request and response information.

The key benefits provided by Web Services are:

= Service-oriented Architecture — Unlike packaged products, Web Services can be delivered as
streams of services that allow access from any platform. Components can be isolated; only the
business-level services need be exposed.

o Interoperability — Web Services ensure complete interoperability between systems.

= Integration — Web Services facilitate flexible integration solutions, particularly if you are
connecting applications on different platforms or written in different languages.

= Modularity — Web Services offer a modular approach to programming. Each business function in
an application can be exposed as a separate Web Service. Smaller modules reduce errors and
result in more reusable components.

o Accessibility — Business services can be completely decentralized. They can be distributed over
the Internet and accessed by a wide variety of communications devices.

o Efficiency — Web Services constructed from applications meant for internal use can be used for
externally without changing code. Incremental development using Web Services is relatively
simple because Web Services are declared and implemented in a human readable format.

Core Technologies

Oracle’s Agile e6 Web Services use industry standard core technologies. These are:
1. Web Services Description Language (WSDL)

2. XML and XML Schema

3. Simple Object Access Protocol (SOAP)

Web Services Description Language (WSDL)

WSDL is an XML-based format for describing the interface of a Web Service. WSDL describes the
endpoints, location, protocol binding, operations, parameters, and data types of all aspects of a

Engineering Data Management Chapter1-1

e6.1.2 Web Services Manual

Web Service:

@ The WSDL that describes a Web Service has the following characteristics:

® |tis published by the service provider.

* ltis used by the client to format requests and interpret responses.

® It can be optionally submitted to a registry or service broker to advertise a service.
o Additionally, WSDL describes the following:

®* The operations that are provided by a Web Service.

* The input and output message structures for each Web Service operation.

®* The mechanism to contact the Web Service.

XML and XML Schema

A WSDL file is published an XML file. Document/Literal is required as part of the WS-I
interoperability standard. This standard sets the basis for modern Web Service usage.

o Document — The payload for an operation, however complex, must be defined in a single XML
element.

@ Literal — The definition of single XML element must be described by an XML Schema
embedded in the WSDL file.

When using Document/Literal formatting, the WSDL file will contain an XML Schema definition that
defines all messages and data types that are used for a particular service. The payload itself will
consist entirely of XML data structures.

Simple Object Access Protocol (SOAP)

SOAP is a lightweight protocol intended for exchanging structured information in a decentralized,
distributed environment. SOAP uses XML to define an extensible messaging framework.

SOAP messages consist of the following:
o An envelope for wrapping messages, including addressing and security information.
o A set of serialized rules for encoding data types in XML.

@ Conventions for a procedure call and, or response.
Web Services Architecture

You can view Web Services architecture in terms of roles and the protocol stack:

o Roles:

® Service provider — This provides the service by implementing it and making it available on
the Internet.

® Service requester — This is the user of the service who accesses the service by opening a
network connection and sending an XML request.

* Service registry —This is a centralized directory of services where developers can publish
new services or find existing ones.

o Protocol Stack:

* Service transport layer — This layer uses the HTTP protocol to transport messages between
applications.

Chapter 1 - 2 Engineering Data Management

e6.1.2 Web Services Manual

* XML messaging layer — This layer encodes messages in XML format using SOAP to
exchange information between computers. It defines an envelope specification for
encapsulated data that is transferred, the data encoding rules, and remote procedure call
(RPC) conventions.

* Service description layer — This layer describes the public interface to a specific Web Service
using the Web Service Description Language (WSDL) protocol. With WSDL, it defines an
XML grammar to describe network services. The operations and messages are described
abstractly, and then bound to a network protocol and message format. WSDL allows
description of endpoints and their messages regardless of what message formats or
network protocols are used to communicate.

* Service discovery layer — This layer centralizes services into a common registry using the
Universal Description, Discovery, and Integration (UDDI) protocol. UDDI is a platform-
independent, XML-based registry for businesses worldwide to list themselves on the
Internet.

About Agile e6 Web Services

Agile e6 Web Services expose a subset of the Product Lifecycle Management (PLM) functionalities
of the Agile e6 Application. These services support functionalities provided by PLM modules in
Agile e6 application, such as Item Management, Project Management and many other functions of
Agile e6.

Implementation of Agile e6 Web Services adheres to the following principles:

@ Well defined, standards based discoverable Interface

@ Java based Web Services Framework using Oracle WebLogic

B Modularized Agile e6 Schema (XSD) and WSDL for easy maintenance

o Standards-based WSDL to ensure compatibility across various clients (.NET, Java, and BPEL)

o Bulk APIs wherever applicable for better performance
The Core Web Services

Agile e6 Core Web Services is a set of services for the following functionalities:

1. Business Object Web Services

Document Management Web Services

2
3. MetaData Web Services
4

Configuration Web Services

About Agile e6 Web Services Framework

The Web Service Framework is an additional layer on top of Agile €6, which supports inbound and
outbound communication based on standard Web Services technology. It provides the means to
call External Web Services from inside Agile e6 LogiView Procedures (outbound direction). In
addition, it allows external applications (Web Service Clients) to call the Agile e6 APIs through Web
Services.

The Web Service Framework comes with a set of predefined core web services, which, out of the
box, support the most common integration scenarios like create PLM object or get PLM object.

Engineering Data Management Chapter 1- 3

e6.1.2 Web Services Manual

In a future release, the web services framework will be enhanced with a customizing framework.
This will allow the implementation of custom web services, which funnel inbound web service calls
into API call to the Agile e6.

Components of Agile e6 Web Services Framework

The e6 Web Services Framework comprises of the following:
o Web Service Wrapper — to support outbound web service calls from LogiView Procedures.

o Core Web Services — to support inbound web service calls mapped into ECI-API calls.

Chapter 1 -4 Engineering Data Management

e6.1.2 Web Services Manual

Chapter 2

Getting Started with Agile e6 Web
Services

Prerequisites

Agile e6 Web Services are deployed on an Agile e6 WebLogic application domain.

To use the Agile e6 Web Services Framework for inbound and outbound Web Services based
business data transaction, you are required to ensure the following:

@ QOperational Environment is set:
®* Oracle Agile e6, Release 6.1.2 plus HF1 or higher is installed.
* WebLogic Server is installed and

= Web Services Framework is configured for the following:
@ Authentication Provider in WebLogic.
o Web Service Security.

o Test the Inbound Web Services.

Then you will be able to call the available Core Services or implement your own outbound Web
Service Wrappers.

Operating Environment

Agile e6 Application Release €6.1.2 plus HF1 or higher
Default Web Services Engine Oracle WebLogic Server

Note: The version of this server is the one that is
released with the Agile e6 application.

Java 2 Platform Standard Edition Development Kit 6.0

Web Services Engines

All Application Server vendors, such as Oracle, IBM, have built-in Web Services infrastructure
solutions that are integrated with their application servers. For non-web services integrated
applications, there are stand-alone products, such as AXIS from Apache, which provide Web
Services infrastructure that can be integrated with different application servers.

The Agile e6 Web Services Framework works on the following Web Service Engines:
= Oracle Apps Server Web Service Infrastructure

@ Oracle SOA Suite

o WebLogic Web Service Infrastructure

@ Axis version 2.0 to support JAX-WS features, especially the MTOM

Engineering Data Management Chapter 2-5

e6.1.2 Web Services Manual

Web Service Development Tools

To develop your own Web Services, you can use various tools. Development platforms vary in their
SOAP implementations. Implementation differences in certain development platforms may prevent
access to some or all of the features in the API. If you are using Visual Studio for .NET
development, it is recommended that you use Visual Studio 2003 or higher.

In this documentation the development and test of Web Services is described using Oracle’s
JDeveloper. You can also use Oracle’s Enterprise Pack for Eclipse (EPE).

For complete information on JDeveloper and Enterprise Pack for Eclipse, refer to Oracle
Technology Network web site: http://www.oracle.com/technetwork/developer-tools/index.html

The Agile e6 web security framework provides tool objects (source codes) to retrieve security
information from the web service call which can be used to initiate a PLM session.

Standards Compliance

The Agile e6 Web Services are implemented in compliance with the following standards:

Standard Location

Simple Object Access Protocol (SOAP) 1.111.2 hitp://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

Web Service Description Language (WSDL) 1.2 hitp://www.w3.0rg/TR/2001/NOTE-wsdl-20010315

WS-I Basic Profile 1.1 http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html

XML Schema 1.1 http://Mmww.w3.org/XML/Schema

SOAP Message Transmission Optimization http:/Aww.w3.org/TR/soapl2-mtom/

Mechanism (MTOM)

JAX-WS 2.0/2.1/2.2 (JSR 224) http://java.sun.com/developer/technicalArticles/J2SE/jax_ws
2

JAXB 2.0/2.1/2.2 (JSR-222) http://jaxb.java.net/

Understanding the Agile e6 Web Services
Authentication and Performance

In the implementations where scalability is critical, a lightweight context management facility for
authentication is available and its use is recommended. With this facility, authentication is managed
using a combination of user credentials and a sessionID token (the standard HTTP session ID
maintained by the web container):

@ When user credentials are presented in the SOAP header of a Web Service request, formal
authentication is performed prior to the application execution of the Web Service operation. If
the authentication succeeds, the operation proceeds and a special SessionlD token is placed
in the SOAP header of the Web Service reply.

B Whenever the sessionID is included by the client in subsequent Web Service requests, that
sessionID will be used to restore cached session information, thus bypassing the
substantially more time consuming process of re-executing the authentication.

Note that when presented with both the sessionID and a valid set of user credentials, an

Chapter 2 - 6 Engineering Data Management

http://www.oracle.com/technetwork/developer-tools/index.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.w3.org/XML/Schema
http://www.w3.org/TR/soap12-mtom/

e6.1.2 Web Services Manual

attempt will be made to use the sessionID before resorting to the user credentials and re-
authentication. As expected, the session that is being tracked by the sessionID is subject to
expiration and other security checks.

The facility is a distinct alternative to the basic authentication standard described by Web Services
Security. Using the UserName token as provided in WS-Security, while fully supported as part of
Agile e6 WSI Basic Profile compliance, will not yield the same benefit as using the higher-
performance session optimization facility provided by the Agile e6 implementation.

The Agile e6 PLM Session Handling

Every call of an Agile e6 Core Web Service needs an Agile e6 PLM server instance. It is very
important to limit the number of e6 server instances to reduce the resource loading on the server.
This is handled by the following mechanisms:

o HTTP Session — The web service first tries to find an e6 server instance assigned to the HTTP
session of the current web service call. If it is found, the web service call uses the existing e6
server instance.

= PLM Ticket — A PLM ticket is returned in the response of a core web service operation. This
ticket can be used to access the same e6 server instance that created the ticket.

While authenticating a web service call, if a ticket is passed instead of the password, the
session manager uses the e6 server instance, even if no e6 server is assigned to the HTTP
session.

The PLM Ticket mechanism is the only way to let the calls to different core web services, such
as Metadata or BusinessObject web services use the same e6 server instance.

A web service client should use the PLM ticket as soon as it has called the first operation.

This is the only way to share an e6 session between two different Core Services.

To free an Agile e6 server instance assigned to a web service session, the client calls one of the
closeSession operations (every core web service provides this function) with the PLM ticket as the
password. This shuts down the Agile e6 server instance and frees up the server resources.

The Agile e6 PLM Session Manager

| rile et
' eSeries Domain SOA Suite
E] : Dom:
] an | EC —
= Callable —
== c
S S| [Ws 80|
w S 'E Pi 111" Process \
w o ﬁ'
v | ’ g * A=)
S ! Core o p P
] o ws | q =

i W .
\ K /\\ WS Client

The Agile e6 PLM Session Manager lets you manage the PLM Session objects which are used to
keep the existing connections and user contexts to the Agile e6 server.

The key to an existing PLM Session object is the session ID, which is generated by PLM Session
Manager.

Engineering Data Management Chapter 2-7

e6.1.2 Web Services Manual

The PLM Session provides connection to Agile e6 server.

To retrieve a PLM Session, PImTicket is provided. When a new PLM Session is created, the
PImTicket is set to the PLM Session, which is then set into the SOAP message to the client side.

The life cycle of PLM Session is as same as the given HttpSession. The timeout of an HttpSession
is specified in web.xml with the following information:
<session-config>
<session-timeout><time-in-second></session-timeout>
</session-config>

The PLM Ticket

A Response contains a string that can be used in subsequent calls. This string is called the PLM
Ticket. The ticket gives the caller access to the same Agile e6 instance (PLM server) that was used
in the last request. The ticket is remains valid only as long as the Agile e6 instance is running. After
obtaining a ticket, the client code needs to configure the port by setting the ticket string as
password. See BindingProvider in the example given under Authenticating in a Web Service Client.

The PLM Ticket improves the web services performance and simplifies the session management, If
different Web Services are used in a use-case flow, which is very likely, the ticket returned by the
response(s) of one service operation (say Configuration.setUserContext) is used as a password
when client makes a call for another service operation (say BusinessObject.getObjects).

The ticket sharing among different client ports eliminates the need for the server to start new Agile
e6 sessions, which would result in new Agile e6 servers being started.

Understanding the Agile e6 Web Services
Requests

In the Agile e6 web services framework, each operation has its own request data type, which is
inherited from RequestHeaderType. The RequestHeaderType for all the requests has only the
following elements:

o messageld (String, optional): Default value for the ID is the current system time in
milliseconds.

o messageName (String, optional): Default value for the message name is the simple class
name.

Obtaining the Agile e6 Metadata

You can obtain the basic Agile e6 metadata through Agile e6 Java client. Look for the data model of
the Agile e6 application.

To obtain Agile e6 metadata through a web services operation, use the Metadata service. This
service requires an entity name and a mask name.

See Configuration Parameters for further information.

Chapter 2 - 8 Engineering Data Management

e6.1.2 Web Services Manual

Understanding the Agile e6 Web Services
Responses

The ResponseHeaderType has the following members:
messageld (String, required) Default value for the ID is the current system time in milliseconds
messageName (String, required) Default value for the message name is the simple class name
statusCode (ResponseStatusCode, required) Default value for the status code is SUCCESS
exceptions (List<PImExceptionType>, optional): warnings (List<PImWarningType>, optional)

ticket (String, optional)
Response Status Code

The response obtained from every Web Service call contains a response statusCode, which
indicates the success or failure of a Web Service operation.

These Response Status Codes are of four types:

SUCCESS Indicates that all Web Services in the batch were executed successfully and that all
operations worked as intended.

FAILURE Indicates that all Web Services in the batch failed during execution, indicating the
intended operations were not performed.

WARNING Indicates that while Web Services in the batch were successfully executed, however
certain warnings were also encountered during the execution. These warnings need to be
analyzed by the client to verify that all operations worked as intended.

PARTIAL_SUCCESS Indicates a partial success in the execution of batch Web Services when one or more but
not all batch requests have failed. Even if a single Web Service fails among a batch of
Web Services, the response status code will indicated PARTIAL_SUCCESS.

White-list Mechanism for Masks

To ensure that only the masks designed for the access of web services are used, all the mask
names are checked against a White-list that is maintained by the administrator of the Agile e6
installation.

