Oracle® Data Integrator
Jython Quick Reference
10g Release 3 (10.1.3)

September 2008

Oracle® Data Integrator Jython Quick Reference, 10g Release 3 (10.1.3)

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided
under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and
other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs,
except to the extent required to obtain interoperability with other independently created software or as specified by law, is
prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be
expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the
United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to
U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth
in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability
for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not
responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the
use of such content. If you choose to purchase any products or services from a third party, the relationship is directly
between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b)
fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty
obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you
may incur from dealing with any third party.

Table Of Contents

Organization Of ThiS MaANUALcoicuiiiiiiie e e e e s e e e e e e e e e e snrereeaees 1
I LS 2 = T (oSSR 3
Oracle Data Integrator and JYTNONeooiiiii e a e 3
POINES 10 REMEMDETciiiiiiiie ettt e ettt e e s sttt e e s snbb e e e e snbbeeeeabeeeeeans 3
(G0 (o L PP PP TP PP RTPPPTOPPPRP 4
L@ 01T =10 £ 7T TT PP 4
D E= 1= B Y/ 013 PO PUTPRRPPPPPPPIN 5
) 1162 O PP PP PPRPPP PPN 13
/[0 o [0 TP 20
Using Jython in Oracle Data INtegrator............eueeeeiiiiiciiiieiee e e s r e e e e s s s e e e e e e e s snnreareeeeeeeesnnes 23
USING the JYthon INTEIPIELET. ...t seeee s 23
UsiNg JYthon iNthe ProCEAUIESuuuiiiie e e e e s e e e e e e e s e snnraeeeeeees 23
Jython variable persiSteNCe iN @ SESSIONuiiiiii i e e e e e s reeaee s 24
Add a Specific Module to the Standard DiStribUtiONcooviiiiiiiiiiiie e 24
Additional modules in Oracle Data INtEQrator...........cccuviiiiiee e 24
= Y0] 0] (=SOSR 27
Read From and WItE t0 @ Fileuuiiiiiii it aeeee s 27
List the contents Of @ IrECIONYuuiiiiiiei e e e e s e s e e e e e e e e snnrrreeaee s 28
Using the Operating System Environment Variablescccccoviviciiiiiiie e 28
LU0 To I | B =T OO PP PP RUPPPPPP 29
L LS T o e I R 30
L LT o Yo Tod =] £ 31

This manual provides a reference of the Jython scripting language. It is intended for developers
who want to use Jython scripting in their integration scenarios.

Organization of This Manual

This manual contains the following:
e Chapter 1 - The Basics explains the basics of the Jython syntax.

e Chapter 2 - Using Jython in Oracle Data Integrator details the use of Jython in Oracle Data
Integrator.

e Chapter 3 - Examples provide samples scripts for Jython.
The comprehensive Jython documentation is available at http://www.jython.org

The Basics

Oracle Data Integrator and Jython

Jython (Java version of Python) is an object-oriented scripting language. Jython scripts run on any
platform that has a java virtual machine.

Oracle Data Integrator includes the Jython Interpreter within the execution agent. The agent is
able to run script written in Jython.

Oracle Data Integrator users may write procedures or knowledge modules using Jython, and may
mix Jython code with SQL, PL/SQL, OS Calls, etc.

Thanks to Jython, the programming capabilities of Oracle Data Integrator are dramatically
increased. It is possible to perform complex processing with strings, lists, "dictionaries”, call FTP
modules, manage files, integrate external Java classes, etc.

Note: To use Jython code in KM procedure commands or procedures commands, you must
systematically set the technology to Jython.

Points to Remember

The basic rules to write a Jython program are:

Code execution

Statements are executed in sequence up to a control structure: i f, for, while, raise, ora
function call.

Block

A block is defined by lines with the same indentation level (spaces or tabulations).

Statements

A statement stops at the end of a line, and can be continued on several lines if they end with a \,
or if they are enclosed in (), [1, {} or '''. Severalinstructions can be on the same line if they
are separated with a ;.

Comments

A comment starts with a hash character # and ends at the end of the physical line.

String Documentation

If a function, a module or a class starts with a string constant, this string is stored in the __doc___
attribute of the object.

Oracle Data Integrator Jython Quick Reference

Examples

Simple program that displays "Hello World"
Assign a value to a string

s = 'Hello World'

Display the wvalue

print s

Program that displays "Hello World" 4 times
s = 'Hello World %d'

for i in range(4):

Keywords

The following identifiers are reserved words, or keywords, in Jython.

and del for is
assert elif from lambda
break else global not
class except if or
continue exec import pass
def finally in print

Please also note the following points.

raise
return
try

while

e A statement must be written on one single line. To split a statement over several lines, you

must use the \ (backslash) character.

e Expressions in parentheses (), square brackets [] or curly braces {} can be split over more

than one physical line without using backslashes.

e Several statements can be written on the same line if they are separated by semicolons (;).

o A comment begins with a hash character (#) that is not part of a string literal, and continues

until the end of the line.

