Oracle® GlassFish Server 3.0.1 Monitoring
Scripting Client Installation and Quick Start
Guide

Part No: 821-1765-11

ORACLE Jly 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100720@24378

Contents

Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 5
Obtaining Monitoring Scripting Client
Configuring Monitoring Scripting CHENLc.ccccueurieerciriieieeireerereeieeiee e nsenne 6
V To Configure Monitoring SCripting CLENTc.cceveuiereeenieneereinieicineseeesseseesesseseesessessesenne 6
Running a Script for Monitoring GlassFish SEIVer ... 7
V¥ To Run a Script for Monitoring GlassFish SEIVer ... 7
Writing Scripts in the JavaScript Language for Monitoring GlassFish Server
Obtaining Information About Events That Provide Monitoring Dataccccccevveuviuniunnce. 8
V To Register a Script as a Listener for an EVENtcccveeunerecrnenecncnieeneneenseiseessenneeenne 10
V To Display Information From @ SCIIPLc..ceecueereeinieneericineiricineiseeeiscseeesesseessessesessesseseene 11
Writing an Event Callback FUNCHON ... 12
Sample JavaScript Programs for Monitoring GlassFish Serverccccvvvcncnecincrnenercrnennenenn. 15
Monitoring Scripting Client APIReferenceccccoooveieinieeirisieee s 19
ODBJECE CLLENT ottt et sttt 19
Method SUMMATY ... 19
Method Detail ... 19
ODbject SCrAPECONTALNET vttt ettt ettt sttt neae 20

Method Summary
Method Detail ...

L K R 4 CHAPTER 1

Oracle GlassFish Server Monitoring Scripting
Client Installation and Quick Start Guide

Monitoring is the process of reviewing the statistics of a system to improve performance or solve
problems. By monitoring the state of components and services that are deployed in Oracle
GlassFish Server, system administrators can identify performance bottlenecks, predict failures,
perform root cause analysis, and ensure that everything is functioning as expected. Monitoring
data can also be useful in performance tuning and capacity planning.

Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide
explains how to obtain Monitoring Scripting Client and how to use Monitoring Scripting Client
to write clients in the JavaScript programming language to provide monitoring data about
Oracle GlassFish Server. The ability to program in the JavaScript language is assumed.

The following topics are addressed here:

= “Obtaining Monitoring Scripting Client” on page 5

= “Configuring Monitoring Scripting Client” on page 6

“Running a Script for Monitoring GlassFish Server” on page 7

“Writing Scripts in the JavaScript Language for Monitoring GlassFish Server” on page 7
“Sample JavaScript Programs for Monitoring GlassFish Server” on page 15

Obtaining Monitoring Scripting Client

If GlassFish Server was installed from Oracle GlassFish Server, ignore this section. Monitoring
Scripting Client is integrated with Oracle GlassFish Server and is installed when Oracle
GlassFish Server is installed.

If you are using GlassFish Server Open Source Edition, you can obtain this feature by
purchasing a right-to-use and upgrading to Oracle GlassFish Server. For more information, see
“Upgrading to Oracle GlassFish Server From GlassFish Server Open Source Edition” in Oracle
GlassFish Server 3.0.1 Administration Guide.

http://docs.sun.com/doc/821-1751/gkbtb?a=view
http://docs.sun.com/doc/821-1751/gkbtb?a=view

Configuring Monitoring Scripting Client

Configuring Monitoring Scripting Client

Before using Monitoring Scripting Client, you must configure it. Configuration of Monitoring
Scripting Client is required regardless of whether Oracle GlassFish Server was initially installed
or acquired through an upgrade.

Configuring Monitoring Scripting Client involves enabling Comet support for an HTTP
listener of GlassFish Server and deploying the Monitoring Scripting Client web application.

v To Configure Monitoring Scripting Client

1 Startorrestartan administrative domain.

= If noadministrative domain is running, start a domain.

asadmin start-domain domain

= [fan administrative domain is running, restart the domain.

asadmin restart-domain domain

domain is the name of the administrative domain to start or restart.