List of Mask Names

A configuration rubric named EDB-WSI-MASKS is used. It contains sub-parameters such as EDB-
ARTICLE-WSI and each of these sub-parameters contain a mask name rule pattern. All rules for an
entity are checked for an operation that involves an item as an entity (or as parent entity in case of
a relation).

Important It is recommended to implement special masks designed for web services, instead of
only adding the standard masks like EDB-ART-SLI (or "*") to the white list.

Adding standard masks can have certain implications due to the following:

@ The security check for masks is not strong enough.

Engineering Data Management Chapter 2-9

e6.1.2 Web Services Manual

B To be able to access invisible fields, you are required to first make them visible. These should
be done as these are not opened to the customer.

o Performance suffers as the standard masks contain too many fields.

Configuration Parameters

The Configuration Parameters are entered as shown in the image below.

Ruric (Parsrew Tyse Ty by iz Parwet Lepar
00 S L MAEES W [
|

dage 'L | Tyee Type bey |Vene | Depirpnoe

» 0 100-ARTICLE 5T Ruley for wes Sarvice ssscs 7o {tows

Seelt oode W1 =

< Corforasn
Ga e 7200

Rawc / Farsrem Tyse Type by

EO0-ARTICLE Mol

Usswy Configurstom parameter o ftrs

QUST- 4allowad By 0ne 5r m0re JRLER BAGE A CANACTACS,
LEws2-3 SOME - = - are Madhs neses starting «Atn BOME-*, FSllowes By One oF mare matk Aaee Ctaracterd, Fullowed fy tomanE*

The rule pattern consists of valid mask name characters and may contain one or more asterisks (*)
to indicate one or more mask name characters.

The web service session reads these configuration rules and checks each combination of entity and
mask name passed by a client against the rules for the respective entity. If one of the rules accepts
the mask name, access is granted, If not, the access to the mask is denied and an
lllegalAccessException is thrown and marshaled back to the client.

The rules are cached by the session so that the subsequent operations don't have the overhead of
reading the rules again. The rules can also be cached in the Business Service, for instance by
enhancing the Permission Manager. This provides a domain wide cache, instead of a session
based cache.

Exceptions and Warnings

The Agile e6 framework throws an exception (WebFault) only if a severe technical problem occurs,
for instance, in an event of a connection loss to the Agile e6 server. When an operation is not
successful, the system will throw an Exception or a Warning.

@ In case of FAILURE, an exception is issued, while a warning may or may not be issued.

o In case of WARNING, only a warning is issued.

When the status is WARNING, the outcome of the operation is unknown. You are required to check
it manually whether the operation was successful or not.

Chapter 2 - 10 Engineering Data Management

e6.1.2 Web Services Manual

Counting the Objects

A count request is indicated by the flag countOnly in the query request object. The service then
executes a count (which ignores the mask limit) and returns a pseudo PImObject with a COUNT

attribute and a RECORD_LIMIT attribute.

The value of the COUNT attribute is an Integer with the number of objects matching the query, and
the value of the RECORD_LIMIT attribute is the record limit of the mask used for the count

operation.

Engineering Data Management Chapter 2- 11

e6.1.2 Web Services Manual

Chapter 2 - 12 Engineering Data Management

e6.1.2 Web Services Manual

Chapter 3

Setting up the Agile e6 Web Services
Infrastructure

Installing the Agile e6 Web Services Framework

The Agile e6 Web Services Framework is installed during the basic installation of Agile e6
application. The WebLogic domains are created with the Agile e6 application installer and/or the
Agile e6 Administration Client. By default, the installation has two WebLogic domains — one for an
installation and an additional one for every application. Web Services are deployed on the
application specific WebLogic domain.

For complete details, please refer to the Agile e6 Installation and Administration Documents,
besides the Agile e6 Hot-fix Readme.

Creating the WebLogic Agile e6 Domain

You are required to obtain a WebLogic Agile e6 Domain name from the Agile e6 Administrator, or
create a new domain. This is required as the Web Services are deployed into this WebLogic e6
domain.

During the installation of the WebLogic Server two domains are created. Each domain consists of
an AdminServer and an eSeries-01 server. The AdminServer is only for the administration of the
domain, while the eSeries-01 contains the Agile e6 deployments.

For example, the domains directory C:\Oracle\Middleware\user_projects\domains contains the
domain names eSeries_domain and eSeries_domain_plmref.

For complete details on how to install the WebLogic server and create a domain, please refer to the
installation manual Agile €6.1.2 Server on Windows/Unix.

Configuring the PLM Authentication Provider in
the WebLogic Server

The Agile e6 PLM Authentication Provider is required to authenticate the incoming Web Requests.
It is also used for providing the PLM user name and PLM Password to the web services to connect
to the Agile e6 application.

The authentication provider is called by the WebLogic Security Framework. The Security Realm of
the domain has to be configured to use the Agile e6 PLM Authentication Provider.

The following diagram depicts the authentication mechanism:

Engineering Data Management Chapter 3- 13

e6.1.2 Web Services Manual

/ PLM Server Deployment ﬂ /- Weblogic e6Domain \

WebLogic Server Application
WS-PLMCore | | Oracle WSM Policy | | PeopleSoft
Servi i -
ervices Interceptor ACLE
L SIEBEL
Oracle Platform Security lcAD 4
Service (OPSS) Login
Module
* q
Oracle Weblogic Server
Authenticator
[= ECH 1
PLM Server ol PLM Authentication
Provider

% S

The PLM authentication provider uses the standard mechanism of the WebLogic server and can be
configured with the WebLogic Administration Console.

The Authentication Provider is installed at the time of Agile e6 application installation. During this
installation, the PLM User and PLM password are set to an empty value. These cannot be set with
the batch installer, hence, they have to be added manually with the WebLogic Console. For
complete details on Agile e6 application installation, including the preliminary settings of the
authentication provider, refer to the Agile e6 Server Installation Guides.

Note The user should be a special user with no manager rights.

To configure the Agile e6 Authentication Provider:

Note The application domain has to be configured while the installation domain remains
unchanged.

1. Log in to the Administration Console for the application domain of the Oracle WebLogic Server.

Example: http://server:7405/console/login/LoginForm. jsp

Chapter 3 - 14 Engineering Data Management

e6.1.2 Web Services Manual

ORACLE Weblogic Server® Administration Console

Change Center
Yiew changes and restarts

Configuration editing is enabled. Future
changes will automatically be activated as you
modify, add or delete items in this domain.

Domain Structure

yinwipS604_eSeries_domain_yinwipS604_test
"Environment

;‘"Deployments
B-Services

T
H
L

-Security Realms *_

@‘"Interoperability
E}‘Diagnostics

@ Home Log Out Preferences Record Help

Home
Home Page
~ Information and Resources

Helpful Tools
= Configure applications
= Recent Task Status

= Set your console preferences

Domain Configurations

Domain

* Domain

Envirenment

* Servers

Click the Security Realms in the Domain Structure window.

The Summary of Security Realms window opens, displaying the available realms. The default

realm is myrealm.

Summary of Security Realms

A security realm is a container for the mechanisms--including users, groups, security roles, security policies, and security providers--that are used to protect Weblogic resources.

This Security Realms page lists each security realm that has been configured in this WebLoaic Server domain, Click the name of the realm to explore and configure that realm.

B Customize this table

Realms (Filtered - More Columns Exist)

New Delete

[]| Name &

Default Realm

myrealm

true

New Delete

Click on myrealm.

The Settings for myrealm window opens.

Engineering Data Management

Chapter 3- 15

e6.1.2 Web Services Manual

Settings for myrealm

Configuration = Users and Groups = Roles and Policies ~ Credential Mappings ~ Providers = Migration

General = RDBMS Security Store | User Lockout | Performance

Save

Use this page to configure the general behavior of this security realm.

Mote:
If you are implementing security using JACC (Java Authorization Contract for Containers as defined in JSR 115}, you must
Name: myrealm
(5] Security Model Default: DD Only 5

gg Combined Role Mapping Enabled

[E Cﬁ Use Authorization Providers to Protect JMX Access

B Advanced

Save |

4. Gotothe Providers tab.
The PLM authentication providers are listed in the Authentication sub-tab.
Settings for myrealm
Configuration = Users and Groups ~ Roles and Policies | Credential Mappings = Providers = Migration
Authentication | Password Yalidation =~ Authorization = Adjudication | Role Mapping — Auditing = Credential Mapping | Certification Path | Keystores
An Authentication provider allows WebLogic Server to establish trust by validating a user. You must have one Authentication provider in a security realm, and you
servers or DBMS, You can also configure a Realm Adapter Authentication provider that allows you to work with users and groups from previous releases of Weblc
[Customize this table

Authentication Providers

New | Delete | Reorder |

[Name Description

[] | pefaultauthenticator WebLogic Authentication Provider

[] | DefaultIdentityasserter WebLogic Identity Assertion provider

[| Pimauthenticator Oracle Agile PLM e6 Authentication Provider

New Delete Reorder

5. Click PImAuthenticator in the Name column.

This opens the Settings for PImAuthenticator window, displaying the Authentication
Configuration.

Chapter 3 - 16 Engineering Data Management

e6.1.2 Web Services Manual

Settings for PImAuthenticator
Configuration

Common | Provider Specific

Save

This page allows you to define the general configuration of this provider.

&5 Name: PlmaAuthenticator

ﬂ Description: Oracle Agile PLM ef Authentication Provider
&) version: 1.0

@g] Control Flag: SUFFICIENT ¥

Save |

6. Inthe Common sub-tab, select the Control Flag value.

This value allows the configuration of the JAAS (Java Authentication and Authorization
Service) login module of the provider.

The JAAS Control Flag values are:

REQUIRED The Authentication provider is always called, and the user must always pass its
authentication test. If authentication succeeds or fails, the authentication still continues down
the list of providers.

REQUISITE The user is required to pass the authentication test of the Authentication provider. If the user
passes the authentication test of this Authentication provider, subsequent providers are
executed but can fail (except for Authentication providers with the JAAS Control Flag set to
REQUIRED).

SUFFICIENT [Recommended Value] The user is not required to pass the authentication test of the
Authentication provider. If authentication succeeds, no subsequent Authentication providers
are executed. If authentication fails, authentication continues down the list of providers.

OPTIONAL The user is allowed to pass or fail the authentication test of this Authentication provider.
However, if all Authentication providers configured in a security realm have the JAAS
Control Flag set to OPTIONAL, the user must pass the authentication test of one of the
configured providers.

7. Inthe Provider Specific sub-tab, configure the following values:

The PLM authenticator delegates the authentication request to the PLM server which is
specified in the Provider Specific tab. This data are used by the PLM authenticator to connect
to that PLM server.

The user and password in the admin Ul are used to configure the PLM authenticator. The PLM
authenticator needs a valid PLM user and password from the PLM application belonging to its
domain. It will start one e6 server and use this server then to check the user credentials in
incoming HTTP(S) requests.

The authenticator's main purpose is to have a fail-fast mechanism in case the HTTP(S) request
contains wrong credentials. The authenticator just needs an ECI call to check the credentials.
Without the authenticator, the web service session manager starts a new e6 server (this takes
some time and valuable resources) just to notice that the credentials are incorrect.

Engineering Data Management Chapter 3- 17

e6.1.2 Web Services Manual

Itis OK to run a web service domain without authenticator, but you will have a performance
penalty if many HTTP request with wrong credentials are coming in.

Settmgs for PnAuthenticator
Configuration
Comeory Pravider Specific
Save
The page aliowes you to configure addtions sttrbutes For thes seaunty provdar
45 Pim Application Name: ArmipS504_test

1 Pl Password:

(7] Please type again To confirme

45 Pl Host: khe-jova
i s et DEMOEP_M
£] Plm Port: 61640

Save

PIm Application Name Name of PLM Application

PIm Password PLM User password

PIlm Host Host name of the PLM Server

Plm User Name of the PLM user

PIm Port Port number of the Java Daemon for the PLM Server

Configuring the Authentication Provider for Web Services Hotfix
Package

That is the only way right now by opening the WebLogic Admin console of the application domain.
1. Open Security Realms.
2. Open myrealm.
3. Open PImAuthenticator.
4. Goto Provider Specific tab.
Here you can set the PIm Password and PIm User values.
Note If you carry out the modifications for this application domain with Agile e6 Admin Client,

the existing values are replaced with the default values that were used during the
creation of this application domain.

You are required to repeat the steps given above each time you modify the application domain with
the Agile e6 Admin Client or after you create a new application domain with the Agile e6 Admin
Client where you need the Authenticator.

The values of PIm Password and PIm User are usually empty.

Chapter 3 - 18 Engineering Data Management

e6.1.2 Web Services Manual

To configure the Authentication Provider in the case nothing was configured during Agile e6
installation, you have to use the WebLogic Administration Console for the application domain. It is
only possible to configure the PLM User and Password without HF2 installed when the initial
installation was done.

The Agile e6 Administration Client does not support the creation or modification of a new
application where you can specify the user and password for this authenticator.

Testing the Inbound Web Services
Testing with the WebLogic Test Client

Once the Web Services Framework is set up and configured, you can test the functionality with the
WebLogic Test Client.

With the WebLogic test client, you cannot call web service operations as you cannot pass the user
credentials. However, it allows you to look at the WSDL and the schema files.

To map the calls without the user credentials, you can setup and use a Guest Account. See Using a
Guest Account for more details.

The Guest Account should not be used in the production environment.

Warning WebLogic test client does not work with the Web Services Security policies.

1. Log in to the Administration Console of the Oracle WebLogic Server

For example, http://server:7405/console/login/LoginForm. jsp
2. Inthe left pane, click Deployments under the Domain Structure.

The Summary of Deployments page appears displaying a table that lists out the Deployments.
3. Inthe Summary of Deployments list, click WebServices.

The Settings for MetadataService page appears. By default, the Overview tab is open.
4. Scroll down to the Modules and Components list.

In the Modules and Components list, select the Web Service you wish to test.

In the following example, we will test the ConfigurationService Service.

The Settings for ConfigurationService page appears.

Engineering Data Management Chapter 3- 19

e6.1.2 Web Services Manual

Settings for ConfigurationService

Overview | Configuration | Security || Testing || Manitoring

A Web service is a set of functions packaged into a single entity that is available to other systems on a network, Itis implemented
using a Java Web Service (JWS) file, which is & Java dass that uses JWS metadata annotations to specfy the shape and behavior of
the Web service,

This page displays the general configuration of a deployed Web service, such as the name that appears in the Deployments table of
the Administration Console, the name of the WAR or EJB JAR file in which it is packaged, and name that appears in the WSDL that
describes the Web service.

Deployment Name: YWebServices Mame of the Web service as it appears in the
Deployments table. More Infa...

Module Name: agile-ws-e6-jwe-core, war Mame of the Web service archive file, either a WAR
file or EJB JAR file depending on the Web service
features it implements. More Info...

Service Name: ConfigurationService Mame of this Web service, This name appears in the
W5DL file that defines the public contract of this Web
service. More Info...

6. Go tothe Testing tab.

The Deployment Tests list appears.

