

Oracle® Agile Engineering Data
Management

Development Manual for Enterprise Integration
Platform 2.2.2

Part No. E18857-01

Apri l 2011

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management iii

Copyright and Trademarks

Copyright © 1995, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or
display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject
to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500
Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is
not developed or intended for use in any inherently dangerous applications, including applications
which may create a risk of personal injury. If you use this software in dangerous applications, then
you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures
to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for
any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third party content, products and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third party content, products or services.

iv Oracle® Agile Engineering Data Management

CONTENTS

Copyright and Trademarks .. iii

Preface ... v

Overview ... 1

Introduction .. 3

Connectors ...3

Web Services ...3

Connectors .. 5

Configuration ..5

Implementation ...6

Connector Types .. 6

Connector Modes ... 7

Connector Methods .. 7

Thread Safety ... 10

WebServices .. 11

Implementation .. 11

Configuration ... 11

Deployment ... 12

Additional Documentation .. 13

 v

Preface

The Oracle documentation set includes Adobe® Acrobat™ PDF files. The Oracle Technology

Network (OTN) Web site (http://www.oracle.com/technology/documentation/agile.html) contains the
latest versions of the Oracle Agile EDM PDF files. You can view or download these manuals from
the Web site, or you can ask your Agile administrator if there is an Oracle Documentation folder
available on your network from which you can access the documentation (PDF) files.

Note To read the PDF files, you must use the free Adobe Acrobat Reader™ version 7.0 or
later. This program can be downloaded from the Adobe Web site
(http://www.adobe.com).

Note Before calling Agile Support about a problem with an Oracle Agile EDM manual, please
have the full part number, which is located on the title page.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the
United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398.
Outside the United States, call +1.407.458.2479.

Readme

Any last-minute information about Oracle Agile EDM can be found in the Release Notes file on the
Oracle Technology Network (OTN) Web site
(http://www.oracle.com/technology/documentation/agile.html)

Agile Training Aids

Go to the Oracle University Web page
(http://www.oracle.com/education/chooser/selectcountry_new.html) for more information on Agile
Training offerings.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise empty line;
however, some screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle
does not own or control. Oracle neither evaluates nor makes any representations regarding the
accessibility of these Web sites.

http://www.oracle.com/technology/documentation/agile.html
http://www.adobe.com/
http://www.oracle.com/technology/documentation/agile.html
http://www.oracle.com/education/chooser/selectcountry_new.html

Chapter 1 1

Chapter 1

Overview

The Enterprise Integration Platform is a framework based on an EAI architecture (Enterprise
Application Integration) for connecting Agile EDM with other applications and systems. The
Integration Platform consists of several components like the Agile EDM connector, ERP connector,
business process engine, mapping engine and message queue.

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 1 - 2 Oracle® Agile Engineering Data Management

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 2- 3

Chapter 2

Introduction

This manual should enable software developers both to implement own connectors for the
Enterprise Integration Platform and to implement own web services for the WebServiceConnector.

Connectors

Implementing an additional connector consists of the following steps:

 Provide the application specific configuration parameters in the configuration XML file, e.g. how
to connect to the application (login, password, etc.).

 Develop the connector itself, which will be called by the Enterprise Integration Platform
controller (kernel) e.g. based on events. The connector either receives data from the Controller
in order to send data (or to execute a function) in the external application or reads data from
the external application and sends it to the controller for further processing.

Web Services

Implementing an additional Web Service consists of the following steps:

 Provide the web service specific configuration parameters in the configuration XML file, e.g.
how your web service can be called from a web service client.

 Develop the web service itself that allows web service calls to be made.

 Provide web service deployment information to get it properly deployed inside the EIP’s web
server.

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 2 - 4 Oracle® Agile Engineering Data Management

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 3- 5

Chapter 3

Connectors

Configuration

The configuration file is based on XML. Upon the startup of the Enterprise Integration Platform, the
controller reads the configuration file in order to know which connectors need to be started etc.

The configuration data is converted into an internal XML Data Object (XDO), which the controller
provides to each connector. The connector itself is responsible for pulling the connector-specific
information out of the configuration XDO.

Below is an example of the minimum configuration for a connector. The tags “name”, “version”,
“class” and “active” are required.

<connector name="example" version="2.2.0" active="false"

class="com.eigner.eai.connector.ExampleConnector">

</connector>

In detail, adding a connector would require to add a section for this specific connector. It depends
on the functionality of the connector, what information needs to be provided e.g. connection
parameters or available functions of the interface. It is recommended to put all connection related
parameters under a connection tag that can be accessed easily from within the connector’s source
code.