Operators
Operators, by precedence order:
Operator Description
lambda args: expr Anonymous function constructor
X or y Logical OR

The Basics

x and y

not x

X<y X<=y X>y X>=y xX==y

xl=y x>y
x is y X is not vy

x in s x not in s
x|y

XAy

X&Y

X<<y X>>y

X+y X=Yy

x*y xX/y X%y

X* *y

+x, =X, ~X

s[i] s[i:j] s.attr

Data Types

Numbers

e Decimal integer: 1234,

e Octal integer: 0177,

Logical AND

Logical NOT

Comparison operators (equal, not equal, is same object,
belongs to a sequence...)

Bitwise OR

Exclusive OR

Bitwise AND

Left shift, right shift
Addition/concatenation, subtraction
Multiplication/repeat, division, modulo
Power

Identity, unary NOT, bitwise complement
Index, range, attribute qualification, function call

Tuple, list, dictionary, conversion to string

1234567890546378940L (or1)
0177777777777777777L (starts with a 0)

e Hex integer: 0xFF, OXFFFFEffffFFFFFFFFFFL (starts with a Ox or 0X)
e Long integer (unlimited precision): 1234567890123456L (ends with L or I)
e Float (double precision): 3.14e-10, .001, 10., 1E3

e Complex numbers: 13, 2+3J, 4+57 (ends with J orj. To create a complex number with a
nonzero real part, add a floating point number to it with a '+")

Strings

The following sequences are defined as strings:

° 'Strings are enclosed in single quotes'

e "Another string in quotes"

Oracle Data Integrator Jython Quick Reference

'String enclosed by single quotes with a " (double quote) in it'
"String enclosed in double quotes with a ' in it"

'"'"'A string that contains carriage returns and ' can be enclosed in
tree single quotes'''

"rv Triple quotes can also be used"""

r' non interpreted strings (the \ are kept). Useful for the windows
paths!'

R" non interpreted string"

Use \ at the end of the line to continue a string on several lines

2 adjacent strings are concatenated (ex: 'Oracle Data Integrator and' ' Python'
is equivalentto 'Data Integrator and Python'.

Escape sequences

\newline : Ignored (Escape newline)

AR

\e::

\v
\ 1

\f:

: Backslash (\)

Escape (ESC)
: Vertical Tabulation (VT)
: Single Quote ()

Form Feed (FF)

\ 000 : Character with Octal value OO0

\
\n
\a
\r

: Double quote (")

:Line Feed (LF)
: Beep (BEL)
: Carriage Return (CR)

\xHH : Hexadecimal Character HH

\b
\t

: BackSpace (BS)
: Horizontal Tabulation (TAB)

\uHHHH: Hexadecial Unicode Character HHHH

\AllCharacter: leftas such

String formatting

String formatting can be very useful. it is very close to the C function sprintf() :

Examples :
"My tailor is %s..." % "rich"returns "My tailor is rich..."
"Tea %d %d %s" % (4, 2, "etc.") returns "Tea 4 2 etc."

"% (itemNumber)d % (itemColor)s" % {"itemNumber":123, "itemColor":"blue"}
returns "123 blue"

The Basics

% codes to format strings:

Description

Code
%S String or any object
%r Equivalent to %s but uses repr()
%C Character
%d Decimal integer
%1 Integer
%u Unsigned integer
%0 Octal integer
%x, %X Hexadecimal integer
%e, %E Float exponent
%E, %F Float
%g, %G %e or %f float
%% ‘%' literal

Most common methods for strings

The following table summarizes the most common methods for strings. For instance, if s is a
string, s. lower () returns s converted to lower cases. All operations on sequences are

authorized.
Code

s.capitalize()

s.center (width)

s.count (sub[,start[,end]])
s.encode ([encoding[,errors]])

s.endswith(suffix[,start[,end]])

s.expandtabs ([tabsize])

s.find(subl[,start[,end]])
s.index (sub[,start[,end]])

s.isalnum/()

Description
Returns a copy of s in upper cases

Returns a copy of s centered on a string of width
characters

Returns the number of occurrences of sub in s
Returns the encoded version of s
Returns TRUE if s ends with a suffix

Returns a copy of s where all tabulations are
replaced with tabsize spaces

Returns the first index of s where sub was found

Same as 'find' but returns an error sub is not found

Returns TRUE if all characters of s are alpha

Oracle Data Integrator Jython Quick Reference

.isalpha/()
.isdigit ()
.islower ()

.isspace()

.istitle()

.isupper ()

.join (seq)

.1just (width)

.lower ()
.lstrip()

.replace(old, new|[, maxsplit])

.rfind(sub[,start[,end]])

.rindex (sub[,start[,end]])

.rjust (width)

.rstrip()

.split([sep[,maxsplit]])

.splitlines ([keepends])

numeric

Returns TRUE if all characters of s are alpha
Returns TRUE if all characters of s are numeric
Returns TRUE if s is in lower case.