Settings for ConfigurationService

Overview | Configuration | Security | Testing | Monitoring

Lse this page to test that vour Web service is deployved and that it is working as expected. In the table, expand the name of the
Web service to see & list of its test points, Click PWSDL to view its dynamic WSDL in & separate browser window, Click Test Client
to invoke & new browser window where you can test each operation individually by entering parameter values, executing the
operation, and viewing the results,

Deployment Tests
Showing 1to 1of 1 Previous | Next
Hame &% Test Point Comments
ConfigurationService Test points for this WebService module.

Showing 1to 1of 1 Previous | Next

7. Expand the entry ConfigurationService.

The Test Points are displayed.

Chapter 3 - 20 Engineering Data Management

e6.1.2 Web Services Manual

Settings for ConfigurationService

Overview | Configuration | Security

Testing = Monitoring

Ize thiz page to test that vour Web service iz deployed and that it is working as expected. In the table, expand the name of the
Web service to see & list of its test points, Click PWSDL to view its dynamic W3DL in & separate browser window, Click Test Client
to invoke & new browser window where you can test each operation individually by entering parameter values, executing the

operation, and viewing the results,

Deployment Tests

Showing 1to 10f 1 Previous | Mext

Mame % Test Point Comments

B ConfigurationService Test points for this WebService module.
[CoreServices ConfigurationService AWSDL WS5DL page on server eSeries-01
[CoreServices ConfigurationService Test dient Test client on server eSeries-01

Showing 1to 1of 1 Previous | Mext

Testing with the JDeveloper HTTP Analyzer

The Web Service operations can also be called and tested using the JDeveloper HTTP Analyzer.

You are required to use HTTPS for the basic authentication with the HTTP analyzer otherwise you
cannot call an operation. See the chapter Configuring the Agile e6 Web Services Security for more
details.

To test the Web Services from the JDeveloper HTTP Analyzer:

1.

1
2.
3

P

Launch the JDeveloper IDE

Open the HTTP Analyzer screen
Enter the URL of the WSDL of the Web Service which you want to call.

In the Request area on the left, enter the input parameters for name:string and mask:string,
such as EDB-ARTICLE and EDB-ART-SLI.

Click on Send Request.

Upon successful call of the web service, the result data is displayed in the Response area of

the console.

Engineering Data Management

Chapter 3- 21

e6.1.2 Web Services Manual

e > o 2
38 a “ATRCY
Hero [t-ymn aghe aghesoft o TUZUM Gwia e Met AT 3 Ter v w

W U8 PO teen e sl iam | 1 EeoL e e ML e e AN Wiben WK

-w

Sapurst WTTP e aders $ X § FPesponse HTTP Heaters 200 0x

SOAF eaders

P ameters
P et ery

trny
o e tagee i Coox Reggumst

P T_NASTER DT D

Using a Guest Account

The PLM session manager supports a Guest Account feature which allows you to map the
incoming requests without requiring the credentials to a PLM guest user.

This feature is needed to support the WebLogic Server test client, which does not support passing
user credentials".

Warning The Guest Account feature is not intended to be used in a production environment.

The guest account is configured by adding the following credentials into the application.properties
file:

PlmUser=<plm.application.ws.guestuser>

PlmPwd=<plm.application.ws.guestpassword>

The password should be encrypted using the e6 installation encryption tool.

Note Do not enter plain text passwords into configuration files.

The entry PImScope tells the session manager if the Guest sessions should share an Agile e6 PLM
server (P1lmScope=PUBLIC) or if each Guest session should have its own Agile e6 server instance
(P1lmScope=PRIVATE).

Chapter 3 - 22 Engineering Data Management

e6.1.2 Web Services Manual

Engineering Data Management Chapter 3- 23

e6.1.2 Web Services Manual

Chapter 4

Configuring Agile e6 Web Services
Security

The Web Services configuration can be used to configure the web services security. Since web
services are not secured by default, it is required to configure/establish a web service policy that
meets your security strategy requirements.

Note The Agile e6 web service needs user credentials to connect to the Agile e6 application
server. These credentials are provided by the Agile e6 authentication provider which
stores this information into the Agile e6 principal. This Agile e6 principal is populated to
the web service by the web service framework. If the web service is not configured to be
secure, the Agile e6 principal will not be available for the Agile e6 web service. An
insecure web service cannot work.

Note The SSL port needs to be activated for the domain where the Web Services are
deployed. The standard Listen port (non-SSL) should be disabled for the domain where
the Web Services are deployed.

In the examples used in this chapter, a web service security policy is used to secure the entire web
service. The client has to provide the WSS: SOAP message security user name token encrypted
with a X.509 certificate.

Note The certificate itself will also be authenticated. The certificate must be valid and the
certificate name must be available in the system.

Setting up the Web Services Security Policies

Note In the current release of Agile e6 core web services, DocumentManagementService
does not support web services security policies. The file streaming only works with SSL
(by using HTTPS). It does not work if HTTPS is enforced by adding a policy. All other
web services can be controlled by the web services security policies.

To set up a Web Service Security Policy:
1. Inthe left pane, click Deployments under Domain Structure.

The Summary of Deployments page appears with Control tab.

Chapter 4 - 24 Engineering Data Management

e6.1.2 Web Services Manual

Summary of Deployments

Control | Monitoring

This page displays a list of Java EE applications and stand-alone application modules that have been installed to this domain, Installed
applications and modules can be started, stopped, updated (redeployed), or deleted from the domain by first selecting the application
mame and using the controls on this page.

Tainstall a new application or module for deployment to targets in this domain, click the Install button.

B Customize this table
Deployments
Install || L Delete | | Startv | | Stop ¥ showing 1to 3of 3 Previous | Mext
Deployment
[| vame ¢ State | Health | Type Order
[] | Wagle-ws-et-custom Active Library 100
. . - Enterprise
F] EBusmessSerwce Active | @ OK application 100
, . . Enterprise
A /i "
il CRwebservices Active | @ OK Application 100
Inztall Delete | (| Start | | Stop » Showing 1to 3 0f 3 Previous | Mext

2. Inthe Name column, expand the WebServices.

All the Deployed Web Services are listed.

Deployments
Inztall Delete Showing 1to 30f 3 Previous | Next
Deployment
] | name &% State | Health | Type Order
O ﬁagile*. is-ef-custom Active Library 100
. . . Enterprise
[+
[| = [BBusinessservice Active | ¥ 0K Application 100
\ . - Enterprise
1! o "
[| = [@webservices Active | & OK Application 1o
Bl Modules
() CoreServices Web Application
@EdServices Web Application
ElElBs

Mone to display

Bl Wweb Services

@Business@bjeciﬁervice Web Service
@ConﬁguraﬁonService Web Service
{é}Documenh‘ﬂanagementService Web Service
{é}EdService Web Service
@ﬂetadataSeruice Web Service

In=stall | | Up

Stop Showing 1to 3of 3 Previous | Mext

Engineering Data Management Chapter 4- 25

e6.1.2 Web Services Manual

3. Click a Web Service.
For our further instructions, we will use ConfigurationService.

The Settings for ConfigurationService page appears, displaying the Service Endpoints and
Operations and corresponding Policies.

4. Go to the WS-Policy sub-tab in the Configuration tab and expand ConfigurationPort in
Service Endpoints and Operations.

Settings for ConfigurationService
Overview | Configuration | Security | Testing | Monitoring

General | Handlers | WS-Policy | Ports

This page lists the policy files that are attached to the endpoints and operations of this Web service, The operations are listed below the
endpoint; click on the + sign to view them, Click on the endpaint or operation name to attach a policy file, For example, vou can specify
that the palicy file applies only for inbound (request) SOAP messages, and so on.

WS5-Policy Files Associated With This Web Service

Showing 1to 1of 1 Previous | Mext

Service Endpoints and Operations % Policies

= ConfigurationPort

doseSession

getConfigurationVersion

getDefault

getDefaultBulk

getUserContext

setllserContext

Showing 1to 1of 1 Previous | Mext

The WS-Policy files associated with the ConfigurationService are listed.
5. Click an Operation, say getDefault.

The Configure a WebService Policy page to Configure the WS-Policy for the SOAP
Message of an Operation appears.

Chapter 4 - 26 Engineering Data Management

e6.1.2 Web Services Manual

Configure a WebService policy

Wext | | Cancel
I

Configure the W5-Policy for the SOAP Message of an Operation

Use this page to configure the WS-Palicy file for Both (inbound request and outbound response) SOAP messages resulting from the
invoke of the operation.

The Available Both {Inbound and Cutbound) Message Policdes window lists the WS-Paolicy files that are available; use the arrows to move
a file to the Chosen Both Message Policies table, then dick next to configure the inbound (request).

@g Operation Message Policies:
Available Message Policies: Chosen Message Policies:

policy:DefaultReliability.xml
policy:DefaultReliability1.1.5cml
policy:DefaultReliability1.2.5ml
policy:LongRunningReliability.scml
policy:Mcaeml

R

policy:Mcl.1.eml
policy:Mtom.xml 5
policy:Reliability1.0_1.1.xml

policy:Reliability1.0_1.2.xml

policy:Reliabilityl.1_SequenceSTR.xml o
policy:Reliability1.1_SequenceTransportSecurity.cml
policy:Reliability1.2_SequencesTR.xml

policy:Reliability1.2_SequenceTransportSecurity.cml

OO0 0ooooocoooon.

policy:Wssp1.2-2007-Encry ptBody.xml

6. Select the desired Operation Message Policies from the Available Message Policies box
and move them to the Chosen Message Policies box.

7. Click Next.

The Configure a WebService Policy page to Configure the WS-Policy for the Inbound SOAP
Message of an Operation appears.

8. Select the desired Operation Message Policies from the Available Message Policies box
and move them to the Chosen Inbound Message Policies box.

9. Click Next.

The Configure a WebService Policy page to Configure the WS-Policy for the Outbound
SOAP Message of an Operation appears.

10. Select the desired Operation Message Policies from the Available Message Policies box
and move them to the Chosen Outbound Message Policies box.

11. Click Finish.
The Save Deployment Plan Assistant page appears.

12. Click OK to save the policies and return to the Settings for ConfigurationServices page.

Setting up the Web Services Security

X.509 Authentication

For X.509 authentication, a Web Service Security Configuration must be configured.

Engineering Data Management Chapter 4- 27

e6.1.2 Web Services Manual

Settings for e6base_domain

Configuration | Monitoring | Control = Security = Web Service Security' Notes

This page lists the Web Service security configurations that have been created for this domain. Click on the security
configuration name to update it, such as create new credential providers, new token handlers, or configure the timestamp
properties.

Web Service Security Configurations

New Delete Showing 1to 1of 1 Previous | Next
[M | web Service Security Configuration Name &%
[| default_wss
fNﬂ_j Delete Showing 1to 10f 1 Previous | Next

The WebLogic server provides default providers which can be used. In this example, clicking on the
default Web Service default_wss opens the Settings for default_wss mask. On the Credential
Provider tab, a number of available default providers are listed that have been created for the web
service security configuration.

Settings for default_wss

General | Credential Provider = TokenHandler = Timestamp

This page lists the credential providers that have been created for the Web Service security configuration. Click on the
credential provider name to modify its configuration and to add properties. Click New to create a new credential provider. To
delete a credential provider, check the box next to its name and dick Delete.

Credential Providers
‘LNe_w‘ Delete Showing 110 20f 2 Previous | Next
[F | credential Provider Name ¢ | Class Name Token Type
M | default_dk_cp weblogic.wsee, security.wssc.v200502.dk.DKCredentialProvider | dk
M | default_x509_cp weblogic.wsee.security.bst.ServerBSTCredentialProvider x509
| New | | Delete Showing 1to 20f 2 Previous | Next

The x509 server certificate has to be stored in a Java keystore and can be configured as follows:

Chapter 4 - 28 Engineering Data Management

e6.1.2 Web Services Manual

Settings for default_x509_cp
Configuration Notes
Save
Une this page to configure a credential provider of & Web Service security configuration, In particular, you can change the
claganame that implements the credential provider, change the type of token, and add or delete properties of the cradential
provider,

Name: default_x509_cp Thee e -upeciNad hame of this MBean
instance. More Info..,

Class Name: wablogic wsee security The fully qualified name of the cass that
implements a particular cradential provider o
token handler More Info,..

Token Type; x509 Specifies the type of token used for the
particular credential provider or token
handier More Info,..

Save
B Customize this table
Credential Provider Properties
New Clelot s Showing 1to 8 of 8 Pravious | Next
[| name o value .t
Encrypted
M | ConfidentialitykeyAlias Identity false
™ | confidentialityKeyPasaword oo true
) e Ct\oracle Middleware\sample_security _providers
M | ConfidentialityKeyStore \ServerIdentity, ks false
M | ConfidentialitykeyStorePassword | #assss true
M | 1ntegrityKeyAlias Identity false
™ | IntegrityKeyPassword crnazag true
3 < P Ci\oracle Middiaware \sample _security _providers -
M | integrityKeyStore \Serverldentity.jxs false
M | integrityKeyStorePassword =~ | e true
New [Iwlote Showing 1to 8 of 8 Previous | Naxt

Authenticating in a Web Service Client

The caller of an Agile e6 Web Service has to provide user credentials to gain access to the Agile e6
application. The attributes of these credentials depend on the used web service policy.

The following is an example of an unauthenticated Web Service call:

<?xml version='1l.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>

<nséd:getVersion xmlns:ns2="http://xmlns.oracle.com/Agile/e6/Metadata/v0"
xmlns:ns3="http://xmlns.oracle.com/Agile/e6/plm"

xmlns:ns4="http://xmlns.oracle.com/Agile/e6/HelloWorld/vO0" />

</S:Body>
</S:Envelope>

A Sample of HTTP Authentication

You can use the basic authentication of HTTP to secure a web service. With this basic
authentication of HTTP, the user credentials are stored in the HTTP header. The SOAP message
does not carry any security information.

Basic authentication without SSL should not be used in a production environment as the passwords

Engineering Data Management Chapter 4- 29

e6.1.2 Web Services Manual

and data are transferred in plain text. Ideally, HTTP/S should be configured.

For complete details on WebLogic Security Fundamentals and Transport Level Security, refer to the
WebLogic documentation on OTN.

Here is a sample of basic HTTP authentication:

POST /agile-ws-e6/HelloWorldService HTTP/1.1
Authorization: Basic RURCQIVTVE86T1RTVUNCREU=

SOAPAction: ""
Accept: text/xml, multipart/related, text/html, image/gif, image/jpeg, *; g=.2,
/; g=.2

Content-Type: text/xml;charset="utf-8"
User-Agent: Oracle JAX-WS 2.1.4

Host: localhost:7002

Connection: keep-alive

Content-Length: 315

<?xml version='l.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>

<nséd:getVersion xmlns:ns2="http://xmlns.oracle.com/Agile/e6/Metadata/v0"
xmlns:ns3="http://xmlns.oracle.com/Agile/e6/plm"

xmlns:ns4="http://xmlns.oracle.com/Agile/e6/HelloWorld/v0" />

</S:Body>
</S:Envelope>

To add the HTTP basic authentication to a SOAP request, the code may look like the following
example:

MetadataService service = new MetadataService (wsdlURL, serviceQName) ;
BindingProvider bindingProvider = (BindingProvider) service.getPort();

bindingProvider.getRequestContext () .put (BindingProvider.USERNAME PROPERTY,
username) ;
bindingProvider.getRequestContext () .put (BindingProvider.PASSWORD PROPERTY,
password) ;
bindingProvider.getRequestContext () .put (BindingProvider.SESSION MAINTAIN PROPERTY,
Boolean.TRUE) ;

Note The lastline in the example code given above configures HTTP session handling. If this
code is not added, each web service call will create a new HTTP session which will lead
to a new e6 server instance starting up.