2 Enable Comet support foran HTTP listener of GlassFish Server.

asadmin set configs.config.server-config.network-config.
protocols.protocol.listener-name.http.comet-support-enabled=true

listener-name is the name of the HTTP listener for which to enable Comet support.

For example, to enable Comet support for the HTTP listener http-listener-1, type:

asadmin set configs.config.server-config.network-config.
protocols.protocol.http-listener-1.http.comet-support-enabled=true

3 Deploytheapplicationinthemonitoring-scripting-client.war file.

asadmin deploy as-install/monitoring-scripting-client/war/monitoring-scripting-client.war

as-install is the directory in which GlassFish Server is installed.

6 Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Running a Script for Monitoring GlassFish Server

Monitoring Scripting Client provides an asadmin subcommand to run scripts for monitoring
GlassFish Server. To ensure that scripts can receive and process events correctly, you must use
the subcommand that is provided to run these scripts.

v To Run a Script for Monitoring GlassFish Server

1 Ensurethat the serveris running.

Remote subcommands require a running server.

2 Ensure that monitoring is enabled for GlassFish Server.

If monitoring for GlassFish Server is disabled, no events that your script is listening for are sent.

For information about how to enable monitoring for GlassFish Server, see “T'o Enable
Monitoring” in Oracle GlassFish Server 3.0.1 Administration Guide.

3 Runthe run-script subcommand.

Example1-1 Running a Script for Monitoring GlassFish Server

This example runs the script /tools/mon/modulestarted. js.

asadmin> run-script /tools/mon/modulestarted.js

SeeAlso You can also view the full syntax and options of the subcommand by typing asadmin help
run-script at the command line.

Writing Scripts in the JavaScript Language for Monitoring
GlassFish Server

Monitoring Scripting Client enables you to write clients in the JavaScript programming
language to provide monitoring data about Oracle GlassFish Server.

The following topics are addressed here:

“Obtaining Information About Events That Provide Monitoring Data” on page 8
“To Register a Script as a Listener for an Event” on page 10

“To Display Information From a Script” on page 11

“Writing an Event Callback Function” on page 12

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 7

http://docs.sun.com/doc/821-1751/ablvr?a=view
http://docs.sun.com/doc/821-1751/ablvr?a=view

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Obtaining Information About Events That Provide
Monitoring Data

Components and services that are deployed in the GlassFish Server typically generate statistics
that the GlassFish Server can gather at run time. To provide statistics to GlassFish Server,
components define events for the operations that generate these statistics. At runtime,
components send these events when performing the operations for which the events are
defined. For example, to enable the number of received requests to be monitored, a component
sends a “request received” event each time that the component receives a request.

Monitoring Scripting Client enables you to list all events that are provided for monitoring
GlassFish Server. Detailed information about each of these events is provided to enable you to
identify which events provide the statistics that you want to monitor.

Use this information to process appropriately the events of interest in JavaScript programs that
you write for monitoring GlassFish Server.

¥ To Obtain a List of Events That Provide Monitoring Data

1 Ensurethat the serveris running.

Remote subcommands require a running server.

2 Ensure that monitoring is enabled for GlassFish Server.
If monitoring for GlassFish Server is disabled, no events are listed.

For information about how to enable monitoring for GlassFish Server, see “T'o Enable
Monitoring” in Oracle GlassFish Server 3.0.1 Administration Guide.

3 Toincludeinthe list events that are related to a container, ensure that the container is loaded.

Events that are related to a container are listed only if the container is loaded. For example, to
list events that are related to the JRuby container, you must ensure that the JRuby container is
loaded by deploying a JRuby application in GlassFish Server.

4 Runthelist-probes subcommand.

The signatures of all events for all installed components of GlassFish Server are displayed.

An event signature consists of the event identifier (ID) followed in parentheses by a
comma-separated list of the event's parameters. Each parameter is listed as its type followed by
its name.

For detailed information about the format of an event signature, see the help page for the
list-probes subcommand.