Returns TRUE if s only contains spaces

Returns TRUE if each word in s starts with an
upper case

Returns TRUE if all characters in s are in upper
case

Returns the concatenation of strings of the
sequence seq separated by s

Returns a left justified copy of s with a maximum
length of width characters

Returns a lower case copy of s

Returns a copy of s, trimming all spaces on the left.
Replaces old with new in s

Returns the last index of s where sub was found
Same as rfind but returns an error if not found

Returns a right-justified copy of s with a maximum
length of width characters

Returns a copy of s, trimming all spaces on the
right

Returns a list of words from s, using sep as a
separator

Returns the list of lines from s

.startswith (prefix[,start[,end]]) Returns TRUE if s starts with prefix

.strip ()

.swapcase ()

.title ()

.translate(table[,deletechars])

.upper ()

Returns a copy of s trimming all spaces on the left
and right

Returns a copy of s with uppercases converted to
lowercases and vice versa

Returns a copy of s where all words start with an
uppercase.

Translates s according to table

Returns an uppercase copy of s

The Basics

Lists

Lists are arrays of modifiable references to objects, accessed with an index.
A list is a series of values separated by commas and enclosed in brackets.
e []isanempty list

e [0, 1, 2, 3, 4, 5] isalistof 6 elementsindexed from 0to 5

e mylist = ['john', 1, ['albert', 'collin']] is alistof 3 elements where the 2
index (third element) is also a list

mylist[2] returns ['albert', 'collin']
mylist[2][1] returns 'collin'

Some list functions

Method Description
mylist.append (x) Adds an element at the end of the list

mylist.sort ([function]) Sorts the list with the optional [function] comparison function

mylist.reverse() Reverses the list (from last to first)
mylist.index (x) Seeks the index x

mylist.insert (i, x) Inserts x at index i

mylist.count (x) Returns the number of occurrences of x in the list
mylist.remove (x) Deletes the first occurrence of x in the list

Deletes and return the last element in the list or the element at

mylist.pop([i]) index i

Dictionaries

Dictionaries are arrays of objects indexed on a key (string value) and not by an index.
A dictionary is accessed with a tuple key:value separated by commas and in brackets.
e {} is an empty dictionary

e {'Pl':'Watch', 'P2': 'Birds', 'P3':'Horses'} is adictionary with 3 elements
with the following keys: P1, P2 and P3

e adict = {'FR_US':{'Bonjour':'Hello', 'Au revoir':'Goodbye'},
'"US_FR':{'Hello': 'Bonjour', 'Goodbye':'Au Revoir'}} is adictionary that

contains other dictionaries. To translate 'Hello' in French:: adict ['US_FR']['Hello"']

Some methods to handle dictionaries

Oracle Data Integrator Jython Quick Reference

Method Description
adict.has key (k) Returns TRUE (1) if the key k exists in the dictionary
adict.keys () Returns the list of dictionary keys
adict.values () Returns a list of dictionary values

adict.items () Returns a list of tuples (key, value) for each element of the

dictionary
adict.clear () Deletes all elements of adict
adict.copy () Returns a copy of adict

Update the dictionary dic1 with the values of dic2 based on the

dicl.update (dic2
icl.update(dic2) values of the keys

Equivalent to adict[k] but returns default if k cannot be

dict.get (k[,default
adict.get (k[,defau])found.

adict.popitem() Retrieves an element and deletes it from the dictionary

Tuples

Tuples are non modifiable object arrays parsed with an index.

A tuple is handled as a series of values separated by commas and within brackets.
e () isanempty tuple

e (0,1,2,3) isa4elements tuple, indexed from 0 to 3

e tuple = (0, (1, 2), (4,5,6)) isatuplethatcontains other tuples. tuple[1]1[0]
returns 1

Operations on sequences are available for the tuples.

Sequences

Sequences can be strings, lists, tuples or dictionaries.
The most common operations are described below:

All sequences

Operation Description
X in S, X not in S Belonging
for X in S: Iteration
S+S Concatenation
S*N, N*S Repeating

10

The Basics

S[i] Indexing

S[i:]j] Array indexing
len(S) Length (Size)
iter(S) Iterating object
min(S) Smallest element
max (S) Largest element

Modifiable lists

Operation Description
S[il=X Assignment/modification with index i
S[i:jl=S2 Assign S2 to an array
del S[i] Delete the element i
del S[i:3] Delete the array fromitoj
dictionaries

Opération Description
D[k] Key indexing
D[k] = X Assignment / modification with the key
del DI[Xk] Delete the element at key k
len (D) Number of keys in D
Examples
>>> g='ABCDEFGH'
>>>s[0]
|A|
>>>s[0:2]
|AB|
>>>g[:2]
IABI

>>>g[-3:-1]
|FG|

11

Oracle Data Integrator Jython Quick Reference

>>>s[-1:]

TH!