A Sample of Web Services Security

In the following example, a WS-Policy (web services policy) is used for the WSS: SOAP Message
Security.

You are required to provide the username token and a client certificate. The complete security
information is embedded into the SOAP message.

Note By configuring WSS: SOAP Message Security, the WSDL gets modified.

<?xml version='1l.0' encoding='UTF-8'?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/0asis~-
200401-wss-wssecurity-secext-1.0.xsd"
S:mustUnderstand="1">

Chapter 4 - 30 Engineering Data Management

e6.1.2 Web Services Manual

<nsl:EncryptedKey xmlns:nsl="http://www.w3.0rg/2001/04/xmlenc#"
Id="JO0LZ6aDu8pt9PRPe">
<nsl:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgflp">
<ns2:DigestMethod
xmlns:ns2="http://www.w3.0rg/2000/09/xmldsig#"

Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal™ />
</nsl:EncryptionMethod>
<ns3:KeyInfo xmlns:ns3="http://www.w3.0rg/2000/09/xmldsig#">
<wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="str kNu7VfoépzZLgdYcv">
<X509Data xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<X509IssuerSerial>
<X509IssuerName>CN=CertGenCAB, OU=FOR TESTING
ONLY, 0=MyOrganization, L=MyTown, ST=MyState, C=US</X509IssuerName>
<X509SerialNumber>-
135694037818432800534509206009756866711</X509SerialNumber>
</X509IssuerSerial>
</X509Data>
</wsse:SecurityTokenReference>
</ns3:KeyInfo>
<nsl:CipherData>

<nsl:CipherValue>JHUAfXJSBYXXKAGIPQ. .o cveeuen.. NUWGQ9IPLI9M1uODgmnQ8N1k=</nsl:Ciphe
rValue>
</nsl:CipherData>
<nsl:ReferencelList>
<nsl:DataReference URI="#PJr5jO7puKh50L5b" />
</nsl:Referencelist>
</nsl:EncryptedKey>
<wsse:BinarySecurityToken xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
EncodingType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-soap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3"

wsu:Id="bst GpDRlniRFucsZsbm">MIICKzCcC....... KMuSAl1XAQ==</wsse:BinarySecurityToken
>
<dsig:Signature xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:SignedInfo>
<dsig:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
<dsig:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<dsig:Reference URI="#Timestamp KKvWCLd1rCRB2SNF">
<dsig:Transforms>
<dsig:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

<dsig:DigestValue>xndjH7PWB/yinv/uFzmElQzAezI=</dsig:DigestValue>
</dsig:Reference>
<dsig:Reference URI="#Body 01UdcO0zqWY2bBvU">
<dsig:Transforms>
<dsig:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

<dsig:DigestValue>gt0av56Xh/gca30jxtDChJkFZck=</dsig:DigestValue>
</dsig:Reference>
<dsig:Reference URI="#unt UROJpKRFSAIZLKFf">
<dsig:Transforms>
<dsig:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />

Engineering Data Management Chapter 4- 31

e6.1.2 Web Services Manual

</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

<dsig:DigestValue>QBSH0z6BxmZgEM56+g32S2w001g=</dsig:DigestValue>
</dsig:Reference>
<dsig:Reference URI="#bst GpDRlniRFucsZsbm">
<dsig:Transforms>
<dsig:Transform
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

<dsig:DigestValue>62PwFQZDINJ1R77qudrvzJCIUNE=</dsig:DigestValue>
</dsig:Reference>
</dsig:SignedInfo>

<dsig:SignatureValue>TfFLyCRIMF4ZepgwmnCned7/mj5TaviwjDg69....... MIFR3kBU=</dsig:Si
gnatureValue>
<dsig:KeyInfo>
<wsse:SecurityTokenReference xmlns:wsse="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-secext-1.0.xsd"
xmlns:wssell="http://docs.oasis-
open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"

wssell:TokenType="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-x509-
token-profile-1.0#X509v3"
wsu:Id="str KVJylAtKNAxVYsKg">
<wsse:Reference URI="#bst GpDRlniRFucsZsbm"
ValueType="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-x509-token-profile-1.0#X509v3" />
</wsse:SecurityTokenReference>
</dsig:KeyInfo>
</dsig:Signature>
<nsl:EncryptedData xmlns:nsl="http://www.w3.0rg/2001/04/xmlenc#"
Encoding="UTF-8" Id="PJr5jO07puKh50L5b" MimeType="text/xml"
Type="http://www.w3.0rg/2001/04/xmlenc#Element">
<nsl:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes256-cbc" />
<nsl:CipherData>

<nsl:CipherValue>yG4AULSKvJFL8...... 0ggkcPmY6yhdpoE=</nsl:CipherValue>
</nsl:CipherData>
</nsl:EncryptedData>
<wsu:Timestamp xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="Timestamp KKvWCLA1rCRB2SNF">
<wsu:Created>2010-02-03T14:44:3172</wsu:Created>
<wsu:Expires>2010-02-03T14:45:3172</wsu:Expires>
</wsu:Timestamp>
</wsse:Security>
</S:Header>
<S:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss—
wssecurity-utility-1.0.xsd"
wsu:Id="Body 01UdcO0zqWY2bBvU">
<ns4:hello xmlns:ns2="http://xmlns.oracle.com/Agile/e6/Metadata/v0"
xmlns:ns3="http://xmlns.oracle.com/Agile/e6/plm"
xmlns:ns4="http://xmlns.oracle.com/Agile/e6/HelloWorld/vO" />
</S:Body>
</S:Envelope>

In the following example, WSS: SOAP Message Security information is provided for the SOAP
request:

MetadataService service = new MetadataService (wsdlURL, serviceQName) ;

BindingProvider bindingProvider = (BindingProvider) service.getPort();
List<CredentialProvider> credProviders = new ArraylList<CredentialProvider>();
try {

// Load server certificate

Chapter 4 - 32 Engineering Data Management

e6.1.2 Web Services Manual

X509Certificate serverCert =
(X509Certificate)CertUtils.getCertificate (serverCertFile);

// Check server certificate
serverCert.checkvValidity () ;

// Create a new certificate credential provider
CredentialProvider cp = new ClientBSTCredentialProvider (clientKeyStore,
clientKeyStorePass, clientKeyAlias, clientKeyPass, "JKS",
serverCert) ;

// Add certificate credential provider to the array list
credProviders.add (cp) ;

// Create a new username token credential provider
CredentialProvider up = new ClientUNTCredentialProvider (username.getBytes(),
password.getBytes ()) ;

// Add certificate username token credential provider to the array list
credProviders.add (up) ;

Map<String, Object> rc = ((BindingProvider)portName) .getRequestContext () ;

// Add the credential providers to the request context
rc.put (WSSecurityContext.CREDENTIAL PROVIDER LIST, credProviders);

// Add a trusr manager to the request context, you can do here some validation
tests on the return certificate of the SOAP message
rc.put (WSSecurityContext.TRUST MANAGER,
new TrustManager () {
public boolean certificateCallback (X509Certificate[] chain,
int validateErr) {
return true;

}

P

} catch (Exception e) {
log.printStackTrace (e

}

)

Engineering Data Management Chapter 4- 33

e6.1.2 Web Services Manual

Chapter 5
Working with Agile e6 Web Services

Bulk Processing of Requests

Most of the Agile e6 web service operations support bulk processing of requests. The operations
with one request input object and one response output object can be configured to process multiple
or bulk requests and corresponding responses.

Handling the Bulk Requests

A bulk request contains a list of requests for the non-bulk operation. These requests are executed
one by one, and each response is stored in the result list of the bulk response object.

All requests contained in the bulk request list are executed in sequence using the order of the list.

The bulk requests can be configured to either stop on the first failure, or to continue regardless of a
failing request.

If a request fails with a response FAILURE, the loop will be aborted if the stopOnFailure member of
the bulk request is set. If stopOnFailure is not requested, the status of the bulk response is set to
PARTIAL_SUCCESS. This requires you to look into each response in the list to check the individual
status.

However, if a request fails with a PImFault (or any other exception), the bulk processing is aborted
and the list of requests processed until the fault occurred is returned. Additionally, the causing fault
is returned in the bulk response.

If the bulk request does not contain any request, a WARNING response is returned.

The content of the response object depends on the status code, as listed below:

SUCCESS A list with all response objects matching the list of requests.
All requests succeeded.

FAILURE A list with all response objects matching the list of requests.
One or more requests failed, check the respective responses.
The last executed request failed with an exception, which is returned as the fault in the
bulk response.

If one request fails due to lack of mask in White-list, status code would be FAILURE
instead of PARTIAL_SUCCESS even if other services should are successful.

WARNING The bulk request does not contain any request.

PARTIAL_SUCCESS A list with all response objects matching the list of requests.
One or more requests failed, check the respective responses.
If stopOnFailure was requested, the list ends with the first response that failed.

Chapter 5 - 34 Engineering Data Management

e6.1.2 Web Services Manual

Developing the Outbound Web Services
Wrapper

The Web Services Wrapper Interface

Each wrapper has to implement the WebServiceWrapper interface, which prescribes the following
method:

StringList callWebService (WrapperContext context, CallableParam args)

The context contains all relevant information for the wrapper to perform the call. The wrapper then
transforms the arguments to an XML payload for the outbound web service and finally makes the
call.

If it is an asynchronous web service, the wrapper returns a string list with the correlation ID.
Otherwise, it transforms the XML payload returned by the web service into a string list that is
expected by the calling Agile e6 server process.

In case the wrapper is implemented in BPEL (or in any other external web service language), you
require a special wrapper called the ExternalWrapper. This wrapper delegates the call to the
respective external web service wrapper.

The BPEL Facade

For the outbound calls, you are required to use the ExternalWrapper to call an external web service
or a BPEL process. However, you need to first implement an interface to adapt the External
Wrapper. This interface is called as BPEL facade.

Normally, this facade should be a BPEL process that you implement. In this facade, you can invoke
an external web service or BPEL process and create their business logic. All the facades should
implement a standard WSDL. The External wrapper uses this standard WSDL to generate the
proxy. Then it can use different endpoints to call different BPEL facades.

’/\

=
Logmew VWresee Mitiadis Sermace Name - Find \\ N BPEL Wrapper
xutil_call_ws vIapper Manage “SJptemal Wrapper? (Extemer Wrapper)
"~
~
} Y User Name & Ticket Get different endpoint
' url by semvice name
' o =
H
e BPEL Facade
e \\ Intemal Wrapper implements the standard WSOL
/ Input Param \ ¢.g HelloWorldSemceWrapper to adapt the BPEL Wrapper
(Semice Name
_ Other input params //
— _’/

User Name & Ticket

Core Web Semce

WS Chient
2.9 HelloWorldService VS Clien

User Name & Password

Endpoint Configurations for the External Wrapper

All the endpoints for the External wrapper are defined in the properties file

Engineering Data Management Chapter 5- 35

e6.1.2 Web Services Manual

ExternalWrapper.properties. This file resides in the APP-INF/classes directory alongside the
application.properties file for the Web Services.

Example

bpel.wrapper.SampleExternalService?2.wsdl=http://<server><port>/soa-
infra/services/default/SOAComposite2/BPELFacadeService?WSDL

In the above example, when we pass the service name as SampleExternalService2 in
xutil_call_ws, the wrapper manager first looks for an internal wrapper named as
SampleExternalService2. If this internal wrapper does not exist, then the wrapper manager calls the
external wrapper and gets the endpoint with the key value
bpel.wrapper.SampleExternalService2.wsdl in the ExternalWrapper.properties file.

Note You are required to use the custom staging mechanism of the Agile e6 Installer to add
your own mappings to the ExternalWrapper.properties file.

Session Management Integration

In the ExternalWrapper, the user name & ticket should be passed to the BPEL facade. The BPEL
facade uses this information to invoke the e6 core web services and reconnect to the same Agile e6
PLM session to get more data.

Developing a Custom Wrapper

In order to compile a custom wrapper, you need the libraries contained in the Web Services
application. These libraries can be found at
${ep_root}/staging/product/WebServices/WebServices.ear/APP-INF/lib.

If your wrapper calls an external or internal web service, you also need to add the generated client
classes or any other infrastructure classes needed. This depends on the web service client
framework that you use.

Important Itis highly recommended to use the WebLogic Web Service framework when
implementing a wrapper for a web service because the wrapper is runs inside
WebLogic.

The name of the wrapper class should be <ID>Wrapper, as the wrapper manager looks for this
string when the Agile e6 server tries to call it.

The imports used by the wrapper are in the libraries contained in the lib directory inside the
WebServices.ear file (at APP-INF/lib). By default, the wrapper class should be in the package
com.agile.ws.e6.wrappers so that the wrapper manager can find it at the runtime. However, it is
also possible to add other package names to the search path by adding them to the
application.properties file of the Web Services application:

WrapperPackage.Custom.l = some.custom.wrapperpackage

WrapperPackage.Custom.2 = another.custom.wrapperpackage

Example: EchoServiceWrapper.java

This wrapper does not call an outbound web service. It returns the arguments that have been
passed. This wrapper is already contained inside the Web Services application and can be used to
test the infrastructure.
/*
* $Id: EchoServiceWrapper.java,v 1.3 2010/10/15 15:11:56 brg Exp $

*

* Copyright (c) 1992, 2010, Oracle. All rights reserved.