8 Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

http://docs.sun.com/doc/821-1751/ablvr?a=view
http://docs.sun.com/doc/821-1751/ablvr?a=view

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Example 1-2

See Also

Listing All Events

This command lists all events for monitoring GlassFish Server. For better readability, some
events that would listed by this example are not shown.

asadmin> list-probes

glassfish:jdbc:connection-pool:connectionRequestDequeuedEvent (java.lang.String
poolName)

glassfish:jca:connection-pool:connectionsFreedEvent (java.lang.String poolName,

int count)

glassfish:transaction:transaction-service:deactivated ()
glassfish:kernel:connections-keep-alive:incrementCountFlushesEvent (java.lang.String
listenerName)

glassfish:kernel:file-cache:countInfoMissEvent (java.lang.String fileCacheName)
glassfish:ejb:timers:timerRemovedEvent ()
glassfish:jdbc:connection-pool:decrementNumConnFreeEvent (java.lang.String poolName)

glassfish:kernel:thread-pool:threadAllocatedEvent (java.lang.String monitoringId,
java.lang.String threadPoolName, java.lang.String threadId)
glassfish:jca:connection-pool:connectionCreatedEvent (java.lang.String poolName)
glassfish:kernel:connection-queue:connectionAcceptedEvent (java.lang.String
listenerName, int connection)

Command list-probes executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
list-probes at the command line.

To Obtain Detailed Information About an Event That Provides
Monitoring Data

The following detailed information is available about events for monitoring GlassFish Server:
= The event's signature

= A description of the event, including an indication of what the event signifies and an
explanation of what causes the event to be sent

= A description of each parameter in the event

Ensure that the server is running.

Remote subcommands require a running server.

If necessary, obtain the event ID of the event for which you want detailed information.
For details, see “To Obtain a List of Events That Provide Monitoring Data” on page 8.

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 9

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

10

Example 1-3

Specify the - -details option of the list-probes subcommand and the ID of the event as the
operand of the subcommand.

Displaying Detailed Information About an Event

This example displays detailed information about the
glassfish:web:web-module:webModuleStartedEvent event.

asadmin list-probes --details glassfish:web:web-module:webModuleStartedEvent

Information similar to the following is displayed.

Events glassfish:web:web-module:webModuleStartedEvent (5GFP)

NAME
glassfish:web:web-module:webModuleStartedEvent - web module
started event

SYNOPSIS
glassfish:web:web-module:webModuleStartedEvent (
java.lang.String appName,
java.lang.String hostName)

DESCRIPTION
This event is sent whenever an application has been started

(for example, as part of its deployment).

PARAMETERS
appName

The name of the web application that has been started.
hostName
The name of the virtual server on which the application

has been deployed.

Java EE 6 Last change: 19 Nov 2009 1

Command list-probes executed successfully.

To Register a Script as a Listener for an Event

Registering a script as listener for an event enables the script to listen for the event and to receive
callbacks from the Monitoring Scripting Client when the script receives the event. The script
can then collect data from the event. Registering a script as listener for an event also specifies the

Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Example 1-4

event callback function that is to be called when the event is received. For information about
writing an event callback function, see “Writing an Event Callback Function” on page 12.

Create an array of the event parameters to pass to the event callback function.

This array may contain any number of the event's parameters in any order.

Invoke the scriptContainer. registerListener method.

In the invocation of the scriptContainer. registerListener method, pass the following
information as parameters to the method:

= Theevent ID of the event
= The array of event parameters that you created in the previous step

= The name of the event callback function that is to be called when the event is received

Registering a Script as a Listener for an Event

This example registers a script as a listener for the event glassfish:web: jsp:jspLoadedEvent.
When this event is received, the event parameter hostName is passed to the jspLoaded () event
callback function. For clarity, the declaration of the event callback function jspLoaded() is also
shown in this example.

function jspLoaded(hostName) {

}

params = java.lang.reflect.Array.newInstance(java.lang.String, 1);
params[0]="hostName"

scriptContainer.registerListener(’glassfish:web:jsp:jspLoadedEvent’,
params, 'jsplLoaded’);

To Display Information From a Script

To provide statistics to system administrators, a script must display information when the
script is run. Monitoring Scripting Client provides a preinstantiated object that has a method
for displaying information from scripts. You must use this method to display updated
information on standard output on the client system where the script is run. You cannot use the
standard printing mechanisms of the JavaScript language because they write information to the
server log.

Invoke the client.print method.