Files

File objects are handled with built-in functions. The open method is used to open a file for reading

or writing operations.

The following table shows the most common methods used for files

F

Operation

f = open(filename [,

mode='r"'])

f.close()
f.fileno()
f.flush()

f.isatty ()

f.read([size])

f.readline ()

f.readlines ()

f.xreadlines ()

f.seek(offset][,

f.tell()

f.write(str)

whence=01])

Description

Opens a file in the proper mode:

mode :

'r' :Read

'w' : Write. Create the file if it does not exist
'a' : Append.

'+' : (added to the previous modes - example 'a+') opens
the file for updates

'b' : (added to the previous modes - example 'rb’) open the
file in binary mode

Closes the f file

Returns descriptor of the f file
Empties the internal buffer of f
Returns true iffisa TTY

Reads a maximum of size bytes from the file and returns a
string

Reads a line from f
Reads until the end of file (EOF) and returns a list of lines

Returns a sequence without reading until the end of file
(preferred to readlines()

Sets the file's current position to 'offset' bytes from ‘whence':
0: from the beginning of the file

1: from the current location

2: from the end of the file

Returns the current location in the file

Writes str into the file

12

The Basics

f.writelines(list) Writes a list of strings in the file

Syntax

Identifiers

Identifiers can be named as follows:
(letter | "_") (letter | number | "_")*

Note: Identifiers, keywords and attributes are case-sensitive.

Special Forms:

_ident , __ident__ and __ident have a particular significance. Please refer to the
Jython documentation.

The Assignments

All the following assignment forms are valid:

X =V

xl = x2 =v

x1l, x2 = vl, v2

xl, x2, ..., xn =vl, v2, ..., vn
(x1, x2, ..., xn) = (v1l, v2, ..., vn)
[x1, x2, ..., xn] = [v1l, v2, ..., vn]

The following special assignment forms are also valid:
x += yisequivalenttox = x + y

*

x *= yisequivalenttox = x v
x /= yisequivalenttox = x / vy
x -= yisequivalenttox = x - y
x %= yisequivalenttox = x % y
x &= yisequivalenttox = x & y
x ~= yisequivalenttox = x ~ vy
x **= yisequivalenttox = x ** y
x |= yisequivalenttox = x | y

Expressions

13

Oracle Data Integrator Jython Quick Reference

expression
function([valuel, arg name=value2, ...])

object.method([valuel, arg_name=value2, ...])

A function call always assigns values to all parameters mentioned in the parameter list, either from
position arguments, from keyword arguments, or from default values.

Instructions

The break Statement

break

Terminates the nearest enclosing while or for loop, skipping the optional else clause if the loop
has one.

The class Statement

class class_name [(super_classl [,super_class2]*)]:

instructions

Creates a new class_name class, that can then be instantiated to create objects.

Examples

class c:
def _ init_ (self, name, pos):
self.name = name
self.pos = pos
def showcol (self):
print "Name : %s; Position :%d" % (self.name, self.pos)
col2 = c("CUSTNAME", "2")
col2.showcol ()
Returns:
Name : CUSTNAME, Position :2

The continue Statement

continue

Continues with the next cycle of the nearest enclosing while or for loop.

14

The Basics

The def Statement

def func_name ([arg, arg=value, ... *arg, **arg]):

instructions

Defines a func_name function.
The parameters are passed by value and can be defined as follows:

Parameter Description
arg Parameter passed by value

arg=value Parameter with a default value (if arg is not passed during the call)

*arg Free parameters. arg takes the value of a tuple of all parameters.
**arg Free parameters. arg takes the dictionary value for each parameter.
Examples

Function with default parameters:
def my_ function(x, y=3):

print x+y

my_function(3,5)
Displays 8
my_function (3)

Displays 6

Function with free parameters:
def my_ print(*x):
for s in x:

print s,

my_print('a','b','c','d")
Displaysa b ¢ 4

The del Statement

del x

del x[i]

del x[i:]j]

del x.attribute

Deletes names, references, slicings, attributes

15

Oracle Data Integrator Jython Quick Reference

The exec Statement

exec X [in globals [,locals]]

Executes x in the indicated namespace. By default, x is executed in the current namespace.
x can be a string, a file object or a function object.

The for Statement

for x in sequence:
instructions
[else:

instructions]

Used to iterate over the elements of a sequence. Each item of sequence is assigned to x using
the standard rules for assignments, and then the code is executed. When the items are exhausted
(which is immediately when the sequence is empty), the code in the else clause, if present, is
executed, and the loop terminates.