<connector name="plm" version="2.2.0" active="true"

class="com.eigner.eai.connector.plm.PlmConnector">

 …

 <connection name="default" active="true">

 <host>plm_server</host>

 <socket>16067</socket>

 <env>axalantORIGIN</env>

 <user>EDB-EIP</user>

 <pwd>TjmFyaW6eWs=</pwd>

 <id>''</id>

 <connection-timeout>300000</connection-timeout>

 <call-timeout>300000</call-timeout>

 </connection>

 …

 </connector>

The connector also needs to be defined either as source or target connector in the workflow area.
This describes the initial direction of the data transfer:

<workflow name="plm-erp" active="true" type="asynchronous">

 <source>plm</source>

 <target>erp</target>

 <request-pipe>plm-erp</request-pipe>

 <response-pipe>erp-plm</response-pipe>

</workflow>

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 3 - 6 Oracle® Agile Engineering Data Management

The name and path of the mapping file (XSL) must also be provided. The mapping file is
responsible for converting the XDO data from the source system format to the target system format.

<pipe name="plm-erp">

 <path>${eai.conf}/plm_erp.xsl</path>

</pipe>

Implementation

The connector itself is a Java class, which must provide (extend) certain methods like init, warmup,
start, stop, and release from the connector interface (see JavaDoc for package
com.eigner.eai.connector).

Connector Types

There are two types of connectors: synchronous and asynchronous. The most common one is the
asynchronous connector.

To determine which type of connector to develop, the modes of operation are important.

 The asynchronous connector is used to gather data from its system if it is the source
connector. The data is stored into an internal queue inside the EIP by the controller and the
source connector is done for now and waits for the next transfer order. The controller then
reads the data from this queue and sends them to the target connector. The target connector
processes the data and sends them back to the controller, which stores them into the queue
again. The data is then read by controller and sent back to the source connector.

 The synchronous connector is used to gather data from its system, sends them in synchronous
mode through the controller to the target connector, and waits for the results to send them to its
system.

Depending on its purpose the connector must implement either the AsyncConnector interface
(methods sendToController and receiveFromController) or the SyncConnector interface (method
process). For convenience reasons, there are the abstract class AbstractConnector,
AbstractAsyncConnector, and AbstractSyncConnector (also available from the package
com.eigner.eai.connector).

Asynchronous Connector

An asynchronous connector usually reads the data from its system when the controller is requesting
them (sendToController). This data is stored in an EIP internal queue, and the connector is able to
process further requests. When results are returned, the controller triggers the connector by calling
its receiveFromController method.

An asynchronous connector must inherit from the com.eigner.eai.connector.AsyncConnector
interface. There is also an abstract base class AbstractAsyncConnector, which is recommended to
be used since it already implements most of the basic methods.

Note For an example please refer to the file ExampleAsyncConnector.java in the docs
directory.

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 3- 7

Synchronous Connector

A synchronous connector is mostly triggered by its system, usually reads the needed data, sends
them to the controller (via the connector’s “process” method) and waits for the results.

A synchronous connector must inherit from the com.eigner.connector.SyncConnector interface.
There is also an abstract base class AbstractSyncConnector, which is recommended to be used
since it already implements most of the basic methods.

Note For an example please refer to the file ExampleSyncConnector.java in the docs
directory.

Connector Data

The vehicle to transfer the data from controller to connector and back is a BusinessObject (BO) or a
part of the BO (see JavaDoc for package com.eigner.commons.businessobject). The BO is based
on a XDO (XML Data Object, see JavaDoc for package com.eigner.commons.dataobject), and
consists of a control area (that is maintained by the controller) and a data area that holds the data
for the connector. For further information on the structure of a BO, please refer to the Administrator
Manual.

Connector Modes

A connector should support at least one of the two possible modes: source mode
(MODE_SOURCE) or target mode (MODE_TARGET).

Source mode means that the connector can act as a data source. It may then be used as a source
in a workflow definition or in a receive activity inside a BPM process.

Target mode means that the connector can act as a data target. It may then be used as a target in a
workflow definition or in an “invoke” or “reply” activity inside a BPM process.

As a convenience, there is also a mode MODE_BOTH for connectors that support both.

The mode has to be returned by the connector’s getMode() method.

As a conclusion, a connector that supports MODE_SOURCE has to implement the
sendToController() method, whereas a connector that supports MODE_TARGET has to implement
the receiveFromController() method.

Connector Methods

We will discuss the single connector methods now in more detail.

It is assumed that there is already a custom connector class that has been derived properly from
one of the abstract base classes.

The constructor and the init method will only be called if the connector’s configuration is set active in
the eai_ini.xml.

Constructor

public ExampleSyncConnector()

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 3 - 8 Oracle® Agile Engineering Data Management

The constructor must be a default constructor (without any arguments). It must call the super
constructor with the connector’s class name, which will be used by the logging framework. You will
have access to the logger inside the connector’s source code by calling the method getLogger ().
Please refer to the JavaDoc of the package com.eigner.commons.logging for further information.