In the invocation of the client.print method, pass the text string to display as the parameter
to the method.

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 1

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

12

Example 1-5

Displaying Information From a Script

This example displays a string similar to the following in standard output each time the
function jspLoaded () is called.

js> jsp loaded event called on host = server and count =1
var njsplLoaded=0;

function jspLoaded(hostName) {
njspLoaded = njsplLoaded + 1;

’

client.print('\n js> jsp loaded event called on ' +
"host = ' + hostName +
" and count = ' + njsplLoaded);

Writing an Event Callback Function

An event callback function is a function in a script that Monitoring Scripting Client calls in
response to an event.

In your event callback functions, provide code to generate statistics from the data in events.
Typically, the following types of statistics can be generated from the data in events:

= Counter statistics. These types of statistics typically correspond to a single event. For
example, to calculate the number of received requests, only one event is required, for
example, a “request received” event. Every time that a “request received” event is sent, the
number of received requests is increased by 1.

= Timer statistics. These types of statistics typically correspond to multiple events. For
example, to calculate the time to process a request, two requests are required, for example, a
“request received” event and a “request completed” event.

To Generate Counter Statistics

Counter statistics typically correspond to a single event. For example, to calculate the number
of received requests, only one event is required, for example, a “request received” event. Every
time that a “request received” event is sent, the number of received requests is increased by 1.

Declare and initialize a variable.

Increase or decrease the variable each time the appropriate event is received.

Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Example 1-6

v

Generating a Counter Statistic

This example declares and initializes to zero the variable njspLoaded. Each time the callback
function jspLoaded () is invoked, the value of this counter is increased by 1.

For the complete listing of the script from which this example is extracted, see Example 1-8.
var njsplLoaded=0;

function jspLoaded(hostName) {
njspLoaded = njspLoaded + 1;

To Generate a Timer Statistic

Timer statistics typically correspond to multiple events. For example, to calculate the time to
process a request, two events are required, for example, a “request received” eventand a
“request completed” event.

For operations that have a measurable duration, Monitoring Scripting Client provides pairs of
events to indicate the start and the end of the operations. For example, to indicate the initiation
and completion of an HTTP request that has been received by the web container, Monitoring
Scripting Client provides the following pair of events:

m glassfish:web:http-service:requestStartEvent
m glassfish:web:http-service:requestEndEvent

Use pairs of events that indicate the start and end of an operation to generate a timer statistic.
Write an event callback function to calculate the start time.

Ensure that the function to calculate the start time is called when the “operation started” event
is received.

For details, see “To Register a Script as a Listener for an Event” on page 10.
Write an event callback function to calculate the end time.

Ensure that the function to calculate the end time is called when the “operation ended” event is
received.

For details, see “T'o Register a Script as a Listener for an Event” on page 10.

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 13

Writing Scripts in the JavaScript Language for Monitoring GlassFish Server

Example 1-7

14

Generating a Timer Statistic

This example uses the following events to measure the time to process web service requests:

m glassfish:web:http-service:requestStartEvent
m glassfish:web:http-service:requestEndEvent

The events for a single request are sent in the same thread of control. Therefore, the identity of
the thread can be used as a key to associate the start event and the end event for the request.

For the complete listing of the script from which this example is extracted, see Example 1-9.

var startTime;
var object = new Object();

function requestStartEvent(appName,hostName,serverName,serverPort, contextPath,
servletPath){

startTime = (new Date()).getTime();

//insert the request time in Map
key = java.lang.Thread.currentThread().getId();
object[key] = startTime;

}

scriptContainer.registerListener(’glassfish:web:http-service:requestStartEvent’,
request params , ’'requestStartEvent’);

function requestEndEvent(appName,hostName,serverName,serverPort,contextPath,
servletPath, statusCode){

key = java.lang.Thread.currentThread().getId();
startTime = object[key];
if (startTime == null)
client.print("Error getting the startTime for thread =
else
delete[key];
totalTime = (new Date()).getTime() - startTime;

+ key);

}
scriptContainer.registerListener(’glassfish:web:http-service:requestEndEvent’,
requestl params, ’'requestEndEvent’);

Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

Sample JavaScript Programs for Monitoring GlassFish Server

Sample JavaScript Programs for Monitoring GlassFish Server

The sample JavaScript programs in this section show how to use GlassFish Server events to
generate and present statistics for system administrators who are monitoring GlassFish Server.
EXAMPLE 1-8 Counting the Number of Loaded JSP Technology Pages

This example uses the glassfish:web: jsp: jspLoadedEvent event to count the number of
JavaServer Pages (JSP) technology pages that GlassFish Server has loaded.

var njsplLoaded=0;

function jspLoaded(hostName) {
njspLoaded = njspLoaded + 1;

’

client.print('\n js> jsp loaded event called on ' +
"host = ' + hostName +
" and count = ' + njsplLoaded);

params = java.lang.reflect.Array.newInstance(java.lang.String, 1);
params[0]="hostName"

scriptContainer.registerListener(’glassfish:web:jsp:jspLoadedEvent’,
params, ’'jsplLoaded’);

This script can be run with a command similar to the following:

asadmin run-script jsp-loaded-count.js

Information similar to the following is displayed each time that GlassFish Server loads a JSP
technology page:

js> jsp loaded event called on host = server and count =1
The script runs until a user types Ctrl-C to stop the script.

EXAMPLE 1-9 Measuring the Time to Process Web Service Requests

This example uses the following events to measure the time to process web service requests:

m glassfish:web:http-service:requestStartEvent
m glassfish:web:http-service:requestEndEvent

The script also displays the information that is contained in the parameters of these events.
// http request related probes

// glassfish:web:http-service:requestStartEvent requestStartEvent(

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 15

Sample JavaScript Programs for Monitoring GlassFish Server

16

EXAMPLE 1-9 Measuring the Time to Process Web Service Requests (Continued)

// java.lang.String appName,

// java.lang.String hostName,

// java.lang.String serverName,

// int serverPort,

// java.lang.String contextPath,
// java.lang.String servletPath)

request params = java.lang.reflect.Array.newInstance(java.lang.String, 6);
request params[0]="appName";

request params[1]="hostName";

request params[2]="serverName";

request params[3]="serverPort";

request params[4]="contextPath";

request params[5]="servletPath";

var startTime;
var object = new Object();
var nrequestStartEvent=0;

function requestStartEvent(appName,hostName,serverName,serverPort, contextPath,
servletPath){

nrequestStartEvent=nrequestStartEvent+1;
startTime = (new Date()).getTime();

//insert the request time in Map
key = java.lang.Thread.currentThread().getId();
object[key] = startTime;

client.print(
"Count: '+ nrequestStartEvent +'\n’+
"Event: glassfish:web:http-service:requestStartEvent’ +'\n’+
"Application: ’+appName+’'\n’+

"Host: ' + hostName +'\n’+

'Server: ' + serverName +’\n’+

"HTTP Port: ' + serverPort +'\n'+
"Context Path: ' + contextPath +'\n’+
'Servlet Path: ' + servletPath + '\n’ +

’

"Current Thread:
"\n\n");

+ java.lang.Thread.currentThread().getId() +

scriptContainer.registerListener(’glassfish:web:http-service:requestStartEvent’,
request params , 'requestStartEvent’);

// glassfish:web:http-service:requestEndEvent requestEndEvent(

Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

Sample JavaScript Programs for Monitoring GlassFish Server

EXAMPLE 1-9 Measuring the Time to Process Web Service Requests (Continued)

// java.lang.String appName,

// java.lang.String hostName,

// java.lang.String serverName,
// int server Port,

// java.lang.String contextPath,
// java.lang.String servletPath,
// int statusCode)

requestl params = java.lang.reflect.Array.newInstance(java.lang.String, 7);
requestl params[0]="appName"

requestl params[1]="hostName"

requestl params[2]="serverName"

requestl params[3]="serverPort"

requestl params[4]="contextPath"

requestl params[5]="servletPath"

requestl params[6]="statusCode"

var nrequestEndEvent=0;

function requestEndEvent(appName, hostName,serverName,serverPort,contextPath,
servletPath, statusCode) {

nrequestEndEvent=nrequestEndEvent+1;
key = java.lang.Thread.currentThread().getId();
startTime = object[key];
if (startTime == null)
client.print("Error getting the startTime for thread = " + key);
else
delete[key];
totalTime = (new Date()).getTime() - startTime;

client.print(
'"Time Taken: + ((new Date()).getTime()-startTime) + ' ms\n’ +
"Count: ’'+nrequestEndEvent+’'\n’+
"Event: glassfish:web:http-service:requestEndEvent’ +'\n’+
'Application: ’+appName+’'\n’+