Examples

Loop from O to 3:
for i in range(4):

print i

Loop from 2 to 5:
for i in range (2, 6):

print i

Loop from 2 to 10 by 2:
for i in range(2, 11, 2):

print i

Loop on all elements of a list:
1= [lal, lbl, lcl, ldl]
for x in 1:

print x

The from Statement

from module import namel [as othernamel] [, name2]*

from module import *

Imports the names of a module into the current namespace.

16

The Basics

Examples

Display the directories of c:\
from os import listdir as directorylist
dir_list = directorylist('c:/")

print dir_list

The global Statement

global namel [, name2]

The global statement is a declaration which holds for the entire current code block. It means that
the listed identifiers are to be interpreted as global identifiers. It would be impossible to assign to a
global variable without global, although free variables may refer to global identifiers without being

declared global. name1 is a reference to the global variable name1.

The if Statement

if condition:
instructions
[elif condition:
instructions]*
[else:

instructions]

Used for conditional execution: If , else if ... , else

Examples

x = 2

y = 4

if x ==y :
print "Waooo"

elif x*2 == y:
print "Ok"

else:

print "???"

The import Statement

import modulel [as namel] [, module2]*

Imports a module or package so that it becomes accessible. The module contains names that are

accessible through their module_name . name qualifier.

17

Oracle Data Integrator Jython Quick Reference

Examples

Display the directories in c:\
import os
dir_list = os.listdir('c:/")

print dir_1list

Using the JDBC classes: run a SQL query and display the results
import java.sgl as jsqgl
import java.lang as lang
driver, url, user, passwd = (
"oracle.jdbc.driver.OracleDriver",
"jdbc:oracle:thin:@pluton:1521:pluton",
"user",
"pass")
lang.Class. forName (driver)
c = jsqgl.DriverManager.getConnection (url,user, passwd)
S = c.createStatement ()
sgl_stmt = "select * from user_tables"
print "executing " , sgl_stmt
rs = s.executeQuery(sgl_stmt)
while (rs.next()):
print rs.getString ("TABLE_NAME"), rs.getString("OWNER")

c.close()

The pass Statement

pass

This is a null operation -- when it is executed, nothing happens. It is useful as a placeholder when
a statement is required syntactically but no code needs to be executed.

The print Statement

print [value [, valuel* [,]1]

print >> file_object [, value [, valuel* [,]]

Evaluates each expression in turn and writes the resulting object to standard output (stdout) or to
the file_object file. A "\n" character is written at the end, unless the print statement ends with a
comma.

The raise Statement

raise [exception [, value]]:

18

The Basics

Raises the exception exception with the optional value value.

If the exception object is a class, it becomes the type of the exception. value is used to
determine the exception value: If it is an instance of the class, the instance becomes the exception
value. If value is a tuple, it is used as the argument list for the class constructor; if it is None, an
empty argument list is used, and any other object is treated as a single argument to the
constructor. The instance so created by calling the constructor is used as the exception value.

If no expressions are present, raise re-raises the last expression that was active in the current
scope. If no exception has been active in the current scope, an exception is raised that indicates
that this is the error.

The return Instruction

return [expression]

Leaves the current function call with expression
(or None) as the return value.

The try Statement

try

suitel

[except [exception [, value]l]:
suite2]*

[else

suite3]

try
suitel
finally

suitel

Specifies exception handlers and/or cleanup code for a group of statements. There are two forms
of try statement:

1st form: When no exception occurs in suitel, no exception handler is executed. When an
exception occurs in suitel, a search for an exception is started. If it is found, suite2 is
executed. Otherwise, suite3 is executed. If the exception has a value, it is assigned to the
triggered instance.

2nd form: When no exception occurs in suitel, no exception handler is executed. When an
exception occurs in suitel, suite?2 is executed in all cases and the exception is raised.

Examples

Open a file and close it in all cases:
f = open('c:/my_file.txt', 'w')
try:

19

Oracle Data Integrator Jython Quick Reference

f.write('Hello world'")

finally:

f.close()

Open a non existing file and trap the exception:

try:
f = open('inexisting file.txt', 'r')
f.close()

except IOError, v:
print 'IO Error detected: ', v
else:

print 'Other Error'

The while Statement

while condition:
instructions
[else:

instructions]

Used for repeated execution as long as an expression is true. A break statement executed in the
first suite terminates the loop without executing the else clause's suite and before conditionis
false.

Examples

Display i from O to 8

i=0

while 1 < 9:
print i

i+=1

Modules

Internal modules must be imported with the import statement. There are many modules.

An exhaustive list of modules and their reference documentation is available at
http://www.jython.org

The following list gives a brief overview of the most commonly used modules:

Modules Description Some methods

None Standard Functions apply, callable, chr, cmp, coerce,

20

The Basics

sys

os

math

time

re

socket
cgi

urllib,
urllib?2

ftplib

httplib,
nntplib

poplib,
imaplib,
smtplib

telnetlib,
gopherlib

Contains functions
relative to the
interpreter. They give
access to the
environment
components (command
line, standard 1/0O)

Interface with the
operating system,

independently of the
platform.