It must then call the setVersion () method with a version number string (e.g. “2.0.0”) that must be
the same as the one defined in the connector’s configuration inside the eai_ini.xml. It should be the
same as the current EIP version. The controller uses these version numbers to determine if a
configuration is compliant with the connector.

The version numbering consists of three numbers where the first one is the major version, the
second one is the minor version and the last one is the revision version. It is required that a
connector that differs only by the revision number should read its configuration of a lesser or equal
revision number (e.g. a connector with version 2.0.1 should read a configuration for version 2.0.0).
This is not required if the versions differ on the major or minor version.

init()

public void init(ControllerInstance controller, String connectorName)

The controller calls this method after the constructor is called. There the connector’s class
members should be initialized as well as third party APIs (if any is needed to communicate with the
external system).

It is required to call the super init method before all other code. Then you should read in the
connector’s connection configuration by calling the controller’s getConnectionContext() method.
For further processing of the returned element object, please refer to the JavaDoc of package
com.eigner.commons.dataobject.

Each connector may have a BOR (Business Object Repository) assigned if needed that defines the
calls into the external system depending on the direction (e.g. “SEND”), the business object (e.g.
“BOM”) and a verb (e.g. “RELEASE”). Since this BOR is highly dependent on the external system,
no general advice can be given here. The BOR can be accessed inside the source code by calling
the controller’s getBorContext() method. The further processing of the returned element object is
equivalent to the one returned by getConnectionContext()).

Then you may call the third party’s API as needed to initialize it.

warmup()

public void warmup() throws ConnectorException

The controller calls this method after method init() and before method start(). This allows you to do
further initialization that depends on a fully initialized connector before it is started. It is mostly
sufficient to not overwrite this method but to use the base class’ default implementation.

start()

public void start() throws ConnectorException

The controller calls this method when the connector should connect to its system. This is only done
when the dynamic-connect feature is not activated or the connector is a source connector as
defined in the workflows.

The dynamic-connect feature is an optional configuration tag for the connector inside the
eai_ini.xml. For further information, please refer to the Administrator Manual.

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 3- 9

sendToController()

public boolean sendToController() throws ConnectorException,

UnavailableException

The controller calls this method periodically if the connector is derived from AsyncConnector. The
interval is defined in the controller’s configuration via the parameter polling-interval inside the
eai_ini.xml.

This method should read data from the external system, construct a DataArea with these data, and
send it to the controller. If a connection problem occurs when reading the data from the system, a
UnavailableException should be thrown. If another error occurs, a ConnectorException should be
thrown.

The method should return the value “true”, if the controller’s send() method had been called.
Otherwise, the value “false” should be returned.

receiveFromController()

public boolean receiveFromController(BusinessObject bo) throws

ConnectorException, UnavailableException

The controller calls this method when the controller has data that should be delivered to the
connector in asynchronous mode. The connector may query the BO’s control area, to determine
the type of the BO (e.g. isResponse() for data sent by another connector or previously sent data via
its own sendToController() method), or an error state (by calling hasError()).

This method may write data to the external system, construct a ReturnArea with this status
information, and send it to the controller. If a connection problem occurs when writing the data to
the system, an UnavailableException should be thrown. If another error occurs, a
ConnectorException should be thrown.

The method should return the value “true”, if the controller’s send() method had been called.
Otherwise, the value “false” should be returned.

process()

public BusinessObject process(String id) throws ConnectorException,

UnavailableException

public BusinessObject process(Collection params) throws

ConnectorException, UnavailableException

The external system may call these methods when it wants to have data transferred in synchronous
mode. Depending on the third party API, you may also have your own class that calls directly the
controller’s process() method.

The first method takes a GUID string that is used to identify and read the data from the external
system.

The second method gets all the required parameters that are needed to process the synchronous
request. The connector may then write the data into the external system, or just use them to
construct a DataArea and call the controller’s process method. If a connection problem occurs when
writing the data to the system, an UnavailableException should be thrown. If another error occurs, a
ConnectorException should be thrown.

The method should return the BO that is received as a return value from the controller’s process()

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 3 - 10 Oracle® Agile Engineering Data Management

method.

snapshot()

public String snapshot(Collection params) throws ConnectorException,

UnavailableException

The external system may call this method when it wants to have data read and stored in a snapshot
field in synchronous mode. This method should not make any calls into the controller.

When running in asynchronous mode, the EIP reads the data that should be transferred not at the
moment when the request is done. Depending on the polling-interval, the current amount of
transfers and the availability of connectors, this is a point of time in the near or far future. To have
the data collected at the moment the request is made, the snapshot() method is intended to be
used. The data should be stored in the external system to be accessed later in asynchronous mode.

The method should return the GUID of the data that it has read from the external system.

stop()

public void stop() throws ConnectorException

The controller calls this method when the connector should disconnect from its system. This is done
when the dynamic-connect feature is activated and the transfer has been completed or the EIP is
terminating.