Chapter 5 - 36 Engineering Data Management

e6.1.2 Web Services Manual

*/

package com.agile.ws.eb6.wrappers;

import com.agile.eci.EciConnection;

import com.agile.eci.EciPar;

import com.agile.eci.EciParBuffer;

import com.agile.share.callable.CallableParam;

import com.agile.share.trace.Logger;

import com.agile.share.trace.Trace;

import com.agile.share.util.StringArray;

import com.agile.share.util.StringlList;

import com.agile.ws.e6.PlmSession;

import com.agile.ws.e6b.wrappersupport.WrapperContext;

import java.net.InetAddress;

/**
* A simple echo wrapper to test the wrapper mechanism.
=Y

public class EchoServiceWrapper extends AbstractWrapper {

private static Logger log = Trace.getLogger (EchoServiceWrapper.class) ;

/**
* The name of this service wrapper.
&7

public static final String NAME = EchoServiceWrapper.class.getSimpleName () ;

/**
* Creates a new echo service.
*/
public EchoServiceWrapper () {
super (NAME) ;
}

/** {Q@inheritDoc} */
@Override

public StringList callWebService (WrapperContext context, CallableParam args) {

log.enter ("callWebService", "context="+context+", args="+args);

PlmSession session = null;
String userName = "<unknown>";
String processId = "<unknown>";

try {
session = createPlmSession (context) ;
EciConnection con = session.getConnection();

EciPar par = con.call("eci rea edb usr");

userName = par.get(l);

log.info("My name is " + userName + "," +
"\nI belong to the group " + par.get(2) +
" \nMy user ID is " + par.get(3) + "," +
"\nmy group ID is " + par.get(4) +
"\nand I am " + ("y".equals(par.get(5)) ? "" : "not
manager" +
ll.\nll +
"\nOur session is " + session + ".\n");

par = con.call("eci get pid");
processId = par.get(l);

EciParBuffer buf = new EciParBuffer();
buf.add ("EDB-BAS-WARNING") ;

+ "a

buf.addNew ("This is the e6 EchoService running inside WebLogic on host "

InetAddress.getLocalHost () .getHostName () + "\n\n"

"You are " + userName + " and your process ID is " + processId);

buf.end () ;
con.call("eci mes wri", buf);
}
catch (Exception e) {
log.error ("Unable to reconnect to e6: ", e);

Engineering Data Management

Chapter 5- 37

e6.1.2 Web Services Manual

final
if

}
}

ly {

(session
session.close();

!'= null)

{

StringlList result = new StringArray(args.getParam());
log.leave ("callWebService",
return result;

Example: SampleWrapper.java

"result=" + result);

This wrapper calls an e6 core service as an example. The generated client code needed to call the
€6 core service is not included.
The generated classes belong to the wrapper and need to be deployed along with it.

The SampleWrapper class needs a property file, SampleWrapper.properties, which contains the
URL of the web service.

When Agile e6 application wants to call a wrapper called Sample, it will pass Sample as the first
argument to xutil_call_ws. The wrapper manager will then look for a class called SampleWrapper
in all the packages in its search path. To call the EchoServiceWrapper, pass EchoService to

xutil_call_ws.

* $Id: SampleWrapper.java,v 1.1.2.2 2011/06/30 15:53:27 brg Exp $

* Copyright (c)

*/

package com.agile.ws.

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import

import
import

*

/

* Ok ok ok ok ok %

com.
com
com
com.
com.
com.
com.
com
com.
com.
com.
com
com
com.
com
com.
com.
com
com.

java
Jjava
java
java
Jjava

agile.
.agile.
.agile.
agile.
agile.
agile.
agile.
.agile.
agile.
agile.
agile.
.agile.
.agile.
agile.
.agile.
agile.
agile.
.agile.
agile.

199

eci.

eci

eci.

2,

2011,

.EciPar;

Oracle. All rights reserved.

eb.wrappers;

EciParBuffer;

EciConnection;

security.tickets.plm.PlmTicket;
.callable.CallableException;
.callable.CallableParam;
.trace.Logger;

.trace.Trace;
.util.StringArray;
.util.StringList;

sha
sha
sha
sha
sha
sha
wS.
ws
wS.
wS.
ws
wS.
wS.
WS
wS.

re
re
re
re
re
re

eb.
.€6.
eb.
eb.
.€6.
eb.
e6.
.e6.
eb.

PlmSes

.net.InetAddress;
.net.MalformedURLException;
.net.URL;
.net.UnknownHostException;
.util.Properties;

sion;

core

core

core

javax.xml.namespace.QName;
javax.xml.ws.BindingProvider;

application.

<p>At the customer site,
agile-custom shared library, wh

COIEE

COIEE
core.

WebServiceEnum;
client.
client.
client.
client.
client.
client.
wrappersupport.WrapperContext;

.common.PlmUserContext;
common.PlmUserContextUserInfo;
.configuration.Configuration;
configuration.ConfigurationService;
configuration.GetUserContextRequestType;
.configuration.GetUserContextResponseType;

A simple example of a wrapper for an out-bound web service call.

<p>It extends the abstract wrapper implementation, which is shipped
in the library agile-ws-e6-callables as part of the WebServices.ear file.

the new wrapper classes need to be put into the

ich is referenced by the WebServices

Chapter 5 - 38

Engineering Data Management

e6.1.2 Web Services Manual

<p>Alternatively, a JAR file containing the wrapper can be added to the
WebServices application into the APP_INF/lib directory,

so that it is deployed as part of the WebServices application.

/

public class SampleWrapper extends AbstractWrapper {

/** The Logger used to print trace messages */

private static Logger log = Trace.getLogger (SampleWrapper.class) ;

* ok ok ok

/** The name of our properties file */

private static final String SAMPLE PROPERTIES = "SampleWrapper.properties";
/** Property containing the URL of the external web service */

private static final String PROP_ENDPOINT = "Sample.endPoint";

/**
* The service we want to contact.
*

* <p>This class - and all the others in the package

com.agile.ws.e6.client.core - is
* generated by the WebLogic clientgen Ant task.
7

private ConfigurationService configurationService;
/** The URL to the Configuration service */
private String configurationEndPoint;

/**
* The name of this service wrapper.
*/
public static final String NAME = "Sample";

/**
* Creates a new HelloWorld service.
*/
public SampleWrapper () {
super (NAME) ;
}

/**
* @return the RCS information of this object's class (polymorphic)
*/
@Override
public final String getRCSId() {
return getClassRCSId() ;
}

/**
* @return the RCS information of this class (static)
7
public static String getClassRCSId() {
return "$Id: SampleWrapper.java,v 1.1.2.2 2011/06/30 15:53:27 brg Exp $";
}

*

/

Creates the port to access the Configuration service.

@param endPoint the WSDL URL of the service.
@param ticket the PLM ticket provided by the e6 server

EE R S S

@return the port to call the Configuration service
7
private Configuration getConfigurationPort (P1lmTicket ticket) throws
MalformedURLException {
if (configurationService == null) ({
configurationService = new ConfigurationService (
new URL (configurationEndPoint),
new QName (WebServiceEnum.CONFIGURATION.getNamespace (),
WebServiceEnum.CONFIGURATION.getServiceName ())) ;
}

Configuration port = configurationService.getConfigurationPort () ;
BindingProvider binding = (BindingProvider) port;

// Add authentication, we have a ticket so we do not need the password

Engineering Data Management Chapter 5- 39

e6.1.2 Web Services Manual

binding.getRequestContext () .put (BindingProvider.USERNAME PROPERTY,
ticket.getUserName()) ;

binding.getRequestContext () .put (BindingProvider.PASSWORD PROPERTY,
String.valueOf (ticket.getRawTicket ()));

//

Maintain the HTTP session, in case we do several calls to the server

binding.getRequestContext () .put (BindingProvider.SESSION MAINTAIN PROPERTY,
Boolean.TRUE) ;

return port;

}

*

/

R I S

Calls the web service.

@param context the context that contains the reference to the e6 server
@param args arguments passed by the e6 server
Qreturn list of return values, or null

* @throws CallableException Web service call failed

*/

@Override
public final StringList callWebService (final WrapperContext context, final
CallableParam args) throws CallableException ({

log.enter ("callWebService", "context="+context+", args="+args);
// Try to load our properties
Properties sampleProps = new Properties();
try {
sampleProps.load(getClass () .getResourceAsStream ("/" +

SAMPLE PROPERTIES)) ;

}

configurationEndPoint = sampleProps.getProperty (PROP_ENDPOINT) ;

catch (Exception e) {

String msg = "Unable to load SampleWrapper.properties";
log.error (msg, e);
throw new CallableException(this, msg);

(configurationEndPoint == null) {
log.error ("No WSDL URL found in " + SAMPLE PROPERTIES) ;
throw new CallableException(this, "No web service URL configured for the

Sample wrapper") ;

}

log.info ("Using WSDL at " + configurationEndPoint);

Configuration port = null;
StringList result = new StringArray();

try {

// Create a session object:
//

// It gives us access to an ECI connection to the same e6 server instance

that called us,

response.

// and - if needed - it will create an AxalantRepository instance for us,
// 1f we want to make use of the high level Java ECI (JET layer).
PlmSession session = createPlmSession (context);

// First some ECI calls
callEciDemo (session) ;

// Now the "external" web service call.

//

// Here, we would normally call an external service of another system,
// but for demo purposes, we just call an e6 Core service.

port = getConfigurationPort (context.getPlmTicket());

log.info ("Port created with PLM ticket");

GetUserContextRequestType request = new GetUserContextRequestType () ;
GetUserContextResponseType response = port.getUserContext (request);

log.info ("Web method getUserContext () returned with status code " +
getStatusCode ()) ;
PlmUserContext e6Context = response.getPlmUserContext ();

Chapter 5 - 40

Engineering Data Management

e6.1.2 Web Services Manual

PlmUserContextUserInfo userInfo = e6Context.getPlmUserInfo();

result.add ("User name = " + userInfo.getUserName())
result.add ("Group name = " + userInfo.getGroup()):
result.add ("Language = " + userInfo.getUserLanguage());
result.add ("Locale = " + userInfo.getUserLocale());

}
catch (Exception e) {
log.error ("Unable to call web service", e);
throw new CallableException(this, "Web service call failed", e);
}
finally {
if (port != null) {
try {
// Tell the server that we no longer need the e6 session.
port.closeSession() ;
}
catch (Exception e) {
log.error ("Unable to close port", e);
}
}
}
return result;

}

/**
* Calls some ECI functions to demonstrate how to get additional data.
*
* @param session the e6 PLM session
=Y
private void callEciDemo (PlmSession session) {
String userName = null;
String processId = null;
String host;

try {
host = InetAddress.getLocalHost () .getHostName () ;
}

catch (UnknownHostException e) {

host = "unknown host";
}
EciConnection con = session.getConnection () ;
EciPar par = con.call("eci rea edb usr");

userName = par.get(l);

log.info ("My name is " + userName + "," +
"\nI belong to the group " + par.get(2) +
" \nMy user ID is " + par.get(3) + "," +
"\nmy group ID is " + par.get(4) +

"\nand I am " + ("y".equals(par.get(5)) ? "" : "not ") + "a manager" +
".\nll +
"\nOur session is " + session + ".\n");

par = con.call("eci get pid");
processId = par.get(l);

EciParBuffer buf = new EciParBuffer () ;

buf.add ("EDB-BAS-WARNING") ;

buf.addNew ("This is the e6 SampleWrapper running inside WebLogic on host " +
host + "\n\n" +
"You are " + userName + " and your process ID is " + processId);

buf.end();

// Prints a message on the client that contacted us

con.call ("eci_mes_wri", buf);

Engineering Data Management Chapter 5- 41

e6.1.2 Web Services Manual

Calling a Custom Wrapper from e6

A new C/C++ user-exit is needed that can be called from LogiView or C/C++ to make an outbound
web service call. The request is sent as an ECI call to the ECI server embedded in the application
server, which then calls the respective wrapper for XML processing.

To limit any XML parsing in LogiView and C/C++, the user-exit sends a string containing a user-exit
parameter as an input to the wrapper and it expects a list of string as a result from the wrapper.

The user-exit accepts an input argument that uses the syntax prescribed by CallableParam and
zag_cnv_arg. This argument is passed to the ECI callable Eci_call WebService in the application
server.

This user-exit is called xutil_call_ws and can be used in LogiView as follows:

EP APP CMD = "EchoService"
EP APP CID STRING = ""
EP APP CONTENTS = "Please echo: something"

RES = #xutil call ws(EP_APP CMD, EP APP CID STRING, EP APP CONTENTS,
EP_APP RESULT, EP APP ERROR)

if (RES == 0)

put (strprint ("Web service %s returned: %s", EP APP CMD,
EP_APP_RESULT))

else

put (strprint ("Error %d when calling web service %s, error
message is:\n%s", RES, EP APP CMD, EP_APP ERROR))

endif

This LogiView code uses four existing string variables and two new ones to call the wrapper for the
EchoService. The EchoService returns the input arguments as a result, which is provided as a
standard wrapper to test the infrastructure.

The user-exit xutil_call_ws consists of the following parameters:
EP_APP_CMD Wrapper Name

EP_APP_CID_STRING Correlation ID. This is used to correlate a later response, which may come in
asynchronously, to the initiating request.

EPP_APP_CONTENTS Any string value that the wrapper should interpret.

RES Result string from the Wrapper
EP_APP_RESULT A new string variable that needs to be created to call the wrapper for the EchoService.
EP_APP_ERROR A new string variable that needs to be created to call the wrapper for the EchoService.

The user-exit provides a return code - “0” for success and any other number for errors.

Deploying a Custom Wrapper

1. Identify the classes you need for your wrapper and create a JAR file containing them.
Give your JAR files proper names to avoid naming conflicts with existing wrapper
implementations.

For example, use a unique prefix that identifies your company.

Chapter 5 - 42 Engineering Data Management

e6.1.2 Web Services Manual

If you need third party JAR files, ensure that they are not already provided by WebLogic server

or the e6 Web Services application. Do not use JAR files that duplicate features or come in
conflict with the WebLogic server, like using different web service client frameworks.

Be aware that your wrapper implementation will run inside and as part of a Web Service
application deployed into WebLogic server.

Copy all JAR files needed by your wrapper implementation to the custom staging directory for

the Web Services application. This should be:
${ep_root}/staging/custom/WebServices/${app name}.ear/APP-INF/lib.

Note

Do not copy any library that is already part of the Web Services application into the

custom staging area. These libraries are only replaced by updates from Oracle, and
are always put in the product staging area.

4. Redeploy the Web Services into the WebLogic server.

See the Agile e6 Administration Manual or the Hotfix Readme for complete details on how to deploy

an application.

Web Service Wrapper Log

Messages

A log file look similar to the one shown below, depending on what has been implemented in the

Java based Wrapper for message logging.