Math Functions

Date and time functions
Regular expression
functions

TCP/IP Socket support
CGl script support
Web page search.
Supports the following
URLSs: http, ftp, gopher
and file

FTP protocol support
Http and nntp support

POP, IMAP and SMTP
protocol support

Telnet, gopher support

compile, complex, delattr, eval, execfile,
filter, getattr, globals, hasattr, hash,
hex, id, input, intern, isinstance,
issubclass, list locals, ord, pow, range,
reduce, reload, repr, round, setattr,
slice, str, tuple, type, vars, Xrange

argv, builtin_module_names,
check_interval, exc_info, exit, exitfunc,
getrecursionlimit, getrefcount, maxint,
modules, path, platform, setcheckinterval,
setdefaultencoding, setprofile,
setrecursionlimit, settrace, stderr,
stdin, stdout, version

_exit, altsep, chdir, chmod, curdir,
environ, error, execv, fork, getcwd,
getpid, kill, linesep, listdir, makedirs,
name, pardir, path, pathsep, pipe,
removedirs, renames, sep, system, times,
wait, waitpid

acos, asin, atan, atan2, ceil, cos, cosh,
e, exp, fabs, floor, fmod, frexp, ldexp,
log, logl0, modf, pi, pow, sin, sinh,
sgrt, tan, tanh

altzone, daylight, gmtime, localtime,
sleep, strftime, time

compile, I, L, M, S, U, X, match, search,
split, sub, subn, findall, escape

See reference documentation
See reference documentation

See reference documentation

See reference documentation

See reference documentation

See reference documentation

See reference documentation

21

Using Jython in Oracle Data
Integrator

Using the Jython interpreter

Jython programs can be interpreted for test purposes outside of Data Integrator, using the
standard Jython interpreter.

Start the Jython interpreter

Start an OS prompt (console)
Go to the /bin directory.
Key in: jython

A w DN PR

The interpreter is launched

Exiting the Jython interpreter

1. Hit Ctrl+Z (*2), then Enter
2. You exit the interpreter

Running Jython scripts

1. Gotothe /bin directory.
2. Typein: jython <script_path.py>
3. The script is executed

Using Jython in the procedures

All Jython programs can be called from a procedure or a Knowledge Module.

Create a procedure that calls Jython

In Designer, select a Folder in your Project and insert a new Procedure

Type the Name of the procedure

Add a command line in the Detail tab

In the command window, type the Name for this command

In the Command on Target tab, choose the Jython Technology from the list

In the Command text, type the Jython program to be executed, or use the expression editor
Click OK to apply the changes

© N o g bk~ wDdhpRE

Click Apply to apply the changes in the procedure window

23

Oracle Data Integrator Jython Quick Reference

9. Inthe Execution tab, click the Execute button and follow the execution results in the
execution log.

The procedure that was created with this process can be added to a Package like any other
procedure.

Jython variable persistence in a session

All the Jython variables used are persistent in an execution session.
If a Procedure TRT1 has 3 command lines defined as:

Line 1: set value for x
X = 'My Taylor is Rich'

Line 2: set value for y
y = 'I wish I could say :'

Line 3:Write output file

f = open('test.txt', 'w')
f.write('Result : %s %s' % (y, X))
f.close()

After running TRT1, the content of the resulting test . txt file willbe Result : I wish I
could say : My Taylor is Rich

The Jython variables x and y have kept their values within the same procedure across several
command lines.

Likewise, a process TRT2 that would be executed after TRT1 in a package could use the variables
x and y within the same execution session.

Add a Specific Module to the Standard Distribution

It is possible to extend the basic functions of Jython by adding new modules to the default ones.

You can write your own Jython module (please refer to the documentation available at
http://www.jython.org) and put this module in the /1ib/scripting/Lib sub-directory of your
Oracle Data Integrator installation directory.

Additional modules in Oracle Data Integrator

For an easier use of Jython within Oracle Data Integrator, the following modules have been added:

snpsftp Module

This module simplifies the use of FTP (File Transfer Protocol) with Jython

24

Using Jython in Oracle Data Integrator

It implements the class SnpsFTP

SnpsFTP Class

Constructor / Methode

Description

Constructor: creates an ftp object and connects

SnpsFTP ([host [,user [,passwd[, acct tothe host FTP server on port number port

[, portllll])

connect (host [,port])

login([user [,passwd [,acct]]])

setmode (mode)

setpassive(0 | 1)

get (src[, dest [, modell])

mget (srcdir, pattern [, destdir [,
model]])

put(src [, dest [, mode='"' [,
blocksize=8192]111)

mput (srcdir, pattern [, destdir [,
mode [, blocksize=8192]111)

quit ()

close ()

Examples

using user, passwd and acct for the
authentication.