The dynamic-connect feature is an optional configuration tag for the connector inside the
eai_ini.xml. For further information, please refer to the Administrator Manual.

release()

public void release() throws ConnectorException

The controller calls this method when the connector is terminated. This is usually only the case
when the EIP terminates. This method is the counterpart to the method init().

getMode()

public int getMode()

This method returns the connector mode (MODE_SOURCE, MODE_TARGET, or MODE_BOTH).

Thread Safety

When implementing the connector please ensure that the access to member variables is thread-
safe when they are used in multiple methods.

Please have also in mind to use the smallest synchronization blocks as possible. You should not
synchronize the interface methods since this may lead to locking problems on the connector itself.

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 4- 11

Chapter 4

WebServices

To provide own Web Services to the Enterprise Integration Platform, you have to create an
implementation class, add it to the configuration and deploy it to the Web Server’s directory.

Implementation

When implementing the Web Service Java class, you may inherit your class from
com.eigner.eai.connector.net.ws.WebService. This abstract base class provides you with a Logger
instance and convenience methods for handling the Web Service request.

Basically, your code should do the following:

// The context (name of the web service connector) must be either

provided by

// the method call or by a dynamic mapping.

WebServiceContext wsc = WebServiceContextFactory.getContext(context);

// Extract the required data from the method call.

// key: Unique key for data

// noun: Business Object noun (e.g. ITEM)

// verb: Business Object verb (e.g. CREATE)

// message: XML data

// language: Language code (see Common Section in the Administration

Manual)

// synchronous: Flag for synchronous data transmission

String resultString = wsc.process(key, noun, verb, message, language,

synchronous);

// Prepare the result XML string for the return value of the method

call (if any)

For further information regarding the data, please refer to the chapter about the XDOs in the
Administration Manual.

Configuration

Depending on the type of connector, the definition of the Web Service must be added to the
synchronous connector’s configuration or the asynchronous connector’s configuration, although the
definition is identical.

Example:

<connector name="ws" version="2.2.0" active="false"

class="com.eigner.eai.connector.net.WebServiceConnector">

 <connection name="default" active="true">

 …

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 4 - 12 Oracle® Agile Engineering Data Management

 <service name="myservice" wsdd="/com/foo/MyService.wsdd"

location="/axis/services/MyService"/>

 …

 </connection>

 …

</connector>

Deployment

For deploying your Web Service into the EIP, please provide a proper WSDD (Web Service
Deployment Description) file.

Example:

<deployment name="eip" xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="MyService" provider="java:MSG">

 <parameter name="className" value="com.foo.MyService"/>

 <parameter name="allowedMethods" value="*"/>

 </service>

</deployment>

For further information, please see http://ws.apache.org/axis/java/user-guide.html (esp. “Custom
Deployment - Introducing WSDD” and “Service Styles - RPC, Document, Wrapped, and Message”).

Then pack your Java classes and this WSDD file into a JAR and deploy it to the webapps’s
axis/WEB-INF/lib directory. The webapps’s directory is specified in the file conf/eai_ini.xml under
eai-root/controller/webserver.

You may need to delete the file axis/WEB-INF/server-config.xml and restart the Integration Platform
in order to use your Web Service.

http://ws.apache.org/axis/java/user-guide.html

Development Manual - Enterprise Integration Platform 2.2.2

Oracle® Agile Engineering Data Management Chapter 5- 13

Chapter 5

Additional Documentation

In addition to this document, Agile Software also provides the Java Documentation of Java classes
and methods, which are necessary to develop your connector.

The Javadoc package (HTML files) includes following pages (which are located in docs/apidocs
directory):

 Documentation of the BusinessObject class and its relatives
(com.eigner.commons.businessobject) that represent the internal data structure which is sent
and received by the connectors.

 Documentation of the XDO and XDOTransformer classes (com.eigner.commons.dataobject),
which are necessary for the creation and parsing of XML Data Objects.

 Documentation of the connector interfaces (com.eigner.eai.connector), which explains what
methods a connector needs to implement and which exceptions (ConnectorException and
UnavailableException) can be thrown into the application controller.

 Documentation of the ControllerInstance interface (com.eigner.eai.connector) that is used to
interact with the controller, of the ContextException class (com.eigner.commons.config) that
may be thrown, and of the Decrypter interface (com.eigner.commons.crypt) that may be used
to decrypt sensible data like passwords.

 Documentation of the logging framework.

 Documentation of the NestedException and NestedRuntimeException classes
(com.eigner.commons.lang) which are base classes for most of the actually thrown exceptions.

 Documentation of some utility classes, which you may use when needed.

Development Manual - Enterprise Integration Platform 2.2.2

Chapter 5 - 14 Oracle® Agile Engineering Data Management