INFO 2010-09-27 13.51: 30,865 [poct-TO4hiwad-] -

IpcServvRunnadle] - [Eciterverfici Sarvm Runmble @ 33c2 b Tod Entering tunction callWeblenice

IKFO 2030-09-27 13/51.30.526 | pool-TO-thrasd-1 - [pc Sarver Runmble] - [Eci_collWebSurvicafidel 24bb] Calling web service EchoService [comstetiontded] with [<arg-Melo

Swrvite’ </ srp g 4000%: Jwg)

INFO 20100927 13.51 33545 | poel-TOAM and-1 - IpcServarRuncable] - [ALt act Wy spper] No widpper peopertios found

INFO 2030-09-27 13,53 30.552 [poci-TOahiend-1 -

IpsSacvarRunnable] - [AbstractWiappar] Connecting back 10 o6 uring ticket PLM

TICKET tvi ILO MW TAEZICA ZICA ZICAXAD Ey OO ODgyOTAA ICA A OO UM gAZIC AZIC AGIC A ARV EGRINY U TRPICA 21 CAZICAX M An IV i1 1 Tow O YOG ¢ HCAGIC ACIDE 30V B
WHEN GV W1 26 3nRIVOOXKS Xk SWFOWVXFIIpION IHe VIVU ST ni VIO @ UnVIN VIARELS en Yo BVVIOV IS GIKh Y2 ORSY IV |F XRFV RZh W ROE IV CUZXI S en Dun 130
UBEWHIKEZ b Trn Y 5 b 16TI0S 1 g/ ship ZB 2 HHAONT BSVIF pZFRIN 1LxSVVaY 0t Tys2 RN Vil iae kT YWII BSGZRYAES

INFO 20300927 13 51.30.596 [poct- 7O ead-1 - IpcSarverRunnable) -
INFO 20100927 15:51:30.T10 [poed-TOthrend-1 - Ipc Serves Runmeble) «

INFO 2010-09-27 13:%3:30.726 [pocl-T70-thresd-1 - IpcServer s
INFO 203100927 15:91 30.77 2 [poct-TOahrand-1 - IpcServerRunnalle] - |

FOiOmaniedidef 1] Entaimg eai_get_cor
Bt Be 0l ef 3] Loaving coll 10 adh_gwt_cor
CiOmenti® e 00l of 2] Entaring ol _chik_pwet

E 10wt rie O of t.mmcdl!ooc_-»__’wd

‘

INFO 20300917 13:51:30.775 [poel. 7oA wad-1 - IpeSer
INFO 20300927 13 51 30775 [poad-TOahrand-1 - Ipc Server Runnable] -
INFO 2030-09-27 13:%1.30.77 7 [pock-70-thrend-1 - IpcServes Runnable] -
INFO 20100927 15:51:30. 777
INFO 2010-09-27 13:51: 30. 770 [pool- 704w end-1 - pcSecvar Runmbl e
INFO 2010-09-27 15/51:30.779 [pocd.TOAMresd-1 « Ipc Sarver Runceble]
INFO 3010-09-27 33:51 30.779 [pocl-704hread-1 - IpcServes Runmabl o}
I belang to the graup (DA,

Ayt 1D 1102

my prowp D 15 100

=t 1 em 3 manage

Our sessian s som. agile o himt. Amisaienimel 22 208 2el s

INFO 20100927 13:51 30,773 [pocl. TOAR aad-1 - Ipe Sovvi Runnable] -
INFO 2010-05-37 13 $1/30. 780 | poei-TO4hread-1 - Ipc ServarRunnable) -
INFO 2010-09-37 13:51/30. 760 [poct-TOthrand-1 - IpcSarverRunnable] -

]
]
\
INFO 2030-0%-27 15:53:35.617 [pocl-TO-thresd-1 - IpcServerRunnably] - |
|

INFO 20100527 15:53 35,634 [pecl-TOthread-1 - 1pe Servar Runnabl o

pook-TOthresd-1 - IpcServie Runmebly] - |

Eeiln Pie 043 e NG o0 _ree_wdb _use

EciOia vt de 00l ot 1] Leaving call 10 e di_rea_edt_us
E2i0m ot De0llof 1] Entering eo1_set_enc
EciOmatiieOdlof 3] Loaving coll 1o wch_set_ent
CciOmatdrie 0l of 1] Entermg et _ren_odb_usr
ECiONe st 1ol et 1] Leaving coll 10 ati_res_ed_uw
(xhataraik aWiapper] My aame 3 (DS TO

EiChent P IeOdd of §] Entaring evi_get_pid

FOO P de0ddof] Loaving coll 10 wo_gwt_pid

FoiOimnt@ledidof 1] Entaring oo _mes_wil

it 3e 083 o 3] Laoaving call 1o wes_nses_wri
EciServerSEciServinRuncable S14:26 T d Lasving function callWebSarvics

INFO 2030-05-27 13:$3. 36,836 [pocl-TO4hresd-1] - [Ecis “<E

©1d: 20 T04] B ende

Engineering Data Management

Chapter 5- 43

e6.1.2 Web Services Manual

Chapter 6
Agile e6 Core Web Services Operations

This section describes the Agile e6 Core Web Services Operations. The use of these operations to
process the bulk requests is described in section Bulk Processing of Requests.

Some of the operations, such as getRelations, require counting the number of records. For more
information on these, refer to Counting the Objects in this document.

For additional information on these web services and operations, download the following from
Oracle eDelivery Web Site edelivery.oracle.com:

@ Agile e6 Web Services Schema Docs. Includes the PLM Data Types document.

o Agile e6 Web Services SOAP Samples

Chapter 6 - 44 Engineering Data Management

edelivery.oracle.com

e6.1.2 Web Services Manual

Business Object Web Services

The Business Object Web Services enable you to create and retrieve Agile e6 PLM objects
belonging to an entity, an entity type and a relation.

All operations require one Request object as input and return one Response object.
@ The request contains attribute values used to search or create a PLM object.
B The response contains the data of the respective objects.

o Bulk operations allow you to execute a whole list of requests with a single web service call. The
response of a bulk operation contains a list of responses matching the list of requests.

The PLM objects are read from the Agile e6 application using the mask specified in the request. It is
only possible to access PLM attributes that are visible in this mask, with the exception of the ID
fields EDB_ID and C_ID. Only the masks listed in the Web Service White List of the Agile e6
application can be accessed.

B Usethe EBD ID if you need to keep the reference to a PLM object, especially if it is stored in
another system.

® The c_1ID should only be used to build internal object graphs, for instance when filling a Ul
element.

Note Not all PLM objects have an EDB_ID or a C_ID. Check the customization of the
respective Agile e6 system before deciding how to make external references to PLM
objects of that system.

All operations allow you to specify the attributes that you require to return from the PLM obiject. If no
return attributes are specified, all the accessible attributes are returned, which corresponds to all
visible fields of the mask. Optionally, all languages of multi-language attributes can be returned. Be
aware that this may result in a considerably larger response object.

Binary Data Transfer

It is possible to request the transfer of binary data (BLOBSs), however, by default, binary data is not
transmitted. Be aware that the binary attributes to transfer need to be visible in the underlying Agile
e6 mask. BLOBs are transferred using the MTOM feature of JAX-WS.

Bulk Operations

The following are the bulk operation names of the single request operations for Business Object
web services described the concurrent sections. See Processing the Bulk Requests for complete
details on how to handle the bulk operations.

o createObjectBulk
o createRelationBulk
@ getObjectsBulk

o getRelationsBulk

Engineering Data Management Chapter 6- 45

e6.1.2 Web Services Manual

createObject

Service

Usage

Request Type

To create a new PLM object in the e6 application.

The request object contains the PLM Class name and an optional list of attribute
names. On success, the response object returns the newly created PLM object
name including all its attributes defined by the PLM.

Only existing and visible attributes are returned.

If the object already exists in the PLM or an error occurs during the creation of the
object, an error code will be returned.

CreateObjectRequestType

a
a
a

Response Type

[m]

000D

messageld (String): ID to be returned in the response (optional)

messageName (String) : Name to be returned in the response (optional)

plmObject: The PLM class reference and a list of object attributes (name/value

pairs) used to create the new object.

The meta data of the pImObject is currently ignored by this operation, so you

can pass empty values for these elements.

Only the list of attribute values is used to fill the new record in e6.

pImResult: This describes how the result of the operation is returned to the

client.

o attributeNames (Boolean) : List of field names to be returned - (optional,
default is all visible fields and ID fields).

¢ includeBinaryValues (Boolean) : Include binary values? (optional, default is
false)

¢ includeAllLanguages (Boolean) : Include all languages? (optional, default is
false)

CreateObjectResponseType

statusCode (ResponseStatusCode) :

e SUCCESS: the new created PLM object including all attributesdefined by
the PLM result of the request

e PARTIAL_SUCCESS: the new created PLM object including some of the
attributes defined by the PImResult of the request

e FAILURE: a fault description including error message and kind of error.

ticket (String) : A PLM ticket.

The ticket can be used instead of the password in subsequent calls. It allows

the client to reference the PLM session, even if the HTTP session has been

closed, or - in case of a backward flow - if there is no HTTP session.

The ticket is only valid for the PLM server instance that generated it.

messageld (String): copied from the request, or generated.

messageName (String): copied from the request, or the operation name.

warnings: List of warnings (PImWarningType) that occurred during the

operation.

exceptions: List of exceptions (PImExceptionType) that occurred during the

operation.

object (PImObject): the object created by this operation.

It contains the attributes requested in the PImResult, or all visible attributes if

no attributes have been requested.

Chapter 6 - 46

Engineering Data Management

e6.1.2 Web Services Manual

getObject

Service

Usage

Request Type

To retrieve the requested PLM objects from Agile e6 application.

It executes a query on the Agile e6 application and returns the matching objects.
The operation will use the mask that is specified in the request to retrieve the data
(search in mask).

Response information can be restricted by defining the list of fields that should be
returned. Be aware that you can get the values only for fields that are available in
the mask.

The sorting of data determines the settings of the mask.

Date values are returned in UTC based on the assumption that the data returned
by the PLM server is in Server Local Time.

By default, only the current language value will be retrieved for multi-language
fields. However the web service client can request to retrieve all language values in
the same call. The request member plmQuery controls this behavior, along with
other settings that need to be described.

PImQuery extends PImResult, which provides the flag “includeAllLanguages
(boolean, optional)”. This flag indicates if all languages of multi-language fields
should be returned, or just the current language of the session.

The countOnly flag of the request is very important here. For more information on
this, refer to Counting the Objects in this document.

GetObjectsRequestType

o messageld (String): ID to be returned in the response (optional)
o messageName (String) : Name to be returned in the response (optional)
o plmQuery (PImQuery):
e pImClass: The object type as a PImClassRef (PLM class reference, as
provided by the Metadata service).
e selection: A list of PImCondition objects representing the search criteria for
object attributes.
¢ ignoreRecordLimit (Boolean): Ignore the record limit? - (optional, default is
false)
e countOnly (Boolean): Count only? - (optional, default is false))
e attributeNames (Boolean) : List of field names to be returned - (optional,
default is all visible fields and ID fields).
e includeBinaryValues (Boolean) : Include binary values? (optional, default is
false)
¢ includeAllLanguages (Boolean) : Include all languages? (optional, default is
false)

Response Type GetObjectsResponseType

o statusCode (ResponseStatusCode) :

e Status SUCCESS: the query was executed without any problem. The list of
objects might be empty.

e Status PARTIAL_SUCCESS: one or more attributes, defined by the
PImResult of the request, were not found in the queried objects. Details can
be found in the list of warnings (see below)

e Status FAILURE: a fault description including error message and kind of
error.

Engineering Data Management Chapter 6- 47

e6.1.2 Web Services Manual

[m]

ticket (String) : A PLM ticket.

The ticket can be used instead of the password in subsequent calls. It allows
the client to reference the PLM session, even if the HTTP session has been
closed, or - in case of a backward flow - if there is no HTTP session.

The ticket is only valid for the PLM server instance that generated it.
messageld (String): copied from the request, or generated.

messageName (String): copied from the request, or the operation name.
warnings: List of warnings (PImWarningType) that occurred during the
operation.

exceptions: List of exceptions (PImExceptionType) that occurred during the
operation.

recordLimitHit (Boolean) : Indicates whether the query result has hit the mask
limit.

objects: List of objects (PImObject) found including all the object attribute
values listed in the PImResult of the request

If a count request was made, the response will have one PImObject with an
Integer attribute named COUNT containing the number of objects matching the
query, and an Integer attribute called RECORD_LIMIT containing the current
record limit of the mask used for the count operation.

Chapter 6 - 48

Engineering Data Management

e6.1.2 Web Services Manual

createRelation

Service To create a relation between two PLM objects.

Usage It returns the data of the new relation object. The request object queries for the
parent object, the query for the child object and the metadata that defines the
relation type. The request must contain the object type, i.e. a PLM class reference.

Request Type CreateRelationRequestType

a
a
a

Response Type

[m]

o

messageld (String): ID to be returned in the response (optional)

messageName (String) : Name to be returned in the response (optional)

relationObject (PImObject): the relation Object with the PLM class reference

and a list of relationship attributes (name/value pairs) used to create the new

object. .

The meta data of the relationObject is currently ignored by this operation, so

you can pass empty values for these elements.

Only the list of attribute values is used to fill the new relation record in e6.

parent (PImObjectRef): object reference : This is either a PImObject as

returned by the BusinessService.getObjects operation, or a

PImObjectReference containing the query for the record,

child (PImObjectRef): as object reference : This is either a PImObject as

returned by the BusinessService.getObjects operation, or a

PImObjectReference containing the query for the record,

relation (PImMetaRelation): a relationship meta data: This is a

PImMetaRelation as returned by the MetadataService.getRelation operation. It

defines the relation of the parent and the child object.

plmResult (PImResult):This describes how the result of the operation is

returned to the client.

e attributeNames (Boolean) : List of field names to be returned - (optional,
default is all visible fields and ID fields).

e includeBinaryValues (Boolean) : Include binary values? (optional, default is
false)

¢ includeAllLanguages (Boolean) : Include all languages? (optional, default is
false)

CreateRelationResponseType

statusCode (ResponseStatusCode) :

e SUCCESS: the new created PLM object including all attributes defined by
the PImResult of the request

e PARTIAL_SUCCESS: the new created PLM object including some of the
attributes defined by the PImResult of the request

e FAILURE: a fault description including error message and kind of error.

ticket (String) : A PLM ticket.

The ticket can be used instead of the password in subsequent calls. It allows

the client to reference the PLM session, even if the HTTP session has been

closed, or - in case of a backward flow - if there is no HTTP session.

The ticket is only valid for the PLM server instance that generated it.

messageld (String): copied from the request, or generated.

messageName (String): copied from the request, or the operation nhame.

warnings: List of warnings (PImWarningType) that occurred during the

operation.

exceptions: List of exceptions (PImExceptionType) that occurred during the

operation.

Engineering Data Management Chapter 6- 49

e6.1.2 Web Services Manual

relationObject (PImObject): The created PLM relation object contains the
attributes listed in the PImResult of the request.

Additionally the ID attributes for of the parent and the child record are add.
The parent IDs are named PARENT.EDB_ID and PARENT.C_ID, the
attributes for child IDs are named CHILD.EDB_ID and CHILD.C_ID.

This is necessary to prevent name clashes if the parent and child entity are the
same (for instance in a item BOM).

Chapter 6 - 50 Engineering Data Management

e6.1.2 Web Services Manual

getRelations

Service

Usage

Request Type

To get the relationship between two or more PLM objects.

The operation executes a query on the Agile e6 application and returns the
matching PLM objects. The operation uses the mask that is specified in the relation
to retrieve the data (search in mask).

By default the response returns values of all visible fields (plus some important ID
fields like EDB_ID and C_ID) that are contained in the mask. Response information
can be restricted by defining the list of fields that should be returned, but be aware
that you can only return values for fields which are available in the mask. The
settings of the mask will determine the sorting of the data. Return values will be
provided in a standardized format as marshaled by the JAXB framework. Date
values will be in UTC, based on the assumption that the data returned by the PLM
server is in server local time.

By default, only the current language value will be retrieved for multi-language
fields. However the web service client can request to retrieve all language values in
the same call.

Objects for which the current user does not have access will not show up in the
response.

The countOnly flag of the request is very important here. For more information on
this, refer to Counting the Objects in this document.