Connects to the FTP host server on port number
port

Performs authentication against the FTP server.

Sets the mode to ASCII or BINARY. Possible
values are: 'ASCII' or 'BINARY'. The default
value for transfers is ASCII.

Sets the FTP connection in passive (1) or active
(0) mode.

Downloads the file described with its full path
src (on the FTP server) into the file or directory
dest. The mode can be forced to 'ASCII' or
'‘BINARY".

Downloads a set of files from the directory
srcdir that matches the filter pattern in the
directory destdir using the mode mode.

Puts the local file src in the server file dest
using the mode mode. Uses a bloc transfer size
of blocksize bytes.

Puts several local files from the directory
srcdir that match the filter pattern into the
server directory destdir using the mode mode.
Uses a transfer bloc size of blocksize octets.

Sends a QUIT command, then closes the
connection with the FTP server.

Closes the connection with the FTP server.

Retrieve the * . txt files from /home/odi on the server ftp.myserver.com in the local

directory c: \temp
import snpsftp

ftp = snpsftp.SnpsFTP('ftp.myserver.com', 'mylogin', 'mypasswd')

ftp.setmode ('ASCII')

25

Oracle Data Integrator Jython Quick Reference

ftp.mget (' /home/odi', '*.txt', 'c:/temp')
ftp.close()

Put the * . zip files from C:\odi\1ib onto the server ftp.myserver.com in the remote
directory /home/odi/1ib

import snpsftp

ftp = snpsftp.SnpsFTP('ftp.myserver.com', 'mylogin', 'mypasswd')
ftp.setmode ('BINARY')

ftp.mput ('C:/0di/1lib', '*.zip', '/home/odi/lib"')

ftp.close()

26

Examples

Read From and Write to a File

The SRC_AGE_GROUP. txt file contains records where the columns are separated by ;. The
following example transforms the SRC_AGE_GROUP. txt file into a new file
SRC_AGE_GROUP_NEW. txt using tabulations as separators.

This example uses the split () string methods to determine the list of fields separated by ; and
join () to rebuild a new string separated by tabulations (' \t').

fsrc = open('c:/odi/demo/file/SRC_AGE_GROUP.txt', 'r')
ftrg = open('c:/odi/demo/file/SRC_AGE_GROUP_NEW.txt', 'w')
try:

for lsrc in fsrc.readlines():
get the list of values separated by ;
valueList = lsrc.split(';")
transform this list of values to a string separated by a tab
("\t")
ltrg = '\t'.join(valueList)
write the new string to the target file
ftrg.write(ltrg)
finally:
fsrc.close()

ftrg.close()

The method readlines () in the above example loads the entire file into memory. It should only
be used for small files. For larger files, use the readline () method as in the following example.
readline () will read the lines one by one.:

fsrc = open('c:/odi/demo/file/SRC_AGE_GROUP.txt', 'r')
ftrg = open('c:/odi/demo/file/SRC_AGE_GROUP_NEW.txt', 'w')
try:

lsrc=fsrc.readline ()

while (lsrc):
valueList = lsrc.split(';")
ltrg = '\t'.join(valueList)
ftrg.write(ltrg)
lsrc=fsrc.readline ()

finally:
fsrc.close()
ftrg.close ()

27

Oracle Data Integrator Jython Quick Reference

List the contents of a directory

The following example lists the contents of the directory c: /odi and writes this list into
c:/temp/listdir.txt. For each element in the list, the method os.path.isdir () checks
whether it is a file or a directory

import os
ftrg = open('c:/temp/listdir.txt', 'w')
try:
mydir = 'c:/odi’
mylist = os.listdir (mydir)
mylist.sort()
for dirOrFile in mylist:
if os.path.isdir (mydir + os.sep + dirOrFile):
print >> ftrg, 'DIRECTORY: %s' % dirOrFile
else:
print >> ftrg, 'FILE: %s' % dirOrFile
finally:
ftrg.close()

Using the Operating System Environment
Variables

It can be usefull to retrieve the Operating System environment variables. The following examples
show how to retrieve this list:

import os

ftrg = open('c:/temp/listenv.txt', 'w')
try:
envDict = os.environ

osCurrentDirectory = os.getcwd ()
print >> ftrg, 'Current Directory: %s' % osCurrentDirectory
print >> ftrg, 's=============================
print >> ftrg, 'List of environment variables:'
print >> ftrg, '==============================
for aKey in envDict.keys (

print >> ftrg, '%s\t= %s' % (aKey, envDict[aKey])
print >> ftrg, '==============================

print >> ftrg, 'Oracle Data Integrator specific environment
variables:'

print >> ftrgl === =——=—=——=—=—=—====
for aKey in envDict.keys():
if aKey.startswith('SNP_"'):

print >> ftrg, '%s\t= %s' % (aKey, envDictl[aKey])

28

Examples

finally:
ftrg.close()

To retrieve the value of the USERNAME environment variable, just write:
import os

currentUser = os.environ|['USERNAME']

Using JDBC

It can be convenient to use JDBC (Java DataBase Connectivity) to connect to a database from
Jython. All Java classes in the CLASSPATH can be directly used in Jython. The following example
shows how to use the JDBC API to connect to a database, to run a SQL query and write the result
into a file.