’

"Host: ' + hostName +'\n’+
'Server: ' + serverName +'\n’+
"HTTP Port: ' + serverPort +'\n’'+

'Context Path: ' + contextPath +'\n’+

'Servlet Path: ' + servletPath +'\n’+

'Status Code: ' + statusCode + '\n’ +

"Current Thread: ' + java.lang.Thread.currentThread().getId() + '\n’ +
\m\n");

Chapter 1 - Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide 17

Sample JavaScript Programs for Monitoring GlassFish Server

EXAMPLE 1-9 Measuring the Time to Process Web Service Requests (Continued)

scriptContainer.registerListener(’glassfish:web:http-service:requestEndEvent’,
requestl params, ’'requestEndEvent’);

This script can be run with a command similar to the following:

asadmin run-script web-service-request-timer.js

Information similar to the following is displayed each time that a web service request is
initiated:

Count: 2

Event: glassfish:web:http-service:requestStartEvent
Application: __admingui

Host: asadmin

Server: localhost

HTTP Port: 4848

Context Path:

Servlet Path: /common/commonTask.jsf

Current Thread: 98

Information similar to the following is displayed each time that a web service request is
completed:

Time Taken: 1704 ms

Count: 2

Event: glassfish:web:http-service:requestEndEvent
Application: __admingui

Host: asadmin

Server: localhost

HTTP Port: 4848

Context Path:

Servlet Path: /common/commonTask.jsf
Status Code: 200

Current Thread: 98

The script runs until a user types Ctrl-C to stop the script.

18 Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

APPENDIX A

Monitoring Scripting Client APl Reference

The Monitoring Scripting Client API is a set of preinstantiated objects that enable scripts to
interact with the Monitoring Scripting Client framework.

The following topics are addressed here:

= “Object client” on page 19
= “Object scriptContainer” on page 20

Object client

Method Summary

void print(String string)
Prints a string to the standard output on the system where the script is running.

Method Detail

print

void print(
String string)

Prints a string to the standard output on the system where the script is running.

Parameters

string
The string to be printed.

ObjectscriptContainer

Object scriptContainer

Method Summary

void registerListener (String event-id, String[] params, String callback)
Registers a script as a listener for a specific event.

Method Detail

registerListener

void registerListener (
String event-id,
String[] params,
String callback)

Registers a script as a listener for a specific event.

Parameters

event-id
The event identifier (ID) of the event for which the script is to listen.

params
An array of the event parameters to pass to the event callback function that is called when the
event is received.

callback
The event callback function that is called when the event is received.

20 Oracle GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide « July 2010

	Oracle® GlassFish Server 3.0.1 Monitoring Scripting Client Installation and Quick Start Guide
	Oracle GlassFish Server Monitoring Scripting Client Installation and Quick Start Guide
	Obtaining Monitoring Scripting Client
	Configuring Monitoring Scripting Client
	To Configure Monitoring Scripting Client

	Running a Script for Monitoring GlassFish Server
	To Run a Script for Monitoring GlassFish Server

	Writing Scripts in the JavaScript Language for Monitoring GlassFish Server
	Obtaining Information About Events That Provide Monitoring Data
	To Obtain a List of Events That Provide Monitoring Data
	To Obtain Detailed Information About an Event That Provides Monitoring Data

	To Register a Script as a Listener for an Event
	To Display Information From a Script
	Writing an Event Callback Function
	To Generate Counter Statistics
	To Generate a Timer Statistic

	Sample JavaScript Programs for Monitoring GlassFish Server

	Monitoring Scripting Client API Reference
	Object client
	Method Summary
	Method Detail
	print
	Parameters

	Object scriptContainer
	Method Summary
	Method Detail
	registerListener
	Parameters