GetRelationsRequestType

o messageld (String): ID to be returned in the response (optional)
o messageName (String) : Name to be returned in the response (optional)
o plmRelationQuery (PImRelationQuery):
¢ PImObject or PImObjectReference: To get the parent record of the relation.
(PImObject as returned by the BusinessObjectService)
¢ PImMetaRelationRef: The object type is a PLM relation reference (parent,
child, type, view).
o selection: A list of PImCondition objects representing the search criteria for
object attributes.
¢ ignoreRecordLimit (Boolean): Ignore the record limit? - (optional, default is
false)
countOnly (Boolean): Count only? - (optional, default is false)
attributeNames (Boolean) : List of field names to be returned - (optional,
default is all visible fields and ID fields).
¢ includeBinaryValues (Boolean) : Include binary values? (optional, default is
false)
¢ includeAllLanguages (Boolean) : Include all languages? (optional, default is
false)

Response Type GetRelationsResponseType

o Status code (SUCCESS, PARTIAL_SUCCESS, WARNING or FAILURE).
o A PLM ticket (String)

The ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session has
been closed, or - in case of a backward flow - if there is no HTTP session.

The ticket is only valid for the PLM server instance that generated it.

o Message ID (copied from the request, or generated).

Engineering Data Management Chapter 6- 51

e6.1.2 Web Services Manual

000 Oo

Message name (copied from the request, or the operation name).

List of warnings (PImWarningType) that occurred during the operation.

List of errors (PImExceptionType) that occurred during the operation.

Record limit hit? [true/false] : Indicates whether the query result has hit the
mask limit.

List of objects (PImObject) found including all the object attribute values listed
in the PImResult of the request.

Additionally the ID attributes for of the parent and the child record are
added. The parent IDs are named PARENT.EDB_ID and PARENT.C_ID, the
attributes for child IDs are named CHILD.EDB_ID and CHILD.C_ID.

This is necessary to prevent name clashes if the parent and child entity are
the same (for instance in a item BOM).

If a count request was made, the response will have one PImObject with an
Integer attribute named COUNT containing the number of objects matching the
query, and an Integer attribute called RECORD_LIMIT containing the current
record limit of the mask used for the count operation.

Chapter 6 - 52

Engineering Data Management

e6.1.2 Web Services Manual

Document Management Web Services

A Document is a business object that specifies one or more files that are stored in the Agile e6 File
Vault. You can load a document and add one or more files to its Files table. You can also search for
a document and its files, just as you would search for an Item.

The Document Management Web Services supports the management of the document-file
assignment and the upload/download of files.

Note To create a document, use the Business Object Web Services.

Streaming support, which is mandatory for the getFileCopy and checkinFile operations to work
Bulk Operations

The following are the bulk operation names of the single request operations for Document
Management web services described the concurrent sections:

o getFilesBulk

@ getFileCopyBulk
See Processing the Bulk Requests for complete details on how to handle the bulk operations.

Engineering Data Management Chapter 6- 53

e6.1.2 Web Services Manual

getFiles

Service

Usage

To get a list of files assigned to a specific document.

The request object contains the document handle that identifies the files which are
assigned to the document. The response is a list of all files assigned to a
document, or an error code.

Request Type GetFilesRequestType

a
a
a

Response Type

O

messageld (String, optional)

messageName (String, optional)

plmDocumentFileQuery (PImDocumentFileQuery):

e document (PImObjectRef, required): An object reference to the document
(the parent).

e documentFileMaskName (String, required): The maskname of the
document-file relation.

e selection (List<PImCondition>, required): Search criteria for object
attributes in documentFileMaskName (name/value pairs).

e plmDfmSite (String, optional): Not supported in this version, ignored if
EDB-DFM-ACTIVE=0

¢ ignoreRecordLimit (boolean, optional, default=true): Obey record limit?
[true/false]

e excludeVaultValues (boolean, optional, default=false): Should vault name,
vault type, vault kind, vaultNode, vaultPath, vaultNetRef and filename in
vault of the file not be read and returned? [true/false]

e attributeNames (List<String>, optional): List of field names to be returned -
(optional for the generic result, the attributes which are always returned
see in Response section).

¢ includeAllLanguages (boolean, optional, default=false): Include all
languages? [trueffalse]

¢ includeBinaryValues (boolean, optional, default=false): Include binary

values? [true/false]

GetFilesResponeType

messageld (String, required)

messageName (String, required)

statusCode(ResponseStatusCode, required)

e SUCCESS, PARTIAL_SUCCESS, WARNING or FAILURE

exceptions (List<PImExceptionType>, optional)

e List of exceptions that occurred during the operation.

warnings (List<PImWarningType>, optional)

e List of warnings that occurred during the operation.

ticket (String, optional)

e The PIm ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session
has been closed, or - in case of a backward flow - if there is no HTTP
session.

The ticket is only valid for the PLM server instance that generated it.
recordLimitHit (boolean, required)

e [true | false] Indicates whether the query result has hit the mask limit.

objects (List<PImDocumentFileObject>)

e List of PImDocumentFileObjects found including all the object attribute

values within the generic part as defined in the request

Chapter 6 - 54

Engineering Data Management

e6.1.2 Web Services Manual

PImDocumentFileObject:

pImObject(PImObject)

fileOrgName (String), (origin filename)

fileOrgNode (String)

fileOrgPath (String)

fileSize (String)

fileModifyDate (Date)

fileOs (String) (operating system) (empty_string)

fileType (String) (empty_string)

fileFormat (String) (empty_string)

fileStepCreSystem (String)

fileCryptName (String), (empty if excludeVaultValues = true)
vaultName (String), (empty if excludeVaultValues = true)
vaultType (String), (empty if excludeVaultValues = true)
vaultKind (String), (empty if excludeVaultValues = true)
vaultNode (String), (empty if excludeVaultValues = true)
vaultNetRef (String), (empty if excludeVaultValues = true)
vaultPath (String), (empty if excludeVaultValues = true)

The created objects contain the attributes listed in the request.

In case one or more of the requested attributes do not exist,
PARTIAL_SUCCESS will be returned.

In case one or more of the requested attributes are not accessible, a
WARNING will be returned.

If no attributes have been requested (attribute list is missing), the whole
object including all visible attributes and the ID attributes (EDB_ID and
C_ID) will be returned. If none of the requested attributes exists or the list
is empty, only the ID attributes (EDB_ID and C_ID) will be returned.

Engineering Data Management Chapter 6- 55

e6.1.2 Web Services Manual

getFileCopy
Service To get a copy of a file that is assigned to a specific document.
Usage This operation does not require any reservation or checking-out of the specified file.

The request object contains the document handle, file handles and site ID. The
response is the file attributes and link/URL to the files, or an error code.

DFM is not supported in this release of Web services. Hence, the
getFileCopy operation downloads the file from the specified site even
when the file at that site is not current.

Request Type GetFileCopyRequestType

o messageld (String, optional)

messageName (String, optional)

o plmDocumentFile (PImDocumentFileObject, required)
Describes the file to get.This is a PImDocumentFileObject as returned by the
DocumentManagementService.getFiles operation.

(m]

Response Type GetFileCopyResponseType

o messageld (String, required)

messageName (String, required)

o statusCode(ResponseStatusCode, required)
e SUCCESS, PARTIAL_SUCCESS, WARNING or FAILURE

o exceptions (List<PImExceptionType>, optional)
e List of exceptions that occurred during the operation.

o warnings (List<PImWarningType>, optional)
e List of warnings that occurred during the operation.

o ticket (String, optional)
The PIm ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session has
been closed, or - in case of a backward flow - if there is no HTTP session.
The ticket is only valid for the PLM server instance that generated it.

o plmDocumentFile (PImDocumentFileObject, required)
The file information.
This is the same PImDocumentFileObject that was passed in the request.

o fileData (a javax.activation.DataHandler, optional).
The file data as a binary MTOM stream with content type "application/octet-
stream".
Use the Streaming API of your JAX-WS implementation to transfer the file.
If streaming is not used, the file is transferred in the XML data, which takes
considerably longer, leads to huge SOAP messages and might even result in
an OutOfMemoryException on the server or the client.

O

Chapter 6 - 56 Engineering Data Management

e6.1.2 Web Services Manual

checkinFile

Service To check in a new file.

Usage The request object specifies the document handle, file handles, Site ID, etc of the
file that.

A previously checked out files cannot be checked-in with this operation as the
request type is completely different.

There is full DFM support for check-in of files via web service. The DFM capabilities
apply the same way as if the file would have been checked in via Java Client.

Request Type CheckInFileRequestType

o messageld (String, optional)
o messageName (String, optional)
o plmDocumentFileQuery (PImDocumentFileQuery):

document (PImObjectRef, required): An object reference to the document
(the parent).

documentFileMaskName (String, required): The maskname of the
document-file relation.

selection (List<PImCondition>, required): Search criteria for object
attributes in documentFileMaskName (name/value pairs).

plmDfmSite (String, optional): Not supported in this version, ignored if EDB-
DFM-ACTIVE=0

ignoreRecordLimit (boolean, optional, default=true): Obey record limit?
[true/false]

excludeVaultValues (boolean, optional, default=false): Should vault name,
vault type, vault kind, vaultNode, vaultPath, vaultNetRef and filename in
vault of the file not be read and returned? [true/false]

attributeNames (List<String>, optional): List of field names to be returned -
(optional for the generic result, the attributes which are always returned see
in Response section).

includeAllLanguages (boolean, optional, default=false): Include all
languages? [trueffalse]

includeBinaryValues (boolean, optional, default=false): Include binary
values? [true/false]

o documentFileObject (PImObject, required)
List of new relationship attributes . The values must be typed values in form of
a PImAttributeChoice.
The meta data of the relationObject is currently ignored by this operation, so
you can pass empty values for these elements.
Only the list of attribute values is used to fill the new relation record in e6.
At least following fields and their values must be provided:

T_FILE_DAT.STORAGE_AREA (Vault)
T_FILE_DAT.ORG_NAME (Original File Name)
T_FILE_DAT.ORG_NODE (Node)
T_FILE_DAT.ORG_DISCPATH (Original Disk+Path)

o fileData (a javax.activation.DataHandler, optional).
The file data as a binary MTOM stream with content type "application/octet-
stream"

Response Type

CheckinFileResponseType

o messageld (String, required)

Engineering Data Management Chapter 6- 57

e6.1.2 Web Services Manual

o messageName (String, required)

o statusCode(ResponseStatusCode, required)
e SUCCESS, PARTIAL_SUCCESS, WARNING or FAILURE

o exceptions (List<PImExceptionType>, optional)
e List of exceptions that occurred during the operation.

o warnings (List<PImWarningType>, optional)
e List of warnings that occurred during the operation.

o ticket (String, optional)
The PIm ticket can be used instead of the password in subsequent calls. It
allows the client to reference the PLM session, even if the HTTP session has
been closed, or - in case of a backward flow - if there is no HTTP session.
The ticket is only valid for the PLM server instance that generated it.

o PImDocumentFileObject (PImDocumentFileObject, required):
¢ plmObject(PImObiject)

fileOrgName (String)

fileOrgNode (String)

fileOrgPath (String)

fileSize (String)

fileModifyDate (Date)

fileOs (String) (operating system) (empty_string)

fileType (String) (empty_string)

fileFormat (String) (empty_string)

fileStepCreSystem (String)

fileCryptName (String), (empty if excludeVaultValues = true)

vaultName (String), (empty if excludeVaultValues = true)

vaultType (String), (empty if excludeVaultValues = true)

vaultKind (String), (empty if excludeVaultValues = true)

vaultNode (String), (empty if excludeVaultValues = true)

vaultNetRef (String), (empty if excludeVaultValues = true)

vaultPath (String), (empty if excludeVaultValues = true)

Chapter 6 - 58 Engineering Data Management

e6.1.2 Web Services Manual

MetaData Web Services

The Metadata Service enables you to read the definition of Agile e6 classes like entities, entity
types and relations.

All operations need one request object as input and return one response object.
o The request contains at least the name of Agile e6 class and a mask name.
B The response contains the metadata of the respective Agile e6 class.

o Bulk operations allow you to execute a whole list of requests with one web service call. The
response of a bulk operation contains a list of responses matching the list of requests.

The Agile e6 metadata is read from the Agile e6 application using the mask specified in the request.

It is only possible to access Agile e6 attributes that are visible in this mask, with the exception of the
ID fields EDB_ID and C_ID.

Only masks listed in the so called Web Service White List of the Agile e6 application can be
accessed.

Bulk Operations

The following are the bulk operation names of the single request operations for MetaData web
services described the concurrent sections. See Processing the Bulk Requests for complete details
on how to handle the bulk operations.

o getEntityBulk
o getEntityTypeBulk
o getEntityRelationBulk

Engineering Data Management Chapter 6- 59

e6.1.2 Web Services Manual

getEntity

Service

Usage

Request Type

To get the metadata of a PLM entity.

The data is based on the mask used to access the data. If the request does not
pass a specific mask name, the default mask of the entity will be used. The
response contains the definition of all visible attributes in the mask. If an attribute
has mode specific access, it will be returned regardless of the mode specific
access value.

GetEntityRequestType

o name (String): The entity name.

o mask (String): The mask name to use to read this entity. (optional)
If empty, the default list of the entity will be used.
As all other mask names, the mask is checked against the white list for masks.
If it is not listed, the access is denied.

o messageld (String): ID to be returned in the response (optional)

o messageName (String) : Name to be returned in the response (optional)

Response Type GetEntityResponseType

o statusCode (ResponseStatusCode) : SUCCESS or FAILURE.

o ticket (String) : A PLM ticket.
The ticket can be used instead of the password in subsequent calls. It allows
the client to reference the PLM session, even if the HTTP session has been
closed, or - in case of a backward flow - if there is no HTTP session.
The ticket is only valid for the PLM server instance that generated it.

o messageld (String): copied from the request, or generated.

messageName (String): copied from the request, or the operation name.

o warnings: List of warnings (PImWarningType) that occurred during the
operation.

o exceptions: List of exceptions (PImExceptionType) that occurred during the
operation.

o entity (PImEntity): contains the entity definition (all information is returned with
type String, unless noted otherwise): :

Entity ID.

Entity name.

Mask name.

Default form.

Default list.

Table name.

Join table name.

Entity title (in the current session language).

Mask title (in the current session language).

Record limit.

Number of significant fields.

List of attribute definitions (PImMetaAttribute) containing:

= Attribute name

Attribute type.

Attribute title (in the current session language),

Attribute description (in the current session language).

Attribute format.

Attribute default value.

(m]

Chapter 6 - 60

Engineering Data Management

e6.1.2 Web Services Manual

Attribute Checkstring

Attribute access (visible/invisible/mandatory/read-only/mode specific):
+ Query mode specific attribute access (if applicable).

+ Update mode specific attribute access (if applicable).

+ Insert mode specific attribute access (if applicable).

Data size of the attribute in this mask.

Visible field width in this mask. (useful if a Ul is generated from this
meta data)

Visible field height in this mask. (useful if a Ul is generated from this
meta data)

Attribute visible? Tells you if the attribute is visible in this mask.

e List of relation meta data (PImMetaRelation) defined for this entity:

The name of the parent entity.

The name of the child entity.

The relation type.

The name of the view.

The name of the relation.