The reference documentation for Java is available at http://java.sun.com
import java.sql as sql
import java.lang as lang
def main():
driver, url, user, passwd = (
'oracle.jdbc.driver.OracleDriver"',
'jdbc:oracle:thin:@myserver:1521 :mysid’,
'myuser’',
'mypasswd')
Register Driver

lang.Class.forName (driver)

Create a Connection Object
myCon = sqgl.DriverManager.getConnection(url, user, passwd)
f = open('c:/temp/jdbc_res.txt', 'w')
try:
Create a Statement
myStmt = myCon.createStatement ()
Run a Select Query and get a Result Set

myRs = myStmt.executeQuery("select TABLE_NAME, OWNER from ALL_TABLES
where TABLE_NAME like 'SNP%'")

Loop over the Result Set and print the result in a file
while (myRs.next()):

print >> £ , "%s\t%s" % (myRs.getString("TABLE_NAME"),
myRs.getString ("OWNER"))

finally:
myCon.close ()

f.close()

Entry Point of the program

29

Oracle Data Integrator Jython Quick Reference

if name == '__main__ ':

main ()

It is possible to combine Jython with odiRef API in the Oracle Data Integrator Procedures, for even
more flexibility. Instead of hard-coding the parameters to connect to a database in the program,
the getinfo method can be used:

import java.sqgl as sql

import java.lang as lang

def main():

driver, url, user, passwd = (

'<%$=0diRef.getInfo ("DEST_JAVA_DRIVER")%>"',
'<%=0diRef.getInfo ("DEST _JAVA_URL")%>',
'<%=0diRef.getInfo ("DEST_USER_NAME") %>"',
'<%=0diRef.getInfo ("DEST_PASS")%>")

Register Driver

lang.Class.forName (driver)

[...]

Using FTP

In some environments, it can be useful to use FTP (File Transfer Protocol) to transfer files
between heterogeneous systems. Oracle Data Integrator provides an additional Jython module to
further integrate FTP.

The following examples show how to use this module:

Pull the * . txt files from /home/odi of the server ftp.myserver.com into the local directory
c:\temp

import snpsftp

ftp = snpsftp.SnpsFTP('ftp.myserver.com', 'mylogin', 'mypasswd')
try:

ftp.setmode ('ASCITI"')

ftp.mget (' /home/odi', '*.txt', 'c:/temp')
finally:

ftp.close()

Push the files * . zip from C:\odi\1lib onto ftp.myserver.com in the remote directory
/home/odi/1lib

import snpsftp

ftp = snpsftp.SnpsFTP('ftp.myserver.com', 'mylogin', 'mypasswd')
try:

ftp.setmode ('BINARY')

ftp.mput ('C:/0di/1lib', '*.zip', '/home/odi/lib"')
finally:

30

Examples

ftp.close()

Using IP sockets

IP sockets are used to initiate an IP communication between two processes on the network.
Jython greatly simplifies the creation of IP servers (waiting for IP packets) or IP clients (sending IP
packets).

The following example shows the implementation of a very basic IP server. It waits for data
coming from client software, and writes each received packet into the file
c:/temp/socketserver.log. If a server receives the packet STOPSERVER, the server stops:

Server

import socket

import time

HOST = '!
PORT = 9191 # Arbitrary port (not recommended)
LOG_FILE = 'c:/temp/sockserver.log'

mySock = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
mySock.bind ((HOST, PORT))
logfile = open(LOG_FILE, 'w')

try:
print >> logfile, '*** Server started : %s' % time.strftime('$Y-%m-%d
SH:3M:%S ")
while 1:
data, addr = mySock.recvfrom(1024)
print >> logfile, '%s (%s): %s' % (time.strftime('%Y-%m-%d
$H:%$M:%S'), addr, data)
if data == 'STOPSERVER':
print >> logfile, '*** Server shutdown at %s by %s' %
(time.strftime ('%Y-%m-%d %$H:3M:%S'), addr)
break
finally:

logfile.close()

Client

The following example can be used ot test the above server. It sends two packets before asking
the server to stop.

import socket
import sys
PORT = 9191 # Same port as the server

HOST = 'SERVER_IP_ADDRESS'
mySock = socket.socket (socket.AF_INET, socket.SOCK_DGRAM)
mySock.sendto('Hello World !', (HOST, PORT))

31

Oracle Data Integrator Jython Quick Reference

mySock.sendto('Do U hear me?', (HOST, PORT))
mySock.sendto (' STOPSERVER', (HOST, PORT))

32