The internal ID of the relation.

The table name.

The title of the relation (in the current session language).
The default list.

The default form (empty for most relations).
The mask name used to read the meta data.

This data can later be used to call MetadataService.getEntityRelation to
get all attribute meta data for one specific relation.
o List of type meta data (PImMetaType) defined for this entity:

The name of the master entity.

The type name.

The table name.

The title of the type

The default list.

The default form.

The mask name used to read the meta data.

This data can later be used to call MetadataService.getEntityType to get
all attribute meta data for one specific type.

Engineering Data Management Chapter 6- 61

e6.1.2 Web Services Manual

getEntityType

Service

Usage

Request Type

To get the metadata of a PLM entity type.

The data is based on the mask used to access the data. If the request does not
pass a specific mask name, the default mask of the entity type will be used. The
response contains the definition of all visible attributes in the mask. If an attribute
has mode specific access, it will be returned regardless of the mode specific
access value.

If the mask contains visible multi-language attributes, all generated invisible multi-
language attribute siblings are returned.

GetEntityTypeRequestType

o nhame (String): the name of the master entity for this type

o type (String): the name of the type

o mask (String): The mask name to use to read this entity. (optional)
If empty, the default list of the entity will be used.
As all other mask names, the mask is checked against the white list for masks.
If it is not listed, the access is denied.

o messageld (String): ID to be returned in the response (optional)

o messageName (String) : Name to be returned in the response (optional)

Response Type GetEntityTypeResponseType

o statusCode (ResponseStatusCode) : SUCCESS or FAILURE.
o ticket (String) : A PLM ticket.
The ticket can be used instead of the password in subsequent calls. It allows
the client to reference the PLM session, even if the HTTP session has been
closed, or - in case of a backward flow - if there is no HTTP session.
The ticket is only valid for the PLM server instance that generated it.
o messageld (String): copied from the request, or generated.
messageName (String): copied from the request, or the operation name.
o warnings: List of warnings (PImWarningType) that occurred during the
operation.
o exceptions: List of exceptions (PImExceptionType) that occurred during the
operation.
o An entity type definition of type PImEntityType (all information is returned with
type String, unless noted otherwise):
Entity name
Type name
Mask name
Table name
Join table name
Entity type title (in the current session language).
Mask title (in the current session language).
Mask limit.
Number of significant fields
Master: the reference to the master entity as a PImClassRef
List of attribute definitions containing:
= Attribute type.
= Attribute title (in the current session language),
= Attribute description (in the current session language).
= Attribute format.

(m]

Chapter 6 - 62

Engineering Data Management

https://stbeehive.oracle.com/teamcollab/wiki/Agile+e6.1.2:CoreServices+-+PLM+Data+Types#PlmExceptionType
https://stbeehive.oracle.com/teamcollab/wiki/Agile+e6.1.2:CoreServices+-+PLM+Data+Types#PlmEntityType
https://stbeehive.oracle.com/teamcollab/wiki/Agile+e6.1.2:CoreServices+-+PLM+Data+Types#PlmClassRef

e6.1.2 Web Services Manual

Attribute default value.

Attribute access (visible/invisible/mandatory/read-only/mode specific):
+ Query mode specific attribute access (if applicable).

+ Update mode specific attribute access (if applicable).

+ Insert mode specific attribute access (if applicable).

Data size of the attribute in this mask.

Visible field width in this mask. (useful if a Ul is generated from this
meta data)

Visible field height in this mask. (useful if a Ul is generated from this
meta data)

Attribute visible? Tells you if the attribute is visible in this mask.

e List of relation meta data (PImMetaRelation) defined for this entity:

The name of the parent entity.

The name of the child entity.

The relation type.

The name of the view.

The name of the relation.

The internal ID of the relation.

The table name.

The title of the relation (in the current session language).
The default list.

The default form.

This data can later be used to call MetadataService.getEntityRelation to
get all attribute meta data for one specific relation.

Engineering Data Management Chapter 6- 63

e6.1.2 Web Services Manual

getEntityRelation

Service

Usage

To get the metadata of a PLM constraint, refine or aggregate relation.

The meta relation object can either be taken from the response of a call to

getEntity/getEntity type, or it can be created using hard coded default values. The
request attributes — parent, child, type and view are needed to identify the relation
data.

Request Type GetEntityRelationRequestType

Q

Response Type

000 Oo

metaRelation (PImMetaRelation): Describes the relation to read and must

contain at least the following information:

e parent: The name of the parent entity. (e.g. "EDB-ARTICLE")

e child: The name of the child entity (e.g. "EDB-DOCUMENT")

e type: The relation type. (e.g. PImRelationTypeEnum.REFINE)

e view: The name of the view. (e.g. "STR").
The meta relation object can either be taken from the response of a call to
getEntity/getEntity type, or it can be created using hard coded default
values. The four attributes listed above are needed to identify the relation
data, the rest of the attributes in PImMetaRelation are not relevant.

messageld (String): ID to be returned in the response (optional)

messageName (String) : Name to be returned in the response (optional)

GetEntityRelationResponseType

statusCode (ResponseStatusCode) : SUCCESS or FAILURE.
ticket (String) : A PLM ticket.
The ticket can be used instead of the password in subsequent calls. It allows
the client to reference the PLM session, even if the HTTP session has been
closed, or - in case of a backward flow - if there is no HTTP session.
The ticket is only valid for the PLM server instance that generated it.
messageld (String): copied from the request, or generated.
messageName (String): copied from the request, or the operation nhame.
warnings: List of warnings (PImWarningType) that occurred during the
operation.
exceptions: List of exceptions (PImExceptionType) that occurred during the
operation.
pimRelation (PImRelation) : The relation definition containing:
Relation name.
PImMetaRelation: Detailed meta information of the relation.
Mask name.
Table name.
Entity type title (in the current session language).
Mask title (in the current session language).
Mask limit.
Number of significant fields.
List of attribute definitions containing:
= Attribute type.
Attribute title (in the current session language),
Attribute description (in the current session language).
Attribute format.
Attribute default value.
Attribute access (visible/invisible/mandatory/read-only/mode specific):
+ Query mode specific attribute access (if applicable).

Chapter 6 - 64

Engineering Data Management

e6.1.2 Web Services Manual

+ Update mode specific attribute access (if applicable).
+ Insert mode specific attribute access (if applicable).

= Data size of the attribute in this mask.

= Visible field width in this mask. (useful if a Ul is generated from this
meta data)

= Visible field height in this mask. (useful if a Ul is generated from this
meta data)

= Attribute visible? Tells you if the attribute is visible in this mask.

Engineering Data Management Chapter 6- 65

e6.1.2 Web Services Manual

Configuration Web Services

The Configuration Web Service enables you to retrieve PLM objects from the Agile e6 application. It
retrieves configuration data of a PLM object, such as Default, User Context, etc specified by its
name.

The requests include the value(s) for specifying the requested object. Responses include the
requested objects.

Bulk operations require a list of requests to execute. These return with a list of responses.

Bulk Operations

The following are the bulk operation names of the single request operations for Configuration web
services described the concurrent sections. See Processing the Bulk Requests for complete details
on how to handle the bulk operations.

o getDefaultBulk

Chapter 6 - 66 Engineering Data Management

e6.1.2 Web Services Manual

getUserContext
Service To get all the information of the current user context of a PLM session.
Usage The request object carries current PLM user’s details and only an optional message

ID and name. The response object delivers the user attributes, all group
assignments attributes, current view (Released, Global etc.), current context (DSG,
ENG), current project assignment (Project ID) and current Org assignment (Org ID).

Request Type GetUserContextRequestType

a
a

Response Type

[m]

(m]

messageld (String): ID to be returned in the response (optional)
messageName (String) : Name to be returned in the response (optional)

GetUserContextResponseType

statusCode (ResponseStatusCode) : SUCCESS or FAILURE.

e SUCCESS: all objects from user context are returned, if they are available.
There could be some warnings in the message block, if some objects(e.qg.
currentJob, currentRole) are not available. It could make sense for
setUserContext, but is not necessary to check for getUserContext.

e FAILURE: there was connection problem.

ticket (String) : A PLM ticket.

The ticket can be used instead of the password in subsequent calls. It allows

the client to reference the PLM session, even if the HTTP session has been

closed, or - in case of a backward flow - if there is no HTTP session.

The ticket is only valid for the PLM server instance that generated it.

messageld (String): copied from the request, or generated.

messageName (String): copied from the request, or the operation name.

warnings: List of warnings (PImWarningType) that occurred during the

operation.

exceptions: List of exceptions (PImExceptionType) that occurred during the

operation.

pImUserContext (PImUserContext):

o plmUserinfo (PImUserContextUserInfo):
= userName
= userlD
= group
= grouplD
= userLanguage
= userLocale

¢ plmViewlnfo (PImUserContextView):
= preliminaryFlag (Boolean. TRUE, Boolean.False, null)
= referenceDate (yyyy-MM-dd HH:mm:ss, @NOW, empty_string)
= versionViewTitle (Current, Production, Global,

Development_extended)
= versionView (PImVersionViewEnum)

e plmChangeManagementinfo (PImUserContextChg):
= currentChgFlag (Boolean. TRUE, Boolean.False,null)
= currentWorkOrder (EDB_ID, empty_string)
= currentWorkSet (EDB_ID, empty_string)

e plmMoaMpalnfo (PImUserContextMoaMpa) :
= moaMpaConfFlag(PImUserContextMOAEnum, null)

Engineering Data Management Chapter 6- 67

e6.1.2 Web Services Manual

currentJob (empty_string)
currentRole (empty_string)
currentProjectOrQOrganisation (empty_string)
= currentProjectOrOrganisationCid (empty_string)
e plmDFMiInfo (PImUserContextDFM):
= dfmConfigFlag (Boolean.TRUE, Boolean.False,null)
= site (Reserved for future use)

Chapter 6 - 68 Engineering Data Management

e6.1.2 Web Services Manual

setUserContext

Service To set the current user context to be used in the next operations for the current
PLM session.

Usage This operation is used to set current job in MOA/MPA environment. The request

object carries the user context details, such as the new view, new assignment, new
Org assignment and new Project assignment. The response object delivers the
user attributes, group assignments, new current view, new current context, new
current project assignment, new current org assignment.

Request Type SetUserContextRequestType

a
a
a

messageld (String): ID to be returned in the response
messageName (String) : Name to be returned in the response
plmUserContext (PImUserContext):

plmUserinfo (PImUserContextUserInfo):
= userName (not changeable by current user)
= userID (not changeable by current user)
= group (Reserved for future use : currently there is no API to
implement it.)
= grouplD (Reserved for future use : currently there is no API to
implement it.)
= userLanguage (e.g. ENG, GER, FRA)
= userLocale (always changed with user language)
plmViewlnfo (PImUserContextView):
= preliminaryFlag (Boolean. TRUE, Boolean.FALSE)
= referenceDate (in the form of yyyy-MM-dd HH:mm:ss)
= versionViewTitle (ignored)
= versionView (PImVersionViewEnum)
plImChangeManagementinfo (PImUserContextChg):
= currentChgFlag (not changeable by current user)
= currentWorkOrder (EDB-ID of work order, no check of
currentChgFlag)
= currentWorkSet (EDB-ID of work set, no check of currentChgFlag)
pImMoaMpaInfo (PImUserContextMoaMpa) :
moaMpaConfFlag (not changeable by current user)
= currentJob EDB_ID of the job, access will be checked by e6 server
= currentProjectOrOrganisation - ignored in the request, filled by the
response
= currentProjectOrOrganisationCid - ignored in the request, filled by the
response
= currentRole - ignored in the request, filled by the response
plImDFMiInfo (PImUserContextDFM):
= dFMConfigFlag (not changeable by current user)
= site (Reserved for future use)

Engineering Data Management Chapter 6- 69

e6.1.2 Web Services Manual

getDefault
Service To get the contents of a PLM Default value.
Usage The request object carries only the default name. In case the value cannot be

parsed (e.g. letter instead of number as integer), this value is taken as 'null'.

Request Type GetDefaultRequestType

o defaultName (String): Name of the DataView default.
o messageld (String): ID to be returned in the response (optional)
o messageName (String) : Name to be returned in the response (optional)

Response Type GetDefaultResponseType

o Status Code
e Successful
e Partial successful: Typed default value is NULL
o Failure: Default "Non-existent" - PLM Object is NULL~,
o PLM Default as complex data type (String, Integer, Float, Boolean)

Chapter 6 - 70 Engineering Data Management

e6.1.2 Web Services Manual

Engineering Data Management Chapter 6- 71

	Agile e6.1.2 Web Services Manaul

	Copyright and Trademarks
	Preface
	Introduction to Agile e6 Web Services
	About Web Services
	Core Technologies
	Web Services Description Language (WSDL)
	XML and XML Schema
	Simple Object Access Protocol (SOAP)

	Web Services Architecture

	About Agile e6 Web Services
	The Core Web Services

	About Agile e6 Web Services Framework
	Components of Agile e6 Web Services Framework

	Getting Started with Agile e6 Web Services
	Prerequisites
	Operating Environment
	Web Services Engines
	Web Service Development Tools
	Standards Compliance

	Understanding the Agile e6 Web Services Authentication and Performance
	The Agile e6 PLM Session Handling
	The Agile e6 PLM Session Manager
	The PLM Ticket

	Understanding the Agile e6 Web Services Requests
	Obtaining the Agile e6 Metadata

	Understanding the Agile e6 Web Services Responses
	Response Status Code
	White-list Mechanism for Masks
	List of Mask Names
	Configuration Parameters

	Exceptions and Warnings

	Counting the Objects

	Setting up the Agile e6 Web Services Infrastructure
	Installing the Agile e6 Web Services Framework
	Creating the WebLogic Agile e6 Domain

	Configuring the PLM Authentication Provider in the WebLogic Server
	Configuring the Authentication Provider for Web Services Hotfix Package

	Testing the Inbound Web Services
	Testing with the WebLogic Test Client
	Testing with the JDeveloper HTTP Analyzer
	Using a Guest Account

	Configuring Agile e6 Web Services Security
	Setting up the Web Services Security Policies
	Setting up the Web Services Security
	X.509 Authentication

	Authenticating in a Web Service Client
	A Sample of HTTP Authentication
	A Sample of Web Services Security

	Working with Agile e6 Web Services
	Bulk Processing of Requests
	Handling the Bulk Requests

	Developing the Outbound Web Services Wrapper
	The Web Services Wrapper Interface
	The BPEL Facade
	Endpoint Configurations for the External Wrapper
	Session Management Integration

	Developing a Custom Wrapper
	Calling a Custom Wrapper from e6
	Deploying a Custom Wrapper
	Web Service Wrapper Log Messages

	Agile e6 Core Web Services Operations
	Business Object Web Services
	Bulk Operations
	createObject
	getObject
	createRelation
	getRelations

	Document Management Web Services
	Bulk Operations
	getFiles
	getFileCopy
	checkInFile

	MetaData Web Services
	Bulk Operations
	getEntity
	getEntityType
	getEntityRelation

	Configuration Web Services
	Bulk Operations
	getUserContext
	setUserContext
	getDefault

